tehuti.c 68 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523
  1. /*
  2. * Tehuti Networks(R) Network Driver
  3. * ethtool interface implementation
  4. * Copyright (C) 2007 Tehuti Networks Ltd. All rights reserved
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. */
  11. /*
  12. * RX HW/SW interaction overview
  13. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  14. * There are 2 types of RX communication channels betwean driver and NIC.
  15. * 1) RX Free Fifo - RXF - holds descriptors of empty buffers to accept incoming
  16. * traffic. This Fifo is filled by SW and is readen by HW. Each descriptor holds
  17. * info about buffer's location, size and ID. An ID field is used to identify a
  18. * buffer when it's returned with data via RXD Fifo (see below)
  19. * 2) RX Data Fifo - RXD - holds descriptors of full buffers. This Fifo is
  20. * filled by HW and is readen by SW. Each descriptor holds status and ID.
  21. * HW pops descriptor from RXF Fifo, stores ID, fills buffer with incoming data,
  22. * via dma moves it into host memory, builds new RXD descriptor with same ID,
  23. * pushes it into RXD Fifo and raises interrupt to indicate new RX data.
  24. *
  25. * Current NIC configuration (registers + firmware) makes NIC use 2 RXF Fifos.
  26. * One holds 1.5K packets and another - 26K packets. Depending on incoming
  27. * packet size, HW desides on a RXF Fifo to pop buffer from. When packet is
  28. * filled with data, HW builds new RXD descriptor for it and push it into single
  29. * RXD Fifo.
  30. *
  31. * RX SW Data Structures
  32. * ~~~~~~~~~~~~~~~~~~~~~
  33. * skb db - used to keep track of all skbs owned by SW and their dma addresses.
  34. * For RX case, ownership lasts from allocating new empty skb for RXF until
  35. * accepting full skb from RXD and passing it to OS. Each RXF Fifo has its own
  36. * skb db. Implemented as array with bitmask.
  37. * fifo - keeps info about fifo's size and location, relevant HW registers,
  38. * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
  39. * Implemented as simple struct.
  40. *
  41. * RX SW Execution Flow
  42. * ~~~~~~~~~~~~~~~~~~~~
  43. * Upon initialization (ifconfig up) driver creates RX fifos and initializes
  44. * relevant registers. At the end of init phase, driver enables interrupts.
  45. * NIC sees that there is no RXF buffers and raises
  46. * RD_INTR interrupt, isr fills skbs and Rx begins.
  47. * Driver has two receive operation modes:
  48. * NAPI - interrupt-driven mixed with polling
  49. * interrupt-driven only
  50. *
  51. * Interrupt-driven only flow is following. When buffer is ready, HW raises
  52. * interrupt and isr is called. isr collects all available packets
  53. * (bdx_rx_receive), refills skbs (bdx_rx_alloc_skbs) and exit.
  54. * Rx buffer allocation note
  55. * ~~~~~~~~~~~~~~~~~~~~~~~~~
  56. * Driver cares to feed such amount of RxF descriptors that respective amount of
  57. * RxD descriptors can not fill entire RxD fifo. The main reason is lack of
  58. * overflow check in Bordeaux for RxD fifo free/used size.
  59. * FIXME: this is NOT fully implemented, more work should be done
  60. *
  61. */
  62. #include "tehuti.h"
  63. #include "tehuti_fw.h"
  64. static struct pci_device_id __devinitdata bdx_pci_tbl[] = {
  65. {0x1FC9, 0x3009, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
  66. {0x1FC9, 0x3010, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
  67. {0x1FC9, 0x3014, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
  68. {0}
  69. };
  70. MODULE_DEVICE_TABLE(pci, bdx_pci_tbl);
  71. /* Definitions needed by ISR or NAPI functions */
  72. static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f);
  73. static void bdx_tx_cleanup(struct bdx_priv *priv);
  74. static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget);
  75. /* Definitions needed by FW loading */
  76. static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size);
  77. /* Definitions needed by hw_start */
  78. static int bdx_tx_init(struct bdx_priv *priv);
  79. static int bdx_rx_init(struct bdx_priv *priv);
  80. /* Definitions needed by bdx_close */
  81. static void bdx_rx_free(struct bdx_priv *priv);
  82. static void bdx_tx_free(struct bdx_priv *priv);
  83. /* Definitions needed by bdx_probe */
  84. static void bdx_ethtool_ops(struct net_device *netdev);
  85. /*************************************************************************
  86. * Print Info *
  87. *************************************************************************/
  88. static void print_hw_id(struct pci_dev *pdev)
  89. {
  90. struct pci_nic *nic = pci_get_drvdata(pdev);
  91. u16 pci_link_status = 0;
  92. u16 pci_ctrl = 0;
  93. pci_read_config_word(pdev, PCI_LINK_STATUS_REG, &pci_link_status);
  94. pci_read_config_word(pdev, PCI_DEV_CTRL_REG, &pci_ctrl);
  95. printk(KERN_INFO "tehuti: %s%s\n", BDX_NIC_NAME,
  96. nic->port_num == 1 ? "" : ", 2-Port");
  97. printk(KERN_INFO
  98. "tehuti: srom 0x%x fpga %d build %u lane# %d"
  99. " max_pl 0x%x mrrs 0x%x\n",
  100. readl(nic->regs + SROM_VER), readl(nic->regs + FPGA_VER) & 0xFFF,
  101. readl(nic->regs + FPGA_SEED),
  102. GET_LINK_STATUS_LANES(pci_link_status),
  103. GET_DEV_CTRL_MAXPL(pci_ctrl), GET_DEV_CTRL_MRRS(pci_ctrl));
  104. }
  105. static void print_fw_id(struct pci_nic *nic)
  106. {
  107. printk(KERN_INFO "tehuti: fw 0x%x\n", readl(nic->regs + FW_VER));
  108. }
  109. static void print_eth_id(struct net_device *ndev)
  110. {
  111. printk(KERN_INFO "%s: %s, Port %c\n", ndev->name, BDX_NIC_NAME,
  112. (ndev->if_port == 0) ? 'A' : 'B');
  113. }
  114. /*************************************************************************
  115. * Code *
  116. *************************************************************************/
  117. #define bdx_enable_interrupts(priv) \
  118. do { WRITE_REG(priv, regIMR, IR_RUN); } while (0)
  119. #define bdx_disable_interrupts(priv) \
  120. do { WRITE_REG(priv, regIMR, 0); } while (0)
  121. /* bdx_fifo_init
  122. * create TX/RX descriptor fifo for host-NIC communication.
  123. * 1K extra space is allocated at the end of the fifo to simplify
  124. * processing of descriptors that wraps around fifo's end
  125. * @priv - NIC private structure
  126. * @f - fifo to initialize
  127. * @fsz_type - fifo size type: 0-4KB, 1-8KB, 2-16KB, 3-32KB
  128. * @reg_XXX - offsets of registers relative to base address
  129. *
  130. * Returns 0 on success, negative value on failure
  131. *
  132. */
  133. static int
  134. bdx_fifo_init(struct bdx_priv *priv, struct fifo *f, int fsz_type,
  135. u16 reg_CFG0, u16 reg_CFG1, u16 reg_RPTR, u16 reg_WPTR)
  136. {
  137. u16 memsz = FIFO_SIZE * (1 << fsz_type);
  138. memset(f, 0, sizeof(struct fifo));
  139. /* pci_alloc_consistent gives us 4k-aligned memory */
  140. f->va = pci_alloc_consistent(priv->pdev,
  141. memsz + FIFO_EXTRA_SPACE, &f->da);
  142. if (!f->va) {
  143. ERR("pci_alloc_consistent failed\n");
  144. RET(-ENOMEM);
  145. }
  146. f->reg_CFG0 = reg_CFG0;
  147. f->reg_CFG1 = reg_CFG1;
  148. f->reg_RPTR = reg_RPTR;
  149. f->reg_WPTR = reg_WPTR;
  150. f->rptr = 0;
  151. f->wptr = 0;
  152. f->memsz = memsz;
  153. f->size_mask = memsz - 1;
  154. WRITE_REG(priv, reg_CFG0, (u32) ((f->da & TX_RX_CFG0_BASE) | fsz_type));
  155. WRITE_REG(priv, reg_CFG1, H32_64(f->da));
  156. RET(0);
  157. }
  158. /* bdx_fifo_free - free all resources used by fifo
  159. * @priv - NIC private structure
  160. * @f - fifo to release
  161. */
  162. static void bdx_fifo_free(struct bdx_priv *priv, struct fifo *f)
  163. {
  164. ENTER;
  165. if (f->va) {
  166. pci_free_consistent(priv->pdev,
  167. f->memsz + FIFO_EXTRA_SPACE, f->va, f->da);
  168. f->va = NULL;
  169. }
  170. RET();
  171. }
  172. /*
  173. * bdx_link_changed - notifies OS about hw link state.
  174. * @bdx_priv - hw adapter structure
  175. */
  176. static void bdx_link_changed(struct bdx_priv *priv)
  177. {
  178. u32 link = READ_REG(priv, regMAC_LNK_STAT) & MAC_LINK_STAT;
  179. if (!link) {
  180. if (netif_carrier_ok(priv->ndev)) {
  181. netif_stop_queue(priv->ndev);
  182. netif_carrier_off(priv->ndev);
  183. ERR("%s: Link Down\n", priv->ndev->name);
  184. }
  185. } else {
  186. if (!netif_carrier_ok(priv->ndev)) {
  187. netif_wake_queue(priv->ndev);
  188. netif_carrier_on(priv->ndev);
  189. ERR("%s: Link Up\n", priv->ndev->name);
  190. }
  191. }
  192. }
  193. static void bdx_isr_extra(struct bdx_priv *priv, u32 isr)
  194. {
  195. if (isr & IR_RX_FREE_0) {
  196. bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
  197. DBG("RX_FREE_0\n");
  198. }
  199. if (isr & IR_LNKCHG0)
  200. bdx_link_changed(priv);
  201. if (isr & IR_PCIE_LINK)
  202. ERR("%s: PCI-E Link Fault\n", priv->ndev->name);
  203. if (isr & IR_PCIE_TOUT)
  204. ERR("%s: PCI-E Time Out\n", priv->ndev->name);
  205. }
  206. /* bdx_isr - Interrupt Service Routine for Bordeaux NIC
  207. * @irq - interrupt number
  208. * @ndev - network device
  209. * @regs - CPU registers
  210. *
  211. * Return IRQ_NONE if it was not our interrupt, IRQ_HANDLED - otherwise
  212. *
  213. * It reads ISR register to know interrupt reasons, and proceed them one by one.
  214. * Reasons of interest are:
  215. * RX_DESC - new packet has arrived and RXD fifo holds its descriptor
  216. * RX_FREE - number of free Rx buffers in RXF fifo gets low
  217. * TX_FREE - packet was transmited and RXF fifo holds its descriptor
  218. */
  219. static irqreturn_t bdx_isr_napi(int irq, void *dev)
  220. {
  221. struct net_device *ndev = dev;
  222. struct bdx_priv *priv = netdev_priv(ndev);
  223. u32 isr;
  224. ENTER;
  225. isr = (READ_REG(priv, regISR) & IR_RUN);
  226. if (unlikely(!isr)) {
  227. bdx_enable_interrupts(priv);
  228. return IRQ_NONE; /* Not our interrupt */
  229. }
  230. if (isr & IR_EXTRA)
  231. bdx_isr_extra(priv, isr);
  232. if (isr & (IR_RX_DESC_0 | IR_TX_FREE_0)) {
  233. if (likely(netif_rx_schedule_prep(&priv->napi))) {
  234. __netif_rx_schedule(&priv->napi);
  235. RET(IRQ_HANDLED);
  236. } else {
  237. /* NOTE: we get here if intr has slipped into window
  238. * between these lines in bdx_poll:
  239. * bdx_enable_interrupts(priv);
  240. * return 0;
  241. * currently intrs are disabled (since we read ISR),
  242. * and we have failed to register next poll.
  243. * so we read the regs to trigger chip
  244. * and allow further interupts. */
  245. READ_REG(priv, regTXF_WPTR_0);
  246. READ_REG(priv, regRXD_WPTR_0);
  247. }
  248. }
  249. bdx_enable_interrupts(priv);
  250. RET(IRQ_HANDLED);
  251. }
  252. static int bdx_poll(struct napi_struct *napi, int budget)
  253. {
  254. struct bdx_priv *priv = container_of(napi, struct bdx_priv, napi);
  255. int work_done;
  256. ENTER;
  257. bdx_tx_cleanup(priv);
  258. work_done = bdx_rx_receive(priv, &priv->rxd_fifo0, budget);
  259. if ((work_done < budget) ||
  260. (priv->napi_stop++ >= 30)) {
  261. DBG("rx poll is done. backing to isr-driven\n");
  262. /* from time to time we exit to let NAPI layer release
  263. * device lock and allow waiting tasks (eg rmmod) to advance) */
  264. priv->napi_stop = 0;
  265. netif_rx_complete(napi);
  266. bdx_enable_interrupts(priv);
  267. }
  268. return work_done;
  269. }
  270. /* bdx_fw_load - loads firmware to NIC
  271. * @priv - NIC private structure
  272. * Firmware is loaded via TXD fifo, so it must be initialized first.
  273. * Firware must be loaded once per NIC not per PCI device provided by NIC (NIC
  274. * can have few of them). So all drivers use semaphore register to choose one
  275. * that will actually load FW to NIC.
  276. */
  277. static int bdx_fw_load(struct bdx_priv *priv)
  278. {
  279. int master, i;
  280. ENTER;
  281. master = READ_REG(priv, regINIT_SEMAPHORE);
  282. if (!READ_REG(priv, regINIT_STATUS) && master) {
  283. bdx_tx_push_desc_safe(priv, s_firmLoad, sizeof(s_firmLoad));
  284. mdelay(100);
  285. }
  286. for (i = 0; i < 200; i++) {
  287. if (READ_REG(priv, regINIT_STATUS))
  288. break;
  289. mdelay(2);
  290. }
  291. if (master)
  292. WRITE_REG(priv, regINIT_SEMAPHORE, 1);
  293. if (i == 200) {
  294. ERR("%s: firmware loading failed\n", priv->ndev->name);
  295. DBG("VPC = 0x%x VIC = 0x%x INIT_STATUS = 0x%x i=%d\n",
  296. READ_REG(priv, regVPC),
  297. READ_REG(priv, regVIC), READ_REG(priv, regINIT_STATUS), i);
  298. RET(-EIO);
  299. } else {
  300. DBG("%s: firmware loading success\n", priv->ndev->name);
  301. RET(0);
  302. }
  303. }
  304. static void bdx_restore_mac(struct net_device *ndev, struct bdx_priv *priv)
  305. {
  306. u32 val;
  307. ENTER;
  308. DBG("mac0=%x mac1=%x mac2=%x\n",
  309. READ_REG(priv, regUNC_MAC0_A),
  310. READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
  311. val = (ndev->dev_addr[0] << 8) | (ndev->dev_addr[1]);
  312. WRITE_REG(priv, regUNC_MAC2_A, val);
  313. val = (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]);
  314. WRITE_REG(priv, regUNC_MAC1_A, val);
  315. val = (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]);
  316. WRITE_REG(priv, regUNC_MAC0_A, val);
  317. DBG("mac0=%x mac1=%x mac2=%x\n",
  318. READ_REG(priv, regUNC_MAC0_A),
  319. READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
  320. RET();
  321. }
  322. /* bdx_hw_start - inits registers and starts HW's Rx and Tx engines
  323. * @priv - NIC private structure
  324. */
  325. static int bdx_hw_start(struct bdx_priv *priv)
  326. {
  327. int rc = -EIO;
  328. struct net_device *ndev = priv->ndev;
  329. ENTER;
  330. bdx_link_changed(priv);
  331. /* 10G overall max length (vlan, eth&ip header, ip payload, crc) */
  332. WRITE_REG(priv, regFRM_LENGTH, 0X3FE0);
  333. WRITE_REG(priv, regPAUSE_QUANT, 0x96);
  334. WRITE_REG(priv, regRX_FIFO_SECTION, 0x800010);
  335. WRITE_REG(priv, regTX_FIFO_SECTION, 0xE00010);
  336. WRITE_REG(priv, regRX_FULLNESS, 0);
  337. WRITE_REG(priv, regTX_FULLNESS, 0);
  338. WRITE_REG(priv, regCTRLST,
  339. regCTRLST_BASE | regCTRLST_RX_ENA | regCTRLST_TX_ENA);
  340. WRITE_REG(priv, regVGLB, 0);
  341. WRITE_REG(priv, regMAX_FRAME_A,
  342. priv->rxf_fifo0.m.pktsz & MAX_FRAME_AB_VAL);
  343. DBG("RDINTCM=%08x\n", priv->rdintcm); /*NOTE: test script uses this */
  344. WRITE_REG(priv, regRDINTCM0, priv->rdintcm);
  345. WRITE_REG(priv, regRDINTCM2, 0); /*cpu_to_le32(rcm.val)); */
  346. DBG("TDINTCM=%08x\n", priv->tdintcm); /*NOTE: test script uses this */
  347. WRITE_REG(priv, regTDINTCM0, priv->tdintcm); /* old val = 0x300064 */
  348. /* Enable timer interrupt once in 2 secs. */
  349. /*WRITE_REG(priv, regGTMR0, ((GTMR_SEC * 2) & GTMR_DATA)); */
  350. bdx_restore_mac(priv->ndev, priv);
  351. WRITE_REG(priv, regGMAC_RXF_A, GMAC_RX_FILTER_OSEN |
  352. GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB);
  353. #define BDX_IRQ_TYPE ((priv->nic->irq_type == IRQ_MSI)?0:IRQF_SHARED)
  354. if ((rc = request_irq(priv->pdev->irq, &bdx_isr_napi, BDX_IRQ_TYPE,
  355. ndev->name, ndev)))
  356. goto err_irq;
  357. bdx_enable_interrupts(priv);
  358. RET(0);
  359. err_irq:
  360. RET(rc);
  361. }
  362. static void bdx_hw_stop(struct bdx_priv *priv)
  363. {
  364. ENTER;
  365. bdx_disable_interrupts(priv);
  366. free_irq(priv->pdev->irq, priv->ndev);
  367. netif_carrier_off(priv->ndev);
  368. netif_stop_queue(priv->ndev);
  369. RET();
  370. }
  371. static int bdx_hw_reset_direct(void __iomem *regs)
  372. {
  373. u32 val, i;
  374. ENTER;
  375. /* reset sequences: read, write 1, read, write 0 */
  376. val = readl(regs + regCLKPLL);
  377. writel((val | CLKPLL_SFTRST) + 0x8, regs + regCLKPLL);
  378. udelay(50);
  379. val = readl(regs + regCLKPLL);
  380. writel(val & ~CLKPLL_SFTRST, regs + regCLKPLL);
  381. /* check that the PLLs are locked and reset ended */
  382. for (i = 0; i < 70; i++, mdelay(10))
  383. if ((readl(regs + regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
  384. /* do any PCI-E read transaction */
  385. readl(regs + regRXD_CFG0_0);
  386. return 0;
  387. }
  388. ERR("tehuti: HW reset failed\n");
  389. return 1; /* failure */
  390. }
  391. static int bdx_hw_reset(struct bdx_priv *priv)
  392. {
  393. u32 val, i;
  394. ENTER;
  395. if (priv->port == 0) {
  396. /* reset sequences: read, write 1, read, write 0 */
  397. val = READ_REG(priv, regCLKPLL);
  398. WRITE_REG(priv, regCLKPLL, (val | CLKPLL_SFTRST) + 0x8);
  399. udelay(50);
  400. val = READ_REG(priv, regCLKPLL);
  401. WRITE_REG(priv, regCLKPLL, val & ~CLKPLL_SFTRST);
  402. }
  403. /* check that the PLLs are locked and reset ended */
  404. for (i = 0; i < 70; i++, mdelay(10))
  405. if ((READ_REG(priv, regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
  406. /* do any PCI-E read transaction */
  407. READ_REG(priv, regRXD_CFG0_0);
  408. return 0;
  409. }
  410. ERR("tehuti: HW reset failed\n");
  411. return 1; /* failure */
  412. }
  413. static int bdx_sw_reset(struct bdx_priv *priv)
  414. {
  415. int i;
  416. ENTER;
  417. /* 1. load MAC (obsolete) */
  418. /* 2. disable Rx (and Tx) */
  419. WRITE_REG(priv, regGMAC_RXF_A, 0);
  420. mdelay(100);
  421. /* 3. disable port */
  422. WRITE_REG(priv, regDIS_PORT, 1);
  423. /* 4. disable queue */
  424. WRITE_REG(priv, regDIS_QU, 1);
  425. /* 5. wait until hw is disabled */
  426. for (i = 0; i < 50; i++) {
  427. if (READ_REG(priv, regRST_PORT) & 1)
  428. break;
  429. mdelay(10);
  430. }
  431. if (i == 50)
  432. ERR("%s: SW reset timeout. continuing anyway\n",
  433. priv->ndev->name);
  434. /* 6. disable intrs */
  435. WRITE_REG(priv, regRDINTCM0, 0);
  436. WRITE_REG(priv, regTDINTCM0, 0);
  437. WRITE_REG(priv, regIMR, 0);
  438. READ_REG(priv, regISR);
  439. /* 7. reset queue */
  440. WRITE_REG(priv, regRST_QU, 1);
  441. /* 8. reset port */
  442. WRITE_REG(priv, regRST_PORT, 1);
  443. /* 9. zero all read and write pointers */
  444. for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
  445. DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
  446. for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
  447. WRITE_REG(priv, i, 0);
  448. /* 10. unseet port disable */
  449. WRITE_REG(priv, regDIS_PORT, 0);
  450. /* 11. unset queue disable */
  451. WRITE_REG(priv, regDIS_QU, 0);
  452. /* 12. unset queue reset */
  453. WRITE_REG(priv, regRST_QU, 0);
  454. /* 13. unset port reset */
  455. WRITE_REG(priv, regRST_PORT, 0);
  456. /* 14. enable Rx */
  457. /* skiped. will be done later */
  458. /* 15. save MAC (obsolete) */
  459. for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
  460. DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
  461. RET(0);
  462. }
  463. /* bdx_reset - performs right type of reset depending on hw type */
  464. static int bdx_reset(struct bdx_priv *priv)
  465. {
  466. ENTER;
  467. RET((priv->pdev->device == 0x3009)
  468. ? bdx_hw_reset(priv)
  469. : bdx_sw_reset(priv));
  470. }
  471. /**
  472. * bdx_close - Disables a network interface
  473. * @netdev: network interface device structure
  474. *
  475. * Returns 0, this is not allowed to fail
  476. *
  477. * The close entry point is called when an interface is de-activated
  478. * by the OS. The hardware is still under the drivers control, but
  479. * needs to be disabled. A global MAC reset is issued to stop the
  480. * hardware, and all transmit and receive resources are freed.
  481. **/
  482. static int bdx_close(struct net_device *ndev)
  483. {
  484. struct bdx_priv *priv = NULL;
  485. ENTER;
  486. priv = netdev_priv(ndev);
  487. napi_disable(&priv->napi);
  488. bdx_reset(priv);
  489. bdx_hw_stop(priv);
  490. bdx_rx_free(priv);
  491. bdx_tx_free(priv);
  492. RET(0);
  493. }
  494. /**
  495. * bdx_open - Called when a network interface is made active
  496. * @netdev: network interface device structure
  497. *
  498. * Returns 0 on success, negative value on failure
  499. *
  500. * The open entry point is called when a network interface is made
  501. * active by the system (IFF_UP). At this point all resources needed
  502. * for transmit and receive operations are allocated, the interrupt
  503. * handler is registered with the OS, the watchdog timer is started,
  504. * and the stack is notified that the interface is ready.
  505. **/
  506. static int bdx_open(struct net_device *ndev)
  507. {
  508. struct bdx_priv *priv;
  509. int rc;
  510. ENTER;
  511. priv = netdev_priv(ndev);
  512. bdx_reset(priv);
  513. if (netif_running(ndev))
  514. netif_stop_queue(priv->ndev);
  515. if ((rc = bdx_tx_init(priv)))
  516. goto err;
  517. if ((rc = bdx_rx_init(priv)))
  518. goto err;
  519. if ((rc = bdx_fw_load(priv)))
  520. goto err;
  521. bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
  522. if ((rc = bdx_hw_start(priv)))
  523. goto err;
  524. napi_enable(&priv->napi);
  525. print_fw_id(priv->nic);
  526. RET(0);
  527. err:
  528. bdx_close(ndev);
  529. RET(rc);
  530. }
  531. static void __init bdx_firmware_endianess(void)
  532. {
  533. int i;
  534. for (i = 0; i < ARRAY_SIZE(s_firmLoad); i++)
  535. s_firmLoad[i] = CPU_CHIP_SWAP32(s_firmLoad[i]);
  536. }
  537. static int bdx_range_check(struct bdx_priv *priv, u32 offset)
  538. {
  539. return (offset > (u32) (BDX_REGS_SIZE / priv->nic->port_num)) ?
  540. -EINVAL : 0;
  541. }
  542. static int bdx_ioctl_priv(struct net_device *ndev, struct ifreq *ifr, int cmd)
  543. {
  544. struct bdx_priv *priv = netdev_priv(ndev);
  545. u32 data[3];
  546. int error;
  547. ENTER;
  548. DBG("jiffies=%ld cmd=%d\n", jiffies, cmd);
  549. if (cmd != SIOCDEVPRIVATE) {
  550. error = copy_from_user(data, ifr->ifr_data, sizeof(data));
  551. if (error) {
  552. ERR("cant copy from user\n");
  553. RET(error);
  554. }
  555. DBG("%d 0x%x 0x%x\n", data[0], data[1], data[2]);
  556. }
  557. if (!capable(CAP_SYS_RAWIO))
  558. return -EPERM;
  559. switch (data[0]) {
  560. case BDX_OP_READ:
  561. error = bdx_range_check(priv, data[1]);
  562. if (error < 0)
  563. return error;
  564. data[2] = READ_REG(priv, data[1]);
  565. DBG("read_reg(0x%x)=0x%x (dec %d)\n", data[1], data[2],
  566. data[2]);
  567. error = copy_to_user(ifr->ifr_data, data, sizeof(data));
  568. if (error)
  569. RET(error);
  570. break;
  571. case BDX_OP_WRITE:
  572. error = bdx_range_check(priv, data[1]);
  573. if (error < 0)
  574. return error;
  575. WRITE_REG(priv, data[1], data[2]);
  576. DBG("write_reg(0x%x, 0x%x)\n", data[1], data[2]);
  577. break;
  578. default:
  579. RET(-EOPNOTSUPP);
  580. }
  581. return 0;
  582. }
  583. static int bdx_ioctl(struct net_device *ndev, struct ifreq *ifr, int cmd)
  584. {
  585. ENTER;
  586. if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
  587. RET(bdx_ioctl_priv(ndev, ifr, cmd));
  588. else
  589. RET(-EOPNOTSUPP);
  590. }
  591. /*
  592. * __bdx_vlan_rx_vid - private helper for adding/killing VLAN vid
  593. * by passing VLAN filter table to hardware
  594. * @ndev network device
  595. * @vid VLAN vid
  596. * @op add or kill operation
  597. */
  598. static void __bdx_vlan_rx_vid(struct net_device *ndev, uint16_t vid, int enable)
  599. {
  600. struct bdx_priv *priv = netdev_priv(ndev);
  601. u32 reg, bit, val;
  602. ENTER;
  603. DBG2("vid=%d value=%d\n", (int)vid, enable);
  604. if (unlikely(vid >= 4096)) {
  605. ERR("tehuti: invalid VID: %u (> 4096)\n", vid);
  606. RET();
  607. }
  608. reg = regVLAN_0 + (vid / 32) * 4;
  609. bit = 1 << vid % 32;
  610. val = READ_REG(priv, reg);
  611. DBG2("reg=%x, val=%x, bit=%d\n", reg, val, bit);
  612. if (enable)
  613. val |= bit;
  614. else
  615. val &= ~bit;
  616. DBG2("new val %x\n", val);
  617. WRITE_REG(priv, reg, val);
  618. RET();
  619. }
  620. /*
  621. * bdx_vlan_rx_add_vid - kernel hook for adding VLAN vid to hw filtering table
  622. * @ndev network device
  623. * @vid VLAN vid to add
  624. */
  625. static void bdx_vlan_rx_add_vid(struct net_device *ndev, uint16_t vid)
  626. {
  627. __bdx_vlan_rx_vid(ndev, vid, 1);
  628. }
  629. /*
  630. * bdx_vlan_rx_kill_vid - kernel hook for killing VLAN vid in hw filtering table
  631. * @ndev network device
  632. * @vid VLAN vid to kill
  633. */
  634. static void bdx_vlan_rx_kill_vid(struct net_device *ndev, unsigned short vid)
  635. {
  636. __bdx_vlan_rx_vid(ndev, vid, 0);
  637. }
  638. /*
  639. * bdx_vlan_rx_register - kernel hook for adding VLAN group
  640. * @ndev network device
  641. * @grp VLAN group
  642. */
  643. static void
  644. bdx_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
  645. {
  646. struct bdx_priv *priv = netdev_priv(ndev);
  647. ENTER;
  648. DBG("device='%s', group='%p'\n", ndev->name, grp);
  649. priv->vlgrp = grp;
  650. RET();
  651. }
  652. /**
  653. * bdx_change_mtu - Change the Maximum Transfer Unit
  654. * @netdev: network interface device structure
  655. * @new_mtu: new value for maximum frame size
  656. *
  657. * Returns 0 on success, negative on failure
  658. */
  659. static int bdx_change_mtu(struct net_device *ndev, int new_mtu)
  660. {
  661. ENTER;
  662. if (new_mtu == ndev->mtu)
  663. RET(0);
  664. /* enforce minimum frame size */
  665. if (new_mtu < ETH_ZLEN) {
  666. ERR("%s: %s mtu %d is less then minimal %d\n",
  667. BDX_DRV_NAME, ndev->name, new_mtu, ETH_ZLEN);
  668. RET(-EINVAL);
  669. }
  670. ndev->mtu = new_mtu;
  671. if (netif_running(ndev)) {
  672. bdx_close(ndev);
  673. bdx_open(ndev);
  674. }
  675. RET(0);
  676. }
  677. static void bdx_setmulti(struct net_device *ndev)
  678. {
  679. struct bdx_priv *priv = netdev_priv(ndev);
  680. u32 rxf_val =
  681. GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB | GMAC_RX_FILTER_OSEN;
  682. int i;
  683. ENTER;
  684. /* IMF - imperfect (hash) rx multicat filter */
  685. /* PMF - perfect rx multicat filter */
  686. /* FIXME: RXE(OFF) */
  687. if (ndev->flags & IFF_PROMISC) {
  688. rxf_val |= GMAC_RX_FILTER_PRM;
  689. } else if (ndev->flags & IFF_ALLMULTI) {
  690. /* set IMF to accept all multicast frmaes */
  691. for (i = 0; i < MAC_MCST_HASH_NUM; i++)
  692. WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, ~0);
  693. } else if (ndev->mc_count) {
  694. u8 hash;
  695. struct dev_mc_list *mclist;
  696. u32 reg, val;
  697. /* set IMF to deny all multicast frames */
  698. for (i = 0; i < MAC_MCST_HASH_NUM; i++)
  699. WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, 0);
  700. /* set PMF to deny all multicast frames */
  701. for (i = 0; i < MAC_MCST_NUM; i++) {
  702. WRITE_REG(priv, regRX_MAC_MCST0 + i * 8, 0);
  703. WRITE_REG(priv, regRX_MAC_MCST1 + i * 8, 0);
  704. }
  705. /* use PMF to accept first MAC_MCST_NUM (15) addresses */
  706. /* TBD: sort addreses and write them in ascending order
  707. * into RX_MAC_MCST regs. we skip this phase now and accept ALL
  708. * multicast frames throu IMF */
  709. mclist = ndev->mc_list;
  710. /* accept the rest of addresses throu IMF */
  711. for (; mclist; mclist = mclist->next) {
  712. hash = 0;
  713. for (i = 0; i < ETH_ALEN; i++)
  714. hash ^= mclist->dmi_addr[i];
  715. reg = regRX_MCST_HASH0 + ((hash >> 5) << 2);
  716. val = READ_REG(priv, reg);
  717. val |= (1 << (hash % 32));
  718. WRITE_REG(priv, reg, val);
  719. }
  720. } else {
  721. DBG("only own mac %d\n", ndev->mc_count);
  722. rxf_val |= GMAC_RX_FILTER_AB;
  723. }
  724. WRITE_REG(priv, regGMAC_RXF_A, rxf_val);
  725. /* enable RX */
  726. /* FIXME: RXE(ON) */
  727. RET();
  728. }
  729. static int bdx_set_mac(struct net_device *ndev, void *p)
  730. {
  731. struct bdx_priv *priv = netdev_priv(ndev);
  732. struct sockaddr *addr = p;
  733. ENTER;
  734. /*
  735. if (netif_running(dev))
  736. return -EBUSY
  737. */
  738. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  739. bdx_restore_mac(ndev, priv);
  740. RET(0);
  741. }
  742. static int bdx_read_mac(struct bdx_priv *priv)
  743. {
  744. u16 macAddress[3], i;
  745. ENTER;
  746. macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
  747. macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
  748. macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
  749. macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
  750. macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
  751. macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
  752. for (i = 0; i < 3; i++) {
  753. priv->ndev->dev_addr[i * 2 + 1] = macAddress[i];
  754. priv->ndev->dev_addr[i * 2] = macAddress[i] >> 8;
  755. }
  756. RET(0);
  757. }
  758. static u64 bdx_read_l2stat(struct bdx_priv *priv, int reg)
  759. {
  760. u64 val;
  761. val = READ_REG(priv, reg);
  762. val |= ((u64) READ_REG(priv, reg + 8)) << 32;
  763. return val;
  764. }
  765. /*Do the statistics-update work*/
  766. static void bdx_update_stats(struct bdx_priv *priv)
  767. {
  768. struct bdx_stats *stats = &priv->hw_stats;
  769. u64 *stats_vector = (u64 *) stats;
  770. int i;
  771. int addr;
  772. /*Fill HW structure */
  773. addr = 0x7200;
  774. /*First 12 statistics - 0x7200 - 0x72B0 */
  775. for (i = 0; i < 12; i++) {
  776. stats_vector[i] = bdx_read_l2stat(priv, addr);
  777. addr += 0x10;
  778. }
  779. BDX_ASSERT(addr != 0x72C0);
  780. /* 0x72C0-0x72E0 RSRV */
  781. addr = 0x72F0;
  782. for (; i < 16; i++) {
  783. stats_vector[i] = bdx_read_l2stat(priv, addr);
  784. addr += 0x10;
  785. }
  786. BDX_ASSERT(addr != 0x7330);
  787. /* 0x7330-0x7360 RSRV */
  788. addr = 0x7370;
  789. for (; i < 19; i++) {
  790. stats_vector[i] = bdx_read_l2stat(priv, addr);
  791. addr += 0x10;
  792. }
  793. BDX_ASSERT(addr != 0x73A0);
  794. /* 0x73A0-0x73B0 RSRV */
  795. addr = 0x73C0;
  796. for (; i < 23; i++) {
  797. stats_vector[i] = bdx_read_l2stat(priv, addr);
  798. addr += 0x10;
  799. }
  800. BDX_ASSERT(addr != 0x7400);
  801. BDX_ASSERT((sizeof(struct bdx_stats) / sizeof(u64)) != i);
  802. }
  803. static struct net_device_stats *bdx_get_stats(struct net_device *ndev)
  804. {
  805. struct bdx_priv *priv = netdev_priv(ndev);
  806. struct net_device_stats *net_stat = &priv->net_stats;
  807. return net_stat;
  808. }
  809. static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
  810. u16 rxd_vlan);
  811. static void print_rxfd(struct rxf_desc *rxfd);
  812. /*************************************************************************
  813. * Rx DB *
  814. *************************************************************************/
  815. static void bdx_rxdb_destroy(struct rxdb *db)
  816. {
  817. if (db)
  818. vfree(db);
  819. }
  820. static struct rxdb *bdx_rxdb_create(int nelem)
  821. {
  822. struct rxdb *db;
  823. int i;
  824. db = vmalloc(sizeof(struct rxdb)
  825. + (nelem * sizeof(int))
  826. + (nelem * sizeof(struct rx_map)));
  827. if (likely(db != NULL)) {
  828. db->stack = (int *)(db + 1);
  829. db->elems = (void *)(db->stack + nelem);
  830. db->nelem = nelem;
  831. db->top = nelem;
  832. for (i = 0; i < nelem; i++)
  833. db->stack[i] = nelem - i - 1; /* to make first allocs
  834. close to db struct*/
  835. }
  836. return db;
  837. }
  838. static inline int bdx_rxdb_alloc_elem(struct rxdb *db)
  839. {
  840. BDX_ASSERT(db->top <= 0);
  841. return db->stack[--(db->top)];
  842. }
  843. static inline void *bdx_rxdb_addr_elem(struct rxdb *db, int n)
  844. {
  845. BDX_ASSERT((n < 0) || (n >= db->nelem));
  846. return db->elems + n;
  847. }
  848. static inline int bdx_rxdb_available(struct rxdb *db)
  849. {
  850. return db->top;
  851. }
  852. static inline void bdx_rxdb_free_elem(struct rxdb *db, int n)
  853. {
  854. BDX_ASSERT((n >= db->nelem) || (n < 0));
  855. db->stack[(db->top)++] = n;
  856. }
  857. /*************************************************************************
  858. * Rx Init *
  859. *************************************************************************/
  860. /* bdx_rx_init - initialize RX all related HW and SW resources
  861. * @priv - NIC private structure
  862. *
  863. * Returns 0 on success, negative value on failure
  864. *
  865. * It creates rxf and rxd fifos, update relevant HW registers, preallocate
  866. * skb for rx. It assumes that Rx is desabled in HW
  867. * funcs are grouped for better cache usage
  868. *
  869. * RxD fifo is smaller then RxF fifo by design. Upon high load, RxD will be
  870. * filled and packets will be dropped by nic without getting into host or
  871. * cousing interrupt. Anyway, in that condition, host has no chance to proccess
  872. * all packets, but dropping in nic is cheaper, since it takes 0 cpu cycles
  873. */
  874. /* TBD: ensure proper packet size */
  875. static int bdx_rx_init(struct bdx_priv *priv)
  876. {
  877. ENTER;
  878. if (bdx_fifo_init(priv, &priv->rxd_fifo0.m, priv->rxd_size,
  879. regRXD_CFG0_0, regRXD_CFG1_0,
  880. regRXD_RPTR_0, regRXD_WPTR_0))
  881. goto err_mem;
  882. if (bdx_fifo_init(priv, &priv->rxf_fifo0.m, priv->rxf_size,
  883. regRXF_CFG0_0, regRXF_CFG1_0,
  884. regRXF_RPTR_0, regRXF_WPTR_0))
  885. goto err_mem;
  886. if (!
  887. (priv->rxdb =
  888. bdx_rxdb_create(priv->rxf_fifo0.m.memsz /
  889. sizeof(struct rxf_desc))))
  890. goto err_mem;
  891. priv->rxf_fifo0.m.pktsz = priv->ndev->mtu + VLAN_ETH_HLEN;
  892. return 0;
  893. err_mem:
  894. ERR("%s: %s: Rx init failed\n", BDX_DRV_NAME, priv->ndev->name);
  895. return -ENOMEM;
  896. }
  897. /* bdx_rx_free_skbs - frees and unmaps all skbs allocated for the fifo
  898. * @priv - NIC private structure
  899. * @f - RXF fifo
  900. */
  901. static void bdx_rx_free_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
  902. {
  903. struct rx_map *dm;
  904. struct rxdb *db = priv->rxdb;
  905. u16 i;
  906. ENTER;
  907. DBG("total=%d free=%d busy=%d\n", db->nelem, bdx_rxdb_available(db),
  908. db->nelem - bdx_rxdb_available(db));
  909. while (bdx_rxdb_available(db) > 0) {
  910. i = bdx_rxdb_alloc_elem(db);
  911. dm = bdx_rxdb_addr_elem(db, i);
  912. dm->dma = 0;
  913. }
  914. for (i = 0; i < db->nelem; i++) {
  915. dm = bdx_rxdb_addr_elem(db, i);
  916. if (dm->dma) {
  917. pci_unmap_single(priv->pdev,
  918. dm->dma, f->m.pktsz,
  919. PCI_DMA_FROMDEVICE);
  920. dev_kfree_skb(dm->skb);
  921. }
  922. }
  923. }
  924. /* bdx_rx_free - release all Rx resources
  925. * @priv - NIC private structure
  926. * It assumes that Rx is desabled in HW
  927. */
  928. static void bdx_rx_free(struct bdx_priv *priv)
  929. {
  930. ENTER;
  931. if (priv->rxdb) {
  932. bdx_rx_free_skbs(priv, &priv->rxf_fifo0);
  933. bdx_rxdb_destroy(priv->rxdb);
  934. priv->rxdb = NULL;
  935. }
  936. bdx_fifo_free(priv, &priv->rxf_fifo0.m);
  937. bdx_fifo_free(priv, &priv->rxd_fifo0.m);
  938. RET();
  939. }
  940. /*************************************************************************
  941. * Rx Engine *
  942. *************************************************************************/
  943. /* bdx_rx_alloc_skbs - fill rxf fifo with new skbs
  944. * @priv - nic's private structure
  945. * @f - RXF fifo that needs skbs
  946. * It allocates skbs, build rxf descs and push it (rxf descr) into rxf fifo.
  947. * skb's virtual and physical addresses are stored in skb db.
  948. * To calculate free space, func uses cached values of RPTR and WPTR
  949. * When needed, it also updates RPTR and WPTR.
  950. */
  951. /* TBD: do not update WPTR if no desc were written */
  952. static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
  953. {
  954. struct sk_buff *skb;
  955. struct rxf_desc *rxfd;
  956. struct rx_map *dm;
  957. int dno, delta, idx;
  958. struct rxdb *db = priv->rxdb;
  959. ENTER;
  960. dno = bdx_rxdb_available(db) - 1;
  961. while (dno > 0) {
  962. if (!(skb = dev_alloc_skb(f->m.pktsz + NET_IP_ALIGN))) {
  963. ERR("NO MEM: dev_alloc_skb failed\n");
  964. break;
  965. }
  966. skb->dev = priv->ndev;
  967. skb_reserve(skb, NET_IP_ALIGN);
  968. idx = bdx_rxdb_alloc_elem(db);
  969. dm = bdx_rxdb_addr_elem(db, idx);
  970. dm->dma = pci_map_single(priv->pdev,
  971. skb->data, f->m.pktsz,
  972. PCI_DMA_FROMDEVICE);
  973. dm->skb = skb;
  974. rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
  975. rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
  976. rxfd->va_lo = idx;
  977. rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
  978. rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
  979. rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
  980. print_rxfd(rxfd);
  981. f->m.wptr += sizeof(struct rxf_desc);
  982. delta = f->m.wptr - f->m.memsz;
  983. if (unlikely(delta >= 0)) {
  984. f->m.wptr = delta;
  985. if (delta > 0) {
  986. memcpy(f->m.va, f->m.va + f->m.memsz, delta);
  987. DBG("wrapped descriptor\n");
  988. }
  989. }
  990. dno--;
  991. }
  992. /*TBD: to do - delayed rxf wptr like in txd */
  993. WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
  994. RET();
  995. }
  996. static inline void
  997. NETIF_RX_MUX(struct bdx_priv *priv, u32 rxd_val1, u16 rxd_vlan,
  998. struct sk_buff *skb)
  999. {
  1000. ENTER;
  1001. DBG("rxdd->flags.bits.vtag=%d vlgrp=%p\n", GET_RXD_VTAG(rxd_val1),
  1002. priv->vlgrp);
  1003. if (priv->vlgrp && GET_RXD_VTAG(rxd_val1)) {
  1004. DBG("%s: vlan rcv vlan '%x' vtag '%x', device name '%s'\n",
  1005. priv->ndev->name,
  1006. GET_RXD_VLAN_ID(rxd_vlan),
  1007. GET_RXD_VTAG(rxd_val1),
  1008. vlan_group_get_device(priv->vlgrp,
  1009. GET_RXD_VLAN_ID(rxd_vlan))->name);
  1010. /* NAPI variant of receive functions */
  1011. vlan_hwaccel_receive_skb(skb, priv->vlgrp,
  1012. GET_RXD_VLAN_TCI(rxd_vlan));
  1013. } else {
  1014. netif_receive_skb(skb);
  1015. }
  1016. }
  1017. static void bdx_recycle_skb(struct bdx_priv *priv, struct rxd_desc *rxdd)
  1018. {
  1019. struct rxf_desc *rxfd;
  1020. struct rx_map *dm;
  1021. struct rxf_fifo *f;
  1022. struct rxdb *db;
  1023. struct sk_buff *skb;
  1024. int delta;
  1025. ENTER;
  1026. DBG("priv=%p rxdd=%p\n", priv, rxdd);
  1027. f = &priv->rxf_fifo0;
  1028. db = priv->rxdb;
  1029. DBG("db=%p f=%p\n", db, f);
  1030. dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
  1031. DBG("dm=%p\n", dm);
  1032. skb = dm->skb;
  1033. rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
  1034. rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
  1035. rxfd->va_lo = rxdd->va_lo;
  1036. rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
  1037. rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
  1038. rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
  1039. print_rxfd(rxfd);
  1040. f->m.wptr += sizeof(struct rxf_desc);
  1041. delta = f->m.wptr - f->m.memsz;
  1042. if (unlikely(delta >= 0)) {
  1043. f->m.wptr = delta;
  1044. if (delta > 0) {
  1045. memcpy(f->m.va, f->m.va + f->m.memsz, delta);
  1046. DBG("wrapped descriptor\n");
  1047. }
  1048. }
  1049. RET();
  1050. }
  1051. /* bdx_rx_receive - recieves full packets from RXD fifo and pass them to OS
  1052. * NOTE: a special treatment is given to non-continous descriptors
  1053. * that start near the end, wraps around and continue at the beginning. a second
  1054. * part is copied right after the first, and then descriptor is interpreted as
  1055. * normal. fifo has an extra space to allow such operations
  1056. * @priv - nic's private structure
  1057. * @f - RXF fifo that needs skbs
  1058. */
  1059. /* TBD: replace memcpy func call by explicite inline asm */
  1060. static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget)
  1061. {
  1062. struct sk_buff *skb, *skb2;
  1063. struct rxd_desc *rxdd;
  1064. struct rx_map *dm;
  1065. struct rxf_fifo *rxf_fifo;
  1066. int tmp_len, size;
  1067. int done = 0;
  1068. int max_done = BDX_MAX_RX_DONE;
  1069. struct rxdb *db = NULL;
  1070. /* Unmarshalled descriptor - copy of descriptor in host order */
  1071. u32 rxd_val1;
  1072. u16 len;
  1073. u16 rxd_vlan;
  1074. ENTER;
  1075. max_done = budget;
  1076. f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_WR_PTR;
  1077. size = f->m.wptr - f->m.rptr;
  1078. if (size < 0)
  1079. size = f->m.memsz + size; /* size is negative :-) */
  1080. while (size > 0) {
  1081. rxdd = (struct rxd_desc *)(f->m.va + f->m.rptr);
  1082. rxd_val1 = CPU_CHIP_SWAP32(rxdd->rxd_val1);
  1083. len = CPU_CHIP_SWAP16(rxdd->len);
  1084. rxd_vlan = CPU_CHIP_SWAP16(rxdd->rxd_vlan);
  1085. print_rxdd(rxdd, rxd_val1, len, rxd_vlan);
  1086. tmp_len = GET_RXD_BC(rxd_val1) << 3;
  1087. BDX_ASSERT(tmp_len <= 0);
  1088. size -= tmp_len;
  1089. if (size < 0) /* test for partially arrived descriptor */
  1090. break;
  1091. f->m.rptr += tmp_len;
  1092. tmp_len = f->m.rptr - f->m.memsz;
  1093. if (unlikely(tmp_len >= 0)) {
  1094. f->m.rptr = tmp_len;
  1095. if (tmp_len > 0) {
  1096. DBG("wrapped desc rptr=%d tmp_len=%d\n",
  1097. f->m.rptr, tmp_len);
  1098. memcpy(f->m.va + f->m.memsz, f->m.va, tmp_len);
  1099. }
  1100. }
  1101. if (unlikely(GET_RXD_ERR(rxd_val1))) {
  1102. DBG("rxd_err = 0x%x\n", GET_RXD_ERR(rxd_val1));
  1103. priv->net_stats.rx_errors++;
  1104. bdx_recycle_skb(priv, rxdd);
  1105. continue;
  1106. }
  1107. rxf_fifo = &priv->rxf_fifo0;
  1108. db = priv->rxdb;
  1109. dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
  1110. skb = dm->skb;
  1111. if (len < BDX_COPYBREAK &&
  1112. (skb2 = dev_alloc_skb(len + NET_IP_ALIGN))) {
  1113. skb_reserve(skb2, NET_IP_ALIGN);
  1114. /*skb_put(skb2, len); */
  1115. pci_dma_sync_single_for_cpu(priv->pdev,
  1116. dm->dma, rxf_fifo->m.pktsz,
  1117. PCI_DMA_FROMDEVICE);
  1118. memcpy(skb2->data, skb->data, len);
  1119. bdx_recycle_skb(priv, rxdd);
  1120. skb = skb2;
  1121. } else {
  1122. pci_unmap_single(priv->pdev,
  1123. dm->dma, rxf_fifo->m.pktsz,
  1124. PCI_DMA_FROMDEVICE);
  1125. bdx_rxdb_free_elem(db, rxdd->va_lo);
  1126. }
  1127. priv->net_stats.rx_bytes += len;
  1128. skb_put(skb, len);
  1129. skb->dev = priv->ndev;
  1130. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1131. skb->protocol = eth_type_trans(skb, priv->ndev);
  1132. /* Non-IP packets aren't checksum-offloaded */
  1133. if (GET_RXD_PKT_ID(rxd_val1) == 0)
  1134. skb->ip_summed = CHECKSUM_NONE;
  1135. NETIF_RX_MUX(priv, rxd_val1, rxd_vlan, skb);
  1136. if (++done >= max_done)
  1137. break;
  1138. }
  1139. priv->net_stats.rx_packets += done;
  1140. /* FIXME: do smth to minimize pci accesses */
  1141. WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
  1142. bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
  1143. RET(done);
  1144. }
  1145. /*************************************************************************
  1146. * Debug / Temprorary Code *
  1147. *************************************************************************/
  1148. static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
  1149. u16 rxd_vlan)
  1150. {
  1151. DBG("ERROR: rxdd bc %d rxfq %d to %d type %d err %d rxp %d "
  1152. "pkt_id %d vtag %d len %d vlan_id %d cfi %d prio %d "
  1153. "va_lo %d va_hi %d\n",
  1154. GET_RXD_BC(rxd_val1), GET_RXD_RXFQ(rxd_val1), GET_RXD_TO(rxd_val1),
  1155. GET_RXD_TYPE(rxd_val1), GET_RXD_ERR(rxd_val1),
  1156. GET_RXD_RXP(rxd_val1), GET_RXD_PKT_ID(rxd_val1),
  1157. GET_RXD_VTAG(rxd_val1), len, GET_RXD_VLAN_ID(rxd_vlan),
  1158. GET_RXD_CFI(rxd_vlan), GET_RXD_PRIO(rxd_vlan), rxdd->va_lo,
  1159. rxdd->va_hi);
  1160. }
  1161. static void print_rxfd(struct rxf_desc *rxfd)
  1162. {
  1163. DBG("=== RxF desc CHIP ORDER/ENDIANESS =============\n"
  1164. "info 0x%x va_lo %u pa_lo 0x%x pa_hi 0x%x len 0x%x\n",
  1165. rxfd->info, rxfd->va_lo, rxfd->pa_lo, rxfd->pa_hi, rxfd->len);
  1166. }
  1167. /*
  1168. * TX HW/SW interaction overview
  1169. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1170. * There are 2 types of TX communication channels betwean driver and NIC.
  1171. * 1) TX Free Fifo - TXF - holds ack descriptors for sent packets
  1172. * 2) TX Data Fifo - TXD - holds descriptors of full buffers.
  1173. *
  1174. * Currently NIC supports TSO, checksuming and gather DMA
  1175. * UFO and IP fragmentation is on the way
  1176. *
  1177. * RX SW Data Structures
  1178. * ~~~~~~~~~~~~~~~~~~~~~
  1179. * txdb - used to keep track of all skbs owned by SW and their dma addresses.
  1180. * For TX case, ownership lasts from geting packet via hard_xmit and until HW
  1181. * acknowledges sent by TXF descriptors.
  1182. * Implemented as cyclic buffer.
  1183. * fifo - keeps info about fifo's size and location, relevant HW registers,
  1184. * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
  1185. * Implemented as simple struct.
  1186. *
  1187. * TX SW Execution Flow
  1188. * ~~~~~~~~~~~~~~~~~~~~
  1189. * OS calls driver's hard_xmit method with packet to sent.
  1190. * Driver creates DMA mappings, builds TXD descriptors and kicks HW
  1191. * by updating TXD WPTR.
  1192. * When packet is sent, HW write us TXF descriptor and SW frees original skb.
  1193. * To prevent TXD fifo overflow without reading HW registers every time,
  1194. * SW deploys "tx level" technique.
  1195. * Upon strart up, tx level is initialized to TXD fifo length.
  1196. * For every sent packet, SW gets its TXD descriptor sizei
  1197. * (from precalculated array) and substructs it from tx level.
  1198. * The size is also stored in txdb. When TXF ack arrives, SW fetch size of
  1199. * original TXD descriptor from txdb and adds it to tx level.
  1200. * When Tx level drops under some predefined treshhold, the driver
  1201. * stops the TX queue. When TX level rises above that level,
  1202. * the tx queue is enabled again.
  1203. *
  1204. * This technique avoids eccessive reading of RPTR and WPTR registers.
  1205. * As our benchmarks shows, it adds 1.5 Gbit/sec to NIS's throuput.
  1206. */
  1207. /*************************************************************************
  1208. * Tx DB *
  1209. *************************************************************************/
  1210. static inline int bdx_tx_db_size(struct txdb *db)
  1211. {
  1212. int taken = db->wptr - db->rptr;
  1213. if (taken < 0)
  1214. taken = db->size + 1 + taken; /* (size + 1) equals memsz */
  1215. return db->size - taken;
  1216. }
  1217. /* __bdx_tx_ptr_next - helper function, increment read/write pointer + wrap
  1218. * @d - tx data base
  1219. * @ptr - read or write pointer
  1220. */
  1221. static inline void __bdx_tx_db_ptr_next(struct txdb *db, struct tx_map **pptr)
  1222. {
  1223. BDX_ASSERT(db == NULL || pptr == NULL); /* sanity */
  1224. BDX_ASSERT(*pptr != db->rptr && /* expect either read */
  1225. *pptr != db->wptr); /* or write pointer */
  1226. BDX_ASSERT(*pptr < db->start || /* pointer has to be */
  1227. *pptr >= db->end); /* in range */
  1228. ++*pptr;
  1229. if (unlikely(*pptr == db->end))
  1230. *pptr = db->start;
  1231. }
  1232. /* bdx_tx_db_inc_rptr - increment read pointer
  1233. * @d - tx data base
  1234. */
  1235. static inline void bdx_tx_db_inc_rptr(struct txdb *db)
  1236. {
  1237. BDX_ASSERT(db->rptr == db->wptr); /* can't read from empty db */
  1238. __bdx_tx_db_ptr_next(db, &db->rptr);
  1239. }
  1240. /* bdx_tx_db_inc_rptr - increment write pointer
  1241. * @d - tx data base
  1242. */
  1243. static inline void bdx_tx_db_inc_wptr(struct txdb *db)
  1244. {
  1245. __bdx_tx_db_ptr_next(db, &db->wptr);
  1246. BDX_ASSERT(db->rptr == db->wptr); /* we can not get empty db as
  1247. a result of write */
  1248. }
  1249. /* bdx_tx_db_init - creates and initializes tx db
  1250. * @d - tx data base
  1251. * @sz_type - size of tx fifo
  1252. * Returns 0 on success, error code otherwise
  1253. */
  1254. static int bdx_tx_db_init(struct txdb *d, int sz_type)
  1255. {
  1256. int memsz = FIFO_SIZE * (1 << (sz_type + 1));
  1257. d->start = vmalloc(memsz);
  1258. if (!d->start)
  1259. return -ENOMEM;
  1260. /*
  1261. * In order to differentiate between db is empty and db is full
  1262. * states at least one element should always be empty in order to
  1263. * avoid rptr == wptr which means db is empty
  1264. */
  1265. d->size = memsz / sizeof(struct tx_map) - 1;
  1266. d->end = d->start + d->size + 1; /* just after last element */
  1267. /* all dbs are created equally empty */
  1268. d->rptr = d->start;
  1269. d->wptr = d->start;
  1270. return 0;
  1271. }
  1272. /* bdx_tx_db_close - closes tx db and frees all memory
  1273. * @d - tx data base
  1274. */
  1275. static void bdx_tx_db_close(struct txdb *d)
  1276. {
  1277. BDX_ASSERT(d == NULL);
  1278. if (d->start) {
  1279. vfree(d->start);
  1280. d->start = NULL;
  1281. }
  1282. }
  1283. /*************************************************************************
  1284. * Tx Engine *
  1285. *************************************************************************/
  1286. /* sizes of tx desc (including padding if needed) as function
  1287. * of skb's frag number */
  1288. static struct {
  1289. u16 bytes;
  1290. u16 qwords; /* qword = 64 bit */
  1291. } txd_sizes[MAX_SKB_FRAGS + 1];
  1292. /* txdb_map_skb - creates and stores dma mappings for skb's data blocks
  1293. * @priv - NIC private structure
  1294. * @skb - socket buffer to map
  1295. *
  1296. * It makes dma mappings for skb's data blocks and writes them to PBL of
  1297. * new tx descriptor. It also stores them in the tx db, so they could be
  1298. * unmaped after data was sent. It is reponsibility of a caller to make
  1299. * sure that there is enough space in the tx db. Last element holds pointer
  1300. * to skb itself and marked with zero length
  1301. */
  1302. static inline void
  1303. bdx_tx_map_skb(struct bdx_priv *priv, struct sk_buff *skb,
  1304. struct txd_desc *txdd)
  1305. {
  1306. struct txdb *db = &priv->txdb;
  1307. struct pbl *pbl = &txdd->pbl[0];
  1308. int nr_frags = skb_shinfo(skb)->nr_frags;
  1309. int i;
  1310. db->wptr->len = skb->len - skb->data_len;
  1311. db->wptr->addr.dma = pci_map_single(priv->pdev, skb->data,
  1312. db->wptr->len, PCI_DMA_TODEVICE);
  1313. pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
  1314. pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
  1315. pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
  1316. DBG("=== pbl len: 0x%x ================\n", pbl->len);
  1317. DBG("=== pbl pa_lo: 0x%x ================\n", pbl->pa_lo);
  1318. DBG("=== pbl pa_hi: 0x%x ================\n", pbl->pa_hi);
  1319. bdx_tx_db_inc_wptr(db);
  1320. for (i = 0; i < nr_frags; i++) {
  1321. struct skb_frag_struct *frag;
  1322. frag = &skb_shinfo(skb)->frags[i];
  1323. db->wptr->len = frag->size;
  1324. db->wptr->addr.dma =
  1325. pci_map_page(priv->pdev, frag->page, frag->page_offset,
  1326. frag->size, PCI_DMA_TODEVICE);
  1327. pbl++;
  1328. pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
  1329. pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
  1330. pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
  1331. bdx_tx_db_inc_wptr(db);
  1332. }
  1333. /* add skb clean up info. */
  1334. db->wptr->len = -txd_sizes[nr_frags].bytes;
  1335. db->wptr->addr.skb = skb;
  1336. bdx_tx_db_inc_wptr(db);
  1337. }
  1338. /* init_txd_sizes - precalculate sizes of descriptors for skbs up to 16 frags
  1339. * number of frags is used as index to fetch correct descriptors size,
  1340. * instead of calculating it each time */
  1341. static void __init init_txd_sizes(void)
  1342. {
  1343. int i, lwords;
  1344. /* 7 - is number of lwords in txd with one phys buffer
  1345. * 3 - is number of lwords used for every additional phys buffer */
  1346. for (i = 0; i < MAX_SKB_FRAGS + 1; i++) {
  1347. lwords = 7 + (i * 3);
  1348. if (lwords & 1)
  1349. lwords++; /* pad it with 1 lword */
  1350. txd_sizes[i].qwords = lwords >> 1;
  1351. txd_sizes[i].bytes = lwords << 2;
  1352. }
  1353. }
  1354. /* bdx_tx_init - initialize all Tx related stuff.
  1355. * Namely, TXD and TXF fifos, database etc */
  1356. static int bdx_tx_init(struct bdx_priv *priv)
  1357. {
  1358. if (bdx_fifo_init(priv, &priv->txd_fifo0.m, priv->txd_size,
  1359. regTXD_CFG0_0,
  1360. regTXD_CFG1_0, regTXD_RPTR_0, regTXD_WPTR_0))
  1361. goto err_mem;
  1362. if (bdx_fifo_init(priv, &priv->txf_fifo0.m, priv->txf_size,
  1363. regTXF_CFG0_0,
  1364. regTXF_CFG1_0, regTXF_RPTR_0, regTXF_WPTR_0))
  1365. goto err_mem;
  1366. /* The TX db has to keep mappings for all packets sent (on TxD)
  1367. * and not yet reclaimed (on TxF) */
  1368. if (bdx_tx_db_init(&priv->txdb, max(priv->txd_size, priv->txf_size)))
  1369. goto err_mem;
  1370. priv->tx_level = BDX_MAX_TX_LEVEL;
  1371. #ifdef BDX_DELAY_WPTR
  1372. priv->tx_update_mark = priv->tx_level - 1024;
  1373. #endif
  1374. return 0;
  1375. err_mem:
  1376. ERR("tehuti: %s: Tx init failed\n", priv->ndev->name);
  1377. return -ENOMEM;
  1378. }
  1379. /*
  1380. * bdx_tx_space - calculates avalable space in TX fifo
  1381. * @priv - NIC private structure
  1382. * Returns avaliable space in TX fifo in bytes
  1383. */
  1384. static inline int bdx_tx_space(struct bdx_priv *priv)
  1385. {
  1386. struct txd_fifo *f = &priv->txd_fifo0;
  1387. int fsize;
  1388. f->m.rptr = READ_REG(priv, f->m.reg_RPTR) & TXF_WPTR_WR_PTR;
  1389. fsize = f->m.rptr - f->m.wptr;
  1390. if (fsize <= 0)
  1391. fsize = f->m.memsz + fsize;
  1392. return (fsize);
  1393. }
  1394. /* bdx_tx_transmit - send packet to NIC
  1395. * @skb - packet to send
  1396. * ndev - network device assigned to NIC
  1397. * Return codes:
  1398. * o NETDEV_TX_OK everything ok.
  1399. * o NETDEV_TX_BUSY Cannot transmit packet, try later
  1400. * Usually a bug, means queue start/stop flow control is broken in
  1401. * the driver. Note: the driver must NOT put the skb in its DMA ring.
  1402. * o NETDEV_TX_LOCKED Locking failed, please retry quickly.
  1403. */
  1404. static int bdx_tx_transmit(struct sk_buff *skb, struct net_device *ndev)
  1405. {
  1406. struct bdx_priv *priv = netdev_priv(ndev);
  1407. struct txd_fifo *f = &priv->txd_fifo0;
  1408. int txd_checksum = 7; /* full checksum */
  1409. int txd_lgsnd = 0;
  1410. int txd_vlan_id = 0;
  1411. int txd_vtag = 0;
  1412. int txd_mss = 0;
  1413. int nr_frags = skb_shinfo(skb)->nr_frags;
  1414. struct txd_desc *txdd;
  1415. int len;
  1416. unsigned long flags;
  1417. ENTER;
  1418. local_irq_save(flags);
  1419. if (!spin_trylock(&priv->tx_lock)) {
  1420. local_irq_restore(flags);
  1421. DBG("%s[%s]: TX locked, returning NETDEV_TX_LOCKED\n",
  1422. BDX_DRV_NAME, ndev->name);
  1423. return NETDEV_TX_LOCKED;
  1424. }
  1425. /* build tx descriptor */
  1426. BDX_ASSERT(f->m.wptr >= f->m.memsz); /* started with valid wptr */
  1427. txdd = (struct txd_desc *)(f->m.va + f->m.wptr);
  1428. if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL))
  1429. txd_checksum = 0;
  1430. if (skb_shinfo(skb)->gso_size) {
  1431. txd_mss = skb_shinfo(skb)->gso_size;
  1432. txd_lgsnd = 1;
  1433. DBG("skb %p skb len %d gso size = %d\n", skb, skb->len,
  1434. txd_mss);
  1435. }
  1436. if (vlan_tx_tag_present(skb)) {
  1437. /*Cut VLAN ID to 12 bits */
  1438. txd_vlan_id = vlan_tx_tag_get(skb) & BITS_MASK(12);
  1439. txd_vtag = 1;
  1440. }
  1441. txdd->length = CPU_CHIP_SWAP16(skb->len);
  1442. txdd->mss = CPU_CHIP_SWAP16(txd_mss);
  1443. txdd->txd_val1 =
  1444. CPU_CHIP_SWAP32(TXD_W1_VAL
  1445. (txd_sizes[nr_frags].qwords, txd_checksum, txd_vtag,
  1446. txd_lgsnd, txd_vlan_id));
  1447. DBG("=== TxD desc =====================\n");
  1448. DBG("=== w1: 0x%x ================\n", txdd->txd_val1);
  1449. DBG("=== w2: mss 0x%x len 0x%x\n", txdd->mss, txdd->length);
  1450. bdx_tx_map_skb(priv, skb, txdd);
  1451. /* increment TXD write pointer. In case of
  1452. fifo wrapping copy reminder of the descriptor
  1453. to the beginning */
  1454. f->m.wptr += txd_sizes[nr_frags].bytes;
  1455. len = f->m.wptr - f->m.memsz;
  1456. if (unlikely(len >= 0)) {
  1457. f->m.wptr = len;
  1458. if (len > 0) {
  1459. BDX_ASSERT(len > f->m.memsz);
  1460. memcpy(f->m.va, f->m.va + f->m.memsz, len);
  1461. }
  1462. }
  1463. BDX_ASSERT(f->m.wptr >= f->m.memsz); /* finished with valid wptr */
  1464. priv->tx_level -= txd_sizes[nr_frags].bytes;
  1465. BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
  1466. #ifdef BDX_DELAY_WPTR
  1467. if (priv->tx_level > priv->tx_update_mark) {
  1468. /* Force memory writes to complete before letting h/w
  1469. know there are new descriptors to fetch.
  1470. (might be needed on platforms like IA64)
  1471. wmb(); */
  1472. WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
  1473. } else {
  1474. if (priv->tx_noupd++ > BDX_NO_UPD_PACKETS) {
  1475. priv->tx_noupd = 0;
  1476. WRITE_REG(priv, f->m.reg_WPTR,
  1477. f->m.wptr & TXF_WPTR_WR_PTR);
  1478. }
  1479. }
  1480. #else
  1481. /* Force memory writes to complete before letting h/w
  1482. know there are new descriptors to fetch.
  1483. (might be needed on platforms like IA64)
  1484. wmb(); */
  1485. WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
  1486. #endif
  1487. ndev->trans_start = jiffies;
  1488. priv->net_stats.tx_packets++;
  1489. priv->net_stats.tx_bytes += skb->len;
  1490. if (priv->tx_level < BDX_MIN_TX_LEVEL) {
  1491. DBG("%s: %s: TX Q STOP level %d\n",
  1492. BDX_DRV_NAME, ndev->name, priv->tx_level);
  1493. netif_stop_queue(ndev);
  1494. }
  1495. spin_unlock_irqrestore(&priv->tx_lock, flags);
  1496. return NETDEV_TX_OK;
  1497. }
  1498. /* bdx_tx_cleanup - clean TXF fifo, run in the context of IRQ.
  1499. * @priv - bdx adapter
  1500. * It scans TXF fifo for descriptors, frees DMA mappings and reports to OS
  1501. * that those packets were sent
  1502. */
  1503. static void bdx_tx_cleanup(struct bdx_priv *priv)
  1504. {
  1505. struct txf_fifo *f = &priv->txf_fifo0;
  1506. struct txdb *db = &priv->txdb;
  1507. int tx_level = 0;
  1508. ENTER;
  1509. f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_MASK;
  1510. BDX_ASSERT(f->m.rptr >= f->m.memsz); /* started with valid rptr */
  1511. while (f->m.wptr != f->m.rptr) {
  1512. f->m.rptr += BDX_TXF_DESC_SZ;
  1513. f->m.rptr &= f->m.size_mask;
  1514. /* unmap all the fragments */
  1515. /* first has to come tx_maps containing dma */
  1516. BDX_ASSERT(db->rptr->len == 0);
  1517. do {
  1518. BDX_ASSERT(db->rptr->addr.dma == 0);
  1519. pci_unmap_page(priv->pdev, db->rptr->addr.dma,
  1520. db->rptr->len, PCI_DMA_TODEVICE);
  1521. bdx_tx_db_inc_rptr(db);
  1522. } while (db->rptr->len > 0);
  1523. tx_level -= db->rptr->len; /* '-' koz len is negative */
  1524. /* now should come skb pointer - free it */
  1525. dev_kfree_skb_irq(db->rptr->addr.skb);
  1526. bdx_tx_db_inc_rptr(db);
  1527. }
  1528. /* let h/w know which TXF descriptors were cleaned */
  1529. BDX_ASSERT((f->m.wptr & TXF_WPTR_WR_PTR) >= f->m.memsz);
  1530. WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
  1531. /* We reclaimed resources, so in case the Q is stopped by xmit callback,
  1532. * we resume the transmition and use tx_lock to synchronize with xmit.*/
  1533. spin_lock(&priv->tx_lock);
  1534. priv->tx_level += tx_level;
  1535. BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
  1536. #ifdef BDX_DELAY_WPTR
  1537. if (priv->tx_noupd) {
  1538. priv->tx_noupd = 0;
  1539. WRITE_REG(priv, priv->txd_fifo0.m.reg_WPTR,
  1540. priv->txd_fifo0.m.wptr & TXF_WPTR_WR_PTR);
  1541. }
  1542. #endif
  1543. if (unlikely(netif_queue_stopped(priv->ndev)
  1544. && netif_carrier_ok(priv->ndev)
  1545. && (priv->tx_level >= BDX_MIN_TX_LEVEL))) {
  1546. DBG("%s: %s: TX Q WAKE level %d\n",
  1547. BDX_DRV_NAME, priv->ndev->name, priv->tx_level);
  1548. netif_wake_queue(priv->ndev);
  1549. }
  1550. spin_unlock(&priv->tx_lock);
  1551. }
  1552. /* bdx_tx_free_skbs - frees all skbs from TXD fifo.
  1553. * It gets called when OS stops this dev, eg upon "ifconfig down" or rmmod
  1554. */
  1555. static void bdx_tx_free_skbs(struct bdx_priv *priv)
  1556. {
  1557. struct txdb *db = &priv->txdb;
  1558. ENTER;
  1559. while (db->rptr != db->wptr) {
  1560. if (likely(db->rptr->len))
  1561. pci_unmap_page(priv->pdev, db->rptr->addr.dma,
  1562. db->rptr->len, PCI_DMA_TODEVICE);
  1563. else
  1564. dev_kfree_skb(db->rptr->addr.skb);
  1565. bdx_tx_db_inc_rptr(db);
  1566. }
  1567. RET();
  1568. }
  1569. /* bdx_tx_free - frees all Tx resources */
  1570. static void bdx_tx_free(struct bdx_priv *priv)
  1571. {
  1572. ENTER;
  1573. bdx_tx_free_skbs(priv);
  1574. bdx_fifo_free(priv, &priv->txd_fifo0.m);
  1575. bdx_fifo_free(priv, &priv->txf_fifo0.m);
  1576. bdx_tx_db_close(&priv->txdb);
  1577. }
  1578. /* bdx_tx_push_desc - push descriptor to TxD fifo
  1579. * @priv - NIC private structure
  1580. * @data - desc's data
  1581. * @size - desc's size
  1582. *
  1583. * Pushes desc to TxD fifo and overlaps it if needed.
  1584. * NOTE: this func does not check for available space. this is responsibility
  1585. * of the caller. Neither does it check that data size is smaller then
  1586. * fifo size.
  1587. */
  1588. static void bdx_tx_push_desc(struct bdx_priv *priv, void *data, int size)
  1589. {
  1590. struct txd_fifo *f = &priv->txd_fifo0;
  1591. int i = f->m.memsz - f->m.wptr;
  1592. if (size == 0)
  1593. return;
  1594. if (i > size) {
  1595. memcpy(f->m.va + f->m.wptr, data, size);
  1596. f->m.wptr += size;
  1597. } else {
  1598. memcpy(f->m.va + f->m.wptr, data, i);
  1599. f->m.wptr = size - i;
  1600. memcpy(f->m.va, data + i, f->m.wptr);
  1601. }
  1602. WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
  1603. }
  1604. /* bdx_tx_push_desc_safe - push descriptor to TxD fifo in a safe way
  1605. * @priv - NIC private structure
  1606. * @data - desc's data
  1607. * @size - desc's size
  1608. *
  1609. * NOTE: this func does check for available space and, if neccessary, waits for
  1610. * NIC to read existing data before writing new one.
  1611. */
  1612. static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size)
  1613. {
  1614. int timer = 0;
  1615. ENTER;
  1616. while (size > 0) {
  1617. /* we substruct 8 because when fifo is full rptr == wptr
  1618. which also means that fifo is empty, we can understand
  1619. the difference, but could hw do the same ??? :) */
  1620. int avail = bdx_tx_space(priv) - 8;
  1621. if (avail <= 0) {
  1622. if (timer++ > 300) { /* prevent endless loop */
  1623. DBG("timeout while writing desc to TxD fifo\n");
  1624. break;
  1625. }
  1626. udelay(50); /* give hw a chance to clean fifo */
  1627. continue;
  1628. }
  1629. avail = MIN(avail, size);
  1630. DBG("about to push %d bytes starting %p size %d\n", avail,
  1631. data, size);
  1632. bdx_tx_push_desc(priv, data, avail);
  1633. size -= avail;
  1634. data += avail;
  1635. }
  1636. RET();
  1637. }
  1638. static const struct net_device_ops bdx_netdev_ops = {
  1639. .ndo_open = bdx_open,
  1640. .ndo_stop = bdx_close,
  1641. .ndo_start_xmit = bdx_tx_transmit,
  1642. .ndo_validate_addr = eth_validate_addr,
  1643. .ndo_do_ioctl = bdx_ioctl,
  1644. .ndo_set_multicast_list = bdx_setmulti,
  1645. .ndo_get_stats = bdx_get_stats,
  1646. .ndo_change_mtu = bdx_change_mtu,
  1647. .ndo_set_mac_address = bdx_set_mac,
  1648. .ndo_vlan_rx_register = bdx_vlan_rx_register,
  1649. .ndo_vlan_rx_add_vid = bdx_vlan_rx_add_vid,
  1650. .ndo_vlan_rx_kill_vid = bdx_vlan_rx_kill_vid,
  1651. };
  1652. /**
  1653. * bdx_probe - Device Initialization Routine
  1654. * @pdev: PCI device information struct
  1655. * @ent: entry in bdx_pci_tbl
  1656. *
  1657. * Returns 0 on success, negative on failure
  1658. *
  1659. * bdx_probe initializes an adapter identified by a pci_dev structure.
  1660. * The OS initialization, configuring of the adapter private structure,
  1661. * and a hardware reset occur.
  1662. *
  1663. * functions and their order used as explained in
  1664. * /usr/src/linux/Documentation/DMA-{API,mapping}.txt
  1665. *
  1666. */
  1667. /* TBD: netif_msg should be checked and implemented. I disable it for now */
  1668. static int __devinit
  1669. bdx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
  1670. {
  1671. struct net_device *ndev;
  1672. struct bdx_priv *priv;
  1673. int err, pci_using_dac, port;
  1674. unsigned long pciaddr;
  1675. u32 regionSize;
  1676. struct pci_nic *nic;
  1677. ENTER;
  1678. nic = vmalloc(sizeof(*nic));
  1679. if (!nic)
  1680. RET(-ENOMEM);
  1681. /************** pci *****************/
  1682. if ((err = pci_enable_device(pdev))) /* it trigers interrupt, dunno why. */
  1683. goto err_pci; /* it's not a problem though */
  1684. if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
  1685. !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
  1686. pci_using_dac = 1;
  1687. } else {
  1688. if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) ||
  1689. (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
  1690. printk(KERN_ERR "tehuti: No usable DMA configuration"
  1691. ", aborting\n");
  1692. goto err_dma;
  1693. }
  1694. pci_using_dac = 0;
  1695. }
  1696. if ((err = pci_request_regions(pdev, BDX_DRV_NAME)))
  1697. goto err_dma;
  1698. pci_set_master(pdev);
  1699. pciaddr = pci_resource_start(pdev, 0);
  1700. if (!pciaddr) {
  1701. err = -EIO;
  1702. ERR("tehuti: no MMIO resource\n");
  1703. goto err_out_res;
  1704. }
  1705. if ((regionSize = pci_resource_len(pdev, 0)) < BDX_REGS_SIZE) {
  1706. err = -EIO;
  1707. ERR("tehuti: MMIO resource (%x) too small\n", regionSize);
  1708. goto err_out_res;
  1709. }
  1710. nic->regs = ioremap(pciaddr, regionSize);
  1711. if (!nic->regs) {
  1712. err = -EIO;
  1713. ERR("tehuti: ioremap failed\n");
  1714. goto err_out_res;
  1715. }
  1716. if (pdev->irq < 2) {
  1717. err = -EIO;
  1718. ERR("tehuti: invalid irq (%d)\n", pdev->irq);
  1719. goto err_out_iomap;
  1720. }
  1721. pci_set_drvdata(pdev, nic);
  1722. if (pdev->device == 0x3014)
  1723. nic->port_num = 2;
  1724. else
  1725. nic->port_num = 1;
  1726. print_hw_id(pdev);
  1727. bdx_hw_reset_direct(nic->regs);
  1728. nic->irq_type = IRQ_INTX;
  1729. #ifdef BDX_MSI
  1730. if ((readl(nic->regs + FPGA_VER) & 0xFFF) >= 378) {
  1731. if ((err = pci_enable_msi(pdev)))
  1732. ERR("Tehuti: Can't eneble msi. error is %d\n", err);
  1733. else
  1734. nic->irq_type = IRQ_MSI;
  1735. } else
  1736. DBG("HW does not support MSI\n");
  1737. #endif
  1738. /************** netdev **************/
  1739. for (port = 0; port < nic->port_num; port++) {
  1740. if (!(ndev = alloc_etherdev(sizeof(struct bdx_priv)))) {
  1741. err = -ENOMEM;
  1742. printk(KERN_ERR "tehuti: alloc_etherdev failed\n");
  1743. goto err_out_iomap;
  1744. }
  1745. ndev->netdev_ops = &bdx_netdev_ops;
  1746. ndev->tx_queue_len = BDX_NDEV_TXQ_LEN;
  1747. bdx_ethtool_ops(ndev); /* ethtool interface */
  1748. /* these fields are used for info purposes only
  1749. * so we can have them same for all ports of the board */
  1750. ndev->if_port = port;
  1751. ndev->base_addr = pciaddr;
  1752. ndev->mem_start = pciaddr;
  1753. ndev->mem_end = pciaddr + regionSize;
  1754. ndev->irq = pdev->irq;
  1755. ndev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO
  1756. | NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
  1757. NETIF_F_HW_VLAN_FILTER
  1758. /*| NETIF_F_FRAGLIST */
  1759. ;
  1760. if (pci_using_dac)
  1761. ndev->features |= NETIF_F_HIGHDMA;
  1762. /************** priv ****************/
  1763. priv = nic->priv[port] = netdev_priv(ndev);
  1764. memset(priv, 0, sizeof(struct bdx_priv));
  1765. priv->pBdxRegs = nic->regs + port * 0x8000;
  1766. priv->port = port;
  1767. priv->pdev = pdev;
  1768. priv->ndev = ndev;
  1769. priv->nic = nic;
  1770. priv->msg_enable = BDX_DEF_MSG_ENABLE;
  1771. netif_napi_add(ndev, &priv->napi, bdx_poll, 64);
  1772. if ((readl(nic->regs + FPGA_VER) & 0xFFF) == 308) {
  1773. DBG("HW statistics not supported\n");
  1774. priv->stats_flag = 0;
  1775. } else {
  1776. priv->stats_flag = 1;
  1777. }
  1778. /* Initialize fifo sizes. */
  1779. priv->txd_size = 2;
  1780. priv->txf_size = 2;
  1781. priv->rxd_size = 2;
  1782. priv->rxf_size = 3;
  1783. /* Initialize the initial coalescing registers. */
  1784. priv->rdintcm = INT_REG_VAL(0x20, 1, 4, 12);
  1785. priv->tdintcm = INT_REG_VAL(0x20, 1, 0, 12);
  1786. /* ndev->xmit_lock spinlock is not used.
  1787. * Private priv->tx_lock is used for synchronization
  1788. * between transmit and TX irq cleanup. In addition
  1789. * set multicast list callback has to use priv->tx_lock.
  1790. */
  1791. #ifdef BDX_LLTX
  1792. ndev->features |= NETIF_F_LLTX;
  1793. #endif
  1794. spin_lock_init(&priv->tx_lock);
  1795. /*bdx_hw_reset(priv); */
  1796. if (bdx_read_mac(priv)) {
  1797. printk(KERN_ERR "tehuti: load MAC address failed\n");
  1798. goto err_out_iomap;
  1799. }
  1800. SET_NETDEV_DEV(ndev, &pdev->dev);
  1801. if ((err = register_netdev(ndev))) {
  1802. printk(KERN_ERR "tehuti: register_netdev failed\n");
  1803. goto err_out_free;
  1804. }
  1805. netif_carrier_off(ndev);
  1806. netif_stop_queue(ndev);
  1807. print_eth_id(ndev);
  1808. }
  1809. RET(0);
  1810. err_out_free:
  1811. free_netdev(ndev);
  1812. err_out_iomap:
  1813. iounmap(nic->regs);
  1814. err_out_res:
  1815. pci_release_regions(pdev);
  1816. err_dma:
  1817. pci_disable_device(pdev);
  1818. err_pci:
  1819. vfree(nic);
  1820. RET(err);
  1821. }
  1822. /****************** Ethtool interface *********************/
  1823. /* get strings for tests */
  1824. static const char
  1825. bdx_test_names[][ETH_GSTRING_LEN] = {
  1826. "No tests defined"
  1827. };
  1828. /* get strings for statistics counters */
  1829. static const char
  1830. bdx_stat_names[][ETH_GSTRING_LEN] = {
  1831. "InUCast", /* 0x7200 */
  1832. "InMCast", /* 0x7210 */
  1833. "InBCast", /* 0x7220 */
  1834. "InPkts", /* 0x7230 */
  1835. "InErrors", /* 0x7240 */
  1836. "InDropped", /* 0x7250 */
  1837. "FrameTooLong", /* 0x7260 */
  1838. "FrameSequenceErrors", /* 0x7270 */
  1839. "InVLAN", /* 0x7280 */
  1840. "InDroppedDFE", /* 0x7290 */
  1841. "InDroppedIntFull", /* 0x72A0 */
  1842. "InFrameAlignErrors", /* 0x72B0 */
  1843. /* 0x72C0-0x72E0 RSRV */
  1844. "OutUCast", /* 0x72F0 */
  1845. "OutMCast", /* 0x7300 */
  1846. "OutBCast", /* 0x7310 */
  1847. "OutPkts", /* 0x7320 */
  1848. /* 0x7330-0x7360 RSRV */
  1849. "OutVLAN", /* 0x7370 */
  1850. "InUCastOctects", /* 0x7380 */
  1851. "OutUCastOctects", /* 0x7390 */
  1852. /* 0x73A0-0x73B0 RSRV */
  1853. "InBCastOctects", /* 0x73C0 */
  1854. "OutBCastOctects", /* 0x73D0 */
  1855. "InOctects", /* 0x73E0 */
  1856. "OutOctects", /* 0x73F0 */
  1857. };
  1858. /*
  1859. * bdx_get_settings - get device-specific settings
  1860. * @netdev
  1861. * @ecmd
  1862. */
  1863. static int bdx_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
  1864. {
  1865. u32 rdintcm;
  1866. u32 tdintcm;
  1867. struct bdx_priv *priv = netdev_priv(netdev);
  1868. rdintcm = priv->rdintcm;
  1869. tdintcm = priv->tdintcm;
  1870. ecmd->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
  1871. ecmd->advertising = (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
  1872. ecmd->speed = SPEED_10000;
  1873. ecmd->duplex = DUPLEX_FULL;
  1874. ecmd->port = PORT_FIBRE;
  1875. ecmd->transceiver = XCVR_EXTERNAL; /* what does it mean? */
  1876. ecmd->autoneg = AUTONEG_DISABLE;
  1877. /* PCK_TH measures in multiples of FIFO bytes
  1878. We translate to packets */
  1879. ecmd->maxtxpkt =
  1880. ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
  1881. ecmd->maxrxpkt =
  1882. ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
  1883. return 0;
  1884. }
  1885. /*
  1886. * bdx_get_drvinfo - report driver information
  1887. * @netdev
  1888. * @drvinfo
  1889. */
  1890. static void
  1891. bdx_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo)
  1892. {
  1893. struct bdx_priv *priv = netdev_priv(netdev);
  1894. strlcat(drvinfo->driver, BDX_DRV_NAME, sizeof(drvinfo->driver));
  1895. strlcat(drvinfo->version, BDX_DRV_VERSION, sizeof(drvinfo->version));
  1896. strlcat(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
  1897. strlcat(drvinfo->bus_info, pci_name(priv->pdev),
  1898. sizeof(drvinfo->bus_info));
  1899. drvinfo->n_stats = ((priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names) : 0);
  1900. drvinfo->testinfo_len = 0;
  1901. drvinfo->regdump_len = 0;
  1902. drvinfo->eedump_len = 0;
  1903. }
  1904. /*
  1905. * bdx_get_rx_csum - report whether receive checksums are turned on or off
  1906. * @netdev
  1907. */
  1908. static u32 bdx_get_rx_csum(struct net_device *netdev)
  1909. {
  1910. return 1; /* always on */
  1911. }
  1912. /*
  1913. * bdx_get_tx_csum - report whether transmit checksums are turned on or off
  1914. * @netdev
  1915. */
  1916. static u32 bdx_get_tx_csum(struct net_device *netdev)
  1917. {
  1918. return (netdev->features & NETIF_F_IP_CSUM) != 0;
  1919. }
  1920. /*
  1921. * bdx_get_coalesce - get interrupt coalescing parameters
  1922. * @netdev
  1923. * @ecoal
  1924. */
  1925. static int
  1926. bdx_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
  1927. {
  1928. u32 rdintcm;
  1929. u32 tdintcm;
  1930. struct bdx_priv *priv = netdev_priv(netdev);
  1931. rdintcm = priv->rdintcm;
  1932. tdintcm = priv->tdintcm;
  1933. /* PCK_TH measures in multiples of FIFO bytes
  1934. We translate to packets */
  1935. ecoal->rx_coalesce_usecs = GET_INT_COAL(rdintcm) * INT_COAL_MULT;
  1936. ecoal->rx_max_coalesced_frames =
  1937. ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
  1938. ecoal->tx_coalesce_usecs = GET_INT_COAL(tdintcm) * INT_COAL_MULT;
  1939. ecoal->tx_max_coalesced_frames =
  1940. ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
  1941. /* adaptive parameters ignored */
  1942. return 0;
  1943. }
  1944. /*
  1945. * bdx_set_coalesce - set interrupt coalescing parameters
  1946. * @netdev
  1947. * @ecoal
  1948. */
  1949. static int
  1950. bdx_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
  1951. {
  1952. u32 rdintcm;
  1953. u32 tdintcm;
  1954. struct bdx_priv *priv = netdev_priv(netdev);
  1955. int rx_coal;
  1956. int tx_coal;
  1957. int rx_max_coal;
  1958. int tx_max_coal;
  1959. /* Check for valid input */
  1960. rx_coal = ecoal->rx_coalesce_usecs / INT_COAL_MULT;
  1961. tx_coal = ecoal->tx_coalesce_usecs / INT_COAL_MULT;
  1962. rx_max_coal = ecoal->rx_max_coalesced_frames;
  1963. tx_max_coal = ecoal->tx_max_coalesced_frames;
  1964. /* Translate from packets to multiples of FIFO bytes */
  1965. rx_max_coal =
  1966. (((rx_max_coal * sizeof(struct rxf_desc)) + PCK_TH_MULT - 1)
  1967. / PCK_TH_MULT);
  1968. tx_max_coal =
  1969. (((tx_max_coal * BDX_TXF_DESC_SZ) + PCK_TH_MULT - 1)
  1970. / PCK_TH_MULT);
  1971. if ((rx_coal > 0x7FFF) || (tx_coal > 0x7FFF)
  1972. || (rx_max_coal > 0xF) || (tx_max_coal > 0xF))
  1973. return -EINVAL;
  1974. rdintcm = INT_REG_VAL(rx_coal, GET_INT_COAL_RC(priv->rdintcm),
  1975. GET_RXF_TH(priv->rdintcm), rx_max_coal);
  1976. tdintcm = INT_REG_VAL(tx_coal, GET_INT_COAL_RC(priv->tdintcm), 0,
  1977. tx_max_coal);
  1978. priv->rdintcm = rdintcm;
  1979. priv->tdintcm = tdintcm;
  1980. WRITE_REG(priv, regRDINTCM0, rdintcm);
  1981. WRITE_REG(priv, regTDINTCM0, tdintcm);
  1982. return 0;
  1983. }
  1984. /* Convert RX fifo size to number of pending packets */
  1985. static inline int bdx_rx_fifo_size_to_packets(int rx_size)
  1986. {
  1987. return ((FIFO_SIZE * (1 << rx_size)) / sizeof(struct rxf_desc));
  1988. }
  1989. /* Convert TX fifo size to number of pending packets */
  1990. static inline int bdx_tx_fifo_size_to_packets(int tx_size)
  1991. {
  1992. return ((FIFO_SIZE * (1 << tx_size)) / BDX_TXF_DESC_SZ);
  1993. }
  1994. /*
  1995. * bdx_get_ringparam - report ring sizes
  1996. * @netdev
  1997. * @ring
  1998. */
  1999. static void
  2000. bdx_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
  2001. {
  2002. struct bdx_priv *priv = netdev_priv(netdev);
  2003. /*max_pending - the maximum-sized FIFO we allow */
  2004. ring->rx_max_pending = bdx_rx_fifo_size_to_packets(3);
  2005. ring->tx_max_pending = bdx_tx_fifo_size_to_packets(3);
  2006. ring->rx_pending = bdx_rx_fifo_size_to_packets(priv->rxf_size);
  2007. ring->tx_pending = bdx_tx_fifo_size_to_packets(priv->txd_size);
  2008. }
  2009. /*
  2010. * bdx_set_ringparam - set ring sizes
  2011. * @netdev
  2012. * @ring
  2013. */
  2014. static int
  2015. bdx_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
  2016. {
  2017. struct bdx_priv *priv = netdev_priv(netdev);
  2018. int rx_size = 0;
  2019. int tx_size = 0;
  2020. for (; rx_size < 4; rx_size++) {
  2021. if (bdx_rx_fifo_size_to_packets(rx_size) >= ring->rx_pending)
  2022. break;
  2023. }
  2024. if (rx_size == 4)
  2025. rx_size = 3;
  2026. for (; tx_size < 4; tx_size++) {
  2027. if (bdx_tx_fifo_size_to_packets(tx_size) >= ring->tx_pending)
  2028. break;
  2029. }
  2030. if (tx_size == 4)
  2031. tx_size = 3;
  2032. /*Is there anything to do? */
  2033. if ((rx_size == priv->rxf_size)
  2034. && (tx_size == priv->txd_size))
  2035. return 0;
  2036. priv->rxf_size = rx_size;
  2037. if (rx_size > 1)
  2038. priv->rxd_size = rx_size - 1;
  2039. else
  2040. priv->rxd_size = rx_size;
  2041. priv->txf_size = priv->txd_size = tx_size;
  2042. if (netif_running(netdev)) {
  2043. bdx_close(netdev);
  2044. bdx_open(netdev);
  2045. }
  2046. return 0;
  2047. }
  2048. /*
  2049. * bdx_get_strings - return a set of strings that describe the requested objects
  2050. * @netdev
  2051. * @data
  2052. */
  2053. static void bdx_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
  2054. {
  2055. switch (stringset) {
  2056. case ETH_SS_TEST:
  2057. memcpy(data, *bdx_test_names, sizeof(bdx_test_names));
  2058. break;
  2059. case ETH_SS_STATS:
  2060. memcpy(data, *bdx_stat_names, sizeof(bdx_stat_names));
  2061. break;
  2062. }
  2063. }
  2064. /*
  2065. * bdx_get_stats_count - return number of 64bit statistics counters
  2066. * @netdev
  2067. */
  2068. static int bdx_get_stats_count(struct net_device *netdev)
  2069. {
  2070. struct bdx_priv *priv = netdev_priv(netdev);
  2071. BDX_ASSERT(ARRAY_SIZE(bdx_stat_names)
  2072. != sizeof(struct bdx_stats) / sizeof(u64));
  2073. return ((priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names) : 0);
  2074. }
  2075. /*
  2076. * bdx_get_ethtool_stats - return device's hardware L2 statistics
  2077. * @netdev
  2078. * @stats
  2079. * @data
  2080. */
  2081. static void bdx_get_ethtool_stats(struct net_device *netdev,
  2082. struct ethtool_stats *stats, u64 *data)
  2083. {
  2084. struct bdx_priv *priv = netdev_priv(netdev);
  2085. if (priv->stats_flag) {
  2086. /* Update stats from HW */
  2087. bdx_update_stats(priv);
  2088. /* Copy data to user buffer */
  2089. memcpy(data, &priv->hw_stats, sizeof(priv->hw_stats));
  2090. }
  2091. }
  2092. /*
  2093. * bdx_ethtool_ops - ethtool interface implementation
  2094. * @netdev
  2095. */
  2096. static void bdx_ethtool_ops(struct net_device *netdev)
  2097. {
  2098. static struct ethtool_ops bdx_ethtool_ops = {
  2099. .get_settings = bdx_get_settings,
  2100. .get_drvinfo = bdx_get_drvinfo,
  2101. .get_link = ethtool_op_get_link,
  2102. .get_coalesce = bdx_get_coalesce,
  2103. .set_coalesce = bdx_set_coalesce,
  2104. .get_ringparam = bdx_get_ringparam,
  2105. .set_ringparam = bdx_set_ringparam,
  2106. .get_rx_csum = bdx_get_rx_csum,
  2107. .get_tx_csum = bdx_get_tx_csum,
  2108. .get_sg = ethtool_op_get_sg,
  2109. .get_tso = ethtool_op_get_tso,
  2110. .get_strings = bdx_get_strings,
  2111. .get_stats_count = bdx_get_stats_count,
  2112. .get_ethtool_stats = bdx_get_ethtool_stats,
  2113. };
  2114. SET_ETHTOOL_OPS(netdev, &bdx_ethtool_ops);
  2115. }
  2116. /**
  2117. * bdx_remove - Device Removal Routine
  2118. * @pdev: PCI device information struct
  2119. *
  2120. * bdx_remove is called by the PCI subsystem to alert the driver
  2121. * that it should release a PCI device. The could be caused by a
  2122. * Hot-Plug event, or because the driver is going to be removed from
  2123. * memory.
  2124. **/
  2125. static void __devexit bdx_remove(struct pci_dev *pdev)
  2126. {
  2127. struct pci_nic *nic = pci_get_drvdata(pdev);
  2128. struct net_device *ndev;
  2129. int port;
  2130. for (port = 0; port < nic->port_num; port++) {
  2131. ndev = nic->priv[port]->ndev;
  2132. unregister_netdev(ndev);
  2133. free_netdev(ndev);
  2134. }
  2135. /*bdx_hw_reset_direct(nic->regs); */
  2136. #ifdef BDX_MSI
  2137. if (nic->irq_type == IRQ_MSI)
  2138. pci_disable_msi(pdev);
  2139. #endif
  2140. iounmap(nic->regs);
  2141. pci_release_regions(pdev);
  2142. pci_disable_device(pdev);
  2143. pci_set_drvdata(pdev, NULL);
  2144. vfree(nic);
  2145. RET();
  2146. }
  2147. static struct pci_driver bdx_pci_driver = {
  2148. .name = BDX_DRV_NAME,
  2149. .id_table = bdx_pci_tbl,
  2150. .probe = bdx_probe,
  2151. .remove = __devexit_p(bdx_remove),
  2152. };
  2153. /*
  2154. * print_driver_id - print parameters of the driver build
  2155. */
  2156. static void __init print_driver_id(void)
  2157. {
  2158. printk(KERN_INFO "%s: %s, %s\n", BDX_DRV_NAME, BDX_DRV_DESC,
  2159. BDX_DRV_VERSION);
  2160. printk(KERN_INFO "%s: Options: hw_csum %s\n", BDX_DRV_NAME,
  2161. BDX_MSI_STRING);
  2162. }
  2163. static int __init bdx_module_init(void)
  2164. {
  2165. ENTER;
  2166. bdx_firmware_endianess();
  2167. init_txd_sizes();
  2168. print_driver_id();
  2169. RET(pci_register_driver(&bdx_pci_driver));
  2170. }
  2171. module_init(bdx_module_init);
  2172. static void __exit bdx_module_exit(void)
  2173. {
  2174. ENTER;
  2175. pci_unregister_driver(&bdx_pci_driver);
  2176. RET();
  2177. }
  2178. module_exit(bdx_module_exit);
  2179. MODULE_LICENSE("GPL");
  2180. MODULE_AUTHOR(DRIVER_AUTHOR);
  2181. MODULE_DESCRIPTION(BDX_DRV_DESC);