niu.c 212 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537
  1. /* niu.c: Neptune ethernet driver.
  2. *
  3. * Copyright (C) 2007, 2008 David S. Miller (davem@davemloft.net)
  4. */
  5. #include <linux/module.h>
  6. #include <linux/init.h>
  7. #include <linux/pci.h>
  8. #include <linux/dma-mapping.h>
  9. #include <linux/netdevice.h>
  10. #include <linux/ethtool.h>
  11. #include <linux/etherdevice.h>
  12. #include <linux/platform_device.h>
  13. #include <linux/delay.h>
  14. #include <linux/bitops.h>
  15. #include <linux/mii.h>
  16. #include <linux/if_ether.h>
  17. #include <linux/if_vlan.h>
  18. #include <linux/ip.h>
  19. #include <linux/in.h>
  20. #include <linux/ipv6.h>
  21. #include <linux/log2.h>
  22. #include <linux/jiffies.h>
  23. #include <linux/crc32.h>
  24. #include <linux/io.h>
  25. #ifdef CONFIG_SPARC64
  26. #include <linux/of_device.h>
  27. #endif
  28. #include "niu.h"
  29. #define DRV_MODULE_NAME "niu"
  30. #define PFX DRV_MODULE_NAME ": "
  31. #define DRV_MODULE_VERSION "1.0"
  32. #define DRV_MODULE_RELDATE "Nov 14, 2008"
  33. static char version[] __devinitdata =
  34. DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  35. MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
  36. MODULE_DESCRIPTION("NIU ethernet driver");
  37. MODULE_LICENSE("GPL");
  38. MODULE_VERSION(DRV_MODULE_VERSION);
  39. #ifndef DMA_44BIT_MASK
  40. #define DMA_44BIT_MASK 0x00000fffffffffffULL
  41. #endif
  42. #ifndef readq
  43. static u64 readq(void __iomem *reg)
  44. {
  45. return ((u64) readl(reg)) | (((u64) readl(reg + 4UL)) << 32);
  46. }
  47. static void writeq(u64 val, void __iomem *reg)
  48. {
  49. writel(val & 0xffffffff, reg);
  50. writel(val >> 32, reg + 0x4UL);
  51. }
  52. #endif
  53. static struct pci_device_id niu_pci_tbl[] = {
  54. {PCI_DEVICE(PCI_VENDOR_ID_SUN, 0xabcd)},
  55. {}
  56. };
  57. MODULE_DEVICE_TABLE(pci, niu_pci_tbl);
  58. #define NIU_TX_TIMEOUT (5 * HZ)
  59. #define nr64(reg) readq(np->regs + (reg))
  60. #define nw64(reg, val) writeq((val), np->regs + (reg))
  61. #define nr64_mac(reg) readq(np->mac_regs + (reg))
  62. #define nw64_mac(reg, val) writeq((val), np->mac_regs + (reg))
  63. #define nr64_ipp(reg) readq(np->regs + np->ipp_off + (reg))
  64. #define nw64_ipp(reg, val) writeq((val), np->regs + np->ipp_off + (reg))
  65. #define nr64_pcs(reg) readq(np->regs + np->pcs_off + (reg))
  66. #define nw64_pcs(reg, val) writeq((val), np->regs + np->pcs_off + (reg))
  67. #define nr64_xpcs(reg) readq(np->regs + np->xpcs_off + (reg))
  68. #define nw64_xpcs(reg, val) writeq((val), np->regs + np->xpcs_off + (reg))
  69. #define NIU_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
  70. static int niu_debug;
  71. static int debug = -1;
  72. module_param(debug, int, 0);
  73. MODULE_PARM_DESC(debug, "NIU debug level");
  74. #define niudbg(TYPE, f, a...) \
  75. do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
  76. printk(KERN_DEBUG PFX f, ## a); \
  77. } while (0)
  78. #define niuinfo(TYPE, f, a...) \
  79. do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
  80. printk(KERN_INFO PFX f, ## a); \
  81. } while (0)
  82. #define niuwarn(TYPE, f, a...) \
  83. do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
  84. printk(KERN_WARNING PFX f, ## a); \
  85. } while (0)
  86. #define niu_lock_parent(np, flags) \
  87. spin_lock_irqsave(&np->parent->lock, flags)
  88. #define niu_unlock_parent(np, flags) \
  89. spin_unlock_irqrestore(&np->parent->lock, flags)
  90. static int serdes_init_10g_serdes(struct niu *np);
  91. static int __niu_wait_bits_clear_mac(struct niu *np, unsigned long reg,
  92. u64 bits, int limit, int delay)
  93. {
  94. while (--limit >= 0) {
  95. u64 val = nr64_mac(reg);
  96. if (!(val & bits))
  97. break;
  98. udelay(delay);
  99. }
  100. if (limit < 0)
  101. return -ENODEV;
  102. return 0;
  103. }
  104. static int __niu_set_and_wait_clear_mac(struct niu *np, unsigned long reg,
  105. u64 bits, int limit, int delay,
  106. const char *reg_name)
  107. {
  108. int err;
  109. nw64_mac(reg, bits);
  110. err = __niu_wait_bits_clear_mac(np, reg, bits, limit, delay);
  111. if (err)
  112. dev_err(np->device, PFX "%s: bits (%llx) of register %s "
  113. "would not clear, val[%llx]\n",
  114. np->dev->name, (unsigned long long) bits, reg_name,
  115. (unsigned long long) nr64_mac(reg));
  116. return err;
  117. }
  118. #define niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  119. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  120. __niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  121. })
  122. static int __niu_wait_bits_clear_ipp(struct niu *np, unsigned long reg,
  123. u64 bits, int limit, int delay)
  124. {
  125. while (--limit >= 0) {
  126. u64 val = nr64_ipp(reg);
  127. if (!(val & bits))
  128. break;
  129. udelay(delay);
  130. }
  131. if (limit < 0)
  132. return -ENODEV;
  133. return 0;
  134. }
  135. static int __niu_set_and_wait_clear_ipp(struct niu *np, unsigned long reg,
  136. u64 bits, int limit, int delay,
  137. const char *reg_name)
  138. {
  139. int err;
  140. u64 val;
  141. val = nr64_ipp(reg);
  142. val |= bits;
  143. nw64_ipp(reg, val);
  144. err = __niu_wait_bits_clear_ipp(np, reg, bits, limit, delay);
  145. if (err)
  146. dev_err(np->device, PFX "%s: bits (%llx) of register %s "
  147. "would not clear, val[%llx]\n",
  148. np->dev->name, (unsigned long long) bits, reg_name,
  149. (unsigned long long) nr64_ipp(reg));
  150. return err;
  151. }
  152. #define niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  153. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  154. __niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  155. })
  156. static int __niu_wait_bits_clear(struct niu *np, unsigned long reg,
  157. u64 bits, int limit, int delay)
  158. {
  159. while (--limit >= 0) {
  160. u64 val = nr64(reg);
  161. if (!(val & bits))
  162. break;
  163. udelay(delay);
  164. }
  165. if (limit < 0)
  166. return -ENODEV;
  167. return 0;
  168. }
  169. #define niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY) \
  170. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  171. __niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY); \
  172. })
  173. static int __niu_set_and_wait_clear(struct niu *np, unsigned long reg,
  174. u64 bits, int limit, int delay,
  175. const char *reg_name)
  176. {
  177. int err;
  178. nw64(reg, bits);
  179. err = __niu_wait_bits_clear(np, reg, bits, limit, delay);
  180. if (err)
  181. dev_err(np->device, PFX "%s: bits (%llx) of register %s "
  182. "would not clear, val[%llx]\n",
  183. np->dev->name, (unsigned long long) bits, reg_name,
  184. (unsigned long long) nr64(reg));
  185. return err;
  186. }
  187. #define niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  188. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  189. __niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  190. })
  191. static void niu_ldg_rearm(struct niu *np, struct niu_ldg *lp, int on)
  192. {
  193. u64 val = (u64) lp->timer;
  194. if (on)
  195. val |= LDG_IMGMT_ARM;
  196. nw64(LDG_IMGMT(lp->ldg_num), val);
  197. }
  198. static int niu_ldn_irq_enable(struct niu *np, int ldn, int on)
  199. {
  200. unsigned long mask_reg, bits;
  201. u64 val;
  202. if (ldn < 0 || ldn > LDN_MAX)
  203. return -EINVAL;
  204. if (ldn < 64) {
  205. mask_reg = LD_IM0(ldn);
  206. bits = LD_IM0_MASK;
  207. } else {
  208. mask_reg = LD_IM1(ldn - 64);
  209. bits = LD_IM1_MASK;
  210. }
  211. val = nr64(mask_reg);
  212. if (on)
  213. val &= ~bits;
  214. else
  215. val |= bits;
  216. nw64(mask_reg, val);
  217. return 0;
  218. }
  219. static int niu_enable_ldn_in_ldg(struct niu *np, struct niu_ldg *lp, int on)
  220. {
  221. struct niu_parent *parent = np->parent;
  222. int i;
  223. for (i = 0; i <= LDN_MAX; i++) {
  224. int err;
  225. if (parent->ldg_map[i] != lp->ldg_num)
  226. continue;
  227. err = niu_ldn_irq_enable(np, i, on);
  228. if (err)
  229. return err;
  230. }
  231. return 0;
  232. }
  233. static int niu_enable_interrupts(struct niu *np, int on)
  234. {
  235. int i;
  236. for (i = 0; i < np->num_ldg; i++) {
  237. struct niu_ldg *lp = &np->ldg[i];
  238. int err;
  239. err = niu_enable_ldn_in_ldg(np, lp, on);
  240. if (err)
  241. return err;
  242. }
  243. for (i = 0; i < np->num_ldg; i++)
  244. niu_ldg_rearm(np, &np->ldg[i], on);
  245. return 0;
  246. }
  247. static u32 phy_encode(u32 type, int port)
  248. {
  249. return (type << (port * 2));
  250. }
  251. static u32 phy_decode(u32 val, int port)
  252. {
  253. return (val >> (port * 2)) & PORT_TYPE_MASK;
  254. }
  255. static int mdio_wait(struct niu *np)
  256. {
  257. int limit = 1000;
  258. u64 val;
  259. while (--limit > 0) {
  260. val = nr64(MIF_FRAME_OUTPUT);
  261. if ((val >> MIF_FRAME_OUTPUT_TA_SHIFT) & 0x1)
  262. return val & MIF_FRAME_OUTPUT_DATA;
  263. udelay(10);
  264. }
  265. return -ENODEV;
  266. }
  267. static int mdio_read(struct niu *np, int port, int dev, int reg)
  268. {
  269. int err;
  270. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  271. err = mdio_wait(np);
  272. if (err < 0)
  273. return err;
  274. nw64(MIF_FRAME_OUTPUT, MDIO_READ_OP(port, dev));
  275. return mdio_wait(np);
  276. }
  277. static int mdio_write(struct niu *np, int port, int dev, int reg, int data)
  278. {
  279. int err;
  280. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  281. err = mdio_wait(np);
  282. if (err < 0)
  283. return err;
  284. nw64(MIF_FRAME_OUTPUT, MDIO_WRITE_OP(port, dev, data));
  285. err = mdio_wait(np);
  286. if (err < 0)
  287. return err;
  288. return 0;
  289. }
  290. static int mii_read(struct niu *np, int port, int reg)
  291. {
  292. nw64(MIF_FRAME_OUTPUT, MII_READ_OP(port, reg));
  293. return mdio_wait(np);
  294. }
  295. static int mii_write(struct niu *np, int port, int reg, int data)
  296. {
  297. int err;
  298. nw64(MIF_FRAME_OUTPUT, MII_WRITE_OP(port, reg, data));
  299. err = mdio_wait(np);
  300. if (err < 0)
  301. return err;
  302. return 0;
  303. }
  304. static int esr2_set_tx_cfg(struct niu *np, unsigned long channel, u32 val)
  305. {
  306. int err;
  307. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  308. ESR2_TI_PLL_TX_CFG_L(channel),
  309. val & 0xffff);
  310. if (!err)
  311. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  312. ESR2_TI_PLL_TX_CFG_H(channel),
  313. val >> 16);
  314. return err;
  315. }
  316. static int esr2_set_rx_cfg(struct niu *np, unsigned long channel, u32 val)
  317. {
  318. int err;
  319. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  320. ESR2_TI_PLL_RX_CFG_L(channel),
  321. val & 0xffff);
  322. if (!err)
  323. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  324. ESR2_TI_PLL_RX_CFG_H(channel),
  325. val >> 16);
  326. return err;
  327. }
  328. /* Mode is always 10G fiber. */
  329. static int serdes_init_niu_10g_fiber(struct niu *np)
  330. {
  331. struct niu_link_config *lp = &np->link_config;
  332. u32 tx_cfg, rx_cfg;
  333. unsigned long i;
  334. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
  335. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  336. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  337. PLL_RX_CFG_EQ_LP_ADAPTIVE);
  338. if (lp->loopback_mode == LOOPBACK_PHY) {
  339. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  340. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  341. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  342. tx_cfg |= PLL_TX_CFG_ENTEST;
  343. rx_cfg |= PLL_RX_CFG_ENTEST;
  344. }
  345. /* Initialize all 4 lanes of the SERDES. */
  346. for (i = 0; i < 4; i++) {
  347. int err = esr2_set_tx_cfg(np, i, tx_cfg);
  348. if (err)
  349. return err;
  350. }
  351. for (i = 0; i < 4; i++) {
  352. int err = esr2_set_rx_cfg(np, i, rx_cfg);
  353. if (err)
  354. return err;
  355. }
  356. return 0;
  357. }
  358. static int serdes_init_niu_1g_serdes(struct niu *np)
  359. {
  360. struct niu_link_config *lp = &np->link_config;
  361. u16 pll_cfg, pll_sts;
  362. int max_retry = 100;
  363. u64 uninitialized_var(sig), mask, val;
  364. u32 tx_cfg, rx_cfg;
  365. unsigned long i;
  366. int err;
  367. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV |
  368. PLL_TX_CFG_RATE_HALF);
  369. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  370. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  371. PLL_RX_CFG_RATE_HALF);
  372. if (np->port == 0)
  373. rx_cfg |= PLL_RX_CFG_EQ_LP_ADAPTIVE;
  374. if (lp->loopback_mode == LOOPBACK_PHY) {
  375. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  376. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  377. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  378. tx_cfg |= PLL_TX_CFG_ENTEST;
  379. rx_cfg |= PLL_RX_CFG_ENTEST;
  380. }
  381. /* Initialize PLL for 1G */
  382. pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_8X);
  383. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  384. ESR2_TI_PLL_CFG_L, pll_cfg);
  385. if (err) {
  386. dev_err(np->device, PFX "NIU Port %d "
  387. "serdes_init_niu_1g_serdes: "
  388. "mdio write to ESR2_TI_PLL_CFG_L failed", np->port);
  389. return err;
  390. }
  391. pll_sts = PLL_CFG_ENPLL;
  392. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  393. ESR2_TI_PLL_STS_L, pll_sts);
  394. if (err) {
  395. dev_err(np->device, PFX "NIU Port %d "
  396. "serdes_init_niu_1g_serdes: "
  397. "mdio write to ESR2_TI_PLL_STS_L failed", np->port);
  398. return err;
  399. }
  400. udelay(200);
  401. /* Initialize all 4 lanes of the SERDES. */
  402. for (i = 0; i < 4; i++) {
  403. err = esr2_set_tx_cfg(np, i, tx_cfg);
  404. if (err)
  405. return err;
  406. }
  407. for (i = 0; i < 4; i++) {
  408. err = esr2_set_rx_cfg(np, i, rx_cfg);
  409. if (err)
  410. return err;
  411. }
  412. switch (np->port) {
  413. case 0:
  414. val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0);
  415. mask = val;
  416. break;
  417. case 1:
  418. val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1);
  419. mask = val;
  420. break;
  421. default:
  422. return -EINVAL;
  423. }
  424. while (max_retry--) {
  425. sig = nr64(ESR_INT_SIGNALS);
  426. if ((sig & mask) == val)
  427. break;
  428. mdelay(500);
  429. }
  430. if ((sig & mask) != val) {
  431. dev_err(np->device, PFX "Port %u signal bits [%08x] are not "
  432. "[%08x]\n", np->port, (int) (sig & mask), (int) val);
  433. return -ENODEV;
  434. }
  435. return 0;
  436. }
  437. static int serdes_init_niu_10g_serdes(struct niu *np)
  438. {
  439. struct niu_link_config *lp = &np->link_config;
  440. u32 tx_cfg, rx_cfg, pll_cfg, pll_sts;
  441. int max_retry = 100;
  442. u64 uninitialized_var(sig), mask, val;
  443. unsigned long i;
  444. int err;
  445. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
  446. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  447. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  448. PLL_RX_CFG_EQ_LP_ADAPTIVE);
  449. if (lp->loopback_mode == LOOPBACK_PHY) {
  450. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  451. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  452. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  453. tx_cfg |= PLL_TX_CFG_ENTEST;
  454. rx_cfg |= PLL_RX_CFG_ENTEST;
  455. }
  456. /* Initialize PLL for 10G */
  457. pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_10X);
  458. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  459. ESR2_TI_PLL_CFG_L, pll_cfg & 0xffff);
  460. if (err) {
  461. dev_err(np->device, PFX "NIU Port %d "
  462. "serdes_init_niu_10g_serdes: "
  463. "mdio write to ESR2_TI_PLL_CFG_L failed", np->port);
  464. return err;
  465. }
  466. pll_sts = PLL_CFG_ENPLL;
  467. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  468. ESR2_TI_PLL_STS_L, pll_sts & 0xffff);
  469. if (err) {
  470. dev_err(np->device, PFX "NIU Port %d "
  471. "serdes_init_niu_10g_serdes: "
  472. "mdio write to ESR2_TI_PLL_STS_L failed", np->port);
  473. return err;
  474. }
  475. udelay(200);
  476. /* Initialize all 4 lanes of the SERDES. */
  477. for (i = 0; i < 4; i++) {
  478. err = esr2_set_tx_cfg(np, i, tx_cfg);
  479. if (err)
  480. return err;
  481. }
  482. for (i = 0; i < 4; i++) {
  483. err = esr2_set_rx_cfg(np, i, rx_cfg);
  484. if (err)
  485. return err;
  486. }
  487. /* check if serdes is ready */
  488. switch (np->port) {
  489. case 0:
  490. mask = ESR_INT_SIGNALS_P0_BITS;
  491. val = (ESR_INT_SRDY0_P0 |
  492. ESR_INT_DET0_P0 |
  493. ESR_INT_XSRDY_P0 |
  494. ESR_INT_XDP_P0_CH3 |
  495. ESR_INT_XDP_P0_CH2 |
  496. ESR_INT_XDP_P0_CH1 |
  497. ESR_INT_XDP_P0_CH0);
  498. break;
  499. case 1:
  500. mask = ESR_INT_SIGNALS_P1_BITS;
  501. val = (ESR_INT_SRDY0_P1 |
  502. ESR_INT_DET0_P1 |
  503. ESR_INT_XSRDY_P1 |
  504. ESR_INT_XDP_P1_CH3 |
  505. ESR_INT_XDP_P1_CH2 |
  506. ESR_INT_XDP_P1_CH1 |
  507. ESR_INT_XDP_P1_CH0);
  508. break;
  509. default:
  510. return -EINVAL;
  511. }
  512. while (max_retry--) {
  513. sig = nr64(ESR_INT_SIGNALS);
  514. if ((sig & mask) == val)
  515. break;
  516. mdelay(500);
  517. }
  518. if ((sig & mask) != val) {
  519. pr_info(PFX "NIU Port %u signal bits [%08x] are not "
  520. "[%08x] for 10G...trying 1G\n",
  521. np->port, (int) (sig & mask), (int) val);
  522. /* 10G failed, try initializing at 1G */
  523. err = serdes_init_niu_1g_serdes(np);
  524. if (!err) {
  525. np->flags &= ~NIU_FLAGS_10G;
  526. np->mac_xcvr = MAC_XCVR_PCS;
  527. } else {
  528. dev_err(np->device, PFX "Port %u 10G/1G SERDES "
  529. "Link Failed \n", np->port);
  530. return -ENODEV;
  531. }
  532. }
  533. return 0;
  534. }
  535. static int esr_read_rxtx_ctrl(struct niu *np, unsigned long chan, u32 *val)
  536. {
  537. int err;
  538. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR, ESR_RXTX_CTRL_L(chan));
  539. if (err >= 0) {
  540. *val = (err & 0xffff);
  541. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  542. ESR_RXTX_CTRL_H(chan));
  543. if (err >= 0)
  544. *val |= ((err & 0xffff) << 16);
  545. err = 0;
  546. }
  547. return err;
  548. }
  549. static int esr_read_glue0(struct niu *np, unsigned long chan, u32 *val)
  550. {
  551. int err;
  552. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  553. ESR_GLUE_CTRL0_L(chan));
  554. if (err >= 0) {
  555. *val = (err & 0xffff);
  556. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  557. ESR_GLUE_CTRL0_H(chan));
  558. if (err >= 0) {
  559. *val |= ((err & 0xffff) << 16);
  560. err = 0;
  561. }
  562. }
  563. return err;
  564. }
  565. static int esr_read_reset(struct niu *np, u32 *val)
  566. {
  567. int err;
  568. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  569. ESR_RXTX_RESET_CTRL_L);
  570. if (err >= 0) {
  571. *val = (err & 0xffff);
  572. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  573. ESR_RXTX_RESET_CTRL_H);
  574. if (err >= 0) {
  575. *val |= ((err & 0xffff) << 16);
  576. err = 0;
  577. }
  578. }
  579. return err;
  580. }
  581. static int esr_write_rxtx_ctrl(struct niu *np, unsigned long chan, u32 val)
  582. {
  583. int err;
  584. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  585. ESR_RXTX_CTRL_L(chan), val & 0xffff);
  586. if (!err)
  587. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  588. ESR_RXTX_CTRL_H(chan), (val >> 16));
  589. return err;
  590. }
  591. static int esr_write_glue0(struct niu *np, unsigned long chan, u32 val)
  592. {
  593. int err;
  594. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  595. ESR_GLUE_CTRL0_L(chan), val & 0xffff);
  596. if (!err)
  597. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  598. ESR_GLUE_CTRL0_H(chan), (val >> 16));
  599. return err;
  600. }
  601. static int esr_reset(struct niu *np)
  602. {
  603. u32 uninitialized_var(reset);
  604. int err;
  605. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  606. ESR_RXTX_RESET_CTRL_L, 0x0000);
  607. if (err)
  608. return err;
  609. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  610. ESR_RXTX_RESET_CTRL_H, 0xffff);
  611. if (err)
  612. return err;
  613. udelay(200);
  614. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  615. ESR_RXTX_RESET_CTRL_L, 0xffff);
  616. if (err)
  617. return err;
  618. udelay(200);
  619. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  620. ESR_RXTX_RESET_CTRL_H, 0x0000);
  621. if (err)
  622. return err;
  623. udelay(200);
  624. err = esr_read_reset(np, &reset);
  625. if (err)
  626. return err;
  627. if (reset != 0) {
  628. dev_err(np->device, PFX "Port %u ESR_RESET "
  629. "did not clear [%08x]\n",
  630. np->port, reset);
  631. return -ENODEV;
  632. }
  633. return 0;
  634. }
  635. static int serdes_init_10g(struct niu *np)
  636. {
  637. struct niu_link_config *lp = &np->link_config;
  638. unsigned long ctrl_reg, test_cfg_reg, i;
  639. u64 ctrl_val, test_cfg_val, sig, mask, val;
  640. int err;
  641. switch (np->port) {
  642. case 0:
  643. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  644. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  645. break;
  646. case 1:
  647. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  648. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  649. break;
  650. default:
  651. return -EINVAL;
  652. }
  653. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  654. ENET_SERDES_CTRL_SDET_1 |
  655. ENET_SERDES_CTRL_SDET_2 |
  656. ENET_SERDES_CTRL_SDET_3 |
  657. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  658. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  659. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  660. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  661. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  662. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  663. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  664. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  665. test_cfg_val = 0;
  666. if (lp->loopback_mode == LOOPBACK_PHY) {
  667. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  668. ENET_SERDES_TEST_MD_0_SHIFT) |
  669. (ENET_TEST_MD_PAD_LOOPBACK <<
  670. ENET_SERDES_TEST_MD_1_SHIFT) |
  671. (ENET_TEST_MD_PAD_LOOPBACK <<
  672. ENET_SERDES_TEST_MD_2_SHIFT) |
  673. (ENET_TEST_MD_PAD_LOOPBACK <<
  674. ENET_SERDES_TEST_MD_3_SHIFT));
  675. }
  676. nw64(ctrl_reg, ctrl_val);
  677. nw64(test_cfg_reg, test_cfg_val);
  678. /* Initialize all 4 lanes of the SERDES. */
  679. for (i = 0; i < 4; i++) {
  680. u32 rxtx_ctrl, glue0;
  681. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  682. if (err)
  683. return err;
  684. err = esr_read_glue0(np, i, &glue0);
  685. if (err)
  686. return err;
  687. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  688. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  689. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  690. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  691. ESR_GLUE_CTRL0_THCNT |
  692. ESR_GLUE_CTRL0_BLTIME);
  693. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  694. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  695. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  696. (BLTIME_300_CYCLES <<
  697. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  698. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  699. if (err)
  700. return err;
  701. err = esr_write_glue0(np, i, glue0);
  702. if (err)
  703. return err;
  704. }
  705. err = esr_reset(np);
  706. if (err)
  707. return err;
  708. sig = nr64(ESR_INT_SIGNALS);
  709. switch (np->port) {
  710. case 0:
  711. mask = ESR_INT_SIGNALS_P0_BITS;
  712. val = (ESR_INT_SRDY0_P0 |
  713. ESR_INT_DET0_P0 |
  714. ESR_INT_XSRDY_P0 |
  715. ESR_INT_XDP_P0_CH3 |
  716. ESR_INT_XDP_P0_CH2 |
  717. ESR_INT_XDP_P0_CH1 |
  718. ESR_INT_XDP_P0_CH0);
  719. break;
  720. case 1:
  721. mask = ESR_INT_SIGNALS_P1_BITS;
  722. val = (ESR_INT_SRDY0_P1 |
  723. ESR_INT_DET0_P1 |
  724. ESR_INT_XSRDY_P1 |
  725. ESR_INT_XDP_P1_CH3 |
  726. ESR_INT_XDP_P1_CH2 |
  727. ESR_INT_XDP_P1_CH1 |
  728. ESR_INT_XDP_P1_CH0);
  729. break;
  730. default:
  731. return -EINVAL;
  732. }
  733. if ((sig & mask) != val) {
  734. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  735. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  736. return 0;
  737. }
  738. dev_err(np->device, PFX "Port %u signal bits [%08x] are not "
  739. "[%08x]\n", np->port, (int) (sig & mask), (int) val);
  740. return -ENODEV;
  741. }
  742. if (np->flags & NIU_FLAGS_HOTPLUG_PHY)
  743. np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  744. return 0;
  745. }
  746. static int serdes_init_1g(struct niu *np)
  747. {
  748. u64 val;
  749. val = nr64(ENET_SERDES_1_PLL_CFG);
  750. val &= ~ENET_SERDES_PLL_FBDIV2;
  751. switch (np->port) {
  752. case 0:
  753. val |= ENET_SERDES_PLL_HRATE0;
  754. break;
  755. case 1:
  756. val |= ENET_SERDES_PLL_HRATE1;
  757. break;
  758. case 2:
  759. val |= ENET_SERDES_PLL_HRATE2;
  760. break;
  761. case 3:
  762. val |= ENET_SERDES_PLL_HRATE3;
  763. break;
  764. default:
  765. return -EINVAL;
  766. }
  767. nw64(ENET_SERDES_1_PLL_CFG, val);
  768. return 0;
  769. }
  770. static int serdes_init_1g_serdes(struct niu *np)
  771. {
  772. struct niu_link_config *lp = &np->link_config;
  773. unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
  774. u64 ctrl_val, test_cfg_val, sig, mask, val;
  775. int err;
  776. u64 reset_val, val_rd;
  777. val = ENET_SERDES_PLL_HRATE0 | ENET_SERDES_PLL_HRATE1 |
  778. ENET_SERDES_PLL_HRATE2 | ENET_SERDES_PLL_HRATE3 |
  779. ENET_SERDES_PLL_FBDIV0;
  780. switch (np->port) {
  781. case 0:
  782. reset_val = ENET_SERDES_RESET_0;
  783. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  784. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  785. pll_cfg = ENET_SERDES_0_PLL_CFG;
  786. break;
  787. case 1:
  788. reset_val = ENET_SERDES_RESET_1;
  789. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  790. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  791. pll_cfg = ENET_SERDES_1_PLL_CFG;
  792. break;
  793. default:
  794. return -EINVAL;
  795. }
  796. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  797. ENET_SERDES_CTRL_SDET_1 |
  798. ENET_SERDES_CTRL_SDET_2 |
  799. ENET_SERDES_CTRL_SDET_3 |
  800. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  801. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  802. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  803. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  804. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  805. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  806. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  807. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  808. test_cfg_val = 0;
  809. if (lp->loopback_mode == LOOPBACK_PHY) {
  810. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  811. ENET_SERDES_TEST_MD_0_SHIFT) |
  812. (ENET_TEST_MD_PAD_LOOPBACK <<
  813. ENET_SERDES_TEST_MD_1_SHIFT) |
  814. (ENET_TEST_MD_PAD_LOOPBACK <<
  815. ENET_SERDES_TEST_MD_2_SHIFT) |
  816. (ENET_TEST_MD_PAD_LOOPBACK <<
  817. ENET_SERDES_TEST_MD_3_SHIFT));
  818. }
  819. nw64(ENET_SERDES_RESET, reset_val);
  820. mdelay(20);
  821. val_rd = nr64(ENET_SERDES_RESET);
  822. val_rd &= ~reset_val;
  823. nw64(pll_cfg, val);
  824. nw64(ctrl_reg, ctrl_val);
  825. nw64(test_cfg_reg, test_cfg_val);
  826. nw64(ENET_SERDES_RESET, val_rd);
  827. mdelay(2000);
  828. /* Initialize all 4 lanes of the SERDES. */
  829. for (i = 0; i < 4; i++) {
  830. u32 rxtx_ctrl, glue0;
  831. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  832. if (err)
  833. return err;
  834. err = esr_read_glue0(np, i, &glue0);
  835. if (err)
  836. return err;
  837. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  838. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  839. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  840. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  841. ESR_GLUE_CTRL0_THCNT |
  842. ESR_GLUE_CTRL0_BLTIME);
  843. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  844. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  845. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  846. (BLTIME_300_CYCLES <<
  847. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  848. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  849. if (err)
  850. return err;
  851. err = esr_write_glue0(np, i, glue0);
  852. if (err)
  853. return err;
  854. }
  855. sig = nr64(ESR_INT_SIGNALS);
  856. switch (np->port) {
  857. case 0:
  858. val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0);
  859. mask = val;
  860. break;
  861. case 1:
  862. val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1);
  863. mask = val;
  864. break;
  865. default:
  866. return -EINVAL;
  867. }
  868. if ((sig & mask) != val) {
  869. dev_err(np->device, PFX "Port %u signal bits [%08x] are not "
  870. "[%08x]\n", np->port, (int) (sig & mask), (int) val);
  871. return -ENODEV;
  872. }
  873. return 0;
  874. }
  875. static int link_status_1g_serdes(struct niu *np, int *link_up_p)
  876. {
  877. struct niu_link_config *lp = &np->link_config;
  878. int link_up;
  879. u64 val;
  880. u16 current_speed;
  881. unsigned long flags;
  882. u8 current_duplex;
  883. link_up = 0;
  884. current_speed = SPEED_INVALID;
  885. current_duplex = DUPLEX_INVALID;
  886. spin_lock_irqsave(&np->lock, flags);
  887. val = nr64_pcs(PCS_MII_STAT);
  888. if (val & PCS_MII_STAT_LINK_STATUS) {
  889. link_up = 1;
  890. current_speed = SPEED_1000;
  891. current_duplex = DUPLEX_FULL;
  892. }
  893. lp->active_speed = current_speed;
  894. lp->active_duplex = current_duplex;
  895. spin_unlock_irqrestore(&np->lock, flags);
  896. *link_up_p = link_up;
  897. return 0;
  898. }
  899. static int link_status_10g_serdes(struct niu *np, int *link_up_p)
  900. {
  901. unsigned long flags;
  902. struct niu_link_config *lp = &np->link_config;
  903. int link_up = 0;
  904. int link_ok = 1;
  905. u64 val, val2;
  906. u16 current_speed;
  907. u8 current_duplex;
  908. if (!(np->flags & NIU_FLAGS_10G))
  909. return link_status_1g_serdes(np, link_up_p);
  910. current_speed = SPEED_INVALID;
  911. current_duplex = DUPLEX_INVALID;
  912. spin_lock_irqsave(&np->lock, flags);
  913. val = nr64_xpcs(XPCS_STATUS(0));
  914. val2 = nr64_mac(XMAC_INTER2);
  915. if (val2 & 0x01000000)
  916. link_ok = 0;
  917. if ((val & 0x1000ULL) && link_ok) {
  918. link_up = 1;
  919. current_speed = SPEED_10000;
  920. current_duplex = DUPLEX_FULL;
  921. }
  922. lp->active_speed = current_speed;
  923. lp->active_duplex = current_duplex;
  924. spin_unlock_irqrestore(&np->lock, flags);
  925. *link_up_p = link_up;
  926. return 0;
  927. }
  928. static int link_status_1g_rgmii(struct niu *np, int *link_up_p)
  929. {
  930. struct niu_link_config *lp = &np->link_config;
  931. u16 current_speed, bmsr;
  932. unsigned long flags;
  933. u8 current_duplex;
  934. int err, link_up;
  935. link_up = 0;
  936. current_speed = SPEED_INVALID;
  937. current_duplex = DUPLEX_INVALID;
  938. spin_lock_irqsave(&np->lock, flags);
  939. err = -EINVAL;
  940. err = mii_read(np, np->phy_addr, MII_BMSR);
  941. if (err < 0)
  942. goto out;
  943. bmsr = err;
  944. if (bmsr & BMSR_LSTATUS) {
  945. u16 adv, lpa, common, estat;
  946. err = mii_read(np, np->phy_addr, MII_ADVERTISE);
  947. if (err < 0)
  948. goto out;
  949. adv = err;
  950. err = mii_read(np, np->phy_addr, MII_LPA);
  951. if (err < 0)
  952. goto out;
  953. lpa = err;
  954. common = adv & lpa;
  955. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  956. if (err < 0)
  957. goto out;
  958. estat = err;
  959. link_up = 1;
  960. current_speed = SPEED_1000;
  961. current_duplex = DUPLEX_FULL;
  962. }
  963. lp->active_speed = current_speed;
  964. lp->active_duplex = current_duplex;
  965. err = 0;
  966. out:
  967. spin_unlock_irqrestore(&np->lock, flags);
  968. *link_up_p = link_up;
  969. return err;
  970. }
  971. static int bcm8704_reset(struct niu *np)
  972. {
  973. int err, limit;
  974. err = mdio_read(np, np->phy_addr,
  975. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  976. if (err < 0)
  977. return err;
  978. err |= BMCR_RESET;
  979. err = mdio_write(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  980. MII_BMCR, err);
  981. if (err)
  982. return err;
  983. limit = 1000;
  984. while (--limit >= 0) {
  985. err = mdio_read(np, np->phy_addr,
  986. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  987. if (err < 0)
  988. return err;
  989. if (!(err & BMCR_RESET))
  990. break;
  991. }
  992. if (limit < 0) {
  993. dev_err(np->device, PFX "Port %u PHY will not reset "
  994. "(bmcr=%04x)\n", np->port, (err & 0xffff));
  995. return -ENODEV;
  996. }
  997. return 0;
  998. }
  999. /* When written, certain PHY registers need to be read back twice
  1000. * in order for the bits to settle properly.
  1001. */
  1002. static int bcm8704_user_dev3_readback(struct niu *np, int reg)
  1003. {
  1004. int err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  1005. if (err < 0)
  1006. return err;
  1007. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  1008. if (err < 0)
  1009. return err;
  1010. return 0;
  1011. }
  1012. static int bcm8706_init_user_dev3(struct niu *np)
  1013. {
  1014. int err;
  1015. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1016. BCM8704_USER_OPT_DIGITAL_CTRL);
  1017. if (err < 0)
  1018. return err;
  1019. err &= ~USER_ODIG_CTRL_GPIOS;
  1020. err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
  1021. err |= USER_ODIG_CTRL_RESV2;
  1022. err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1023. BCM8704_USER_OPT_DIGITAL_CTRL, err);
  1024. if (err)
  1025. return err;
  1026. mdelay(1000);
  1027. return 0;
  1028. }
  1029. static int bcm8704_init_user_dev3(struct niu *np)
  1030. {
  1031. int err;
  1032. err = mdio_write(np, np->phy_addr,
  1033. BCM8704_USER_DEV3_ADDR, BCM8704_USER_CONTROL,
  1034. (USER_CONTROL_OPTXRST_LVL |
  1035. USER_CONTROL_OPBIASFLT_LVL |
  1036. USER_CONTROL_OBTMPFLT_LVL |
  1037. USER_CONTROL_OPPRFLT_LVL |
  1038. USER_CONTROL_OPTXFLT_LVL |
  1039. USER_CONTROL_OPRXLOS_LVL |
  1040. USER_CONTROL_OPRXFLT_LVL |
  1041. USER_CONTROL_OPTXON_LVL |
  1042. (0x3f << USER_CONTROL_RES1_SHIFT)));
  1043. if (err)
  1044. return err;
  1045. err = mdio_write(np, np->phy_addr,
  1046. BCM8704_USER_DEV3_ADDR, BCM8704_USER_PMD_TX_CONTROL,
  1047. (USER_PMD_TX_CTL_XFP_CLKEN |
  1048. (1 << USER_PMD_TX_CTL_TX_DAC_TXD_SH) |
  1049. (2 << USER_PMD_TX_CTL_TX_DAC_TXCK_SH) |
  1050. USER_PMD_TX_CTL_TSCK_LPWREN));
  1051. if (err)
  1052. return err;
  1053. err = bcm8704_user_dev3_readback(np, BCM8704_USER_CONTROL);
  1054. if (err)
  1055. return err;
  1056. err = bcm8704_user_dev3_readback(np, BCM8704_USER_PMD_TX_CONTROL);
  1057. if (err)
  1058. return err;
  1059. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1060. BCM8704_USER_OPT_DIGITAL_CTRL);
  1061. if (err < 0)
  1062. return err;
  1063. err &= ~USER_ODIG_CTRL_GPIOS;
  1064. err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
  1065. err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1066. BCM8704_USER_OPT_DIGITAL_CTRL, err);
  1067. if (err)
  1068. return err;
  1069. mdelay(1000);
  1070. return 0;
  1071. }
  1072. static int mrvl88x2011_act_led(struct niu *np, int val)
  1073. {
  1074. int err;
  1075. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1076. MRVL88X2011_LED_8_TO_11_CTL);
  1077. if (err < 0)
  1078. return err;
  1079. err &= ~MRVL88X2011_LED(MRVL88X2011_LED_ACT,MRVL88X2011_LED_CTL_MASK);
  1080. err |= MRVL88X2011_LED(MRVL88X2011_LED_ACT,val);
  1081. return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1082. MRVL88X2011_LED_8_TO_11_CTL, err);
  1083. }
  1084. static int mrvl88x2011_led_blink_rate(struct niu *np, int rate)
  1085. {
  1086. int err;
  1087. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1088. MRVL88X2011_LED_BLINK_CTL);
  1089. if (err >= 0) {
  1090. err &= ~MRVL88X2011_LED_BLKRATE_MASK;
  1091. err |= (rate << 4);
  1092. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1093. MRVL88X2011_LED_BLINK_CTL, err);
  1094. }
  1095. return err;
  1096. }
  1097. static int xcvr_init_10g_mrvl88x2011(struct niu *np)
  1098. {
  1099. int err;
  1100. /* Set LED functions */
  1101. err = mrvl88x2011_led_blink_rate(np, MRVL88X2011_LED_BLKRATE_134MS);
  1102. if (err)
  1103. return err;
  1104. /* led activity */
  1105. err = mrvl88x2011_act_led(np, MRVL88X2011_LED_CTL_OFF);
  1106. if (err)
  1107. return err;
  1108. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1109. MRVL88X2011_GENERAL_CTL);
  1110. if (err < 0)
  1111. return err;
  1112. err |= MRVL88X2011_ENA_XFPREFCLK;
  1113. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1114. MRVL88X2011_GENERAL_CTL, err);
  1115. if (err < 0)
  1116. return err;
  1117. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1118. MRVL88X2011_PMA_PMD_CTL_1);
  1119. if (err < 0)
  1120. return err;
  1121. if (np->link_config.loopback_mode == LOOPBACK_MAC)
  1122. err |= MRVL88X2011_LOOPBACK;
  1123. else
  1124. err &= ~MRVL88X2011_LOOPBACK;
  1125. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1126. MRVL88X2011_PMA_PMD_CTL_1, err);
  1127. if (err < 0)
  1128. return err;
  1129. /* Enable PMD */
  1130. return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1131. MRVL88X2011_10G_PMD_TX_DIS, MRVL88X2011_ENA_PMDTX);
  1132. }
  1133. static int xcvr_diag_bcm870x(struct niu *np)
  1134. {
  1135. u16 analog_stat0, tx_alarm_status;
  1136. int err = 0;
  1137. #if 1
  1138. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1139. MII_STAT1000);
  1140. if (err < 0)
  1141. return err;
  1142. pr_info(PFX "Port %u PMA_PMD(MII_STAT1000) [%04x]\n",
  1143. np->port, err);
  1144. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, 0x20);
  1145. if (err < 0)
  1146. return err;
  1147. pr_info(PFX "Port %u USER_DEV3(0x20) [%04x]\n",
  1148. np->port, err);
  1149. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1150. MII_NWAYTEST);
  1151. if (err < 0)
  1152. return err;
  1153. pr_info(PFX "Port %u PHYXS(MII_NWAYTEST) [%04x]\n",
  1154. np->port, err);
  1155. #endif
  1156. /* XXX dig this out it might not be so useful XXX */
  1157. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1158. BCM8704_USER_ANALOG_STATUS0);
  1159. if (err < 0)
  1160. return err;
  1161. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1162. BCM8704_USER_ANALOG_STATUS0);
  1163. if (err < 0)
  1164. return err;
  1165. analog_stat0 = err;
  1166. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1167. BCM8704_USER_TX_ALARM_STATUS);
  1168. if (err < 0)
  1169. return err;
  1170. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1171. BCM8704_USER_TX_ALARM_STATUS);
  1172. if (err < 0)
  1173. return err;
  1174. tx_alarm_status = err;
  1175. if (analog_stat0 != 0x03fc) {
  1176. if ((analog_stat0 == 0x43bc) && (tx_alarm_status != 0)) {
  1177. pr_info(PFX "Port %u cable not connected "
  1178. "or bad cable.\n", np->port);
  1179. } else if (analog_stat0 == 0x639c) {
  1180. pr_info(PFX "Port %u optical module is bad "
  1181. "or missing.\n", np->port);
  1182. }
  1183. }
  1184. return 0;
  1185. }
  1186. static int xcvr_10g_set_lb_bcm870x(struct niu *np)
  1187. {
  1188. struct niu_link_config *lp = &np->link_config;
  1189. int err;
  1190. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1191. MII_BMCR);
  1192. if (err < 0)
  1193. return err;
  1194. err &= ~BMCR_LOOPBACK;
  1195. if (lp->loopback_mode == LOOPBACK_MAC)
  1196. err |= BMCR_LOOPBACK;
  1197. err = mdio_write(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1198. MII_BMCR, err);
  1199. if (err)
  1200. return err;
  1201. return 0;
  1202. }
  1203. static int xcvr_init_10g_bcm8706(struct niu *np)
  1204. {
  1205. int err = 0;
  1206. u64 val;
  1207. if ((np->flags & NIU_FLAGS_HOTPLUG_PHY) &&
  1208. (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) == 0)
  1209. return err;
  1210. val = nr64_mac(XMAC_CONFIG);
  1211. val &= ~XMAC_CONFIG_LED_POLARITY;
  1212. val |= XMAC_CONFIG_FORCE_LED_ON;
  1213. nw64_mac(XMAC_CONFIG, val);
  1214. val = nr64(MIF_CONFIG);
  1215. val |= MIF_CONFIG_INDIRECT_MODE;
  1216. nw64(MIF_CONFIG, val);
  1217. err = bcm8704_reset(np);
  1218. if (err)
  1219. return err;
  1220. err = xcvr_10g_set_lb_bcm870x(np);
  1221. if (err)
  1222. return err;
  1223. err = bcm8706_init_user_dev3(np);
  1224. if (err)
  1225. return err;
  1226. err = xcvr_diag_bcm870x(np);
  1227. if (err)
  1228. return err;
  1229. return 0;
  1230. }
  1231. static int xcvr_init_10g_bcm8704(struct niu *np)
  1232. {
  1233. int err;
  1234. err = bcm8704_reset(np);
  1235. if (err)
  1236. return err;
  1237. err = bcm8704_init_user_dev3(np);
  1238. if (err)
  1239. return err;
  1240. err = xcvr_10g_set_lb_bcm870x(np);
  1241. if (err)
  1242. return err;
  1243. err = xcvr_diag_bcm870x(np);
  1244. if (err)
  1245. return err;
  1246. return 0;
  1247. }
  1248. static int xcvr_init_10g(struct niu *np)
  1249. {
  1250. int phy_id, err;
  1251. u64 val;
  1252. val = nr64_mac(XMAC_CONFIG);
  1253. val &= ~XMAC_CONFIG_LED_POLARITY;
  1254. val |= XMAC_CONFIG_FORCE_LED_ON;
  1255. nw64_mac(XMAC_CONFIG, val);
  1256. /* XXX shared resource, lock parent XXX */
  1257. val = nr64(MIF_CONFIG);
  1258. val |= MIF_CONFIG_INDIRECT_MODE;
  1259. nw64(MIF_CONFIG, val);
  1260. phy_id = phy_decode(np->parent->port_phy, np->port);
  1261. phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
  1262. /* handle different phy types */
  1263. switch (phy_id & NIU_PHY_ID_MASK) {
  1264. case NIU_PHY_ID_MRVL88X2011:
  1265. err = xcvr_init_10g_mrvl88x2011(np);
  1266. break;
  1267. default: /* bcom 8704 */
  1268. err = xcvr_init_10g_bcm8704(np);
  1269. break;
  1270. }
  1271. return 0;
  1272. }
  1273. static int mii_reset(struct niu *np)
  1274. {
  1275. int limit, err;
  1276. err = mii_write(np, np->phy_addr, MII_BMCR, BMCR_RESET);
  1277. if (err)
  1278. return err;
  1279. limit = 1000;
  1280. while (--limit >= 0) {
  1281. udelay(500);
  1282. err = mii_read(np, np->phy_addr, MII_BMCR);
  1283. if (err < 0)
  1284. return err;
  1285. if (!(err & BMCR_RESET))
  1286. break;
  1287. }
  1288. if (limit < 0) {
  1289. dev_err(np->device, PFX "Port %u MII would not reset, "
  1290. "bmcr[%04x]\n", np->port, err);
  1291. return -ENODEV;
  1292. }
  1293. return 0;
  1294. }
  1295. static int xcvr_init_1g_rgmii(struct niu *np)
  1296. {
  1297. int err;
  1298. u64 val;
  1299. u16 bmcr, bmsr, estat;
  1300. val = nr64(MIF_CONFIG);
  1301. val &= ~MIF_CONFIG_INDIRECT_MODE;
  1302. nw64(MIF_CONFIG, val);
  1303. err = mii_reset(np);
  1304. if (err)
  1305. return err;
  1306. err = mii_read(np, np->phy_addr, MII_BMSR);
  1307. if (err < 0)
  1308. return err;
  1309. bmsr = err;
  1310. estat = 0;
  1311. if (bmsr & BMSR_ESTATEN) {
  1312. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1313. if (err < 0)
  1314. return err;
  1315. estat = err;
  1316. }
  1317. bmcr = 0;
  1318. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1319. if (err)
  1320. return err;
  1321. if (bmsr & BMSR_ESTATEN) {
  1322. u16 ctrl1000 = 0;
  1323. if (estat & ESTATUS_1000_TFULL)
  1324. ctrl1000 |= ADVERTISE_1000FULL;
  1325. err = mii_write(np, np->phy_addr, MII_CTRL1000, ctrl1000);
  1326. if (err)
  1327. return err;
  1328. }
  1329. bmcr = (BMCR_SPEED1000 | BMCR_FULLDPLX);
  1330. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1331. if (err)
  1332. return err;
  1333. err = mii_read(np, np->phy_addr, MII_BMCR);
  1334. if (err < 0)
  1335. return err;
  1336. bmcr = mii_read(np, np->phy_addr, MII_BMCR);
  1337. err = mii_read(np, np->phy_addr, MII_BMSR);
  1338. if (err < 0)
  1339. return err;
  1340. return 0;
  1341. }
  1342. static int mii_init_common(struct niu *np)
  1343. {
  1344. struct niu_link_config *lp = &np->link_config;
  1345. u16 bmcr, bmsr, adv, estat;
  1346. int err;
  1347. err = mii_reset(np);
  1348. if (err)
  1349. return err;
  1350. err = mii_read(np, np->phy_addr, MII_BMSR);
  1351. if (err < 0)
  1352. return err;
  1353. bmsr = err;
  1354. estat = 0;
  1355. if (bmsr & BMSR_ESTATEN) {
  1356. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1357. if (err < 0)
  1358. return err;
  1359. estat = err;
  1360. }
  1361. bmcr = 0;
  1362. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1363. if (err)
  1364. return err;
  1365. if (lp->loopback_mode == LOOPBACK_MAC) {
  1366. bmcr |= BMCR_LOOPBACK;
  1367. if (lp->active_speed == SPEED_1000)
  1368. bmcr |= BMCR_SPEED1000;
  1369. if (lp->active_duplex == DUPLEX_FULL)
  1370. bmcr |= BMCR_FULLDPLX;
  1371. }
  1372. if (lp->loopback_mode == LOOPBACK_PHY) {
  1373. u16 aux;
  1374. aux = (BCM5464R_AUX_CTL_EXT_LB |
  1375. BCM5464R_AUX_CTL_WRITE_1);
  1376. err = mii_write(np, np->phy_addr, BCM5464R_AUX_CTL, aux);
  1377. if (err)
  1378. return err;
  1379. }
  1380. /* XXX configurable XXX */
  1381. /* XXX for now don't advertise half-duplex or asym pause... XXX */
  1382. adv = ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP;
  1383. if (bmsr & BMSR_10FULL)
  1384. adv |= ADVERTISE_10FULL;
  1385. if (bmsr & BMSR_100FULL)
  1386. adv |= ADVERTISE_100FULL;
  1387. err = mii_write(np, np->phy_addr, MII_ADVERTISE, adv);
  1388. if (err)
  1389. return err;
  1390. if (bmsr & BMSR_ESTATEN) {
  1391. u16 ctrl1000 = 0;
  1392. if (estat & ESTATUS_1000_TFULL)
  1393. ctrl1000 |= ADVERTISE_1000FULL;
  1394. err = mii_write(np, np->phy_addr, MII_CTRL1000, ctrl1000);
  1395. if (err)
  1396. return err;
  1397. }
  1398. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  1399. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1400. if (err)
  1401. return err;
  1402. err = mii_read(np, np->phy_addr, MII_BMCR);
  1403. if (err < 0)
  1404. return err;
  1405. err = mii_read(np, np->phy_addr, MII_BMSR);
  1406. if (err < 0)
  1407. return err;
  1408. #if 0
  1409. pr_info(PFX "Port %u after MII init bmcr[%04x] bmsr[%04x]\n",
  1410. np->port, bmcr, bmsr);
  1411. #endif
  1412. return 0;
  1413. }
  1414. static int xcvr_init_1g(struct niu *np)
  1415. {
  1416. u64 val;
  1417. /* XXX shared resource, lock parent XXX */
  1418. val = nr64(MIF_CONFIG);
  1419. val &= ~MIF_CONFIG_INDIRECT_MODE;
  1420. nw64(MIF_CONFIG, val);
  1421. return mii_init_common(np);
  1422. }
  1423. static int niu_xcvr_init(struct niu *np)
  1424. {
  1425. const struct niu_phy_ops *ops = np->phy_ops;
  1426. int err;
  1427. err = 0;
  1428. if (ops->xcvr_init)
  1429. err = ops->xcvr_init(np);
  1430. return err;
  1431. }
  1432. static int niu_serdes_init(struct niu *np)
  1433. {
  1434. const struct niu_phy_ops *ops = np->phy_ops;
  1435. int err;
  1436. err = 0;
  1437. if (ops->serdes_init)
  1438. err = ops->serdes_init(np);
  1439. return err;
  1440. }
  1441. static void niu_init_xif(struct niu *);
  1442. static void niu_handle_led(struct niu *, int status);
  1443. static int niu_link_status_common(struct niu *np, int link_up)
  1444. {
  1445. struct niu_link_config *lp = &np->link_config;
  1446. struct net_device *dev = np->dev;
  1447. unsigned long flags;
  1448. if (!netif_carrier_ok(dev) && link_up) {
  1449. niuinfo(LINK, "%s: Link is up at %s, %s duplex\n",
  1450. dev->name,
  1451. (lp->active_speed == SPEED_10000 ?
  1452. "10Gb/sec" :
  1453. (lp->active_speed == SPEED_1000 ?
  1454. "1Gb/sec" :
  1455. (lp->active_speed == SPEED_100 ?
  1456. "100Mbit/sec" : "10Mbit/sec"))),
  1457. (lp->active_duplex == DUPLEX_FULL ?
  1458. "full" : "half"));
  1459. spin_lock_irqsave(&np->lock, flags);
  1460. niu_init_xif(np);
  1461. niu_handle_led(np, 1);
  1462. spin_unlock_irqrestore(&np->lock, flags);
  1463. netif_carrier_on(dev);
  1464. } else if (netif_carrier_ok(dev) && !link_up) {
  1465. niuwarn(LINK, "%s: Link is down\n", dev->name);
  1466. spin_lock_irqsave(&np->lock, flags);
  1467. niu_handle_led(np, 0);
  1468. spin_unlock_irqrestore(&np->lock, flags);
  1469. netif_carrier_off(dev);
  1470. }
  1471. return 0;
  1472. }
  1473. static int link_status_10g_mrvl(struct niu *np, int *link_up_p)
  1474. {
  1475. int err, link_up, pma_status, pcs_status;
  1476. link_up = 0;
  1477. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1478. MRVL88X2011_10G_PMD_STATUS_2);
  1479. if (err < 0)
  1480. goto out;
  1481. /* Check PMA/PMD Register: 1.0001.2 == 1 */
  1482. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1483. MRVL88X2011_PMA_PMD_STATUS_1);
  1484. if (err < 0)
  1485. goto out;
  1486. pma_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
  1487. /* Check PMC Register : 3.0001.2 == 1: read twice */
  1488. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1489. MRVL88X2011_PMA_PMD_STATUS_1);
  1490. if (err < 0)
  1491. goto out;
  1492. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1493. MRVL88X2011_PMA_PMD_STATUS_1);
  1494. if (err < 0)
  1495. goto out;
  1496. pcs_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
  1497. /* Check XGXS Register : 4.0018.[0-3,12] */
  1498. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV4_ADDR,
  1499. MRVL88X2011_10G_XGXS_LANE_STAT);
  1500. if (err < 0)
  1501. goto out;
  1502. if (err == (PHYXS_XGXS_LANE_STAT_ALINGED | PHYXS_XGXS_LANE_STAT_LANE3 |
  1503. PHYXS_XGXS_LANE_STAT_LANE2 | PHYXS_XGXS_LANE_STAT_LANE1 |
  1504. PHYXS_XGXS_LANE_STAT_LANE0 | PHYXS_XGXS_LANE_STAT_MAGIC |
  1505. 0x800))
  1506. link_up = (pma_status && pcs_status) ? 1 : 0;
  1507. np->link_config.active_speed = SPEED_10000;
  1508. np->link_config.active_duplex = DUPLEX_FULL;
  1509. err = 0;
  1510. out:
  1511. mrvl88x2011_act_led(np, (link_up ?
  1512. MRVL88X2011_LED_CTL_PCS_ACT :
  1513. MRVL88X2011_LED_CTL_OFF));
  1514. *link_up_p = link_up;
  1515. return err;
  1516. }
  1517. static int link_status_10g_bcm8706(struct niu *np, int *link_up_p)
  1518. {
  1519. int err, link_up;
  1520. link_up = 0;
  1521. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1522. BCM8704_PMD_RCV_SIGDET);
  1523. if (err < 0)
  1524. goto out;
  1525. if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
  1526. err = 0;
  1527. goto out;
  1528. }
  1529. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1530. BCM8704_PCS_10G_R_STATUS);
  1531. if (err < 0)
  1532. goto out;
  1533. if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
  1534. err = 0;
  1535. goto out;
  1536. }
  1537. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1538. BCM8704_PHYXS_XGXS_LANE_STAT);
  1539. if (err < 0)
  1540. goto out;
  1541. if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
  1542. PHYXS_XGXS_LANE_STAT_MAGIC |
  1543. PHYXS_XGXS_LANE_STAT_PATTEST |
  1544. PHYXS_XGXS_LANE_STAT_LANE3 |
  1545. PHYXS_XGXS_LANE_STAT_LANE2 |
  1546. PHYXS_XGXS_LANE_STAT_LANE1 |
  1547. PHYXS_XGXS_LANE_STAT_LANE0)) {
  1548. err = 0;
  1549. np->link_config.active_speed = SPEED_INVALID;
  1550. np->link_config.active_duplex = DUPLEX_INVALID;
  1551. goto out;
  1552. }
  1553. link_up = 1;
  1554. np->link_config.active_speed = SPEED_10000;
  1555. np->link_config.active_duplex = DUPLEX_FULL;
  1556. err = 0;
  1557. out:
  1558. *link_up_p = link_up;
  1559. if (np->flags & NIU_FLAGS_HOTPLUG_PHY)
  1560. err = 0;
  1561. return err;
  1562. }
  1563. static int link_status_10g_bcom(struct niu *np, int *link_up_p)
  1564. {
  1565. int err, link_up;
  1566. link_up = 0;
  1567. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1568. BCM8704_PMD_RCV_SIGDET);
  1569. if (err < 0)
  1570. goto out;
  1571. if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
  1572. err = 0;
  1573. goto out;
  1574. }
  1575. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1576. BCM8704_PCS_10G_R_STATUS);
  1577. if (err < 0)
  1578. goto out;
  1579. if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
  1580. err = 0;
  1581. goto out;
  1582. }
  1583. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1584. BCM8704_PHYXS_XGXS_LANE_STAT);
  1585. if (err < 0)
  1586. goto out;
  1587. if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
  1588. PHYXS_XGXS_LANE_STAT_MAGIC |
  1589. PHYXS_XGXS_LANE_STAT_LANE3 |
  1590. PHYXS_XGXS_LANE_STAT_LANE2 |
  1591. PHYXS_XGXS_LANE_STAT_LANE1 |
  1592. PHYXS_XGXS_LANE_STAT_LANE0)) {
  1593. err = 0;
  1594. goto out;
  1595. }
  1596. link_up = 1;
  1597. np->link_config.active_speed = SPEED_10000;
  1598. np->link_config.active_duplex = DUPLEX_FULL;
  1599. err = 0;
  1600. out:
  1601. *link_up_p = link_up;
  1602. return err;
  1603. }
  1604. static int link_status_10g(struct niu *np, int *link_up_p)
  1605. {
  1606. unsigned long flags;
  1607. int err = -EINVAL;
  1608. spin_lock_irqsave(&np->lock, flags);
  1609. if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
  1610. int phy_id;
  1611. phy_id = phy_decode(np->parent->port_phy, np->port);
  1612. phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
  1613. /* handle different phy types */
  1614. switch (phy_id & NIU_PHY_ID_MASK) {
  1615. case NIU_PHY_ID_MRVL88X2011:
  1616. err = link_status_10g_mrvl(np, link_up_p);
  1617. break;
  1618. default: /* bcom 8704 */
  1619. err = link_status_10g_bcom(np, link_up_p);
  1620. break;
  1621. }
  1622. }
  1623. spin_unlock_irqrestore(&np->lock, flags);
  1624. return err;
  1625. }
  1626. static int niu_10g_phy_present(struct niu *np)
  1627. {
  1628. u64 sig, mask, val;
  1629. sig = nr64(ESR_INT_SIGNALS);
  1630. switch (np->port) {
  1631. case 0:
  1632. mask = ESR_INT_SIGNALS_P0_BITS;
  1633. val = (ESR_INT_SRDY0_P0 |
  1634. ESR_INT_DET0_P0 |
  1635. ESR_INT_XSRDY_P0 |
  1636. ESR_INT_XDP_P0_CH3 |
  1637. ESR_INT_XDP_P0_CH2 |
  1638. ESR_INT_XDP_P0_CH1 |
  1639. ESR_INT_XDP_P0_CH0);
  1640. break;
  1641. case 1:
  1642. mask = ESR_INT_SIGNALS_P1_BITS;
  1643. val = (ESR_INT_SRDY0_P1 |
  1644. ESR_INT_DET0_P1 |
  1645. ESR_INT_XSRDY_P1 |
  1646. ESR_INT_XDP_P1_CH3 |
  1647. ESR_INT_XDP_P1_CH2 |
  1648. ESR_INT_XDP_P1_CH1 |
  1649. ESR_INT_XDP_P1_CH0);
  1650. break;
  1651. default:
  1652. return 0;
  1653. }
  1654. if ((sig & mask) != val)
  1655. return 0;
  1656. return 1;
  1657. }
  1658. static int link_status_10g_hotplug(struct niu *np, int *link_up_p)
  1659. {
  1660. unsigned long flags;
  1661. int err = 0;
  1662. int phy_present;
  1663. int phy_present_prev;
  1664. spin_lock_irqsave(&np->lock, flags);
  1665. if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
  1666. phy_present_prev = (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) ?
  1667. 1 : 0;
  1668. phy_present = niu_10g_phy_present(np);
  1669. if (phy_present != phy_present_prev) {
  1670. /* state change */
  1671. if (phy_present) {
  1672. np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1673. if (np->phy_ops->xcvr_init)
  1674. err = np->phy_ops->xcvr_init(np);
  1675. if (err) {
  1676. /* debounce */
  1677. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1678. }
  1679. } else {
  1680. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1681. *link_up_p = 0;
  1682. niuwarn(LINK, "%s: Hotplug PHY Removed\n",
  1683. np->dev->name);
  1684. }
  1685. }
  1686. if (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT)
  1687. err = link_status_10g_bcm8706(np, link_up_p);
  1688. }
  1689. spin_unlock_irqrestore(&np->lock, flags);
  1690. return err;
  1691. }
  1692. static int link_status_1g(struct niu *np, int *link_up_p)
  1693. {
  1694. struct niu_link_config *lp = &np->link_config;
  1695. u16 current_speed, bmsr;
  1696. unsigned long flags;
  1697. u8 current_duplex;
  1698. int err, link_up;
  1699. link_up = 0;
  1700. current_speed = SPEED_INVALID;
  1701. current_duplex = DUPLEX_INVALID;
  1702. spin_lock_irqsave(&np->lock, flags);
  1703. err = -EINVAL;
  1704. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  1705. goto out;
  1706. err = mii_read(np, np->phy_addr, MII_BMSR);
  1707. if (err < 0)
  1708. goto out;
  1709. bmsr = err;
  1710. if (bmsr & BMSR_LSTATUS) {
  1711. u16 adv, lpa, common, estat;
  1712. err = mii_read(np, np->phy_addr, MII_ADVERTISE);
  1713. if (err < 0)
  1714. goto out;
  1715. adv = err;
  1716. err = mii_read(np, np->phy_addr, MII_LPA);
  1717. if (err < 0)
  1718. goto out;
  1719. lpa = err;
  1720. common = adv & lpa;
  1721. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1722. if (err < 0)
  1723. goto out;
  1724. estat = err;
  1725. link_up = 1;
  1726. if (estat & (ESTATUS_1000_TFULL | ESTATUS_1000_THALF)) {
  1727. current_speed = SPEED_1000;
  1728. if (estat & ESTATUS_1000_TFULL)
  1729. current_duplex = DUPLEX_FULL;
  1730. else
  1731. current_duplex = DUPLEX_HALF;
  1732. } else {
  1733. if (common & ADVERTISE_100BASE4) {
  1734. current_speed = SPEED_100;
  1735. current_duplex = DUPLEX_HALF;
  1736. } else if (common & ADVERTISE_100FULL) {
  1737. current_speed = SPEED_100;
  1738. current_duplex = DUPLEX_FULL;
  1739. } else if (common & ADVERTISE_100HALF) {
  1740. current_speed = SPEED_100;
  1741. current_duplex = DUPLEX_HALF;
  1742. } else if (common & ADVERTISE_10FULL) {
  1743. current_speed = SPEED_10;
  1744. current_duplex = DUPLEX_FULL;
  1745. } else if (common & ADVERTISE_10HALF) {
  1746. current_speed = SPEED_10;
  1747. current_duplex = DUPLEX_HALF;
  1748. } else
  1749. link_up = 0;
  1750. }
  1751. }
  1752. lp->active_speed = current_speed;
  1753. lp->active_duplex = current_duplex;
  1754. err = 0;
  1755. out:
  1756. spin_unlock_irqrestore(&np->lock, flags);
  1757. *link_up_p = link_up;
  1758. return err;
  1759. }
  1760. static int niu_link_status(struct niu *np, int *link_up_p)
  1761. {
  1762. const struct niu_phy_ops *ops = np->phy_ops;
  1763. int err;
  1764. err = 0;
  1765. if (ops->link_status)
  1766. err = ops->link_status(np, link_up_p);
  1767. return err;
  1768. }
  1769. static void niu_timer(unsigned long __opaque)
  1770. {
  1771. struct niu *np = (struct niu *) __opaque;
  1772. unsigned long off;
  1773. int err, link_up;
  1774. err = niu_link_status(np, &link_up);
  1775. if (!err)
  1776. niu_link_status_common(np, link_up);
  1777. if (netif_carrier_ok(np->dev))
  1778. off = 5 * HZ;
  1779. else
  1780. off = 1 * HZ;
  1781. np->timer.expires = jiffies + off;
  1782. add_timer(&np->timer);
  1783. }
  1784. static const struct niu_phy_ops phy_ops_10g_serdes = {
  1785. .serdes_init = serdes_init_10g_serdes,
  1786. .link_status = link_status_10g_serdes,
  1787. };
  1788. static const struct niu_phy_ops phy_ops_10g_serdes_niu = {
  1789. .serdes_init = serdes_init_niu_10g_serdes,
  1790. .link_status = link_status_10g_serdes,
  1791. };
  1792. static const struct niu_phy_ops phy_ops_1g_serdes_niu = {
  1793. .serdes_init = serdes_init_niu_1g_serdes,
  1794. .link_status = link_status_1g_serdes,
  1795. };
  1796. static const struct niu_phy_ops phy_ops_1g_rgmii = {
  1797. .xcvr_init = xcvr_init_1g_rgmii,
  1798. .link_status = link_status_1g_rgmii,
  1799. };
  1800. static const struct niu_phy_ops phy_ops_10g_fiber_niu = {
  1801. .serdes_init = serdes_init_niu_10g_fiber,
  1802. .xcvr_init = xcvr_init_10g,
  1803. .link_status = link_status_10g,
  1804. };
  1805. static const struct niu_phy_ops phy_ops_10g_fiber = {
  1806. .serdes_init = serdes_init_10g,
  1807. .xcvr_init = xcvr_init_10g,
  1808. .link_status = link_status_10g,
  1809. };
  1810. static const struct niu_phy_ops phy_ops_10g_fiber_hotplug = {
  1811. .serdes_init = serdes_init_10g,
  1812. .xcvr_init = xcvr_init_10g_bcm8706,
  1813. .link_status = link_status_10g_hotplug,
  1814. };
  1815. static const struct niu_phy_ops phy_ops_10g_copper = {
  1816. .serdes_init = serdes_init_10g,
  1817. .link_status = link_status_10g, /* XXX */
  1818. };
  1819. static const struct niu_phy_ops phy_ops_1g_fiber = {
  1820. .serdes_init = serdes_init_1g,
  1821. .xcvr_init = xcvr_init_1g,
  1822. .link_status = link_status_1g,
  1823. };
  1824. static const struct niu_phy_ops phy_ops_1g_copper = {
  1825. .xcvr_init = xcvr_init_1g,
  1826. .link_status = link_status_1g,
  1827. };
  1828. struct niu_phy_template {
  1829. const struct niu_phy_ops *ops;
  1830. u32 phy_addr_base;
  1831. };
  1832. static const struct niu_phy_template phy_template_niu_10g_fiber = {
  1833. .ops = &phy_ops_10g_fiber_niu,
  1834. .phy_addr_base = 16,
  1835. };
  1836. static const struct niu_phy_template phy_template_niu_10g_serdes = {
  1837. .ops = &phy_ops_10g_serdes_niu,
  1838. .phy_addr_base = 0,
  1839. };
  1840. static const struct niu_phy_template phy_template_niu_1g_serdes = {
  1841. .ops = &phy_ops_1g_serdes_niu,
  1842. .phy_addr_base = 0,
  1843. };
  1844. static const struct niu_phy_template phy_template_10g_fiber = {
  1845. .ops = &phy_ops_10g_fiber,
  1846. .phy_addr_base = 8,
  1847. };
  1848. static const struct niu_phy_template phy_template_10g_fiber_hotplug = {
  1849. .ops = &phy_ops_10g_fiber_hotplug,
  1850. .phy_addr_base = 8,
  1851. };
  1852. static const struct niu_phy_template phy_template_10g_copper = {
  1853. .ops = &phy_ops_10g_copper,
  1854. .phy_addr_base = 10,
  1855. };
  1856. static const struct niu_phy_template phy_template_1g_fiber = {
  1857. .ops = &phy_ops_1g_fiber,
  1858. .phy_addr_base = 0,
  1859. };
  1860. static const struct niu_phy_template phy_template_1g_copper = {
  1861. .ops = &phy_ops_1g_copper,
  1862. .phy_addr_base = 0,
  1863. };
  1864. static const struct niu_phy_template phy_template_1g_rgmii = {
  1865. .ops = &phy_ops_1g_rgmii,
  1866. .phy_addr_base = 0,
  1867. };
  1868. static const struct niu_phy_template phy_template_10g_serdes = {
  1869. .ops = &phy_ops_10g_serdes,
  1870. .phy_addr_base = 0,
  1871. };
  1872. static int niu_atca_port_num[4] = {
  1873. 0, 0, 11, 10
  1874. };
  1875. static int serdes_init_10g_serdes(struct niu *np)
  1876. {
  1877. struct niu_link_config *lp = &np->link_config;
  1878. unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
  1879. u64 ctrl_val, test_cfg_val, sig, mask, val;
  1880. int err;
  1881. u64 reset_val;
  1882. switch (np->port) {
  1883. case 0:
  1884. reset_val = ENET_SERDES_RESET_0;
  1885. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  1886. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  1887. pll_cfg = ENET_SERDES_0_PLL_CFG;
  1888. break;
  1889. case 1:
  1890. reset_val = ENET_SERDES_RESET_1;
  1891. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  1892. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  1893. pll_cfg = ENET_SERDES_1_PLL_CFG;
  1894. break;
  1895. default:
  1896. return -EINVAL;
  1897. }
  1898. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  1899. ENET_SERDES_CTRL_SDET_1 |
  1900. ENET_SERDES_CTRL_SDET_2 |
  1901. ENET_SERDES_CTRL_SDET_3 |
  1902. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  1903. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  1904. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  1905. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  1906. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  1907. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  1908. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  1909. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  1910. test_cfg_val = 0;
  1911. if (lp->loopback_mode == LOOPBACK_PHY) {
  1912. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  1913. ENET_SERDES_TEST_MD_0_SHIFT) |
  1914. (ENET_TEST_MD_PAD_LOOPBACK <<
  1915. ENET_SERDES_TEST_MD_1_SHIFT) |
  1916. (ENET_TEST_MD_PAD_LOOPBACK <<
  1917. ENET_SERDES_TEST_MD_2_SHIFT) |
  1918. (ENET_TEST_MD_PAD_LOOPBACK <<
  1919. ENET_SERDES_TEST_MD_3_SHIFT));
  1920. }
  1921. esr_reset(np);
  1922. nw64(pll_cfg, ENET_SERDES_PLL_FBDIV2);
  1923. nw64(ctrl_reg, ctrl_val);
  1924. nw64(test_cfg_reg, test_cfg_val);
  1925. /* Initialize all 4 lanes of the SERDES. */
  1926. for (i = 0; i < 4; i++) {
  1927. u32 rxtx_ctrl, glue0;
  1928. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  1929. if (err)
  1930. return err;
  1931. err = esr_read_glue0(np, i, &glue0);
  1932. if (err)
  1933. return err;
  1934. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  1935. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  1936. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  1937. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  1938. ESR_GLUE_CTRL0_THCNT |
  1939. ESR_GLUE_CTRL0_BLTIME);
  1940. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  1941. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  1942. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  1943. (BLTIME_300_CYCLES <<
  1944. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  1945. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  1946. if (err)
  1947. return err;
  1948. err = esr_write_glue0(np, i, glue0);
  1949. if (err)
  1950. return err;
  1951. }
  1952. sig = nr64(ESR_INT_SIGNALS);
  1953. switch (np->port) {
  1954. case 0:
  1955. mask = ESR_INT_SIGNALS_P0_BITS;
  1956. val = (ESR_INT_SRDY0_P0 |
  1957. ESR_INT_DET0_P0 |
  1958. ESR_INT_XSRDY_P0 |
  1959. ESR_INT_XDP_P0_CH3 |
  1960. ESR_INT_XDP_P0_CH2 |
  1961. ESR_INT_XDP_P0_CH1 |
  1962. ESR_INT_XDP_P0_CH0);
  1963. break;
  1964. case 1:
  1965. mask = ESR_INT_SIGNALS_P1_BITS;
  1966. val = (ESR_INT_SRDY0_P1 |
  1967. ESR_INT_DET0_P1 |
  1968. ESR_INT_XSRDY_P1 |
  1969. ESR_INT_XDP_P1_CH3 |
  1970. ESR_INT_XDP_P1_CH2 |
  1971. ESR_INT_XDP_P1_CH1 |
  1972. ESR_INT_XDP_P1_CH0);
  1973. break;
  1974. default:
  1975. return -EINVAL;
  1976. }
  1977. if ((sig & mask) != val) {
  1978. int err;
  1979. err = serdes_init_1g_serdes(np);
  1980. if (!err) {
  1981. np->flags &= ~NIU_FLAGS_10G;
  1982. np->mac_xcvr = MAC_XCVR_PCS;
  1983. } else {
  1984. dev_err(np->device, PFX "Port %u 10G/1G SERDES Link Failed \n",
  1985. np->port);
  1986. return -ENODEV;
  1987. }
  1988. }
  1989. return 0;
  1990. }
  1991. static int niu_determine_phy_disposition(struct niu *np)
  1992. {
  1993. struct niu_parent *parent = np->parent;
  1994. u8 plat_type = parent->plat_type;
  1995. const struct niu_phy_template *tp;
  1996. u32 phy_addr_off = 0;
  1997. if (plat_type == PLAT_TYPE_NIU) {
  1998. switch (np->flags &
  1999. (NIU_FLAGS_10G |
  2000. NIU_FLAGS_FIBER |
  2001. NIU_FLAGS_XCVR_SERDES)) {
  2002. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  2003. /* 10G Serdes */
  2004. tp = &phy_template_niu_10g_serdes;
  2005. break;
  2006. case NIU_FLAGS_XCVR_SERDES:
  2007. /* 1G Serdes */
  2008. tp = &phy_template_niu_1g_serdes;
  2009. break;
  2010. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  2011. /* 10G Fiber */
  2012. default:
  2013. tp = &phy_template_niu_10g_fiber;
  2014. phy_addr_off += np->port;
  2015. break;
  2016. }
  2017. } else {
  2018. switch (np->flags &
  2019. (NIU_FLAGS_10G |
  2020. NIU_FLAGS_FIBER |
  2021. NIU_FLAGS_XCVR_SERDES)) {
  2022. case 0:
  2023. /* 1G copper */
  2024. tp = &phy_template_1g_copper;
  2025. if (plat_type == PLAT_TYPE_VF_P0)
  2026. phy_addr_off = 10;
  2027. else if (plat_type == PLAT_TYPE_VF_P1)
  2028. phy_addr_off = 26;
  2029. phy_addr_off += (np->port ^ 0x3);
  2030. break;
  2031. case NIU_FLAGS_10G:
  2032. /* 10G copper */
  2033. tp = &phy_template_1g_copper;
  2034. break;
  2035. case NIU_FLAGS_FIBER:
  2036. /* 1G fiber */
  2037. tp = &phy_template_1g_fiber;
  2038. break;
  2039. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  2040. /* 10G fiber */
  2041. tp = &phy_template_10g_fiber;
  2042. if (plat_type == PLAT_TYPE_VF_P0 ||
  2043. plat_type == PLAT_TYPE_VF_P1)
  2044. phy_addr_off = 8;
  2045. phy_addr_off += np->port;
  2046. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  2047. tp = &phy_template_10g_fiber_hotplug;
  2048. if (np->port == 0)
  2049. phy_addr_off = 8;
  2050. if (np->port == 1)
  2051. phy_addr_off = 12;
  2052. }
  2053. break;
  2054. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  2055. case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
  2056. case NIU_FLAGS_XCVR_SERDES:
  2057. switch(np->port) {
  2058. case 0:
  2059. case 1:
  2060. tp = &phy_template_10g_serdes;
  2061. break;
  2062. case 2:
  2063. case 3:
  2064. tp = &phy_template_1g_rgmii;
  2065. break;
  2066. default:
  2067. return -EINVAL;
  2068. break;
  2069. }
  2070. phy_addr_off = niu_atca_port_num[np->port];
  2071. break;
  2072. default:
  2073. return -EINVAL;
  2074. }
  2075. }
  2076. np->phy_ops = tp->ops;
  2077. np->phy_addr = tp->phy_addr_base + phy_addr_off;
  2078. return 0;
  2079. }
  2080. static int niu_init_link(struct niu *np)
  2081. {
  2082. struct niu_parent *parent = np->parent;
  2083. int err, ignore;
  2084. if (parent->plat_type == PLAT_TYPE_NIU) {
  2085. err = niu_xcvr_init(np);
  2086. if (err)
  2087. return err;
  2088. msleep(200);
  2089. }
  2090. err = niu_serdes_init(np);
  2091. if (err)
  2092. return err;
  2093. msleep(200);
  2094. err = niu_xcvr_init(np);
  2095. if (!err)
  2096. niu_link_status(np, &ignore);
  2097. return 0;
  2098. }
  2099. static void niu_set_primary_mac(struct niu *np, unsigned char *addr)
  2100. {
  2101. u16 reg0 = addr[4] << 8 | addr[5];
  2102. u16 reg1 = addr[2] << 8 | addr[3];
  2103. u16 reg2 = addr[0] << 8 | addr[1];
  2104. if (np->flags & NIU_FLAGS_XMAC) {
  2105. nw64_mac(XMAC_ADDR0, reg0);
  2106. nw64_mac(XMAC_ADDR1, reg1);
  2107. nw64_mac(XMAC_ADDR2, reg2);
  2108. } else {
  2109. nw64_mac(BMAC_ADDR0, reg0);
  2110. nw64_mac(BMAC_ADDR1, reg1);
  2111. nw64_mac(BMAC_ADDR2, reg2);
  2112. }
  2113. }
  2114. static int niu_num_alt_addr(struct niu *np)
  2115. {
  2116. if (np->flags & NIU_FLAGS_XMAC)
  2117. return XMAC_NUM_ALT_ADDR;
  2118. else
  2119. return BMAC_NUM_ALT_ADDR;
  2120. }
  2121. static int niu_set_alt_mac(struct niu *np, int index, unsigned char *addr)
  2122. {
  2123. u16 reg0 = addr[4] << 8 | addr[5];
  2124. u16 reg1 = addr[2] << 8 | addr[3];
  2125. u16 reg2 = addr[0] << 8 | addr[1];
  2126. if (index >= niu_num_alt_addr(np))
  2127. return -EINVAL;
  2128. if (np->flags & NIU_FLAGS_XMAC) {
  2129. nw64_mac(XMAC_ALT_ADDR0(index), reg0);
  2130. nw64_mac(XMAC_ALT_ADDR1(index), reg1);
  2131. nw64_mac(XMAC_ALT_ADDR2(index), reg2);
  2132. } else {
  2133. nw64_mac(BMAC_ALT_ADDR0(index), reg0);
  2134. nw64_mac(BMAC_ALT_ADDR1(index), reg1);
  2135. nw64_mac(BMAC_ALT_ADDR2(index), reg2);
  2136. }
  2137. return 0;
  2138. }
  2139. static int niu_enable_alt_mac(struct niu *np, int index, int on)
  2140. {
  2141. unsigned long reg;
  2142. u64 val, mask;
  2143. if (index >= niu_num_alt_addr(np))
  2144. return -EINVAL;
  2145. if (np->flags & NIU_FLAGS_XMAC) {
  2146. reg = XMAC_ADDR_CMPEN;
  2147. mask = 1 << index;
  2148. } else {
  2149. reg = BMAC_ADDR_CMPEN;
  2150. mask = 1 << (index + 1);
  2151. }
  2152. val = nr64_mac(reg);
  2153. if (on)
  2154. val |= mask;
  2155. else
  2156. val &= ~mask;
  2157. nw64_mac(reg, val);
  2158. return 0;
  2159. }
  2160. static void __set_rdc_table_num_hw(struct niu *np, unsigned long reg,
  2161. int num, int mac_pref)
  2162. {
  2163. u64 val = nr64_mac(reg);
  2164. val &= ~(HOST_INFO_MACRDCTBLN | HOST_INFO_MPR);
  2165. val |= num;
  2166. if (mac_pref)
  2167. val |= HOST_INFO_MPR;
  2168. nw64_mac(reg, val);
  2169. }
  2170. static int __set_rdc_table_num(struct niu *np,
  2171. int xmac_index, int bmac_index,
  2172. int rdc_table_num, int mac_pref)
  2173. {
  2174. unsigned long reg;
  2175. if (rdc_table_num & ~HOST_INFO_MACRDCTBLN)
  2176. return -EINVAL;
  2177. if (np->flags & NIU_FLAGS_XMAC)
  2178. reg = XMAC_HOST_INFO(xmac_index);
  2179. else
  2180. reg = BMAC_HOST_INFO(bmac_index);
  2181. __set_rdc_table_num_hw(np, reg, rdc_table_num, mac_pref);
  2182. return 0;
  2183. }
  2184. static int niu_set_primary_mac_rdc_table(struct niu *np, int table_num,
  2185. int mac_pref)
  2186. {
  2187. return __set_rdc_table_num(np, 17, 0, table_num, mac_pref);
  2188. }
  2189. static int niu_set_multicast_mac_rdc_table(struct niu *np, int table_num,
  2190. int mac_pref)
  2191. {
  2192. return __set_rdc_table_num(np, 16, 8, table_num, mac_pref);
  2193. }
  2194. static int niu_set_alt_mac_rdc_table(struct niu *np, int idx,
  2195. int table_num, int mac_pref)
  2196. {
  2197. if (idx >= niu_num_alt_addr(np))
  2198. return -EINVAL;
  2199. return __set_rdc_table_num(np, idx, idx + 1, table_num, mac_pref);
  2200. }
  2201. static u64 vlan_entry_set_parity(u64 reg_val)
  2202. {
  2203. u64 port01_mask;
  2204. u64 port23_mask;
  2205. port01_mask = 0x00ff;
  2206. port23_mask = 0xff00;
  2207. if (hweight64(reg_val & port01_mask) & 1)
  2208. reg_val |= ENET_VLAN_TBL_PARITY0;
  2209. else
  2210. reg_val &= ~ENET_VLAN_TBL_PARITY0;
  2211. if (hweight64(reg_val & port23_mask) & 1)
  2212. reg_val |= ENET_VLAN_TBL_PARITY1;
  2213. else
  2214. reg_val &= ~ENET_VLAN_TBL_PARITY1;
  2215. return reg_val;
  2216. }
  2217. static void vlan_tbl_write(struct niu *np, unsigned long index,
  2218. int port, int vpr, int rdc_table)
  2219. {
  2220. u64 reg_val = nr64(ENET_VLAN_TBL(index));
  2221. reg_val &= ~((ENET_VLAN_TBL_VPR |
  2222. ENET_VLAN_TBL_VLANRDCTBLN) <<
  2223. ENET_VLAN_TBL_SHIFT(port));
  2224. if (vpr)
  2225. reg_val |= (ENET_VLAN_TBL_VPR <<
  2226. ENET_VLAN_TBL_SHIFT(port));
  2227. reg_val |= (rdc_table << ENET_VLAN_TBL_SHIFT(port));
  2228. reg_val = vlan_entry_set_parity(reg_val);
  2229. nw64(ENET_VLAN_TBL(index), reg_val);
  2230. }
  2231. static void vlan_tbl_clear(struct niu *np)
  2232. {
  2233. int i;
  2234. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++)
  2235. nw64(ENET_VLAN_TBL(i), 0);
  2236. }
  2237. static int tcam_wait_bit(struct niu *np, u64 bit)
  2238. {
  2239. int limit = 1000;
  2240. while (--limit > 0) {
  2241. if (nr64(TCAM_CTL) & bit)
  2242. break;
  2243. udelay(1);
  2244. }
  2245. if (limit < 0)
  2246. return -ENODEV;
  2247. return 0;
  2248. }
  2249. static int tcam_flush(struct niu *np, int index)
  2250. {
  2251. nw64(TCAM_KEY_0, 0x00);
  2252. nw64(TCAM_KEY_MASK_0, 0xff);
  2253. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  2254. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2255. }
  2256. #if 0
  2257. static int tcam_read(struct niu *np, int index,
  2258. u64 *key, u64 *mask)
  2259. {
  2260. int err;
  2261. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_READ | index));
  2262. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  2263. if (!err) {
  2264. key[0] = nr64(TCAM_KEY_0);
  2265. key[1] = nr64(TCAM_KEY_1);
  2266. key[2] = nr64(TCAM_KEY_2);
  2267. key[3] = nr64(TCAM_KEY_3);
  2268. mask[0] = nr64(TCAM_KEY_MASK_0);
  2269. mask[1] = nr64(TCAM_KEY_MASK_1);
  2270. mask[2] = nr64(TCAM_KEY_MASK_2);
  2271. mask[3] = nr64(TCAM_KEY_MASK_3);
  2272. }
  2273. return err;
  2274. }
  2275. #endif
  2276. static int tcam_write(struct niu *np, int index,
  2277. u64 *key, u64 *mask)
  2278. {
  2279. nw64(TCAM_KEY_0, key[0]);
  2280. nw64(TCAM_KEY_1, key[1]);
  2281. nw64(TCAM_KEY_2, key[2]);
  2282. nw64(TCAM_KEY_3, key[3]);
  2283. nw64(TCAM_KEY_MASK_0, mask[0]);
  2284. nw64(TCAM_KEY_MASK_1, mask[1]);
  2285. nw64(TCAM_KEY_MASK_2, mask[2]);
  2286. nw64(TCAM_KEY_MASK_3, mask[3]);
  2287. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  2288. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2289. }
  2290. #if 0
  2291. static int tcam_assoc_read(struct niu *np, int index, u64 *data)
  2292. {
  2293. int err;
  2294. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_READ | index));
  2295. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  2296. if (!err)
  2297. *data = nr64(TCAM_KEY_1);
  2298. return err;
  2299. }
  2300. #endif
  2301. static int tcam_assoc_write(struct niu *np, int index, u64 assoc_data)
  2302. {
  2303. nw64(TCAM_KEY_1, assoc_data);
  2304. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_WRITE | index));
  2305. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2306. }
  2307. static void tcam_enable(struct niu *np, int on)
  2308. {
  2309. u64 val = nr64(FFLP_CFG_1);
  2310. if (on)
  2311. val &= ~FFLP_CFG_1_TCAM_DIS;
  2312. else
  2313. val |= FFLP_CFG_1_TCAM_DIS;
  2314. nw64(FFLP_CFG_1, val);
  2315. }
  2316. static void tcam_set_lat_and_ratio(struct niu *np, u64 latency, u64 ratio)
  2317. {
  2318. u64 val = nr64(FFLP_CFG_1);
  2319. val &= ~(FFLP_CFG_1_FFLPINITDONE |
  2320. FFLP_CFG_1_CAMLAT |
  2321. FFLP_CFG_1_CAMRATIO);
  2322. val |= (latency << FFLP_CFG_1_CAMLAT_SHIFT);
  2323. val |= (ratio << FFLP_CFG_1_CAMRATIO_SHIFT);
  2324. nw64(FFLP_CFG_1, val);
  2325. val = nr64(FFLP_CFG_1);
  2326. val |= FFLP_CFG_1_FFLPINITDONE;
  2327. nw64(FFLP_CFG_1, val);
  2328. }
  2329. static int tcam_user_eth_class_enable(struct niu *np, unsigned long class,
  2330. int on)
  2331. {
  2332. unsigned long reg;
  2333. u64 val;
  2334. if (class < CLASS_CODE_ETHERTYPE1 ||
  2335. class > CLASS_CODE_ETHERTYPE2)
  2336. return -EINVAL;
  2337. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  2338. val = nr64(reg);
  2339. if (on)
  2340. val |= L2_CLS_VLD;
  2341. else
  2342. val &= ~L2_CLS_VLD;
  2343. nw64(reg, val);
  2344. return 0;
  2345. }
  2346. #if 0
  2347. static int tcam_user_eth_class_set(struct niu *np, unsigned long class,
  2348. u64 ether_type)
  2349. {
  2350. unsigned long reg;
  2351. u64 val;
  2352. if (class < CLASS_CODE_ETHERTYPE1 ||
  2353. class > CLASS_CODE_ETHERTYPE2 ||
  2354. (ether_type & ~(u64)0xffff) != 0)
  2355. return -EINVAL;
  2356. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  2357. val = nr64(reg);
  2358. val &= ~L2_CLS_ETYPE;
  2359. val |= (ether_type << L2_CLS_ETYPE_SHIFT);
  2360. nw64(reg, val);
  2361. return 0;
  2362. }
  2363. #endif
  2364. static int tcam_user_ip_class_enable(struct niu *np, unsigned long class,
  2365. int on)
  2366. {
  2367. unsigned long reg;
  2368. u64 val;
  2369. if (class < CLASS_CODE_USER_PROG1 ||
  2370. class > CLASS_CODE_USER_PROG4)
  2371. return -EINVAL;
  2372. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  2373. val = nr64(reg);
  2374. if (on)
  2375. val |= L3_CLS_VALID;
  2376. else
  2377. val &= ~L3_CLS_VALID;
  2378. nw64(reg, val);
  2379. return 0;
  2380. }
  2381. #if 0
  2382. static int tcam_user_ip_class_set(struct niu *np, unsigned long class,
  2383. int ipv6, u64 protocol_id,
  2384. u64 tos_mask, u64 tos_val)
  2385. {
  2386. unsigned long reg;
  2387. u64 val;
  2388. if (class < CLASS_CODE_USER_PROG1 ||
  2389. class > CLASS_CODE_USER_PROG4 ||
  2390. (protocol_id & ~(u64)0xff) != 0 ||
  2391. (tos_mask & ~(u64)0xff) != 0 ||
  2392. (tos_val & ~(u64)0xff) != 0)
  2393. return -EINVAL;
  2394. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  2395. val = nr64(reg);
  2396. val &= ~(L3_CLS_IPVER | L3_CLS_PID |
  2397. L3_CLS_TOSMASK | L3_CLS_TOS);
  2398. if (ipv6)
  2399. val |= L3_CLS_IPVER;
  2400. val |= (protocol_id << L3_CLS_PID_SHIFT);
  2401. val |= (tos_mask << L3_CLS_TOSMASK_SHIFT);
  2402. val |= (tos_val << L3_CLS_TOS_SHIFT);
  2403. nw64(reg, val);
  2404. return 0;
  2405. }
  2406. #endif
  2407. static int tcam_early_init(struct niu *np)
  2408. {
  2409. unsigned long i;
  2410. int err;
  2411. tcam_enable(np, 0);
  2412. tcam_set_lat_and_ratio(np,
  2413. DEFAULT_TCAM_LATENCY,
  2414. DEFAULT_TCAM_ACCESS_RATIO);
  2415. for (i = CLASS_CODE_ETHERTYPE1; i <= CLASS_CODE_ETHERTYPE2; i++) {
  2416. err = tcam_user_eth_class_enable(np, i, 0);
  2417. if (err)
  2418. return err;
  2419. }
  2420. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_USER_PROG4; i++) {
  2421. err = tcam_user_ip_class_enable(np, i, 0);
  2422. if (err)
  2423. return err;
  2424. }
  2425. return 0;
  2426. }
  2427. static int tcam_flush_all(struct niu *np)
  2428. {
  2429. unsigned long i;
  2430. for (i = 0; i < np->parent->tcam_num_entries; i++) {
  2431. int err = tcam_flush(np, i);
  2432. if (err)
  2433. return err;
  2434. }
  2435. return 0;
  2436. }
  2437. static u64 hash_addr_regval(unsigned long index, unsigned long num_entries)
  2438. {
  2439. return ((u64)index | (num_entries == 1 ?
  2440. HASH_TBL_ADDR_AUTOINC : 0));
  2441. }
  2442. #if 0
  2443. static int hash_read(struct niu *np, unsigned long partition,
  2444. unsigned long index, unsigned long num_entries,
  2445. u64 *data)
  2446. {
  2447. u64 val = hash_addr_regval(index, num_entries);
  2448. unsigned long i;
  2449. if (partition >= FCRAM_NUM_PARTITIONS ||
  2450. index + num_entries > FCRAM_SIZE)
  2451. return -EINVAL;
  2452. nw64(HASH_TBL_ADDR(partition), val);
  2453. for (i = 0; i < num_entries; i++)
  2454. data[i] = nr64(HASH_TBL_DATA(partition));
  2455. return 0;
  2456. }
  2457. #endif
  2458. static int hash_write(struct niu *np, unsigned long partition,
  2459. unsigned long index, unsigned long num_entries,
  2460. u64 *data)
  2461. {
  2462. u64 val = hash_addr_regval(index, num_entries);
  2463. unsigned long i;
  2464. if (partition >= FCRAM_NUM_PARTITIONS ||
  2465. index + (num_entries * 8) > FCRAM_SIZE)
  2466. return -EINVAL;
  2467. nw64(HASH_TBL_ADDR(partition), val);
  2468. for (i = 0; i < num_entries; i++)
  2469. nw64(HASH_TBL_DATA(partition), data[i]);
  2470. return 0;
  2471. }
  2472. static void fflp_reset(struct niu *np)
  2473. {
  2474. u64 val;
  2475. nw64(FFLP_CFG_1, FFLP_CFG_1_PIO_FIO_RST);
  2476. udelay(10);
  2477. nw64(FFLP_CFG_1, 0);
  2478. val = FFLP_CFG_1_FCRAMOUTDR_NORMAL | FFLP_CFG_1_FFLPINITDONE;
  2479. nw64(FFLP_CFG_1, val);
  2480. }
  2481. static void fflp_set_timings(struct niu *np)
  2482. {
  2483. u64 val = nr64(FFLP_CFG_1);
  2484. val &= ~FFLP_CFG_1_FFLPINITDONE;
  2485. val |= (DEFAULT_FCRAMRATIO << FFLP_CFG_1_FCRAMRATIO_SHIFT);
  2486. nw64(FFLP_CFG_1, val);
  2487. val = nr64(FFLP_CFG_1);
  2488. val |= FFLP_CFG_1_FFLPINITDONE;
  2489. nw64(FFLP_CFG_1, val);
  2490. val = nr64(FCRAM_REF_TMR);
  2491. val &= ~(FCRAM_REF_TMR_MAX | FCRAM_REF_TMR_MIN);
  2492. val |= (DEFAULT_FCRAM_REFRESH_MAX << FCRAM_REF_TMR_MAX_SHIFT);
  2493. val |= (DEFAULT_FCRAM_REFRESH_MIN << FCRAM_REF_TMR_MIN_SHIFT);
  2494. nw64(FCRAM_REF_TMR, val);
  2495. }
  2496. static int fflp_set_partition(struct niu *np, u64 partition,
  2497. u64 mask, u64 base, int enable)
  2498. {
  2499. unsigned long reg;
  2500. u64 val;
  2501. if (partition >= FCRAM_NUM_PARTITIONS ||
  2502. (mask & ~(u64)0x1f) != 0 ||
  2503. (base & ~(u64)0x1f) != 0)
  2504. return -EINVAL;
  2505. reg = FLW_PRT_SEL(partition);
  2506. val = nr64(reg);
  2507. val &= ~(FLW_PRT_SEL_EXT | FLW_PRT_SEL_MASK | FLW_PRT_SEL_BASE);
  2508. val |= (mask << FLW_PRT_SEL_MASK_SHIFT);
  2509. val |= (base << FLW_PRT_SEL_BASE_SHIFT);
  2510. if (enable)
  2511. val |= FLW_PRT_SEL_EXT;
  2512. nw64(reg, val);
  2513. return 0;
  2514. }
  2515. static int fflp_disable_all_partitions(struct niu *np)
  2516. {
  2517. unsigned long i;
  2518. for (i = 0; i < FCRAM_NUM_PARTITIONS; i++) {
  2519. int err = fflp_set_partition(np, 0, 0, 0, 0);
  2520. if (err)
  2521. return err;
  2522. }
  2523. return 0;
  2524. }
  2525. static void fflp_llcsnap_enable(struct niu *np, int on)
  2526. {
  2527. u64 val = nr64(FFLP_CFG_1);
  2528. if (on)
  2529. val |= FFLP_CFG_1_LLCSNAP;
  2530. else
  2531. val &= ~FFLP_CFG_1_LLCSNAP;
  2532. nw64(FFLP_CFG_1, val);
  2533. }
  2534. static void fflp_errors_enable(struct niu *np, int on)
  2535. {
  2536. u64 val = nr64(FFLP_CFG_1);
  2537. if (on)
  2538. val &= ~FFLP_CFG_1_ERRORDIS;
  2539. else
  2540. val |= FFLP_CFG_1_ERRORDIS;
  2541. nw64(FFLP_CFG_1, val);
  2542. }
  2543. static int fflp_hash_clear(struct niu *np)
  2544. {
  2545. struct fcram_hash_ipv4 ent;
  2546. unsigned long i;
  2547. /* IPV4 hash entry with valid bit clear, rest is don't care. */
  2548. memset(&ent, 0, sizeof(ent));
  2549. ent.header = HASH_HEADER_EXT;
  2550. for (i = 0; i < FCRAM_SIZE; i += sizeof(ent)) {
  2551. int err = hash_write(np, 0, i, 1, (u64 *) &ent);
  2552. if (err)
  2553. return err;
  2554. }
  2555. return 0;
  2556. }
  2557. static int fflp_early_init(struct niu *np)
  2558. {
  2559. struct niu_parent *parent;
  2560. unsigned long flags;
  2561. int err;
  2562. niu_lock_parent(np, flags);
  2563. parent = np->parent;
  2564. err = 0;
  2565. if (!(parent->flags & PARENT_FLGS_CLS_HWINIT)) {
  2566. niudbg(PROBE, "fflp_early_init: Initting hw on port %u\n",
  2567. np->port);
  2568. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  2569. fflp_reset(np);
  2570. fflp_set_timings(np);
  2571. err = fflp_disable_all_partitions(np);
  2572. if (err) {
  2573. niudbg(PROBE, "fflp_disable_all_partitions "
  2574. "failed, err=%d\n", err);
  2575. goto out;
  2576. }
  2577. }
  2578. err = tcam_early_init(np);
  2579. if (err) {
  2580. niudbg(PROBE, "tcam_early_init failed, err=%d\n",
  2581. err);
  2582. goto out;
  2583. }
  2584. fflp_llcsnap_enable(np, 1);
  2585. fflp_errors_enable(np, 0);
  2586. nw64(H1POLY, 0);
  2587. nw64(H2POLY, 0);
  2588. err = tcam_flush_all(np);
  2589. if (err) {
  2590. niudbg(PROBE, "tcam_flush_all failed, err=%d\n",
  2591. err);
  2592. goto out;
  2593. }
  2594. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  2595. err = fflp_hash_clear(np);
  2596. if (err) {
  2597. niudbg(PROBE, "fflp_hash_clear failed, "
  2598. "err=%d\n", err);
  2599. goto out;
  2600. }
  2601. }
  2602. vlan_tbl_clear(np);
  2603. niudbg(PROBE, "fflp_early_init: Success\n");
  2604. parent->flags |= PARENT_FLGS_CLS_HWINIT;
  2605. }
  2606. out:
  2607. niu_unlock_parent(np, flags);
  2608. return err;
  2609. }
  2610. static int niu_set_flow_key(struct niu *np, unsigned long class_code, u64 key)
  2611. {
  2612. if (class_code < CLASS_CODE_USER_PROG1 ||
  2613. class_code > CLASS_CODE_SCTP_IPV6)
  2614. return -EINVAL;
  2615. nw64(FLOW_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  2616. return 0;
  2617. }
  2618. static int niu_set_tcam_key(struct niu *np, unsigned long class_code, u64 key)
  2619. {
  2620. if (class_code < CLASS_CODE_USER_PROG1 ||
  2621. class_code > CLASS_CODE_SCTP_IPV6)
  2622. return -EINVAL;
  2623. nw64(TCAM_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  2624. return 0;
  2625. }
  2626. static void niu_rx_skb_append(struct sk_buff *skb, struct page *page,
  2627. u32 offset, u32 size)
  2628. {
  2629. int i = skb_shinfo(skb)->nr_frags;
  2630. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2631. frag->page = page;
  2632. frag->page_offset = offset;
  2633. frag->size = size;
  2634. skb->len += size;
  2635. skb->data_len += size;
  2636. skb->truesize += size;
  2637. skb_shinfo(skb)->nr_frags = i + 1;
  2638. }
  2639. static unsigned int niu_hash_rxaddr(struct rx_ring_info *rp, u64 a)
  2640. {
  2641. a >>= PAGE_SHIFT;
  2642. a ^= (a >> ilog2(MAX_RBR_RING_SIZE));
  2643. return (a & (MAX_RBR_RING_SIZE - 1));
  2644. }
  2645. static struct page *niu_find_rxpage(struct rx_ring_info *rp, u64 addr,
  2646. struct page ***link)
  2647. {
  2648. unsigned int h = niu_hash_rxaddr(rp, addr);
  2649. struct page *p, **pp;
  2650. addr &= PAGE_MASK;
  2651. pp = &rp->rxhash[h];
  2652. for (; (p = *pp) != NULL; pp = (struct page **) &p->mapping) {
  2653. if (p->index == addr) {
  2654. *link = pp;
  2655. break;
  2656. }
  2657. }
  2658. return p;
  2659. }
  2660. static void niu_hash_page(struct rx_ring_info *rp, struct page *page, u64 base)
  2661. {
  2662. unsigned int h = niu_hash_rxaddr(rp, base);
  2663. page->index = base;
  2664. page->mapping = (struct address_space *) rp->rxhash[h];
  2665. rp->rxhash[h] = page;
  2666. }
  2667. static int niu_rbr_add_page(struct niu *np, struct rx_ring_info *rp,
  2668. gfp_t mask, int start_index)
  2669. {
  2670. struct page *page;
  2671. u64 addr;
  2672. int i;
  2673. page = alloc_page(mask);
  2674. if (!page)
  2675. return -ENOMEM;
  2676. addr = np->ops->map_page(np->device, page, 0,
  2677. PAGE_SIZE, DMA_FROM_DEVICE);
  2678. niu_hash_page(rp, page, addr);
  2679. if (rp->rbr_blocks_per_page > 1)
  2680. atomic_add(rp->rbr_blocks_per_page - 1,
  2681. &compound_head(page)->_count);
  2682. for (i = 0; i < rp->rbr_blocks_per_page; i++) {
  2683. __le32 *rbr = &rp->rbr[start_index + i];
  2684. *rbr = cpu_to_le32(addr >> RBR_DESCR_ADDR_SHIFT);
  2685. addr += rp->rbr_block_size;
  2686. }
  2687. return 0;
  2688. }
  2689. static void niu_rbr_refill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  2690. {
  2691. int index = rp->rbr_index;
  2692. rp->rbr_pending++;
  2693. if ((rp->rbr_pending % rp->rbr_blocks_per_page) == 0) {
  2694. int err = niu_rbr_add_page(np, rp, mask, index);
  2695. if (unlikely(err)) {
  2696. rp->rbr_pending--;
  2697. return;
  2698. }
  2699. rp->rbr_index += rp->rbr_blocks_per_page;
  2700. BUG_ON(rp->rbr_index > rp->rbr_table_size);
  2701. if (rp->rbr_index == rp->rbr_table_size)
  2702. rp->rbr_index = 0;
  2703. if (rp->rbr_pending >= rp->rbr_kick_thresh) {
  2704. nw64(RBR_KICK(rp->rx_channel), rp->rbr_pending);
  2705. rp->rbr_pending = 0;
  2706. }
  2707. }
  2708. }
  2709. static int niu_rx_pkt_ignore(struct niu *np, struct rx_ring_info *rp)
  2710. {
  2711. unsigned int index = rp->rcr_index;
  2712. int num_rcr = 0;
  2713. rp->rx_dropped++;
  2714. while (1) {
  2715. struct page *page, **link;
  2716. u64 addr, val;
  2717. u32 rcr_size;
  2718. num_rcr++;
  2719. val = le64_to_cpup(&rp->rcr[index]);
  2720. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  2721. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  2722. page = niu_find_rxpage(rp, addr, &link);
  2723. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  2724. RCR_ENTRY_PKTBUFSZ_SHIFT];
  2725. if ((page->index + PAGE_SIZE) - rcr_size == addr) {
  2726. *link = (struct page *) page->mapping;
  2727. np->ops->unmap_page(np->device, page->index,
  2728. PAGE_SIZE, DMA_FROM_DEVICE);
  2729. page->index = 0;
  2730. page->mapping = NULL;
  2731. __free_page(page);
  2732. rp->rbr_refill_pending++;
  2733. }
  2734. index = NEXT_RCR(rp, index);
  2735. if (!(val & RCR_ENTRY_MULTI))
  2736. break;
  2737. }
  2738. rp->rcr_index = index;
  2739. return num_rcr;
  2740. }
  2741. static int niu_process_rx_pkt(struct niu *np, struct rx_ring_info *rp)
  2742. {
  2743. unsigned int index = rp->rcr_index;
  2744. struct sk_buff *skb;
  2745. int len, num_rcr;
  2746. skb = netdev_alloc_skb(np->dev, RX_SKB_ALLOC_SIZE);
  2747. if (unlikely(!skb))
  2748. return niu_rx_pkt_ignore(np, rp);
  2749. num_rcr = 0;
  2750. while (1) {
  2751. struct page *page, **link;
  2752. u32 rcr_size, append_size;
  2753. u64 addr, val, off;
  2754. num_rcr++;
  2755. val = le64_to_cpup(&rp->rcr[index]);
  2756. len = (val & RCR_ENTRY_L2_LEN) >>
  2757. RCR_ENTRY_L2_LEN_SHIFT;
  2758. len -= ETH_FCS_LEN;
  2759. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  2760. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  2761. page = niu_find_rxpage(rp, addr, &link);
  2762. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  2763. RCR_ENTRY_PKTBUFSZ_SHIFT];
  2764. off = addr & ~PAGE_MASK;
  2765. append_size = rcr_size;
  2766. if (num_rcr == 1) {
  2767. int ptype;
  2768. off += 2;
  2769. append_size -= 2;
  2770. ptype = (val >> RCR_ENTRY_PKT_TYPE_SHIFT);
  2771. if ((ptype == RCR_PKT_TYPE_TCP ||
  2772. ptype == RCR_PKT_TYPE_UDP) &&
  2773. !(val & (RCR_ENTRY_NOPORT |
  2774. RCR_ENTRY_ERROR)))
  2775. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2776. else
  2777. skb->ip_summed = CHECKSUM_NONE;
  2778. }
  2779. if (!(val & RCR_ENTRY_MULTI))
  2780. append_size = len - skb->len;
  2781. niu_rx_skb_append(skb, page, off, append_size);
  2782. if ((page->index + rp->rbr_block_size) - rcr_size == addr) {
  2783. *link = (struct page *) page->mapping;
  2784. np->ops->unmap_page(np->device, page->index,
  2785. PAGE_SIZE, DMA_FROM_DEVICE);
  2786. page->index = 0;
  2787. page->mapping = NULL;
  2788. rp->rbr_refill_pending++;
  2789. } else
  2790. get_page(page);
  2791. index = NEXT_RCR(rp, index);
  2792. if (!(val & RCR_ENTRY_MULTI))
  2793. break;
  2794. }
  2795. rp->rcr_index = index;
  2796. skb_reserve(skb, NET_IP_ALIGN);
  2797. __pskb_pull_tail(skb, min(len, NIU_RXPULL_MAX));
  2798. rp->rx_packets++;
  2799. rp->rx_bytes += skb->len;
  2800. skb->protocol = eth_type_trans(skb, np->dev);
  2801. netif_receive_skb(skb);
  2802. return num_rcr;
  2803. }
  2804. static int niu_rbr_fill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  2805. {
  2806. int blocks_per_page = rp->rbr_blocks_per_page;
  2807. int err, index = rp->rbr_index;
  2808. err = 0;
  2809. while (index < (rp->rbr_table_size - blocks_per_page)) {
  2810. err = niu_rbr_add_page(np, rp, mask, index);
  2811. if (err)
  2812. break;
  2813. index += blocks_per_page;
  2814. }
  2815. rp->rbr_index = index;
  2816. return err;
  2817. }
  2818. static void niu_rbr_free(struct niu *np, struct rx_ring_info *rp)
  2819. {
  2820. int i;
  2821. for (i = 0; i < MAX_RBR_RING_SIZE; i++) {
  2822. struct page *page;
  2823. page = rp->rxhash[i];
  2824. while (page) {
  2825. struct page *next = (struct page *) page->mapping;
  2826. u64 base = page->index;
  2827. np->ops->unmap_page(np->device, base, PAGE_SIZE,
  2828. DMA_FROM_DEVICE);
  2829. page->index = 0;
  2830. page->mapping = NULL;
  2831. __free_page(page);
  2832. page = next;
  2833. }
  2834. }
  2835. for (i = 0; i < rp->rbr_table_size; i++)
  2836. rp->rbr[i] = cpu_to_le32(0);
  2837. rp->rbr_index = 0;
  2838. }
  2839. static int release_tx_packet(struct niu *np, struct tx_ring_info *rp, int idx)
  2840. {
  2841. struct tx_buff_info *tb = &rp->tx_buffs[idx];
  2842. struct sk_buff *skb = tb->skb;
  2843. struct tx_pkt_hdr *tp;
  2844. u64 tx_flags;
  2845. int i, len;
  2846. tp = (struct tx_pkt_hdr *) skb->data;
  2847. tx_flags = le64_to_cpup(&tp->flags);
  2848. rp->tx_packets++;
  2849. rp->tx_bytes += (((tx_flags & TXHDR_LEN) >> TXHDR_LEN_SHIFT) -
  2850. ((tx_flags & TXHDR_PAD) / 2));
  2851. len = skb_headlen(skb);
  2852. np->ops->unmap_single(np->device, tb->mapping,
  2853. len, DMA_TO_DEVICE);
  2854. if (le64_to_cpu(rp->descr[idx]) & TX_DESC_MARK)
  2855. rp->mark_pending--;
  2856. tb->skb = NULL;
  2857. do {
  2858. idx = NEXT_TX(rp, idx);
  2859. len -= MAX_TX_DESC_LEN;
  2860. } while (len > 0);
  2861. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2862. tb = &rp->tx_buffs[idx];
  2863. BUG_ON(tb->skb != NULL);
  2864. np->ops->unmap_page(np->device, tb->mapping,
  2865. skb_shinfo(skb)->frags[i].size,
  2866. DMA_TO_DEVICE);
  2867. idx = NEXT_TX(rp, idx);
  2868. }
  2869. dev_kfree_skb(skb);
  2870. return idx;
  2871. }
  2872. #define NIU_TX_WAKEUP_THRESH(rp) ((rp)->pending / 4)
  2873. static void niu_tx_work(struct niu *np, struct tx_ring_info *rp)
  2874. {
  2875. struct netdev_queue *txq;
  2876. u16 pkt_cnt, tmp;
  2877. int cons, index;
  2878. u64 cs;
  2879. index = (rp - np->tx_rings);
  2880. txq = netdev_get_tx_queue(np->dev, index);
  2881. cs = rp->tx_cs;
  2882. if (unlikely(!(cs & (TX_CS_MK | TX_CS_MMK))))
  2883. goto out;
  2884. tmp = pkt_cnt = (cs & TX_CS_PKT_CNT) >> TX_CS_PKT_CNT_SHIFT;
  2885. pkt_cnt = (pkt_cnt - rp->last_pkt_cnt) &
  2886. (TX_CS_PKT_CNT >> TX_CS_PKT_CNT_SHIFT);
  2887. rp->last_pkt_cnt = tmp;
  2888. cons = rp->cons;
  2889. niudbg(TX_DONE, "%s: niu_tx_work() pkt_cnt[%u] cons[%d]\n",
  2890. np->dev->name, pkt_cnt, cons);
  2891. while (pkt_cnt--)
  2892. cons = release_tx_packet(np, rp, cons);
  2893. rp->cons = cons;
  2894. smp_mb();
  2895. out:
  2896. if (unlikely(netif_tx_queue_stopped(txq) &&
  2897. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))) {
  2898. __netif_tx_lock(txq, smp_processor_id());
  2899. if (netif_tx_queue_stopped(txq) &&
  2900. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))
  2901. netif_tx_wake_queue(txq);
  2902. __netif_tx_unlock(txq);
  2903. }
  2904. }
  2905. static inline void niu_sync_rx_discard_stats(struct niu *np,
  2906. struct rx_ring_info *rp,
  2907. const int limit)
  2908. {
  2909. /* This elaborate scheme is needed for reading the RX discard
  2910. * counters, as they are only 16-bit and can overflow quickly,
  2911. * and because the overflow indication bit is not usable as
  2912. * the counter value does not wrap, but remains at max value
  2913. * 0xFFFF.
  2914. *
  2915. * In theory and in practice counters can be lost in between
  2916. * reading nr64() and clearing the counter nw64(). For this
  2917. * reason, the number of counter clearings nw64() is
  2918. * limited/reduced though the limit parameter.
  2919. */
  2920. int rx_channel = rp->rx_channel;
  2921. u32 misc, wred;
  2922. /* RXMISC (Receive Miscellaneous Discard Count), covers the
  2923. * following discard events: IPP (Input Port Process),
  2924. * FFLP/TCAM, Full RCR (Receive Completion Ring) RBR (Receive
  2925. * Block Ring) prefetch buffer is empty.
  2926. */
  2927. misc = nr64(RXMISC(rx_channel));
  2928. if (unlikely((misc & RXMISC_COUNT) > limit)) {
  2929. nw64(RXMISC(rx_channel), 0);
  2930. rp->rx_errors += misc & RXMISC_COUNT;
  2931. if (unlikely(misc & RXMISC_OFLOW))
  2932. dev_err(np->device, "rx-%d: Counter overflow "
  2933. "RXMISC discard\n", rx_channel);
  2934. niudbg(RX_ERR, "%s-rx-%d: MISC drop=%u over=%u\n",
  2935. np->dev->name, rx_channel, misc, misc-limit);
  2936. }
  2937. /* WRED (Weighted Random Early Discard) by hardware */
  2938. wred = nr64(RED_DIS_CNT(rx_channel));
  2939. if (unlikely((wred & RED_DIS_CNT_COUNT) > limit)) {
  2940. nw64(RED_DIS_CNT(rx_channel), 0);
  2941. rp->rx_dropped += wred & RED_DIS_CNT_COUNT;
  2942. if (unlikely(wred & RED_DIS_CNT_OFLOW))
  2943. dev_err(np->device, "rx-%d: Counter overflow "
  2944. "WRED discard\n", rx_channel);
  2945. niudbg(RX_ERR, "%s-rx-%d: WRED drop=%u over=%u\n",
  2946. np->dev->name, rx_channel, wred, wred-limit);
  2947. }
  2948. }
  2949. static int niu_rx_work(struct niu *np, struct rx_ring_info *rp, int budget)
  2950. {
  2951. int qlen, rcr_done = 0, work_done = 0;
  2952. struct rxdma_mailbox *mbox = rp->mbox;
  2953. u64 stat;
  2954. #if 1
  2955. stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  2956. qlen = nr64(RCRSTAT_A(rp->rx_channel)) & RCRSTAT_A_QLEN;
  2957. #else
  2958. stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  2959. qlen = (le64_to_cpup(&mbox->rcrstat_a) & RCRSTAT_A_QLEN);
  2960. #endif
  2961. mbox->rx_dma_ctl_stat = 0;
  2962. mbox->rcrstat_a = 0;
  2963. niudbg(RX_STATUS, "%s: niu_rx_work(chan[%d]), stat[%llx] qlen=%d\n",
  2964. np->dev->name, rp->rx_channel, (unsigned long long) stat, qlen);
  2965. rcr_done = work_done = 0;
  2966. qlen = min(qlen, budget);
  2967. while (work_done < qlen) {
  2968. rcr_done += niu_process_rx_pkt(np, rp);
  2969. work_done++;
  2970. }
  2971. if (rp->rbr_refill_pending >= rp->rbr_kick_thresh) {
  2972. unsigned int i;
  2973. for (i = 0; i < rp->rbr_refill_pending; i++)
  2974. niu_rbr_refill(np, rp, GFP_ATOMIC);
  2975. rp->rbr_refill_pending = 0;
  2976. }
  2977. stat = (RX_DMA_CTL_STAT_MEX |
  2978. ((u64)work_done << RX_DMA_CTL_STAT_PKTREAD_SHIFT) |
  2979. ((u64)rcr_done << RX_DMA_CTL_STAT_PTRREAD_SHIFT));
  2980. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat);
  2981. /* Only sync discards stats when qlen indicate potential for drops */
  2982. if (qlen > 10)
  2983. niu_sync_rx_discard_stats(np, rp, 0x7FFF);
  2984. return work_done;
  2985. }
  2986. static int niu_poll_core(struct niu *np, struct niu_ldg *lp, int budget)
  2987. {
  2988. u64 v0 = lp->v0;
  2989. u32 tx_vec = (v0 >> 32);
  2990. u32 rx_vec = (v0 & 0xffffffff);
  2991. int i, work_done = 0;
  2992. niudbg(INTR, "%s: niu_poll_core() v0[%016llx]\n",
  2993. np->dev->name, (unsigned long long) v0);
  2994. for (i = 0; i < np->num_tx_rings; i++) {
  2995. struct tx_ring_info *rp = &np->tx_rings[i];
  2996. if (tx_vec & (1 << rp->tx_channel))
  2997. niu_tx_work(np, rp);
  2998. nw64(LD_IM0(LDN_TXDMA(rp->tx_channel)), 0);
  2999. }
  3000. for (i = 0; i < np->num_rx_rings; i++) {
  3001. struct rx_ring_info *rp = &np->rx_rings[i];
  3002. if (rx_vec & (1 << rp->rx_channel)) {
  3003. int this_work_done;
  3004. this_work_done = niu_rx_work(np, rp,
  3005. budget);
  3006. budget -= this_work_done;
  3007. work_done += this_work_done;
  3008. }
  3009. nw64(LD_IM0(LDN_RXDMA(rp->rx_channel)), 0);
  3010. }
  3011. return work_done;
  3012. }
  3013. static int niu_poll(struct napi_struct *napi, int budget)
  3014. {
  3015. struct niu_ldg *lp = container_of(napi, struct niu_ldg, napi);
  3016. struct niu *np = lp->np;
  3017. int work_done;
  3018. work_done = niu_poll_core(np, lp, budget);
  3019. if (work_done < budget) {
  3020. netif_rx_complete(napi);
  3021. niu_ldg_rearm(np, lp, 1);
  3022. }
  3023. return work_done;
  3024. }
  3025. static void niu_log_rxchan_errors(struct niu *np, struct rx_ring_info *rp,
  3026. u64 stat)
  3027. {
  3028. dev_err(np->device, PFX "%s: RX channel %u errors ( ",
  3029. np->dev->name, rp->rx_channel);
  3030. if (stat & RX_DMA_CTL_STAT_RBR_TMOUT)
  3031. printk("RBR_TMOUT ");
  3032. if (stat & RX_DMA_CTL_STAT_RSP_CNT_ERR)
  3033. printk("RSP_CNT ");
  3034. if (stat & RX_DMA_CTL_STAT_BYTE_EN_BUS)
  3035. printk("BYTE_EN_BUS ");
  3036. if (stat & RX_DMA_CTL_STAT_RSP_DAT_ERR)
  3037. printk("RSP_DAT ");
  3038. if (stat & RX_DMA_CTL_STAT_RCR_ACK_ERR)
  3039. printk("RCR_ACK ");
  3040. if (stat & RX_DMA_CTL_STAT_RCR_SHA_PAR)
  3041. printk("RCR_SHA_PAR ");
  3042. if (stat & RX_DMA_CTL_STAT_RBR_PRE_PAR)
  3043. printk("RBR_PRE_PAR ");
  3044. if (stat & RX_DMA_CTL_STAT_CONFIG_ERR)
  3045. printk("CONFIG ");
  3046. if (stat & RX_DMA_CTL_STAT_RCRINCON)
  3047. printk("RCRINCON ");
  3048. if (stat & RX_DMA_CTL_STAT_RCRFULL)
  3049. printk("RCRFULL ");
  3050. if (stat & RX_DMA_CTL_STAT_RBRFULL)
  3051. printk("RBRFULL ");
  3052. if (stat & RX_DMA_CTL_STAT_RBRLOGPAGE)
  3053. printk("RBRLOGPAGE ");
  3054. if (stat & RX_DMA_CTL_STAT_CFIGLOGPAGE)
  3055. printk("CFIGLOGPAGE ");
  3056. if (stat & RX_DMA_CTL_STAT_DC_FIFO_ERR)
  3057. printk("DC_FIDO ");
  3058. printk(")\n");
  3059. }
  3060. static int niu_rx_error(struct niu *np, struct rx_ring_info *rp)
  3061. {
  3062. u64 stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  3063. int err = 0;
  3064. if (stat & (RX_DMA_CTL_STAT_CHAN_FATAL |
  3065. RX_DMA_CTL_STAT_PORT_FATAL))
  3066. err = -EINVAL;
  3067. if (err) {
  3068. dev_err(np->device, PFX "%s: RX channel %u error, stat[%llx]\n",
  3069. np->dev->name, rp->rx_channel,
  3070. (unsigned long long) stat);
  3071. niu_log_rxchan_errors(np, rp, stat);
  3072. }
  3073. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  3074. stat & RX_DMA_CTL_WRITE_CLEAR_ERRS);
  3075. return err;
  3076. }
  3077. static void niu_log_txchan_errors(struct niu *np, struct tx_ring_info *rp,
  3078. u64 cs)
  3079. {
  3080. dev_err(np->device, PFX "%s: TX channel %u errors ( ",
  3081. np->dev->name, rp->tx_channel);
  3082. if (cs & TX_CS_MBOX_ERR)
  3083. printk("MBOX ");
  3084. if (cs & TX_CS_PKT_SIZE_ERR)
  3085. printk("PKT_SIZE ");
  3086. if (cs & TX_CS_TX_RING_OFLOW)
  3087. printk("TX_RING_OFLOW ");
  3088. if (cs & TX_CS_PREF_BUF_PAR_ERR)
  3089. printk("PREF_BUF_PAR ");
  3090. if (cs & TX_CS_NACK_PREF)
  3091. printk("NACK_PREF ");
  3092. if (cs & TX_CS_NACK_PKT_RD)
  3093. printk("NACK_PKT_RD ");
  3094. if (cs & TX_CS_CONF_PART_ERR)
  3095. printk("CONF_PART ");
  3096. if (cs & TX_CS_PKT_PRT_ERR)
  3097. printk("PKT_PTR ");
  3098. printk(")\n");
  3099. }
  3100. static int niu_tx_error(struct niu *np, struct tx_ring_info *rp)
  3101. {
  3102. u64 cs, logh, logl;
  3103. cs = nr64(TX_CS(rp->tx_channel));
  3104. logh = nr64(TX_RNG_ERR_LOGH(rp->tx_channel));
  3105. logl = nr64(TX_RNG_ERR_LOGL(rp->tx_channel));
  3106. dev_err(np->device, PFX "%s: TX channel %u error, "
  3107. "cs[%llx] logh[%llx] logl[%llx]\n",
  3108. np->dev->name, rp->tx_channel,
  3109. (unsigned long long) cs,
  3110. (unsigned long long) logh,
  3111. (unsigned long long) logl);
  3112. niu_log_txchan_errors(np, rp, cs);
  3113. return -ENODEV;
  3114. }
  3115. static int niu_mif_interrupt(struct niu *np)
  3116. {
  3117. u64 mif_status = nr64(MIF_STATUS);
  3118. int phy_mdint = 0;
  3119. if (np->flags & NIU_FLAGS_XMAC) {
  3120. u64 xrxmac_stat = nr64_mac(XRXMAC_STATUS);
  3121. if (xrxmac_stat & XRXMAC_STATUS_PHY_MDINT)
  3122. phy_mdint = 1;
  3123. }
  3124. dev_err(np->device, PFX "%s: MIF interrupt, "
  3125. "stat[%llx] phy_mdint(%d)\n",
  3126. np->dev->name, (unsigned long long) mif_status, phy_mdint);
  3127. return -ENODEV;
  3128. }
  3129. static void niu_xmac_interrupt(struct niu *np)
  3130. {
  3131. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  3132. u64 val;
  3133. val = nr64_mac(XTXMAC_STATUS);
  3134. if (val & XTXMAC_STATUS_FRAME_CNT_EXP)
  3135. mp->tx_frames += TXMAC_FRM_CNT_COUNT;
  3136. if (val & XTXMAC_STATUS_BYTE_CNT_EXP)
  3137. mp->tx_bytes += TXMAC_BYTE_CNT_COUNT;
  3138. if (val & XTXMAC_STATUS_TXFIFO_XFR_ERR)
  3139. mp->tx_fifo_errors++;
  3140. if (val & XTXMAC_STATUS_TXMAC_OFLOW)
  3141. mp->tx_overflow_errors++;
  3142. if (val & XTXMAC_STATUS_MAX_PSIZE_ERR)
  3143. mp->tx_max_pkt_size_errors++;
  3144. if (val & XTXMAC_STATUS_TXMAC_UFLOW)
  3145. mp->tx_underflow_errors++;
  3146. val = nr64_mac(XRXMAC_STATUS);
  3147. if (val & XRXMAC_STATUS_LCL_FLT_STATUS)
  3148. mp->rx_local_faults++;
  3149. if (val & XRXMAC_STATUS_RFLT_DET)
  3150. mp->rx_remote_faults++;
  3151. if (val & XRXMAC_STATUS_LFLT_CNT_EXP)
  3152. mp->rx_link_faults += LINK_FAULT_CNT_COUNT;
  3153. if (val & XRXMAC_STATUS_ALIGNERR_CNT_EXP)
  3154. mp->rx_align_errors += RXMAC_ALIGN_ERR_CNT_COUNT;
  3155. if (val & XRXMAC_STATUS_RXFRAG_CNT_EXP)
  3156. mp->rx_frags += RXMAC_FRAG_CNT_COUNT;
  3157. if (val & XRXMAC_STATUS_RXMULTF_CNT_EXP)
  3158. mp->rx_mcasts += RXMAC_MC_FRM_CNT_COUNT;
  3159. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  3160. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  3161. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  3162. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  3163. if (val & XRXMAC_STATUS_RXHIST1_CNT_EXP)
  3164. mp->rx_hist_cnt1 += RXMAC_HIST_CNT1_COUNT;
  3165. if (val & XRXMAC_STATUS_RXHIST2_CNT_EXP)
  3166. mp->rx_hist_cnt2 += RXMAC_HIST_CNT2_COUNT;
  3167. if (val & XRXMAC_STATUS_RXHIST3_CNT_EXP)
  3168. mp->rx_hist_cnt3 += RXMAC_HIST_CNT3_COUNT;
  3169. if (val & XRXMAC_STATUS_RXHIST4_CNT_EXP)
  3170. mp->rx_hist_cnt4 += RXMAC_HIST_CNT4_COUNT;
  3171. if (val & XRXMAC_STATUS_RXHIST5_CNT_EXP)
  3172. mp->rx_hist_cnt5 += RXMAC_HIST_CNT5_COUNT;
  3173. if (val & XRXMAC_STATUS_RXHIST6_CNT_EXP)
  3174. mp->rx_hist_cnt6 += RXMAC_HIST_CNT6_COUNT;
  3175. if (val & XRXMAC_STATUS_RXHIST7_CNT_EXP)
  3176. mp->rx_hist_cnt7 += RXMAC_HIST_CNT7_COUNT;
  3177. if (val & XRXMAC_STAT_MSK_RXOCTET_CNT_EXP)
  3178. mp->rx_octets += RXMAC_BT_CNT_COUNT;
  3179. if (val & XRXMAC_STATUS_CVIOLERR_CNT_EXP)
  3180. mp->rx_code_violations += RXMAC_CD_VIO_CNT_COUNT;
  3181. if (val & XRXMAC_STATUS_LENERR_CNT_EXP)
  3182. mp->rx_len_errors += RXMAC_MPSZER_CNT_COUNT;
  3183. if (val & XRXMAC_STATUS_CRCERR_CNT_EXP)
  3184. mp->rx_crc_errors += RXMAC_CRC_ER_CNT_COUNT;
  3185. if (val & XRXMAC_STATUS_RXUFLOW)
  3186. mp->rx_underflows++;
  3187. if (val & XRXMAC_STATUS_RXOFLOW)
  3188. mp->rx_overflows++;
  3189. val = nr64_mac(XMAC_FC_STAT);
  3190. if (val & XMAC_FC_STAT_TX_MAC_NPAUSE)
  3191. mp->pause_off_state++;
  3192. if (val & XMAC_FC_STAT_TX_MAC_PAUSE)
  3193. mp->pause_on_state++;
  3194. if (val & XMAC_FC_STAT_RX_MAC_RPAUSE)
  3195. mp->pause_received++;
  3196. }
  3197. static void niu_bmac_interrupt(struct niu *np)
  3198. {
  3199. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  3200. u64 val;
  3201. val = nr64_mac(BTXMAC_STATUS);
  3202. if (val & BTXMAC_STATUS_UNDERRUN)
  3203. mp->tx_underflow_errors++;
  3204. if (val & BTXMAC_STATUS_MAX_PKT_ERR)
  3205. mp->tx_max_pkt_size_errors++;
  3206. if (val & BTXMAC_STATUS_BYTE_CNT_EXP)
  3207. mp->tx_bytes += BTXMAC_BYTE_CNT_COUNT;
  3208. if (val & BTXMAC_STATUS_FRAME_CNT_EXP)
  3209. mp->tx_frames += BTXMAC_FRM_CNT_COUNT;
  3210. val = nr64_mac(BRXMAC_STATUS);
  3211. if (val & BRXMAC_STATUS_OVERFLOW)
  3212. mp->rx_overflows++;
  3213. if (val & BRXMAC_STATUS_FRAME_CNT_EXP)
  3214. mp->rx_frames += BRXMAC_FRAME_CNT_COUNT;
  3215. if (val & BRXMAC_STATUS_ALIGN_ERR_EXP)
  3216. mp->rx_align_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  3217. if (val & BRXMAC_STATUS_CRC_ERR_EXP)
  3218. mp->rx_crc_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  3219. if (val & BRXMAC_STATUS_LEN_ERR_EXP)
  3220. mp->rx_len_errors += BRXMAC_CODE_VIOL_ERR_CNT_COUNT;
  3221. val = nr64_mac(BMAC_CTRL_STATUS);
  3222. if (val & BMAC_CTRL_STATUS_NOPAUSE)
  3223. mp->pause_off_state++;
  3224. if (val & BMAC_CTRL_STATUS_PAUSE)
  3225. mp->pause_on_state++;
  3226. if (val & BMAC_CTRL_STATUS_PAUSE_RECV)
  3227. mp->pause_received++;
  3228. }
  3229. static int niu_mac_interrupt(struct niu *np)
  3230. {
  3231. if (np->flags & NIU_FLAGS_XMAC)
  3232. niu_xmac_interrupt(np);
  3233. else
  3234. niu_bmac_interrupt(np);
  3235. return 0;
  3236. }
  3237. static void niu_log_device_error(struct niu *np, u64 stat)
  3238. {
  3239. dev_err(np->device, PFX "%s: Core device errors ( ",
  3240. np->dev->name);
  3241. if (stat & SYS_ERR_MASK_META2)
  3242. printk("META2 ");
  3243. if (stat & SYS_ERR_MASK_META1)
  3244. printk("META1 ");
  3245. if (stat & SYS_ERR_MASK_PEU)
  3246. printk("PEU ");
  3247. if (stat & SYS_ERR_MASK_TXC)
  3248. printk("TXC ");
  3249. if (stat & SYS_ERR_MASK_RDMC)
  3250. printk("RDMC ");
  3251. if (stat & SYS_ERR_MASK_TDMC)
  3252. printk("TDMC ");
  3253. if (stat & SYS_ERR_MASK_ZCP)
  3254. printk("ZCP ");
  3255. if (stat & SYS_ERR_MASK_FFLP)
  3256. printk("FFLP ");
  3257. if (stat & SYS_ERR_MASK_IPP)
  3258. printk("IPP ");
  3259. if (stat & SYS_ERR_MASK_MAC)
  3260. printk("MAC ");
  3261. if (stat & SYS_ERR_MASK_SMX)
  3262. printk("SMX ");
  3263. printk(")\n");
  3264. }
  3265. static int niu_device_error(struct niu *np)
  3266. {
  3267. u64 stat = nr64(SYS_ERR_STAT);
  3268. dev_err(np->device, PFX "%s: Core device error, stat[%llx]\n",
  3269. np->dev->name, (unsigned long long) stat);
  3270. niu_log_device_error(np, stat);
  3271. return -ENODEV;
  3272. }
  3273. static int niu_slowpath_interrupt(struct niu *np, struct niu_ldg *lp,
  3274. u64 v0, u64 v1, u64 v2)
  3275. {
  3276. int i, err = 0;
  3277. lp->v0 = v0;
  3278. lp->v1 = v1;
  3279. lp->v2 = v2;
  3280. if (v1 & 0x00000000ffffffffULL) {
  3281. u32 rx_vec = (v1 & 0xffffffff);
  3282. for (i = 0; i < np->num_rx_rings; i++) {
  3283. struct rx_ring_info *rp = &np->rx_rings[i];
  3284. if (rx_vec & (1 << rp->rx_channel)) {
  3285. int r = niu_rx_error(np, rp);
  3286. if (r) {
  3287. err = r;
  3288. } else {
  3289. if (!v0)
  3290. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  3291. RX_DMA_CTL_STAT_MEX);
  3292. }
  3293. }
  3294. }
  3295. }
  3296. if (v1 & 0x7fffffff00000000ULL) {
  3297. u32 tx_vec = (v1 >> 32) & 0x7fffffff;
  3298. for (i = 0; i < np->num_tx_rings; i++) {
  3299. struct tx_ring_info *rp = &np->tx_rings[i];
  3300. if (tx_vec & (1 << rp->tx_channel)) {
  3301. int r = niu_tx_error(np, rp);
  3302. if (r)
  3303. err = r;
  3304. }
  3305. }
  3306. }
  3307. if ((v0 | v1) & 0x8000000000000000ULL) {
  3308. int r = niu_mif_interrupt(np);
  3309. if (r)
  3310. err = r;
  3311. }
  3312. if (v2) {
  3313. if (v2 & 0x01ef) {
  3314. int r = niu_mac_interrupt(np);
  3315. if (r)
  3316. err = r;
  3317. }
  3318. if (v2 & 0x0210) {
  3319. int r = niu_device_error(np);
  3320. if (r)
  3321. err = r;
  3322. }
  3323. }
  3324. if (err)
  3325. niu_enable_interrupts(np, 0);
  3326. return err;
  3327. }
  3328. static void niu_rxchan_intr(struct niu *np, struct rx_ring_info *rp,
  3329. int ldn)
  3330. {
  3331. struct rxdma_mailbox *mbox = rp->mbox;
  3332. u64 stat_write, stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  3333. stat_write = (RX_DMA_CTL_STAT_RCRTHRES |
  3334. RX_DMA_CTL_STAT_RCRTO);
  3335. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat_write);
  3336. niudbg(INTR, "%s: rxchan_intr stat[%llx]\n",
  3337. np->dev->name, (unsigned long long) stat);
  3338. }
  3339. static void niu_txchan_intr(struct niu *np, struct tx_ring_info *rp,
  3340. int ldn)
  3341. {
  3342. rp->tx_cs = nr64(TX_CS(rp->tx_channel));
  3343. niudbg(INTR, "%s: txchan_intr cs[%llx]\n",
  3344. np->dev->name, (unsigned long long) rp->tx_cs);
  3345. }
  3346. static void __niu_fastpath_interrupt(struct niu *np, int ldg, u64 v0)
  3347. {
  3348. struct niu_parent *parent = np->parent;
  3349. u32 rx_vec, tx_vec;
  3350. int i;
  3351. tx_vec = (v0 >> 32);
  3352. rx_vec = (v0 & 0xffffffff);
  3353. for (i = 0; i < np->num_rx_rings; i++) {
  3354. struct rx_ring_info *rp = &np->rx_rings[i];
  3355. int ldn = LDN_RXDMA(rp->rx_channel);
  3356. if (parent->ldg_map[ldn] != ldg)
  3357. continue;
  3358. nw64(LD_IM0(ldn), LD_IM0_MASK);
  3359. if (rx_vec & (1 << rp->rx_channel))
  3360. niu_rxchan_intr(np, rp, ldn);
  3361. }
  3362. for (i = 0; i < np->num_tx_rings; i++) {
  3363. struct tx_ring_info *rp = &np->tx_rings[i];
  3364. int ldn = LDN_TXDMA(rp->tx_channel);
  3365. if (parent->ldg_map[ldn] != ldg)
  3366. continue;
  3367. nw64(LD_IM0(ldn), LD_IM0_MASK);
  3368. if (tx_vec & (1 << rp->tx_channel))
  3369. niu_txchan_intr(np, rp, ldn);
  3370. }
  3371. }
  3372. static void niu_schedule_napi(struct niu *np, struct niu_ldg *lp,
  3373. u64 v0, u64 v1, u64 v2)
  3374. {
  3375. if (likely(netif_rx_schedule_prep(&lp->napi))) {
  3376. lp->v0 = v0;
  3377. lp->v1 = v1;
  3378. lp->v2 = v2;
  3379. __niu_fastpath_interrupt(np, lp->ldg_num, v0);
  3380. __netif_rx_schedule(&lp->napi);
  3381. }
  3382. }
  3383. static irqreturn_t niu_interrupt(int irq, void *dev_id)
  3384. {
  3385. struct niu_ldg *lp = dev_id;
  3386. struct niu *np = lp->np;
  3387. int ldg = lp->ldg_num;
  3388. unsigned long flags;
  3389. u64 v0, v1, v2;
  3390. if (netif_msg_intr(np))
  3391. printk(KERN_DEBUG PFX "niu_interrupt() ldg[%p](%d) ",
  3392. lp, ldg);
  3393. spin_lock_irqsave(&np->lock, flags);
  3394. v0 = nr64(LDSV0(ldg));
  3395. v1 = nr64(LDSV1(ldg));
  3396. v2 = nr64(LDSV2(ldg));
  3397. if (netif_msg_intr(np))
  3398. printk("v0[%llx] v1[%llx] v2[%llx]\n",
  3399. (unsigned long long) v0,
  3400. (unsigned long long) v1,
  3401. (unsigned long long) v2);
  3402. if (unlikely(!v0 && !v1 && !v2)) {
  3403. spin_unlock_irqrestore(&np->lock, flags);
  3404. return IRQ_NONE;
  3405. }
  3406. if (unlikely((v0 & ((u64)1 << LDN_MIF)) || v1 || v2)) {
  3407. int err = niu_slowpath_interrupt(np, lp, v0, v1, v2);
  3408. if (err)
  3409. goto out;
  3410. }
  3411. if (likely(v0 & ~((u64)1 << LDN_MIF)))
  3412. niu_schedule_napi(np, lp, v0, v1, v2);
  3413. else
  3414. niu_ldg_rearm(np, lp, 1);
  3415. out:
  3416. spin_unlock_irqrestore(&np->lock, flags);
  3417. return IRQ_HANDLED;
  3418. }
  3419. static void niu_free_rx_ring_info(struct niu *np, struct rx_ring_info *rp)
  3420. {
  3421. if (rp->mbox) {
  3422. np->ops->free_coherent(np->device,
  3423. sizeof(struct rxdma_mailbox),
  3424. rp->mbox, rp->mbox_dma);
  3425. rp->mbox = NULL;
  3426. }
  3427. if (rp->rcr) {
  3428. np->ops->free_coherent(np->device,
  3429. MAX_RCR_RING_SIZE * sizeof(__le64),
  3430. rp->rcr, rp->rcr_dma);
  3431. rp->rcr = NULL;
  3432. rp->rcr_table_size = 0;
  3433. rp->rcr_index = 0;
  3434. }
  3435. if (rp->rbr) {
  3436. niu_rbr_free(np, rp);
  3437. np->ops->free_coherent(np->device,
  3438. MAX_RBR_RING_SIZE * sizeof(__le32),
  3439. rp->rbr, rp->rbr_dma);
  3440. rp->rbr = NULL;
  3441. rp->rbr_table_size = 0;
  3442. rp->rbr_index = 0;
  3443. }
  3444. kfree(rp->rxhash);
  3445. rp->rxhash = NULL;
  3446. }
  3447. static void niu_free_tx_ring_info(struct niu *np, struct tx_ring_info *rp)
  3448. {
  3449. if (rp->mbox) {
  3450. np->ops->free_coherent(np->device,
  3451. sizeof(struct txdma_mailbox),
  3452. rp->mbox, rp->mbox_dma);
  3453. rp->mbox = NULL;
  3454. }
  3455. if (rp->descr) {
  3456. int i;
  3457. for (i = 0; i < MAX_TX_RING_SIZE; i++) {
  3458. if (rp->tx_buffs[i].skb)
  3459. (void) release_tx_packet(np, rp, i);
  3460. }
  3461. np->ops->free_coherent(np->device,
  3462. MAX_TX_RING_SIZE * sizeof(__le64),
  3463. rp->descr, rp->descr_dma);
  3464. rp->descr = NULL;
  3465. rp->pending = 0;
  3466. rp->prod = 0;
  3467. rp->cons = 0;
  3468. rp->wrap_bit = 0;
  3469. }
  3470. }
  3471. static void niu_free_channels(struct niu *np)
  3472. {
  3473. int i;
  3474. if (np->rx_rings) {
  3475. for (i = 0; i < np->num_rx_rings; i++) {
  3476. struct rx_ring_info *rp = &np->rx_rings[i];
  3477. niu_free_rx_ring_info(np, rp);
  3478. }
  3479. kfree(np->rx_rings);
  3480. np->rx_rings = NULL;
  3481. np->num_rx_rings = 0;
  3482. }
  3483. if (np->tx_rings) {
  3484. for (i = 0; i < np->num_tx_rings; i++) {
  3485. struct tx_ring_info *rp = &np->tx_rings[i];
  3486. niu_free_tx_ring_info(np, rp);
  3487. }
  3488. kfree(np->tx_rings);
  3489. np->tx_rings = NULL;
  3490. np->num_tx_rings = 0;
  3491. }
  3492. }
  3493. static int niu_alloc_rx_ring_info(struct niu *np,
  3494. struct rx_ring_info *rp)
  3495. {
  3496. BUILD_BUG_ON(sizeof(struct rxdma_mailbox) != 64);
  3497. rp->rxhash = kzalloc(MAX_RBR_RING_SIZE * sizeof(struct page *),
  3498. GFP_KERNEL);
  3499. if (!rp->rxhash)
  3500. return -ENOMEM;
  3501. rp->mbox = np->ops->alloc_coherent(np->device,
  3502. sizeof(struct rxdma_mailbox),
  3503. &rp->mbox_dma, GFP_KERNEL);
  3504. if (!rp->mbox)
  3505. return -ENOMEM;
  3506. if ((unsigned long)rp->mbox & (64UL - 1)) {
  3507. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3508. "RXDMA mailbox %p\n", np->dev->name, rp->mbox);
  3509. return -EINVAL;
  3510. }
  3511. rp->rcr = np->ops->alloc_coherent(np->device,
  3512. MAX_RCR_RING_SIZE * sizeof(__le64),
  3513. &rp->rcr_dma, GFP_KERNEL);
  3514. if (!rp->rcr)
  3515. return -ENOMEM;
  3516. if ((unsigned long)rp->rcr & (64UL - 1)) {
  3517. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3518. "RXDMA RCR table %p\n", np->dev->name, rp->rcr);
  3519. return -EINVAL;
  3520. }
  3521. rp->rcr_table_size = MAX_RCR_RING_SIZE;
  3522. rp->rcr_index = 0;
  3523. rp->rbr = np->ops->alloc_coherent(np->device,
  3524. MAX_RBR_RING_SIZE * sizeof(__le32),
  3525. &rp->rbr_dma, GFP_KERNEL);
  3526. if (!rp->rbr)
  3527. return -ENOMEM;
  3528. if ((unsigned long)rp->rbr & (64UL - 1)) {
  3529. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3530. "RXDMA RBR table %p\n", np->dev->name, rp->rbr);
  3531. return -EINVAL;
  3532. }
  3533. rp->rbr_table_size = MAX_RBR_RING_SIZE;
  3534. rp->rbr_index = 0;
  3535. rp->rbr_pending = 0;
  3536. return 0;
  3537. }
  3538. static void niu_set_max_burst(struct niu *np, struct tx_ring_info *rp)
  3539. {
  3540. int mtu = np->dev->mtu;
  3541. /* These values are recommended by the HW designers for fair
  3542. * utilization of DRR amongst the rings.
  3543. */
  3544. rp->max_burst = mtu + 32;
  3545. if (rp->max_burst > 4096)
  3546. rp->max_burst = 4096;
  3547. }
  3548. static int niu_alloc_tx_ring_info(struct niu *np,
  3549. struct tx_ring_info *rp)
  3550. {
  3551. BUILD_BUG_ON(sizeof(struct txdma_mailbox) != 64);
  3552. rp->mbox = np->ops->alloc_coherent(np->device,
  3553. sizeof(struct txdma_mailbox),
  3554. &rp->mbox_dma, GFP_KERNEL);
  3555. if (!rp->mbox)
  3556. return -ENOMEM;
  3557. if ((unsigned long)rp->mbox & (64UL - 1)) {
  3558. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3559. "TXDMA mailbox %p\n", np->dev->name, rp->mbox);
  3560. return -EINVAL;
  3561. }
  3562. rp->descr = np->ops->alloc_coherent(np->device,
  3563. MAX_TX_RING_SIZE * sizeof(__le64),
  3564. &rp->descr_dma, GFP_KERNEL);
  3565. if (!rp->descr)
  3566. return -ENOMEM;
  3567. if ((unsigned long)rp->descr & (64UL - 1)) {
  3568. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3569. "TXDMA descr table %p\n", np->dev->name, rp->descr);
  3570. return -EINVAL;
  3571. }
  3572. rp->pending = MAX_TX_RING_SIZE;
  3573. rp->prod = 0;
  3574. rp->cons = 0;
  3575. rp->wrap_bit = 0;
  3576. /* XXX make these configurable... XXX */
  3577. rp->mark_freq = rp->pending / 4;
  3578. niu_set_max_burst(np, rp);
  3579. return 0;
  3580. }
  3581. static void niu_size_rbr(struct niu *np, struct rx_ring_info *rp)
  3582. {
  3583. u16 bss;
  3584. bss = min(PAGE_SHIFT, 15);
  3585. rp->rbr_block_size = 1 << bss;
  3586. rp->rbr_blocks_per_page = 1 << (PAGE_SHIFT-bss);
  3587. rp->rbr_sizes[0] = 256;
  3588. rp->rbr_sizes[1] = 1024;
  3589. if (np->dev->mtu > ETH_DATA_LEN) {
  3590. switch (PAGE_SIZE) {
  3591. case 4 * 1024:
  3592. rp->rbr_sizes[2] = 4096;
  3593. break;
  3594. default:
  3595. rp->rbr_sizes[2] = 8192;
  3596. break;
  3597. }
  3598. } else {
  3599. rp->rbr_sizes[2] = 2048;
  3600. }
  3601. rp->rbr_sizes[3] = rp->rbr_block_size;
  3602. }
  3603. static int niu_alloc_channels(struct niu *np)
  3604. {
  3605. struct niu_parent *parent = np->parent;
  3606. int first_rx_channel, first_tx_channel;
  3607. int i, port, err;
  3608. port = np->port;
  3609. first_rx_channel = first_tx_channel = 0;
  3610. for (i = 0; i < port; i++) {
  3611. first_rx_channel += parent->rxchan_per_port[i];
  3612. first_tx_channel += parent->txchan_per_port[i];
  3613. }
  3614. np->num_rx_rings = parent->rxchan_per_port[port];
  3615. np->num_tx_rings = parent->txchan_per_port[port];
  3616. np->dev->real_num_tx_queues = np->num_tx_rings;
  3617. np->rx_rings = kzalloc(np->num_rx_rings * sizeof(struct rx_ring_info),
  3618. GFP_KERNEL);
  3619. err = -ENOMEM;
  3620. if (!np->rx_rings)
  3621. goto out_err;
  3622. for (i = 0; i < np->num_rx_rings; i++) {
  3623. struct rx_ring_info *rp = &np->rx_rings[i];
  3624. rp->np = np;
  3625. rp->rx_channel = first_rx_channel + i;
  3626. err = niu_alloc_rx_ring_info(np, rp);
  3627. if (err)
  3628. goto out_err;
  3629. niu_size_rbr(np, rp);
  3630. /* XXX better defaults, configurable, etc... XXX */
  3631. rp->nonsyn_window = 64;
  3632. rp->nonsyn_threshold = rp->rcr_table_size - 64;
  3633. rp->syn_window = 64;
  3634. rp->syn_threshold = rp->rcr_table_size - 64;
  3635. rp->rcr_pkt_threshold = 16;
  3636. rp->rcr_timeout = 8;
  3637. rp->rbr_kick_thresh = RBR_REFILL_MIN;
  3638. if (rp->rbr_kick_thresh < rp->rbr_blocks_per_page)
  3639. rp->rbr_kick_thresh = rp->rbr_blocks_per_page;
  3640. err = niu_rbr_fill(np, rp, GFP_KERNEL);
  3641. if (err)
  3642. return err;
  3643. }
  3644. np->tx_rings = kzalloc(np->num_tx_rings * sizeof(struct tx_ring_info),
  3645. GFP_KERNEL);
  3646. err = -ENOMEM;
  3647. if (!np->tx_rings)
  3648. goto out_err;
  3649. for (i = 0; i < np->num_tx_rings; i++) {
  3650. struct tx_ring_info *rp = &np->tx_rings[i];
  3651. rp->np = np;
  3652. rp->tx_channel = first_tx_channel + i;
  3653. err = niu_alloc_tx_ring_info(np, rp);
  3654. if (err)
  3655. goto out_err;
  3656. }
  3657. return 0;
  3658. out_err:
  3659. niu_free_channels(np);
  3660. return err;
  3661. }
  3662. static int niu_tx_cs_sng_poll(struct niu *np, int channel)
  3663. {
  3664. int limit = 1000;
  3665. while (--limit > 0) {
  3666. u64 val = nr64(TX_CS(channel));
  3667. if (val & TX_CS_SNG_STATE)
  3668. return 0;
  3669. }
  3670. return -ENODEV;
  3671. }
  3672. static int niu_tx_channel_stop(struct niu *np, int channel)
  3673. {
  3674. u64 val = nr64(TX_CS(channel));
  3675. val |= TX_CS_STOP_N_GO;
  3676. nw64(TX_CS(channel), val);
  3677. return niu_tx_cs_sng_poll(np, channel);
  3678. }
  3679. static int niu_tx_cs_reset_poll(struct niu *np, int channel)
  3680. {
  3681. int limit = 1000;
  3682. while (--limit > 0) {
  3683. u64 val = nr64(TX_CS(channel));
  3684. if (!(val & TX_CS_RST))
  3685. return 0;
  3686. }
  3687. return -ENODEV;
  3688. }
  3689. static int niu_tx_channel_reset(struct niu *np, int channel)
  3690. {
  3691. u64 val = nr64(TX_CS(channel));
  3692. int err;
  3693. val |= TX_CS_RST;
  3694. nw64(TX_CS(channel), val);
  3695. err = niu_tx_cs_reset_poll(np, channel);
  3696. if (!err)
  3697. nw64(TX_RING_KICK(channel), 0);
  3698. return err;
  3699. }
  3700. static int niu_tx_channel_lpage_init(struct niu *np, int channel)
  3701. {
  3702. u64 val;
  3703. nw64(TX_LOG_MASK1(channel), 0);
  3704. nw64(TX_LOG_VAL1(channel), 0);
  3705. nw64(TX_LOG_MASK2(channel), 0);
  3706. nw64(TX_LOG_VAL2(channel), 0);
  3707. nw64(TX_LOG_PAGE_RELO1(channel), 0);
  3708. nw64(TX_LOG_PAGE_RELO2(channel), 0);
  3709. nw64(TX_LOG_PAGE_HDL(channel), 0);
  3710. val = (u64)np->port << TX_LOG_PAGE_VLD_FUNC_SHIFT;
  3711. val |= (TX_LOG_PAGE_VLD_PAGE0 | TX_LOG_PAGE_VLD_PAGE1);
  3712. nw64(TX_LOG_PAGE_VLD(channel), val);
  3713. /* XXX TXDMA 32bit mode? XXX */
  3714. return 0;
  3715. }
  3716. static void niu_txc_enable_port(struct niu *np, int on)
  3717. {
  3718. unsigned long flags;
  3719. u64 val, mask;
  3720. niu_lock_parent(np, flags);
  3721. val = nr64(TXC_CONTROL);
  3722. mask = (u64)1 << np->port;
  3723. if (on) {
  3724. val |= TXC_CONTROL_ENABLE | mask;
  3725. } else {
  3726. val &= ~mask;
  3727. if ((val & ~TXC_CONTROL_ENABLE) == 0)
  3728. val &= ~TXC_CONTROL_ENABLE;
  3729. }
  3730. nw64(TXC_CONTROL, val);
  3731. niu_unlock_parent(np, flags);
  3732. }
  3733. static void niu_txc_set_imask(struct niu *np, u64 imask)
  3734. {
  3735. unsigned long flags;
  3736. u64 val;
  3737. niu_lock_parent(np, flags);
  3738. val = nr64(TXC_INT_MASK);
  3739. val &= ~TXC_INT_MASK_VAL(np->port);
  3740. val |= (imask << TXC_INT_MASK_VAL_SHIFT(np->port));
  3741. niu_unlock_parent(np, flags);
  3742. }
  3743. static void niu_txc_port_dma_enable(struct niu *np, int on)
  3744. {
  3745. u64 val = 0;
  3746. if (on) {
  3747. int i;
  3748. for (i = 0; i < np->num_tx_rings; i++)
  3749. val |= (1 << np->tx_rings[i].tx_channel);
  3750. }
  3751. nw64(TXC_PORT_DMA(np->port), val);
  3752. }
  3753. static int niu_init_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  3754. {
  3755. int err, channel = rp->tx_channel;
  3756. u64 val, ring_len;
  3757. err = niu_tx_channel_stop(np, channel);
  3758. if (err)
  3759. return err;
  3760. err = niu_tx_channel_reset(np, channel);
  3761. if (err)
  3762. return err;
  3763. err = niu_tx_channel_lpage_init(np, channel);
  3764. if (err)
  3765. return err;
  3766. nw64(TXC_DMA_MAX(channel), rp->max_burst);
  3767. nw64(TX_ENT_MSK(channel), 0);
  3768. if (rp->descr_dma & ~(TX_RNG_CFIG_STADDR_BASE |
  3769. TX_RNG_CFIG_STADDR)) {
  3770. dev_err(np->device, PFX "%s: TX ring channel %d "
  3771. "DMA addr (%llx) is not aligned.\n",
  3772. np->dev->name, channel,
  3773. (unsigned long long) rp->descr_dma);
  3774. return -EINVAL;
  3775. }
  3776. /* The length field in TX_RNG_CFIG is measured in 64-byte
  3777. * blocks. rp->pending is the number of TX descriptors in
  3778. * our ring, 8 bytes each, thus we divide by 8 bytes more
  3779. * to get the proper value the chip wants.
  3780. */
  3781. ring_len = (rp->pending / 8);
  3782. val = ((ring_len << TX_RNG_CFIG_LEN_SHIFT) |
  3783. rp->descr_dma);
  3784. nw64(TX_RNG_CFIG(channel), val);
  3785. if (((rp->mbox_dma >> 32) & ~TXDMA_MBH_MBADDR) ||
  3786. ((u32)rp->mbox_dma & ~TXDMA_MBL_MBADDR)) {
  3787. dev_err(np->device, PFX "%s: TX ring channel %d "
  3788. "MBOX addr (%llx) is has illegal bits.\n",
  3789. np->dev->name, channel,
  3790. (unsigned long long) rp->mbox_dma);
  3791. return -EINVAL;
  3792. }
  3793. nw64(TXDMA_MBH(channel), rp->mbox_dma >> 32);
  3794. nw64(TXDMA_MBL(channel), rp->mbox_dma & TXDMA_MBL_MBADDR);
  3795. nw64(TX_CS(channel), 0);
  3796. rp->last_pkt_cnt = 0;
  3797. return 0;
  3798. }
  3799. static void niu_init_rdc_groups(struct niu *np)
  3800. {
  3801. struct niu_rdc_tables *tp = &np->parent->rdc_group_cfg[np->port];
  3802. int i, first_table_num = tp->first_table_num;
  3803. for (i = 0; i < tp->num_tables; i++) {
  3804. struct rdc_table *tbl = &tp->tables[i];
  3805. int this_table = first_table_num + i;
  3806. int slot;
  3807. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++)
  3808. nw64(RDC_TBL(this_table, slot),
  3809. tbl->rxdma_channel[slot]);
  3810. }
  3811. nw64(DEF_RDC(np->port), np->parent->rdc_default[np->port]);
  3812. }
  3813. static void niu_init_drr_weight(struct niu *np)
  3814. {
  3815. int type = phy_decode(np->parent->port_phy, np->port);
  3816. u64 val;
  3817. switch (type) {
  3818. case PORT_TYPE_10G:
  3819. val = PT_DRR_WEIGHT_DEFAULT_10G;
  3820. break;
  3821. case PORT_TYPE_1G:
  3822. default:
  3823. val = PT_DRR_WEIGHT_DEFAULT_1G;
  3824. break;
  3825. }
  3826. nw64(PT_DRR_WT(np->port), val);
  3827. }
  3828. static int niu_init_hostinfo(struct niu *np)
  3829. {
  3830. struct niu_parent *parent = np->parent;
  3831. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  3832. int i, err, num_alt = niu_num_alt_addr(np);
  3833. int first_rdc_table = tp->first_table_num;
  3834. err = niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  3835. if (err)
  3836. return err;
  3837. err = niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  3838. if (err)
  3839. return err;
  3840. for (i = 0; i < num_alt; i++) {
  3841. err = niu_set_alt_mac_rdc_table(np, i, first_rdc_table, 1);
  3842. if (err)
  3843. return err;
  3844. }
  3845. return 0;
  3846. }
  3847. static int niu_rx_channel_reset(struct niu *np, int channel)
  3848. {
  3849. return niu_set_and_wait_clear(np, RXDMA_CFIG1(channel),
  3850. RXDMA_CFIG1_RST, 1000, 10,
  3851. "RXDMA_CFIG1");
  3852. }
  3853. static int niu_rx_channel_lpage_init(struct niu *np, int channel)
  3854. {
  3855. u64 val;
  3856. nw64(RX_LOG_MASK1(channel), 0);
  3857. nw64(RX_LOG_VAL1(channel), 0);
  3858. nw64(RX_LOG_MASK2(channel), 0);
  3859. nw64(RX_LOG_VAL2(channel), 0);
  3860. nw64(RX_LOG_PAGE_RELO1(channel), 0);
  3861. nw64(RX_LOG_PAGE_RELO2(channel), 0);
  3862. nw64(RX_LOG_PAGE_HDL(channel), 0);
  3863. val = (u64)np->port << RX_LOG_PAGE_VLD_FUNC_SHIFT;
  3864. val |= (RX_LOG_PAGE_VLD_PAGE0 | RX_LOG_PAGE_VLD_PAGE1);
  3865. nw64(RX_LOG_PAGE_VLD(channel), val);
  3866. return 0;
  3867. }
  3868. static void niu_rx_channel_wred_init(struct niu *np, struct rx_ring_info *rp)
  3869. {
  3870. u64 val;
  3871. val = (((u64)rp->nonsyn_window << RDC_RED_PARA_WIN_SHIFT) |
  3872. ((u64)rp->nonsyn_threshold << RDC_RED_PARA_THRE_SHIFT) |
  3873. ((u64)rp->syn_window << RDC_RED_PARA_WIN_SYN_SHIFT) |
  3874. ((u64)rp->syn_threshold << RDC_RED_PARA_THRE_SYN_SHIFT));
  3875. nw64(RDC_RED_PARA(rp->rx_channel), val);
  3876. }
  3877. static int niu_compute_rbr_cfig_b(struct rx_ring_info *rp, u64 *ret)
  3878. {
  3879. u64 val = 0;
  3880. switch (rp->rbr_block_size) {
  3881. case 4 * 1024:
  3882. val |= (RBR_BLKSIZE_4K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3883. break;
  3884. case 8 * 1024:
  3885. val |= (RBR_BLKSIZE_8K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3886. break;
  3887. case 16 * 1024:
  3888. val |= (RBR_BLKSIZE_16K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3889. break;
  3890. case 32 * 1024:
  3891. val |= (RBR_BLKSIZE_32K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3892. break;
  3893. default:
  3894. return -EINVAL;
  3895. }
  3896. val |= RBR_CFIG_B_VLD2;
  3897. switch (rp->rbr_sizes[2]) {
  3898. case 2 * 1024:
  3899. val |= (RBR_BUFSZ2_2K << RBR_CFIG_B_BUFSZ2_SHIFT);
  3900. break;
  3901. case 4 * 1024:
  3902. val |= (RBR_BUFSZ2_4K << RBR_CFIG_B_BUFSZ2_SHIFT);
  3903. break;
  3904. case 8 * 1024:
  3905. val |= (RBR_BUFSZ2_8K << RBR_CFIG_B_BUFSZ2_SHIFT);
  3906. break;
  3907. case 16 * 1024:
  3908. val |= (RBR_BUFSZ2_16K << RBR_CFIG_B_BUFSZ2_SHIFT);
  3909. break;
  3910. default:
  3911. return -EINVAL;
  3912. }
  3913. val |= RBR_CFIG_B_VLD1;
  3914. switch (rp->rbr_sizes[1]) {
  3915. case 1 * 1024:
  3916. val |= (RBR_BUFSZ1_1K << RBR_CFIG_B_BUFSZ1_SHIFT);
  3917. break;
  3918. case 2 * 1024:
  3919. val |= (RBR_BUFSZ1_2K << RBR_CFIG_B_BUFSZ1_SHIFT);
  3920. break;
  3921. case 4 * 1024:
  3922. val |= (RBR_BUFSZ1_4K << RBR_CFIG_B_BUFSZ1_SHIFT);
  3923. break;
  3924. case 8 * 1024:
  3925. val |= (RBR_BUFSZ1_8K << RBR_CFIG_B_BUFSZ1_SHIFT);
  3926. break;
  3927. default:
  3928. return -EINVAL;
  3929. }
  3930. val |= RBR_CFIG_B_VLD0;
  3931. switch (rp->rbr_sizes[0]) {
  3932. case 256:
  3933. val |= (RBR_BUFSZ0_256 << RBR_CFIG_B_BUFSZ0_SHIFT);
  3934. break;
  3935. case 512:
  3936. val |= (RBR_BUFSZ0_512 << RBR_CFIG_B_BUFSZ0_SHIFT);
  3937. break;
  3938. case 1 * 1024:
  3939. val |= (RBR_BUFSZ0_1K << RBR_CFIG_B_BUFSZ0_SHIFT);
  3940. break;
  3941. case 2 * 1024:
  3942. val |= (RBR_BUFSZ0_2K << RBR_CFIG_B_BUFSZ0_SHIFT);
  3943. break;
  3944. default:
  3945. return -EINVAL;
  3946. }
  3947. *ret = val;
  3948. return 0;
  3949. }
  3950. static int niu_enable_rx_channel(struct niu *np, int channel, int on)
  3951. {
  3952. u64 val = nr64(RXDMA_CFIG1(channel));
  3953. int limit;
  3954. if (on)
  3955. val |= RXDMA_CFIG1_EN;
  3956. else
  3957. val &= ~RXDMA_CFIG1_EN;
  3958. nw64(RXDMA_CFIG1(channel), val);
  3959. limit = 1000;
  3960. while (--limit > 0) {
  3961. if (nr64(RXDMA_CFIG1(channel)) & RXDMA_CFIG1_QST)
  3962. break;
  3963. udelay(10);
  3964. }
  3965. if (limit <= 0)
  3966. return -ENODEV;
  3967. return 0;
  3968. }
  3969. static int niu_init_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  3970. {
  3971. int err, channel = rp->rx_channel;
  3972. u64 val;
  3973. err = niu_rx_channel_reset(np, channel);
  3974. if (err)
  3975. return err;
  3976. err = niu_rx_channel_lpage_init(np, channel);
  3977. if (err)
  3978. return err;
  3979. niu_rx_channel_wred_init(np, rp);
  3980. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_RBR_EMPTY);
  3981. nw64(RX_DMA_CTL_STAT(channel),
  3982. (RX_DMA_CTL_STAT_MEX |
  3983. RX_DMA_CTL_STAT_RCRTHRES |
  3984. RX_DMA_CTL_STAT_RCRTO |
  3985. RX_DMA_CTL_STAT_RBR_EMPTY));
  3986. nw64(RXDMA_CFIG1(channel), rp->mbox_dma >> 32);
  3987. nw64(RXDMA_CFIG2(channel), (rp->mbox_dma & 0x00000000ffffffc0));
  3988. nw64(RBR_CFIG_A(channel),
  3989. ((u64)rp->rbr_table_size << RBR_CFIG_A_LEN_SHIFT) |
  3990. (rp->rbr_dma & (RBR_CFIG_A_STADDR_BASE | RBR_CFIG_A_STADDR)));
  3991. err = niu_compute_rbr_cfig_b(rp, &val);
  3992. if (err)
  3993. return err;
  3994. nw64(RBR_CFIG_B(channel), val);
  3995. nw64(RCRCFIG_A(channel),
  3996. ((u64)rp->rcr_table_size << RCRCFIG_A_LEN_SHIFT) |
  3997. (rp->rcr_dma & (RCRCFIG_A_STADDR_BASE | RCRCFIG_A_STADDR)));
  3998. nw64(RCRCFIG_B(channel),
  3999. ((u64)rp->rcr_pkt_threshold << RCRCFIG_B_PTHRES_SHIFT) |
  4000. RCRCFIG_B_ENTOUT |
  4001. ((u64)rp->rcr_timeout << RCRCFIG_B_TIMEOUT_SHIFT));
  4002. err = niu_enable_rx_channel(np, channel, 1);
  4003. if (err)
  4004. return err;
  4005. nw64(RBR_KICK(channel), rp->rbr_index);
  4006. val = nr64(RX_DMA_CTL_STAT(channel));
  4007. val |= RX_DMA_CTL_STAT_RBR_EMPTY;
  4008. nw64(RX_DMA_CTL_STAT(channel), val);
  4009. return 0;
  4010. }
  4011. static int niu_init_rx_channels(struct niu *np)
  4012. {
  4013. unsigned long flags;
  4014. u64 seed = jiffies_64;
  4015. int err, i;
  4016. niu_lock_parent(np, flags);
  4017. nw64(RX_DMA_CK_DIV, np->parent->rxdma_clock_divider);
  4018. nw64(RED_RAN_INIT, RED_RAN_INIT_OPMODE | (seed & RED_RAN_INIT_VAL));
  4019. niu_unlock_parent(np, flags);
  4020. /* XXX RXDMA 32bit mode? XXX */
  4021. niu_init_rdc_groups(np);
  4022. niu_init_drr_weight(np);
  4023. err = niu_init_hostinfo(np);
  4024. if (err)
  4025. return err;
  4026. for (i = 0; i < np->num_rx_rings; i++) {
  4027. struct rx_ring_info *rp = &np->rx_rings[i];
  4028. err = niu_init_one_rx_channel(np, rp);
  4029. if (err)
  4030. return err;
  4031. }
  4032. return 0;
  4033. }
  4034. static int niu_set_ip_frag_rule(struct niu *np)
  4035. {
  4036. struct niu_parent *parent = np->parent;
  4037. struct niu_classifier *cp = &np->clas;
  4038. struct niu_tcam_entry *tp;
  4039. int index, err;
  4040. /* XXX fix this allocation scheme XXX */
  4041. index = cp->tcam_index;
  4042. tp = &parent->tcam[index];
  4043. /* Note that the noport bit is the same in both ipv4 and
  4044. * ipv6 format TCAM entries.
  4045. */
  4046. memset(tp, 0, sizeof(*tp));
  4047. tp->key[1] = TCAM_V4KEY1_NOPORT;
  4048. tp->key_mask[1] = TCAM_V4KEY1_NOPORT;
  4049. tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
  4050. ((u64)0 << TCAM_ASSOCDATA_OFFSET_SHIFT));
  4051. err = tcam_write(np, index, tp->key, tp->key_mask);
  4052. if (err)
  4053. return err;
  4054. err = tcam_assoc_write(np, index, tp->assoc_data);
  4055. if (err)
  4056. return err;
  4057. return 0;
  4058. }
  4059. static int niu_init_classifier_hw(struct niu *np)
  4060. {
  4061. struct niu_parent *parent = np->parent;
  4062. struct niu_classifier *cp = &np->clas;
  4063. int i, err;
  4064. nw64(H1POLY, cp->h1_init);
  4065. nw64(H2POLY, cp->h2_init);
  4066. err = niu_init_hostinfo(np);
  4067. if (err)
  4068. return err;
  4069. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++) {
  4070. struct niu_vlan_rdc *vp = &cp->vlan_mappings[i];
  4071. vlan_tbl_write(np, i, np->port,
  4072. vp->vlan_pref, vp->rdc_num);
  4073. }
  4074. for (i = 0; i < cp->num_alt_mac_mappings; i++) {
  4075. struct niu_altmac_rdc *ap = &cp->alt_mac_mappings[i];
  4076. err = niu_set_alt_mac_rdc_table(np, ap->alt_mac_num,
  4077. ap->rdc_num, ap->mac_pref);
  4078. if (err)
  4079. return err;
  4080. }
  4081. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  4082. int index = i - CLASS_CODE_USER_PROG1;
  4083. err = niu_set_tcam_key(np, i, parent->tcam_key[index]);
  4084. if (err)
  4085. return err;
  4086. err = niu_set_flow_key(np, i, parent->flow_key[index]);
  4087. if (err)
  4088. return err;
  4089. }
  4090. err = niu_set_ip_frag_rule(np);
  4091. if (err)
  4092. return err;
  4093. tcam_enable(np, 1);
  4094. return 0;
  4095. }
  4096. static int niu_zcp_write(struct niu *np, int index, u64 *data)
  4097. {
  4098. nw64(ZCP_RAM_DATA0, data[0]);
  4099. nw64(ZCP_RAM_DATA1, data[1]);
  4100. nw64(ZCP_RAM_DATA2, data[2]);
  4101. nw64(ZCP_RAM_DATA3, data[3]);
  4102. nw64(ZCP_RAM_DATA4, data[4]);
  4103. nw64(ZCP_RAM_BE, ZCP_RAM_BE_VAL);
  4104. nw64(ZCP_RAM_ACC,
  4105. (ZCP_RAM_ACC_WRITE |
  4106. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  4107. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  4108. return niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4109. 1000, 100);
  4110. }
  4111. static int niu_zcp_read(struct niu *np, int index, u64 *data)
  4112. {
  4113. int err;
  4114. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4115. 1000, 100);
  4116. if (err) {
  4117. dev_err(np->device, PFX "%s: ZCP read busy won't clear, "
  4118. "ZCP_RAM_ACC[%llx]\n", np->dev->name,
  4119. (unsigned long long) nr64(ZCP_RAM_ACC));
  4120. return err;
  4121. }
  4122. nw64(ZCP_RAM_ACC,
  4123. (ZCP_RAM_ACC_READ |
  4124. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  4125. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  4126. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4127. 1000, 100);
  4128. if (err) {
  4129. dev_err(np->device, PFX "%s: ZCP read busy2 won't clear, "
  4130. "ZCP_RAM_ACC[%llx]\n", np->dev->name,
  4131. (unsigned long long) nr64(ZCP_RAM_ACC));
  4132. return err;
  4133. }
  4134. data[0] = nr64(ZCP_RAM_DATA0);
  4135. data[1] = nr64(ZCP_RAM_DATA1);
  4136. data[2] = nr64(ZCP_RAM_DATA2);
  4137. data[3] = nr64(ZCP_RAM_DATA3);
  4138. data[4] = nr64(ZCP_RAM_DATA4);
  4139. return 0;
  4140. }
  4141. static void niu_zcp_cfifo_reset(struct niu *np)
  4142. {
  4143. u64 val = nr64(RESET_CFIFO);
  4144. val |= RESET_CFIFO_RST(np->port);
  4145. nw64(RESET_CFIFO, val);
  4146. udelay(10);
  4147. val &= ~RESET_CFIFO_RST(np->port);
  4148. nw64(RESET_CFIFO, val);
  4149. }
  4150. static int niu_init_zcp(struct niu *np)
  4151. {
  4152. u64 data[5], rbuf[5];
  4153. int i, max, err;
  4154. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  4155. if (np->port == 0 || np->port == 1)
  4156. max = ATLAS_P0_P1_CFIFO_ENTRIES;
  4157. else
  4158. max = ATLAS_P2_P3_CFIFO_ENTRIES;
  4159. } else
  4160. max = NIU_CFIFO_ENTRIES;
  4161. data[0] = 0;
  4162. data[1] = 0;
  4163. data[2] = 0;
  4164. data[3] = 0;
  4165. data[4] = 0;
  4166. for (i = 0; i < max; i++) {
  4167. err = niu_zcp_write(np, i, data);
  4168. if (err)
  4169. return err;
  4170. err = niu_zcp_read(np, i, rbuf);
  4171. if (err)
  4172. return err;
  4173. }
  4174. niu_zcp_cfifo_reset(np);
  4175. nw64(CFIFO_ECC(np->port), 0);
  4176. nw64(ZCP_INT_STAT, ZCP_INT_STAT_ALL);
  4177. (void) nr64(ZCP_INT_STAT);
  4178. nw64(ZCP_INT_MASK, ZCP_INT_MASK_ALL);
  4179. return 0;
  4180. }
  4181. static void niu_ipp_write(struct niu *np, int index, u64 *data)
  4182. {
  4183. u64 val = nr64_ipp(IPP_CFIG);
  4184. nw64_ipp(IPP_CFIG, val | IPP_CFIG_DFIFO_PIO_W);
  4185. nw64_ipp(IPP_DFIFO_WR_PTR, index);
  4186. nw64_ipp(IPP_DFIFO_WR0, data[0]);
  4187. nw64_ipp(IPP_DFIFO_WR1, data[1]);
  4188. nw64_ipp(IPP_DFIFO_WR2, data[2]);
  4189. nw64_ipp(IPP_DFIFO_WR3, data[3]);
  4190. nw64_ipp(IPP_DFIFO_WR4, data[4]);
  4191. nw64_ipp(IPP_CFIG, val & ~IPP_CFIG_DFIFO_PIO_W);
  4192. }
  4193. static void niu_ipp_read(struct niu *np, int index, u64 *data)
  4194. {
  4195. nw64_ipp(IPP_DFIFO_RD_PTR, index);
  4196. data[0] = nr64_ipp(IPP_DFIFO_RD0);
  4197. data[1] = nr64_ipp(IPP_DFIFO_RD1);
  4198. data[2] = nr64_ipp(IPP_DFIFO_RD2);
  4199. data[3] = nr64_ipp(IPP_DFIFO_RD3);
  4200. data[4] = nr64_ipp(IPP_DFIFO_RD4);
  4201. }
  4202. static int niu_ipp_reset(struct niu *np)
  4203. {
  4204. return niu_set_and_wait_clear_ipp(np, IPP_CFIG, IPP_CFIG_SOFT_RST,
  4205. 1000, 100, "IPP_CFIG");
  4206. }
  4207. static int niu_init_ipp(struct niu *np)
  4208. {
  4209. u64 data[5], rbuf[5], val;
  4210. int i, max, err;
  4211. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  4212. if (np->port == 0 || np->port == 1)
  4213. max = ATLAS_P0_P1_DFIFO_ENTRIES;
  4214. else
  4215. max = ATLAS_P2_P3_DFIFO_ENTRIES;
  4216. } else
  4217. max = NIU_DFIFO_ENTRIES;
  4218. data[0] = 0;
  4219. data[1] = 0;
  4220. data[2] = 0;
  4221. data[3] = 0;
  4222. data[4] = 0;
  4223. for (i = 0; i < max; i++) {
  4224. niu_ipp_write(np, i, data);
  4225. niu_ipp_read(np, i, rbuf);
  4226. }
  4227. (void) nr64_ipp(IPP_INT_STAT);
  4228. (void) nr64_ipp(IPP_INT_STAT);
  4229. err = niu_ipp_reset(np);
  4230. if (err)
  4231. return err;
  4232. (void) nr64_ipp(IPP_PKT_DIS);
  4233. (void) nr64_ipp(IPP_BAD_CS_CNT);
  4234. (void) nr64_ipp(IPP_ECC);
  4235. (void) nr64_ipp(IPP_INT_STAT);
  4236. nw64_ipp(IPP_MSK, ~IPP_MSK_ALL);
  4237. val = nr64_ipp(IPP_CFIG);
  4238. val &= ~IPP_CFIG_IP_MAX_PKT;
  4239. val |= (IPP_CFIG_IPP_ENABLE |
  4240. IPP_CFIG_DFIFO_ECC_EN |
  4241. IPP_CFIG_DROP_BAD_CRC |
  4242. IPP_CFIG_CKSUM_EN |
  4243. (0x1ffff << IPP_CFIG_IP_MAX_PKT_SHIFT));
  4244. nw64_ipp(IPP_CFIG, val);
  4245. return 0;
  4246. }
  4247. static void niu_handle_led(struct niu *np, int status)
  4248. {
  4249. u64 val;
  4250. val = nr64_mac(XMAC_CONFIG);
  4251. if ((np->flags & NIU_FLAGS_10G) != 0 &&
  4252. (np->flags & NIU_FLAGS_FIBER) != 0) {
  4253. if (status) {
  4254. val |= XMAC_CONFIG_LED_POLARITY;
  4255. val &= ~XMAC_CONFIG_FORCE_LED_ON;
  4256. } else {
  4257. val |= XMAC_CONFIG_FORCE_LED_ON;
  4258. val &= ~XMAC_CONFIG_LED_POLARITY;
  4259. }
  4260. }
  4261. nw64_mac(XMAC_CONFIG, val);
  4262. }
  4263. static void niu_init_xif_xmac(struct niu *np)
  4264. {
  4265. struct niu_link_config *lp = &np->link_config;
  4266. u64 val;
  4267. if (np->flags & NIU_FLAGS_XCVR_SERDES) {
  4268. val = nr64(MIF_CONFIG);
  4269. val |= MIF_CONFIG_ATCA_GE;
  4270. nw64(MIF_CONFIG, val);
  4271. }
  4272. val = nr64_mac(XMAC_CONFIG);
  4273. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  4274. val |= XMAC_CONFIG_TX_OUTPUT_EN;
  4275. if (lp->loopback_mode == LOOPBACK_MAC) {
  4276. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  4277. val |= XMAC_CONFIG_LOOPBACK;
  4278. } else {
  4279. val &= ~XMAC_CONFIG_LOOPBACK;
  4280. }
  4281. if (np->flags & NIU_FLAGS_10G) {
  4282. val &= ~XMAC_CONFIG_LFS_DISABLE;
  4283. } else {
  4284. val |= XMAC_CONFIG_LFS_DISABLE;
  4285. if (!(np->flags & NIU_FLAGS_FIBER) &&
  4286. !(np->flags & NIU_FLAGS_XCVR_SERDES))
  4287. val |= XMAC_CONFIG_1G_PCS_BYPASS;
  4288. else
  4289. val &= ~XMAC_CONFIG_1G_PCS_BYPASS;
  4290. }
  4291. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  4292. if (lp->active_speed == SPEED_100)
  4293. val |= XMAC_CONFIG_SEL_CLK_25MHZ;
  4294. else
  4295. val &= ~XMAC_CONFIG_SEL_CLK_25MHZ;
  4296. nw64_mac(XMAC_CONFIG, val);
  4297. val = nr64_mac(XMAC_CONFIG);
  4298. val &= ~XMAC_CONFIG_MODE_MASK;
  4299. if (np->flags & NIU_FLAGS_10G) {
  4300. val |= XMAC_CONFIG_MODE_XGMII;
  4301. } else {
  4302. if (lp->active_speed == SPEED_100)
  4303. val |= XMAC_CONFIG_MODE_MII;
  4304. else
  4305. val |= XMAC_CONFIG_MODE_GMII;
  4306. }
  4307. nw64_mac(XMAC_CONFIG, val);
  4308. }
  4309. static void niu_init_xif_bmac(struct niu *np)
  4310. {
  4311. struct niu_link_config *lp = &np->link_config;
  4312. u64 val;
  4313. val = BMAC_XIF_CONFIG_TX_OUTPUT_EN;
  4314. if (lp->loopback_mode == LOOPBACK_MAC)
  4315. val |= BMAC_XIF_CONFIG_MII_LOOPBACK;
  4316. else
  4317. val &= ~BMAC_XIF_CONFIG_MII_LOOPBACK;
  4318. if (lp->active_speed == SPEED_1000)
  4319. val |= BMAC_XIF_CONFIG_GMII_MODE;
  4320. else
  4321. val &= ~BMAC_XIF_CONFIG_GMII_MODE;
  4322. val &= ~(BMAC_XIF_CONFIG_LINK_LED |
  4323. BMAC_XIF_CONFIG_LED_POLARITY);
  4324. if (!(np->flags & NIU_FLAGS_10G) &&
  4325. !(np->flags & NIU_FLAGS_FIBER) &&
  4326. lp->active_speed == SPEED_100)
  4327. val |= BMAC_XIF_CONFIG_25MHZ_CLOCK;
  4328. else
  4329. val &= ~BMAC_XIF_CONFIG_25MHZ_CLOCK;
  4330. nw64_mac(BMAC_XIF_CONFIG, val);
  4331. }
  4332. static void niu_init_xif(struct niu *np)
  4333. {
  4334. if (np->flags & NIU_FLAGS_XMAC)
  4335. niu_init_xif_xmac(np);
  4336. else
  4337. niu_init_xif_bmac(np);
  4338. }
  4339. static void niu_pcs_mii_reset(struct niu *np)
  4340. {
  4341. int limit = 1000;
  4342. u64 val = nr64_pcs(PCS_MII_CTL);
  4343. val |= PCS_MII_CTL_RST;
  4344. nw64_pcs(PCS_MII_CTL, val);
  4345. while ((--limit >= 0) && (val & PCS_MII_CTL_RST)) {
  4346. udelay(100);
  4347. val = nr64_pcs(PCS_MII_CTL);
  4348. }
  4349. }
  4350. static void niu_xpcs_reset(struct niu *np)
  4351. {
  4352. int limit = 1000;
  4353. u64 val = nr64_xpcs(XPCS_CONTROL1);
  4354. val |= XPCS_CONTROL1_RESET;
  4355. nw64_xpcs(XPCS_CONTROL1, val);
  4356. while ((--limit >= 0) && (val & XPCS_CONTROL1_RESET)) {
  4357. udelay(100);
  4358. val = nr64_xpcs(XPCS_CONTROL1);
  4359. }
  4360. }
  4361. static int niu_init_pcs(struct niu *np)
  4362. {
  4363. struct niu_link_config *lp = &np->link_config;
  4364. u64 val;
  4365. switch (np->flags & (NIU_FLAGS_10G |
  4366. NIU_FLAGS_FIBER |
  4367. NIU_FLAGS_XCVR_SERDES)) {
  4368. case NIU_FLAGS_FIBER:
  4369. /* 1G fiber */
  4370. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  4371. nw64_pcs(PCS_DPATH_MODE, 0);
  4372. niu_pcs_mii_reset(np);
  4373. break;
  4374. case NIU_FLAGS_10G:
  4375. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  4376. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  4377. /* 10G SERDES */
  4378. if (!(np->flags & NIU_FLAGS_XMAC))
  4379. return -EINVAL;
  4380. /* 10G copper or fiber */
  4381. val = nr64_mac(XMAC_CONFIG);
  4382. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  4383. nw64_mac(XMAC_CONFIG, val);
  4384. niu_xpcs_reset(np);
  4385. val = nr64_xpcs(XPCS_CONTROL1);
  4386. if (lp->loopback_mode == LOOPBACK_PHY)
  4387. val |= XPCS_CONTROL1_LOOPBACK;
  4388. else
  4389. val &= ~XPCS_CONTROL1_LOOPBACK;
  4390. nw64_xpcs(XPCS_CONTROL1, val);
  4391. nw64_xpcs(XPCS_DESKEW_ERR_CNT, 0);
  4392. (void) nr64_xpcs(XPCS_SYMERR_CNT01);
  4393. (void) nr64_xpcs(XPCS_SYMERR_CNT23);
  4394. break;
  4395. case NIU_FLAGS_XCVR_SERDES:
  4396. /* 1G SERDES */
  4397. niu_pcs_mii_reset(np);
  4398. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  4399. nw64_pcs(PCS_DPATH_MODE, 0);
  4400. break;
  4401. case 0:
  4402. /* 1G copper */
  4403. case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
  4404. /* 1G RGMII FIBER */
  4405. nw64_pcs(PCS_DPATH_MODE, PCS_DPATH_MODE_MII);
  4406. niu_pcs_mii_reset(np);
  4407. break;
  4408. default:
  4409. return -EINVAL;
  4410. }
  4411. return 0;
  4412. }
  4413. static int niu_reset_tx_xmac(struct niu *np)
  4414. {
  4415. return niu_set_and_wait_clear_mac(np, XTXMAC_SW_RST,
  4416. (XTXMAC_SW_RST_REG_RS |
  4417. XTXMAC_SW_RST_SOFT_RST),
  4418. 1000, 100, "XTXMAC_SW_RST");
  4419. }
  4420. static int niu_reset_tx_bmac(struct niu *np)
  4421. {
  4422. int limit;
  4423. nw64_mac(BTXMAC_SW_RST, BTXMAC_SW_RST_RESET);
  4424. limit = 1000;
  4425. while (--limit >= 0) {
  4426. if (!(nr64_mac(BTXMAC_SW_RST) & BTXMAC_SW_RST_RESET))
  4427. break;
  4428. udelay(100);
  4429. }
  4430. if (limit < 0) {
  4431. dev_err(np->device, PFX "Port %u TX BMAC would not reset, "
  4432. "BTXMAC_SW_RST[%llx]\n",
  4433. np->port,
  4434. (unsigned long long) nr64_mac(BTXMAC_SW_RST));
  4435. return -ENODEV;
  4436. }
  4437. return 0;
  4438. }
  4439. static int niu_reset_tx_mac(struct niu *np)
  4440. {
  4441. if (np->flags & NIU_FLAGS_XMAC)
  4442. return niu_reset_tx_xmac(np);
  4443. else
  4444. return niu_reset_tx_bmac(np);
  4445. }
  4446. static void niu_init_tx_xmac(struct niu *np, u64 min, u64 max)
  4447. {
  4448. u64 val;
  4449. val = nr64_mac(XMAC_MIN);
  4450. val &= ~(XMAC_MIN_TX_MIN_PKT_SIZE |
  4451. XMAC_MIN_RX_MIN_PKT_SIZE);
  4452. val |= (min << XMAC_MIN_RX_MIN_PKT_SIZE_SHFT);
  4453. val |= (min << XMAC_MIN_TX_MIN_PKT_SIZE_SHFT);
  4454. nw64_mac(XMAC_MIN, val);
  4455. nw64_mac(XMAC_MAX, max);
  4456. nw64_mac(XTXMAC_STAT_MSK, ~(u64)0);
  4457. val = nr64_mac(XMAC_IPG);
  4458. if (np->flags & NIU_FLAGS_10G) {
  4459. val &= ~XMAC_IPG_IPG_XGMII;
  4460. val |= (IPG_12_15_XGMII << XMAC_IPG_IPG_XGMII_SHIFT);
  4461. } else {
  4462. val &= ~XMAC_IPG_IPG_MII_GMII;
  4463. val |= (IPG_12_MII_GMII << XMAC_IPG_IPG_MII_GMII_SHIFT);
  4464. }
  4465. nw64_mac(XMAC_IPG, val);
  4466. val = nr64_mac(XMAC_CONFIG);
  4467. val &= ~(XMAC_CONFIG_ALWAYS_NO_CRC |
  4468. XMAC_CONFIG_STRETCH_MODE |
  4469. XMAC_CONFIG_VAR_MIN_IPG_EN |
  4470. XMAC_CONFIG_TX_ENABLE);
  4471. nw64_mac(XMAC_CONFIG, val);
  4472. nw64_mac(TXMAC_FRM_CNT, 0);
  4473. nw64_mac(TXMAC_BYTE_CNT, 0);
  4474. }
  4475. static void niu_init_tx_bmac(struct niu *np, u64 min, u64 max)
  4476. {
  4477. u64 val;
  4478. nw64_mac(BMAC_MIN_FRAME, min);
  4479. nw64_mac(BMAC_MAX_FRAME, max);
  4480. nw64_mac(BTXMAC_STATUS_MASK, ~(u64)0);
  4481. nw64_mac(BMAC_CTRL_TYPE, 0x8808);
  4482. nw64_mac(BMAC_PREAMBLE_SIZE, 7);
  4483. val = nr64_mac(BTXMAC_CONFIG);
  4484. val &= ~(BTXMAC_CONFIG_FCS_DISABLE |
  4485. BTXMAC_CONFIG_ENABLE);
  4486. nw64_mac(BTXMAC_CONFIG, val);
  4487. }
  4488. static void niu_init_tx_mac(struct niu *np)
  4489. {
  4490. u64 min, max;
  4491. min = 64;
  4492. if (np->dev->mtu > ETH_DATA_LEN)
  4493. max = 9216;
  4494. else
  4495. max = 1522;
  4496. /* The XMAC_MIN register only accepts values for TX min which
  4497. * have the low 3 bits cleared.
  4498. */
  4499. BUILD_BUG_ON(min & 0x7);
  4500. if (np->flags & NIU_FLAGS_XMAC)
  4501. niu_init_tx_xmac(np, min, max);
  4502. else
  4503. niu_init_tx_bmac(np, min, max);
  4504. }
  4505. static int niu_reset_rx_xmac(struct niu *np)
  4506. {
  4507. int limit;
  4508. nw64_mac(XRXMAC_SW_RST,
  4509. XRXMAC_SW_RST_REG_RS | XRXMAC_SW_RST_SOFT_RST);
  4510. limit = 1000;
  4511. while (--limit >= 0) {
  4512. if (!(nr64_mac(XRXMAC_SW_RST) & (XRXMAC_SW_RST_REG_RS |
  4513. XRXMAC_SW_RST_SOFT_RST)))
  4514. break;
  4515. udelay(100);
  4516. }
  4517. if (limit < 0) {
  4518. dev_err(np->device, PFX "Port %u RX XMAC would not reset, "
  4519. "XRXMAC_SW_RST[%llx]\n",
  4520. np->port,
  4521. (unsigned long long) nr64_mac(XRXMAC_SW_RST));
  4522. return -ENODEV;
  4523. }
  4524. return 0;
  4525. }
  4526. static int niu_reset_rx_bmac(struct niu *np)
  4527. {
  4528. int limit;
  4529. nw64_mac(BRXMAC_SW_RST, BRXMAC_SW_RST_RESET);
  4530. limit = 1000;
  4531. while (--limit >= 0) {
  4532. if (!(nr64_mac(BRXMAC_SW_RST) & BRXMAC_SW_RST_RESET))
  4533. break;
  4534. udelay(100);
  4535. }
  4536. if (limit < 0) {
  4537. dev_err(np->device, PFX "Port %u RX BMAC would not reset, "
  4538. "BRXMAC_SW_RST[%llx]\n",
  4539. np->port,
  4540. (unsigned long long) nr64_mac(BRXMAC_SW_RST));
  4541. return -ENODEV;
  4542. }
  4543. return 0;
  4544. }
  4545. static int niu_reset_rx_mac(struct niu *np)
  4546. {
  4547. if (np->flags & NIU_FLAGS_XMAC)
  4548. return niu_reset_rx_xmac(np);
  4549. else
  4550. return niu_reset_rx_bmac(np);
  4551. }
  4552. static void niu_init_rx_xmac(struct niu *np)
  4553. {
  4554. struct niu_parent *parent = np->parent;
  4555. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  4556. int first_rdc_table = tp->first_table_num;
  4557. unsigned long i;
  4558. u64 val;
  4559. nw64_mac(XMAC_ADD_FILT0, 0);
  4560. nw64_mac(XMAC_ADD_FILT1, 0);
  4561. nw64_mac(XMAC_ADD_FILT2, 0);
  4562. nw64_mac(XMAC_ADD_FILT12_MASK, 0);
  4563. nw64_mac(XMAC_ADD_FILT00_MASK, 0);
  4564. for (i = 0; i < MAC_NUM_HASH; i++)
  4565. nw64_mac(XMAC_HASH_TBL(i), 0);
  4566. nw64_mac(XRXMAC_STAT_MSK, ~(u64)0);
  4567. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  4568. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  4569. val = nr64_mac(XMAC_CONFIG);
  4570. val &= ~(XMAC_CONFIG_RX_MAC_ENABLE |
  4571. XMAC_CONFIG_PROMISCUOUS |
  4572. XMAC_CONFIG_PROMISC_GROUP |
  4573. XMAC_CONFIG_ERR_CHK_DIS |
  4574. XMAC_CONFIG_RX_CRC_CHK_DIS |
  4575. XMAC_CONFIG_RESERVED_MULTICAST |
  4576. XMAC_CONFIG_RX_CODEV_CHK_DIS |
  4577. XMAC_CONFIG_ADDR_FILTER_EN |
  4578. XMAC_CONFIG_RCV_PAUSE_ENABLE |
  4579. XMAC_CONFIG_STRIP_CRC |
  4580. XMAC_CONFIG_PASS_FLOW_CTRL |
  4581. XMAC_CONFIG_MAC2IPP_PKT_CNT_EN);
  4582. val |= (XMAC_CONFIG_HASH_FILTER_EN);
  4583. nw64_mac(XMAC_CONFIG, val);
  4584. nw64_mac(RXMAC_BT_CNT, 0);
  4585. nw64_mac(RXMAC_BC_FRM_CNT, 0);
  4586. nw64_mac(RXMAC_MC_FRM_CNT, 0);
  4587. nw64_mac(RXMAC_FRAG_CNT, 0);
  4588. nw64_mac(RXMAC_HIST_CNT1, 0);
  4589. nw64_mac(RXMAC_HIST_CNT2, 0);
  4590. nw64_mac(RXMAC_HIST_CNT3, 0);
  4591. nw64_mac(RXMAC_HIST_CNT4, 0);
  4592. nw64_mac(RXMAC_HIST_CNT5, 0);
  4593. nw64_mac(RXMAC_HIST_CNT6, 0);
  4594. nw64_mac(RXMAC_HIST_CNT7, 0);
  4595. nw64_mac(RXMAC_MPSZER_CNT, 0);
  4596. nw64_mac(RXMAC_CRC_ER_CNT, 0);
  4597. nw64_mac(RXMAC_CD_VIO_CNT, 0);
  4598. nw64_mac(LINK_FAULT_CNT, 0);
  4599. }
  4600. static void niu_init_rx_bmac(struct niu *np)
  4601. {
  4602. struct niu_parent *parent = np->parent;
  4603. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  4604. int first_rdc_table = tp->first_table_num;
  4605. unsigned long i;
  4606. u64 val;
  4607. nw64_mac(BMAC_ADD_FILT0, 0);
  4608. nw64_mac(BMAC_ADD_FILT1, 0);
  4609. nw64_mac(BMAC_ADD_FILT2, 0);
  4610. nw64_mac(BMAC_ADD_FILT12_MASK, 0);
  4611. nw64_mac(BMAC_ADD_FILT00_MASK, 0);
  4612. for (i = 0; i < MAC_NUM_HASH; i++)
  4613. nw64_mac(BMAC_HASH_TBL(i), 0);
  4614. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  4615. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  4616. nw64_mac(BRXMAC_STATUS_MASK, ~(u64)0);
  4617. val = nr64_mac(BRXMAC_CONFIG);
  4618. val &= ~(BRXMAC_CONFIG_ENABLE |
  4619. BRXMAC_CONFIG_STRIP_PAD |
  4620. BRXMAC_CONFIG_STRIP_FCS |
  4621. BRXMAC_CONFIG_PROMISC |
  4622. BRXMAC_CONFIG_PROMISC_GRP |
  4623. BRXMAC_CONFIG_ADDR_FILT_EN |
  4624. BRXMAC_CONFIG_DISCARD_DIS);
  4625. val |= (BRXMAC_CONFIG_HASH_FILT_EN);
  4626. nw64_mac(BRXMAC_CONFIG, val);
  4627. val = nr64_mac(BMAC_ADDR_CMPEN);
  4628. val |= BMAC_ADDR_CMPEN_EN0;
  4629. nw64_mac(BMAC_ADDR_CMPEN, val);
  4630. }
  4631. static void niu_init_rx_mac(struct niu *np)
  4632. {
  4633. niu_set_primary_mac(np, np->dev->dev_addr);
  4634. if (np->flags & NIU_FLAGS_XMAC)
  4635. niu_init_rx_xmac(np);
  4636. else
  4637. niu_init_rx_bmac(np);
  4638. }
  4639. static void niu_enable_tx_xmac(struct niu *np, int on)
  4640. {
  4641. u64 val = nr64_mac(XMAC_CONFIG);
  4642. if (on)
  4643. val |= XMAC_CONFIG_TX_ENABLE;
  4644. else
  4645. val &= ~XMAC_CONFIG_TX_ENABLE;
  4646. nw64_mac(XMAC_CONFIG, val);
  4647. }
  4648. static void niu_enable_tx_bmac(struct niu *np, int on)
  4649. {
  4650. u64 val = nr64_mac(BTXMAC_CONFIG);
  4651. if (on)
  4652. val |= BTXMAC_CONFIG_ENABLE;
  4653. else
  4654. val &= ~BTXMAC_CONFIG_ENABLE;
  4655. nw64_mac(BTXMAC_CONFIG, val);
  4656. }
  4657. static void niu_enable_tx_mac(struct niu *np, int on)
  4658. {
  4659. if (np->flags & NIU_FLAGS_XMAC)
  4660. niu_enable_tx_xmac(np, on);
  4661. else
  4662. niu_enable_tx_bmac(np, on);
  4663. }
  4664. static void niu_enable_rx_xmac(struct niu *np, int on)
  4665. {
  4666. u64 val = nr64_mac(XMAC_CONFIG);
  4667. val &= ~(XMAC_CONFIG_HASH_FILTER_EN |
  4668. XMAC_CONFIG_PROMISCUOUS);
  4669. if (np->flags & NIU_FLAGS_MCAST)
  4670. val |= XMAC_CONFIG_HASH_FILTER_EN;
  4671. if (np->flags & NIU_FLAGS_PROMISC)
  4672. val |= XMAC_CONFIG_PROMISCUOUS;
  4673. if (on)
  4674. val |= XMAC_CONFIG_RX_MAC_ENABLE;
  4675. else
  4676. val &= ~XMAC_CONFIG_RX_MAC_ENABLE;
  4677. nw64_mac(XMAC_CONFIG, val);
  4678. }
  4679. static void niu_enable_rx_bmac(struct niu *np, int on)
  4680. {
  4681. u64 val = nr64_mac(BRXMAC_CONFIG);
  4682. val &= ~(BRXMAC_CONFIG_HASH_FILT_EN |
  4683. BRXMAC_CONFIG_PROMISC);
  4684. if (np->flags & NIU_FLAGS_MCAST)
  4685. val |= BRXMAC_CONFIG_HASH_FILT_EN;
  4686. if (np->flags & NIU_FLAGS_PROMISC)
  4687. val |= BRXMAC_CONFIG_PROMISC;
  4688. if (on)
  4689. val |= BRXMAC_CONFIG_ENABLE;
  4690. else
  4691. val &= ~BRXMAC_CONFIG_ENABLE;
  4692. nw64_mac(BRXMAC_CONFIG, val);
  4693. }
  4694. static void niu_enable_rx_mac(struct niu *np, int on)
  4695. {
  4696. if (np->flags & NIU_FLAGS_XMAC)
  4697. niu_enable_rx_xmac(np, on);
  4698. else
  4699. niu_enable_rx_bmac(np, on);
  4700. }
  4701. static int niu_init_mac(struct niu *np)
  4702. {
  4703. int err;
  4704. niu_init_xif(np);
  4705. err = niu_init_pcs(np);
  4706. if (err)
  4707. return err;
  4708. err = niu_reset_tx_mac(np);
  4709. if (err)
  4710. return err;
  4711. niu_init_tx_mac(np);
  4712. err = niu_reset_rx_mac(np);
  4713. if (err)
  4714. return err;
  4715. niu_init_rx_mac(np);
  4716. /* This looks hookey but the RX MAC reset we just did will
  4717. * undo some of the state we setup in niu_init_tx_mac() so we
  4718. * have to call it again. In particular, the RX MAC reset will
  4719. * set the XMAC_MAX register back to it's default value.
  4720. */
  4721. niu_init_tx_mac(np);
  4722. niu_enable_tx_mac(np, 1);
  4723. niu_enable_rx_mac(np, 1);
  4724. return 0;
  4725. }
  4726. static void niu_stop_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  4727. {
  4728. (void) niu_tx_channel_stop(np, rp->tx_channel);
  4729. }
  4730. static void niu_stop_tx_channels(struct niu *np)
  4731. {
  4732. int i;
  4733. for (i = 0; i < np->num_tx_rings; i++) {
  4734. struct tx_ring_info *rp = &np->tx_rings[i];
  4735. niu_stop_one_tx_channel(np, rp);
  4736. }
  4737. }
  4738. static void niu_reset_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  4739. {
  4740. (void) niu_tx_channel_reset(np, rp->tx_channel);
  4741. }
  4742. static void niu_reset_tx_channels(struct niu *np)
  4743. {
  4744. int i;
  4745. for (i = 0; i < np->num_tx_rings; i++) {
  4746. struct tx_ring_info *rp = &np->tx_rings[i];
  4747. niu_reset_one_tx_channel(np, rp);
  4748. }
  4749. }
  4750. static void niu_stop_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4751. {
  4752. (void) niu_enable_rx_channel(np, rp->rx_channel, 0);
  4753. }
  4754. static void niu_stop_rx_channels(struct niu *np)
  4755. {
  4756. int i;
  4757. for (i = 0; i < np->num_rx_rings; i++) {
  4758. struct rx_ring_info *rp = &np->rx_rings[i];
  4759. niu_stop_one_rx_channel(np, rp);
  4760. }
  4761. }
  4762. static void niu_reset_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4763. {
  4764. int channel = rp->rx_channel;
  4765. (void) niu_rx_channel_reset(np, channel);
  4766. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_ALL);
  4767. nw64(RX_DMA_CTL_STAT(channel), 0);
  4768. (void) niu_enable_rx_channel(np, channel, 0);
  4769. }
  4770. static void niu_reset_rx_channels(struct niu *np)
  4771. {
  4772. int i;
  4773. for (i = 0; i < np->num_rx_rings; i++) {
  4774. struct rx_ring_info *rp = &np->rx_rings[i];
  4775. niu_reset_one_rx_channel(np, rp);
  4776. }
  4777. }
  4778. static void niu_disable_ipp(struct niu *np)
  4779. {
  4780. u64 rd, wr, val;
  4781. int limit;
  4782. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  4783. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  4784. limit = 100;
  4785. while (--limit >= 0 && (rd != wr)) {
  4786. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  4787. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  4788. }
  4789. if (limit < 0 &&
  4790. (rd != 0 && wr != 1)) {
  4791. dev_err(np->device, PFX "%s: IPP would not quiesce, "
  4792. "rd_ptr[%llx] wr_ptr[%llx]\n",
  4793. np->dev->name,
  4794. (unsigned long long) nr64_ipp(IPP_DFIFO_RD_PTR),
  4795. (unsigned long long) nr64_ipp(IPP_DFIFO_WR_PTR));
  4796. }
  4797. val = nr64_ipp(IPP_CFIG);
  4798. val &= ~(IPP_CFIG_IPP_ENABLE |
  4799. IPP_CFIG_DFIFO_ECC_EN |
  4800. IPP_CFIG_DROP_BAD_CRC |
  4801. IPP_CFIG_CKSUM_EN);
  4802. nw64_ipp(IPP_CFIG, val);
  4803. (void) niu_ipp_reset(np);
  4804. }
  4805. static int niu_init_hw(struct niu *np)
  4806. {
  4807. int i, err;
  4808. niudbg(IFUP, "%s: Initialize TXC\n", np->dev->name);
  4809. niu_txc_enable_port(np, 1);
  4810. niu_txc_port_dma_enable(np, 1);
  4811. niu_txc_set_imask(np, 0);
  4812. niudbg(IFUP, "%s: Initialize TX channels\n", np->dev->name);
  4813. for (i = 0; i < np->num_tx_rings; i++) {
  4814. struct tx_ring_info *rp = &np->tx_rings[i];
  4815. err = niu_init_one_tx_channel(np, rp);
  4816. if (err)
  4817. return err;
  4818. }
  4819. niudbg(IFUP, "%s: Initialize RX channels\n", np->dev->name);
  4820. err = niu_init_rx_channels(np);
  4821. if (err)
  4822. goto out_uninit_tx_channels;
  4823. niudbg(IFUP, "%s: Initialize classifier\n", np->dev->name);
  4824. err = niu_init_classifier_hw(np);
  4825. if (err)
  4826. goto out_uninit_rx_channels;
  4827. niudbg(IFUP, "%s: Initialize ZCP\n", np->dev->name);
  4828. err = niu_init_zcp(np);
  4829. if (err)
  4830. goto out_uninit_rx_channels;
  4831. niudbg(IFUP, "%s: Initialize IPP\n", np->dev->name);
  4832. err = niu_init_ipp(np);
  4833. if (err)
  4834. goto out_uninit_rx_channels;
  4835. niudbg(IFUP, "%s: Initialize MAC\n", np->dev->name);
  4836. err = niu_init_mac(np);
  4837. if (err)
  4838. goto out_uninit_ipp;
  4839. return 0;
  4840. out_uninit_ipp:
  4841. niudbg(IFUP, "%s: Uninit IPP\n", np->dev->name);
  4842. niu_disable_ipp(np);
  4843. out_uninit_rx_channels:
  4844. niudbg(IFUP, "%s: Uninit RX channels\n", np->dev->name);
  4845. niu_stop_rx_channels(np);
  4846. niu_reset_rx_channels(np);
  4847. out_uninit_tx_channels:
  4848. niudbg(IFUP, "%s: Uninit TX channels\n", np->dev->name);
  4849. niu_stop_tx_channels(np);
  4850. niu_reset_tx_channels(np);
  4851. return err;
  4852. }
  4853. static void niu_stop_hw(struct niu *np)
  4854. {
  4855. niudbg(IFDOWN, "%s: Disable interrupts\n", np->dev->name);
  4856. niu_enable_interrupts(np, 0);
  4857. niudbg(IFDOWN, "%s: Disable RX MAC\n", np->dev->name);
  4858. niu_enable_rx_mac(np, 0);
  4859. niudbg(IFDOWN, "%s: Disable IPP\n", np->dev->name);
  4860. niu_disable_ipp(np);
  4861. niudbg(IFDOWN, "%s: Stop TX channels\n", np->dev->name);
  4862. niu_stop_tx_channels(np);
  4863. niudbg(IFDOWN, "%s: Stop RX channels\n", np->dev->name);
  4864. niu_stop_rx_channels(np);
  4865. niudbg(IFDOWN, "%s: Reset TX channels\n", np->dev->name);
  4866. niu_reset_tx_channels(np);
  4867. niudbg(IFDOWN, "%s: Reset RX channels\n", np->dev->name);
  4868. niu_reset_rx_channels(np);
  4869. }
  4870. static void niu_set_irq_name(struct niu *np)
  4871. {
  4872. int port = np->port;
  4873. int i, j = 1;
  4874. sprintf(np->irq_name[0], "%s:MAC", np->dev->name);
  4875. if (port == 0) {
  4876. sprintf(np->irq_name[1], "%s:MIF", np->dev->name);
  4877. sprintf(np->irq_name[2], "%s:SYSERR", np->dev->name);
  4878. j = 3;
  4879. }
  4880. for (i = 0; i < np->num_ldg - j; i++) {
  4881. if (i < np->num_rx_rings)
  4882. sprintf(np->irq_name[i+j], "%s-rx-%d",
  4883. np->dev->name, i);
  4884. else if (i < np->num_tx_rings + np->num_rx_rings)
  4885. sprintf(np->irq_name[i+j], "%s-tx-%d", np->dev->name,
  4886. i - np->num_rx_rings);
  4887. }
  4888. }
  4889. static int niu_request_irq(struct niu *np)
  4890. {
  4891. int i, j, err;
  4892. niu_set_irq_name(np);
  4893. err = 0;
  4894. for (i = 0; i < np->num_ldg; i++) {
  4895. struct niu_ldg *lp = &np->ldg[i];
  4896. err = request_irq(lp->irq, niu_interrupt,
  4897. IRQF_SHARED | IRQF_SAMPLE_RANDOM,
  4898. np->irq_name[i], lp);
  4899. if (err)
  4900. goto out_free_irqs;
  4901. }
  4902. return 0;
  4903. out_free_irqs:
  4904. for (j = 0; j < i; j++) {
  4905. struct niu_ldg *lp = &np->ldg[j];
  4906. free_irq(lp->irq, lp);
  4907. }
  4908. return err;
  4909. }
  4910. static void niu_free_irq(struct niu *np)
  4911. {
  4912. int i;
  4913. for (i = 0; i < np->num_ldg; i++) {
  4914. struct niu_ldg *lp = &np->ldg[i];
  4915. free_irq(lp->irq, lp);
  4916. }
  4917. }
  4918. static void niu_enable_napi(struct niu *np)
  4919. {
  4920. int i;
  4921. for (i = 0; i < np->num_ldg; i++)
  4922. napi_enable(&np->ldg[i].napi);
  4923. }
  4924. static void niu_disable_napi(struct niu *np)
  4925. {
  4926. int i;
  4927. for (i = 0; i < np->num_ldg; i++)
  4928. napi_disable(&np->ldg[i].napi);
  4929. }
  4930. static int niu_open(struct net_device *dev)
  4931. {
  4932. struct niu *np = netdev_priv(dev);
  4933. int err;
  4934. netif_carrier_off(dev);
  4935. err = niu_alloc_channels(np);
  4936. if (err)
  4937. goto out_err;
  4938. err = niu_enable_interrupts(np, 0);
  4939. if (err)
  4940. goto out_free_channels;
  4941. err = niu_request_irq(np);
  4942. if (err)
  4943. goto out_free_channels;
  4944. niu_enable_napi(np);
  4945. spin_lock_irq(&np->lock);
  4946. err = niu_init_hw(np);
  4947. if (!err) {
  4948. init_timer(&np->timer);
  4949. np->timer.expires = jiffies + HZ;
  4950. np->timer.data = (unsigned long) np;
  4951. np->timer.function = niu_timer;
  4952. err = niu_enable_interrupts(np, 1);
  4953. if (err)
  4954. niu_stop_hw(np);
  4955. }
  4956. spin_unlock_irq(&np->lock);
  4957. if (err) {
  4958. niu_disable_napi(np);
  4959. goto out_free_irq;
  4960. }
  4961. netif_tx_start_all_queues(dev);
  4962. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  4963. netif_carrier_on(dev);
  4964. add_timer(&np->timer);
  4965. return 0;
  4966. out_free_irq:
  4967. niu_free_irq(np);
  4968. out_free_channels:
  4969. niu_free_channels(np);
  4970. out_err:
  4971. return err;
  4972. }
  4973. static void niu_full_shutdown(struct niu *np, struct net_device *dev)
  4974. {
  4975. cancel_work_sync(&np->reset_task);
  4976. niu_disable_napi(np);
  4977. netif_tx_stop_all_queues(dev);
  4978. del_timer_sync(&np->timer);
  4979. spin_lock_irq(&np->lock);
  4980. niu_stop_hw(np);
  4981. spin_unlock_irq(&np->lock);
  4982. }
  4983. static int niu_close(struct net_device *dev)
  4984. {
  4985. struct niu *np = netdev_priv(dev);
  4986. niu_full_shutdown(np, dev);
  4987. niu_free_irq(np);
  4988. niu_free_channels(np);
  4989. niu_handle_led(np, 0);
  4990. return 0;
  4991. }
  4992. static void niu_sync_xmac_stats(struct niu *np)
  4993. {
  4994. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  4995. mp->tx_frames += nr64_mac(TXMAC_FRM_CNT);
  4996. mp->tx_bytes += nr64_mac(TXMAC_BYTE_CNT);
  4997. mp->rx_link_faults += nr64_mac(LINK_FAULT_CNT);
  4998. mp->rx_align_errors += nr64_mac(RXMAC_ALIGN_ERR_CNT);
  4999. mp->rx_frags += nr64_mac(RXMAC_FRAG_CNT);
  5000. mp->rx_mcasts += nr64_mac(RXMAC_MC_FRM_CNT);
  5001. mp->rx_bcasts += nr64_mac(RXMAC_BC_FRM_CNT);
  5002. mp->rx_hist_cnt1 += nr64_mac(RXMAC_HIST_CNT1);
  5003. mp->rx_hist_cnt2 += nr64_mac(RXMAC_HIST_CNT2);
  5004. mp->rx_hist_cnt3 += nr64_mac(RXMAC_HIST_CNT3);
  5005. mp->rx_hist_cnt4 += nr64_mac(RXMAC_HIST_CNT4);
  5006. mp->rx_hist_cnt5 += nr64_mac(RXMAC_HIST_CNT5);
  5007. mp->rx_hist_cnt6 += nr64_mac(RXMAC_HIST_CNT6);
  5008. mp->rx_hist_cnt7 += nr64_mac(RXMAC_HIST_CNT7);
  5009. mp->rx_octets += nr64_mac(RXMAC_BT_CNT);
  5010. mp->rx_code_violations += nr64_mac(RXMAC_CD_VIO_CNT);
  5011. mp->rx_len_errors += nr64_mac(RXMAC_MPSZER_CNT);
  5012. mp->rx_crc_errors += nr64_mac(RXMAC_CRC_ER_CNT);
  5013. }
  5014. static void niu_sync_bmac_stats(struct niu *np)
  5015. {
  5016. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  5017. mp->tx_bytes += nr64_mac(BTXMAC_BYTE_CNT);
  5018. mp->tx_frames += nr64_mac(BTXMAC_FRM_CNT);
  5019. mp->rx_frames += nr64_mac(BRXMAC_FRAME_CNT);
  5020. mp->rx_align_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  5021. mp->rx_crc_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  5022. mp->rx_len_errors += nr64_mac(BRXMAC_CODE_VIOL_ERR_CNT);
  5023. }
  5024. static void niu_sync_mac_stats(struct niu *np)
  5025. {
  5026. if (np->flags & NIU_FLAGS_XMAC)
  5027. niu_sync_xmac_stats(np);
  5028. else
  5029. niu_sync_bmac_stats(np);
  5030. }
  5031. static void niu_get_rx_stats(struct niu *np)
  5032. {
  5033. unsigned long pkts, dropped, errors, bytes;
  5034. int i;
  5035. pkts = dropped = errors = bytes = 0;
  5036. for (i = 0; i < np->num_rx_rings; i++) {
  5037. struct rx_ring_info *rp = &np->rx_rings[i];
  5038. niu_sync_rx_discard_stats(np, rp, 0);
  5039. pkts += rp->rx_packets;
  5040. bytes += rp->rx_bytes;
  5041. dropped += rp->rx_dropped;
  5042. errors += rp->rx_errors;
  5043. }
  5044. np->dev->stats.rx_packets = pkts;
  5045. np->dev->stats.rx_bytes = bytes;
  5046. np->dev->stats.rx_dropped = dropped;
  5047. np->dev->stats.rx_errors = errors;
  5048. }
  5049. static void niu_get_tx_stats(struct niu *np)
  5050. {
  5051. unsigned long pkts, errors, bytes;
  5052. int i;
  5053. pkts = errors = bytes = 0;
  5054. for (i = 0; i < np->num_tx_rings; i++) {
  5055. struct tx_ring_info *rp = &np->tx_rings[i];
  5056. pkts += rp->tx_packets;
  5057. bytes += rp->tx_bytes;
  5058. errors += rp->tx_errors;
  5059. }
  5060. np->dev->stats.tx_packets = pkts;
  5061. np->dev->stats.tx_bytes = bytes;
  5062. np->dev->stats.tx_errors = errors;
  5063. }
  5064. static struct net_device_stats *niu_get_stats(struct net_device *dev)
  5065. {
  5066. struct niu *np = netdev_priv(dev);
  5067. niu_get_rx_stats(np);
  5068. niu_get_tx_stats(np);
  5069. return &dev->stats;
  5070. }
  5071. static void niu_load_hash_xmac(struct niu *np, u16 *hash)
  5072. {
  5073. int i;
  5074. for (i = 0; i < 16; i++)
  5075. nw64_mac(XMAC_HASH_TBL(i), hash[i]);
  5076. }
  5077. static void niu_load_hash_bmac(struct niu *np, u16 *hash)
  5078. {
  5079. int i;
  5080. for (i = 0; i < 16; i++)
  5081. nw64_mac(BMAC_HASH_TBL(i), hash[i]);
  5082. }
  5083. static void niu_load_hash(struct niu *np, u16 *hash)
  5084. {
  5085. if (np->flags & NIU_FLAGS_XMAC)
  5086. niu_load_hash_xmac(np, hash);
  5087. else
  5088. niu_load_hash_bmac(np, hash);
  5089. }
  5090. static void niu_set_rx_mode(struct net_device *dev)
  5091. {
  5092. struct niu *np = netdev_priv(dev);
  5093. int i, alt_cnt, err;
  5094. struct dev_addr_list *addr;
  5095. unsigned long flags;
  5096. u16 hash[16] = { 0, };
  5097. spin_lock_irqsave(&np->lock, flags);
  5098. niu_enable_rx_mac(np, 0);
  5099. np->flags &= ~(NIU_FLAGS_MCAST | NIU_FLAGS_PROMISC);
  5100. if (dev->flags & IFF_PROMISC)
  5101. np->flags |= NIU_FLAGS_PROMISC;
  5102. if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 0))
  5103. np->flags |= NIU_FLAGS_MCAST;
  5104. alt_cnt = dev->uc_count;
  5105. if (alt_cnt > niu_num_alt_addr(np)) {
  5106. alt_cnt = 0;
  5107. np->flags |= NIU_FLAGS_PROMISC;
  5108. }
  5109. if (alt_cnt) {
  5110. int index = 0;
  5111. for (addr = dev->uc_list; addr; addr = addr->next) {
  5112. err = niu_set_alt_mac(np, index,
  5113. addr->da_addr);
  5114. if (err)
  5115. printk(KERN_WARNING PFX "%s: Error %d "
  5116. "adding alt mac %d\n",
  5117. dev->name, err, index);
  5118. err = niu_enable_alt_mac(np, index, 1);
  5119. if (err)
  5120. printk(KERN_WARNING PFX "%s: Error %d "
  5121. "enabling alt mac %d\n",
  5122. dev->name, err, index);
  5123. index++;
  5124. }
  5125. } else {
  5126. int alt_start;
  5127. if (np->flags & NIU_FLAGS_XMAC)
  5128. alt_start = 0;
  5129. else
  5130. alt_start = 1;
  5131. for (i = alt_start; i < niu_num_alt_addr(np); i++) {
  5132. err = niu_enable_alt_mac(np, i, 0);
  5133. if (err)
  5134. printk(KERN_WARNING PFX "%s: Error %d "
  5135. "disabling alt mac %d\n",
  5136. dev->name, err, i);
  5137. }
  5138. }
  5139. if (dev->flags & IFF_ALLMULTI) {
  5140. for (i = 0; i < 16; i++)
  5141. hash[i] = 0xffff;
  5142. } else if (dev->mc_count > 0) {
  5143. for (addr = dev->mc_list; addr; addr = addr->next) {
  5144. u32 crc = ether_crc_le(ETH_ALEN, addr->da_addr);
  5145. crc >>= 24;
  5146. hash[crc >> 4] |= (1 << (15 - (crc & 0xf)));
  5147. }
  5148. }
  5149. if (np->flags & NIU_FLAGS_MCAST)
  5150. niu_load_hash(np, hash);
  5151. niu_enable_rx_mac(np, 1);
  5152. spin_unlock_irqrestore(&np->lock, flags);
  5153. }
  5154. static int niu_set_mac_addr(struct net_device *dev, void *p)
  5155. {
  5156. struct niu *np = netdev_priv(dev);
  5157. struct sockaddr *addr = p;
  5158. unsigned long flags;
  5159. if (!is_valid_ether_addr(addr->sa_data))
  5160. return -EINVAL;
  5161. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  5162. if (!netif_running(dev))
  5163. return 0;
  5164. spin_lock_irqsave(&np->lock, flags);
  5165. niu_enable_rx_mac(np, 0);
  5166. niu_set_primary_mac(np, dev->dev_addr);
  5167. niu_enable_rx_mac(np, 1);
  5168. spin_unlock_irqrestore(&np->lock, flags);
  5169. return 0;
  5170. }
  5171. static int niu_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  5172. {
  5173. return -EOPNOTSUPP;
  5174. }
  5175. static void niu_netif_stop(struct niu *np)
  5176. {
  5177. np->dev->trans_start = jiffies; /* prevent tx timeout */
  5178. niu_disable_napi(np);
  5179. netif_tx_disable(np->dev);
  5180. }
  5181. static void niu_netif_start(struct niu *np)
  5182. {
  5183. /* NOTE: unconditional netif_wake_queue is only appropriate
  5184. * so long as all callers are assured to have free tx slots
  5185. * (such as after niu_init_hw).
  5186. */
  5187. netif_tx_wake_all_queues(np->dev);
  5188. niu_enable_napi(np);
  5189. niu_enable_interrupts(np, 1);
  5190. }
  5191. static void niu_reset_buffers(struct niu *np)
  5192. {
  5193. int i, j, k, err;
  5194. if (np->rx_rings) {
  5195. for (i = 0; i < np->num_rx_rings; i++) {
  5196. struct rx_ring_info *rp = &np->rx_rings[i];
  5197. for (j = 0, k = 0; j < MAX_RBR_RING_SIZE; j++) {
  5198. struct page *page;
  5199. page = rp->rxhash[j];
  5200. while (page) {
  5201. struct page *next =
  5202. (struct page *) page->mapping;
  5203. u64 base = page->index;
  5204. base = base >> RBR_DESCR_ADDR_SHIFT;
  5205. rp->rbr[k++] = cpu_to_le32(base);
  5206. page = next;
  5207. }
  5208. }
  5209. for (; k < MAX_RBR_RING_SIZE; k++) {
  5210. err = niu_rbr_add_page(np, rp, GFP_ATOMIC, k);
  5211. if (unlikely(err))
  5212. break;
  5213. }
  5214. rp->rbr_index = rp->rbr_table_size - 1;
  5215. rp->rcr_index = 0;
  5216. rp->rbr_pending = 0;
  5217. rp->rbr_refill_pending = 0;
  5218. }
  5219. }
  5220. if (np->tx_rings) {
  5221. for (i = 0; i < np->num_tx_rings; i++) {
  5222. struct tx_ring_info *rp = &np->tx_rings[i];
  5223. for (j = 0; j < MAX_TX_RING_SIZE; j++) {
  5224. if (rp->tx_buffs[j].skb)
  5225. (void) release_tx_packet(np, rp, j);
  5226. }
  5227. rp->pending = MAX_TX_RING_SIZE;
  5228. rp->prod = 0;
  5229. rp->cons = 0;
  5230. rp->wrap_bit = 0;
  5231. }
  5232. }
  5233. }
  5234. static void niu_reset_task(struct work_struct *work)
  5235. {
  5236. struct niu *np = container_of(work, struct niu, reset_task);
  5237. unsigned long flags;
  5238. int err;
  5239. spin_lock_irqsave(&np->lock, flags);
  5240. if (!netif_running(np->dev)) {
  5241. spin_unlock_irqrestore(&np->lock, flags);
  5242. return;
  5243. }
  5244. spin_unlock_irqrestore(&np->lock, flags);
  5245. del_timer_sync(&np->timer);
  5246. niu_netif_stop(np);
  5247. spin_lock_irqsave(&np->lock, flags);
  5248. niu_stop_hw(np);
  5249. spin_unlock_irqrestore(&np->lock, flags);
  5250. niu_reset_buffers(np);
  5251. spin_lock_irqsave(&np->lock, flags);
  5252. err = niu_init_hw(np);
  5253. if (!err) {
  5254. np->timer.expires = jiffies + HZ;
  5255. add_timer(&np->timer);
  5256. niu_netif_start(np);
  5257. }
  5258. spin_unlock_irqrestore(&np->lock, flags);
  5259. }
  5260. static void niu_tx_timeout(struct net_device *dev)
  5261. {
  5262. struct niu *np = netdev_priv(dev);
  5263. dev_err(np->device, PFX "%s: Transmit timed out, resetting\n",
  5264. dev->name);
  5265. schedule_work(&np->reset_task);
  5266. }
  5267. static void niu_set_txd(struct tx_ring_info *rp, int index,
  5268. u64 mapping, u64 len, u64 mark,
  5269. u64 n_frags)
  5270. {
  5271. __le64 *desc = &rp->descr[index];
  5272. *desc = cpu_to_le64(mark |
  5273. (n_frags << TX_DESC_NUM_PTR_SHIFT) |
  5274. (len << TX_DESC_TR_LEN_SHIFT) |
  5275. (mapping & TX_DESC_SAD));
  5276. }
  5277. static u64 niu_compute_tx_flags(struct sk_buff *skb, struct ethhdr *ehdr,
  5278. u64 pad_bytes, u64 len)
  5279. {
  5280. u16 eth_proto, eth_proto_inner;
  5281. u64 csum_bits, l3off, ihl, ret;
  5282. u8 ip_proto;
  5283. int ipv6;
  5284. eth_proto = be16_to_cpu(ehdr->h_proto);
  5285. eth_proto_inner = eth_proto;
  5286. if (eth_proto == ETH_P_8021Q) {
  5287. struct vlan_ethhdr *vp = (struct vlan_ethhdr *) ehdr;
  5288. __be16 val = vp->h_vlan_encapsulated_proto;
  5289. eth_proto_inner = be16_to_cpu(val);
  5290. }
  5291. ipv6 = ihl = 0;
  5292. switch (skb->protocol) {
  5293. case __constant_htons(ETH_P_IP):
  5294. ip_proto = ip_hdr(skb)->protocol;
  5295. ihl = ip_hdr(skb)->ihl;
  5296. break;
  5297. case __constant_htons(ETH_P_IPV6):
  5298. ip_proto = ipv6_hdr(skb)->nexthdr;
  5299. ihl = (40 >> 2);
  5300. ipv6 = 1;
  5301. break;
  5302. default:
  5303. ip_proto = ihl = 0;
  5304. break;
  5305. }
  5306. csum_bits = TXHDR_CSUM_NONE;
  5307. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5308. u64 start, stuff;
  5309. csum_bits = (ip_proto == IPPROTO_TCP ?
  5310. TXHDR_CSUM_TCP :
  5311. (ip_proto == IPPROTO_UDP ?
  5312. TXHDR_CSUM_UDP : TXHDR_CSUM_SCTP));
  5313. start = skb_transport_offset(skb) -
  5314. (pad_bytes + sizeof(struct tx_pkt_hdr));
  5315. stuff = start + skb->csum_offset;
  5316. csum_bits |= (start / 2) << TXHDR_L4START_SHIFT;
  5317. csum_bits |= (stuff / 2) << TXHDR_L4STUFF_SHIFT;
  5318. }
  5319. l3off = skb_network_offset(skb) -
  5320. (pad_bytes + sizeof(struct tx_pkt_hdr));
  5321. ret = (((pad_bytes / 2) << TXHDR_PAD_SHIFT) |
  5322. (len << TXHDR_LEN_SHIFT) |
  5323. ((l3off / 2) << TXHDR_L3START_SHIFT) |
  5324. (ihl << TXHDR_IHL_SHIFT) |
  5325. ((eth_proto_inner < 1536) ? TXHDR_LLC : 0) |
  5326. ((eth_proto == ETH_P_8021Q) ? TXHDR_VLAN : 0) |
  5327. (ipv6 ? TXHDR_IP_VER : 0) |
  5328. csum_bits);
  5329. return ret;
  5330. }
  5331. static int niu_start_xmit(struct sk_buff *skb, struct net_device *dev)
  5332. {
  5333. struct niu *np = netdev_priv(dev);
  5334. unsigned long align, headroom;
  5335. struct netdev_queue *txq;
  5336. struct tx_ring_info *rp;
  5337. struct tx_pkt_hdr *tp;
  5338. unsigned int len, nfg;
  5339. struct ethhdr *ehdr;
  5340. int prod, i, tlen;
  5341. u64 mapping, mrk;
  5342. i = skb_get_queue_mapping(skb);
  5343. rp = &np->tx_rings[i];
  5344. txq = netdev_get_tx_queue(dev, i);
  5345. if (niu_tx_avail(rp) <= (skb_shinfo(skb)->nr_frags + 1)) {
  5346. netif_tx_stop_queue(txq);
  5347. dev_err(np->device, PFX "%s: BUG! Tx ring full when "
  5348. "queue awake!\n", dev->name);
  5349. rp->tx_errors++;
  5350. return NETDEV_TX_BUSY;
  5351. }
  5352. if (skb->len < ETH_ZLEN) {
  5353. unsigned int pad_bytes = ETH_ZLEN - skb->len;
  5354. if (skb_pad(skb, pad_bytes))
  5355. goto out;
  5356. skb_put(skb, pad_bytes);
  5357. }
  5358. len = sizeof(struct tx_pkt_hdr) + 15;
  5359. if (skb_headroom(skb) < len) {
  5360. struct sk_buff *skb_new;
  5361. skb_new = skb_realloc_headroom(skb, len);
  5362. if (!skb_new) {
  5363. rp->tx_errors++;
  5364. goto out_drop;
  5365. }
  5366. kfree_skb(skb);
  5367. skb = skb_new;
  5368. } else
  5369. skb_orphan(skb);
  5370. align = ((unsigned long) skb->data & (16 - 1));
  5371. headroom = align + sizeof(struct tx_pkt_hdr);
  5372. ehdr = (struct ethhdr *) skb->data;
  5373. tp = (struct tx_pkt_hdr *) skb_push(skb, headroom);
  5374. len = skb->len - sizeof(struct tx_pkt_hdr);
  5375. tp->flags = cpu_to_le64(niu_compute_tx_flags(skb, ehdr, align, len));
  5376. tp->resv = 0;
  5377. len = skb_headlen(skb);
  5378. mapping = np->ops->map_single(np->device, skb->data,
  5379. len, DMA_TO_DEVICE);
  5380. prod = rp->prod;
  5381. rp->tx_buffs[prod].skb = skb;
  5382. rp->tx_buffs[prod].mapping = mapping;
  5383. mrk = TX_DESC_SOP;
  5384. if (++rp->mark_counter == rp->mark_freq) {
  5385. rp->mark_counter = 0;
  5386. mrk |= TX_DESC_MARK;
  5387. rp->mark_pending++;
  5388. }
  5389. tlen = len;
  5390. nfg = skb_shinfo(skb)->nr_frags;
  5391. while (tlen > 0) {
  5392. tlen -= MAX_TX_DESC_LEN;
  5393. nfg++;
  5394. }
  5395. while (len > 0) {
  5396. unsigned int this_len = len;
  5397. if (this_len > MAX_TX_DESC_LEN)
  5398. this_len = MAX_TX_DESC_LEN;
  5399. niu_set_txd(rp, prod, mapping, this_len, mrk, nfg);
  5400. mrk = nfg = 0;
  5401. prod = NEXT_TX(rp, prod);
  5402. mapping += this_len;
  5403. len -= this_len;
  5404. }
  5405. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  5406. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5407. len = frag->size;
  5408. mapping = np->ops->map_page(np->device, frag->page,
  5409. frag->page_offset, len,
  5410. DMA_TO_DEVICE);
  5411. rp->tx_buffs[prod].skb = NULL;
  5412. rp->tx_buffs[prod].mapping = mapping;
  5413. niu_set_txd(rp, prod, mapping, len, 0, 0);
  5414. prod = NEXT_TX(rp, prod);
  5415. }
  5416. if (prod < rp->prod)
  5417. rp->wrap_bit ^= TX_RING_KICK_WRAP;
  5418. rp->prod = prod;
  5419. nw64(TX_RING_KICK(rp->tx_channel), rp->wrap_bit | (prod << 3));
  5420. if (unlikely(niu_tx_avail(rp) <= (MAX_SKB_FRAGS + 1))) {
  5421. netif_tx_stop_queue(txq);
  5422. if (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp))
  5423. netif_tx_wake_queue(txq);
  5424. }
  5425. dev->trans_start = jiffies;
  5426. out:
  5427. return NETDEV_TX_OK;
  5428. out_drop:
  5429. rp->tx_errors++;
  5430. kfree_skb(skb);
  5431. goto out;
  5432. }
  5433. static int niu_change_mtu(struct net_device *dev, int new_mtu)
  5434. {
  5435. struct niu *np = netdev_priv(dev);
  5436. int err, orig_jumbo, new_jumbo;
  5437. if (new_mtu < 68 || new_mtu > NIU_MAX_MTU)
  5438. return -EINVAL;
  5439. orig_jumbo = (dev->mtu > ETH_DATA_LEN);
  5440. new_jumbo = (new_mtu > ETH_DATA_LEN);
  5441. dev->mtu = new_mtu;
  5442. if (!netif_running(dev) ||
  5443. (orig_jumbo == new_jumbo))
  5444. return 0;
  5445. niu_full_shutdown(np, dev);
  5446. niu_free_channels(np);
  5447. niu_enable_napi(np);
  5448. err = niu_alloc_channels(np);
  5449. if (err)
  5450. return err;
  5451. spin_lock_irq(&np->lock);
  5452. err = niu_init_hw(np);
  5453. if (!err) {
  5454. init_timer(&np->timer);
  5455. np->timer.expires = jiffies + HZ;
  5456. np->timer.data = (unsigned long) np;
  5457. np->timer.function = niu_timer;
  5458. err = niu_enable_interrupts(np, 1);
  5459. if (err)
  5460. niu_stop_hw(np);
  5461. }
  5462. spin_unlock_irq(&np->lock);
  5463. if (!err) {
  5464. netif_tx_start_all_queues(dev);
  5465. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  5466. netif_carrier_on(dev);
  5467. add_timer(&np->timer);
  5468. }
  5469. return err;
  5470. }
  5471. static void niu_get_drvinfo(struct net_device *dev,
  5472. struct ethtool_drvinfo *info)
  5473. {
  5474. struct niu *np = netdev_priv(dev);
  5475. struct niu_vpd *vpd = &np->vpd;
  5476. strcpy(info->driver, DRV_MODULE_NAME);
  5477. strcpy(info->version, DRV_MODULE_VERSION);
  5478. sprintf(info->fw_version, "%d.%d",
  5479. vpd->fcode_major, vpd->fcode_minor);
  5480. if (np->parent->plat_type != PLAT_TYPE_NIU)
  5481. strcpy(info->bus_info, pci_name(np->pdev));
  5482. }
  5483. static int niu_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5484. {
  5485. struct niu *np = netdev_priv(dev);
  5486. struct niu_link_config *lp;
  5487. lp = &np->link_config;
  5488. memset(cmd, 0, sizeof(*cmd));
  5489. cmd->phy_address = np->phy_addr;
  5490. cmd->supported = lp->supported;
  5491. cmd->advertising = lp->advertising;
  5492. cmd->autoneg = lp->autoneg;
  5493. cmd->speed = lp->active_speed;
  5494. cmd->duplex = lp->active_duplex;
  5495. return 0;
  5496. }
  5497. static int niu_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5498. {
  5499. return -EINVAL;
  5500. }
  5501. static u32 niu_get_msglevel(struct net_device *dev)
  5502. {
  5503. struct niu *np = netdev_priv(dev);
  5504. return np->msg_enable;
  5505. }
  5506. static void niu_set_msglevel(struct net_device *dev, u32 value)
  5507. {
  5508. struct niu *np = netdev_priv(dev);
  5509. np->msg_enable = value;
  5510. }
  5511. static int niu_get_eeprom_len(struct net_device *dev)
  5512. {
  5513. struct niu *np = netdev_priv(dev);
  5514. return np->eeprom_len;
  5515. }
  5516. static int niu_get_eeprom(struct net_device *dev,
  5517. struct ethtool_eeprom *eeprom, u8 *data)
  5518. {
  5519. struct niu *np = netdev_priv(dev);
  5520. u32 offset, len, val;
  5521. offset = eeprom->offset;
  5522. len = eeprom->len;
  5523. if (offset + len < offset)
  5524. return -EINVAL;
  5525. if (offset >= np->eeprom_len)
  5526. return -EINVAL;
  5527. if (offset + len > np->eeprom_len)
  5528. len = eeprom->len = np->eeprom_len - offset;
  5529. if (offset & 3) {
  5530. u32 b_offset, b_count;
  5531. b_offset = offset & 3;
  5532. b_count = 4 - b_offset;
  5533. if (b_count > len)
  5534. b_count = len;
  5535. val = nr64(ESPC_NCR((offset - b_offset) / 4));
  5536. memcpy(data, ((char *)&val) + b_offset, b_count);
  5537. data += b_count;
  5538. len -= b_count;
  5539. offset += b_count;
  5540. }
  5541. while (len >= 4) {
  5542. val = nr64(ESPC_NCR(offset / 4));
  5543. memcpy(data, &val, 4);
  5544. data += 4;
  5545. len -= 4;
  5546. offset += 4;
  5547. }
  5548. if (len) {
  5549. val = nr64(ESPC_NCR(offset / 4));
  5550. memcpy(data, &val, len);
  5551. }
  5552. return 0;
  5553. }
  5554. static int niu_ethflow_to_class(int flow_type, u64 *class)
  5555. {
  5556. switch (flow_type) {
  5557. case TCP_V4_FLOW:
  5558. *class = CLASS_CODE_TCP_IPV4;
  5559. break;
  5560. case UDP_V4_FLOW:
  5561. *class = CLASS_CODE_UDP_IPV4;
  5562. break;
  5563. case AH_ESP_V4_FLOW:
  5564. *class = CLASS_CODE_AH_ESP_IPV4;
  5565. break;
  5566. case SCTP_V4_FLOW:
  5567. *class = CLASS_CODE_SCTP_IPV4;
  5568. break;
  5569. case TCP_V6_FLOW:
  5570. *class = CLASS_CODE_TCP_IPV6;
  5571. break;
  5572. case UDP_V6_FLOW:
  5573. *class = CLASS_CODE_UDP_IPV6;
  5574. break;
  5575. case AH_ESP_V6_FLOW:
  5576. *class = CLASS_CODE_AH_ESP_IPV6;
  5577. break;
  5578. case SCTP_V6_FLOW:
  5579. *class = CLASS_CODE_SCTP_IPV6;
  5580. break;
  5581. default:
  5582. return 0;
  5583. }
  5584. return 1;
  5585. }
  5586. static u64 niu_flowkey_to_ethflow(u64 flow_key)
  5587. {
  5588. u64 ethflow = 0;
  5589. if (flow_key & FLOW_KEY_PORT)
  5590. ethflow |= RXH_DEV_PORT;
  5591. if (flow_key & FLOW_KEY_L2DA)
  5592. ethflow |= RXH_L2DA;
  5593. if (flow_key & FLOW_KEY_VLAN)
  5594. ethflow |= RXH_VLAN;
  5595. if (flow_key & FLOW_KEY_IPSA)
  5596. ethflow |= RXH_IP_SRC;
  5597. if (flow_key & FLOW_KEY_IPDA)
  5598. ethflow |= RXH_IP_DST;
  5599. if (flow_key & FLOW_KEY_PROTO)
  5600. ethflow |= RXH_L3_PROTO;
  5601. if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT))
  5602. ethflow |= RXH_L4_B_0_1;
  5603. if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT))
  5604. ethflow |= RXH_L4_B_2_3;
  5605. return ethflow;
  5606. }
  5607. static int niu_ethflow_to_flowkey(u64 ethflow, u64 *flow_key)
  5608. {
  5609. u64 key = 0;
  5610. if (ethflow & RXH_DEV_PORT)
  5611. key |= FLOW_KEY_PORT;
  5612. if (ethflow & RXH_L2DA)
  5613. key |= FLOW_KEY_L2DA;
  5614. if (ethflow & RXH_VLAN)
  5615. key |= FLOW_KEY_VLAN;
  5616. if (ethflow & RXH_IP_SRC)
  5617. key |= FLOW_KEY_IPSA;
  5618. if (ethflow & RXH_IP_DST)
  5619. key |= FLOW_KEY_IPDA;
  5620. if (ethflow & RXH_L3_PROTO)
  5621. key |= FLOW_KEY_PROTO;
  5622. if (ethflow & RXH_L4_B_0_1)
  5623. key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT);
  5624. if (ethflow & RXH_L4_B_2_3)
  5625. key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT);
  5626. *flow_key = key;
  5627. return 1;
  5628. }
  5629. static int niu_get_hash_opts(struct net_device *dev, struct ethtool_rxnfc *cmd)
  5630. {
  5631. struct niu *np = netdev_priv(dev);
  5632. u64 class;
  5633. cmd->data = 0;
  5634. if (!niu_ethflow_to_class(cmd->flow_type, &class))
  5635. return -EINVAL;
  5636. if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] &
  5637. TCAM_KEY_DISC)
  5638. cmd->data = RXH_DISCARD;
  5639. else
  5640. cmd->data = niu_flowkey_to_ethflow(np->parent->flow_key[class -
  5641. CLASS_CODE_USER_PROG1]);
  5642. return 0;
  5643. }
  5644. static int niu_set_hash_opts(struct net_device *dev, struct ethtool_rxnfc *cmd)
  5645. {
  5646. struct niu *np = netdev_priv(dev);
  5647. u64 class;
  5648. u64 flow_key = 0;
  5649. unsigned long flags;
  5650. if (!niu_ethflow_to_class(cmd->flow_type, &class))
  5651. return -EINVAL;
  5652. if (class < CLASS_CODE_USER_PROG1 ||
  5653. class > CLASS_CODE_SCTP_IPV6)
  5654. return -EINVAL;
  5655. if (cmd->data & RXH_DISCARD) {
  5656. niu_lock_parent(np, flags);
  5657. flow_key = np->parent->tcam_key[class -
  5658. CLASS_CODE_USER_PROG1];
  5659. flow_key |= TCAM_KEY_DISC;
  5660. nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1), flow_key);
  5661. np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] = flow_key;
  5662. niu_unlock_parent(np, flags);
  5663. return 0;
  5664. } else {
  5665. /* Discard was set before, but is not set now */
  5666. if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] &
  5667. TCAM_KEY_DISC) {
  5668. niu_lock_parent(np, flags);
  5669. flow_key = np->parent->tcam_key[class -
  5670. CLASS_CODE_USER_PROG1];
  5671. flow_key &= ~TCAM_KEY_DISC;
  5672. nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1),
  5673. flow_key);
  5674. np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] =
  5675. flow_key;
  5676. niu_unlock_parent(np, flags);
  5677. }
  5678. }
  5679. if (!niu_ethflow_to_flowkey(cmd->data, &flow_key))
  5680. return -EINVAL;
  5681. niu_lock_parent(np, flags);
  5682. nw64(FLOW_KEY(class - CLASS_CODE_USER_PROG1), flow_key);
  5683. np->parent->flow_key[class - CLASS_CODE_USER_PROG1] = flow_key;
  5684. niu_unlock_parent(np, flags);
  5685. return 0;
  5686. }
  5687. static const struct {
  5688. const char string[ETH_GSTRING_LEN];
  5689. } niu_xmac_stat_keys[] = {
  5690. { "tx_frames" },
  5691. { "tx_bytes" },
  5692. { "tx_fifo_errors" },
  5693. { "tx_overflow_errors" },
  5694. { "tx_max_pkt_size_errors" },
  5695. { "tx_underflow_errors" },
  5696. { "rx_local_faults" },
  5697. { "rx_remote_faults" },
  5698. { "rx_link_faults" },
  5699. { "rx_align_errors" },
  5700. { "rx_frags" },
  5701. { "rx_mcasts" },
  5702. { "rx_bcasts" },
  5703. { "rx_hist_cnt1" },
  5704. { "rx_hist_cnt2" },
  5705. { "rx_hist_cnt3" },
  5706. { "rx_hist_cnt4" },
  5707. { "rx_hist_cnt5" },
  5708. { "rx_hist_cnt6" },
  5709. { "rx_hist_cnt7" },
  5710. { "rx_octets" },
  5711. { "rx_code_violations" },
  5712. { "rx_len_errors" },
  5713. { "rx_crc_errors" },
  5714. { "rx_underflows" },
  5715. { "rx_overflows" },
  5716. { "pause_off_state" },
  5717. { "pause_on_state" },
  5718. { "pause_received" },
  5719. };
  5720. #define NUM_XMAC_STAT_KEYS ARRAY_SIZE(niu_xmac_stat_keys)
  5721. static const struct {
  5722. const char string[ETH_GSTRING_LEN];
  5723. } niu_bmac_stat_keys[] = {
  5724. { "tx_underflow_errors" },
  5725. { "tx_max_pkt_size_errors" },
  5726. { "tx_bytes" },
  5727. { "tx_frames" },
  5728. { "rx_overflows" },
  5729. { "rx_frames" },
  5730. { "rx_align_errors" },
  5731. { "rx_crc_errors" },
  5732. { "rx_len_errors" },
  5733. { "pause_off_state" },
  5734. { "pause_on_state" },
  5735. { "pause_received" },
  5736. };
  5737. #define NUM_BMAC_STAT_KEYS ARRAY_SIZE(niu_bmac_stat_keys)
  5738. static const struct {
  5739. const char string[ETH_GSTRING_LEN];
  5740. } niu_rxchan_stat_keys[] = {
  5741. { "rx_channel" },
  5742. { "rx_packets" },
  5743. { "rx_bytes" },
  5744. { "rx_dropped" },
  5745. { "rx_errors" },
  5746. };
  5747. #define NUM_RXCHAN_STAT_KEYS ARRAY_SIZE(niu_rxchan_stat_keys)
  5748. static const struct {
  5749. const char string[ETH_GSTRING_LEN];
  5750. } niu_txchan_stat_keys[] = {
  5751. { "tx_channel" },
  5752. { "tx_packets" },
  5753. { "tx_bytes" },
  5754. { "tx_errors" },
  5755. };
  5756. #define NUM_TXCHAN_STAT_KEYS ARRAY_SIZE(niu_txchan_stat_keys)
  5757. static void niu_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  5758. {
  5759. struct niu *np = netdev_priv(dev);
  5760. int i;
  5761. if (stringset != ETH_SS_STATS)
  5762. return;
  5763. if (np->flags & NIU_FLAGS_XMAC) {
  5764. memcpy(data, niu_xmac_stat_keys,
  5765. sizeof(niu_xmac_stat_keys));
  5766. data += sizeof(niu_xmac_stat_keys);
  5767. } else {
  5768. memcpy(data, niu_bmac_stat_keys,
  5769. sizeof(niu_bmac_stat_keys));
  5770. data += sizeof(niu_bmac_stat_keys);
  5771. }
  5772. for (i = 0; i < np->num_rx_rings; i++) {
  5773. memcpy(data, niu_rxchan_stat_keys,
  5774. sizeof(niu_rxchan_stat_keys));
  5775. data += sizeof(niu_rxchan_stat_keys);
  5776. }
  5777. for (i = 0; i < np->num_tx_rings; i++) {
  5778. memcpy(data, niu_txchan_stat_keys,
  5779. sizeof(niu_txchan_stat_keys));
  5780. data += sizeof(niu_txchan_stat_keys);
  5781. }
  5782. }
  5783. static int niu_get_stats_count(struct net_device *dev)
  5784. {
  5785. struct niu *np = netdev_priv(dev);
  5786. return ((np->flags & NIU_FLAGS_XMAC ?
  5787. NUM_XMAC_STAT_KEYS :
  5788. NUM_BMAC_STAT_KEYS) +
  5789. (np->num_rx_rings * NUM_RXCHAN_STAT_KEYS) +
  5790. (np->num_tx_rings * NUM_TXCHAN_STAT_KEYS));
  5791. }
  5792. static void niu_get_ethtool_stats(struct net_device *dev,
  5793. struct ethtool_stats *stats, u64 *data)
  5794. {
  5795. struct niu *np = netdev_priv(dev);
  5796. int i;
  5797. niu_sync_mac_stats(np);
  5798. if (np->flags & NIU_FLAGS_XMAC) {
  5799. memcpy(data, &np->mac_stats.xmac,
  5800. sizeof(struct niu_xmac_stats));
  5801. data += (sizeof(struct niu_xmac_stats) / sizeof(u64));
  5802. } else {
  5803. memcpy(data, &np->mac_stats.bmac,
  5804. sizeof(struct niu_bmac_stats));
  5805. data += (sizeof(struct niu_bmac_stats) / sizeof(u64));
  5806. }
  5807. for (i = 0; i < np->num_rx_rings; i++) {
  5808. struct rx_ring_info *rp = &np->rx_rings[i];
  5809. niu_sync_rx_discard_stats(np, rp, 0);
  5810. data[0] = rp->rx_channel;
  5811. data[1] = rp->rx_packets;
  5812. data[2] = rp->rx_bytes;
  5813. data[3] = rp->rx_dropped;
  5814. data[4] = rp->rx_errors;
  5815. data += 5;
  5816. }
  5817. for (i = 0; i < np->num_tx_rings; i++) {
  5818. struct tx_ring_info *rp = &np->tx_rings[i];
  5819. data[0] = rp->tx_channel;
  5820. data[1] = rp->tx_packets;
  5821. data[2] = rp->tx_bytes;
  5822. data[3] = rp->tx_errors;
  5823. data += 4;
  5824. }
  5825. }
  5826. static u64 niu_led_state_save(struct niu *np)
  5827. {
  5828. if (np->flags & NIU_FLAGS_XMAC)
  5829. return nr64_mac(XMAC_CONFIG);
  5830. else
  5831. return nr64_mac(BMAC_XIF_CONFIG);
  5832. }
  5833. static void niu_led_state_restore(struct niu *np, u64 val)
  5834. {
  5835. if (np->flags & NIU_FLAGS_XMAC)
  5836. nw64_mac(XMAC_CONFIG, val);
  5837. else
  5838. nw64_mac(BMAC_XIF_CONFIG, val);
  5839. }
  5840. static void niu_force_led(struct niu *np, int on)
  5841. {
  5842. u64 val, reg, bit;
  5843. if (np->flags & NIU_FLAGS_XMAC) {
  5844. reg = XMAC_CONFIG;
  5845. bit = XMAC_CONFIG_FORCE_LED_ON;
  5846. } else {
  5847. reg = BMAC_XIF_CONFIG;
  5848. bit = BMAC_XIF_CONFIG_LINK_LED;
  5849. }
  5850. val = nr64_mac(reg);
  5851. if (on)
  5852. val |= bit;
  5853. else
  5854. val &= ~bit;
  5855. nw64_mac(reg, val);
  5856. }
  5857. static int niu_phys_id(struct net_device *dev, u32 data)
  5858. {
  5859. struct niu *np = netdev_priv(dev);
  5860. u64 orig_led_state;
  5861. int i;
  5862. if (!netif_running(dev))
  5863. return -EAGAIN;
  5864. if (data == 0)
  5865. data = 2;
  5866. orig_led_state = niu_led_state_save(np);
  5867. for (i = 0; i < (data * 2); i++) {
  5868. int on = ((i % 2) == 0);
  5869. niu_force_led(np, on);
  5870. if (msleep_interruptible(500))
  5871. break;
  5872. }
  5873. niu_led_state_restore(np, orig_led_state);
  5874. return 0;
  5875. }
  5876. static const struct ethtool_ops niu_ethtool_ops = {
  5877. .get_drvinfo = niu_get_drvinfo,
  5878. .get_link = ethtool_op_get_link,
  5879. .get_msglevel = niu_get_msglevel,
  5880. .set_msglevel = niu_set_msglevel,
  5881. .get_eeprom_len = niu_get_eeprom_len,
  5882. .get_eeprom = niu_get_eeprom,
  5883. .get_settings = niu_get_settings,
  5884. .set_settings = niu_set_settings,
  5885. .get_strings = niu_get_strings,
  5886. .get_stats_count = niu_get_stats_count,
  5887. .get_ethtool_stats = niu_get_ethtool_stats,
  5888. .phys_id = niu_phys_id,
  5889. .get_rxhash = niu_get_hash_opts,
  5890. .set_rxhash = niu_set_hash_opts,
  5891. };
  5892. static int niu_ldg_assign_ldn(struct niu *np, struct niu_parent *parent,
  5893. int ldg, int ldn)
  5894. {
  5895. if (ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX)
  5896. return -EINVAL;
  5897. if (ldn < 0 || ldn > LDN_MAX)
  5898. return -EINVAL;
  5899. parent->ldg_map[ldn] = ldg;
  5900. if (np->parent->plat_type == PLAT_TYPE_NIU) {
  5901. /* On N2 NIU, the ldn-->ldg assignments are setup and fixed by
  5902. * the firmware, and we're not supposed to change them.
  5903. * Validate the mapping, because if it's wrong we probably
  5904. * won't get any interrupts and that's painful to debug.
  5905. */
  5906. if (nr64(LDG_NUM(ldn)) != ldg) {
  5907. dev_err(np->device, PFX "Port %u, mis-matched "
  5908. "LDG assignment "
  5909. "for ldn %d, should be %d is %llu\n",
  5910. np->port, ldn, ldg,
  5911. (unsigned long long) nr64(LDG_NUM(ldn)));
  5912. return -EINVAL;
  5913. }
  5914. } else
  5915. nw64(LDG_NUM(ldn), ldg);
  5916. return 0;
  5917. }
  5918. static int niu_set_ldg_timer_res(struct niu *np, int res)
  5919. {
  5920. if (res < 0 || res > LDG_TIMER_RES_VAL)
  5921. return -EINVAL;
  5922. nw64(LDG_TIMER_RES, res);
  5923. return 0;
  5924. }
  5925. static int niu_set_ldg_sid(struct niu *np, int ldg, int func, int vector)
  5926. {
  5927. if ((ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX) ||
  5928. (func < 0 || func > 3) ||
  5929. (vector < 0 || vector > 0x1f))
  5930. return -EINVAL;
  5931. nw64(SID(ldg), (func << SID_FUNC_SHIFT) | vector);
  5932. return 0;
  5933. }
  5934. static int __devinit niu_pci_eeprom_read(struct niu *np, u32 addr)
  5935. {
  5936. u64 frame, frame_base = (ESPC_PIO_STAT_READ_START |
  5937. (addr << ESPC_PIO_STAT_ADDR_SHIFT));
  5938. int limit;
  5939. if (addr > (ESPC_PIO_STAT_ADDR >> ESPC_PIO_STAT_ADDR_SHIFT))
  5940. return -EINVAL;
  5941. frame = frame_base;
  5942. nw64(ESPC_PIO_STAT, frame);
  5943. limit = 64;
  5944. do {
  5945. udelay(5);
  5946. frame = nr64(ESPC_PIO_STAT);
  5947. if (frame & ESPC_PIO_STAT_READ_END)
  5948. break;
  5949. } while (limit--);
  5950. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  5951. dev_err(np->device, PFX "EEPROM read timeout frame[%llx]\n",
  5952. (unsigned long long) frame);
  5953. return -ENODEV;
  5954. }
  5955. frame = frame_base;
  5956. nw64(ESPC_PIO_STAT, frame);
  5957. limit = 64;
  5958. do {
  5959. udelay(5);
  5960. frame = nr64(ESPC_PIO_STAT);
  5961. if (frame & ESPC_PIO_STAT_READ_END)
  5962. break;
  5963. } while (limit--);
  5964. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  5965. dev_err(np->device, PFX "EEPROM read timeout frame[%llx]\n",
  5966. (unsigned long long) frame);
  5967. return -ENODEV;
  5968. }
  5969. frame = nr64(ESPC_PIO_STAT);
  5970. return (frame & ESPC_PIO_STAT_DATA) >> ESPC_PIO_STAT_DATA_SHIFT;
  5971. }
  5972. static int __devinit niu_pci_eeprom_read16(struct niu *np, u32 off)
  5973. {
  5974. int err = niu_pci_eeprom_read(np, off);
  5975. u16 val;
  5976. if (err < 0)
  5977. return err;
  5978. val = (err << 8);
  5979. err = niu_pci_eeprom_read(np, off + 1);
  5980. if (err < 0)
  5981. return err;
  5982. val |= (err & 0xff);
  5983. return val;
  5984. }
  5985. static int __devinit niu_pci_eeprom_read16_swp(struct niu *np, u32 off)
  5986. {
  5987. int err = niu_pci_eeprom_read(np, off);
  5988. u16 val;
  5989. if (err < 0)
  5990. return err;
  5991. val = (err & 0xff);
  5992. err = niu_pci_eeprom_read(np, off + 1);
  5993. if (err < 0)
  5994. return err;
  5995. val |= (err & 0xff) << 8;
  5996. return val;
  5997. }
  5998. static int __devinit niu_pci_vpd_get_propname(struct niu *np,
  5999. u32 off,
  6000. char *namebuf,
  6001. int namebuf_len)
  6002. {
  6003. int i;
  6004. for (i = 0; i < namebuf_len; i++) {
  6005. int err = niu_pci_eeprom_read(np, off + i);
  6006. if (err < 0)
  6007. return err;
  6008. *namebuf++ = err;
  6009. if (!err)
  6010. break;
  6011. }
  6012. if (i >= namebuf_len)
  6013. return -EINVAL;
  6014. return i + 1;
  6015. }
  6016. static void __devinit niu_vpd_parse_version(struct niu *np)
  6017. {
  6018. struct niu_vpd *vpd = &np->vpd;
  6019. int len = strlen(vpd->version) + 1;
  6020. const char *s = vpd->version;
  6021. int i;
  6022. for (i = 0; i < len - 5; i++) {
  6023. if (!strncmp(s + i, "FCode ", 5))
  6024. break;
  6025. }
  6026. if (i >= len - 5)
  6027. return;
  6028. s += i + 5;
  6029. sscanf(s, "%d.%d", &vpd->fcode_major, &vpd->fcode_minor);
  6030. niudbg(PROBE, "VPD_SCAN: FCODE major(%d) minor(%d)\n",
  6031. vpd->fcode_major, vpd->fcode_minor);
  6032. if (vpd->fcode_major > NIU_VPD_MIN_MAJOR ||
  6033. (vpd->fcode_major == NIU_VPD_MIN_MAJOR &&
  6034. vpd->fcode_minor >= NIU_VPD_MIN_MINOR))
  6035. np->flags |= NIU_FLAGS_VPD_VALID;
  6036. }
  6037. /* ESPC_PIO_EN_ENABLE must be set */
  6038. static int __devinit niu_pci_vpd_scan_props(struct niu *np,
  6039. u32 start, u32 end)
  6040. {
  6041. unsigned int found_mask = 0;
  6042. #define FOUND_MASK_MODEL 0x00000001
  6043. #define FOUND_MASK_BMODEL 0x00000002
  6044. #define FOUND_MASK_VERS 0x00000004
  6045. #define FOUND_MASK_MAC 0x00000008
  6046. #define FOUND_MASK_NMAC 0x00000010
  6047. #define FOUND_MASK_PHY 0x00000020
  6048. #define FOUND_MASK_ALL 0x0000003f
  6049. niudbg(PROBE, "VPD_SCAN: start[%x] end[%x]\n",
  6050. start, end);
  6051. while (start < end) {
  6052. int len, err, instance, type, prop_len;
  6053. char namebuf[64];
  6054. u8 *prop_buf;
  6055. int max_len;
  6056. if (found_mask == FOUND_MASK_ALL) {
  6057. niu_vpd_parse_version(np);
  6058. return 1;
  6059. }
  6060. err = niu_pci_eeprom_read(np, start + 2);
  6061. if (err < 0)
  6062. return err;
  6063. len = err;
  6064. start += 3;
  6065. instance = niu_pci_eeprom_read(np, start);
  6066. type = niu_pci_eeprom_read(np, start + 3);
  6067. prop_len = niu_pci_eeprom_read(np, start + 4);
  6068. err = niu_pci_vpd_get_propname(np, start + 5, namebuf, 64);
  6069. if (err < 0)
  6070. return err;
  6071. prop_buf = NULL;
  6072. max_len = 0;
  6073. if (!strcmp(namebuf, "model")) {
  6074. prop_buf = np->vpd.model;
  6075. max_len = NIU_VPD_MODEL_MAX;
  6076. found_mask |= FOUND_MASK_MODEL;
  6077. } else if (!strcmp(namebuf, "board-model")) {
  6078. prop_buf = np->vpd.board_model;
  6079. max_len = NIU_VPD_BD_MODEL_MAX;
  6080. found_mask |= FOUND_MASK_BMODEL;
  6081. } else if (!strcmp(namebuf, "version")) {
  6082. prop_buf = np->vpd.version;
  6083. max_len = NIU_VPD_VERSION_MAX;
  6084. found_mask |= FOUND_MASK_VERS;
  6085. } else if (!strcmp(namebuf, "local-mac-address")) {
  6086. prop_buf = np->vpd.local_mac;
  6087. max_len = ETH_ALEN;
  6088. found_mask |= FOUND_MASK_MAC;
  6089. } else if (!strcmp(namebuf, "num-mac-addresses")) {
  6090. prop_buf = &np->vpd.mac_num;
  6091. max_len = 1;
  6092. found_mask |= FOUND_MASK_NMAC;
  6093. } else if (!strcmp(namebuf, "phy-type")) {
  6094. prop_buf = np->vpd.phy_type;
  6095. max_len = NIU_VPD_PHY_TYPE_MAX;
  6096. found_mask |= FOUND_MASK_PHY;
  6097. }
  6098. if (max_len && prop_len > max_len) {
  6099. dev_err(np->device, PFX "Property '%s' length (%d) is "
  6100. "too long.\n", namebuf, prop_len);
  6101. return -EINVAL;
  6102. }
  6103. if (prop_buf) {
  6104. u32 off = start + 5 + err;
  6105. int i;
  6106. niudbg(PROBE, "VPD_SCAN: Reading in property [%s] "
  6107. "len[%d]\n", namebuf, prop_len);
  6108. for (i = 0; i < prop_len; i++)
  6109. *prop_buf++ = niu_pci_eeprom_read(np, off + i);
  6110. }
  6111. start += len;
  6112. }
  6113. return 0;
  6114. }
  6115. /* ESPC_PIO_EN_ENABLE must be set */
  6116. static void __devinit niu_pci_vpd_fetch(struct niu *np, u32 start)
  6117. {
  6118. u32 offset;
  6119. int err;
  6120. err = niu_pci_eeprom_read16_swp(np, start + 1);
  6121. if (err < 0)
  6122. return;
  6123. offset = err + 3;
  6124. while (start + offset < ESPC_EEPROM_SIZE) {
  6125. u32 here = start + offset;
  6126. u32 end;
  6127. err = niu_pci_eeprom_read(np, here);
  6128. if (err != 0x90)
  6129. return;
  6130. err = niu_pci_eeprom_read16_swp(np, here + 1);
  6131. if (err < 0)
  6132. return;
  6133. here = start + offset + 3;
  6134. end = start + offset + err;
  6135. offset += err;
  6136. err = niu_pci_vpd_scan_props(np, here, end);
  6137. if (err < 0 || err == 1)
  6138. return;
  6139. }
  6140. }
  6141. /* ESPC_PIO_EN_ENABLE must be set */
  6142. static u32 __devinit niu_pci_vpd_offset(struct niu *np)
  6143. {
  6144. u32 start = 0, end = ESPC_EEPROM_SIZE, ret;
  6145. int err;
  6146. while (start < end) {
  6147. ret = start;
  6148. /* ROM header signature? */
  6149. err = niu_pci_eeprom_read16(np, start + 0);
  6150. if (err != 0x55aa)
  6151. return 0;
  6152. /* Apply offset to PCI data structure. */
  6153. err = niu_pci_eeprom_read16(np, start + 23);
  6154. if (err < 0)
  6155. return 0;
  6156. start += err;
  6157. /* Check for "PCIR" signature. */
  6158. err = niu_pci_eeprom_read16(np, start + 0);
  6159. if (err != 0x5043)
  6160. return 0;
  6161. err = niu_pci_eeprom_read16(np, start + 2);
  6162. if (err != 0x4952)
  6163. return 0;
  6164. /* Check for OBP image type. */
  6165. err = niu_pci_eeprom_read(np, start + 20);
  6166. if (err < 0)
  6167. return 0;
  6168. if (err != 0x01) {
  6169. err = niu_pci_eeprom_read(np, ret + 2);
  6170. if (err < 0)
  6171. return 0;
  6172. start = ret + (err * 512);
  6173. continue;
  6174. }
  6175. err = niu_pci_eeprom_read16_swp(np, start + 8);
  6176. if (err < 0)
  6177. return err;
  6178. ret += err;
  6179. err = niu_pci_eeprom_read(np, ret + 0);
  6180. if (err != 0x82)
  6181. return 0;
  6182. return ret;
  6183. }
  6184. return 0;
  6185. }
  6186. static int __devinit niu_phy_type_prop_decode(struct niu *np,
  6187. const char *phy_prop)
  6188. {
  6189. if (!strcmp(phy_prop, "mif")) {
  6190. /* 1G copper, MII */
  6191. np->flags &= ~(NIU_FLAGS_FIBER |
  6192. NIU_FLAGS_10G);
  6193. np->mac_xcvr = MAC_XCVR_MII;
  6194. } else if (!strcmp(phy_prop, "xgf")) {
  6195. /* 10G fiber, XPCS */
  6196. np->flags |= (NIU_FLAGS_10G |
  6197. NIU_FLAGS_FIBER);
  6198. np->mac_xcvr = MAC_XCVR_XPCS;
  6199. } else if (!strcmp(phy_prop, "pcs")) {
  6200. /* 1G fiber, PCS */
  6201. np->flags &= ~NIU_FLAGS_10G;
  6202. np->flags |= NIU_FLAGS_FIBER;
  6203. np->mac_xcvr = MAC_XCVR_PCS;
  6204. } else if (!strcmp(phy_prop, "xgc")) {
  6205. /* 10G copper, XPCS */
  6206. np->flags |= NIU_FLAGS_10G;
  6207. np->flags &= ~NIU_FLAGS_FIBER;
  6208. np->mac_xcvr = MAC_XCVR_XPCS;
  6209. } else if (!strcmp(phy_prop, "xgsd") || !strcmp(phy_prop, "gsd")) {
  6210. /* 10G Serdes or 1G Serdes, default to 10G */
  6211. np->flags |= NIU_FLAGS_10G;
  6212. np->flags &= ~NIU_FLAGS_FIBER;
  6213. np->flags |= NIU_FLAGS_XCVR_SERDES;
  6214. np->mac_xcvr = MAC_XCVR_XPCS;
  6215. } else {
  6216. return -EINVAL;
  6217. }
  6218. return 0;
  6219. }
  6220. static int niu_pci_vpd_get_nports(struct niu *np)
  6221. {
  6222. int ports = 0;
  6223. if ((!strcmp(np->vpd.model, NIU_QGC_LP_MDL_STR)) ||
  6224. (!strcmp(np->vpd.model, NIU_QGC_PEM_MDL_STR)) ||
  6225. (!strcmp(np->vpd.model, NIU_MARAMBA_MDL_STR)) ||
  6226. (!strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) ||
  6227. (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR))) {
  6228. ports = 4;
  6229. } else if ((!strcmp(np->vpd.model, NIU_2XGF_LP_MDL_STR)) ||
  6230. (!strcmp(np->vpd.model, NIU_2XGF_PEM_MDL_STR)) ||
  6231. (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) ||
  6232. (!strcmp(np->vpd.model, NIU_2XGF_MRVL_MDL_STR))) {
  6233. ports = 2;
  6234. }
  6235. return ports;
  6236. }
  6237. static void __devinit niu_pci_vpd_validate(struct niu *np)
  6238. {
  6239. struct net_device *dev = np->dev;
  6240. struct niu_vpd *vpd = &np->vpd;
  6241. u8 val8;
  6242. if (!is_valid_ether_addr(&vpd->local_mac[0])) {
  6243. dev_err(np->device, PFX "VPD MAC invalid, "
  6244. "falling back to SPROM.\n");
  6245. np->flags &= ~NIU_FLAGS_VPD_VALID;
  6246. return;
  6247. }
  6248. if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) ||
  6249. !strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) {
  6250. np->flags |= NIU_FLAGS_10G;
  6251. np->flags &= ~NIU_FLAGS_FIBER;
  6252. np->flags |= NIU_FLAGS_XCVR_SERDES;
  6253. np->mac_xcvr = MAC_XCVR_PCS;
  6254. if (np->port > 1) {
  6255. np->flags |= NIU_FLAGS_FIBER;
  6256. np->flags &= ~NIU_FLAGS_10G;
  6257. }
  6258. if (np->flags & NIU_FLAGS_10G)
  6259. np->mac_xcvr = MAC_XCVR_XPCS;
  6260. } else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) {
  6261. np->flags |= (NIU_FLAGS_10G | NIU_FLAGS_FIBER |
  6262. NIU_FLAGS_HOTPLUG_PHY);
  6263. } else if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  6264. dev_err(np->device, PFX "Illegal phy string [%s].\n",
  6265. np->vpd.phy_type);
  6266. dev_err(np->device, PFX "Falling back to SPROM.\n");
  6267. np->flags &= ~NIU_FLAGS_VPD_VALID;
  6268. return;
  6269. }
  6270. memcpy(dev->perm_addr, vpd->local_mac, ETH_ALEN);
  6271. val8 = dev->perm_addr[5];
  6272. dev->perm_addr[5] += np->port;
  6273. if (dev->perm_addr[5] < val8)
  6274. dev->perm_addr[4]++;
  6275. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  6276. }
  6277. static int __devinit niu_pci_probe_sprom(struct niu *np)
  6278. {
  6279. struct net_device *dev = np->dev;
  6280. int len, i;
  6281. u64 val, sum;
  6282. u8 val8;
  6283. val = (nr64(ESPC_VER_IMGSZ) & ESPC_VER_IMGSZ_IMGSZ);
  6284. val >>= ESPC_VER_IMGSZ_IMGSZ_SHIFT;
  6285. len = val / 4;
  6286. np->eeprom_len = len;
  6287. niudbg(PROBE, "SPROM: Image size %llu\n", (unsigned long long) val);
  6288. sum = 0;
  6289. for (i = 0; i < len; i++) {
  6290. val = nr64(ESPC_NCR(i));
  6291. sum += (val >> 0) & 0xff;
  6292. sum += (val >> 8) & 0xff;
  6293. sum += (val >> 16) & 0xff;
  6294. sum += (val >> 24) & 0xff;
  6295. }
  6296. niudbg(PROBE, "SPROM: Checksum %x\n", (int)(sum & 0xff));
  6297. if ((sum & 0xff) != 0xab) {
  6298. dev_err(np->device, PFX "Bad SPROM checksum "
  6299. "(%x, should be 0xab)\n", (int) (sum & 0xff));
  6300. return -EINVAL;
  6301. }
  6302. val = nr64(ESPC_PHY_TYPE);
  6303. switch (np->port) {
  6304. case 0:
  6305. val8 = (val & ESPC_PHY_TYPE_PORT0) >>
  6306. ESPC_PHY_TYPE_PORT0_SHIFT;
  6307. break;
  6308. case 1:
  6309. val8 = (val & ESPC_PHY_TYPE_PORT1) >>
  6310. ESPC_PHY_TYPE_PORT1_SHIFT;
  6311. break;
  6312. case 2:
  6313. val8 = (val & ESPC_PHY_TYPE_PORT2) >>
  6314. ESPC_PHY_TYPE_PORT2_SHIFT;
  6315. break;
  6316. case 3:
  6317. val8 = (val & ESPC_PHY_TYPE_PORT3) >>
  6318. ESPC_PHY_TYPE_PORT3_SHIFT;
  6319. break;
  6320. default:
  6321. dev_err(np->device, PFX "Bogus port number %u\n",
  6322. np->port);
  6323. return -EINVAL;
  6324. }
  6325. niudbg(PROBE, "SPROM: PHY type %x\n", val8);
  6326. switch (val8) {
  6327. case ESPC_PHY_TYPE_1G_COPPER:
  6328. /* 1G copper, MII */
  6329. np->flags &= ~(NIU_FLAGS_FIBER |
  6330. NIU_FLAGS_10G);
  6331. np->mac_xcvr = MAC_XCVR_MII;
  6332. break;
  6333. case ESPC_PHY_TYPE_1G_FIBER:
  6334. /* 1G fiber, PCS */
  6335. np->flags &= ~NIU_FLAGS_10G;
  6336. np->flags |= NIU_FLAGS_FIBER;
  6337. np->mac_xcvr = MAC_XCVR_PCS;
  6338. break;
  6339. case ESPC_PHY_TYPE_10G_COPPER:
  6340. /* 10G copper, XPCS */
  6341. np->flags |= NIU_FLAGS_10G;
  6342. np->flags &= ~NIU_FLAGS_FIBER;
  6343. np->mac_xcvr = MAC_XCVR_XPCS;
  6344. break;
  6345. case ESPC_PHY_TYPE_10G_FIBER:
  6346. /* 10G fiber, XPCS */
  6347. np->flags |= (NIU_FLAGS_10G |
  6348. NIU_FLAGS_FIBER);
  6349. np->mac_xcvr = MAC_XCVR_XPCS;
  6350. break;
  6351. default:
  6352. dev_err(np->device, PFX "Bogus SPROM phy type %u\n", val8);
  6353. return -EINVAL;
  6354. }
  6355. val = nr64(ESPC_MAC_ADDR0);
  6356. niudbg(PROBE, "SPROM: MAC_ADDR0[%08llx]\n",
  6357. (unsigned long long) val);
  6358. dev->perm_addr[0] = (val >> 0) & 0xff;
  6359. dev->perm_addr[1] = (val >> 8) & 0xff;
  6360. dev->perm_addr[2] = (val >> 16) & 0xff;
  6361. dev->perm_addr[3] = (val >> 24) & 0xff;
  6362. val = nr64(ESPC_MAC_ADDR1);
  6363. niudbg(PROBE, "SPROM: MAC_ADDR1[%08llx]\n",
  6364. (unsigned long long) val);
  6365. dev->perm_addr[4] = (val >> 0) & 0xff;
  6366. dev->perm_addr[5] = (val >> 8) & 0xff;
  6367. if (!is_valid_ether_addr(&dev->perm_addr[0])) {
  6368. dev_err(np->device, PFX "SPROM MAC address invalid\n");
  6369. dev_err(np->device, PFX "[ \n");
  6370. for (i = 0; i < 6; i++)
  6371. printk("%02x ", dev->perm_addr[i]);
  6372. printk("]\n");
  6373. return -EINVAL;
  6374. }
  6375. val8 = dev->perm_addr[5];
  6376. dev->perm_addr[5] += np->port;
  6377. if (dev->perm_addr[5] < val8)
  6378. dev->perm_addr[4]++;
  6379. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  6380. val = nr64(ESPC_MOD_STR_LEN);
  6381. niudbg(PROBE, "SPROM: MOD_STR_LEN[%llu]\n",
  6382. (unsigned long long) val);
  6383. if (val >= 8 * 4)
  6384. return -EINVAL;
  6385. for (i = 0; i < val; i += 4) {
  6386. u64 tmp = nr64(ESPC_NCR(5 + (i / 4)));
  6387. np->vpd.model[i + 3] = (tmp >> 0) & 0xff;
  6388. np->vpd.model[i + 2] = (tmp >> 8) & 0xff;
  6389. np->vpd.model[i + 1] = (tmp >> 16) & 0xff;
  6390. np->vpd.model[i + 0] = (tmp >> 24) & 0xff;
  6391. }
  6392. np->vpd.model[val] = '\0';
  6393. val = nr64(ESPC_BD_MOD_STR_LEN);
  6394. niudbg(PROBE, "SPROM: BD_MOD_STR_LEN[%llu]\n",
  6395. (unsigned long long) val);
  6396. if (val >= 4 * 4)
  6397. return -EINVAL;
  6398. for (i = 0; i < val; i += 4) {
  6399. u64 tmp = nr64(ESPC_NCR(14 + (i / 4)));
  6400. np->vpd.board_model[i + 3] = (tmp >> 0) & 0xff;
  6401. np->vpd.board_model[i + 2] = (tmp >> 8) & 0xff;
  6402. np->vpd.board_model[i + 1] = (tmp >> 16) & 0xff;
  6403. np->vpd.board_model[i + 0] = (tmp >> 24) & 0xff;
  6404. }
  6405. np->vpd.board_model[val] = '\0';
  6406. np->vpd.mac_num =
  6407. nr64(ESPC_NUM_PORTS_MACS) & ESPC_NUM_PORTS_MACS_VAL;
  6408. niudbg(PROBE, "SPROM: NUM_PORTS_MACS[%d]\n",
  6409. np->vpd.mac_num);
  6410. return 0;
  6411. }
  6412. static int __devinit niu_get_and_validate_port(struct niu *np)
  6413. {
  6414. struct niu_parent *parent = np->parent;
  6415. if (np->port <= 1)
  6416. np->flags |= NIU_FLAGS_XMAC;
  6417. if (!parent->num_ports) {
  6418. if (parent->plat_type == PLAT_TYPE_NIU) {
  6419. parent->num_ports = 2;
  6420. } else {
  6421. parent->num_ports = niu_pci_vpd_get_nports(np);
  6422. if (!parent->num_ports) {
  6423. /* Fall back to SPROM as last resort.
  6424. * This will fail on most cards.
  6425. */
  6426. parent->num_ports = nr64(ESPC_NUM_PORTS_MACS) &
  6427. ESPC_NUM_PORTS_MACS_VAL;
  6428. /* All of the current probing methods fail on
  6429. * Maramba on-board parts.
  6430. */
  6431. if (!parent->num_ports)
  6432. parent->num_ports = 4;
  6433. }
  6434. }
  6435. }
  6436. niudbg(PROBE, "niu_get_and_validate_port: port[%d] num_ports[%d]\n",
  6437. np->port, parent->num_ports);
  6438. if (np->port >= parent->num_ports)
  6439. return -ENODEV;
  6440. return 0;
  6441. }
  6442. static int __devinit phy_record(struct niu_parent *parent,
  6443. struct phy_probe_info *p,
  6444. int dev_id_1, int dev_id_2, u8 phy_port,
  6445. int type)
  6446. {
  6447. u32 id = (dev_id_1 << 16) | dev_id_2;
  6448. u8 idx;
  6449. if (dev_id_1 < 0 || dev_id_2 < 0)
  6450. return 0;
  6451. if (type == PHY_TYPE_PMA_PMD || type == PHY_TYPE_PCS) {
  6452. if (((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM8704) &&
  6453. ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_MRVL88X2011) &&
  6454. ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM8706))
  6455. return 0;
  6456. } else {
  6457. if ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM5464R)
  6458. return 0;
  6459. }
  6460. pr_info("niu%d: Found PHY %08x type %s at phy_port %u\n",
  6461. parent->index, id,
  6462. (type == PHY_TYPE_PMA_PMD ?
  6463. "PMA/PMD" :
  6464. (type == PHY_TYPE_PCS ?
  6465. "PCS" : "MII")),
  6466. phy_port);
  6467. if (p->cur[type] >= NIU_MAX_PORTS) {
  6468. printk(KERN_ERR PFX "Too many PHY ports.\n");
  6469. return -EINVAL;
  6470. }
  6471. idx = p->cur[type];
  6472. p->phy_id[type][idx] = id;
  6473. p->phy_port[type][idx] = phy_port;
  6474. p->cur[type] = idx + 1;
  6475. return 0;
  6476. }
  6477. static int __devinit port_has_10g(struct phy_probe_info *p, int port)
  6478. {
  6479. int i;
  6480. for (i = 0; i < p->cur[PHY_TYPE_PMA_PMD]; i++) {
  6481. if (p->phy_port[PHY_TYPE_PMA_PMD][i] == port)
  6482. return 1;
  6483. }
  6484. for (i = 0; i < p->cur[PHY_TYPE_PCS]; i++) {
  6485. if (p->phy_port[PHY_TYPE_PCS][i] == port)
  6486. return 1;
  6487. }
  6488. return 0;
  6489. }
  6490. static int __devinit count_10g_ports(struct phy_probe_info *p, int *lowest)
  6491. {
  6492. int port, cnt;
  6493. cnt = 0;
  6494. *lowest = 32;
  6495. for (port = 8; port < 32; port++) {
  6496. if (port_has_10g(p, port)) {
  6497. if (!cnt)
  6498. *lowest = port;
  6499. cnt++;
  6500. }
  6501. }
  6502. return cnt;
  6503. }
  6504. static int __devinit count_1g_ports(struct phy_probe_info *p, int *lowest)
  6505. {
  6506. *lowest = 32;
  6507. if (p->cur[PHY_TYPE_MII])
  6508. *lowest = p->phy_port[PHY_TYPE_MII][0];
  6509. return p->cur[PHY_TYPE_MII];
  6510. }
  6511. static void __devinit niu_n2_divide_channels(struct niu_parent *parent)
  6512. {
  6513. int num_ports = parent->num_ports;
  6514. int i;
  6515. for (i = 0; i < num_ports; i++) {
  6516. parent->rxchan_per_port[i] = (16 / num_ports);
  6517. parent->txchan_per_port[i] = (16 / num_ports);
  6518. pr_info(PFX "niu%d: Port %u [%u RX chans] "
  6519. "[%u TX chans]\n",
  6520. parent->index, i,
  6521. parent->rxchan_per_port[i],
  6522. parent->txchan_per_port[i]);
  6523. }
  6524. }
  6525. static void __devinit niu_divide_channels(struct niu_parent *parent,
  6526. int num_10g, int num_1g)
  6527. {
  6528. int num_ports = parent->num_ports;
  6529. int rx_chans_per_10g, rx_chans_per_1g;
  6530. int tx_chans_per_10g, tx_chans_per_1g;
  6531. int i, tot_rx, tot_tx;
  6532. if (!num_10g || !num_1g) {
  6533. rx_chans_per_10g = rx_chans_per_1g =
  6534. (NIU_NUM_RXCHAN / num_ports);
  6535. tx_chans_per_10g = tx_chans_per_1g =
  6536. (NIU_NUM_TXCHAN / num_ports);
  6537. } else {
  6538. rx_chans_per_1g = NIU_NUM_RXCHAN / 8;
  6539. rx_chans_per_10g = (NIU_NUM_RXCHAN -
  6540. (rx_chans_per_1g * num_1g)) /
  6541. num_10g;
  6542. tx_chans_per_1g = NIU_NUM_TXCHAN / 6;
  6543. tx_chans_per_10g = (NIU_NUM_TXCHAN -
  6544. (tx_chans_per_1g * num_1g)) /
  6545. num_10g;
  6546. }
  6547. tot_rx = tot_tx = 0;
  6548. for (i = 0; i < num_ports; i++) {
  6549. int type = phy_decode(parent->port_phy, i);
  6550. if (type == PORT_TYPE_10G) {
  6551. parent->rxchan_per_port[i] = rx_chans_per_10g;
  6552. parent->txchan_per_port[i] = tx_chans_per_10g;
  6553. } else {
  6554. parent->rxchan_per_port[i] = rx_chans_per_1g;
  6555. parent->txchan_per_port[i] = tx_chans_per_1g;
  6556. }
  6557. pr_info(PFX "niu%d: Port %u [%u RX chans] "
  6558. "[%u TX chans]\n",
  6559. parent->index, i,
  6560. parent->rxchan_per_port[i],
  6561. parent->txchan_per_port[i]);
  6562. tot_rx += parent->rxchan_per_port[i];
  6563. tot_tx += parent->txchan_per_port[i];
  6564. }
  6565. if (tot_rx > NIU_NUM_RXCHAN) {
  6566. printk(KERN_ERR PFX "niu%d: Too many RX channels (%d), "
  6567. "resetting to one per port.\n",
  6568. parent->index, tot_rx);
  6569. for (i = 0; i < num_ports; i++)
  6570. parent->rxchan_per_port[i] = 1;
  6571. }
  6572. if (tot_tx > NIU_NUM_TXCHAN) {
  6573. printk(KERN_ERR PFX "niu%d: Too many TX channels (%d), "
  6574. "resetting to one per port.\n",
  6575. parent->index, tot_tx);
  6576. for (i = 0; i < num_ports; i++)
  6577. parent->txchan_per_port[i] = 1;
  6578. }
  6579. if (tot_rx < NIU_NUM_RXCHAN || tot_tx < NIU_NUM_TXCHAN) {
  6580. printk(KERN_WARNING PFX "niu%d: Driver bug, wasted channels, "
  6581. "RX[%d] TX[%d]\n",
  6582. parent->index, tot_rx, tot_tx);
  6583. }
  6584. }
  6585. static void __devinit niu_divide_rdc_groups(struct niu_parent *parent,
  6586. int num_10g, int num_1g)
  6587. {
  6588. int i, num_ports = parent->num_ports;
  6589. int rdc_group, rdc_groups_per_port;
  6590. int rdc_channel_base;
  6591. rdc_group = 0;
  6592. rdc_groups_per_port = NIU_NUM_RDC_TABLES / num_ports;
  6593. rdc_channel_base = 0;
  6594. for (i = 0; i < num_ports; i++) {
  6595. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[i];
  6596. int grp, num_channels = parent->rxchan_per_port[i];
  6597. int this_channel_offset;
  6598. tp->first_table_num = rdc_group;
  6599. tp->num_tables = rdc_groups_per_port;
  6600. this_channel_offset = 0;
  6601. for (grp = 0; grp < tp->num_tables; grp++) {
  6602. struct rdc_table *rt = &tp->tables[grp];
  6603. int slot;
  6604. pr_info(PFX "niu%d: Port %d RDC tbl(%d) [ ",
  6605. parent->index, i, tp->first_table_num + grp);
  6606. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++) {
  6607. rt->rxdma_channel[slot] =
  6608. rdc_channel_base + this_channel_offset;
  6609. printk("%d ", rt->rxdma_channel[slot]);
  6610. if (++this_channel_offset == num_channels)
  6611. this_channel_offset = 0;
  6612. }
  6613. printk("]\n");
  6614. }
  6615. parent->rdc_default[i] = rdc_channel_base;
  6616. rdc_channel_base += num_channels;
  6617. rdc_group += rdc_groups_per_port;
  6618. }
  6619. }
  6620. static int __devinit fill_phy_probe_info(struct niu *np,
  6621. struct niu_parent *parent,
  6622. struct phy_probe_info *info)
  6623. {
  6624. unsigned long flags;
  6625. int port, err;
  6626. memset(info, 0, sizeof(*info));
  6627. /* Port 0 to 7 are reserved for onboard Serdes, probe the rest. */
  6628. niu_lock_parent(np, flags);
  6629. err = 0;
  6630. for (port = 8; port < 32; port++) {
  6631. int dev_id_1, dev_id_2;
  6632. dev_id_1 = mdio_read(np, port,
  6633. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID1);
  6634. dev_id_2 = mdio_read(np, port,
  6635. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID2);
  6636. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  6637. PHY_TYPE_PMA_PMD);
  6638. if (err)
  6639. break;
  6640. dev_id_1 = mdio_read(np, port,
  6641. NIU_PCS_DEV_ADDR, MII_PHYSID1);
  6642. dev_id_2 = mdio_read(np, port,
  6643. NIU_PCS_DEV_ADDR, MII_PHYSID2);
  6644. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  6645. PHY_TYPE_PCS);
  6646. if (err)
  6647. break;
  6648. dev_id_1 = mii_read(np, port, MII_PHYSID1);
  6649. dev_id_2 = mii_read(np, port, MII_PHYSID2);
  6650. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  6651. PHY_TYPE_MII);
  6652. if (err)
  6653. break;
  6654. }
  6655. niu_unlock_parent(np, flags);
  6656. return err;
  6657. }
  6658. static int __devinit walk_phys(struct niu *np, struct niu_parent *parent)
  6659. {
  6660. struct phy_probe_info *info = &parent->phy_probe_info;
  6661. int lowest_10g, lowest_1g;
  6662. int num_10g, num_1g;
  6663. u32 val;
  6664. int err;
  6665. num_10g = num_1g = 0;
  6666. if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) ||
  6667. !strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) {
  6668. num_10g = 0;
  6669. num_1g = 2;
  6670. parent->plat_type = PLAT_TYPE_ATCA_CP3220;
  6671. parent->num_ports = 4;
  6672. val = (phy_encode(PORT_TYPE_1G, 0) |
  6673. phy_encode(PORT_TYPE_1G, 1) |
  6674. phy_encode(PORT_TYPE_1G, 2) |
  6675. phy_encode(PORT_TYPE_1G, 3));
  6676. } else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) {
  6677. num_10g = 2;
  6678. num_1g = 0;
  6679. parent->num_ports = 2;
  6680. val = (phy_encode(PORT_TYPE_10G, 0) |
  6681. phy_encode(PORT_TYPE_10G, 1));
  6682. } else if ((np->flags & NIU_FLAGS_XCVR_SERDES) &&
  6683. (parent->plat_type == PLAT_TYPE_NIU)) {
  6684. /* this is the Monza case */
  6685. if (np->flags & NIU_FLAGS_10G) {
  6686. val = (phy_encode(PORT_TYPE_10G, 0) |
  6687. phy_encode(PORT_TYPE_10G, 1));
  6688. } else {
  6689. val = (phy_encode(PORT_TYPE_1G, 0) |
  6690. phy_encode(PORT_TYPE_1G, 1));
  6691. }
  6692. } else {
  6693. err = fill_phy_probe_info(np, parent, info);
  6694. if (err)
  6695. return err;
  6696. num_10g = count_10g_ports(info, &lowest_10g);
  6697. num_1g = count_1g_ports(info, &lowest_1g);
  6698. switch ((num_10g << 4) | num_1g) {
  6699. case 0x24:
  6700. if (lowest_1g == 10)
  6701. parent->plat_type = PLAT_TYPE_VF_P0;
  6702. else if (lowest_1g == 26)
  6703. parent->plat_type = PLAT_TYPE_VF_P1;
  6704. else
  6705. goto unknown_vg_1g_port;
  6706. /* fallthru */
  6707. case 0x22:
  6708. val = (phy_encode(PORT_TYPE_10G, 0) |
  6709. phy_encode(PORT_TYPE_10G, 1) |
  6710. phy_encode(PORT_TYPE_1G, 2) |
  6711. phy_encode(PORT_TYPE_1G, 3));
  6712. break;
  6713. case 0x20:
  6714. val = (phy_encode(PORT_TYPE_10G, 0) |
  6715. phy_encode(PORT_TYPE_10G, 1));
  6716. break;
  6717. case 0x10:
  6718. val = phy_encode(PORT_TYPE_10G, np->port);
  6719. break;
  6720. case 0x14:
  6721. if (lowest_1g == 10)
  6722. parent->plat_type = PLAT_TYPE_VF_P0;
  6723. else if (lowest_1g == 26)
  6724. parent->plat_type = PLAT_TYPE_VF_P1;
  6725. else
  6726. goto unknown_vg_1g_port;
  6727. /* fallthru */
  6728. case 0x13:
  6729. if ((lowest_10g & 0x7) == 0)
  6730. val = (phy_encode(PORT_TYPE_10G, 0) |
  6731. phy_encode(PORT_TYPE_1G, 1) |
  6732. phy_encode(PORT_TYPE_1G, 2) |
  6733. phy_encode(PORT_TYPE_1G, 3));
  6734. else
  6735. val = (phy_encode(PORT_TYPE_1G, 0) |
  6736. phy_encode(PORT_TYPE_10G, 1) |
  6737. phy_encode(PORT_TYPE_1G, 2) |
  6738. phy_encode(PORT_TYPE_1G, 3));
  6739. break;
  6740. case 0x04:
  6741. if (lowest_1g == 10)
  6742. parent->plat_type = PLAT_TYPE_VF_P0;
  6743. else if (lowest_1g == 26)
  6744. parent->plat_type = PLAT_TYPE_VF_P1;
  6745. else
  6746. goto unknown_vg_1g_port;
  6747. val = (phy_encode(PORT_TYPE_1G, 0) |
  6748. phy_encode(PORT_TYPE_1G, 1) |
  6749. phy_encode(PORT_TYPE_1G, 2) |
  6750. phy_encode(PORT_TYPE_1G, 3));
  6751. break;
  6752. default:
  6753. printk(KERN_ERR PFX "Unsupported port config "
  6754. "10G[%d] 1G[%d]\n",
  6755. num_10g, num_1g);
  6756. return -EINVAL;
  6757. }
  6758. }
  6759. parent->port_phy = val;
  6760. if (parent->plat_type == PLAT_TYPE_NIU)
  6761. niu_n2_divide_channels(parent);
  6762. else
  6763. niu_divide_channels(parent, num_10g, num_1g);
  6764. niu_divide_rdc_groups(parent, num_10g, num_1g);
  6765. return 0;
  6766. unknown_vg_1g_port:
  6767. printk(KERN_ERR PFX "Cannot identify platform type, 1gport=%d\n",
  6768. lowest_1g);
  6769. return -EINVAL;
  6770. }
  6771. static int __devinit niu_probe_ports(struct niu *np)
  6772. {
  6773. struct niu_parent *parent = np->parent;
  6774. int err, i;
  6775. niudbg(PROBE, "niu_probe_ports(): port_phy[%08x]\n",
  6776. parent->port_phy);
  6777. if (parent->port_phy == PORT_PHY_UNKNOWN) {
  6778. err = walk_phys(np, parent);
  6779. if (err)
  6780. return err;
  6781. niu_set_ldg_timer_res(np, 2);
  6782. for (i = 0; i <= LDN_MAX; i++)
  6783. niu_ldn_irq_enable(np, i, 0);
  6784. }
  6785. if (parent->port_phy == PORT_PHY_INVALID)
  6786. return -EINVAL;
  6787. return 0;
  6788. }
  6789. static int __devinit niu_classifier_swstate_init(struct niu *np)
  6790. {
  6791. struct niu_classifier *cp = &np->clas;
  6792. niudbg(PROBE, "niu_classifier_swstate_init: num_tcam(%d)\n",
  6793. np->parent->tcam_num_entries);
  6794. cp->tcam_index = (u16) np->port;
  6795. cp->h1_init = 0xffffffff;
  6796. cp->h2_init = 0xffff;
  6797. return fflp_early_init(np);
  6798. }
  6799. static void __devinit niu_link_config_init(struct niu *np)
  6800. {
  6801. struct niu_link_config *lp = &np->link_config;
  6802. lp->advertising = (ADVERTISED_10baseT_Half |
  6803. ADVERTISED_10baseT_Full |
  6804. ADVERTISED_100baseT_Half |
  6805. ADVERTISED_100baseT_Full |
  6806. ADVERTISED_1000baseT_Half |
  6807. ADVERTISED_1000baseT_Full |
  6808. ADVERTISED_10000baseT_Full |
  6809. ADVERTISED_Autoneg);
  6810. lp->speed = lp->active_speed = SPEED_INVALID;
  6811. lp->duplex = lp->active_duplex = DUPLEX_INVALID;
  6812. #if 0
  6813. lp->loopback_mode = LOOPBACK_MAC;
  6814. lp->active_speed = SPEED_10000;
  6815. lp->active_duplex = DUPLEX_FULL;
  6816. #else
  6817. lp->loopback_mode = LOOPBACK_DISABLED;
  6818. #endif
  6819. }
  6820. static int __devinit niu_init_mac_ipp_pcs_base(struct niu *np)
  6821. {
  6822. switch (np->port) {
  6823. case 0:
  6824. np->mac_regs = np->regs + XMAC_PORT0_OFF;
  6825. np->ipp_off = 0x00000;
  6826. np->pcs_off = 0x04000;
  6827. np->xpcs_off = 0x02000;
  6828. break;
  6829. case 1:
  6830. np->mac_regs = np->regs + XMAC_PORT1_OFF;
  6831. np->ipp_off = 0x08000;
  6832. np->pcs_off = 0x0a000;
  6833. np->xpcs_off = 0x08000;
  6834. break;
  6835. case 2:
  6836. np->mac_regs = np->regs + BMAC_PORT2_OFF;
  6837. np->ipp_off = 0x04000;
  6838. np->pcs_off = 0x0e000;
  6839. np->xpcs_off = ~0UL;
  6840. break;
  6841. case 3:
  6842. np->mac_regs = np->regs + BMAC_PORT3_OFF;
  6843. np->ipp_off = 0x0c000;
  6844. np->pcs_off = 0x12000;
  6845. np->xpcs_off = ~0UL;
  6846. break;
  6847. default:
  6848. dev_err(np->device, PFX "Port %u is invalid, cannot "
  6849. "compute MAC block offset.\n", np->port);
  6850. return -EINVAL;
  6851. }
  6852. return 0;
  6853. }
  6854. static void __devinit niu_try_msix(struct niu *np, u8 *ldg_num_map)
  6855. {
  6856. struct msix_entry msi_vec[NIU_NUM_LDG];
  6857. struct niu_parent *parent = np->parent;
  6858. struct pci_dev *pdev = np->pdev;
  6859. int i, num_irqs, err;
  6860. u8 first_ldg;
  6861. first_ldg = (NIU_NUM_LDG / parent->num_ports) * np->port;
  6862. for (i = 0; i < (NIU_NUM_LDG / parent->num_ports); i++)
  6863. ldg_num_map[i] = first_ldg + i;
  6864. num_irqs = (parent->rxchan_per_port[np->port] +
  6865. parent->txchan_per_port[np->port] +
  6866. (np->port == 0 ? 3 : 1));
  6867. BUG_ON(num_irqs > (NIU_NUM_LDG / parent->num_ports));
  6868. retry:
  6869. for (i = 0; i < num_irqs; i++) {
  6870. msi_vec[i].vector = 0;
  6871. msi_vec[i].entry = i;
  6872. }
  6873. err = pci_enable_msix(pdev, msi_vec, num_irqs);
  6874. if (err < 0) {
  6875. np->flags &= ~NIU_FLAGS_MSIX;
  6876. return;
  6877. }
  6878. if (err > 0) {
  6879. num_irqs = err;
  6880. goto retry;
  6881. }
  6882. np->flags |= NIU_FLAGS_MSIX;
  6883. for (i = 0; i < num_irqs; i++)
  6884. np->ldg[i].irq = msi_vec[i].vector;
  6885. np->num_ldg = num_irqs;
  6886. }
  6887. static int __devinit niu_n2_irq_init(struct niu *np, u8 *ldg_num_map)
  6888. {
  6889. #ifdef CONFIG_SPARC64
  6890. struct of_device *op = np->op;
  6891. const u32 *int_prop;
  6892. int i;
  6893. int_prop = of_get_property(op->node, "interrupts", NULL);
  6894. if (!int_prop)
  6895. return -ENODEV;
  6896. for (i = 0; i < op->num_irqs; i++) {
  6897. ldg_num_map[i] = int_prop[i];
  6898. np->ldg[i].irq = op->irqs[i];
  6899. }
  6900. np->num_ldg = op->num_irqs;
  6901. return 0;
  6902. #else
  6903. return -EINVAL;
  6904. #endif
  6905. }
  6906. static int __devinit niu_ldg_init(struct niu *np)
  6907. {
  6908. struct niu_parent *parent = np->parent;
  6909. u8 ldg_num_map[NIU_NUM_LDG];
  6910. int first_chan, num_chan;
  6911. int i, err, ldg_rotor;
  6912. u8 port;
  6913. np->num_ldg = 1;
  6914. np->ldg[0].irq = np->dev->irq;
  6915. if (parent->plat_type == PLAT_TYPE_NIU) {
  6916. err = niu_n2_irq_init(np, ldg_num_map);
  6917. if (err)
  6918. return err;
  6919. } else
  6920. niu_try_msix(np, ldg_num_map);
  6921. port = np->port;
  6922. for (i = 0; i < np->num_ldg; i++) {
  6923. struct niu_ldg *lp = &np->ldg[i];
  6924. netif_napi_add(np->dev, &lp->napi, niu_poll, 64);
  6925. lp->np = np;
  6926. lp->ldg_num = ldg_num_map[i];
  6927. lp->timer = 2; /* XXX */
  6928. /* On N2 NIU the firmware has setup the SID mappings so they go
  6929. * to the correct values that will route the LDG to the proper
  6930. * interrupt in the NCU interrupt table.
  6931. */
  6932. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  6933. err = niu_set_ldg_sid(np, lp->ldg_num, port, i);
  6934. if (err)
  6935. return err;
  6936. }
  6937. }
  6938. /* We adopt the LDG assignment ordering used by the N2 NIU
  6939. * 'interrupt' properties because that simplifies a lot of
  6940. * things. This ordering is:
  6941. *
  6942. * MAC
  6943. * MIF (if port zero)
  6944. * SYSERR (if port zero)
  6945. * RX channels
  6946. * TX channels
  6947. */
  6948. ldg_rotor = 0;
  6949. err = niu_ldg_assign_ldn(np, parent, ldg_num_map[ldg_rotor],
  6950. LDN_MAC(port));
  6951. if (err)
  6952. return err;
  6953. ldg_rotor++;
  6954. if (ldg_rotor == np->num_ldg)
  6955. ldg_rotor = 0;
  6956. if (port == 0) {
  6957. err = niu_ldg_assign_ldn(np, parent,
  6958. ldg_num_map[ldg_rotor],
  6959. LDN_MIF);
  6960. if (err)
  6961. return err;
  6962. ldg_rotor++;
  6963. if (ldg_rotor == np->num_ldg)
  6964. ldg_rotor = 0;
  6965. err = niu_ldg_assign_ldn(np, parent,
  6966. ldg_num_map[ldg_rotor],
  6967. LDN_DEVICE_ERROR);
  6968. if (err)
  6969. return err;
  6970. ldg_rotor++;
  6971. if (ldg_rotor == np->num_ldg)
  6972. ldg_rotor = 0;
  6973. }
  6974. first_chan = 0;
  6975. for (i = 0; i < port; i++)
  6976. first_chan += parent->rxchan_per_port[port];
  6977. num_chan = parent->rxchan_per_port[port];
  6978. for (i = first_chan; i < (first_chan + num_chan); i++) {
  6979. err = niu_ldg_assign_ldn(np, parent,
  6980. ldg_num_map[ldg_rotor],
  6981. LDN_RXDMA(i));
  6982. if (err)
  6983. return err;
  6984. ldg_rotor++;
  6985. if (ldg_rotor == np->num_ldg)
  6986. ldg_rotor = 0;
  6987. }
  6988. first_chan = 0;
  6989. for (i = 0; i < port; i++)
  6990. first_chan += parent->txchan_per_port[port];
  6991. num_chan = parent->txchan_per_port[port];
  6992. for (i = first_chan; i < (first_chan + num_chan); i++) {
  6993. err = niu_ldg_assign_ldn(np, parent,
  6994. ldg_num_map[ldg_rotor],
  6995. LDN_TXDMA(i));
  6996. if (err)
  6997. return err;
  6998. ldg_rotor++;
  6999. if (ldg_rotor == np->num_ldg)
  7000. ldg_rotor = 0;
  7001. }
  7002. return 0;
  7003. }
  7004. static void __devexit niu_ldg_free(struct niu *np)
  7005. {
  7006. if (np->flags & NIU_FLAGS_MSIX)
  7007. pci_disable_msix(np->pdev);
  7008. }
  7009. static int __devinit niu_get_of_props(struct niu *np)
  7010. {
  7011. #ifdef CONFIG_SPARC64
  7012. struct net_device *dev = np->dev;
  7013. struct device_node *dp;
  7014. const char *phy_type;
  7015. const u8 *mac_addr;
  7016. const char *model;
  7017. int prop_len;
  7018. if (np->parent->plat_type == PLAT_TYPE_NIU)
  7019. dp = np->op->node;
  7020. else
  7021. dp = pci_device_to_OF_node(np->pdev);
  7022. phy_type = of_get_property(dp, "phy-type", &prop_len);
  7023. if (!phy_type) {
  7024. dev_err(np->device, PFX "%s: OF node lacks "
  7025. "phy-type property\n",
  7026. dp->full_name);
  7027. return -EINVAL;
  7028. }
  7029. if (!strcmp(phy_type, "none"))
  7030. return -ENODEV;
  7031. strcpy(np->vpd.phy_type, phy_type);
  7032. if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  7033. dev_err(np->device, PFX "%s: Illegal phy string [%s].\n",
  7034. dp->full_name, np->vpd.phy_type);
  7035. return -EINVAL;
  7036. }
  7037. mac_addr = of_get_property(dp, "local-mac-address", &prop_len);
  7038. if (!mac_addr) {
  7039. dev_err(np->device, PFX "%s: OF node lacks "
  7040. "local-mac-address property\n",
  7041. dp->full_name);
  7042. return -EINVAL;
  7043. }
  7044. if (prop_len != dev->addr_len) {
  7045. dev_err(np->device, PFX "%s: OF MAC address prop len (%d) "
  7046. "is wrong.\n",
  7047. dp->full_name, prop_len);
  7048. }
  7049. memcpy(dev->perm_addr, mac_addr, dev->addr_len);
  7050. if (!is_valid_ether_addr(&dev->perm_addr[0])) {
  7051. int i;
  7052. dev_err(np->device, PFX "%s: OF MAC address is invalid\n",
  7053. dp->full_name);
  7054. dev_err(np->device, PFX "%s: [ \n",
  7055. dp->full_name);
  7056. for (i = 0; i < 6; i++)
  7057. printk("%02x ", dev->perm_addr[i]);
  7058. printk("]\n");
  7059. return -EINVAL;
  7060. }
  7061. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  7062. model = of_get_property(dp, "model", &prop_len);
  7063. if (model)
  7064. strcpy(np->vpd.model, model);
  7065. return 0;
  7066. #else
  7067. return -EINVAL;
  7068. #endif
  7069. }
  7070. static int __devinit niu_get_invariants(struct niu *np)
  7071. {
  7072. int err, have_props;
  7073. u32 offset;
  7074. err = niu_get_of_props(np);
  7075. if (err == -ENODEV)
  7076. return err;
  7077. have_props = !err;
  7078. err = niu_init_mac_ipp_pcs_base(np);
  7079. if (err)
  7080. return err;
  7081. if (have_props) {
  7082. err = niu_get_and_validate_port(np);
  7083. if (err)
  7084. return err;
  7085. } else {
  7086. if (np->parent->plat_type == PLAT_TYPE_NIU)
  7087. return -EINVAL;
  7088. nw64(ESPC_PIO_EN, ESPC_PIO_EN_ENABLE);
  7089. offset = niu_pci_vpd_offset(np);
  7090. niudbg(PROBE, "niu_get_invariants: VPD offset [%08x]\n",
  7091. offset);
  7092. if (offset)
  7093. niu_pci_vpd_fetch(np, offset);
  7094. nw64(ESPC_PIO_EN, 0);
  7095. if (np->flags & NIU_FLAGS_VPD_VALID) {
  7096. niu_pci_vpd_validate(np);
  7097. err = niu_get_and_validate_port(np);
  7098. if (err)
  7099. return err;
  7100. }
  7101. if (!(np->flags & NIU_FLAGS_VPD_VALID)) {
  7102. err = niu_get_and_validate_port(np);
  7103. if (err)
  7104. return err;
  7105. err = niu_pci_probe_sprom(np);
  7106. if (err)
  7107. return err;
  7108. }
  7109. }
  7110. err = niu_probe_ports(np);
  7111. if (err)
  7112. return err;
  7113. niu_ldg_init(np);
  7114. niu_classifier_swstate_init(np);
  7115. niu_link_config_init(np);
  7116. err = niu_determine_phy_disposition(np);
  7117. if (!err)
  7118. err = niu_init_link(np);
  7119. return err;
  7120. }
  7121. static LIST_HEAD(niu_parent_list);
  7122. static DEFINE_MUTEX(niu_parent_lock);
  7123. static int niu_parent_index;
  7124. static ssize_t show_port_phy(struct device *dev,
  7125. struct device_attribute *attr, char *buf)
  7126. {
  7127. struct platform_device *plat_dev = to_platform_device(dev);
  7128. struct niu_parent *p = plat_dev->dev.platform_data;
  7129. u32 port_phy = p->port_phy;
  7130. char *orig_buf = buf;
  7131. int i;
  7132. if (port_phy == PORT_PHY_UNKNOWN ||
  7133. port_phy == PORT_PHY_INVALID)
  7134. return 0;
  7135. for (i = 0; i < p->num_ports; i++) {
  7136. const char *type_str;
  7137. int type;
  7138. type = phy_decode(port_phy, i);
  7139. if (type == PORT_TYPE_10G)
  7140. type_str = "10G";
  7141. else
  7142. type_str = "1G";
  7143. buf += sprintf(buf,
  7144. (i == 0) ? "%s" : " %s",
  7145. type_str);
  7146. }
  7147. buf += sprintf(buf, "\n");
  7148. return buf - orig_buf;
  7149. }
  7150. static ssize_t show_plat_type(struct device *dev,
  7151. struct device_attribute *attr, char *buf)
  7152. {
  7153. struct platform_device *plat_dev = to_platform_device(dev);
  7154. struct niu_parent *p = plat_dev->dev.platform_data;
  7155. const char *type_str;
  7156. switch (p->plat_type) {
  7157. case PLAT_TYPE_ATLAS:
  7158. type_str = "atlas";
  7159. break;
  7160. case PLAT_TYPE_NIU:
  7161. type_str = "niu";
  7162. break;
  7163. case PLAT_TYPE_VF_P0:
  7164. type_str = "vf_p0";
  7165. break;
  7166. case PLAT_TYPE_VF_P1:
  7167. type_str = "vf_p1";
  7168. break;
  7169. default:
  7170. type_str = "unknown";
  7171. break;
  7172. }
  7173. return sprintf(buf, "%s\n", type_str);
  7174. }
  7175. static ssize_t __show_chan_per_port(struct device *dev,
  7176. struct device_attribute *attr, char *buf,
  7177. int rx)
  7178. {
  7179. struct platform_device *plat_dev = to_platform_device(dev);
  7180. struct niu_parent *p = plat_dev->dev.platform_data;
  7181. char *orig_buf = buf;
  7182. u8 *arr;
  7183. int i;
  7184. arr = (rx ? p->rxchan_per_port : p->txchan_per_port);
  7185. for (i = 0; i < p->num_ports; i++) {
  7186. buf += sprintf(buf,
  7187. (i == 0) ? "%d" : " %d",
  7188. arr[i]);
  7189. }
  7190. buf += sprintf(buf, "\n");
  7191. return buf - orig_buf;
  7192. }
  7193. static ssize_t show_rxchan_per_port(struct device *dev,
  7194. struct device_attribute *attr, char *buf)
  7195. {
  7196. return __show_chan_per_port(dev, attr, buf, 1);
  7197. }
  7198. static ssize_t show_txchan_per_port(struct device *dev,
  7199. struct device_attribute *attr, char *buf)
  7200. {
  7201. return __show_chan_per_port(dev, attr, buf, 1);
  7202. }
  7203. static ssize_t show_num_ports(struct device *dev,
  7204. struct device_attribute *attr, char *buf)
  7205. {
  7206. struct platform_device *plat_dev = to_platform_device(dev);
  7207. struct niu_parent *p = plat_dev->dev.platform_data;
  7208. return sprintf(buf, "%d\n", p->num_ports);
  7209. }
  7210. static struct device_attribute niu_parent_attributes[] = {
  7211. __ATTR(port_phy, S_IRUGO, show_port_phy, NULL),
  7212. __ATTR(plat_type, S_IRUGO, show_plat_type, NULL),
  7213. __ATTR(rxchan_per_port, S_IRUGO, show_rxchan_per_port, NULL),
  7214. __ATTR(txchan_per_port, S_IRUGO, show_txchan_per_port, NULL),
  7215. __ATTR(num_ports, S_IRUGO, show_num_ports, NULL),
  7216. {}
  7217. };
  7218. static struct niu_parent * __devinit niu_new_parent(struct niu *np,
  7219. union niu_parent_id *id,
  7220. u8 ptype)
  7221. {
  7222. struct platform_device *plat_dev;
  7223. struct niu_parent *p;
  7224. int i;
  7225. niudbg(PROBE, "niu_new_parent: Creating new parent.\n");
  7226. plat_dev = platform_device_register_simple("niu", niu_parent_index,
  7227. NULL, 0);
  7228. if (!plat_dev)
  7229. return NULL;
  7230. for (i = 0; attr_name(niu_parent_attributes[i]); i++) {
  7231. int err = device_create_file(&plat_dev->dev,
  7232. &niu_parent_attributes[i]);
  7233. if (err)
  7234. goto fail_unregister;
  7235. }
  7236. p = kzalloc(sizeof(*p), GFP_KERNEL);
  7237. if (!p)
  7238. goto fail_unregister;
  7239. p->index = niu_parent_index++;
  7240. plat_dev->dev.platform_data = p;
  7241. p->plat_dev = plat_dev;
  7242. memcpy(&p->id, id, sizeof(*id));
  7243. p->plat_type = ptype;
  7244. INIT_LIST_HEAD(&p->list);
  7245. atomic_set(&p->refcnt, 0);
  7246. list_add(&p->list, &niu_parent_list);
  7247. spin_lock_init(&p->lock);
  7248. p->rxdma_clock_divider = 7500;
  7249. p->tcam_num_entries = NIU_PCI_TCAM_ENTRIES;
  7250. if (p->plat_type == PLAT_TYPE_NIU)
  7251. p->tcam_num_entries = NIU_NONPCI_TCAM_ENTRIES;
  7252. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  7253. int index = i - CLASS_CODE_USER_PROG1;
  7254. p->tcam_key[index] = TCAM_KEY_TSEL;
  7255. p->flow_key[index] = (FLOW_KEY_IPSA |
  7256. FLOW_KEY_IPDA |
  7257. FLOW_KEY_PROTO |
  7258. (FLOW_KEY_L4_BYTE12 <<
  7259. FLOW_KEY_L4_0_SHIFT) |
  7260. (FLOW_KEY_L4_BYTE12 <<
  7261. FLOW_KEY_L4_1_SHIFT));
  7262. }
  7263. for (i = 0; i < LDN_MAX + 1; i++)
  7264. p->ldg_map[i] = LDG_INVALID;
  7265. return p;
  7266. fail_unregister:
  7267. platform_device_unregister(plat_dev);
  7268. return NULL;
  7269. }
  7270. static struct niu_parent * __devinit niu_get_parent(struct niu *np,
  7271. union niu_parent_id *id,
  7272. u8 ptype)
  7273. {
  7274. struct niu_parent *p, *tmp;
  7275. int port = np->port;
  7276. niudbg(PROBE, "niu_get_parent: platform_type[%u] port[%u]\n",
  7277. ptype, port);
  7278. mutex_lock(&niu_parent_lock);
  7279. p = NULL;
  7280. list_for_each_entry(tmp, &niu_parent_list, list) {
  7281. if (!memcmp(id, &tmp->id, sizeof(*id))) {
  7282. p = tmp;
  7283. break;
  7284. }
  7285. }
  7286. if (!p)
  7287. p = niu_new_parent(np, id, ptype);
  7288. if (p) {
  7289. char port_name[6];
  7290. int err;
  7291. sprintf(port_name, "port%d", port);
  7292. err = sysfs_create_link(&p->plat_dev->dev.kobj,
  7293. &np->device->kobj,
  7294. port_name);
  7295. if (!err) {
  7296. p->ports[port] = np;
  7297. atomic_inc(&p->refcnt);
  7298. }
  7299. }
  7300. mutex_unlock(&niu_parent_lock);
  7301. return p;
  7302. }
  7303. static void niu_put_parent(struct niu *np)
  7304. {
  7305. struct niu_parent *p = np->parent;
  7306. u8 port = np->port;
  7307. char port_name[6];
  7308. BUG_ON(!p || p->ports[port] != np);
  7309. niudbg(PROBE, "niu_put_parent: port[%u]\n", port);
  7310. sprintf(port_name, "port%d", port);
  7311. mutex_lock(&niu_parent_lock);
  7312. sysfs_remove_link(&p->plat_dev->dev.kobj, port_name);
  7313. p->ports[port] = NULL;
  7314. np->parent = NULL;
  7315. if (atomic_dec_and_test(&p->refcnt)) {
  7316. list_del(&p->list);
  7317. platform_device_unregister(p->plat_dev);
  7318. }
  7319. mutex_unlock(&niu_parent_lock);
  7320. }
  7321. static void *niu_pci_alloc_coherent(struct device *dev, size_t size,
  7322. u64 *handle, gfp_t flag)
  7323. {
  7324. dma_addr_t dh;
  7325. void *ret;
  7326. ret = dma_alloc_coherent(dev, size, &dh, flag);
  7327. if (ret)
  7328. *handle = dh;
  7329. return ret;
  7330. }
  7331. static void niu_pci_free_coherent(struct device *dev, size_t size,
  7332. void *cpu_addr, u64 handle)
  7333. {
  7334. dma_free_coherent(dev, size, cpu_addr, handle);
  7335. }
  7336. static u64 niu_pci_map_page(struct device *dev, struct page *page,
  7337. unsigned long offset, size_t size,
  7338. enum dma_data_direction direction)
  7339. {
  7340. return dma_map_page(dev, page, offset, size, direction);
  7341. }
  7342. static void niu_pci_unmap_page(struct device *dev, u64 dma_address,
  7343. size_t size, enum dma_data_direction direction)
  7344. {
  7345. dma_unmap_page(dev, dma_address, size, direction);
  7346. }
  7347. static u64 niu_pci_map_single(struct device *dev, void *cpu_addr,
  7348. size_t size,
  7349. enum dma_data_direction direction)
  7350. {
  7351. return dma_map_single(dev, cpu_addr, size, direction);
  7352. }
  7353. static void niu_pci_unmap_single(struct device *dev, u64 dma_address,
  7354. size_t size,
  7355. enum dma_data_direction direction)
  7356. {
  7357. dma_unmap_single(dev, dma_address, size, direction);
  7358. }
  7359. static const struct niu_ops niu_pci_ops = {
  7360. .alloc_coherent = niu_pci_alloc_coherent,
  7361. .free_coherent = niu_pci_free_coherent,
  7362. .map_page = niu_pci_map_page,
  7363. .unmap_page = niu_pci_unmap_page,
  7364. .map_single = niu_pci_map_single,
  7365. .unmap_single = niu_pci_unmap_single,
  7366. };
  7367. static void __devinit niu_driver_version(void)
  7368. {
  7369. static int niu_version_printed;
  7370. if (niu_version_printed++ == 0)
  7371. pr_info("%s", version);
  7372. }
  7373. static struct net_device * __devinit niu_alloc_and_init(
  7374. struct device *gen_dev, struct pci_dev *pdev,
  7375. struct of_device *op, const struct niu_ops *ops,
  7376. u8 port)
  7377. {
  7378. struct net_device *dev;
  7379. struct niu *np;
  7380. dev = alloc_etherdev_mq(sizeof(struct niu), NIU_NUM_TXCHAN);
  7381. if (!dev) {
  7382. dev_err(gen_dev, PFX "Etherdev alloc failed, aborting.\n");
  7383. return NULL;
  7384. }
  7385. SET_NETDEV_DEV(dev, gen_dev);
  7386. np = netdev_priv(dev);
  7387. np->dev = dev;
  7388. np->pdev = pdev;
  7389. np->op = op;
  7390. np->device = gen_dev;
  7391. np->ops = ops;
  7392. np->msg_enable = niu_debug;
  7393. spin_lock_init(&np->lock);
  7394. INIT_WORK(&np->reset_task, niu_reset_task);
  7395. np->port = port;
  7396. return dev;
  7397. }
  7398. static const struct net_device_ops niu_netdev_ops = {
  7399. .ndo_open = niu_open,
  7400. .ndo_stop = niu_close,
  7401. .ndo_start_xmit = niu_start_xmit,
  7402. .ndo_get_stats = niu_get_stats,
  7403. .ndo_set_multicast_list = niu_set_rx_mode,
  7404. .ndo_validate_addr = eth_validate_addr,
  7405. .ndo_set_mac_address = niu_set_mac_addr,
  7406. .ndo_do_ioctl = niu_ioctl,
  7407. .ndo_tx_timeout = niu_tx_timeout,
  7408. .ndo_change_mtu = niu_change_mtu,
  7409. };
  7410. static void __devinit niu_assign_netdev_ops(struct net_device *dev)
  7411. {
  7412. dev->netdev_ops = &niu_netdev_ops;
  7413. dev->ethtool_ops = &niu_ethtool_ops;
  7414. dev->watchdog_timeo = NIU_TX_TIMEOUT;
  7415. }
  7416. static void __devinit niu_device_announce(struct niu *np)
  7417. {
  7418. struct net_device *dev = np->dev;
  7419. pr_info("%s: NIU Ethernet %pM\n", dev->name, dev->dev_addr);
  7420. if (np->parent->plat_type == PLAT_TYPE_ATCA_CP3220) {
  7421. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  7422. dev->name,
  7423. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  7424. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  7425. (np->flags & NIU_FLAGS_FIBER ? "RGMII FIBER" : "SERDES"),
  7426. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  7427. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  7428. np->vpd.phy_type);
  7429. } else {
  7430. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  7431. dev->name,
  7432. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  7433. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  7434. (np->flags & NIU_FLAGS_FIBER ? "FIBER" :
  7435. (np->flags & NIU_FLAGS_XCVR_SERDES ? "SERDES" :
  7436. "COPPER")),
  7437. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  7438. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  7439. np->vpd.phy_type);
  7440. }
  7441. }
  7442. static int __devinit niu_pci_init_one(struct pci_dev *pdev,
  7443. const struct pci_device_id *ent)
  7444. {
  7445. union niu_parent_id parent_id;
  7446. struct net_device *dev;
  7447. struct niu *np;
  7448. int err, pos;
  7449. u64 dma_mask;
  7450. u16 val16;
  7451. niu_driver_version();
  7452. err = pci_enable_device(pdev);
  7453. if (err) {
  7454. dev_err(&pdev->dev, PFX "Cannot enable PCI device, "
  7455. "aborting.\n");
  7456. return err;
  7457. }
  7458. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM) ||
  7459. !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
  7460. dev_err(&pdev->dev, PFX "Cannot find proper PCI device "
  7461. "base addresses, aborting.\n");
  7462. err = -ENODEV;
  7463. goto err_out_disable_pdev;
  7464. }
  7465. err = pci_request_regions(pdev, DRV_MODULE_NAME);
  7466. if (err) {
  7467. dev_err(&pdev->dev, PFX "Cannot obtain PCI resources, "
  7468. "aborting.\n");
  7469. goto err_out_disable_pdev;
  7470. }
  7471. pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
  7472. if (pos <= 0) {
  7473. dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
  7474. "aborting.\n");
  7475. goto err_out_free_res;
  7476. }
  7477. dev = niu_alloc_and_init(&pdev->dev, pdev, NULL,
  7478. &niu_pci_ops, PCI_FUNC(pdev->devfn));
  7479. if (!dev) {
  7480. err = -ENOMEM;
  7481. goto err_out_free_res;
  7482. }
  7483. np = netdev_priv(dev);
  7484. memset(&parent_id, 0, sizeof(parent_id));
  7485. parent_id.pci.domain = pci_domain_nr(pdev->bus);
  7486. parent_id.pci.bus = pdev->bus->number;
  7487. parent_id.pci.device = PCI_SLOT(pdev->devfn);
  7488. np->parent = niu_get_parent(np, &parent_id,
  7489. PLAT_TYPE_ATLAS);
  7490. if (!np->parent) {
  7491. err = -ENOMEM;
  7492. goto err_out_free_dev;
  7493. }
  7494. pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
  7495. val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
  7496. val16 |= (PCI_EXP_DEVCTL_CERE |
  7497. PCI_EXP_DEVCTL_NFERE |
  7498. PCI_EXP_DEVCTL_FERE |
  7499. PCI_EXP_DEVCTL_URRE |
  7500. PCI_EXP_DEVCTL_RELAX_EN);
  7501. pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
  7502. dma_mask = DMA_44BIT_MASK;
  7503. err = pci_set_dma_mask(pdev, dma_mask);
  7504. if (!err) {
  7505. dev->features |= NETIF_F_HIGHDMA;
  7506. err = pci_set_consistent_dma_mask(pdev, dma_mask);
  7507. if (err) {
  7508. dev_err(&pdev->dev, PFX "Unable to obtain 44 bit "
  7509. "DMA for consistent allocations, "
  7510. "aborting.\n");
  7511. goto err_out_release_parent;
  7512. }
  7513. }
  7514. if (err || dma_mask == DMA_32BIT_MASK) {
  7515. err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  7516. if (err) {
  7517. dev_err(&pdev->dev, PFX "No usable DMA configuration, "
  7518. "aborting.\n");
  7519. goto err_out_release_parent;
  7520. }
  7521. }
  7522. dev->features |= (NETIF_F_SG | NETIF_F_HW_CSUM);
  7523. np->regs = pci_ioremap_bar(pdev, 0);
  7524. if (!np->regs) {
  7525. dev_err(&pdev->dev, PFX "Cannot map device registers, "
  7526. "aborting.\n");
  7527. err = -ENOMEM;
  7528. goto err_out_release_parent;
  7529. }
  7530. pci_set_master(pdev);
  7531. pci_save_state(pdev);
  7532. dev->irq = pdev->irq;
  7533. niu_assign_netdev_ops(dev);
  7534. err = niu_get_invariants(np);
  7535. if (err) {
  7536. if (err != -ENODEV)
  7537. dev_err(&pdev->dev, PFX "Problem fetching invariants "
  7538. "of chip, aborting.\n");
  7539. goto err_out_iounmap;
  7540. }
  7541. err = register_netdev(dev);
  7542. if (err) {
  7543. dev_err(&pdev->dev, PFX "Cannot register net device, "
  7544. "aborting.\n");
  7545. goto err_out_iounmap;
  7546. }
  7547. pci_set_drvdata(pdev, dev);
  7548. niu_device_announce(np);
  7549. return 0;
  7550. err_out_iounmap:
  7551. if (np->regs) {
  7552. iounmap(np->regs);
  7553. np->regs = NULL;
  7554. }
  7555. err_out_release_parent:
  7556. niu_put_parent(np);
  7557. err_out_free_dev:
  7558. free_netdev(dev);
  7559. err_out_free_res:
  7560. pci_release_regions(pdev);
  7561. err_out_disable_pdev:
  7562. pci_disable_device(pdev);
  7563. pci_set_drvdata(pdev, NULL);
  7564. return err;
  7565. }
  7566. static void __devexit niu_pci_remove_one(struct pci_dev *pdev)
  7567. {
  7568. struct net_device *dev = pci_get_drvdata(pdev);
  7569. if (dev) {
  7570. struct niu *np = netdev_priv(dev);
  7571. unregister_netdev(dev);
  7572. if (np->regs) {
  7573. iounmap(np->regs);
  7574. np->regs = NULL;
  7575. }
  7576. niu_ldg_free(np);
  7577. niu_put_parent(np);
  7578. free_netdev(dev);
  7579. pci_release_regions(pdev);
  7580. pci_disable_device(pdev);
  7581. pci_set_drvdata(pdev, NULL);
  7582. }
  7583. }
  7584. static int niu_suspend(struct pci_dev *pdev, pm_message_t state)
  7585. {
  7586. struct net_device *dev = pci_get_drvdata(pdev);
  7587. struct niu *np = netdev_priv(dev);
  7588. unsigned long flags;
  7589. if (!netif_running(dev))
  7590. return 0;
  7591. flush_scheduled_work();
  7592. niu_netif_stop(np);
  7593. del_timer_sync(&np->timer);
  7594. spin_lock_irqsave(&np->lock, flags);
  7595. niu_enable_interrupts(np, 0);
  7596. spin_unlock_irqrestore(&np->lock, flags);
  7597. netif_device_detach(dev);
  7598. spin_lock_irqsave(&np->lock, flags);
  7599. niu_stop_hw(np);
  7600. spin_unlock_irqrestore(&np->lock, flags);
  7601. pci_save_state(pdev);
  7602. return 0;
  7603. }
  7604. static int niu_resume(struct pci_dev *pdev)
  7605. {
  7606. struct net_device *dev = pci_get_drvdata(pdev);
  7607. struct niu *np = netdev_priv(dev);
  7608. unsigned long flags;
  7609. int err;
  7610. if (!netif_running(dev))
  7611. return 0;
  7612. pci_restore_state(pdev);
  7613. netif_device_attach(dev);
  7614. spin_lock_irqsave(&np->lock, flags);
  7615. err = niu_init_hw(np);
  7616. if (!err) {
  7617. np->timer.expires = jiffies + HZ;
  7618. add_timer(&np->timer);
  7619. niu_netif_start(np);
  7620. }
  7621. spin_unlock_irqrestore(&np->lock, flags);
  7622. return err;
  7623. }
  7624. static struct pci_driver niu_pci_driver = {
  7625. .name = DRV_MODULE_NAME,
  7626. .id_table = niu_pci_tbl,
  7627. .probe = niu_pci_init_one,
  7628. .remove = __devexit_p(niu_pci_remove_one),
  7629. .suspend = niu_suspend,
  7630. .resume = niu_resume,
  7631. };
  7632. #ifdef CONFIG_SPARC64
  7633. static void *niu_phys_alloc_coherent(struct device *dev, size_t size,
  7634. u64 *dma_addr, gfp_t flag)
  7635. {
  7636. unsigned long order = get_order(size);
  7637. unsigned long page = __get_free_pages(flag, order);
  7638. if (page == 0UL)
  7639. return NULL;
  7640. memset((char *)page, 0, PAGE_SIZE << order);
  7641. *dma_addr = __pa(page);
  7642. return (void *) page;
  7643. }
  7644. static void niu_phys_free_coherent(struct device *dev, size_t size,
  7645. void *cpu_addr, u64 handle)
  7646. {
  7647. unsigned long order = get_order(size);
  7648. free_pages((unsigned long) cpu_addr, order);
  7649. }
  7650. static u64 niu_phys_map_page(struct device *dev, struct page *page,
  7651. unsigned long offset, size_t size,
  7652. enum dma_data_direction direction)
  7653. {
  7654. return page_to_phys(page) + offset;
  7655. }
  7656. static void niu_phys_unmap_page(struct device *dev, u64 dma_address,
  7657. size_t size, enum dma_data_direction direction)
  7658. {
  7659. /* Nothing to do. */
  7660. }
  7661. static u64 niu_phys_map_single(struct device *dev, void *cpu_addr,
  7662. size_t size,
  7663. enum dma_data_direction direction)
  7664. {
  7665. return __pa(cpu_addr);
  7666. }
  7667. static void niu_phys_unmap_single(struct device *dev, u64 dma_address,
  7668. size_t size,
  7669. enum dma_data_direction direction)
  7670. {
  7671. /* Nothing to do. */
  7672. }
  7673. static const struct niu_ops niu_phys_ops = {
  7674. .alloc_coherent = niu_phys_alloc_coherent,
  7675. .free_coherent = niu_phys_free_coherent,
  7676. .map_page = niu_phys_map_page,
  7677. .unmap_page = niu_phys_unmap_page,
  7678. .map_single = niu_phys_map_single,
  7679. .unmap_single = niu_phys_unmap_single,
  7680. };
  7681. static unsigned long res_size(struct resource *r)
  7682. {
  7683. return r->end - r->start + 1UL;
  7684. }
  7685. static int __devinit niu_of_probe(struct of_device *op,
  7686. const struct of_device_id *match)
  7687. {
  7688. union niu_parent_id parent_id;
  7689. struct net_device *dev;
  7690. struct niu *np;
  7691. const u32 *reg;
  7692. int err;
  7693. niu_driver_version();
  7694. reg = of_get_property(op->node, "reg", NULL);
  7695. if (!reg) {
  7696. dev_err(&op->dev, PFX "%s: No 'reg' property, aborting.\n",
  7697. op->node->full_name);
  7698. return -ENODEV;
  7699. }
  7700. dev = niu_alloc_and_init(&op->dev, NULL, op,
  7701. &niu_phys_ops, reg[0] & 0x1);
  7702. if (!dev) {
  7703. err = -ENOMEM;
  7704. goto err_out;
  7705. }
  7706. np = netdev_priv(dev);
  7707. memset(&parent_id, 0, sizeof(parent_id));
  7708. parent_id.of = of_get_parent(op->node);
  7709. np->parent = niu_get_parent(np, &parent_id,
  7710. PLAT_TYPE_NIU);
  7711. if (!np->parent) {
  7712. err = -ENOMEM;
  7713. goto err_out_free_dev;
  7714. }
  7715. dev->features |= (NETIF_F_SG | NETIF_F_HW_CSUM);
  7716. np->regs = of_ioremap(&op->resource[1], 0,
  7717. res_size(&op->resource[1]),
  7718. "niu regs");
  7719. if (!np->regs) {
  7720. dev_err(&op->dev, PFX "Cannot map device registers, "
  7721. "aborting.\n");
  7722. err = -ENOMEM;
  7723. goto err_out_release_parent;
  7724. }
  7725. np->vir_regs_1 = of_ioremap(&op->resource[2], 0,
  7726. res_size(&op->resource[2]),
  7727. "niu vregs-1");
  7728. if (!np->vir_regs_1) {
  7729. dev_err(&op->dev, PFX "Cannot map device vir registers 1, "
  7730. "aborting.\n");
  7731. err = -ENOMEM;
  7732. goto err_out_iounmap;
  7733. }
  7734. np->vir_regs_2 = of_ioremap(&op->resource[3], 0,
  7735. res_size(&op->resource[3]),
  7736. "niu vregs-2");
  7737. if (!np->vir_regs_2) {
  7738. dev_err(&op->dev, PFX "Cannot map device vir registers 2, "
  7739. "aborting.\n");
  7740. err = -ENOMEM;
  7741. goto err_out_iounmap;
  7742. }
  7743. niu_assign_netdev_ops(dev);
  7744. err = niu_get_invariants(np);
  7745. if (err) {
  7746. if (err != -ENODEV)
  7747. dev_err(&op->dev, PFX "Problem fetching invariants "
  7748. "of chip, aborting.\n");
  7749. goto err_out_iounmap;
  7750. }
  7751. err = register_netdev(dev);
  7752. if (err) {
  7753. dev_err(&op->dev, PFX "Cannot register net device, "
  7754. "aborting.\n");
  7755. goto err_out_iounmap;
  7756. }
  7757. dev_set_drvdata(&op->dev, dev);
  7758. niu_device_announce(np);
  7759. return 0;
  7760. err_out_iounmap:
  7761. if (np->vir_regs_1) {
  7762. of_iounmap(&op->resource[2], np->vir_regs_1,
  7763. res_size(&op->resource[2]));
  7764. np->vir_regs_1 = NULL;
  7765. }
  7766. if (np->vir_regs_2) {
  7767. of_iounmap(&op->resource[3], np->vir_regs_2,
  7768. res_size(&op->resource[3]));
  7769. np->vir_regs_2 = NULL;
  7770. }
  7771. if (np->regs) {
  7772. of_iounmap(&op->resource[1], np->regs,
  7773. res_size(&op->resource[1]));
  7774. np->regs = NULL;
  7775. }
  7776. err_out_release_parent:
  7777. niu_put_parent(np);
  7778. err_out_free_dev:
  7779. free_netdev(dev);
  7780. err_out:
  7781. return err;
  7782. }
  7783. static int __devexit niu_of_remove(struct of_device *op)
  7784. {
  7785. struct net_device *dev = dev_get_drvdata(&op->dev);
  7786. if (dev) {
  7787. struct niu *np = netdev_priv(dev);
  7788. unregister_netdev(dev);
  7789. if (np->vir_regs_1) {
  7790. of_iounmap(&op->resource[2], np->vir_regs_1,
  7791. res_size(&op->resource[2]));
  7792. np->vir_regs_1 = NULL;
  7793. }
  7794. if (np->vir_regs_2) {
  7795. of_iounmap(&op->resource[3], np->vir_regs_2,
  7796. res_size(&op->resource[3]));
  7797. np->vir_regs_2 = NULL;
  7798. }
  7799. if (np->regs) {
  7800. of_iounmap(&op->resource[1], np->regs,
  7801. res_size(&op->resource[1]));
  7802. np->regs = NULL;
  7803. }
  7804. niu_ldg_free(np);
  7805. niu_put_parent(np);
  7806. free_netdev(dev);
  7807. dev_set_drvdata(&op->dev, NULL);
  7808. }
  7809. return 0;
  7810. }
  7811. static const struct of_device_id niu_match[] = {
  7812. {
  7813. .name = "network",
  7814. .compatible = "SUNW,niusl",
  7815. },
  7816. {},
  7817. };
  7818. MODULE_DEVICE_TABLE(of, niu_match);
  7819. static struct of_platform_driver niu_of_driver = {
  7820. .name = "niu",
  7821. .match_table = niu_match,
  7822. .probe = niu_of_probe,
  7823. .remove = __devexit_p(niu_of_remove),
  7824. };
  7825. #endif /* CONFIG_SPARC64 */
  7826. static int __init niu_init(void)
  7827. {
  7828. int err = 0;
  7829. BUILD_BUG_ON(PAGE_SIZE < 4 * 1024);
  7830. niu_debug = netif_msg_init(debug, NIU_MSG_DEFAULT);
  7831. #ifdef CONFIG_SPARC64
  7832. err = of_register_driver(&niu_of_driver, &of_bus_type);
  7833. #endif
  7834. if (!err) {
  7835. err = pci_register_driver(&niu_pci_driver);
  7836. #ifdef CONFIG_SPARC64
  7837. if (err)
  7838. of_unregister_driver(&niu_of_driver);
  7839. #endif
  7840. }
  7841. return err;
  7842. }
  7843. static void __exit niu_exit(void)
  7844. {
  7845. pci_unregister_driver(&niu_pci_driver);
  7846. #ifdef CONFIG_SPARC64
  7847. of_unregister_driver(&niu_of_driver);
  7848. #endif
  7849. }
  7850. module_init(niu_init);
  7851. module_exit(niu_exit);