myri_sbus.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155
  1. /* myri_sbus.c: MyriCOM MyriNET SBUS card driver.
  2. *
  3. * Copyright (C) 1996, 1999, 2006, 2008 David S. Miller (davem@davemloft.net)
  4. */
  5. static char version[] =
  6. "myri_sbus.c:v2.0 June 23, 2006 David S. Miller (davem@davemloft.net)\n";
  7. #include <linux/module.h>
  8. #include <linux/errno.h>
  9. #include <linux/kernel.h>
  10. #include <linux/types.h>
  11. #include <linux/fcntl.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/ioport.h>
  14. #include <linux/in.h>
  15. #include <linux/slab.h>
  16. #include <linux/string.h>
  17. #include <linux/delay.h>
  18. #include <linux/init.h>
  19. #include <linux/netdevice.h>
  20. #include <linux/etherdevice.h>
  21. #include <linux/skbuff.h>
  22. #include <linux/bitops.h>
  23. #include <linux/dma-mapping.h>
  24. #include <linux/of.h>
  25. #include <linux/of_device.h>
  26. #include <net/dst.h>
  27. #include <net/arp.h>
  28. #include <net/sock.h>
  29. #include <net/ipv6.h>
  30. #include <asm/system.h>
  31. #include <asm/io.h>
  32. #include <asm/dma.h>
  33. #include <asm/byteorder.h>
  34. #include <asm/idprom.h>
  35. #include <asm/openprom.h>
  36. #include <asm/oplib.h>
  37. #include <asm/auxio.h>
  38. #include <asm/pgtable.h>
  39. #include <asm/irq.h>
  40. #include "myri_sbus.h"
  41. #include "myri_code.h"
  42. /* #define DEBUG_DETECT */
  43. /* #define DEBUG_IRQ */
  44. /* #define DEBUG_TRANSMIT */
  45. /* #define DEBUG_RECEIVE */
  46. /* #define DEBUG_HEADER */
  47. #ifdef DEBUG_DETECT
  48. #define DET(x) printk x
  49. #else
  50. #define DET(x)
  51. #endif
  52. #ifdef DEBUG_IRQ
  53. #define DIRQ(x) printk x
  54. #else
  55. #define DIRQ(x)
  56. #endif
  57. #ifdef DEBUG_TRANSMIT
  58. #define DTX(x) printk x
  59. #else
  60. #define DTX(x)
  61. #endif
  62. #ifdef DEBUG_RECEIVE
  63. #define DRX(x) printk x
  64. #else
  65. #define DRX(x)
  66. #endif
  67. #ifdef DEBUG_HEADER
  68. #define DHDR(x) printk x
  69. #else
  70. #define DHDR(x)
  71. #endif
  72. static void myri_reset_off(void __iomem *lp, void __iomem *cregs)
  73. {
  74. /* Clear IRQ mask. */
  75. sbus_writel(0, lp + LANAI_EIMASK);
  76. /* Turn RESET function off. */
  77. sbus_writel(CONTROL_ROFF, cregs + MYRICTRL_CTRL);
  78. }
  79. static void myri_reset_on(void __iomem *cregs)
  80. {
  81. /* Enable RESET function. */
  82. sbus_writel(CONTROL_RON, cregs + MYRICTRL_CTRL);
  83. /* Disable IRQ's. */
  84. sbus_writel(CONTROL_DIRQ, cregs + MYRICTRL_CTRL);
  85. }
  86. static void myri_disable_irq(void __iomem *lp, void __iomem *cregs)
  87. {
  88. sbus_writel(CONTROL_DIRQ, cregs + MYRICTRL_CTRL);
  89. sbus_writel(0, lp + LANAI_EIMASK);
  90. sbus_writel(ISTAT_HOST, lp + LANAI_ISTAT);
  91. }
  92. static void myri_enable_irq(void __iomem *lp, void __iomem *cregs)
  93. {
  94. sbus_writel(CONTROL_EIRQ, cregs + MYRICTRL_CTRL);
  95. sbus_writel(ISTAT_HOST, lp + LANAI_EIMASK);
  96. }
  97. static inline void bang_the_chip(struct myri_eth *mp)
  98. {
  99. struct myri_shmem __iomem *shmem = mp->shmem;
  100. void __iomem *cregs = mp->cregs;
  101. sbus_writel(1, &shmem->send);
  102. sbus_writel(CONTROL_WON, cregs + MYRICTRL_CTRL);
  103. }
  104. static int myri_do_handshake(struct myri_eth *mp)
  105. {
  106. struct myri_shmem __iomem *shmem = mp->shmem;
  107. void __iomem *cregs = mp->cregs;
  108. struct myri_channel __iomem *chan = &shmem->channel;
  109. int tick = 0;
  110. DET(("myri_do_handshake: "));
  111. if (sbus_readl(&chan->state) == STATE_READY) {
  112. DET(("Already STATE_READY, failed.\n"));
  113. return -1; /* We're hosed... */
  114. }
  115. myri_disable_irq(mp->lregs, cregs);
  116. while (tick++ < 25) {
  117. u32 softstate;
  118. /* Wake it up. */
  119. DET(("shakedown, CONTROL_WON, "));
  120. sbus_writel(1, &shmem->shakedown);
  121. sbus_writel(CONTROL_WON, cregs + MYRICTRL_CTRL);
  122. softstate = sbus_readl(&chan->state);
  123. DET(("chanstate[%08x] ", softstate));
  124. if (softstate == STATE_READY) {
  125. DET(("wakeup successful, "));
  126. break;
  127. }
  128. if (softstate != STATE_WFN) {
  129. DET(("not WFN setting that, "));
  130. sbus_writel(STATE_WFN, &chan->state);
  131. }
  132. udelay(20);
  133. }
  134. myri_enable_irq(mp->lregs, cregs);
  135. if (tick > 25) {
  136. DET(("25 ticks we lose, failure.\n"));
  137. return -1;
  138. }
  139. DET(("success\n"));
  140. return 0;
  141. }
  142. static int __devinit myri_load_lanai(struct myri_eth *mp)
  143. {
  144. struct net_device *dev = mp->dev;
  145. struct myri_shmem __iomem *shmem = mp->shmem;
  146. void __iomem *rptr;
  147. int i;
  148. myri_disable_irq(mp->lregs, mp->cregs);
  149. myri_reset_on(mp->cregs);
  150. rptr = mp->lanai;
  151. for (i = 0; i < mp->eeprom.ramsz; i++)
  152. sbus_writeb(0, rptr + i);
  153. if (mp->eeprom.cpuvers >= CPUVERS_3_0)
  154. sbus_writel(mp->eeprom.cval, mp->lregs + LANAI_CVAL);
  155. /* Load executable code. */
  156. for (i = 0; i < sizeof(lanai4_code); i++)
  157. sbus_writeb(lanai4_code[i], rptr + (lanai4_code_off * 2) + i);
  158. /* Load data segment. */
  159. for (i = 0; i < sizeof(lanai4_data); i++)
  160. sbus_writeb(lanai4_data[i], rptr + (lanai4_data_off * 2) + i);
  161. /* Set device address. */
  162. sbus_writeb(0, &shmem->addr[0]);
  163. sbus_writeb(0, &shmem->addr[1]);
  164. for (i = 0; i < 6; i++)
  165. sbus_writeb(dev->dev_addr[i],
  166. &shmem->addr[i + 2]);
  167. /* Set SBUS bursts and interrupt mask. */
  168. sbus_writel(((mp->myri_bursts & 0xf8) >> 3), &shmem->burst);
  169. sbus_writel(SHMEM_IMASK_RX, &shmem->imask);
  170. /* Release the LANAI. */
  171. myri_disable_irq(mp->lregs, mp->cregs);
  172. myri_reset_off(mp->lregs, mp->cregs);
  173. myri_disable_irq(mp->lregs, mp->cregs);
  174. /* Wait for the reset to complete. */
  175. for (i = 0; i < 5000; i++) {
  176. if (sbus_readl(&shmem->channel.state) != STATE_READY)
  177. break;
  178. else
  179. udelay(10);
  180. }
  181. if (i == 5000)
  182. printk(KERN_ERR "myricom: Chip would not reset after firmware load.\n");
  183. i = myri_do_handshake(mp);
  184. if (i)
  185. printk(KERN_ERR "myricom: Handshake with LANAI failed.\n");
  186. if (mp->eeprom.cpuvers == CPUVERS_4_0)
  187. sbus_writel(0, mp->lregs + LANAI_VERS);
  188. return i;
  189. }
  190. static void myri_clean_rings(struct myri_eth *mp)
  191. {
  192. struct sendq __iomem *sq = mp->sq;
  193. struct recvq __iomem *rq = mp->rq;
  194. int i;
  195. sbus_writel(0, &rq->tail);
  196. sbus_writel(0, &rq->head);
  197. for (i = 0; i < (RX_RING_SIZE+1); i++) {
  198. if (mp->rx_skbs[i] != NULL) {
  199. struct myri_rxd __iomem *rxd = &rq->myri_rxd[i];
  200. u32 dma_addr;
  201. dma_addr = sbus_readl(&rxd->myri_scatters[0].addr);
  202. dma_unmap_single(&mp->myri_op->dev, dma_addr,
  203. RX_ALLOC_SIZE, DMA_FROM_DEVICE);
  204. dev_kfree_skb(mp->rx_skbs[i]);
  205. mp->rx_skbs[i] = NULL;
  206. }
  207. }
  208. mp->tx_old = 0;
  209. sbus_writel(0, &sq->tail);
  210. sbus_writel(0, &sq->head);
  211. for (i = 0; i < TX_RING_SIZE; i++) {
  212. if (mp->tx_skbs[i] != NULL) {
  213. struct sk_buff *skb = mp->tx_skbs[i];
  214. struct myri_txd __iomem *txd = &sq->myri_txd[i];
  215. u32 dma_addr;
  216. dma_addr = sbus_readl(&txd->myri_gathers[0].addr);
  217. dma_unmap_single(&mp->myri_op->dev, dma_addr,
  218. (skb->len + 3) & ~3,
  219. DMA_TO_DEVICE);
  220. dev_kfree_skb(mp->tx_skbs[i]);
  221. mp->tx_skbs[i] = NULL;
  222. }
  223. }
  224. }
  225. static void myri_init_rings(struct myri_eth *mp, int from_irq)
  226. {
  227. struct recvq __iomem *rq = mp->rq;
  228. struct myri_rxd __iomem *rxd = &rq->myri_rxd[0];
  229. struct net_device *dev = mp->dev;
  230. gfp_t gfp_flags = GFP_KERNEL;
  231. int i;
  232. if (from_irq || in_interrupt())
  233. gfp_flags = GFP_ATOMIC;
  234. myri_clean_rings(mp);
  235. for (i = 0; i < RX_RING_SIZE; i++) {
  236. struct sk_buff *skb = myri_alloc_skb(RX_ALLOC_SIZE, gfp_flags);
  237. u32 dma_addr;
  238. if (!skb)
  239. continue;
  240. mp->rx_skbs[i] = skb;
  241. skb->dev = dev;
  242. skb_put(skb, RX_ALLOC_SIZE);
  243. dma_addr = dma_map_single(&mp->myri_op->dev,
  244. skb->data, RX_ALLOC_SIZE,
  245. DMA_FROM_DEVICE);
  246. sbus_writel(dma_addr, &rxd[i].myri_scatters[0].addr);
  247. sbus_writel(RX_ALLOC_SIZE, &rxd[i].myri_scatters[0].len);
  248. sbus_writel(i, &rxd[i].ctx);
  249. sbus_writel(1, &rxd[i].num_sg);
  250. }
  251. sbus_writel(0, &rq->head);
  252. sbus_writel(RX_RING_SIZE, &rq->tail);
  253. }
  254. static int myri_init(struct myri_eth *mp, int from_irq)
  255. {
  256. myri_init_rings(mp, from_irq);
  257. return 0;
  258. }
  259. static void myri_is_not_so_happy(struct myri_eth *mp)
  260. {
  261. }
  262. #ifdef DEBUG_HEADER
  263. static void dump_ehdr(struct ethhdr *ehdr)
  264. {
  265. printk("ehdr[h_dst(%pM)"
  266. "h_source(%pM)"
  267. "h_proto(%04x)]\n",
  268. ehdr->h_dest, ehdr->h_source, ehdr->h_proto);
  269. }
  270. static void dump_ehdr_and_myripad(unsigned char *stuff)
  271. {
  272. struct ethhdr *ehdr = (struct ethhdr *) (stuff + 2);
  273. printk("pad[%02x:%02x]", stuff[0], stuff[1]);
  274. dump_ehdr(ehdr);
  275. }
  276. #endif
  277. static void myri_tx(struct myri_eth *mp, struct net_device *dev)
  278. {
  279. struct sendq __iomem *sq= mp->sq;
  280. int entry = mp->tx_old;
  281. int limit = sbus_readl(&sq->head);
  282. DTX(("entry[%d] limit[%d] ", entry, limit));
  283. if (entry == limit)
  284. return;
  285. while (entry != limit) {
  286. struct sk_buff *skb = mp->tx_skbs[entry];
  287. u32 dma_addr;
  288. DTX(("SKB[%d] ", entry));
  289. dma_addr = sbus_readl(&sq->myri_txd[entry].myri_gathers[0].addr);
  290. dma_unmap_single(&mp->myri_op->dev, dma_addr,
  291. skb->len, DMA_TO_DEVICE);
  292. dev_kfree_skb(skb);
  293. mp->tx_skbs[entry] = NULL;
  294. dev->stats.tx_packets++;
  295. entry = NEXT_TX(entry);
  296. }
  297. mp->tx_old = entry;
  298. }
  299. /* Determine the packet's protocol ID. The rule here is that we
  300. * assume 802.3 if the type field is short enough to be a length.
  301. * This is normal practice and works for any 'now in use' protocol.
  302. */
  303. static __be16 myri_type_trans(struct sk_buff *skb, struct net_device *dev)
  304. {
  305. struct ethhdr *eth;
  306. unsigned char *rawp;
  307. skb_set_mac_header(skb, MYRI_PAD_LEN);
  308. skb_pull(skb, dev->hard_header_len);
  309. eth = eth_hdr(skb);
  310. #ifdef DEBUG_HEADER
  311. DHDR(("myri_type_trans: "));
  312. dump_ehdr(eth);
  313. #endif
  314. if (*eth->h_dest & 1) {
  315. if (memcmp(eth->h_dest, dev->broadcast, ETH_ALEN)==0)
  316. skb->pkt_type = PACKET_BROADCAST;
  317. else
  318. skb->pkt_type = PACKET_MULTICAST;
  319. } else if (dev->flags & (IFF_PROMISC|IFF_ALLMULTI)) {
  320. if (memcmp(eth->h_dest, dev->dev_addr, ETH_ALEN))
  321. skb->pkt_type = PACKET_OTHERHOST;
  322. }
  323. if (ntohs(eth->h_proto) >= 1536)
  324. return eth->h_proto;
  325. rawp = skb->data;
  326. /* This is a magic hack to spot IPX packets. Older Novell breaks
  327. * the protocol design and runs IPX over 802.3 without an 802.2 LLC
  328. * layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This
  329. * won't work for fault tolerant netware but does for the rest.
  330. */
  331. if (*(unsigned short *)rawp == 0xFFFF)
  332. return htons(ETH_P_802_3);
  333. /* Real 802.2 LLC */
  334. return htons(ETH_P_802_2);
  335. }
  336. static void myri_rx(struct myri_eth *mp, struct net_device *dev)
  337. {
  338. struct recvq __iomem *rq = mp->rq;
  339. struct recvq __iomem *rqa = mp->rqack;
  340. int entry = sbus_readl(&rqa->head);
  341. int limit = sbus_readl(&rqa->tail);
  342. int drops;
  343. DRX(("entry[%d] limit[%d] ", entry, limit));
  344. if (entry == limit)
  345. return;
  346. drops = 0;
  347. DRX(("\n"));
  348. while (entry != limit) {
  349. struct myri_rxd __iomem *rxdack = &rqa->myri_rxd[entry];
  350. u32 csum = sbus_readl(&rxdack->csum);
  351. int len = sbus_readl(&rxdack->myri_scatters[0].len);
  352. int index = sbus_readl(&rxdack->ctx);
  353. struct myri_rxd __iomem *rxd = &rq->myri_rxd[sbus_readl(&rq->tail)];
  354. struct sk_buff *skb = mp->rx_skbs[index];
  355. /* Ack it. */
  356. sbus_writel(NEXT_RX(entry), &rqa->head);
  357. /* Check for errors. */
  358. DRX(("rxd[%d]: %p len[%d] csum[%08x] ", entry, rxd, len, csum));
  359. dma_sync_single_for_cpu(&mp->myri_op->dev,
  360. sbus_readl(&rxd->myri_scatters[0].addr),
  361. RX_ALLOC_SIZE, DMA_FROM_DEVICE);
  362. if (len < (ETH_HLEN + MYRI_PAD_LEN) || (skb->data[0] != MYRI_PAD_LEN)) {
  363. DRX(("ERROR["));
  364. dev->stats.rx_errors++;
  365. if (len < (ETH_HLEN + MYRI_PAD_LEN)) {
  366. DRX(("BAD_LENGTH] "));
  367. dev->stats.rx_length_errors++;
  368. } else {
  369. DRX(("NO_PADDING] "));
  370. dev->stats.rx_frame_errors++;
  371. }
  372. /* Return it to the LANAI. */
  373. drop_it:
  374. drops++;
  375. DRX(("DROP "));
  376. dev->stats.rx_dropped++;
  377. dma_sync_single_for_device(&mp->myri_op->dev,
  378. sbus_readl(&rxd->myri_scatters[0].addr),
  379. RX_ALLOC_SIZE,
  380. DMA_FROM_DEVICE);
  381. sbus_writel(RX_ALLOC_SIZE, &rxd->myri_scatters[0].len);
  382. sbus_writel(index, &rxd->ctx);
  383. sbus_writel(1, &rxd->num_sg);
  384. sbus_writel(NEXT_RX(sbus_readl(&rq->tail)), &rq->tail);
  385. goto next;
  386. }
  387. DRX(("len[%d] ", len));
  388. if (len > RX_COPY_THRESHOLD) {
  389. struct sk_buff *new_skb;
  390. u32 dma_addr;
  391. DRX(("BIGBUFF "));
  392. new_skb = myri_alloc_skb(RX_ALLOC_SIZE, GFP_ATOMIC);
  393. if (new_skb == NULL) {
  394. DRX(("skb_alloc(FAILED) "));
  395. goto drop_it;
  396. }
  397. dma_unmap_single(&mp->myri_op->dev,
  398. sbus_readl(&rxd->myri_scatters[0].addr),
  399. RX_ALLOC_SIZE,
  400. DMA_FROM_DEVICE);
  401. mp->rx_skbs[index] = new_skb;
  402. new_skb->dev = dev;
  403. skb_put(new_skb, RX_ALLOC_SIZE);
  404. dma_addr = dma_map_single(&mp->myri_op->dev,
  405. new_skb->data,
  406. RX_ALLOC_SIZE,
  407. DMA_FROM_DEVICE);
  408. sbus_writel(dma_addr, &rxd->myri_scatters[0].addr);
  409. sbus_writel(RX_ALLOC_SIZE, &rxd->myri_scatters[0].len);
  410. sbus_writel(index, &rxd->ctx);
  411. sbus_writel(1, &rxd->num_sg);
  412. sbus_writel(NEXT_RX(sbus_readl(&rq->tail)), &rq->tail);
  413. /* Trim the original skb for the netif. */
  414. DRX(("trim(%d) ", len));
  415. skb_trim(skb, len);
  416. } else {
  417. struct sk_buff *copy_skb = dev_alloc_skb(len);
  418. DRX(("SMALLBUFF "));
  419. if (copy_skb == NULL) {
  420. DRX(("dev_alloc_skb(FAILED) "));
  421. goto drop_it;
  422. }
  423. /* DMA sync already done above. */
  424. copy_skb->dev = dev;
  425. DRX(("resv_and_put "));
  426. skb_put(copy_skb, len);
  427. skb_copy_from_linear_data(skb, copy_skb->data, len);
  428. /* Reuse original ring buffer. */
  429. DRX(("reuse "));
  430. dma_sync_single_for_device(&mp->myri_op->dev,
  431. sbus_readl(&rxd->myri_scatters[0].addr),
  432. RX_ALLOC_SIZE,
  433. DMA_FROM_DEVICE);
  434. sbus_writel(RX_ALLOC_SIZE, &rxd->myri_scatters[0].len);
  435. sbus_writel(index, &rxd->ctx);
  436. sbus_writel(1, &rxd->num_sg);
  437. sbus_writel(NEXT_RX(sbus_readl(&rq->tail)), &rq->tail);
  438. skb = copy_skb;
  439. }
  440. /* Just like the happy meal we get checksums from this card. */
  441. skb->csum = csum;
  442. skb->ip_summed = CHECKSUM_UNNECESSARY; /* XXX */
  443. skb->protocol = myri_type_trans(skb, dev);
  444. DRX(("prot[%04x] netif_rx ", skb->protocol));
  445. netif_rx(skb);
  446. dev->stats.rx_packets++;
  447. dev->stats.rx_bytes += len;
  448. next:
  449. DRX(("NEXT\n"));
  450. entry = NEXT_RX(entry);
  451. }
  452. }
  453. static irqreturn_t myri_interrupt(int irq, void *dev_id)
  454. {
  455. struct net_device *dev = (struct net_device *) dev_id;
  456. struct myri_eth *mp = netdev_priv(dev);
  457. void __iomem *lregs = mp->lregs;
  458. struct myri_channel __iomem *chan = &mp->shmem->channel;
  459. unsigned long flags;
  460. u32 status;
  461. int handled = 0;
  462. spin_lock_irqsave(&mp->irq_lock, flags);
  463. status = sbus_readl(lregs + LANAI_ISTAT);
  464. DIRQ(("myri_interrupt: status[%08x] ", status));
  465. if (status & ISTAT_HOST) {
  466. u32 softstate;
  467. handled = 1;
  468. DIRQ(("IRQ_DISAB "));
  469. myri_disable_irq(lregs, mp->cregs);
  470. softstate = sbus_readl(&chan->state);
  471. DIRQ(("state[%08x] ", softstate));
  472. if (softstate != STATE_READY) {
  473. DIRQ(("myri_not_so_happy "));
  474. myri_is_not_so_happy(mp);
  475. }
  476. DIRQ(("\nmyri_rx: "));
  477. myri_rx(mp, dev);
  478. DIRQ(("\nistat=ISTAT_HOST "));
  479. sbus_writel(ISTAT_HOST, lregs + LANAI_ISTAT);
  480. DIRQ(("IRQ_ENAB "));
  481. myri_enable_irq(lregs, mp->cregs);
  482. }
  483. DIRQ(("\n"));
  484. spin_unlock_irqrestore(&mp->irq_lock, flags);
  485. return IRQ_RETVAL(handled);
  486. }
  487. static int myri_open(struct net_device *dev)
  488. {
  489. struct myri_eth *mp = netdev_priv(dev);
  490. return myri_init(mp, in_interrupt());
  491. }
  492. static int myri_close(struct net_device *dev)
  493. {
  494. struct myri_eth *mp = netdev_priv(dev);
  495. myri_clean_rings(mp);
  496. return 0;
  497. }
  498. static void myri_tx_timeout(struct net_device *dev)
  499. {
  500. struct myri_eth *mp = netdev_priv(dev);
  501. printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
  502. dev->stats.tx_errors++;
  503. myri_init(mp, 0);
  504. netif_wake_queue(dev);
  505. }
  506. static int myri_start_xmit(struct sk_buff *skb, struct net_device *dev)
  507. {
  508. struct myri_eth *mp = netdev_priv(dev);
  509. struct sendq __iomem *sq = mp->sq;
  510. struct myri_txd __iomem *txd;
  511. unsigned long flags;
  512. unsigned int head, tail;
  513. int len, entry;
  514. u32 dma_addr;
  515. DTX(("myri_start_xmit: "));
  516. myri_tx(mp, dev);
  517. netif_stop_queue(dev);
  518. /* This is just to prevent multiple PIO reads for TX_BUFFS_AVAIL. */
  519. head = sbus_readl(&sq->head);
  520. tail = sbus_readl(&sq->tail);
  521. if (!TX_BUFFS_AVAIL(head, tail)) {
  522. DTX(("no buffs available, returning 1\n"));
  523. return 1;
  524. }
  525. spin_lock_irqsave(&mp->irq_lock, flags);
  526. DHDR(("xmit[skbdata(%p)]\n", skb->data));
  527. #ifdef DEBUG_HEADER
  528. dump_ehdr_and_myripad(((unsigned char *) skb->data));
  529. #endif
  530. /* XXX Maybe this can go as well. */
  531. len = skb->len;
  532. if (len & 3) {
  533. DTX(("len&3 "));
  534. len = (len + 4) & (~3);
  535. }
  536. entry = sbus_readl(&sq->tail);
  537. txd = &sq->myri_txd[entry];
  538. mp->tx_skbs[entry] = skb;
  539. /* Must do this before we sbus map it. */
  540. if (skb->data[MYRI_PAD_LEN] & 0x1) {
  541. sbus_writew(0xffff, &txd->addr[0]);
  542. sbus_writew(0xffff, &txd->addr[1]);
  543. sbus_writew(0xffff, &txd->addr[2]);
  544. sbus_writew(0xffff, &txd->addr[3]);
  545. } else {
  546. sbus_writew(0xffff, &txd->addr[0]);
  547. sbus_writew((skb->data[0] << 8) | skb->data[1], &txd->addr[1]);
  548. sbus_writew((skb->data[2] << 8) | skb->data[3], &txd->addr[2]);
  549. sbus_writew((skb->data[4] << 8) | skb->data[5], &txd->addr[3]);
  550. }
  551. dma_addr = dma_map_single(&mp->myri_op->dev, skb->data,
  552. len, DMA_TO_DEVICE);
  553. sbus_writel(dma_addr, &txd->myri_gathers[0].addr);
  554. sbus_writel(len, &txd->myri_gathers[0].len);
  555. sbus_writel(1, &txd->num_sg);
  556. sbus_writel(KERNEL_CHANNEL, &txd->chan);
  557. sbus_writel(len, &txd->len);
  558. sbus_writel((u32)-1, &txd->csum_off);
  559. sbus_writel(0, &txd->csum_field);
  560. sbus_writel(NEXT_TX(entry), &sq->tail);
  561. DTX(("BangTheChip "));
  562. bang_the_chip(mp);
  563. DTX(("tbusy=0, returning 0\n"));
  564. netif_start_queue(dev);
  565. spin_unlock_irqrestore(&mp->irq_lock, flags);
  566. return 0;
  567. }
  568. /* Create the MyriNet MAC header for an arbitrary protocol layer
  569. *
  570. * saddr=NULL means use device source address
  571. * daddr=NULL means leave destination address (eg unresolved arp)
  572. */
  573. static int myri_header(struct sk_buff *skb, struct net_device *dev,
  574. unsigned short type, const void *daddr,
  575. const void *saddr, unsigned len)
  576. {
  577. struct ethhdr *eth = (struct ethhdr *) skb_push(skb, ETH_HLEN);
  578. unsigned char *pad = (unsigned char *) skb_push(skb, MYRI_PAD_LEN);
  579. #ifdef DEBUG_HEADER
  580. DHDR(("myri_header: pad[%02x,%02x] ", pad[0], pad[1]));
  581. dump_ehdr(eth);
  582. #endif
  583. /* Set the MyriNET padding identifier. */
  584. pad[0] = MYRI_PAD_LEN;
  585. pad[1] = 0xab;
  586. /* Set the protocol type. For a packet of type ETH_P_802_3 we put the length
  587. * in here instead. It is up to the 802.2 layer to carry protocol information.
  588. */
  589. if (type != ETH_P_802_3)
  590. eth->h_proto = htons(type);
  591. else
  592. eth->h_proto = htons(len);
  593. /* Set the source hardware address. */
  594. if (saddr)
  595. memcpy(eth->h_source, saddr, dev->addr_len);
  596. else
  597. memcpy(eth->h_source, dev->dev_addr, dev->addr_len);
  598. /* Anyway, the loopback-device should never use this function... */
  599. if (dev->flags & IFF_LOOPBACK) {
  600. int i;
  601. for (i = 0; i < dev->addr_len; i++)
  602. eth->h_dest[i] = 0;
  603. return(dev->hard_header_len);
  604. }
  605. if (daddr) {
  606. memcpy(eth->h_dest, daddr, dev->addr_len);
  607. return dev->hard_header_len;
  608. }
  609. return -dev->hard_header_len;
  610. }
  611. /* Rebuild the MyriNet MAC header. This is called after an ARP
  612. * (or in future other address resolution) has completed on this
  613. * sk_buff. We now let ARP fill in the other fields.
  614. */
  615. static int myri_rebuild_header(struct sk_buff *skb)
  616. {
  617. unsigned char *pad = (unsigned char *) skb->data;
  618. struct ethhdr *eth = (struct ethhdr *) (pad + MYRI_PAD_LEN);
  619. struct net_device *dev = skb->dev;
  620. #ifdef DEBUG_HEADER
  621. DHDR(("myri_rebuild_header: pad[%02x,%02x] ", pad[0], pad[1]));
  622. dump_ehdr(eth);
  623. #endif
  624. /* Refill MyriNet padding identifiers, this is just being anal. */
  625. pad[0] = MYRI_PAD_LEN;
  626. pad[1] = 0xab;
  627. switch (eth->h_proto)
  628. {
  629. #ifdef CONFIG_INET
  630. case __constant_htons(ETH_P_IP):
  631. return arp_find(eth->h_dest, skb);
  632. #endif
  633. default:
  634. printk(KERN_DEBUG
  635. "%s: unable to resolve type %X addresses.\n",
  636. dev->name, (int)eth->h_proto);
  637. memcpy(eth->h_source, dev->dev_addr, dev->addr_len);
  638. return 0;
  639. break;
  640. }
  641. return 0;
  642. }
  643. static int myri_header_cache(const struct neighbour *neigh, struct hh_cache *hh)
  644. {
  645. unsigned short type = hh->hh_type;
  646. unsigned char *pad;
  647. struct ethhdr *eth;
  648. const struct net_device *dev = neigh->dev;
  649. pad = ((unsigned char *) hh->hh_data) +
  650. HH_DATA_OFF(sizeof(*eth) + MYRI_PAD_LEN);
  651. eth = (struct ethhdr *) (pad + MYRI_PAD_LEN);
  652. if (type == htons(ETH_P_802_3))
  653. return -1;
  654. /* Refill MyriNet padding identifiers, this is just being anal. */
  655. pad[0] = MYRI_PAD_LEN;
  656. pad[1] = 0xab;
  657. eth->h_proto = type;
  658. memcpy(eth->h_source, dev->dev_addr, dev->addr_len);
  659. memcpy(eth->h_dest, neigh->ha, dev->addr_len);
  660. hh->hh_len = 16;
  661. return 0;
  662. }
  663. /* Called by Address Resolution module to notify changes in address. */
  664. void myri_header_cache_update(struct hh_cache *hh,
  665. const struct net_device *dev,
  666. const unsigned char * haddr)
  667. {
  668. memcpy(((u8*)hh->hh_data) + HH_DATA_OFF(sizeof(struct ethhdr)),
  669. haddr, dev->addr_len);
  670. }
  671. static int myri_change_mtu(struct net_device *dev, int new_mtu)
  672. {
  673. if ((new_mtu < (ETH_HLEN + MYRI_PAD_LEN)) || (new_mtu > MYRINET_MTU))
  674. return -EINVAL;
  675. dev->mtu = new_mtu;
  676. return 0;
  677. }
  678. static void myri_set_multicast(struct net_device *dev)
  679. {
  680. /* Do nothing, all MyriCOM nodes transmit multicast frames
  681. * as broadcast packets...
  682. */
  683. }
  684. static inline void set_boardid_from_idprom(struct myri_eth *mp, int num)
  685. {
  686. mp->eeprom.id[0] = 0;
  687. mp->eeprom.id[1] = idprom->id_machtype;
  688. mp->eeprom.id[2] = (idprom->id_sernum >> 16) & 0xff;
  689. mp->eeprom.id[3] = (idprom->id_sernum >> 8) & 0xff;
  690. mp->eeprom.id[4] = (idprom->id_sernum >> 0) & 0xff;
  691. mp->eeprom.id[5] = num;
  692. }
  693. static inline void determine_reg_space_size(struct myri_eth *mp)
  694. {
  695. switch(mp->eeprom.cpuvers) {
  696. case CPUVERS_2_3:
  697. case CPUVERS_3_0:
  698. case CPUVERS_3_1:
  699. case CPUVERS_3_2:
  700. mp->reg_size = (3 * 128 * 1024) + 4096;
  701. break;
  702. case CPUVERS_4_0:
  703. case CPUVERS_4_1:
  704. mp->reg_size = ((4096<<1) + mp->eeprom.ramsz);
  705. break;
  706. case CPUVERS_4_2:
  707. case CPUVERS_5_0:
  708. default:
  709. printk("myricom: AIEEE weird cpu version %04x assuming pre4.0\n",
  710. mp->eeprom.cpuvers);
  711. mp->reg_size = (3 * 128 * 1024) + 4096;
  712. };
  713. }
  714. #ifdef DEBUG_DETECT
  715. static void dump_eeprom(struct myri_eth *mp)
  716. {
  717. printk("EEPROM: clockval[%08x] cpuvers[%04x] "
  718. "id[%02x,%02x,%02x,%02x,%02x,%02x]\n",
  719. mp->eeprom.cval, mp->eeprom.cpuvers,
  720. mp->eeprom.id[0], mp->eeprom.id[1], mp->eeprom.id[2],
  721. mp->eeprom.id[3], mp->eeprom.id[4], mp->eeprom.id[5]);
  722. printk("EEPROM: ramsz[%08x]\n", mp->eeprom.ramsz);
  723. printk("EEPROM: fvers[%02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x\n",
  724. mp->eeprom.fvers[0], mp->eeprom.fvers[1], mp->eeprom.fvers[2],
  725. mp->eeprom.fvers[3], mp->eeprom.fvers[4], mp->eeprom.fvers[5],
  726. mp->eeprom.fvers[6], mp->eeprom.fvers[7]);
  727. printk("EEPROM: %02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x\n",
  728. mp->eeprom.fvers[8], mp->eeprom.fvers[9], mp->eeprom.fvers[10],
  729. mp->eeprom.fvers[11], mp->eeprom.fvers[12], mp->eeprom.fvers[13],
  730. mp->eeprom.fvers[14], mp->eeprom.fvers[15]);
  731. printk("EEPROM: %02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x\n",
  732. mp->eeprom.fvers[16], mp->eeprom.fvers[17], mp->eeprom.fvers[18],
  733. mp->eeprom.fvers[19], mp->eeprom.fvers[20], mp->eeprom.fvers[21],
  734. mp->eeprom.fvers[22], mp->eeprom.fvers[23]);
  735. printk("EEPROM: %02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x]\n",
  736. mp->eeprom.fvers[24], mp->eeprom.fvers[25], mp->eeprom.fvers[26],
  737. mp->eeprom.fvers[27], mp->eeprom.fvers[28], mp->eeprom.fvers[29],
  738. mp->eeprom.fvers[30], mp->eeprom.fvers[31]);
  739. printk("EEPROM: mvers[%02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x\n",
  740. mp->eeprom.mvers[0], mp->eeprom.mvers[1], mp->eeprom.mvers[2],
  741. mp->eeprom.mvers[3], mp->eeprom.mvers[4], mp->eeprom.mvers[5],
  742. mp->eeprom.mvers[6], mp->eeprom.mvers[7]);
  743. printk("EEPROM: %02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x]\n",
  744. mp->eeprom.mvers[8], mp->eeprom.mvers[9], mp->eeprom.mvers[10],
  745. mp->eeprom.mvers[11], mp->eeprom.mvers[12], mp->eeprom.mvers[13],
  746. mp->eeprom.mvers[14], mp->eeprom.mvers[15]);
  747. printk("EEPROM: dlval[%04x] brd_type[%04x] bus_type[%04x] prod_code[%04x]\n",
  748. mp->eeprom.dlval, mp->eeprom.brd_type, mp->eeprom.bus_type,
  749. mp->eeprom.prod_code);
  750. printk("EEPROM: serial_num[%08x]\n", mp->eeprom.serial_num);
  751. }
  752. #endif
  753. static const struct header_ops myri_header_ops = {
  754. .create = myri_header,
  755. .rebuild = myri_rebuild_header,
  756. .cache = myri_header_cache,
  757. .cache_update = myri_header_cache_update,
  758. };
  759. static int __devinit myri_sbus_probe(struct of_device *op, const struct of_device_id *match)
  760. {
  761. struct device_node *dp = op->node;
  762. static unsigned version_printed;
  763. struct net_device *dev;
  764. struct myri_eth *mp;
  765. const void *prop;
  766. static int num;
  767. int i, len;
  768. DET(("myri_ether_init(%p,%d):\n", op, num));
  769. dev = alloc_etherdev(sizeof(struct myri_eth));
  770. if (!dev)
  771. return -ENOMEM;
  772. if (version_printed++ == 0)
  773. printk(version);
  774. SET_NETDEV_DEV(dev, &op->dev);
  775. mp = netdev_priv(dev);
  776. spin_lock_init(&mp->irq_lock);
  777. mp->myri_op = op;
  778. /* Clean out skb arrays. */
  779. for (i = 0; i < (RX_RING_SIZE + 1); i++)
  780. mp->rx_skbs[i] = NULL;
  781. for (i = 0; i < TX_RING_SIZE; i++)
  782. mp->tx_skbs[i] = NULL;
  783. /* First check for EEPROM information. */
  784. prop = of_get_property(dp, "myrinet-eeprom-info", &len);
  785. if (prop)
  786. memcpy(&mp->eeprom, prop, sizeof(struct myri_eeprom));
  787. if (!prop) {
  788. /* No eeprom property, must cook up the values ourselves. */
  789. DET(("No EEPROM: "));
  790. mp->eeprom.bus_type = BUS_TYPE_SBUS;
  791. mp->eeprom.cpuvers =
  792. of_getintprop_default(dp, "cpu_version", 0);
  793. mp->eeprom.cval =
  794. of_getintprop_default(dp, "clock_value", 0);
  795. mp->eeprom.ramsz = of_getintprop_default(dp, "sram_size", 0);
  796. if (!mp->eeprom.cpuvers)
  797. mp->eeprom.cpuvers = CPUVERS_2_3;
  798. if (mp->eeprom.cpuvers < CPUVERS_3_0)
  799. mp->eeprom.cval = 0;
  800. if (!mp->eeprom.ramsz)
  801. mp->eeprom.ramsz = (128 * 1024);
  802. prop = of_get_property(dp, "myrinet-board-id", &len);
  803. if (prop)
  804. memcpy(&mp->eeprom.id[0], prop, 6);
  805. else
  806. set_boardid_from_idprom(mp, num);
  807. prop = of_get_property(dp, "fpga_version", &len);
  808. if (prop)
  809. memcpy(&mp->eeprom.fvers[0], prop, 32);
  810. else
  811. memset(&mp->eeprom.fvers[0], 0, 32);
  812. if (mp->eeprom.cpuvers == CPUVERS_4_1) {
  813. if (mp->eeprom.ramsz == (128 * 1024))
  814. mp->eeprom.ramsz = (256 * 1024);
  815. if ((mp->eeprom.cval == 0x40414041) ||
  816. (mp->eeprom.cval == 0x90449044))
  817. mp->eeprom.cval = 0x50e450e4;
  818. }
  819. }
  820. #ifdef DEBUG_DETECT
  821. dump_eeprom(mp);
  822. #endif
  823. for (i = 0; i < 6; i++)
  824. dev->dev_addr[i] = mp->eeprom.id[i];
  825. determine_reg_space_size(mp);
  826. /* Map in the MyriCOM register/localram set. */
  827. if (mp->eeprom.cpuvers < CPUVERS_4_0) {
  828. /* XXX Makes no sense, if control reg is non-existant this
  829. * XXX driver cannot function at all... maybe pre-4.0 is
  830. * XXX only a valid version for PCI cards? Ask feldy...
  831. */
  832. DET(("Mapping regs for cpuvers < CPUVERS_4_0\n"));
  833. mp->regs = of_ioremap(&op->resource[0], 0,
  834. mp->reg_size, "MyriCOM Regs");
  835. if (!mp->regs) {
  836. printk("MyriCOM: Cannot map MyriCOM registers.\n");
  837. goto err;
  838. }
  839. mp->lanai = mp->regs + (256 * 1024);
  840. mp->lregs = mp->lanai + (0x10000 * 2);
  841. } else {
  842. DET(("Mapping regs for cpuvers >= CPUVERS_4_0\n"));
  843. mp->cregs = of_ioremap(&op->resource[0], 0,
  844. PAGE_SIZE, "MyriCOM Control Regs");
  845. mp->lregs = of_ioremap(&op->resource[0], (256 * 1024),
  846. PAGE_SIZE, "MyriCOM LANAI Regs");
  847. mp->lanai = of_ioremap(&op->resource[0], (512 * 1024),
  848. mp->eeprom.ramsz, "MyriCOM SRAM");
  849. }
  850. DET(("Registers mapped: cregs[%p] lregs[%p] lanai[%p]\n",
  851. mp->cregs, mp->lregs, mp->lanai));
  852. if (mp->eeprom.cpuvers >= CPUVERS_4_0)
  853. mp->shmem_base = 0xf000;
  854. else
  855. mp->shmem_base = 0x8000;
  856. DET(("Shared memory base is %04x, ", mp->shmem_base));
  857. mp->shmem = (struct myri_shmem __iomem *)
  858. (mp->lanai + (mp->shmem_base * 2));
  859. DET(("shmem mapped at %p\n", mp->shmem));
  860. mp->rqack = &mp->shmem->channel.recvqa;
  861. mp->rq = &mp->shmem->channel.recvq;
  862. mp->sq = &mp->shmem->channel.sendq;
  863. /* Reset the board. */
  864. DET(("Resetting LANAI\n"));
  865. myri_reset_off(mp->lregs, mp->cregs);
  866. myri_reset_on(mp->cregs);
  867. /* Turn IRQ's off. */
  868. myri_disable_irq(mp->lregs, mp->cregs);
  869. /* Reset once more. */
  870. myri_reset_on(mp->cregs);
  871. /* Get the supported DVMA burst sizes from our SBUS. */
  872. mp->myri_bursts = of_getintprop_default(dp->parent,
  873. "burst-sizes", 0x00);
  874. if (!sbus_can_burst64())
  875. mp->myri_bursts &= ~(DMA_BURST64);
  876. DET(("MYRI bursts %02x\n", mp->myri_bursts));
  877. /* Encode SBUS interrupt level in second control register. */
  878. i = of_getintprop_default(dp, "interrupts", 0);
  879. if (i == 0)
  880. i = 4;
  881. DET(("prom_getint(interrupts)==%d, irqlvl set to %04x\n",
  882. i, (1 << i)));
  883. sbus_writel((1 << i), mp->cregs + MYRICTRL_IRQLVL);
  884. mp->dev = dev;
  885. dev->open = &myri_open;
  886. dev->stop = &myri_close;
  887. dev->hard_start_xmit = &myri_start_xmit;
  888. dev->tx_timeout = &myri_tx_timeout;
  889. dev->watchdog_timeo = 5*HZ;
  890. dev->set_multicast_list = &myri_set_multicast;
  891. dev->irq = op->irqs[0];
  892. /* Register interrupt handler now. */
  893. DET(("Requesting MYRIcom IRQ line.\n"));
  894. if (request_irq(dev->irq, &myri_interrupt,
  895. IRQF_SHARED, "MyriCOM Ethernet", (void *) dev)) {
  896. printk("MyriCOM: Cannot register interrupt handler.\n");
  897. goto err;
  898. }
  899. dev->mtu = MYRINET_MTU;
  900. dev->change_mtu = myri_change_mtu;
  901. dev->header_ops = &myri_header_ops;
  902. dev->hard_header_len = (ETH_HLEN + MYRI_PAD_LEN);
  903. /* Load code onto the LANai. */
  904. DET(("Loading LANAI firmware\n"));
  905. myri_load_lanai(mp);
  906. if (register_netdev(dev)) {
  907. printk("MyriCOM: Cannot register device.\n");
  908. goto err_free_irq;
  909. }
  910. dev_set_drvdata(&op->dev, mp);
  911. num++;
  912. printk("%s: MyriCOM MyriNET Ethernet %pM\n",
  913. dev->name, dev->dev_addr);
  914. return 0;
  915. err_free_irq:
  916. free_irq(dev->irq, dev);
  917. err:
  918. /* This will also free the co-allocated private data*/
  919. free_netdev(dev);
  920. return -ENODEV;
  921. }
  922. static int __devexit myri_sbus_remove(struct of_device *op)
  923. {
  924. struct myri_eth *mp = dev_get_drvdata(&op->dev);
  925. struct net_device *net_dev = mp->dev;
  926. unregister_netdev(net_dev);
  927. free_irq(net_dev->irq, net_dev);
  928. if (mp->eeprom.cpuvers < CPUVERS_4_0) {
  929. of_iounmap(&op->resource[0], mp->regs, mp->reg_size);
  930. } else {
  931. of_iounmap(&op->resource[0], mp->cregs, PAGE_SIZE);
  932. of_iounmap(&op->resource[0], mp->lregs, (256 * 1024));
  933. of_iounmap(&op->resource[0], mp->lanai, (512 * 1024));
  934. }
  935. free_netdev(net_dev);
  936. dev_set_drvdata(&op->dev, NULL);
  937. return 0;
  938. }
  939. static const struct of_device_id myri_sbus_match[] = {
  940. {
  941. .name = "MYRICOM,mlanai",
  942. },
  943. {
  944. .name = "myri",
  945. },
  946. {},
  947. };
  948. MODULE_DEVICE_TABLE(of, myri_sbus_match);
  949. static struct of_platform_driver myri_sbus_driver = {
  950. .name = "myri",
  951. .match_table = myri_sbus_match,
  952. .probe = myri_sbus_probe,
  953. .remove = __devexit_p(myri_sbus_remove),
  954. };
  955. static int __init myri_sbus_init(void)
  956. {
  957. return of_register_driver(&myri_sbus_driver, &of_bus_type);
  958. }
  959. static void __exit myri_sbus_exit(void)
  960. {
  961. of_unregister_driver(&myri_sbus_driver);
  962. }
  963. module_init(myri_sbus_init);
  964. module_exit(myri_sbus_exit);
  965. MODULE_LICENSE("GPL");