efx.c 58 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251
  1. /****************************************************************************
  2. * Driver for Solarflare Solarstorm network controllers and boards
  3. * Copyright 2005-2006 Fen Systems Ltd.
  4. * Copyright 2005-2008 Solarflare Communications Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation, incorporated herein by reference.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/pci.h>
  12. #include <linux/netdevice.h>
  13. #include <linux/etherdevice.h>
  14. #include <linux/delay.h>
  15. #include <linux/notifier.h>
  16. #include <linux/ip.h>
  17. #include <linux/tcp.h>
  18. #include <linux/in.h>
  19. #include <linux/crc32.h>
  20. #include <linux/ethtool.h>
  21. #include <linux/topology.h>
  22. #include "net_driver.h"
  23. #include "ethtool.h"
  24. #include "tx.h"
  25. #include "rx.h"
  26. #include "efx.h"
  27. #include "mdio_10g.h"
  28. #include "falcon.h"
  29. #define EFX_MAX_MTU (9 * 1024)
  30. /* RX slow fill workqueue. If memory allocation fails in the fast path,
  31. * a work item is pushed onto this work queue to retry the allocation later,
  32. * to avoid the NIC being starved of RX buffers. Since this is a per cpu
  33. * workqueue, there is nothing to be gained in making it per NIC
  34. */
  35. static struct workqueue_struct *refill_workqueue;
  36. /* Reset workqueue. If any NIC has a hardware failure then a reset will be
  37. * queued onto this work queue. This is not a per-nic work queue, because
  38. * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
  39. */
  40. static struct workqueue_struct *reset_workqueue;
  41. /**************************************************************************
  42. *
  43. * Configurable values
  44. *
  45. *************************************************************************/
  46. /*
  47. * Enable large receive offload (LRO) aka soft segment reassembly (SSR)
  48. *
  49. * This sets the default for new devices. It can be controlled later
  50. * using ethtool.
  51. */
  52. static int lro = true;
  53. module_param(lro, int, 0644);
  54. MODULE_PARM_DESC(lro, "Large receive offload acceleration");
  55. /*
  56. * Use separate channels for TX and RX events
  57. *
  58. * Set this to 1 to use separate channels for TX and RX. It allows us
  59. * to control interrupt affinity separately for TX and RX.
  60. *
  61. * This is only used in MSI-X interrupt mode
  62. */
  63. static unsigned int separate_tx_channels;
  64. module_param(separate_tx_channels, uint, 0644);
  65. MODULE_PARM_DESC(separate_tx_channels,
  66. "Use separate channels for TX and RX");
  67. /* This is the weight assigned to each of the (per-channel) virtual
  68. * NAPI devices.
  69. */
  70. static int napi_weight = 64;
  71. /* This is the time (in jiffies) between invocations of the hardware
  72. * monitor, which checks for known hardware bugs and resets the
  73. * hardware and driver as necessary.
  74. */
  75. unsigned int efx_monitor_interval = 1 * HZ;
  76. /* This controls whether or not the driver will initialise devices
  77. * with invalid MAC addresses stored in the EEPROM or flash. If true,
  78. * such devices will be initialised with a random locally-generated
  79. * MAC address. This allows for loading the sfc_mtd driver to
  80. * reprogram the flash, even if the flash contents (including the MAC
  81. * address) have previously been erased.
  82. */
  83. static unsigned int allow_bad_hwaddr;
  84. /* Initial interrupt moderation settings. They can be modified after
  85. * module load with ethtool.
  86. *
  87. * The default for RX should strike a balance between increasing the
  88. * round-trip latency and reducing overhead.
  89. */
  90. static unsigned int rx_irq_mod_usec = 60;
  91. /* Initial interrupt moderation settings. They can be modified after
  92. * module load with ethtool.
  93. *
  94. * This default is chosen to ensure that a 10G link does not go idle
  95. * while a TX queue is stopped after it has become full. A queue is
  96. * restarted when it drops below half full. The time this takes (assuming
  97. * worst case 3 descriptors per packet and 1024 descriptors) is
  98. * 512 / 3 * 1.2 = 205 usec.
  99. */
  100. static unsigned int tx_irq_mod_usec = 150;
  101. /* This is the first interrupt mode to try out of:
  102. * 0 => MSI-X
  103. * 1 => MSI
  104. * 2 => legacy
  105. */
  106. static unsigned int interrupt_mode;
  107. /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
  108. * i.e. the number of CPUs among which we may distribute simultaneous
  109. * interrupt handling.
  110. *
  111. * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
  112. * The default (0) means to assign an interrupt to each package (level II cache)
  113. */
  114. static unsigned int rss_cpus;
  115. module_param(rss_cpus, uint, 0444);
  116. MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
  117. static int phy_flash_cfg;
  118. module_param(phy_flash_cfg, int, 0644);
  119. MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
  120. /**************************************************************************
  121. *
  122. * Utility functions and prototypes
  123. *
  124. *************************************************************************/
  125. static void efx_remove_channel(struct efx_channel *channel);
  126. static void efx_remove_port(struct efx_nic *efx);
  127. static void efx_fini_napi(struct efx_nic *efx);
  128. static void efx_fini_channels(struct efx_nic *efx);
  129. #define EFX_ASSERT_RESET_SERIALISED(efx) \
  130. do { \
  131. if (efx->state == STATE_RUNNING) \
  132. ASSERT_RTNL(); \
  133. } while (0)
  134. /**************************************************************************
  135. *
  136. * Event queue processing
  137. *
  138. *************************************************************************/
  139. /* Process channel's event queue
  140. *
  141. * This function is responsible for processing the event queue of a
  142. * single channel. The caller must guarantee that this function will
  143. * never be concurrently called more than once on the same channel,
  144. * though different channels may be being processed concurrently.
  145. */
  146. static int efx_process_channel(struct efx_channel *channel, int rx_quota)
  147. {
  148. struct efx_nic *efx = channel->efx;
  149. int rx_packets;
  150. if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
  151. !channel->enabled))
  152. return 0;
  153. rx_packets = falcon_process_eventq(channel, rx_quota);
  154. if (rx_packets == 0)
  155. return 0;
  156. /* Deliver last RX packet. */
  157. if (channel->rx_pkt) {
  158. __efx_rx_packet(channel, channel->rx_pkt,
  159. channel->rx_pkt_csummed);
  160. channel->rx_pkt = NULL;
  161. }
  162. efx_flush_lro(channel);
  163. efx_rx_strategy(channel);
  164. efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
  165. return rx_packets;
  166. }
  167. /* Mark channel as finished processing
  168. *
  169. * Note that since we will not receive further interrupts for this
  170. * channel before we finish processing and call the eventq_read_ack()
  171. * method, there is no need to use the interrupt hold-off timers.
  172. */
  173. static inline void efx_channel_processed(struct efx_channel *channel)
  174. {
  175. /* The interrupt handler for this channel may set work_pending
  176. * as soon as we acknowledge the events we've seen. Make sure
  177. * it's cleared before then. */
  178. channel->work_pending = false;
  179. smp_wmb();
  180. falcon_eventq_read_ack(channel);
  181. }
  182. /* NAPI poll handler
  183. *
  184. * NAPI guarantees serialisation of polls of the same device, which
  185. * provides the guarantee required by efx_process_channel().
  186. */
  187. static int efx_poll(struct napi_struct *napi, int budget)
  188. {
  189. struct efx_channel *channel =
  190. container_of(napi, struct efx_channel, napi_str);
  191. int rx_packets;
  192. EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
  193. channel->channel, raw_smp_processor_id());
  194. rx_packets = efx_process_channel(channel, budget);
  195. if (rx_packets < budget) {
  196. /* There is no race here; although napi_disable() will
  197. * only wait for netif_rx_complete(), this isn't a problem
  198. * since efx_channel_processed() will have no effect if
  199. * interrupts have already been disabled.
  200. */
  201. netif_rx_complete(napi);
  202. efx_channel_processed(channel);
  203. }
  204. return rx_packets;
  205. }
  206. /* Process the eventq of the specified channel immediately on this CPU
  207. *
  208. * Disable hardware generated interrupts, wait for any existing
  209. * processing to finish, then directly poll (and ack ) the eventq.
  210. * Finally reenable NAPI and interrupts.
  211. *
  212. * Since we are touching interrupts the caller should hold the suspend lock
  213. */
  214. void efx_process_channel_now(struct efx_channel *channel)
  215. {
  216. struct efx_nic *efx = channel->efx;
  217. BUG_ON(!channel->used_flags);
  218. BUG_ON(!channel->enabled);
  219. /* Disable interrupts and wait for ISRs to complete */
  220. falcon_disable_interrupts(efx);
  221. if (efx->legacy_irq)
  222. synchronize_irq(efx->legacy_irq);
  223. if (channel->irq)
  224. synchronize_irq(channel->irq);
  225. /* Wait for any NAPI processing to complete */
  226. napi_disable(&channel->napi_str);
  227. /* Poll the channel */
  228. efx_process_channel(channel, efx->type->evq_size);
  229. /* Ack the eventq. This may cause an interrupt to be generated
  230. * when they are reenabled */
  231. efx_channel_processed(channel);
  232. napi_enable(&channel->napi_str);
  233. falcon_enable_interrupts(efx);
  234. }
  235. /* Create event queue
  236. * Event queue memory allocations are done only once. If the channel
  237. * is reset, the memory buffer will be reused; this guards against
  238. * errors during channel reset and also simplifies interrupt handling.
  239. */
  240. static int efx_probe_eventq(struct efx_channel *channel)
  241. {
  242. EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
  243. return falcon_probe_eventq(channel);
  244. }
  245. /* Prepare channel's event queue */
  246. static void efx_init_eventq(struct efx_channel *channel)
  247. {
  248. EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
  249. channel->eventq_read_ptr = 0;
  250. falcon_init_eventq(channel);
  251. }
  252. static void efx_fini_eventq(struct efx_channel *channel)
  253. {
  254. EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
  255. falcon_fini_eventq(channel);
  256. }
  257. static void efx_remove_eventq(struct efx_channel *channel)
  258. {
  259. EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
  260. falcon_remove_eventq(channel);
  261. }
  262. /**************************************************************************
  263. *
  264. * Channel handling
  265. *
  266. *************************************************************************/
  267. static int efx_probe_channel(struct efx_channel *channel)
  268. {
  269. struct efx_tx_queue *tx_queue;
  270. struct efx_rx_queue *rx_queue;
  271. int rc;
  272. EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
  273. rc = efx_probe_eventq(channel);
  274. if (rc)
  275. goto fail1;
  276. efx_for_each_channel_tx_queue(tx_queue, channel) {
  277. rc = efx_probe_tx_queue(tx_queue);
  278. if (rc)
  279. goto fail2;
  280. }
  281. efx_for_each_channel_rx_queue(rx_queue, channel) {
  282. rc = efx_probe_rx_queue(rx_queue);
  283. if (rc)
  284. goto fail3;
  285. }
  286. channel->n_rx_frm_trunc = 0;
  287. return 0;
  288. fail3:
  289. efx_for_each_channel_rx_queue(rx_queue, channel)
  290. efx_remove_rx_queue(rx_queue);
  291. fail2:
  292. efx_for_each_channel_tx_queue(tx_queue, channel)
  293. efx_remove_tx_queue(tx_queue);
  294. fail1:
  295. return rc;
  296. }
  297. static void efx_set_channel_names(struct efx_nic *efx)
  298. {
  299. struct efx_channel *channel;
  300. const char *type = "";
  301. int number;
  302. efx_for_each_channel(channel, efx) {
  303. number = channel->channel;
  304. if (efx->n_channels > efx->n_rx_queues) {
  305. if (channel->channel < efx->n_rx_queues) {
  306. type = "-rx";
  307. } else {
  308. type = "-tx";
  309. number -= efx->n_rx_queues;
  310. }
  311. }
  312. snprintf(channel->name, sizeof(channel->name),
  313. "%s%s-%d", efx->name, type, number);
  314. }
  315. }
  316. /* Channels are shutdown and reinitialised whilst the NIC is running
  317. * to propagate configuration changes (mtu, checksum offload), or
  318. * to clear hardware error conditions
  319. */
  320. static void efx_init_channels(struct efx_nic *efx)
  321. {
  322. struct efx_tx_queue *tx_queue;
  323. struct efx_rx_queue *rx_queue;
  324. struct efx_channel *channel;
  325. /* Calculate the rx buffer allocation parameters required to
  326. * support the current MTU, including padding for header
  327. * alignment and overruns.
  328. */
  329. efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
  330. EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
  331. efx->type->rx_buffer_padding);
  332. efx->rx_buffer_order = get_order(efx->rx_buffer_len);
  333. /* Initialise the channels */
  334. efx_for_each_channel(channel, efx) {
  335. EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
  336. efx_init_eventq(channel);
  337. efx_for_each_channel_tx_queue(tx_queue, channel)
  338. efx_init_tx_queue(tx_queue);
  339. /* The rx buffer allocation strategy is MTU dependent */
  340. efx_rx_strategy(channel);
  341. efx_for_each_channel_rx_queue(rx_queue, channel)
  342. efx_init_rx_queue(rx_queue);
  343. WARN_ON(channel->rx_pkt != NULL);
  344. efx_rx_strategy(channel);
  345. }
  346. }
  347. /* This enables event queue processing and packet transmission.
  348. *
  349. * Note that this function is not allowed to fail, since that would
  350. * introduce too much complexity into the suspend/resume path.
  351. */
  352. static void efx_start_channel(struct efx_channel *channel)
  353. {
  354. struct efx_rx_queue *rx_queue;
  355. EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
  356. if (!(channel->efx->net_dev->flags & IFF_UP))
  357. netif_napi_add(channel->napi_dev, &channel->napi_str,
  358. efx_poll, napi_weight);
  359. /* The interrupt handler for this channel may set work_pending
  360. * as soon as we enable it. Make sure it's cleared before
  361. * then. Similarly, make sure it sees the enabled flag set. */
  362. channel->work_pending = false;
  363. channel->enabled = true;
  364. smp_wmb();
  365. napi_enable(&channel->napi_str);
  366. /* Load up RX descriptors */
  367. efx_for_each_channel_rx_queue(rx_queue, channel)
  368. efx_fast_push_rx_descriptors(rx_queue);
  369. }
  370. /* This disables event queue processing and packet transmission.
  371. * This function does not guarantee that all queue processing
  372. * (e.g. RX refill) is complete.
  373. */
  374. static void efx_stop_channel(struct efx_channel *channel)
  375. {
  376. struct efx_rx_queue *rx_queue;
  377. if (!channel->enabled)
  378. return;
  379. EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
  380. channel->enabled = false;
  381. napi_disable(&channel->napi_str);
  382. /* Ensure that any worker threads have exited or will be no-ops */
  383. efx_for_each_channel_rx_queue(rx_queue, channel) {
  384. spin_lock_bh(&rx_queue->add_lock);
  385. spin_unlock_bh(&rx_queue->add_lock);
  386. }
  387. }
  388. static void efx_fini_channels(struct efx_nic *efx)
  389. {
  390. struct efx_channel *channel;
  391. struct efx_tx_queue *tx_queue;
  392. struct efx_rx_queue *rx_queue;
  393. int rc;
  394. EFX_ASSERT_RESET_SERIALISED(efx);
  395. BUG_ON(efx->port_enabled);
  396. rc = falcon_flush_queues(efx);
  397. if (rc)
  398. EFX_ERR(efx, "failed to flush queues\n");
  399. else
  400. EFX_LOG(efx, "successfully flushed all queues\n");
  401. efx_for_each_channel(channel, efx) {
  402. EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
  403. efx_for_each_channel_rx_queue(rx_queue, channel)
  404. efx_fini_rx_queue(rx_queue);
  405. efx_for_each_channel_tx_queue(tx_queue, channel)
  406. efx_fini_tx_queue(tx_queue);
  407. efx_fini_eventq(channel);
  408. }
  409. }
  410. static void efx_remove_channel(struct efx_channel *channel)
  411. {
  412. struct efx_tx_queue *tx_queue;
  413. struct efx_rx_queue *rx_queue;
  414. EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
  415. efx_for_each_channel_rx_queue(rx_queue, channel)
  416. efx_remove_rx_queue(rx_queue);
  417. efx_for_each_channel_tx_queue(tx_queue, channel)
  418. efx_remove_tx_queue(tx_queue);
  419. efx_remove_eventq(channel);
  420. channel->used_flags = 0;
  421. }
  422. void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
  423. {
  424. queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
  425. }
  426. /**************************************************************************
  427. *
  428. * Port handling
  429. *
  430. **************************************************************************/
  431. /* This ensures that the kernel is kept informed (via
  432. * netif_carrier_on/off) of the link status, and also maintains the
  433. * link status's stop on the port's TX queue.
  434. */
  435. static void efx_link_status_changed(struct efx_nic *efx)
  436. {
  437. /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
  438. * that no events are triggered between unregister_netdev() and the
  439. * driver unloading. A more general condition is that NETDEV_CHANGE
  440. * can only be generated between NETDEV_UP and NETDEV_DOWN */
  441. if (!netif_running(efx->net_dev))
  442. return;
  443. if (efx->port_inhibited) {
  444. netif_carrier_off(efx->net_dev);
  445. return;
  446. }
  447. if (efx->link_up != netif_carrier_ok(efx->net_dev)) {
  448. efx->n_link_state_changes++;
  449. if (efx->link_up)
  450. netif_carrier_on(efx->net_dev);
  451. else
  452. netif_carrier_off(efx->net_dev);
  453. }
  454. /* Status message for kernel log */
  455. if (efx->link_up) {
  456. EFX_INFO(efx, "link up at %uMbps %s-duplex (MTU %d)%s\n",
  457. efx->link_speed, efx->link_fd ? "full" : "half",
  458. efx->net_dev->mtu,
  459. (efx->promiscuous ? " [PROMISC]" : ""));
  460. } else {
  461. EFX_INFO(efx, "link down\n");
  462. }
  463. }
  464. /* This call reinitialises the MAC to pick up new PHY settings. The
  465. * caller must hold the mac_lock */
  466. void __efx_reconfigure_port(struct efx_nic *efx)
  467. {
  468. WARN_ON(!mutex_is_locked(&efx->mac_lock));
  469. EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
  470. raw_smp_processor_id());
  471. /* Serialise the promiscuous flag with efx_set_multicast_list. */
  472. if (efx_dev_registered(efx)) {
  473. netif_addr_lock_bh(efx->net_dev);
  474. netif_addr_unlock_bh(efx->net_dev);
  475. }
  476. falcon_deconfigure_mac_wrapper(efx);
  477. /* Reconfigure the PHY, disabling transmit in mac level loopback. */
  478. if (LOOPBACK_INTERNAL(efx))
  479. efx->phy_mode |= PHY_MODE_TX_DISABLED;
  480. else
  481. efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
  482. efx->phy_op->reconfigure(efx);
  483. if (falcon_switch_mac(efx))
  484. goto fail;
  485. efx->mac_op->reconfigure(efx);
  486. /* Inform kernel of loss/gain of carrier */
  487. efx_link_status_changed(efx);
  488. return;
  489. fail:
  490. EFX_ERR(efx, "failed to reconfigure MAC\n");
  491. efx->phy_op->fini(efx);
  492. efx->port_initialized = false;
  493. }
  494. /* Reinitialise the MAC to pick up new PHY settings, even if the port is
  495. * disabled. */
  496. void efx_reconfigure_port(struct efx_nic *efx)
  497. {
  498. EFX_ASSERT_RESET_SERIALISED(efx);
  499. mutex_lock(&efx->mac_lock);
  500. __efx_reconfigure_port(efx);
  501. mutex_unlock(&efx->mac_lock);
  502. }
  503. /* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
  504. * we don't efx_reconfigure_port() if the port is disabled. Care is taken
  505. * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
  506. static void efx_phy_work(struct work_struct *data)
  507. {
  508. struct efx_nic *efx = container_of(data, struct efx_nic, phy_work);
  509. mutex_lock(&efx->mac_lock);
  510. if (efx->port_enabled)
  511. __efx_reconfigure_port(efx);
  512. mutex_unlock(&efx->mac_lock);
  513. }
  514. static void efx_mac_work(struct work_struct *data)
  515. {
  516. struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
  517. mutex_lock(&efx->mac_lock);
  518. if (efx->port_enabled)
  519. efx->mac_op->irq(efx);
  520. mutex_unlock(&efx->mac_lock);
  521. }
  522. static int efx_probe_port(struct efx_nic *efx)
  523. {
  524. int rc;
  525. EFX_LOG(efx, "create port\n");
  526. /* Connect up MAC/PHY operations table and read MAC address */
  527. rc = falcon_probe_port(efx);
  528. if (rc)
  529. goto err;
  530. if (phy_flash_cfg)
  531. efx->phy_mode = PHY_MODE_SPECIAL;
  532. /* Sanity check MAC address */
  533. if (is_valid_ether_addr(efx->mac_address)) {
  534. memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
  535. } else {
  536. EFX_ERR(efx, "invalid MAC address %pM\n",
  537. efx->mac_address);
  538. if (!allow_bad_hwaddr) {
  539. rc = -EINVAL;
  540. goto err;
  541. }
  542. random_ether_addr(efx->net_dev->dev_addr);
  543. EFX_INFO(efx, "using locally-generated MAC %pM\n",
  544. efx->net_dev->dev_addr);
  545. }
  546. return 0;
  547. err:
  548. efx_remove_port(efx);
  549. return rc;
  550. }
  551. static int efx_init_port(struct efx_nic *efx)
  552. {
  553. int rc;
  554. EFX_LOG(efx, "init port\n");
  555. rc = efx->phy_op->init(efx);
  556. if (rc)
  557. return rc;
  558. efx->phy_op->reconfigure(efx);
  559. mutex_lock(&efx->mac_lock);
  560. rc = falcon_switch_mac(efx);
  561. mutex_unlock(&efx->mac_lock);
  562. if (rc)
  563. goto fail;
  564. efx->mac_op->reconfigure(efx);
  565. efx->port_initialized = true;
  566. efx->stats_enabled = true;
  567. return 0;
  568. fail:
  569. efx->phy_op->fini(efx);
  570. return rc;
  571. }
  572. /* Allow efx_reconfigure_port() to be scheduled, and close the window
  573. * between efx_stop_port and efx_flush_all whereby a previously scheduled
  574. * efx_phy_work()/efx_mac_work() may have been cancelled */
  575. static void efx_start_port(struct efx_nic *efx)
  576. {
  577. EFX_LOG(efx, "start port\n");
  578. BUG_ON(efx->port_enabled);
  579. mutex_lock(&efx->mac_lock);
  580. efx->port_enabled = true;
  581. __efx_reconfigure_port(efx);
  582. efx->mac_op->irq(efx);
  583. mutex_unlock(&efx->mac_lock);
  584. }
  585. /* Prevent efx_phy_work, efx_mac_work, and efx_monitor() from executing,
  586. * and efx_set_multicast_list() from scheduling efx_phy_work. efx_phy_work
  587. * and efx_mac_work may still be scheduled via NAPI processing until
  588. * efx_flush_all() is called */
  589. static void efx_stop_port(struct efx_nic *efx)
  590. {
  591. EFX_LOG(efx, "stop port\n");
  592. mutex_lock(&efx->mac_lock);
  593. efx->port_enabled = false;
  594. mutex_unlock(&efx->mac_lock);
  595. /* Serialise against efx_set_multicast_list() */
  596. if (efx_dev_registered(efx)) {
  597. netif_addr_lock_bh(efx->net_dev);
  598. netif_addr_unlock_bh(efx->net_dev);
  599. }
  600. }
  601. static void efx_fini_port(struct efx_nic *efx)
  602. {
  603. EFX_LOG(efx, "shut down port\n");
  604. if (!efx->port_initialized)
  605. return;
  606. efx->phy_op->fini(efx);
  607. efx->port_initialized = false;
  608. efx->link_up = false;
  609. efx_link_status_changed(efx);
  610. }
  611. static void efx_remove_port(struct efx_nic *efx)
  612. {
  613. EFX_LOG(efx, "destroying port\n");
  614. falcon_remove_port(efx);
  615. }
  616. /**************************************************************************
  617. *
  618. * NIC handling
  619. *
  620. **************************************************************************/
  621. /* This configures the PCI device to enable I/O and DMA. */
  622. static int efx_init_io(struct efx_nic *efx)
  623. {
  624. struct pci_dev *pci_dev = efx->pci_dev;
  625. dma_addr_t dma_mask = efx->type->max_dma_mask;
  626. int rc;
  627. EFX_LOG(efx, "initialising I/O\n");
  628. rc = pci_enable_device(pci_dev);
  629. if (rc) {
  630. EFX_ERR(efx, "failed to enable PCI device\n");
  631. goto fail1;
  632. }
  633. pci_set_master(pci_dev);
  634. /* Set the PCI DMA mask. Try all possibilities from our
  635. * genuine mask down to 32 bits, because some architectures
  636. * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
  637. * masks event though they reject 46 bit masks.
  638. */
  639. while (dma_mask > 0x7fffffffUL) {
  640. if (pci_dma_supported(pci_dev, dma_mask) &&
  641. ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
  642. break;
  643. dma_mask >>= 1;
  644. }
  645. if (rc) {
  646. EFX_ERR(efx, "could not find a suitable DMA mask\n");
  647. goto fail2;
  648. }
  649. EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
  650. rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
  651. if (rc) {
  652. /* pci_set_consistent_dma_mask() is not *allowed* to
  653. * fail with a mask that pci_set_dma_mask() accepted,
  654. * but just in case...
  655. */
  656. EFX_ERR(efx, "failed to set consistent DMA mask\n");
  657. goto fail2;
  658. }
  659. efx->membase_phys = pci_resource_start(efx->pci_dev,
  660. efx->type->mem_bar);
  661. rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
  662. if (rc) {
  663. EFX_ERR(efx, "request for memory BAR failed\n");
  664. rc = -EIO;
  665. goto fail3;
  666. }
  667. efx->membase = ioremap_nocache(efx->membase_phys,
  668. efx->type->mem_map_size);
  669. if (!efx->membase) {
  670. EFX_ERR(efx, "could not map memory BAR %d at %llx+%x\n",
  671. efx->type->mem_bar,
  672. (unsigned long long)efx->membase_phys,
  673. efx->type->mem_map_size);
  674. rc = -ENOMEM;
  675. goto fail4;
  676. }
  677. EFX_LOG(efx, "memory BAR %u at %llx+%x (virtual %p)\n",
  678. efx->type->mem_bar, (unsigned long long)efx->membase_phys,
  679. efx->type->mem_map_size, efx->membase);
  680. return 0;
  681. fail4:
  682. pci_release_region(efx->pci_dev, efx->type->mem_bar);
  683. fail3:
  684. efx->membase_phys = 0;
  685. fail2:
  686. pci_disable_device(efx->pci_dev);
  687. fail1:
  688. return rc;
  689. }
  690. static void efx_fini_io(struct efx_nic *efx)
  691. {
  692. EFX_LOG(efx, "shutting down I/O\n");
  693. if (efx->membase) {
  694. iounmap(efx->membase);
  695. efx->membase = NULL;
  696. }
  697. if (efx->membase_phys) {
  698. pci_release_region(efx->pci_dev, efx->type->mem_bar);
  699. efx->membase_phys = 0;
  700. }
  701. pci_disable_device(efx->pci_dev);
  702. }
  703. /* Get number of RX queues wanted. Return number of online CPU
  704. * packages in the expectation that an IRQ balancer will spread
  705. * interrupts across them. */
  706. static int efx_wanted_rx_queues(void)
  707. {
  708. cpumask_t core_mask;
  709. int count;
  710. int cpu;
  711. cpus_clear(core_mask);
  712. count = 0;
  713. for_each_online_cpu(cpu) {
  714. if (!cpu_isset(cpu, core_mask)) {
  715. ++count;
  716. cpus_or(core_mask, core_mask,
  717. topology_core_siblings(cpu));
  718. }
  719. }
  720. return count;
  721. }
  722. /* Probe the number and type of interrupts we are able to obtain, and
  723. * the resulting numbers of channels and RX queues.
  724. */
  725. static void efx_probe_interrupts(struct efx_nic *efx)
  726. {
  727. int max_channels =
  728. min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
  729. int rc, i;
  730. if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
  731. struct msix_entry xentries[EFX_MAX_CHANNELS];
  732. int wanted_ints;
  733. int rx_queues;
  734. /* We want one RX queue and interrupt per CPU package
  735. * (or as specified by the rss_cpus module parameter).
  736. * We will need one channel per interrupt.
  737. */
  738. rx_queues = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
  739. wanted_ints = rx_queues + (separate_tx_channels ? 1 : 0);
  740. wanted_ints = min(wanted_ints, max_channels);
  741. for (i = 0; i < wanted_ints; i++)
  742. xentries[i].entry = i;
  743. rc = pci_enable_msix(efx->pci_dev, xentries, wanted_ints);
  744. if (rc > 0) {
  745. EFX_ERR(efx, "WARNING: Insufficient MSI-X vectors"
  746. " available (%d < %d).\n", rc, wanted_ints);
  747. EFX_ERR(efx, "WARNING: Performance may be reduced.\n");
  748. EFX_BUG_ON_PARANOID(rc >= wanted_ints);
  749. wanted_ints = rc;
  750. rc = pci_enable_msix(efx->pci_dev, xentries,
  751. wanted_ints);
  752. }
  753. if (rc == 0) {
  754. efx->n_rx_queues = min(rx_queues, wanted_ints);
  755. efx->n_channels = wanted_ints;
  756. for (i = 0; i < wanted_ints; i++)
  757. efx->channel[i].irq = xentries[i].vector;
  758. } else {
  759. /* Fall back to single channel MSI */
  760. efx->interrupt_mode = EFX_INT_MODE_MSI;
  761. EFX_ERR(efx, "could not enable MSI-X\n");
  762. }
  763. }
  764. /* Try single interrupt MSI */
  765. if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
  766. efx->n_rx_queues = 1;
  767. efx->n_channels = 1;
  768. rc = pci_enable_msi(efx->pci_dev);
  769. if (rc == 0) {
  770. efx->channel[0].irq = efx->pci_dev->irq;
  771. } else {
  772. EFX_ERR(efx, "could not enable MSI\n");
  773. efx->interrupt_mode = EFX_INT_MODE_LEGACY;
  774. }
  775. }
  776. /* Assume legacy interrupts */
  777. if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
  778. efx->n_rx_queues = 1;
  779. efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
  780. efx->legacy_irq = efx->pci_dev->irq;
  781. }
  782. }
  783. static void efx_remove_interrupts(struct efx_nic *efx)
  784. {
  785. struct efx_channel *channel;
  786. /* Remove MSI/MSI-X interrupts */
  787. efx_for_each_channel(channel, efx)
  788. channel->irq = 0;
  789. pci_disable_msi(efx->pci_dev);
  790. pci_disable_msix(efx->pci_dev);
  791. /* Remove legacy interrupt */
  792. efx->legacy_irq = 0;
  793. }
  794. static void efx_set_channels(struct efx_nic *efx)
  795. {
  796. struct efx_tx_queue *tx_queue;
  797. struct efx_rx_queue *rx_queue;
  798. efx_for_each_tx_queue(tx_queue, efx) {
  799. if (separate_tx_channels)
  800. tx_queue->channel = &efx->channel[efx->n_channels-1];
  801. else
  802. tx_queue->channel = &efx->channel[0];
  803. tx_queue->channel->used_flags |= EFX_USED_BY_TX;
  804. }
  805. efx_for_each_rx_queue(rx_queue, efx) {
  806. rx_queue->channel = &efx->channel[rx_queue->queue];
  807. rx_queue->channel->used_flags |= EFX_USED_BY_RX;
  808. }
  809. }
  810. static int efx_probe_nic(struct efx_nic *efx)
  811. {
  812. int rc;
  813. EFX_LOG(efx, "creating NIC\n");
  814. /* Carry out hardware-type specific initialisation */
  815. rc = falcon_probe_nic(efx);
  816. if (rc)
  817. return rc;
  818. /* Determine the number of channels and RX queues by trying to hook
  819. * in MSI-X interrupts. */
  820. efx_probe_interrupts(efx);
  821. efx_set_channels(efx);
  822. /* Initialise the interrupt moderation settings */
  823. efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec);
  824. return 0;
  825. }
  826. static void efx_remove_nic(struct efx_nic *efx)
  827. {
  828. EFX_LOG(efx, "destroying NIC\n");
  829. efx_remove_interrupts(efx);
  830. falcon_remove_nic(efx);
  831. }
  832. /**************************************************************************
  833. *
  834. * NIC startup/shutdown
  835. *
  836. *************************************************************************/
  837. static int efx_probe_all(struct efx_nic *efx)
  838. {
  839. struct efx_channel *channel;
  840. int rc;
  841. /* Create NIC */
  842. rc = efx_probe_nic(efx);
  843. if (rc) {
  844. EFX_ERR(efx, "failed to create NIC\n");
  845. goto fail1;
  846. }
  847. /* Create port */
  848. rc = efx_probe_port(efx);
  849. if (rc) {
  850. EFX_ERR(efx, "failed to create port\n");
  851. goto fail2;
  852. }
  853. /* Create channels */
  854. efx_for_each_channel(channel, efx) {
  855. rc = efx_probe_channel(channel);
  856. if (rc) {
  857. EFX_ERR(efx, "failed to create channel %d\n",
  858. channel->channel);
  859. goto fail3;
  860. }
  861. }
  862. efx_set_channel_names(efx);
  863. return 0;
  864. fail3:
  865. efx_for_each_channel(channel, efx)
  866. efx_remove_channel(channel);
  867. efx_remove_port(efx);
  868. fail2:
  869. efx_remove_nic(efx);
  870. fail1:
  871. return rc;
  872. }
  873. /* Called after previous invocation(s) of efx_stop_all, restarts the
  874. * port, kernel transmit queue, NAPI processing and hardware interrupts,
  875. * and ensures that the port is scheduled to be reconfigured.
  876. * This function is safe to call multiple times when the NIC is in any
  877. * state. */
  878. static void efx_start_all(struct efx_nic *efx)
  879. {
  880. struct efx_channel *channel;
  881. EFX_ASSERT_RESET_SERIALISED(efx);
  882. /* Check that it is appropriate to restart the interface. All
  883. * of these flags are safe to read under just the rtnl lock */
  884. if (efx->port_enabled)
  885. return;
  886. if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
  887. return;
  888. if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
  889. return;
  890. /* Mark the port as enabled so port reconfigurations can start, then
  891. * restart the transmit interface early so the watchdog timer stops */
  892. efx_start_port(efx);
  893. if (efx_dev_registered(efx))
  894. efx_wake_queue(efx);
  895. efx_for_each_channel(channel, efx)
  896. efx_start_channel(channel);
  897. falcon_enable_interrupts(efx);
  898. /* Start hardware monitor if we're in RUNNING */
  899. if (efx->state == STATE_RUNNING)
  900. queue_delayed_work(efx->workqueue, &efx->monitor_work,
  901. efx_monitor_interval);
  902. }
  903. /* Flush all delayed work. Should only be called when no more delayed work
  904. * will be scheduled. This doesn't flush pending online resets (efx_reset),
  905. * since we're holding the rtnl_lock at this point. */
  906. static void efx_flush_all(struct efx_nic *efx)
  907. {
  908. struct efx_rx_queue *rx_queue;
  909. /* Make sure the hardware monitor is stopped */
  910. cancel_delayed_work_sync(&efx->monitor_work);
  911. /* Ensure that all RX slow refills are complete. */
  912. efx_for_each_rx_queue(rx_queue, efx)
  913. cancel_delayed_work_sync(&rx_queue->work);
  914. /* Stop scheduled port reconfigurations */
  915. cancel_work_sync(&efx->mac_work);
  916. cancel_work_sync(&efx->phy_work);
  917. }
  918. /* Quiesce hardware and software without bringing the link down.
  919. * Safe to call multiple times, when the nic and interface is in any
  920. * state. The caller is guaranteed to subsequently be in a position
  921. * to modify any hardware and software state they see fit without
  922. * taking locks. */
  923. static void efx_stop_all(struct efx_nic *efx)
  924. {
  925. struct efx_channel *channel;
  926. EFX_ASSERT_RESET_SERIALISED(efx);
  927. /* port_enabled can be read safely under the rtnl lock */
  928. if (!efx->port_enabled)
  929. return;
  930. /* Disable interrupts and wait for ISR to complete */
  931. falcon_disable_interrupts(efx);
  932. if (efx->legacy_irq)
  933. synchronize_irq(efx->legacy_irq);
  934. efx_for_each_channel(channel, efx) {
  935. if (channel->irq)
  936. synchronize_irq(channel->irq);
  937. }
  938. /* Stop all NAPI processing and synchronous rx refills */
  939. efx_for_each_channel(channel, efx)
  940. efx_stop_channel(channel);
  941. /* Stop all asynchronous port reconfigurations. Since all
  942. * event processing has already been stopped, there is no
  943. * window to loose phy events */
  944. efx_stop_port(efx);
  945. /* Flush efx_phy_work, efx_mac_work, refill_workqueue, monitor_work */
  946. efx_flush_all(efx);
  947. /* Isolate the MAC from the TX and RX engines, so that queue
  948. * flushes will complete in a timely fashion. */
  949. falcon_drain_tx_fifo(efx);
  950. /* Stop the kernel transmit interface late, so the watchdog
  951. * timer isn't ticking over the flush */
  952. if (efx_dev_registered(efx)) {
  953. efx_stop_queue(efx);
  954. netif_tx_lock_bh(efx->net_dev);
  955. netif_tx_unlock_bh(efx->net_dev);
  956. }
  957. }
  958. static void efx_remove_all(struct efx_nic *efx)
  959. {
  960. struct efx_channel *channel;
  961. efx_for_each_channel(channel, efx)
  962. efx_remove_channel(channel);
  963. efx_remove_port(efx);
  964. efx_remove_nic(efx);
  965. }
  966. /* A convinience function to safely flush all the queues */
  967. void efx_flush_queues(struct efx_nic *efx)
  968. {
  969. EFX_ASSERT_RESET_SERIALISED(efx);
  970. efx_stop_all(efx);
  971. efx_fini_channels(efx);
  972. efx_init_channels(efx);
  973. efx_start_all(efx);
  974. }
  975. /**************************************************************************
  976. *
  977. * Interrupt moderation
  978. *
  979. **************************************************************************/
  980. /* Set interrupt moderation parameters */
  981. void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs)
  982. {
  983. struct efx_tx_queue *tx_queue;
  984. struct efx_rx_queue *rx_queue;
  985. EFX_ASSERT_RESET_SERIALISED(efx);
  986. efx_for_each_tx_queue(tx_queue, efx)
  987. tx_queue->channel->irq_moderation = tx_usecs;
  988. efx_for_each_rx_queue(rx_queue, efx)
  989. rx_queue->channel->irq_moderation = rx_usecs;
  990. }
  991. /**************************************************************************
  992. *
  993. * Hardware monitor
  994. *
  995. **************************************************************************/
  996. /* Run periodically off the general workqueue. Serialised against
  997. * efx_reconfigure_port via the mac_lock */
  998. static void efx_monitor(struct work_struct *data)
  999. {
  1000. struct efx_nic *efx = container_of(data, struct efx_nic,
  1001. monitor_work.work);
  1002. int rc;
  1003. EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
  1004. raw_smp_processor_id());
  1005. /* If the mac_lock is already held then it is likely a port
  1006. * reconfiguration is already in place, which will likely do
  1007. * most of the work of check_hw() anyway. */
  1008. if (!mutex_trylock(&efx->mac_lock))
  1009. goto out_requeue;
  1010. if (!efx->port_enabled)
  1011. goto out_unlock;
  1012. rc = efx->board_info.monitor(efx);
  1013. if (rc) {
  1014. EFX_ERR(efx, "Board sensor %s; shutting down PHY\n",
  1015. (rc == -ERANGE) ? "reported fault" : "failed");
  1016. efx->phy_mode |= PHY_MODE_LOW_POWER;
  1017. falcon_sim_phy_event(efx);
  1018. }
  1019. efx->phy_op->poll(efx);
  1020. efx->mac_op->poll(efx);
  1021. out_unlock:
  1022. mutex_unlock(&efx->mac_lock);
  1023. out_requeue:
  1024. queue_delayed_work(efx->workqueue, &efx->monitor_work,
  1025. efx_monitor_interval);
  1026. }
  1027. /**************************************************************************
  1028. *
  1029. * ioctls
  1030. *
  1031. *************************************************************************/
  1032. /* Net device ioctl
  1033. * Context: process, rtnl_lock() held.
  1034. */
  1035. static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
  1036. {
  1037. struct efx_nic *efx = netdev_priv(net_dev);
  1038. EFX_ASSERT_RESET_SERIALISED(efx);
  1039. return generic_mii_ioctl(&efx->mii, if_mii(ifr), cmd, NULL);
  1040. }
  1041. /**************************************************************************
  1042. *
  1043. * NAPI interface
  1044. *
  1045. **************************************************************************/
  1046. static int efx_init_napi(struct efx_nic *efx)
  1047. {
  1048. struct efx_channel *channel;
  1049. int rc;
  1050. efx_for_each_channel(channel, efx) {
  1051. channel->napi_dev = efx->net_dev;
  1052. rc = efx_lro_init(&channel->lro_mgr, efx);
  1053. if (rc)
  1054. goto err;
  1055. }
  1056. return 0;
  1057. err:
  1058. efx_fini_napi(efx);
  1059. return rc;
  1060. }
  1061. static void efx_fini_napi(struct efx_nic *efx)
  1062. {
  1063. struct efx_channel *channel;
  1064. efx_for_each_channel(channel, efx) {
  1065. efx_lro_fini(&channel->lro_mgr);
  1066. channel->napi_dev = NULL;
  1067. }
  1068. }
  1069. /**************************************************************************
  1070. *
  1071. * Kernel netpoll interface
  1072. *
  1073. *************************************************************************/
  1074. #ifdef CONFIG_NET_POLL_CONTROLLER
  1075. /* Although in the common case interrupts will be disabled, this is not
  1076. * guaranteed. However, all our work happens inside the NAPI callback,
  1077. * so no locking is required.
  1078. */
  1079. static void efx_netpoll(struct net_device *net_dev)
  1080. {
  1081. struct efx_nic *efx = netdev_priv(net_dev);
  1082. struct efx_channel *channel;
  1083. efx_for_each_channel(channel, efx)
  1084. efx_schedule_channel(channel);
  1085. }
  1086. #endif
  1087. /**************************************************************************
  1088. *
  1089. * Kernel net device interface
  1090. *
  1091. *************************************************************************/
  1092. /* Context: process, rtnl_lock() held. */
  1093. static int efx_net_open(struct net_device *net_dev)
  1094. {
  1095. struct efx_nic *efx = netdev_priv(net_dev);
  1096. EFX_ASSERT_RESET_SERIALISED(efx);
  1097. EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
  1098. raw_smp_processor_id());
  1099. if (efx->state == STATE_DISABLED)
  1100. return -EIO;
  1101. if (efx->phy_mode & PHY_MODE_SPECIAL)
  1102. return -EBUSY;
  1103. efx_start_all(efx);
  1104. return 0;
  1105. }
  1106. /* Context: process, rtnl_lock() held.
  1107. * Note that the kernel will ignore our return code; this method
  1108. * should really be a void.
  1109. */
  1110. static int efx_net_stop(struct net_device *net_dev)
  1111. {
  1112. struct efx_nic *efx = netdev_priv(net_dev);
  1113. EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
  1114. raw_smp_processor_id());
  1115. if (efx->state != STATE_DISABLED) {
  1116. /* Stop the device and flush all the channels */
  1117. efx_stop_all(efx);
  1118. efx_fini_channels(efx);
  1119. efx_init_channels(efx);
  1120. }
  1121. return 0;
  1122. }
  1123. /* Context: process, dev_base_lock or RTNL held, non-blocking. */
  1124. static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
  1125. {
  1126. struct efx_nic *efx = netdev_priv(net_dev);
  1127. struct efx_mac_stats *mac_stats = &efx->mac_stats;
  1128. struct net_device_stats *stats = &net_dev->stats;
  1129. /* Update stats if possible, but do not wait if another thread
  1130. * is updating them (or resetting the NIC); slightly stale
  1131. * stats are acceptable.
  1132. */
  1133. if (!spin_trylock(&efx->stats_lock))
  1134. return stats;
  1135. if (efx->stats_enabled) {
  1136. efx->mac_op->update_stats(efx);
  1137. falcon_update_nic_stats(efx);
  1138. }
  1139. spin_unlock(&efx->stats_lock);
  1140. stats->rx_packets = mac_stats->rx_packets;
  1141. stats->tx_packets = mac_stats->tx_packets;
  1142. stats->rx_bytes = mac_stats->rx_bytes;
  1143. stats->tx_bytes = mac_stats->tx_bytes;
  1144. stats->multicast = mac_stats->rx_multicast;
  1145. stats->collisions = mac_stats->tx_collision;
  1146. stats->rx_length_errors = (mac_stats->rx_gtjumbo +
  1147. mac_stats->rx_length_error);
  1148. stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
  1149. stats->rx_crc_errors = mac_stats->rx_bad;
  1150. stats->rx_frame_errors = mac_stats->rx_align_error;
  1151. stats->rx_fifo_errors = mac_stats->rx_overflow;
  1152. stats->rx_missed_errors = mac_stats->rx_missed;
  1153. stats->tx_window_errors = mac_stats->tx_late_collision;
  1154. stats->rx_errors = (stats->rx_length_errors +
  1155. stats->rx_over_errors +
  1156. stats->rx_crc_errors +
  1157. stats->rx_frame_errors +
  1158. stats->rx_fifo_errors +
  1159. stats->rx_missed_errors +
  1160. mac_stats->rx_symbol_error);
  1161. stats->tx_errors = (stats->tx_window_errors +
  1162. mac_stats->tx_bad);
  1163. return stats;
  1164. }
  1165. /* Context: netif_tx_lock held, BHs disabled. */
  1166. static void efx_watchdog(struct net_device *net_dev)
  1167. {
  1168. struct efx_nic *efx = netdev_priv(net_dev);
  1169. EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d:"
  1170. " resetting channels\n",
  1171. atomic_read(&efx->netif_stop_count), efx->port_enabled);
  1172. efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
  1173. }
  1174. /* Context: process, rtnl_lock() held. */
  1175. static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
  1176. {
  1177. struct efx_nic *efx = netdev_priv(net_dev);
  1178. int rc = 0;
  1179. EFX_ASSERT_RESET_SERIALISED(efx);
  1180. if (new_mtu > EFX_MAX_MTU)
  1181. return -EINVAL;
  1182. efx_stop_all(efx);
  1183. EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
  1184. efx_fini_channels(efx);
  1185. net_dev->mtu = new_mtu;
  1186. efx_init_channels(efx);
  1187. efx_start_all(efx);
  1188. return rc;
  1189. }
  1190. static int efx_set_mac_address(struct net_device *net_dev, void *data)
  1191. {
  1192. struct efx_nic *efx = netdev_priv(net_dev);
  1193. struct sockaddr *addr = data;
  1194. char *new_addr = addr->sa_data;
  1195. EFX_ASSERT_RESET_SERIALISED(efx);
  1196. if (!is_valid_ether_addr(new_addr)) {
  1197. EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
  1198. new_addr);
  1199. return -EINVAL;
  1200. }
  1201. memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
  1202. /* Reconfigure the MAC */
  1203. efx_reconfigure_port(efx);
  1204. return 0;
  1205. }
  1206. /* Context: netif_addr_lock held, BHs disabled. */
  1207. static void efx_set_multicast_list(struct net_device *net_dev)
  1208. {
  1209. struct efx_nic *efx = netdev_priv(net_dev);
  1210. struct dev_mc_list *mc_list = net_dev->mc_list;
  1211. union efx_multicast_hash *mc_hash = &efx->multicast_hash;
  1212. bool promiscuous = !!(net_dev->flags & IFF_PROMISC);
  1213. bool changed = (efx->promiscuous != promiscuous);
  1214. u32 crc;
  1215. int bit;
  1216. int i;
  1217. efx->promiscuous = promiscuous;
  1218. /* Build multicast hash table */
  1219. if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
  1220. memset(mc_hash, 0xff, sizeof(*mc_hash));
  1221. } else {
  1222. memset(mc_hash, 0x00, sizeof(*mc_hash));
  1223. for (i = 0; i < net_dev->mc_count; i++) {
  1224. crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
  1225. bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
  1226. set_bit_le(bit, mc_hash->byte);
  1227. mc_list = mc_list->next;
  1228. }
  1229. }
  1230. if (!efx->port_enabled)
  1231. /* Delay pushing settings until efx_start_port() */
  1232. return;
  1233. if (changed)
  1234. queue_work(efx->workqueue, &efx->phy_work);
  1235. /* Create and activate new global multicast hash table */
  1236. falcon_set_multicast_hash(efx);
  1237. }
  1238. static const struct net_device_ops efx_netdev_ops = {
  1239. .ndo_open = efx_net_open,
  1240. .ndo_stop = efx_net_stop,
  1241. .ndo_get_stats = efx_net_stats,
  1242. .ndo_tx_timeout = efx_watchdog,
  1243. .ndo_start_xmit = efx_hard_start_xmit,
  1244. .ndo_validate_addr = eth_validate_addr,
  1245. .ndo_do_ioctl = efx_ioctl,
  1246. .ndo_change_mtu = efx_change_mtu,
  1247. .ndo_set_mac_address = efx_set_mac_address,
  1248. .ndo_set_multicast_list = efx_set_multicast_list,
  1249. #ifdef CONFIG_NET_POLL_CONTROLLER
  1250. .ndo_poll_controller = efx_netpoll,
  1251. #endif
  1252. };
  1253. static void efx_update_name(struct efx_nic *efx)
  1254. {
  1255. strcpy(efx->name, efx->net_dev->name);
  1256. efx_mtd_rename(efx);
  1257. efx_set_channel_names(efx);
  1258. }
  1259. static int efx_netdev_event(struct notifier_block *this,
  1260. unsigned long event, void *ptr)
  1261. {
  1262. struct net_device *net_dev = ptr;
  1263. if (net_dev->netdev_ops == &efx_netdev_ops &&
  1264. event == NETDEV_CHANGENAME)
  1265. efx_update_name(netdev_priv(net_dev));
  1266. return NOTIFY_DONE;
  1267. }
  1268. static struct notifier_block efx_netdev_notifier = {
  1269. .notifier_call = efx_netdev_event,
  1270. };
  1271. static ssize_t
  1272. show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
  1273. {
  1274. struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
  1275. return sprintf(buf, "%d\n", efx->phy_type);
  1276. }
  1277. static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
  1278. static int efx_register_netdev(struct efx_nic *efx)
  1279. {
  1280. struct net_device *net_dev = efx->net_dev;
  1281. int rc;
  1282. net_dev->watchdog_timeo = 5 * HZ;
  1283. net_dev->irq = efx->pci_dev->irq;
  1284. net_dev->netdev_ops = &efx_netdev_ops;
  1285. SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
  1286. SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
  1287. /* Always start with carrier off; PHY events will detect the link */
  1288. netif_carrier_off(efx->net_dev);
  1289. /* Clear MAC statistics */
  1290. efx->mac_op->update_stats(efx);
  1291. memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
  1292. rc = register_netdev(net_dev);
  1293. if (rc) {
  1294. EFX_ERR(efx, "could not register net dev\n");
  1295. return rc;
  1296. }
  1297. rtnl_lock();
  1298. efx_update_name(efx);
  1299. rtnl_unlock();
  1300. rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
  1301. if (rc) {
  1302. EFX_ERR(efx, "failed to init net dev attributes\n");
  1303. goto fail_registered;
  1304. }
  1305. return 0;
  1306. fail_registered:
  1307. unregister_netdev(net_dev);
  1308. return rc;
  1309. }
  1310. static void efx_unregister_netdev(struct efx_nic *efx)
  1311. {
  1312. struct efx_tx_queue *tx_queue;
  1313. if (!efx->net_dev)
  1314. return;
  1315. BUG_ON(netdev_priv(efx->net_dev) != efx);
  1316. /* Free up any skbs still remaining. This has to happen before
  1317. * we try to unregister the netdev as running their destructors
  1318. * may be needed to get the device ref. count to 0. */
  1319. efx_for_each_tx_queue(tx_queue, efx)
  1320. efx_release_tx_buffers(tx_queue);
  1321. if (efx_dev_registered(efx)) {
  1322. strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
  1323. device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
  1324. unregister_netdev(efx->net_dev);
  1325. }
  1326. }
  1327. /**************************************************************************
  1328. *
  1329. * Device reset and suspend
  1330. *
  1331. **************************************************************************/
  1332. /* Tears down the entire software state and most of the hardware state
  1333. * before reset. */
  1334. void efx_reset_down(struct efx_nic *efx, struct ethtool_cmd *ecmd)
  1335. {
  1336. EFX_ASSERT_RESET_SERIALISED(efx);
  1337. /* The net_dev->get_stats handler is quite slow, and will fail
  1338. * if a fetch is pending over reset. Serialise against it. */
  1339. spin_lock(&efx->stats_lock);
  1340. efx->stats_enabled = false;
  1341. spin_unlock(&efx->stats_lock);
  1342. efx_stop_all(efx);
  1343. mutex_lock(&efx->mac_lock);
  1344. mutex_lock(&efx->spi_lock);
  1345. efx->phy_op->get_settings(efx, ecmd);
  1346. efx_fini_channels(efx);
  1347. }
  1348. /* This function will always ensure that the locks acquired in
  1349. * efx_reset_down() are released. A failure return code indicates
  1350. * that we were unable to reinitialise the hardware, and the
  1351. * driver should be disabled. If ok is false, then the rx and tx
  1352. * engines are not restarted, pending a RESET_DISABLE. */
  1353. int efx_reset_up(struct efx_nic *efx, struct ethtool_cmd *ecmd, bool ok)
  1354. {
  1355. int rc;
  1356. EFX_ASSERT_RESET_SERIALISED(efx);
  1357. rc = falcon_init_nic(efx);
  1358. if (rc) {
  1359. EFX_ERR(efx, "failed to initialise NIC\n");
  1360. ok = false;
  1361. }
  1362. if (ok) {
  1363. efx_init_channels(efx);
  1364. if (efx->phy_op->set_settings(efx, ecmd))
  1365. EFX_ERR(efx, "could not restore PHY settings\n");
  1366. }
  1367. mutex_unlock(&efx->spi_lock);
  1368. mutex_unlock(&efx->mac_lock);
  1369. if (ok) {
  1370. efx_start_all(efx);
  1371. efx->stats_enabled = true;
  1372. }
  1373. return rc;
  1374. }
  1375. /* Reset the NIC as transparently as possible. Do not reset the PHY
  1376. * Note that the reset may fail, in which case the card will be left
  1377. * in a most-probably-unusable state.
  1378. *
  1379. * This function will sleep. You cannot reset from within an atomic
  1380. * state; use efx_schedule_reset() instead.
  1381. *
  1382. * Grabs the rtnl_lock.
  1383. */
  1384. static int efx_reset(struct efx_nic *efx)
  1385. {
  1386. struct ethtool_cmd ecmd;
  1387. enum reset_type method = efx->reset_pending;
  1388. int rc = 0;
  1389. /* Serialise with kernel interfaces */
  1390. rtnl_lock();
  1391. /* If we're not RUNNING then don't reset. Leave the reset_pending
  1392. * flag set so that efx_pci_probe_main will be retried */
  1393. if (efx->state != STATE_RUNNING) {
  1394. EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
  1395. goto out_unlock;
  1396. }
  1397. EFX_INFO(efx, "resetting (%d)\n", method);
  1398. efx_reset_down(efx, &ecmd);
  1399. rc = falcon_reset_hw(efx, method);
  1400. if (rc) {
  1401. EFX_ERR(efx, "failed to reset hardware\n");
  1402. goto out_disable;
  1403. }
  1404. /* Allow resets to be rescheduled. */
  1405. efx->reset_pending = RESET_TYPE_NONE;
  1406. /* Reinitialise bus-mastering, which may have been turned off before
  1407. * the reset was scheduled. This is still appropriate, even in the
  1408. * RESET_TYPE_DISABLE since this driver generally assumes the hardware
  1409. * can respond to requests. */
  1410. pci_set_master(efx->pci_dev);
  1411. /* Leave device stopped if necessary */
  1412. if (method == RESET_TYPE_DISABLE) {
  1413. efx_reset_up(efx, &ecmd, false);
  1414. rc = -EIO;
  1415. } else {
  1416. rc = efx_reset_up(efx, &ecmd, true);
  1417. }
  1418. out_disable:
  1419. if (rc) {
  1420. EFX_ERR(efx, "has been disabled\n");
  1421. efx->state = STATE_DISABLED;
  1422. dev_close(efx->net_dev);
  1423. } else {
  1424. EFX_LOG(efx, "reset complete\n");
  1425. }
  1426. out_unlock:
  1427. rtnl_unlock();
  1428. return rc;
  1429. }
  1430. /* The worker thread exists so that code that cannot sleep can
  1431. * schedule a reset for later.
  1432. */
  1433. static void efx_reset_work(struct work_struct *data)
  1434. {
  1435. struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
  1436. efx_reset(nic);
  1437. }
  1438. void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
  1439. {
  1440. enum reset_type method;
  1441. if (efx->reset_pending != RESET_TYPE_NONE) {
  1442. EFX_INFO(efx, "quenching already scheduled reset\n");
  1443. return;
  1444. }
  1445. switch (type) {
  1446. case RESET_TYPE_INVISIBLE:
  1447. case RESET_TYPE_ALL:
  1448. case RESET_TYPE_WORLD:
  1449. case RESET_TYPE_DISABLE:
  1450. method = type;
  1451. break;
  1452. case RESET_TYPE_RX_RECOVERY:
  1453. case RESET_TYPE_RX_DESC_FETCH:
  1454. case RESET_TYPE_TX_DESC_FETCH:
  1455. case RESET_TYPE_TX_SKIP:
  1456. method = RESET_TYPE_INVISIBLE;
  1457. break;
  1458. default:
  1459. method = RESET_TYPE_ALL;
  1460. break;
  1461. }
  1462. if (method != type)
  1463. EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
  1464. else
  1465. EFX_LOG(efx, "scheduling reset (%d)\n", method);
  1466. efx->reset_pending = method;
  1467. queue_work(reset_workqueue, &efx->reset_work);
  1468. }
  1469. /**************************************************************************
  1470. *
  1471. * List of NICs we support
  1472. *
  1473. **************************************************************************/
  1474. /* PCI device ID table */
  1475. static struct pci_device_id efx_pci_table[] __devinitdata = {
  1476. {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
  1477. .driver_data = (unsigned long) &falcon_a_nic_type},
  1478. {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
  1479. .driver_data = (unsigned long) &falcon_b_nic_type},
  1480. {0} /* end of list */
  1481. };
  1482. /**************************************************************************
  1483. *
  1484. * Dummy PHY/MAC/Board operations
  1485. *
  1486. * Can be used for some unimplemented operations
  1487. * Needed so all function pointers are valid and do not have to be tested
  1488. * before use
  1489. *
  1490. **************************************************************************/
  1491. int efx_port_dummy_op_int(struct efx_nic *efx)
  1492. {
  1493. return 0;
  1494. }
  1495. void efx_port_dummy_op_void(struct efx_nic *efx) {}
  1496. void efx_port_dummy_op_blink(struct efx_nic *efx, bool blink) {}
  1497. static struct efx_mac_operations efx_dummy_mac_operations = {
  1498. .reconfigure = efx_port_dummy_op_void,
  1499. .poll = efx_port_dummy_op_void,
  1500. .irq = efx_port_dummy_op_void,
  1501. };
  1502. static struct efx_phy_operations efx_dummy_phy_operations = {
  1503. .init = efx_port_dummy_op_int,
  1504. .reconfigure = efx_port_dummy_op_void,
  1505. .poll = efx_port_dummy_op_void,
  1506. .fini = efx_port_dummy_op_void,
  1507. .clear_interrupt = efx_port_dummy_op_void,
  1508. };
  1509. static struct efx_board efx_dummy_board_info = {
  1510. .init = efx_port_dummy_op_int,
  1511. .init_leds = efx_port_dummy_op_int,
  1512. .set_fault_led = efx_port_dummy_op_blink,
  1513. .monitor = efx_port_dummy_op_int,
  1514. .blink = efx_port_dummy_op_blink,
  1515. .fini = efx_port_dummy_op_void,
  1516. };
  1517. /**************************************************************************
  1518. *
  1519. * Data housekeeping
  1520. *
  1521. **************************************************************************/
  1522. /* This zeroes out and then fills in the invariants in a struct
  1523. * efx_nic (including all sub-structures).
  1524. */
  1525. static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
  1526. struct pci_dev *pci_dev, struct net_device *net_dev)
  1527. {
  1528. struct efx_channel *channel;
  1529. struct efx_tx_queue *tx_queue;
  1530. struct efx_rx_queue *rx_queue;
  1531. int i;
  1532. /* Initialise common structures */
  1533. memset(efx, 0, sizeof(*efx));
  1534. spin_lock_init(&efx->biu_lock);
  1535. spin_lock_init(&efx->phy_lock);
  1536. mutex_init(&efx->spi_lock);
  1537. INIT_WORK(&efx->reset_work, efx_reset_work);
  1538. INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
  1539. efx->pci_dev = pci_dev;
  1540. efx->state = STATE_INIT;
  1541. efx->reset_pending = RESET_TYPE_NONE;
  1542. strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
  1543. efx->board_info = efx_dummy_board_info;
  1544. efx->net_dev = net_dev;
  1545. efx->rx_checksum_enabled = true;
  1546. spin_lock_init(&efx->netif_stop_lock);
  1547. spin_lock_init(&efx->stats_lock);
  1548. mutex_init(&efx->mac_lock);
  1549. efx->mac_op = &efx_dummy_mac_operations;
  1550. efx->phy_op = &efx_dummy_phy_operations;
  1551. efx->mii.dev = net_dev;
  1552. INIT_WORK(&efx->phy_work, efx_phy_work);
  1553. INIT_WORK(&efx->mac_work, efx_mac_work);
  1554. atomic_set(&efx->netif_stop_count, 1);
  1555. for (i = 0; i < EFX_MAX_CHANNELS; i++) {
  1556. channel = &efx->channel[i];
  1557. channel->efx = efx;
  1558. channel->channel = i;
  1559. channel->work_pending = false;
  1560. }
  1561. for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
  1562. tx_queue = &efx->tx_queue[i];
  1563. tx_queue->efx = efx;
  1564. tx_queue->queue = i;
  1565. tx_queue->buffer = NULL;
  1566. tx_queue->channel = &efx->channel[0]; /* for safety */
  1567. tx_queue->tso_headers_free = NULL;
  1568. }
  1569. for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
  1570. rx_queue = &efx->rx_queue[i];
  1571. rx_queue->efx = efx;
  1572. rx_queue->queue = i;
  1573. rx_queue->channel = &efx->channel[0]; /* for safety */
  1574. rx_queue->buffer = NULL;
  1575. spin_lock_init(&rx_queue->add_lock);
  1576. INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
  1577. }
  1578. efx->type = type;
  1579. /* Sanity-check NIC type */
  1580. EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
  1581. (efx->type->txd_ring_mask + 1));
  1582. EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
  1583. (efx->type->rxd_ring_mask + 1));
  1584. EFX_BUG_ON_PARANOID(efx->type->evq_size &
  1585. (efx->type->evq_size - 1));
  1586. /* As close as we can get to guaranteeing that we don't overflow */
  1587. EFX_BUG_ON_PARANOID(efx->type->evq_size <
  1588. (efx->type->txd_ring_mask + 1 +
  1589. efx->type->rxd_ring_mask + 1));
  1590. EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
  1591. /* Higher numbered interrupt modes are less capable! */
  1592. efx->interrupt_mode = max(efx->type->max_interrupt_mode,
  1593. interrupt_mode);
  1594. /* Would be good to use the net_dev name, but we're too early */
  1595. snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
  1596. pci_name(pci_dev));
  1597. efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
  1598. if (!efx->workqueue)
  1599. return -ENOMEM;
  1600. return 0;
  1601. }
  1602. static void efx_fini_struct(struct efx_nic *efx)
  1603. {
  1604. if (efx->workqueue) {
  1605. destroy_workqueue(efx->workqueue);
  1606. efx->workqueue = NULL;
  1607. }
  1608. }
  1609. /**************************************************************************
  1610. *
  1611. * PCI interface
  1612. *
  1613. **************************************************************************/
  1614. /* Main body of final NIC shutdown code
  1615. * This is called only at module unload (or hotplug removal).
  1616. */
  1617. static void efx_pci_remove_main(struct efx_nic *efx)
  1618. {
  1619. EFX_ASSERT_RESET_SERIALISED(efx);
  1620. /* Skip everything if we never obtained a valid membase */
  1621. if (!efx->membase)
  1622. return;
  1623. efx_fini_channels(efx);
  1624. efx_fini_port(efx);
  1625. /* Shutdown the board, then the NIC and board state */
  1626. efx->board_info.fini(efx);
  1627. falcon_fini_interrupt(efx);
  1628. efx_fini_napi(efx);
  1629. efx_remove_all(efx);
  1630. }
  1631. /* Final NIC shutdown
  1632. * This is called only at module unload (or hotplug removal).
  1633. */
  1634. static void efx_pci_remove(struct pci_dev *pci_dev)
  1635. {
  1636. struct efx_nic *efx;
  1637. efx = pci_get_drvdata(pci_dev);
  1638. if (!efx)
  1639. return;
  1640. /* Mark the NIC as fini, then stop the interface */
  1641. rtnl_lock();
  1642. efx->state = STATE_FINI;
  1643. dev_close(efx->net_dev);
  1644. /* Allow any queued efx_resets() to complete */
  1645. rtnl_unlock();
  1646. if (efx->membase == NULL)
  1647. goto out;
  1648. efx_unregister_netdev(efx);
  1649. efx_mtd_remove(efx);
  1650. /* Wait for any scheduled resets to complete. No more will be
  1651. * scheduled from this point because efx_stop_all() has been
  1652. * called, we are no longer registered with driverlink, and
  1653. * the net_device's have been removed. */
  1654. cancel_work_sync(&efx->reset_work);
  1655. efx_pci_remove_main(efx);
  1656. out:
  1657. efx_fini_io(efx);
  1658. EFX_LOG(efx, "shutdown successful\n");
  1659. pci_set_drvdata(pci_dev, NULL);
  1660. efx_fini_struct(efx);
  1661. free_netdev(efx->net_dev);
  1662. };
  1663. /* Main body of NIC initialisation
  1664. * This is called at module load (or hotplug insertion, theoretically).
  1665. */
  1666. static int efx_pci_probe_main(struct efx_nic *efx)
  1667. {
  1668. int rc;
  1669. /* Do start-of-day initialisation */
  1670. rc = efx_probe_all(efx);
  1671. if (rc)
  1672. goto fail1;
  1673. rc = efx_init_napi(efx);
  1674. if (rc)
  1675. goto fail2;
  1676. /* Initialise the board */
  1677. rc = efx->board_info.init(efx);
  1678. if (rc) {
  1679. EFX_ERR(efx, "failed to initialise board\n");
  1680. goto fail3;
  1681. }
  1682. rc = falcon_init_nic(efx);
  1683. if (rc) {
  1684. EFX_ERR(efx, "failed to initialise NIC\n");
  1685. goto fail4;
  1686. }
  1687. rc = efx_init_port(efx);
  1688. if (rc) {
  1689. EFX_ERR(efx, "failed to initialise port\n");
  1690. goto fail5;
  1691. }
  1692. efx_init_channels(efx);
  1693. rc = falcon_init_interrupt(efx);
  1694. if (rc)
  1695. goto fail6;
  1696. return 0;
  1697. fail6:
  1698. efx_fini_channels(efx);
  1699. efx_fini_port(efx);
  1700. fail5:
  1701. fail4:
  1702. efx->board_info.fini(efx);
  1703. fail3:
  1704. efx_fini_napi(efx);
  1705. fail2:
  1706. efx_remove_all(efx);
  1707. fail1:
  1708. return rc;
  1709. }
  1710. /* NIC initialisation
  1711. *
  1712. * This is called at module load (or hotplug insertion,
  1713. * theoretically). It sets up PCI mappings, tests and resets the NIC,
  1714. * sets up and registers the network devices with the kernel and hooks
  1715. * the interrupt service routine. It does not prepare the device for
  1716. * transmission; this is left to the first time one of the network
  1717. * interfaces is brought up (i.e. efx_net_open).
  1718. */
  1719. static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
  1720. const struct pci_device_id *entry)
  1721. {
  1722. struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
  1723. struct net_device *net_dev;
  1724. struct efx_nic *efx;
  1725. int i, rc;
  1726. /* Allocate and initialise a struct net_device and struct efx_nic */
  1727. net_dev = alloc_etherdev(sizeof(*efx));
  1728. if (!net_dev)
  1729. return -ENOMEM;
  1730. net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
  1731. NETIF_F_HIGHDMA | NETIF_F_TSO);
  1732. if (lro)
  1733. net_dev->features |= NETIF_F_LRO;
  1734. /* Mask for features that also apply to VLAN devices */
  1735. net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
  1736. NETIF_F_HIGHDMA | NETIF_F_TSO);
  1737. efx = netdev_priv(net_dev);
  1738. pci_set_drvdata(pci_dev, efx);
  1739. rc = efx_init_struct(efx, type, pci_dev, net_dev);
  1740. if (rc)
  1741. goto fail1;
  1742. EFX_INFO(efx, "Solarflare Communications NIC detected\n");
  1743. /* Set up basic I/O (BAR mappings etc) */
  1744. rc = efx_init_io(efx);
  1745. if (rc)
  1746. goto fail2;
  1747. /* No serialisation is required with the reset path because
  1748. * we're in STATE_INIT. */
  1749. for (i = 0; i < 5; i++) {
  1750. rc = efx_pci_probe_main(efx);
  1751. /* Serialise against efx_reset(). No more resets will be
  1752. * scheduled since efx_stop_all() has been called, and we
  1753. * have not and never have been registered with either
  1754. * the rtnetlink or driverlink layers. */
  1755. cancel_work_sync(&efx->reset_work);
  1756. if (rc == 0) {
  1757. if (efx->reset_pending != RESET_TYPE_NONE) {
  1758. /* If there was a scheduled reset during
  1759. * probe, the NIC is probably hosed anyway */
  1760. efx_pci_remove_main(efx);
  1761. rc = -EIO;
  1762. } else {
  1763. break;
  1764. }
  1765. }
  1766. /* Retry if a recoverably reset event has been scheduled */
  1767. if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
  1768. (efx->reset_pending != RESET_TYPE_ALL))
  1769. goto fail3;
  1770. efx->reset_pending = RESET_TYPE_NONE;
  1771. }
  1772. if (rc) {
  1773. EFX_ERR(efx, "Could not reset NIC\n");
  1774. goto fail4;
  1775. }
  1776. /* Switch to the running state before we expose the device to
  1777. * the OS. This is to ensure that the initial gathering of
  1778. * MAC stats succeeds. */
  1779. efx->state = STATE_RUNNING;
  1780. efx_mtd_probe(efx); /* allowed to fail */
  1781. rc = efx_register_netdev(efx);
  1782. if (rc)
  1783. goto fail5;
  1784. EFX_LOG(efx, "initialisation successful\n");
  1785. return 0;
  1786. fail5:
  1787. efx_pci_remove_main(efx);
  1788. fail4:
  1789. fail3:
  1790. efx_fini_io(efx);
  1791. fail2:
  1792. efx_fini_struct(efx);
  1793. fail1:
  1794. EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
  1795. free_netdev(net_dev);
  1796. return rc;
  1797. }
  1798. static struct pci_driver efx_pci_driver = {
  1799. .name = EFX_DRIVER_NAME,
  1800. .id_table = efx_pci_table,
  1801. .probe = efx_pci_probe,
  1802. .remove = efx_pci_remove,
  1803. };
  1804. /**************************************************************************
  1805. *
  1806. * Kernel module interface
  1807. *
  1808. *************************************************************************/
  1809. module_param(interrupt_mode, uint, 0444);
  1810. MODULE_PARM_DESC(interrupt_mode,
  1811. "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
  1812. static int __init efx_init_module(void)
  1813. {
  1814. int rc;
  1815. printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
  1816. rc = register_netdevice_notifier(&efx_netdev_notifier);
  1817. if (rc)
  1818. goto err_notifier;
  1819. refill_workqueue = create_workqueue("sfc_refill");
  1820. if (!refill_workqueue) {
  1821. rc = -ENOMEM;
  1822. goto err_refill;
  1823. }
  1824. reset_workqueue = create_singlethread_workqueue("sfc_reset");
  1825. if (!reset_workqueue) {
  1826. rc = -ENOMEM;
  1827. goto err_reset;
  1828. }
  1829. rc = pci_register_driver(&efx_pci_driver);
  1830. if (rc < 0)
  1831. goto err_pci;
  1832. return 0;
  1833. err_pci:
  1834. destroy_workqueue(reset_workqueue);
  1835. err_reset:
  1836. destroy_workqueue(refill_workqueue);
  1837. err_refill:
  1838. unregister_netdevice_notifier(&efx_netdev_notifier);
  1839. err_notifier:
  1840. return rc;
  1841. }
  1842. static void __exit efx_exit_module(void)
  1843. {
  1844. printk(KERN_INFO "Solarflare NET driver unloading\n");
  1845. pci_unregister_driver(&efx_pci_driver);
  1846. destroy_workqueue(reset_workqueue);
  1847. destroy_workqueue(refill_workqueue);
  1848. unregister_netdevice_notifier(&efx_netdev_notifier);
  1849. }
  1850. module_init(efx_init_module);
  1851. module_exit(efx_exit_module);
  1852. MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
  1853. "Solarflare Communications");
  1854. MODULE_DESCRIPTION("Solarflare Communications network driver");
  1855. MODULE_LICENSE("GPL");
  1856. MODULE_DEVICE_TABLE(pci, efx_pci_table);