phy.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432
  1. /*
  2. * Copyright (c) 2008 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "core.h"
  17. #include "hw.h"
  18. #include "reg.h"
  19. #include "phy.h"
  20. void
  21. ath9k_hw_write_regs(struct ath_hal *ah, u32 modesIndex, u32 freqIndex,
  22. int regWrites)
  23. {
  24. struct ath_hal_5416 *ahp = AH5416(ah);
  25. REG_WRITE_ARRAY(&ahp->ah_iniBB_RfGain, freqIndex, regWrites);
  26. }
  27. bool
  28. ath9k_hw_set_channel(struct ath_hal *ah, struct ath9k_channel *chan)
  29. {
  30. u32 channelSel = 0;
  31. u32 bModeSynth = 0;
  32. u32 aModeRefSel = 0;
  33. u32 reg32 = 0;
  34. u16 freq;
  35. struct chan_centers centers;
  36. ath9k_hw_get_channel_centers(ah, chan, &centers);
  37. freq = centers.synth_center;
  38. if (freq < 4800) {
  39. u32 txctl;
  40. if (((freq - 2192) % 5) == 0) {
  41. channelSel = ((freq - 672) * 2 - 3040) / 10;
  42. bModeSynth = 0;
  43. } else if (((freq - 2224) % 5) == 0) {
  44. channelSel = ((freq - 704) * 2 - 3040) / 10;
  45. bModeSynth = 1;
  46. } else {
  47. DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
  48. "Invalid channel %u MHz\n", freq);
  49. return false;
  50. }
  51. channelSel = (channelSel << 2) & 0xff;
  52. channelSel = ath9k_hw_reverse_bits(channelSel, 8);
  53. txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
  54. if (freq == 2484) {
  55. REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
  56. txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
  57. } else {
  58. REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
  59. txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
  60. }
  61. } else if ((freq % 20) == 0 && freq >= 5120) {
  62. channelSel =
  63. ath9k_hw_reverse_bits(((freq - 4800) / 20 << 2), 8);
  64. aModeRefSel = ath9k_hw_reverse_bits(1, 2);
  65. } else if ((freq % 10) == 0) {
  66. channelSel =
  67. ath9k_hw_reverse_bits(((freq - 4800) / 10 << 1), 8);
  68. if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah))
  69. aModeRefSel = ath9k_hw_reverse_bits(2, 2);
  70. else
  71. aModeRefSel = ath9k_hw_reverse_bits(1, 2);
  72. } else if ((freq % 5) == 0) {
  73. channelSel = ath9k_hw_reverse_bits((freq - 4800) / 5, 8);
  74. aModeRefSel = ath9k_hw_reverse_bits(1, 2);
  75. } else {
  76. DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
  77. "Invalid channel %u MHz\n", freq);
  78. return false;
  79. }
  80. reg32 =
  81. (channelSel << 8) | (aModeRefSel << 2) | (bModeSynth << 1) |
  82. (1 << 5) | 0x1;
  83. REG_WRITE(ah, AR_PHY(0x37), reg32);
  84. ah->ah_curchan = chan;
  85. AH5416(ah)->ah_curchanRadIndex = -1;
  86. return true;
  87. }
  88. bool
  89. ath9k_hw_ar9280_set_channel(struct ath_hal *ah,
  90. struct ath9k_channel *chan)
  91. {
  92. u16 bMode, fracMode, aModeRefSel = 0;
  93. u32 freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
  94. struct chan_centers centers;
  95. u32 refDivA = 24;
  96. ath9k_hw_get_channel_centers(ah, chan, &centers);
  97. freq = centers.synth_center;
  98. reg32 = REG_READ(ah, AR_PHY_SYNTH_CONTROL);
  99. reg32 &= 0xc0000000;
  100. if (freq < 4800) {
  101. u32 txctl;
  102. bMode = 1;
  103. fracMode = 1;
  104. aModeRefSel = 0;
  105. channelSel = (freq * 0x10000) / 15;
  106. txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
  107. if (freq == 2484) {
  108. REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
  109. txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
  110. } else {
  111. REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
  112. txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
  113. }
  114. } else {
  115. bMode = 0;
  116. fracMode = 0;
  117. if ((freq % 20) == 0) {
  118. aModeRefSel = 3;
  119. } else if ((freq % 10) == 0) {
  120. aModeRefSel = 2;
  121. } else {
  122. aModeRefSel = 0;
  123. fracMode = 1;
  124. refDivA = 1;
  125. channelSel = (freq * 0x8000) / 15;
  126. REG_RMW_FIELD(ah, AR_AN_SYNTH9,
  127. AR_AN_SYNTH9_REFDIVA, refDivA);
  128. }
  129. if (!fracMode) {
  130. ndiv = (freq * (refDivA >> aModeRefSel)) / 60;
  131. channelSel = ndiv & 0x1ff;
  132. channelFrac = (ndiv & 0xfffffe00) * 2;
  133. channelSel = (channelSel << 17) | channelFrac;
  134. }
  135. }
  136. reg32 = reg32 |
  137. (bMode << 29) |
  138. (fracMode << 28) | (aModeRefSel << 26) | (channelSel);
  139. REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
  140. ah->ah_curchan = chan;
  141. AH5416(ah)->ah_curchanRadIndex = -1;
  142. return true;
  143. }
  144. static void
  145. ath9k_phy_modify_rx_buffer(u32 *rfBuf, u32 reg32,
  146. u32 numBits, u32 firstBit,
  147. u32 column)
  148. {
  149. u32 tmp32, mask, arrayEntry, lastBit;
  150. int32_t bitPosition, bitsLeft;
  151. tmp32 = ath9k_hw_reverse_bits(reg32, numBits);
  152. arrayEntry = (firstBit - 1) / 8;
  153. bitPosition = (firstBit - 1) % 8;
  154. bitsLeft = numBits;
  155. while (bitsLeft > 0) {
  156. lastBit = (bitPosition + bitsLeft > 8) ?
  157. 8 : bitPosition + bitsLeft;
  158. mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) <<
  159. (column * 8);
  160. rfBuf[arrayEntry] &= ~mask;
  161. rfBuf[arrayEntry] |= ((tmp32 << bitPosition) <<
  162. (column * 8)) & mask;
  163. bitsLeft -= 8 - bitPosition;
  164. tmp32 = tmp32 >> (8 - bitPosition);
  165. bitPosition = 0;
  166. arrayEntry++;
  167. }
  168. }
  169. bool
  170. ath9k_hw_set_rf_regs(struct ath_hal *ah, struct ath9k_channel *chan,
  171. u16 modesIndex)
  172. {
  173. struct ath_hal_5416 *ahp = AH5416(ah);
  174. u32 eepMinorRev;
  175. u32 ob5GHz = 0, db5GHz = 0;
  176. u32 ob2GHz = 0, db2GHz = 0;
  177. int regWrites = 0;
  178. if (AR_SREV_9280_10_OR_LATER(ah))
  179. return true;
  180. eepMinorRev = ath9k_hw_get_eeprom(ah, EEP_MINOR_REV);
  181. RF_BANK_SETUP(ahp->ah_analogBank0Data, &ahp->ah_iniBank0, 1);
  182. RF_BANK_SETUP(ahp->ah_analogBank1Data, &ahp->ah_iniBank1, 1);
  183. RF_BANK_SETUP(ahp->ah_analogBank2Data, &ahp->ah_iniBank2, 1);
  184. RF_BANK_SETUP(ahp->ah_analogBank3Data, &ahp->ah_iniBank3,
  185. modesIndex);
  186. {
  187. int i;
  188. for (i = 0; i < ahp->ah_iniBank6TPC.ia_rows; i++) {
  189. ahp->ah_analogBank6Data[i] =
  190. INI_RA(&ahp->ah_iniBank6TPC, i, modesIndex);
  191. }
  192. }
  193. if (eepMinorRev >= 2) {
  194. if (IS_CHAN_2GHZ(chan)) {
  195. ob2GHz = ath9k_hw_get_eeprom(ah, EEP_OB_2);
  196. db2GHz = ath9k_hw_get_eeprom(ah, EEP_DB_2);
  197. ath9k_phy_modify_rx_buffer(ahp->ah_analogBank6Data,
  198. ob2GHz, 3, 197, 0);
  199. ath9k_phy_modify_rx_buffer(ahp->ah_analogBank6Data,
  200. db2GHz, 3, 194, 0);
  201. } else {
  202. ob5GHz = ath9k_hw_get_eeprom(ah, EEP_OB_5);
  203. db5GHz = ath9k_hw_get_eeprom(ah, EEP_DB_5);
  204. ath9k_phy_modify_rx_buffer(ahp->ah_analogBank6Data,
  205. ob5GHz, 3, 203, 0);
  206. ath9k_phy_modify_rx_buffer(ahp->ah_analogBank6Data,
  207. db5GHz, 3, 200, 0);
  208. }
  209. }
  210. RF_BANK_SETUP(ahp->ah_analogBank7Data, &ahp->ah_iniBank7, 1);
  211. REG_WRITE_RF_ARRAY(&ahp->ah_iniBank0, ahp->ah_analogBank0Data,
  212. regWrites);
  213. REG_WRITE_RF_ARRAY(&ahp->ah_iniBank1, ahp->ah_analogBank1Data,
  214. regWrites);
  215. REG_WRITE_RF_ARRAY(&ahp->ah_iniBank2, ahp->ah_analogBank2Data,
  216. regWrites);
  217. REG_WRITE_RF_ARRAY(&ahp->ah_iniBank3, ahp->ah_analogBank3Data,
  218. regWrites);
  219. REG_WRITE_RF_ARRAY(&ahp->ah_iniBank6TPC, ahp->ah_analogBank6Data,
  220. regWrites);
  221. REG_WRITE_RF_ARRAY(&ahp->ah_iniBank7, ahp->ah_analogBank7Data,
  222. regWrites);
  223. return true;
  224. }
  225. void
  226. ath9k_hw_rfdetach(struct ath_hal *ah)
  227. {
  228. struct ath_hal_5416 *ahp = AH5416(ah);
  229. if (ahp->ah_analogBank0Data != NULL) {
  230. kfree(ahp->ah_analogBank0Data);
  231. ahp->ah_analogBank0Data = NULL;
  232. }
  233. if (ahp->ah_analogBank1Data != NULL) {
  234. kfree(ahp->ah_analogBank1Data);
  235. ahp->ah_analogBank1Data = NULL;
  236. }
  237. if (ahp->ah_analogBank2Data != NULL) {
  238. kfree(ahp->ah_analogBank2Data);
  239. ahp->ah_analogBank2Data = NULL;
  240. }
  241. if (ahp->ah_analogBank3Data != NULL) {
  242. kfree(ahp->ah_analogBank3Data);
  243. ahp->ah_analogBank3Data = NULL;
  244. }
  245. if (ahp->ah_analogBank6Data != NULL) {
  246. kfree(ahp->ah_analogBank6Data);
  247. ahp->ah_analogBank6Data = NULL;
  248. }
  249. if (ahp->ah_analogBank6TPCData != NULL) {
  250. kfree(ahp->ah_analogBank6TPCData);
  251. ahp->ah_analogBank6TPCData = NULL;
  252. }
  253. if (ahp->ah_analogBank7Data != NULL) {
  254. kfree(ahp->ah_analogBank7Data);
  255. ahp->ah_analogBank7Data = NULL;
  256. }
  257. if (ahp->ah_addac5416_21 != NULL) {
  258. kfree(ahp->ah_addac5416_21);
  259. ahp->ah_addac5416_21 = NULL;
  260. }
  261. if (ahp->ah_bank6Temp != NULL) {
  262. kfree(ahp->ah_bank6Temp);
  263. ahp->ah_bank6Temp = NULL;
  264. }
  265. }
  266. bool ath9k_hw_init_rf(struct ath_hal *ah, int *status)
  267. {
  268. struct ath_hal_5416 *ahp = AH5416(ah);
  269. if (!AR_SREV_9280_10_OR_LATER(ah)) {
  270. ahp->ah_analogBank0Data =
  271. kzalloc((sizeof(u32) *
  272. ahp->ah_iniBank0.ia_rows), GFP_KERNEL);
  273. ahp->ah_analogBank1Data =
  274. kzalloc((sizeof(u32) *
  275. ahp->ah_iniBank1.ia_rows), GFP_KERNEL);
  276. ahp->ah_analogBank2Data =
  277. kzalloc((sizeof(u32) *
  278. ahp->ah_iniBank2.ia_rows), GFP_KERNEL);
  279. ahp->ah_analogBank3Data =
  280. kzalloc((sizeof(u32) *
  281. ahp->ah_iniBank3.ia_rows), GFP_KERNEL);
  282. ahp->ah_analogBank6Data =
  283. kzalloc((sizeof(u32) *
  284. ahp->ah_iniBank6.ia_rows), GFP_KERNEL);
  285. ahp->ah_analogBank6TPCData =
  286. kzalloc((sizeof(u32) *
  287. ahp->ah_iniBank6TPC.ia_rows), GFP_KERNEL);
  288. ahp->ah_analogBank7Data =
  289. kzalloc((sizeof(u32) *
  290. ahp->ah_iniBank7.ia_rows), GFP_KERNEL);
  291. if (ahp->ah_analogBank0Data == NULL
  292. || ahp->ah_analogBank1Data == NULL
  293. || ahp->ah_analogBank2Data == NULL
  294. || ahp->ah_analogBank3Data == NULL
  295. || ahp->ah_analogBank6Data == NULL
  296. || ahp->ah_analogBank6TPCData == NULL
  297. || ahp->ah_analogBank7Data == NULL) {
  298. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  299. "Cannot allocate RF banks\n");
  300. *status = -ENOMEM;
  301. return false;
  302. }
  303. ahp->ah_addac5416_21 =
  304. kzalloc((sizeof(u32) *
  305. ahp->ah_iniAddac.ia_rows *
  306. ahp->ah_iniAddac.ia_columns), GFP_KERNEL);
  307. if (ahp->ah_addac5416_21 == NULL) {
  308. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  309. "Cannot allocate ah_addac5416_21\n");
  310. *status = -ENOMEM;
  311. return false;
  312. }
  313. ahp->ah_bank6Temp =
  314. kzalloc((sizeof(u32) *
  315. ahp->ah_iniBank6.ia_rows), GFP_KERNEL);
  316. if (ahp->ah_bank6Temp == NULL) {
  317. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  318. "Cannot allocate ah_bank6Temp\n");
  319. *status = -ENOMEM;
  320. return false;
  321. }
  322. }
  323. return true;
  324. }
  325. void
  326. ath9k_hw_decrease_chain_power(struct ath_hal *ah, struct ath9k_channel *chan)
  327. {
  328. int i, regWrites = 0;
  329. struct ath_hal_5416 *ahp = AH5416(ah);
  330. u32 bank6SelMask;
  331. u32 *bank6Temp = ahp->ah_bank6Temp;
  332. switch (ahp->ah_diversityControl) {
  333. case ATH9K_ANT_FIXED_A:
  334. bank6SelMask =
  335. (ahp->
  336. ah_antennaSwitchSwap & ANTSWAP_AB) ? REDUCE_CHAIN_0 :
  337. REDUCE_CHAIN_1;
  338. break;
  339. case ATH9K_ANT_FIXED_B:
  340. bank6SelMask =
  341. (ahp->
  342. ah_antennaSwitchSwap & ANTSWAP_AB) ? REDUCE_CHAIN_1 :
  343. REDUCE_CHAIN_0;
  344. break;
  345. case ATH9K_ANT_VARIABLE:
  346. return;
  347. break;
  348. default:
  349. return;
  350. break;
  351. }
  352. for (i = 0; i < ahp->ah_iniBank6.ia_rows; i++)
  353. bank6Temp[i] = ahp->ah_analogBank6Data[i];
  354. REG_WRITE(ah, AR_PHY_BASE + 0xD8, bank6SelMask);
  355. ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 189, 0);
  356. ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 190, 0);
  357. ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 191, 0);
  358. ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 192, 0);
  359. ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 193, 0);
  360. ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 222, 0);
  361. ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 245, 0);
  362. ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 246, 0);
  363. ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 247, 0);
  364. REG_WRITE_RF_ARRAY(&ahp->ah_iniBank6, bank6Temp, regWrites);
  365. REG_WRITE(ah, AR_PHY_BASE + 0xD8, 0x00000053);
  366. #ifdef ALTER_SWITCH
  367. REG_WRITE(ah, PHY_SWITCH_CHAIN_0,
  368. (REG_READ(ah, PHY_SWITCH_CHAIN_0) & ~0x38)
  369. | ((REG_READ(ah, PHY_SWITCH_CHAIN_0) >> 3) & 0x38));
  370. #endif
  371. }