iwl-4965-hw.h 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840
  1. /******************************************************************************
  2. *
  3. * This file is provided under a dual BSD/GPLv2 license. When using or
  4. * redistributing this file, you may do so under either license.
  5. *
  6. * GPL LICENSE SUMMARY
  7. *
  8. * Copyright(c) 2005 - 2008 Intel Corporation. All rights reserved.
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of version 2 of the GNU General Public License as
  12. * published by the Free Software Foundation.
  13. *
  14. * This program is distributed in the hope that it will be useful, but
  15. * WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
  22. * USA
  23. *
  24. * The full GNU General Public License is included in this distribution
  25. * in the file called LICENSE.GPL.
  26. *
  27. * Contact Information:
  28. * Intel Linux Wireless <ilw@linux.intel.com>
  29. * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  30. *
  31. * BSD LICENSE
  32. *
  33. * Copyright(c) 2005 - 2008 Intel Corporation. All rights reserved.
  34. * All rights reserved.
  35. *
  36. * Redistribution and use in source and binary forms, with or without
  37. * modification, are permitted provided that the following conditions
  38. * are met:
  39. *
  40. * * Redistributions of source code must retain the above copyright
  41. * notice, this list of conditions and the following disclaimer.
  42. * * Redistributions in binary form must reproduce the above copyright
  43. * notice, this list of conditions and the following disclaimer in
  44. * the documentation and/or other materials provided with the
  45. * distribution.
  46. * * Neither the name Intel Corporation nor the names of its
  47. * contributors may be used to endorse or promote products derived
  48. * from this software without specific prior written permission.
  49. *
  50. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  51. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  52. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  53. * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  54. * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  55. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  56. * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  57. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  58. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  59. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  60. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  61. *
  62. *****************************************************************************/
  63. /*
  64. * Please use this file (iwl-4965-hw.h) only for hardware-related definitions.
  65. * Use iwl-commands.h for uCode API definitions.
  66. * Use iwl-dev.h for driver implementation definitions.
  67. */
  68. #ifndef __iwl_4965_hw_h__
  69. #define __iwl_4965_hw_h__
  70. #include "iwl-fh.h"
  71. /* EEPROM */
  72. #define IWL4965_EEPROM_IMG_SIZE 1024
  73. /*
  74. * uCode queue management definitions ...
  75. * Queue #4 is the command queue for 3945 and 4965; map it to Tx FIFO chnl 4.
  76. * The first queue used for block-ack aggregation is #7 (4965 only).
  77. * All block-ack aggregation queues should map to Tx DMA/FIFO channel 7.
  78. */
  79. #define IWL_CMD_QUEUE_NUM 4
  80. #define IWL_CMD_FIFO_NUM 4
  81. #define IWL49_FIRST_AMPDU_QUEUE 7
  82. /* Time constants */
  83. #define SHORT_SLOT_TIME 9
  84. #define LONG_SLOT_TIME 20
  85. /* RSSI to dBm */
  86. #define IWL_RSSI_OFFSET 44
  87. /* PCI registers */
  88. #define PCI_CFG_RETRY_TIMEOUT 0x041
  89. #define PCI_CFG_POWER_SOURCE 0x0C8
  90. #define PCI_REG_WUM8 0x0E8
  91. #define PCI_CFG_LINK_CTRL 0x0F0
  92. /* PCI register values */
  93. #define PCI_CFG_LINK_CTRL_VAL_L0S_EN 0x01
  94. #define PCI_CFG_LINK_CTRL_VAL_L1_EN 0x02
  95. #define PCI_CFG_CMD_REG_INT_DIS_MSK 0x04
  96. #define PCI_CFG_PMC_PME_FROM_D3COLD_SUPPORT (0x80000000)
  97. #define IWL_NUM_SCAN_RATES (2)
  98. #define IWL_DEFAULT_TX_RETRY 15
  99. #define RX_QUEUE_SIZE 256
  100. #define RX_QUEUE_MASK 255
  101. #define RX_QUEUE_SIZE_LOG 8
  102. #define TFD_TX_CMD_SLOTS 256
  103. #define TFD_CMD_SLOTS 32
  104. /*
  105. * RX related structures and functions
  106. */
  107. #define RX_FREE_BUFFERS 64
  108. #define RX_LOW_WATERMARK 8
  109. /* Size of one Rx buffer in host DRAM */
  110. #define IWL_RX_BUF_SIZE_4K (4 * 1024)
  111. #define IWL_RX_BUF_SIZE_8K (8 * 1024)
  112. /* Sizes and addresses for instruction and data memory (SRAM) in
  113. * 4965's embedded processor. Driver access is via HBUS_TARG_MEM_* regs. */
  114. #define RTC_INST_LOWER_BOUND (0x000000)
  115. #define IWL49_RTC_INST_UPPER_BOUND (0x018000)
  116. #define RTC_DATA_LOWER_BOUND (0x800000)
  117. #define IWL49_RTC_DATA_UPPER_BOUND (0x80A000)
  118. #define IWL49_RTC_INST_SIZE (IWL49_RTC_INST_UPPER_BOUND - RTC_INST_LOWER_BOUND)
  119. #define IWL49_RTC_DATA_SIZE (IWL49_RTC_DATA_UPPER_BOUND - RTC_DATA_LOWER_BOUND)
  120. #define IWL_MAX_INST_SIZE IWL49_RTC_INST_SIZE
  121. #define IWL_MAX_DATA_SIZE IWL49_RTC_DATA_SIZE
  122. /* Size of uCode instruction memory in bootstrap state machine */
  123. #define IWL_MAX_BSM_SIZE BSM_SRAM_SIZE
  124. static inline int iwl4965_hw_valid_rtc_data_addr(u32 addr)
  125. {
  126. return (addr >= RTC_DATA_LOWER_BOUND) &&
  127. (addr < IWL49_RTC_DATA_UPPER_BOUND);
  128. }
  129. /********************* START TEMPERATURE *************************************/
  130. /**
  131. * 4965 temperature calculation.
  132. *
  133. * The driver must calculate the device temperature before calculating
  134. * a txpower setting (amplifier gain is temperature dependent). The
  135. * calculation uses 4 measurements, 3 of which (R1, R2, R3) are calibration
  136. * values used for the life of the driver, and one of which (R4) is the
  137. * real-time temperature indicator.
  138. *
  139. * uCode provides all 4 values to the driver via the "initialize alive"
  140. * notification (see struct iwl4965_init_alive_resp). After the runtime uCode
  141. * image loads, uCode updates the R4 value via statistics notifications
  142. * (see STATISTICS_NOTIFICATION), which occur after each received beacon
  143. * when associated, or can be requested via REPLY_STATISTICS_CMD.
  144. *
  145. * NOTE: uCode provides the R4 value as a 23-bit signed value. Driver
  146. * must sign-extend to 32 bits before applying formula below.
  147. *
  148. * Formula:
  149. *
  150. * degrees Kelvin = ((97 * 259 * (R4 - R2) / (R3 - R1)) / 100) + 8
  151. *
  152. * NOTE: The basic formula is 259 * (R4-R2) / (R3-R1). The 97/100 is
  153. * an additional correction, which should be centered around 0 degrees
  154. * Celsius (273 degrees Kelvin). The 8 (3 percent of 273) compensates for
  155. * centering the 97/100 correction around 0 degrees K.
  156. *
  157. * Add 273 to Kelvin value to find degrees Celsius, for comparing current
  158. * temperature with factory-measured temperatures when calculating txpower
  159. * settings.
  160. */
  161. #define TEMPERATURE_CALIB_KELVIN_OFFSET 8
  162. #define TEMPERATURE_CALIB_A_VAL 259
  163. /* Limit range of calculated temperature to be between these Kelvin values */
  164. #define IWL_TX_POWER_TEMPERATURE_MIN (263)
  165. #define IWL_TX_POWER_TEMPERATURE_MAX (410)
  166. #define IWL_TX_POWER_TEMPERATURE_OUT_OF_RANGE(t) \
  167. (((t) < IWL_TX_POWER_TEMPERATURE_MIN) || \
  168. ((t) > IWL_TX_POWER_TEMPERATURE_MAX))
  169. /********************* END TEMPERATURE ***************************************/
  170. /********************* START TXPOWER *****************************************/
  171. /**
  172. * 4965 txpower calculations rely on information from three sources:
  173. *
  174. * 1) EEPROM
  175. * 2) "initialize" alive notification
  176. * 3) statistics notifications
  177. *
  178. * EEPROM data consists of:
  179. *
  180. * 1) Regulatory information (max txpower and channel usage flags) is provided
  181. * separately for each channel that can possibly supported by 4965.
  182. * 40 MHz wide (.11n fat) channels are listed separately from 20 MHz
  183. * (legacy) channels.
  184. *
  185. * See struct iwl4965_eeprom_channel for format, and struct iwl4965_eeprom
  186. * for locations in EEPROM.
  187. *
  188. * 2) Factory txpower calibration information is provided separately for
  189. * sub-bands of contiguous channels. 2.4GHz has just one sub-band,
  190. * but 5 GHz has several sub-bands.
  191. *
  192. * In addition, per-band (2.4 and 5 Ghz) saturation txpowers are provided.
  193. *
  194. * See struct iwl4965_eeprom_calib_info (and the tree of structures
  195. * contained within it) for format, and struct iwl4965_eeprom for
  196. * locations in EEPROM.
  197. *
  198. * "Initialization alive" notification (see struct iwl4965_init_alive_resp)
  199. * consists of:
  200. *
  201. * 1) Temperature calculation parameters.
  202. *
  203. * 2) Power supply voltage measurement.
  204. *
  205. * 3) Tx gain compensation to balance 2 transmitters for MIMO use.
  206. *
  207. * Statistics notifications deliver:
  208. *
  209. * 1) Current values for temperature param R4.
  210. */
  211. /**
  212. * To calculate a txpower setting for a given desired target txpower, channel,
  213. * modulation bit rate, and transmitter chain (4965 has 2 transmitters to
  214. * support MIMO and transmit diversity), driver must do the following:
  215. *
  216. * 1) Compare desired txpower vs. (EEPROM) regulatory limit for this channel.
  217. * Do not exceed regulatory limit; reduce target txpower if necessary.
  218. *
  219. * If setting up txpowers for MIMO rates (rate indexes 8-15, 24-31),
  220. * 2 transmitters will be used simultaneously; driver must reduce the
  221. * regulatory limit by 3 dB (half-power) for each transmitter, so the
  222. * combined total output of the 2 transmitters is within regulatory limits.
  223. *
  224. *
  225. * 2) Compare target txpower vs. (EEPROM) saturation txpower *reduced by
  226. * backoff for this bit rate*. Do not exceed (saturation - backoff[rate]);
  227. * reduce target txpower if necessary.
  228. *
  229. * Backoff values below are in 1/2 dB units (equivalent to steps in
  230. * txpower gain tables):
  231. *
  232. * OFDM 6 - 36 MBit: 10 steps (5 dB)
  233. * OFDM 48 MBit: 15 steps (7.5 dB)
  234. * OFDM 54 MBit: 17 steps (8.5 dB)
  235. * OFDM 60 MBit: 20 steps (10 dB)
  236. * CCK all rates: 10 steps (5 dB)
  237. *
  238. * Backoff values apply to saturation txpower on a per-transmitter basis;
  239. * when using MIMO (2 transmitters), each transmitter uses the same
  240. * saturation level provided in EEPROM, and the same backoff values;
  241. * no reduction (such as with regulatory txpower limits) is required.
  242. *
  243. * Saturation and Backoff values apply equally to 20 Mhz (legacy) channel
  244. * widths and 40 Mhz (.11n fat) channel widths; there is no separate
  245. * factory measurement for fat channels.
  246. *
  247. * The result of this step is the final target txpower. The rest of
  248. * the steps figure out the proper settings for the device to achieve
  249. * that target txpower.
  250. *
  251. *
  252. * 3) Determine (EEPROM) calibration sub band for the target channel, by
  253. * comparing against first and last channels in each sub band
  254. * (see struct iwl4965_eeprom_calib_subband_info).
  255. *
  256. *
  257. * 4) Linearly interpolate (EEPROM) factory calibration measurement sets,
  258. * referencing the 2 factory-measured (sample) channels within the sub band.
  259. *
  260. * Interpolation is based on difference between target channel's frequency
  261. * and the sample channels' frequencies. Since channel numbers are based
  262. * on frequency (5 MHz between each channel number), this is equivalent
  263. * to interpolating based on channel number differences.
  264. *
  265. * Note that the sample channels may or may not be the channels at the
  266. * edges of the sub band. The target channel may be "outside" of the
  267. * span of the sampled channels.
  268. *
  269. * Driver may choose the pair (for 2 Tx chains) of measurements (see
  270. * struct iwl4965_eeprom_calib_ch_info) for which the actual measured
  271. * txpower comes closest to the desired txpower. Usually, though,
  272. * the middle set of measurements is closest to the regulatory limits,
  273. * and is therefore a good choice for all txpower calculations (this
  274. * assumes that high accuracy is needed for maximizing legal txpower,
  275. * while lower txpower configurations do not need as much accuracy).
  276. *
  277. * Driver should interpolate both members of the chosen measurement pair,
  278. * i.e. for both Tx chains (radio transmitters), unless the driver knows
  279. * that only one of the chains will be used (e.g. only one tx antenna
  280. * connected, but this should be unusual). The rate scaling algorithm
  281. * switches antennas to find best performance, so both Tx chains will
  282. * be used (although only one at a time) even for non-MIMO transmissions.
  283. *
  284. * Driver should interpolate factory values for temperature, gain table
  285. * index, and actual power. The power amplifier detector values are
  286. * not used by the driver.
  287. *
  288. * Sanity check: If the target channel happens to be one of the sample
  289. * channels, the results should agree with the sample channel's
  290. * measurements!
  291. *
  292. *
  293. * 5) Find difference between desired txpower and (interpolated)
  294. * factory-measured txpower. Using (interpolated) factory gain table index
  295. * (shown elsewhere) as a starting point, adjust this index lower to
  296. * increase txpower, or higher to decrease txpower, until the target
  297. * txpower is reached. Each step in the gain table is 1/2 dB.
  298. *
  299. * For example, if factory measured txpower is 16 dBm, and target txpower
  300. * is 13 dBm, add 6 steps to the factory gain index to reduce txpower
  301. * by 3 dB.
  302. *
  303. *
  304. * 6) Find difference between current device temperature and (interpolated)
  305. * factory-measured temperature for sub-band. Factory values are in
  306. * degrees Celsius. To calculate current temperature, see comments for
  307. * "4965 temperature calculation".
  308. *
  309. * If current temperature is higher than factory temperature, driver must
  310. * increase gain (lower gain table index), and vice verse.
  311. *
  312. * Temperature affects gain differently for different channels:
  313. *
  314. * 2.4 GHz all channels: 3.5 degrees per half-dB step
  315. * 5 GHz channels 34-43: 4.5 degrees per half-dB step
  316. * 5 GHz channels >= 44: 4.0 degrees per half-dB step
  317. *
  318. * NOTE: Temperature can increase rapidly when transmitting, especially
  319. * with heavy traffic at high txpowers. Driver should update
  320. * temperature calculations often under these conditions to
  321. * maintain strong txpower in the face of rising temperature.
  322. *
  323. *
  324. * 7) Find difference between current power supply voltage indicator
  325. * (from "initialize alive") and factory-measured power supply voltage
  326. * indicator (EEPROM).
  327. *
  328. * If the current voltage is higher (indicator is lower) than factory
  329. * voltage, gain should be reduced (gain table index increased) by:
  330. *
  331. * (eeprom - current) / 7
  332. *
  333. * If the current voltage is lower (indicator is higher) than factory
  334. * voltage, gain should be increased (gain table index decreased) by:
  335. *
  336. * 2 * (current - eeprom) / 7
  337. *
  338. * If number of index steps in either direction turns out to be > 2,
  339. * something is wrong ... just use 0.
  340. *
  341. * NOTE: Voltage compensation is independent of band/channel.
  342. *
  343. * NOTE: "Initialize" uCode measures current voltage, which is assumed
  344. * to be constant after this initial measurement. Voltage
  345. * compensation for txpower (number of steps in gain table)
  346. * may be calculated once and used until the next uCode bootload.
  347. *
  348. *
  349. * 8) If setting up txpowers for MIMO rates (rate indexes 8-15, 24-31),
  350. * adjust txpower for each transmitter chain, so txpower is balanced
  351. * between the two chains. There are 5 pairs of tx_atten[group][chain]
  352. * values in "initialize alive", one pair for each of 5 channel ranges:
  353. *
  354. * Group 0: 5 GHz channel 34-43
  355. * Group 1: 5 GHz channel 44-70
  356. * Group 2: 5 GHz channel 71-124
  357. * Group 3: 5 GHz channel 125-200
  358. * Group 4: 2.4 GHz all channels
  359. *
  360. * Add the tx_atten[group][chain] value to the index for the target chain.
  361. * The values are signed, but are in pairs of 0 and a non-negative number,
  362. * so as to reduce gain (if necessary) of the "hotter" channel. This
  363. * avoids any need to double-check for regulatory compliance after
  364. * this step.
  365. *
  366. *
  367. * 9) If setting up for a CCK rate, lower the gain by adding a CCK compensation
  368. * value to the index:
  369. *
  370. * Hardware rev B: 9 steps (4.5 dB)
  371. * Hardware rev C: 5 steps (2.5 dB)
  372. *
  373. * Hardware rev for 4965 can be determined by reading CSR_HW_REV_WA_REG,
  374. * bits [3:2], 1 = B, 2 = C.
  375. *
  376. * NOTE: This compensation is in addition to any saturation backoff that
  377. * might have been applied in an earlier step.
  378. *
  379. *
  380. * 10) Select the gain table, based on band (2.4 vs 5 GHz).
  381. *
  382. * Limit the adjusted index to stay within the table!
  383. *
  384. *
  385. * 11) Read gain table entries for DSP and radio gain, place into appropriate
  386. * location(s) in command (struct iwl4965_txpowertable_cmd).
  387. */
  388. /* Limit range of txpower output target to be between these values */
  389. #define IWL_TX_POWER_TARGET_POWER_MIN (0) /* 0 dBm = 1 milliwatt */
  390. #define IWL_TX_POWER_TARGET_POWER_MAX (16) /* 16 dBm */
  391. /**
  392. * When MIMO is used (2 transmitters operating simultaneously), driver should
  393. * limit each transmitter to deliver a max of 3 dB below the regulatory limit
  394. * for the device. That is, use half power for each transmitter, so total
  395. * txpower is within regulatory limits.
  396. *
  397. * The value "6" represents number of steps in gain table to reduce power 3 dB.
  398. * Each step is 1/2 dB.
  399. */
  400. #define IWL_TX_POWER_MIMO_REGULATORY_COMPENSATION (6)
  401. /**
  402. * CCK gain compensation.
  403. *
  404. * When calculating txpowers for CCK, after making sure that the target power
  405. * is within regulatory and saturation limits, driver must additionally
  406. * back off gain by adding these values to the gain table index.
  407. *
  408. * Hardware rev for 4965 can be determined by reading CSR_HW_REV_WA_REG,
  409. * bits [3:2], 1 = B, 2 = C.
  410. */
  411. #define IWL_TX_POWER_CCK_COMPENSATION_B_STEP (9)
  412. #define IWL_TX_POWER_CCK_COMPENSATION_C_STEP (5)
  413. /*
  414. * 4965 power supply voltage compensation for txpower
  415. */
  416. #define TX_POWER_IWL_VOLTAGE_CODES_PER_03V (7)
  417. /**
  418. * Gain tables.
  419. *
  420. * The following tables contain pair of values for setting txpower, i.e.
  421. * gain settings for the output of the device's digital signal processor (DSP),
  422. * and for the analog gain structure of the transmitter.
  423. *
  424. * Each entry in the gain tables represents a step of 1/2 dB. Note that these
  425. * are *relative* steps, not indications of absolute output power. Output
  426. * power varies with temperature, voltage, and channel frequency, and also
  427. * requires consideration of average power (to satisfy regulatory constraints),
  428. * and peak power (to avoid distortion of the output signal).
  429. *
  430. * Each entry contains two values:
  431. * 1) DSP gain (or sometimes called DSP attenuation). This is a fine-grained
  432. * linear value that multiplies the output of the digital signal processor,
  433. * before being sent to the analog radio.
  434. * 2) Radio gain. This sets the analog gain of the radio Tx path.
  435. * It is a coarser setting, and behaves in a logarithmic (dB) fashion.
  436. *
  437. * EEPROM contains factory calibration data for txpower. This maps actual
  438. * measured txpower levels to gain settings in the "well known" tables
  439. * below ("well-known" means here that both factory calibration *and* the
  440. * driver work with the same table).
  441. *
  442. * There are separate tables for 2.4 GHz and 5 GHz bands. The 5 GHz table
  443. * has an extension (into negative indexes), in case the driver needs to
  444. * boost power setting for high device temperatures (higher than would be
  445. * present during factory calibration). A 5 Ghz EEPROM index of "40"
  446. * corresponds to the 49th entry in the table used by the driver.
  447. */
  448. #define MIN_TX_GAIN_INDEX (0) /* highest gain, lowest idx, 2.4 */
  449. #define MIN_TX_GAIN_INDEX_52GHZ_EXT (-9) /* highest gain, lowest idx, 5 */
  450. /**
  451. * 2.4 GHz gain table
  452. *
  453. * Index Dsp gain Radio gain
  454. * 0 110 0x3f (highest gain)
  455. * 1 104 0x3f
  456. * 2 98 0x3f
  457. * 3 110 0x3e
  458. * 4 104 0x3e
  459. * 5 98 0x3e
  460. * 6 110 0x3d
  461. * 7 104 0x3d
  462. * 8 98 0x3d
  463. * 9 110 0x3c
  464. * 10 104 0x3c
  465. * 11 98 0x3c
  466. * 12 110 0x3b
  467. * 13 104 0x3b
  468. * 14 98 0x3b
  469. * 15 110 0x3a
  470. * 16 104 0x3a
  471. * 17 98 0x3a
  472. * 18 110 0x39
  473. * 19 104 0x39
  474. * 20 98 0x39
  475. * 21 110 0x38
  476. * 22 104 0x38
  477. * 23 98 0x38
  478. * 24 110 0x37
  479. * 25 104 0x37
  480. * 26 98 0x37
  481. * 27 110 0x36
  482. * 28 104 0x36
  483. * 29 98 0x36
  484. * 30 110 0x35
  485. * 31 104 0x35
  486. * 32 98 0x35
  487. * 33 110 0x34
  488. * 34 104 0x34
  489. * 35 98 0x34
  490. * 36 110 0x33
  491. * 37 104 0x33
  492. * 38 98 0x33
  493. * 39 110 0x32
  494. * 40 104 0x32
  495. * 41 98 0x32
  496. * 42 110 0x31
  497. * 43 104 0x31
  498. * 44 98 0x31
  499. * 45 110 0x30
  500. * 46 104 0x30
  501. * 47 98 0x30
  502. * 48 110 0x6
  503. * 49 104 0x6
  504. * 50 98 0x6
  505. * 51 110 0x5
  506. * 52 104 0x5
  507. * 53 98 0x5
  508. * 54 110 0x4
  509. * 55 104 0x4
  510. * 56 98 0x4
  511. * 57 110 0x3
  512. * 58 104 0x3
  513. * 59 98 0x3
  514. * 60 110 0x2
  515. * 61 104 0x2
  516. * 62 98 0x2
  517. * 63 110 0x1
  518. * 64 104 0x1
  519. * 65 98 0x1
  520. * 66 110 0x0
  521. * 67 104 0x0
  522. * 68 98 0x0
  523. * 69 97 0
  524. * 70 96 0
  525. * 71 95 0
  526. * 72 94 0
  527. * 73 93 0
  528. * 74 92 0
  529. * 75 91 0
  530. * 76 90 0
  531. * 77 89 0
  532. * 78 88 0
  533. * 79 87 0
  534. * 80 86 0
  535. * 81 85 0
  536. * 82 84 0
  537. * 83 83 0
  538. * 84 82 0
  539. * 85 81 0
  540. * 86 80 0
  541. * 87 79 0
  542. * 88 78 0
  543. * 89 77 0
  544. * 90 76 0
  545. * 91 75 0
  546. * 92 74 0
  547. * 93 73 0
  548. * 94 72 0
  549. * 95 71 0
  550. * 96 70 0
  551. * 97 69 0
  552. * 98 68 0
  553. */
  554. /**
  555. * 5 GHz gain table
  556. *
  557. * Index Dsp gain Radio gain
  558. * -9 123 0x3F (highest gain)
  559. * -8 117 0x3F
  560. * -7 110 0x3F
  561. * -6 104 0x3F
  562. * -5 98 0x3F
  563. * -4 110 0x3E
  564. * -3 104 0x3E
  565. * -2 98 0x3E
  566. * -1 110 0x3D
  567. * 0 104 0x3D
  568. * 1 98 0x3D
  569. * 2 110 0x3C
  570. * 3 104 0x3C
  571. * 4 98 0x3C
  572. * 5 110 0x3B
  573. * 6 104 0x3B
  574. * 7 98 0x3B
  575. * 8 110 0x3A
  576. * 9 104 0x3A
  577. * 10 98 0x3A
  578. * 11 110 0x39
  579. * 12 104 0x39
  580. * 13 98 0x39
  581. * 14 110 0x38
  582. * 15 104 0x38
  583. * 16 98 0x38
  584. * 17 110 0x37
  585. * 18 104 0x37
  586. * 19 98 0x37
  587. * 20 110 0x36
  588. * 21 104 0x36
  589. * 22 98 0x36
  590. * 23 110 0x35
  591. * 24 104 0x35
  592. * 25 98 0x35
  593. * 26 110 0x34
  594. * 27 104 0x34
  595. * 28 98 0x34
  596. * 29 110 0x33
  597. * 30 104 0x33
  598. * 31 98 0x33
  599. * 32 110 0x32
  600. * 33 104 0x32
  601. * 34 98 0x32
  602. * 35 110 0x31
  603. * 36 104 0x31
  604. * 37 98 0x31
  605. * 38 110 0x30
  606. * 39 104 0x30
  607. * 40 98 0x30
  608. * 41 110 0x25
  609. * 42 104 0x25
  610. * 43 98 0x25
  611. * 44 110 0x24
  612. * 45 104 0x24
  613. * 46 98 0x24
  614. * 47 110 0x23
  615. * 48 104 0x23
  616. * 49 98 0x23
  617. * 50 110 0x22
  618. * 51 104 0x18
  619. * 52 98 0x18
  620. * 53 110 0x17
  621. * 54 104 0x17
  622. * 55 98 0x17
  623. * 56 110 0x16
  624. * 57 104 0x16
  625. * 58 98 0x16
  626. * 59 110 0x15
  627. * 60 104 0x15
  628. * 61 98 0x15
  629. * 62 110 0x14
  630. * 63 104 0x14
  631. * 64 98 0x14
  632. * 65 110 0x13
  633. * 66 104 0x13
  634. * 67 98 0x13
  635. * 68 110 0x12
  636. * 69 104 0x08
  637. * 70 98 0x08
  638. * 71 110 0x07
  639. * 72 104 0x07
  640. * 73 98 0x07
  641. * 74 110 0x06
  642. * 75 104 0x06
  643. * 76 98 0x06
  644. * 77 110 0x05
  645. * 78 104 0x05
  646. * 79 98 0x05
  647. * 80 110 0x04
  648. * 81 104 0x04
  649. * 82 98 0x04
  650. * 83 110 0x03
  651. * 84 104 0x03
  652. * 85 98 0x03
  653. * 86 110 0x02
  654. * 87 104 0x02
  655. * 88 98 0x02
  656. * 89 110 0x01
  657. * 90 104 0x01
  658. * 91 98 0x01
  659. * 92 110 0x00
  660. * 93 104 0x00
  661. * 94 98 0x00
  662. * 95 93 0x00
  663. * 96 88 0x00
  664. * 97 83 0x00
  665. * 98 78 0x00
  666. */
  667. /**
  668. * Sanity checks and default values for EEPROM regulatory levels.
  669. * If EEPROM values fall outside MIN/MAX range, use default values.
  670. *
  671. * Regulatory limits refer to the maximum average txpower allowed by
  672. * regulatory agencies in the geographies in which the device is meant
  673. * to be operated. These limits are SKU-specific (i.e. geography-specific),
  674. * and channel-specific; each channel has an individual regulatory limit
  675. * listed in the EEPROM.
  676. *
  677. * Units are in half-dBm (i.e. "34" means 17 dBm).
  678. */
  679. #define IWL_TX_POWER_DEFAULT_REGULATORY_24 (34)
  680. #define IWL_TX_POWER_DEFAULT_REGULATORY_52 (34)
  681. #define IWL_TX_POWER_REGULATORY_MIN (0)
  682. #define IWL_TX_POWER_REGULATORY_MAX (34)
  683. /**
  684. * Sanity checks and default values for EEPROM saturation levels.
  685. * If EEPROM values fall outside MIN/MAX range, use default values.
  686. *
  687. * Saturation is the highest level that the output power amplifier can produce
  688. * without significant clipping distortion. This is a "peak" power level.
  689. * Different types of modulation (i.e. various "rates", and OFDM vs. CCK)
  690. * require differing amounts of backoff, relative to their average power output,
  691. * in order to avoid clipping distortion.
  692. *
  693. * Driver must make sure that it is violating neither the saturation limit,
  694. * nor the regulatory limit, when calculating Tx power settings for various
  695. * rates.
  696. *
  697. * Units are in half-dBm (i.e. "38" means 19 dBm).
  698. */
  699. #define IWL_TX_POWER_DEFAULT_SATURATION_24 (38)
  700. #define IWL_TX_POWER_DEFAULT_SATURATION_52 (38)
  701. #define IWL_TX_POWER_SATURATION_MIN (20)
  702. #define IWL_TX_POWER_SATURATION_MAX (50)
  703. /**
  704. * Channel groups used for Tx Attenuation calibration (MIMO tx channel balance)
  705. * and thermal Txpower calibration.
  706. *
  707. * When calculating txpower, driver must compensate for current device
  708. * temperature; higher temperature requires higher gain. Driver must calculate
  709. * current temperature (see "4965 temperature calculation"), then compare vs.
  710. * factory calibration temperature in EEPROM; if current temperature is higher
  711. * than factory temperature, driver must *increase* gain by proportions shown
  712. * in table below. If current temperature is lower than factory, driver must
  713. * *decrease* gain.
  714. *
  715. * Different frequency ranges require different compensation, as shown below.
  716. */
  717. /* Group 0, 5.2 GHz ch 34-43: 4.5 degrees per 1/2 dB. */
  718. #define CALIB_IWL_TX_ATTEN_GR1_FCH 34
  719. #define CALIB_IWL_TX_ATTEN_GR1_LCH 43
  720. /* Group 1, 5.3 GHz ch 44-70: 4.0 degrees per 1/2 dB. */
  721. #define CALIB_IWL_TX_ATTEN_GR2_FCH 44
  722. #define CALIB_IWL_TX_ATTEN_GR2_LCH 70
  723. /* Group 2, 5.5 GHz ch 71-124: 4.0 degrees per 1/2 dB. */
  724. #define CALIB_IWL_TX_ATTEN_GR3_FCH 71
  725. #define CALIB_IWL_TX_ATTEN_GR3_LCH 124
  726. /* Group 3, 5.7 GHz ch 125-200: 4.0 degrees per 1/2 dB. */
  727. #define CALIB_IWL_TX_ATTEN_GR4_FCH 125
  728. #define CALIB_IWL_TX_ATTEN_GR4_LCH 200
  729. /* Group 4, 2.4 GHz all channels: 3.5 degrees per 1/2 dB. */
  730. #define CALIB_IWL_TX_ATTEN_GR5_FCH 1
  731. #define CALIB_IWL_TX_ATTEN_GR5_LCH 20
  732. enum {
  733. CALIB_CH_GROUP_1 = 0,
  734. CALIB_CH_GROUP_2 = 1,
  735. CALIB_CH_GROUP_3 = 2,
  736. CALIB_CH_GROUP_4 = 3,
  737. CALIB_CH_GROUP_5 = 4,
  738. CALIB_CH_GROUP_MAX
  739. };
  740. /********************* END TXPOWER *****************************************/
  741. /**
  742. * Tx/Rx Queues
  743. *
  744. * Most communication between driver and 4965 is via queues of data buffers.
  745. * For example, all commands that the driver issues to device's embedded
  746. * controller (uCode) are via the command queue (one of the Tx queues). All
  747. * uCode command responses/replies/notifications, including Rx frames, are
  748. * conveyed from uCode to driver via the Rx queue.
  749. *
  750. * Most support for these queues, including handshake support, resides in
  751. * structures in host DRAM, shared between the driver and the device. When
  752. * allocating this memory, the driver must make sure that data written by
  753. * the host CPU updates DRAM immediately (and does not get "stuck" in CPU's
  754. * cache memory), so DRAM and cache are consistent, and the device can
  755. * immediately see changes made by the driver.
  756. *
  757. * 4965 supports up to 16 DRAM-based Tx queues, and services these queues via
  758. * up to 7 DMA channels (FIFOs). Each Tx queue is supported by a circular array
  759. * in DRAM containing 256 Transmit Frame Descriptors (TFDs).
  760. */
  761. #define IWL49_NUM_FIFOS 7
  762. #define IWL49_CMD_FIFO_NUM 4
  763. #define IWL49_NUM_QUEUES 16
  764. #define IWL49_NUM_AMPDU_QUEUES 8
  765. /**
  766. * struct iwl4965_schedq_bc_tbl
  767. *
  768. * Byte Count table
  769. *
  770. * Each Tx queue uses a byte-count table containing 320 entries:
  771. * one 16-bit entry for each of 256 TFDs, plus an additional 64 entries that
  772. * duplicate the first 64 entries (to avoid wrap-around within a Tx window;
  773. * max Tx window is 64 TFDs).
  774. *
  775. * When driver sets up a new TFD, it must also enter the total byte count
  776. * of the frame to be transmitted into the corresponding entry in the byte
  777. * count table for the chosen Tx queue. If the TFD index is 0-63, the driver
  778. * must duplicate the byte count entry in corresponding index 256-319.
  779. *
  780. * padding puts each byte count table on a 1024-byte boundary;
  781. * 4965 assumes tables are separated by 1024 bytes.
  782. */
  783. struct iwl4965_scd_bc_tbl {
  784. __le16 tfd_offset[TFD_QUEUE_BC_SIZE];
  785. u8 pad[1024 - (TFD_QUEUE_BC_SIZE) * sizeof(__le16)];
  786. } __attribute__ ((packed));
  787. #endif /* !__iwl_4965_hw_h__ */