t3_hw.c 111 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743
  1. /*
  2. * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. */
  32. #include "common.h"
  33. #include "regs.h"
  34. #include "sge_defs.h"
  35. #include "firmware_exports.h"
  36. /**
  37. * t3_wait_op_done_val - wait until an operation is completed
  38. * @adapter: the adapter performing the operation
  39. * @reg: the register to check for completion
  40. * @mask: a single-bit field within @reg that indicates completion
  41. * @polarity: the value of the field when the operation is completed
  42. * @attempts: number of check iterations
  43. * @delay: delay in usecs between iterations
  44. * @valp: where to store the value of the register at completion time
  45. *
  46. * Wait until an operation is completed by checking a bit in a register
  47. * up to @attempts times. If @valp is not NULL the value of the register
  48. * at the time it indicated completion is stored there. Returns 0 if the
  49. * operation completes and -EAGAIN otherwise.
  50. */
  51. int t3_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
  52. int polarity, int attempts, int delay, u32 *valp)
  53. {
  54. while (1) {
  55. u32 val = t3_read_reg(adapter, reg);
  56. if (!!(val & mask) == polarity) {
  57. if (valp)
  58. *valp = val;
  59. return 0;
  60. }
  61. if (--attempts == 0)
  62. return -EAGAIN;
  63. if (delay)
  64. udelay(delay);
  65. }
  66. }
  67. /**
  68. * t3_write_regs - write a bunch of registers
  69. * @adapter: the adapter to program
  70. * @p: an array of register address/register value pairs
  71. * @n: the number of address/value pairs
  72. * @offset: register address offset
  73. *
  74. * Takes an array of register address/register value pairs and writes each
  75. * value to the corresponding register. Register addresses are adjusted
  76. * by the supplied offset.
  77. */
  78. void t3_write_regs(struct adapter *adapter, const struct addr_val_pair *p,
  79. int n, unsigned int offset)
  80. {
  81. while (n--) {
  82. t3_write_reg(adapter, p->reg_addr + offset, p->val);
  83. p++;
  84. }
  85. }
  86. /**
  87. * t3_set_reg_field - set a register field to a value
  88. * @adapter: the adapter to program
  89. * @addr: the register address
  90. * @mask: specifies the portion of the register to modify
  91. * @val: the new value for the register field
  92. *
  93. * Sets a register field specified by the supplied mask to the
  94. * given value.
  95. */
  96. void t3_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
  97. u32 val)
  98. {
  99. u32 v = t3_read_reg(adapter, addr) & ~mask;
  100. t3_write_reg(adapter, addr, v | val);
  101. t3_read_reg(adapter, addr); /* flush */
  102. }
  103. /**
  104. * t3_read_indirect - read indirectly addressed registers
  105. * @adap: the adapter
  106. * @addr_reg: register holding the indirect address
  107. * @data_reg: register holding the value of the indirect register
  108. * @vals: where the read register values are stored
  109. * @start_idx: index of first indirect register to read
  110. * @nregs: how many indirect registers to read
  111. *
  112. * Reads registers that are accessed indirectly through an address/data
  113. * register pair.
  114. */
  115. static void t3_read_indirect(struct adapter *adap, unsigned int addr_reg,
  116. unsigned int data_reg, u32 *vals,
  117. unsigned int nregs, unsigned int start_idx)
  118. {
  119. while (nregs--) {
  120. t3_write_reg(adap, addr_reg, start_idx);
  121. *vals++ = t3_read_reg(adap, data_reg);
  122. start_idx++;
  123. }
  124. }
  125. /**
  126. * t3_mc7_bd_read - read from MC7 through backdoor accesses
  127. * @mc7: identifies MC7 to read from
  128. * @start: index of first 64-bit word to read
  129. * @n: number of 64-bit words to read
  130. * @buf: where to store the read result
  131. *
  132. * Read n 64-bit words from MC7 starting at word start, using backdoor
  133. * accesses.
  134. */
  135. int t3_mc7_bd_read(struct mc7 *mc7, unsigned int start, unsigned int n,
  136. u64 *buf)
  137. {
  138. static const int shift[] = { 0, 0, 16, 24 };
  139. static const int step[] = { 0, 32, 16, 8 };
  140. unsigned int size64 = mc7->size / 8; /* # of 64-bit words */
  141. struct adapter *adap = mc7->adapter;
  142. if (start >= size64 || start + n > size64)
  143. return -EINVAL;
  144. start *= (8 << mc7->width);
  145. while (n--) {
  146. int i;
  147. u64 val64 = 0;
  148. for (i = (1 << mc7->width) - 1; i >= 0; --i) {
  149. int attempts = 10;
  150. u32 val;
  151. t3_write_reg(adap, mc7->offset + A_MC7_BD_ADDR, start);
  152. t3_write_reg(adap, mc7->offset + A_MC7_BD_OP, 0);
  153. val = t3_read_reg(adap, mc7->offset + A_MC7_BD_OP);
  154. while ((val & F_BUSY) && attempts--)
  155. val = t3_read_reg(adap,
  156. mc7->offset + A_MC7_BD_OP);
  157. if (val & F_BUSY)
  158. return -EIO;
  159. val = t3_read_reg(adap, mc7->offset + A_MC7_BD_DATA1);
  160. if (mc7->width == 0) {
  161. val64 = t3_read_reg(adap,
  162. mc7->offset +
  163. A_MC7_BD_DATA0);
  164. val64 |= (u64) val << 32;
  165. } else {
  166. if (mc7->width > 1)
  167. val >>= shift[mc7->width];
  168. val64 |= (u64) val << (step[mc7->width] * i);
  169. }
  170. start += 8;
  171. }
  172. *buf++ = val64;
  173. }
  174. return 0;
  175. }
  176. /*
  177. * Initialize MI1.
  178. */
  179. static void mi1_init(struct adapter *adap, const struct adapter_info *ai)
  180. {
  181. u32 clkdiv = adap->params.vpd.cclk / (2 * adap->params.vpd.mdc) - 1;
  182. u32 val = F_PREEN | V_CLKDIV(clkdiv);
  183. t3_write_reg(adap, A_MI1_CFG, val);
  184. }
  185. #define MDIO_ATTEMPTS 20
  186. /*
  187. * MI1 read/write operations for clause 22 PHYs.
  188. */
  189. static int t3_mi1_read(struct adapter *adapter, int phy_addr, int mmd_addr,
  190. int reg_addr, unsigned int *valp)
  191. {
  192. int ret;
  193. u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
  194. if (mmd_addr)
  195. return -EINVAL;
  196. mutex_lock(&adapter->mdio_lock);
  197. t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), V_ST(1));
  198. t3_write_reg(adapter, A_MI1_ADDR, addr);
  199. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(2));
  200. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 10);
  201. if (!ret)
  202. *valp = t3_read_reg(adapter, A_MI1_DATA);
  203. mutex_unlock(&adapter->mdio_lock);
  204. return ret;
  205. }
  206. static int t3_mi1_write(struct adapter *adapter, int phy_addr, int mmd_addr,
  207. int reg_addr, unsigned int val)
  208. {
  209. int ret;
  210. u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
  211. if (mmd_addr)
  212. return -EINVAL;
  213. mutex_lock(&adapter->mdio_lock);
  214. t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), V_ST(1));
  215. t3_write_reg(adapter, A_MI1_ADDR, addr);
  216. t3_write_reg(adapter, A_MI1_DATA, val);
  217. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
  218. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 10);
  219. mutex_unlock(&adapter->mdio_lock);
  220. return ret;
  221. }
  222. static const struct mdio_ops mi1_mdio_ops = {
  223. t3_mi1_read,
  224. t3_mi1_write
  225. };
  226. /*
  227. * Performs the address cycle for clause 45 PHYs.
  228. * Must be called with the MDIO_LOCK held.
  229. */
  230. static int mi1_wr_addr(struct adapter *adapter, int phy_addr, int mmd_addr,
  231. int reg_addr)
  232. {
  233. u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
  234. t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), 0);
  235. t3_write_reg(adapter, A_MI1_ADDR, addr);
  236. t3_write_reg(adapter, A_MI1_DATA, reg_addr);
  237. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
  238. return t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
  239. MDIO_ATTEMPTS, 10);
  240. }
  241. /*
  242. * MI1 read/write operations for indirect-addressed PHYs.
  243. */
  244. static int mi1_ext_read(struct adapter *adapter, int phy_addr, int mmd_addr,
  245. int reg_addr, unsigned int *valp)
  246. {
  247. int ret;
  248. mutex_lock(&adapter->mdio_lock);
  249. ret = mi1_wr_addr(adapter, phy_addr, mmd_addr, reg_addr);
  250. if (!ret) {
  251. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(3));
  252. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
  253. MDIO_ATTEMPTS, 10);
  254. if (!ret)
  255. *valp = t3_read_reg(adapter, A_MI1_DATA);
  256. }
  257. mutex_unlock(&adapter->mdio_lock);
  258. return ret;
  259. }
  260. static int mi1_ext_write(struct adapter *adapter, int phy_addr, int mmd_addr,
  261. int reg_addr, unsigned int val)
  262. {
  263. int ret;
  264. mutex_lock(&adapter->mdio_lock);
  265. ret = mi1_wr_addr(adapter, phy_addr, mmd_addr, reg_addr);
  266. if (!ret) {
  267. t3_write_reg(adapter, A_MI1_DATA, val);
  268. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
  269. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
  270. MDIO_ATTEMPTS, 10);
  271. }
  272. mutex_unlock(&adapter->mdio_lock);
  273. return ret;
  274. }
  275. static const struct mdio_ops mi1_mdio_ext_ops = {
  276. mi1_ext_read,
  277. mi1_ext_write
  278. };
  279. /**
  280. * t3_mdio_change_bits - modify the value of a PHY register
  281. * @phy: the PHY to operate on
  282. * @mmd: the device address
  283. * @reg: the register address
  284. * @clear: what part of the register value to mask off
  285. * @set: what part of the register value to set
  286. *
  287. * Changes the value of a PHY register by applying a mask to its current
  288. * value and ORing the result with a new value.
  289. */
  290. int t3_mdio_change_bits(struct cphy *phy, int mmd, int reg, unsigned int clear,
  291. unsigned int set)
  292. {
  293. int ret;
  294. unsigned int val;
  295. ret = mdio_read(phy, mmd, reg, &val);
  296. if (!ret) {
  297. val &= ~clear;
  298. ret = mdio_write(phy, mmd, reg, val | set);
  299. }
  300. return ret;
  301. }
  302. /**
  303. * t3_phy_reset - reset a PHY block
  304. * @phy: the PHY to operate on
  305. * @mmd: the device address of the PHY block to reset
  306. * @wait: how long to wait for the reset to complete in 1ms increments
  307. *
  308. * Resets a PHY block and optionally waits for the reset to complete.
  309. * @mmd should be 0 for 10/100/1000 PHYs and the device address to reset
  310. * for 10G PHYs.
  311. */
  312. int t3_phy_reset(struct cphy *phy, int mmd, int wait)
  313. {
  314. int err;
  315. unsigned int ctl;
  316. err = t3_mdio_change_bits(phy, mmd, MII_BMCR, BMCR_PDOWN, BMCR_RESET);
  317. if (err || !wait)
  318. return err;
  319. do {
  320. err = mdio_read(phy, mmd, MII_BMCR, &ctl);
  321. if (err)
  322. return err;
  323. ctl &= BMCR_RESET;
  324. if (ctl)
  325. msleep(1);
  326. } while (ctl && --wait);
  327. return ctl ? -1 : 0;
  328. }
  329. /**
  330. * t3_phy_advertise - set the PHY advertisement registers for autoneg
  331. * @phy: the PHY to operate on
  332. * @advert: bitmap of capabilities the PHY should advertise
  333. *
  334. * Sets a 10/100/1000 PHY's advertisement registers to advertise the
  335. * requested capabilities.
  336. */
  337. int t3_phy_advertise(struct cphy *phy, unsigned int advert)
  338. {
  339. int err;
  340. unsigned int val = 0;
  341. err = mdio_read(phy, 0, MII_CTRL1000, &val);
  342. if (err)
  343. return err;
  344. val &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
  345. if (advert & ADVERTISED_1000baseT_Half)
  346. val |= ADVERTISE_1000HALF;
  347. if (advert & ADVERTISED_1000baseT_Full)
  348. val |= ADVERTISE_1000FULL;
  349. err = mdio_write(phy, 0, MII_CTRL1000, val);
  350. if (err)
  351. return err;
  352. val = 1;
  353. if (advert & ADVERTISED_10baseT_Half)
  354. val |= ADVERTISE_10HALF;
  355. if (advert & ADVERTISED_10baseT_Full)
  356. val |= ADVERTISE_10FULL;
  357. if (advert & ADVERTISED_100baseT_Half)
  358. val |= ADVERTISE_100HALF;
  359. if (advert & ADVERTISED_100baseT_Full)
  360. val |= ADVERTISE_100FULL;
  361. if (advert & ADVERTISED_Pause)
  362. val |= ADVERTISE_PAUSE_CAP;
  363. if (advert & ADVERTISED_Asym_Pause)
  364. val |= ADVERTISE_PAUSE_ASYM;
  365. return mdio_write(phy, 0, MII_ADVERTISE, val);
  366. }
  367. /**
  368. * t3_phy_advertise_fiber - set fiber PHY advertisement register
  369. * @phy: the PHY to operate on
  370. * @advert: bitmap of capabilities the PHY should advertise
  371. *
  372. * Sets a fiber PHY's advertisement register to advertise the
  373. * requested capabilities.
  374. */
  375. int t3_phy_advertise_fiber(struct cphy *phy, unsigned int advert)
  376. {
  377. unsigned int val = 0;
  378. if (advert & ADVERTISED_1000baseT_Half)
  379. val |= ADVERTISE_1000XHALF;
  380. if (advert & ADVERTISED_1000baseT_Full)
  381. val |= ADVERTISE_1000XFULL;
  382. if (advert & ADVERTISED_Pause)
  383. val |= ADVERTISE_1000XPAUSE;
  384. if (advert & ADVERTISED_Asym_Pause)
  385. val |= ADVERTISE_1000XPSE_ASYM;
  386. return mdio_write(phy, 0, MII_ADVERTISE, val);
  387. }
  388. /**
  389. * t3_set_phy_speed_duplex - force PHY speed and duplex
  390. * @phy: the PHY to operate on
  391. * @speed: requested PHY speed
  392. * @duplex: requested PHY duplex
  393. *
  394. * Force a 10/100/1000 PHY's speed and duplex. This also disables
  395. * auto-negotiation except for GigE, where auto-negotiation is mandatory.
  396. */
  397. int t3_set_phy_speed_duplex(struct cphy *phy, int speed, int duplex)
  398. {
  399. int err;
  400. unsigned int ctl;
  401. err = mdio_read(phy, 0, MII_BMCR, &ctl);
  402. if (err)
  403. return err;
  404. if (speed >= 0) {
  405. ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE);
  406. if (speed == SPEED_100)
  407. ctl |= BMCR_SPEED100;
  408. else if (speed == SPEED_1000)
  409. ctl |= BMCR_SPEED1000;
  410. }
  411. if (duplex >= 0) {
  412. ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE);
  413. if (duplex == DUPLEX_FULL)
  414. ctl |= BMCR_FULLDPLX;
  415. }
  416. if (ctl & BMCR_SPEED1000) /* auto-negotiation required for GigE */
  417. ctl |= BMCR_ANENABLE;
  418. return mdio_write(phy, 0, MII_BMCR, ctl);
  419. }
  420. int t3_phy_lasi_intr_enable(struct cphy *phy)
  421. {
  422. return mdio_write(phy, MDIO_DEV_PMA_PMD, LASI_CTRL, 1);
  423. }
  424. int t3_phy_lasi_intr_disable(struct cphy *phy)
  425. {
  426. return mdio_write(phy, MDIO_DEV_PMA_PMD, LASI_CTRL, 0);
  427. }
  428. int t3_phy_lasi_intr_clear(struct cphy *phy)
  429. {
  430. u32 val;
  431. return mdio_read(phy, MDIO_DEV_PMA_PMD, LASI_STAT, &val);
  432. }
  433. int t3_phy_lasi_intr_handler(struct cphy *phy)
  434. {
  435. unsigned int status;
  436. int err = mdio_read(phy, MDIO_DEV_PMA_PMD, LASI_STAT, &status);
  437. if (err)
  438. return err;
  439. return (status & 1) ? cphy_cause_link_change : 0;
  440. }
  441. static const struct adapter_info t3_adap_info[] = {
  442. {2, 0,
  443. F_GPIO2_OEN | F_GPIO4_OEN |
  444. F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, { S_GPIO3, S_GPIO5 }, 0,
  445. &mi1_mdio_ops, "Chelsio PE9000"},
  446. {2, 0,
  447. F_GPIO2_OEN | F_GPIO4_OEN |
  448. F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, { S_GPIO3, S_GPIO5 }, 0,
  449. &mi1_mdio_ops, "Chelsio T302"},
  450. {1, 0,
  451. F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN | F_GPIO10_OEN |
  452. F_GPIO11_OEN | F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
  453. { 0 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
  454. &mi1_mdio_ext_ops, "Chelsio T310"},
  455. {2, 0,
  456. F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO5_OEN | F_GPIO6_OEN |
  457. F_GPIO7_OEN | F_GPIO10_OEN | F_GPIO11_OEN | F_GPIO1_OUT_VAL |
  458. F_GPIO5_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
  459. { S_GPIO9, S_GPIO3 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
  460. &mi1_mdio_ext_ops, "Chelsio T320"},
  461. };
  462. /*
  463. * Return the adapter_info structure with a given index. Out-of-range indices
  464. * return NULL.
  465. */
  466. const struct adapter_info *t3_get_adapter_info(unsigned int id)
  467. {
  468. return id < ARRAY_SIZE(t3_adap_info) ? &t3_adap_info[id] : NULL;
  469. }
  470. struct port_type_info {
  471. int (*phy_prep)(struct cphy *phy, struct adapter *adapter,
  472. int phy_addr, const struct mdio_ops *ops);
  473. };
  474. static const struct port_type_info port_types[] = {
  475. { NULL },
  476. { t3_ael1002_phy_prep },
  477. { t3_vsc8211_phy_prep },
  478. { NULL},
  479. { t3_xaui_direct_phy_prep },
  480. { t3_ael2005_phy_prep },
  481. { t3_qt2045_phy_prep },
  482. { t3_ael1006_phy_prep },
  483. { NULL },
  484. };
  485. #define VPD_ENTRY(name, len) \
  486. u8 name##_kword[2]; u8 name##_len; u8 name##_data[len]
  487. /*
  488. * Partial EEPROM Vital Product Data structure. Includes only the ID and
  489. * VPD-R sections.
  490. */
  491. struct t3_vpd {
  492. u8 id_tag;
  493. u8 id_len[2];
  494. u8 id_data[16];
  495. u8 vpdr_tag;
  496. u8 vpdr_len[2];
  497. VPD_ENTRY(pn, 16); /* part number */
  498. VPD_ENTRY(ec, 16); /* EC level */
  499. VPD_ENTRY(sn, SERNUM_LEN); /* serial number */
  500. VPD_ENTRY(na, 12); /* MAC address base */
  501. VPD_ENTRY(cclk, 6); /* core clock */
  502. VPD_ENTRY(mclk, 6); /* mem clock */
  503. VPD_ENTRY(uclk, 6); /* uP clk */
  504. VPD_ENTRY(mdc, 6); /* MDIO clk */
  505. VPD_ENTRY(mt, 2); /* mem timing */
  506. VPD_ENTRY(xaui0cfg, 6); /* XAUI0 config */
  507. VPD_ENTRY(xaui1cfg, 6); /* XAUI1 config */
  508. VPD_ENTRY(port0, 2); /* PHY0 complex */
  509. VPD_ENTRY(port1, 2); /* PHY1 complex */
  510. VPD_ENTRY(port2, 2); /* PHY2 complex */
  511. VPD_ENTRY(port3, 2); /* PHY3 complex */
  512. VPD_ENTRY(rv, 1); /* csum */
  513. u32 pad; /* for multiple-of-4 sizing and alignment */
  514. };
  515. #define EEPROM_MAX_POLL 40
  516. #define EEPROM_STAT_ADDR 0x4000
  517. #define VPD_BASE 0xc00
  518. /**
  519. * t3_seeprom_read - read a VPD EEPROM location
  520. * @adapter: adapter to read
  521. * @addr: EEPROM address
  522. * @data: where to store the read data
  523. *
  524. * Read a 32-bit word from a location in VPD EEPROM using the card's PCI
  525. * VPD ROM capability. A zero is written to the flag bit when the
  526. * addres is written to the control register. The hardware device will
  527. * set the flag to 1 when 4 bytes have been read into the data register.
  528. */
  529. int t3_seeprom_read(struct adapter *adapter, u32 addr, __le32 *data)
  530. {
  531. u16 val;
  532. int attempts = EEPROM_MAX_POLL;
  533. u32 v;
  534. unsigned int base = adapter->params.pci.vpd_cap_addr;
  535. if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
  536. return -EINVAL;
  537. pci_write_config_word(adapter->pdev, base + PCI_VPD_ADDR, addr);
  538. do {
  539. udelay(10);
  540. pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
  541. } while (!(val & PCI_VPD_ADDR_F) && --attempts);
  542. if (!(val & PCI_VPD_ADDR_F)) {
  543. CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr);
  544. return -EIO;
  545. }
  546. pci_read_config_dword(adapter->pdev, base + PCI_VPD_DATA, &v);
  547. *data = cpu_to_le32(v);
  548. return 0;
  549. }
  550. /**
  551. * t3_seeprom_write - write a VPD EEPROM location
  552. * @adapter: adapter to write
  553. * @addr: EEPROM address
  554. * @data: value to write
  555. *
  556. * Write a 32-bit word to a location in VPD EEPROM using the card's PCI
  557. * VPD ROM capability.
  558. */
  559. int t3_seeprom_write(struct adapter *adapter, u32 addr, __le32 data)
  560. {
  561. u16 val;
  562. int attempts = EEPROM_MAX_POLL;
  563. unsigned int base = adapter->params.pci.vpd_cap_addr;
  564. if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
  565. return -EINVAL;
  566. pci_write_config_dword(adapter->pdev, base + PCI_VPD_DATA,
  567. le32_to_cpu(data));
  568. pci_write_config_word(adapter->pdev,base + PCI_VPD_ADDR,
  569. addr | PCI_VPD_ADDR_F);
  570. do {
  571. msleep(1);
  572. pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
  573. } while ((val & PCI_VPD_ADDR_F) && --attempts);
  574. if (val & PCI_VPD_ADDR_F) {
  575. CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr);
  576. return -EIO;
  577. }
  578. return 0;
  579. }
  580. /**
  581. * t3_seeprom_wp - enable/disable EEPROM write protection
  582. * @adapter: the adapter
  583. * @enable: 1 to enable write protection, 0 to disable it
  584. *
  585. * Enables or disables write protection on the serial EEPROM.
  586. */
  587. int t3_seeprom_wp(struct adapter *adapter, int enable)
  588. {
  589. return t3_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
  590. }
  591. /*
  592. * Convert a character holding a hex digit to a number.
  593. */
  594. static unsigned int hex2int(unsigned char c)
  595. {
  596. return isdigit(c) ? c - '0' : toupper(c) - 'A' + 10;
  597. }
  598. /**
  599. * get_vpd_params - read VPD parameters from VPD EEPROM
  600. * @adapter: adapter to read
  601. * @p: where to store the parameters
  602. *
  603. * Reads card parameters stored in VPD EEPROM.
  604. */
  605. static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
  606. {
  607. int i, addr, ret;
  608. struct t3_vpd vpd;
  609. /*
  610. * Card information is normally at VPD_BASE but some early cards had
  611. * it at 0.
  612. */
  613. ret = t3_seeprom_read(adapter, VPD_BASE, (__le32 *)&vpd);
  614. if (ret)
  615. return ret;
  616. addr = vpd.id_tag == 0x82 ? VPD_BASE : 0;
  617. for (i = 0; i < sizeof(vpd); i += 4) {
  618. ret = t3_seeprom_read(adapter, addr + i,
  619. (__le32 *)((u8 *)&vpd + i));
  620. if (ret)
  621. return ret;
  622. }
  623. p->cclk = simple_strtoul(vpd.cclk_data, NULL, 10);
  624. p->mclk = simple_strtoul(vpd.mclk_data, NULL, 10);
  625. p->uclk = simple_strtoul(vpd.uclk_data, NULL, 10);
  626. p->mdc = simple_strtoul(vpd.mdc_data, NULL, 10);
  627. p->mem_timing = simple_strtoul(vpd.mt_data, NULL, 10);
  628. memcpy(p->sn, vpd.sn_data, SERNUM_LEN);
  629. /* Old eeproms didn't have port information */
  630. if (adapter->params.rev == 0 && !vpd.port0_data[0]) {
  631. p->port_type[0] = uses_xaui(adapter) ? 1 : 2;
  632. p->port_type[1] = uses_xaui(adapter) ? 6 : 2;
  633. } else {
  634. p->port_type[0] = hex2int(vpd.port0_data[0]);
  635. p->port_type[1] = hex2int(vpd.port1_data[0]);
  636. p->xauicfg[0] = simple_strtoul(vpd.xaui0cfg_data, NULL, 16);
  637. p->xauicfg[1] = simple_strtoul(vpd.xaui1cfg_data, NULL, 16);
  638. }
  639. for (i = 0; i < 6; i++)
  640. p->eth_base[i] = hex2int(vpd.na_data[2 * i]) * 16 +
  641. hex2int(vpd.na_data[2 * i + 1]);
  642. return 0;
  643. }
  644. /* serial flash and firmware constants */
  645. enum {
  646. SF_ATTEMPTS = 5, /* max retries for SF1 operations */
  647. SF_SEC_SIZE = 64 * 1024, /* serial flash sector size */
  648. SF_SIZE = SF_SEC_SIZE * 8, /* serial flash size */
  649. /* flash command opcodes */
  650. SF_PROG_PAGE = 2, /* program page */
  651. SF_WR_DISABLE = 4, /* disable writes */
  652. SF_RD_STATUS = 5, /* read status register */
  653. SF_WR_ENABLE = 6, /* enable writes */
  654. SF_RD_DATA_FAST = 0xb, /* read flash */
  655. SF_ERASE_SECTOR = 0xd8, /* erase sector */
  656. FW_FLASH_BOOT_ADDR = 0x70000, /* start address of FW in flash */
  657. FW_VERS_ADDR = 0x7fffc, /* flash address holding FW version */
  658. FW_MIN_SIZE = 8 /* at least version and csum */
  659. };
  660. /**
  661. * sf1_read - read data from the serial flash
  662. * @adapter: the adapter
  663. * @byte_cnt: number of bytes to read
  664. * @cont: whether another operation will be chained
  665. * @valp: where to store the read data
  666. *
  667. * Reads up to 4 bytes of data from the serial flash. The location of
  668. * the read needs to be specified prior to calling this by issuing the
  669. * appropriate commands to the serial flash.
  670. */
  671. static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
  672. u32 *valp)
  673. {
  674. int ret;
  675. if (!byte_cnt || byte_cnt > 4)
  676. return -EINVAL;
  677. if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
  678. return -EBUSY;
  679. t3_write_reg(adapter, A_SF_OP, V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
  680. ret = t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
  681. if (!ret)
  682. *valp = t3_read_reg(adapter, A_SF_DATA);
  683. return ret;
  684. }
  685. /**
  686. * sf1_write - write data to the serial flash
  687. * @adapter: the adapter
  688. * @byte_cnt: number of bytes to write
  689. * @cont: whether another operation will be chained
  690. * @val: value to write
  691. *
  692. * Writes up to 4 bytes of data to the serial flash. The location of
  693. * the write needs to be specified prior to calling this by issuing the
  694. * appropriate commands to the serial flash.
  695. */
  696. static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
  697. u32 val)
  698. {
  699. if (!byte_cnt || byte_cnt > 4)
  700. return -EINVAL;
  701. if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
  702. return -EBUSY;
  703. t3_write_reg(adapter, A_SF_DATA, val);
  704. t3_write_reg(adapter, A_SF_OP,
  705. V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
  706. return t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
  707. }
  708. /**
  709. * flash_wait_op - wait for a flash operation to complete
  710. * @adapter: the adapter
  711. * @attempts: max number of polls of the status register
  712. * @delay: delay between polls in ms
  713. *
  714. * Wait for a flash operation to complete by polling the status register.
  715. */
  716. static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
  717. {
  718. int ret;
  719. u32 status;
  720. while (1) {
  721. if ((ret = sf1_write(adapter, 1, 1, SF_RD_STATUS)) != 0 ||
  722. (ret = sf1_read(adapter, 1, 0, &status)) != 0)
  723. return ret;
  724. if (!(status & 1))
  725. return 0;
  726. if (--attempts == 0)
  727. return -EAGAIN;
  728. if (delay)
  729. msleep(delay);
  730. }
  731. }
  732. /**
  733. * t3_read_flash - read words from serial flash
  734. * @adapter: the adapter
  735. * @addr: the start address for the read
  736. * @nwords: how many 32-bit words to read
  737. * @data: where to store the read data
  738. * @byte_oriented: whether to store data as bytes or as words
  739. *
  740. * Read the specified number of 32-bit words from the serial flash.
  741. * If @byte_oriented is set the read data is stored as a byte array
  742. * (i.e., big-endian), otherwise as 32-bit words in the platform's
  743. * natural endianess.
  744. */
  745. int t3_read_flash(struct adapter *adapter, unsigned int addr,
  746. unsigned int nwords, u32 *data, int byte_oriented)
  747. {
  748. int ret;
  749. if (addr + nwords * sizeof(u32) > SF_SIZE || (addr & 3))
  750. return -EINVAL;
  751. addr = swab32(addr) | SF_RD_DATA_FAST;
  752. if ((ret = sf1_write(adapter, 4, 1, addr)) != 0 ||
  753. (ret = sf1_read(adapter, 1, 1, data)) != 0)
  754. return ret;
  755. for (; nwords; nwords--, data++) {
  756. ret = sf1_read(adapter, 4, nwords > 1, data);
  757. if (ret)
  758. return ret;
  759. if (byte_oriented)
  760. *data = htonl(*data);
  761. }
  762. return 0;
  763. }
  764. /**
  765. * t3_write_flash - write up to a page of data to the serial flash
  766. * @adapter: the adapter
  767. * @addr: the start address to write
  768. * @n: length of data to write
  769. * @data: the data to write
  770. *
  771. * Writes up to a page of data (256 bytes) to the serial flash starting
  772. * at the given address.
  773. */
  774. static int t3_write_flash(struct adapter *adapter, unsigned int addr,
  775. unsigned int n, const u8 *data)
  776. {
  777. int ret;
  778. u32 buf[64];
  779. unsigned int i, c, left, val, offset = addr & 0xff;
  780. if (addr + n > SF_SIZE || offset + n > 256)
  781. return -EINVAL;
  782. val = swab32(addr) | SF_PROG_PAGE;
  783. if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
  784. (ret = sf1_write(adapter, 4, 1, val)) != 0)
  785. return ret;
  786. for (left = n; left; left -= c) {
  787. c = min(left, 4U);
  788. for (val = 0, i = 0; i < c; ++i)
  789. val = (val << 8) + *data++;
  790. ret = sf1_write(adapter, c, c != left, val);
  791. if (ret)
  792. return ret;
  793. }
  794. if ((ret = flash_wait_op(adapter, 5, 1)) != 0)
  795. return ret;
  796. /* Read the page to verify the write succeeded */
  797. ret = t3_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
  798. if (ret)
  799. return ret;
  800. if (memcmp(data - n, (u8 *) buf + offset, n))
  801. return -EIO;
  802. return 0;
  803. }
  804. /**
  805. * t3_get_tp_version - read the tp sram version
  806. * @adapter: the adapter
  807. * @vers: where to place the version
  808. *
  809. * Reads the protocol sram version from sram.
  810. */
  811. int t3_get_tp_version(struct adapter *adapter, u32 *vers)
  812. {
  813. int ret;
  814. /* Get version loaded in SRAM */
  815. t3_write_reg(adapter, A_TP_EMBED_OP_FIELD0, 0);
  816. ret = t3_wait_op_done(adapter, A_TP_EMBED_OP_FIELD0,
  817. 1, 1, 5, 1);
  818. if (ret)
  819. return ret;
  820. *vers = t3_read_reg(adapter, A_TP_EMBED_OP_FIELD1);
  821. return 0;
  822. }
  823. /**
  824. * t3_check_tpsram_version - read the tp sram version
  825. * @adapter: the adapter
  826. *
  827. * Reads the protocol sram version from flash.
  828. */
  829. int t3_check_tpsram_version(struct adapter *adapter)
  830. {
  831. int ret;
  832. u32 vers;
  833. unsigned int major, minor;
  834. if (adapter->params.rev == T3_REV_A)
  835. return 0;
  836. ret = t3_get_tp_version(adapter, &vers);
  837. if (ret)
  838. return ret;
  839. major = G_TP_VERSION_MAJOR(vers);
  840. minor = G_TP_VERSION_MINOR(vers);
  841. if (major == TP_VERSION_MAJOR && minor == TP_VERSION_MINOR)
  842. return 0;
  843. else {
  844. CH_ERR(adapter, "found wrong TP version (%u.%u), "
  845. "driver compiled for version %d.%d\n", major, minor,
  846. TP_VERSION_MAJOR, TP_VERSION_MINOR);
  847. }
  848. return -EINVAL;
  849. }
  850. /**
  851. * t3_check_tpsram - check if provided protocol SRAM
  852. * is compatible with this driver
  853. * @adapter: the adapter
  854. * @tp_sram: the firmware image to write
  855. * @size: image size
  856. *
  857. * Checks if an adapter's tp sram is compatible with the driver.
  858. * Returns 0 if the versions are compatible, a negative error otherwise.
  859. */
  860. int t3_check_tpsram(struct adapter *adapter, const u8 *tp_sram,
  861. unsigned int size)
  862. {
  863. u32 csum;
  864. unsigned int i;
  865. const __be32 *p = (const __be32 *)tp_sram;
  866. /* Verify checksum */
  867. for (csum = 0, i = 0; i < size / sizeof(csum); i++)
  868. csum += ntohl(p[i]);
  869. if (csum != 0xffffffff) {
  870. CH_ERR(adapter, "corrupted protocol SRAM image, checksum %u\n",
  871. csum);
  872. return -EINVAL;
  873. }
  874. return 0;
  875. }
  876. enum fw_version_type {
  877. FW_VERSION_N3,
  878. FW_VERSION_T3
  879. };
  880. /**
  881. * t3_get_fw_version - read the firmware version
  882. * @adapter: the adapter
  883. * @vers: where to place the version
  884. *
  885. * Reads the FW version from flash.
  886. */
  887. int t3_get_fw_version(struct adapter *adapter, u32 *vers)
  888. {
  889. return t3_read_flash(adapter, FW_VERS_ADDR, 1, vers, 0);
  890. }
  891. /**
  892. * t3_check_fw_version - check if the FW is compatible with this driver
  893. * @adapter: the adapter
  894. *
  895. * Checks if an adapter's FW is compatible with the driver. Returns 0
  896. * if the versions are compatible, a negative error otherwise.
  897. */
  898. int t3_check_fw_version(struct adapter *adapter)
  899. {
  900. int ret;
  901. u32 vers;
  902. unsigned int type, major, minor;
  903. ret = t3_get_fw_version(adapter, &vers);
  904. if (ret)
  905. return ret;
  906. type = G_FW_VERSION_TYPE(vers);
  907. major = G_FW_VERSION_MAJOR(vers);
  908. minor = G_FW_VERSION_MINOR(vers);
  909. if (type == FW_VERSION_T3 && major == FW_VERSION_MAJOR &&
  910. minor == FW_VERSION_MINOR)
  911. return 0;
  912. else if (major != FW_VERSION_MAJOR || minor < FW_VERSION_MINOR)
  913. CH_WARN(adapter, "found old FW minor version(%u.%u), "
  914. "driver compiled for version %u.%u\n", major, minor,
  915. FW_VERSION_MAJOR, FW_VERSION_MINOR);
  916. else {
  917. CH_WARN(adapter, "found newer FW version(%u.%u), "
  918. "driver compiled for version %u.%u\n", major, minor,
  919. FW_VERSION_MAJOR, FW_VERSION_MINOR);
  920. return 0;
  921. }
  922. return -EINVAL;
  923. }
  924. /**
  925. * t3_flash_erase_sectors - erase a range of flash sectors
  926. * @adapter: the adapter
  927. * @start: the first sector to erase
  928. * @end: the last sector to erase
  929. *
  930. * Erases the sectors in the given range.
  931. */
  932. static int t3_flash_erase_sectors(struct adapter *adapter, int start, int end)
  933. {
  934. while (start <= end) {
  935. int ret;
  936. if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
  937. (ret = sf1_write(adapter, 4, 0,
  938. SF_ERASE_SECTOR | (start << 8))) != 0 ||
  939. (ret = flash_wait_op(adapter, 5, 500)) != 0)
  940. return ret;
  941. start++;
  942. }
  943. return 0;
  944. }
  945. /*
  946. * t3_load_fw - download firmware
  947. * @adapter: the adapter
  948. * @fw_data: the firmware image to write
  949. * @size: image size
  950. *
  951. * Write the supplied firmware image to the card's serial flash.
  952. * The FW image has the following sections: @size - 8 bytes of code and
  953. * data, followed by 4 bytes of FW version, followed by the 32-bit
  954. * 1's complement checksum of the whole image.
  955. */
  956. int t3_load_fw(struct adapter *adapter, const u8 *fw_data, unsigned int size)
  957. {
  958. u32 csum;
  959. unsigned int i;
  960. const __be32 *p = (const __be32 *)fw_data;
  961. int ret, addr, fw_sector = FW_FLASH_BOOT_ADDR >> 16;
  962. if ((size & 3) || size < FW_MIN_SIZE)
  963. return -EINVAL;
  964. if (size > FW_VERS_ADDR + 8 - FW_FLASH_BOOT_ADDR)
  965. return -EFBIG;
  966. for (csum = 0, i = 0; i < size / sizeof(csum); i++)
  967. csum += ntohl(p[i]);
  968. if (csum != 0xffffffff) {
  969. CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
  970. csum);
  971. return -EINVAL;
  972. }
  973. ret = t3_flash_erase_sectors(adapter, fw_sector, fw_sector);
  974. if (ret)
  975. goto out;
  976. size -= 8; /* trim off version and checksum */
  977. for (addr = FW_FLASH_BOOT_ADDR; size;) {
  978. unsigned int chunk_size = min(size, 256U);
  979. ret = t3_write_flash(adapter, addr, chunk_size, fw_data);
  980. if (ret)
  981. goto out;
  982. addr += chunk_size;
  983. fw_data += chunk_size;
  984. size -= chunk_size;
  985. }
  986. ret = t3_write_flash(adapter, FW_VERS_ADDR, 4, fw_data);
  987. out:
  988. if (ret)
  989. CH_ERR(adapter, "firmware download failed, error %d\n", ret);
  990. return ret;
  991. }
  992. #define CIM_CTL_BASE 0x2000
  993. /**
  994. * t3_cim_ctl_blk_read - read a block from CIM control region
  995. *
  996. * @adap: the adapter
  997. * @addr: the start address within the CIM control region
  998. * @n: number of words to read
  999. * @valp: where to store the result
  1000. *
  1001. * Reads a block of 4-byte words from the CIM control region.
  1002. */
  1003. int t3_cim_ctl_blk_read(struct adapter *adap, unsigned int addr,
  1004. unsigned int n, unsigned int *valp)
  1005. {
  1006. int ret = 0;
  1007. if (t3_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
  1008. return -EBUSY;
  1009. for ( ; !ret && n--; addr += 4) {
  1010. t3_write_reg(adap, A_CIM_HOST_ACC_CTRL, CIM_CTL_BASE + addr);
  1011. ret = t3_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
  1012. 0, 5, 2);
  1013. if (!ret)
  1014. *valp++ = t3_read_reg(adap, A_CIM_HOST_ACC_DATA);
  1015. }
  1016. return ret;
  1017. }
  1018. /**
  1019. * t3_link_changed - handle interface link changes
  1020. * @adapter: the adapter
  1021. * @port_id: the port index that changed link state
  1022. *
  1023. * Called when a port's link settings change to propagate the new values
  1024. * to the associated PHY and MAC. After performing the common tasks it
  1025. * invokes an OS-specific handler.
  1026. */
  1027. void t3_link_changed(struct adapter *adapter, int port_id)
  1028. {
  1029. int link_ok, speed, duplex, fc;
  1030. struct port_info *pi = adap2pinfo(adapter, port_id);
  1031. struct cphy *phy = &pi->phy;
  1032. struct cmac *mac = &pi->mac;
  1033. struct link_config *lc = &pi->link_config;
  1034. phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
  1035. if (lc->requested_fc & PAUSE_AUTONEG)
  1036. fc &= lc->requested_fc;
  1037. else
  1038. fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  1039. if (link_ok == lc->link_ok && speed == lc->speed &&
  1040. duplex == lc->duplex && fc == lc->fc)
  1041. return; /* nothing changed */
  1042. if (link_ok != lc->link_ok && adapter->params.rev > 0 &&
  1043. uses_xaui(adapter)) {
  1044. if (link_ok)
  1045. t3b_pcs_reset(mac);
  1046. t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset,
  1047. link_ok ? F_TXACTENABLE | F_RXEN : 0);
  1048. }
  1049. lc->link_ok = link_ok;
  1050. lc->speed = speed < 0 ? SPEED_INVALID : speed;
  1051. lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
  1052. if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) {
  1053. /* Set MAC speed, duplex, and flow control to match PHY. */
  1054. t3_mac_set_speed_duplex_fc(mac, speed, duplex, fc);
  1055. lc->fc = fc;
  1056. }
  1057. t3_os_link_changed(adapter, port_id, link_ok, speed, duplex, fc);
  1058. }
  1059. /**
  1060. * t3_link_start - apply link configuration to MAC/PHY
  1061. * @phy: the PHY to setup
  1062. * @mac: the MAC to setup
  1063. * @lc: the requested link configuration
  1064. *
  1065. * Set up a port's MAC and PHY according to a desired link configuration.
  1066. * - If the PHY can auto-negotiate first decide what to advertise, then
  1067. * enable/disable auto-negotiation as desired, and reset.
  1068. * - If the PHY does not auto-negotiate just reset it.
  1069. * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
  1070. * otherwise do it later based on the outcome of auto-negotiation.
  1071. */
  1072. int t3_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc)
  1073. {
  1074. unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  1075. lc->link_ok = 0;
  1076. if (lc->supported & SUPPORTED_Autoneg) {
  1077. lc->advertising &= ~(ADVERTISED_Asym_Pause | ADVERTISED_Pause);
  1078. if (fc) {
  1079. lc->advertising |= ADVERTISED_Asym_Pause;
  1080. if (fc & PAUSE_RX)
  1081. lc->advertising |= ADVERTISED_Pause;
  1082. }
  1083. phy->ops->advertise(phy, lc->advertising);
  1084. if (lc->autoneg == AUTONEG_DISABLE) {
  1085. lc->speed = lc->requested_speed;
  1086. lc->duplex = lc->requested_duplex;
  1087. lc->fc = (unsigned char)fc;
  1088. t3_mac_set_speed_duplex_fc(mac, lc->speed, lc->duplex,
  1089. fc);
  1090. /* Also disables autoneg */
  1091. phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex);
  1092. } else
  1093. phy->ops->autoneg_enable(phy);
  1094. } else {
  1095. t3_mac_set_speed_duplex_fc(mac, -1, -1, fc);
  1096. lc->fc = (unsigned char)fc;
  1097. phy->ops->reset(phy, 0);
  1098. }
  1099. return 0;
  1100. }
  1101. /**
  1102. * t3_set_vlan_accel - control HW VLAN extraction
  1103. * @adapter: the adapter
  1104. * @ports: bitmap of adapter ports to operate on
  1105. * @on: enable (1) or disable (0) HW VLAN extraction
  1106. *
  1107. * Enables or disables HW extraction of VLAN tags for the given port.
  1108. */
  1109. void t3_set_vlan_accel(struct adapter *adapter, unsigned int ports, int on)
  1110. {
  1111. t3_set_reg_field(adapter, A_TP_OUT_CONFIG,
  1112. ports << S_VLANEXTRACTIONENABLE,
  1113. on ? (ports << S_VLANEXTRACTIONENABLE) : 0);
  1114. }
  1115. struct intr_info {
  1116. unsigned int mask; /* bits to check in interrupt status */
  1117. const char *msg; /* message to print or NULL */
  1118. short stat_idx; /* stat counter to increment or -1 */
  1119. unsigned short fatal; /* whether the condition reported is fatal */
  1120. };
  1121. /**
  1122. * t3_handle_intr_status - table driven interrupt handler
  1123. * @adapter: the adapter that generated the interrupt
  1124. * @reg: the interrupt status register to process
  1125. * @mask: a mask to apply to the interrupt status
  1126. * @acts: table of interrupt actions
  1127. * @stats: statistics counters tracking interrupt occurences
  1128. *
  1129. * A table driven interrupt handler that applies a set of masks to an
  1130. * interrupt status word and performs the corresponding actions if the
  1131. * interrupts described by the mask have occured. The actions include
  1132. * optionally printing a warning or alert message, and optionally
  1133. * incrementing a stat counter. The table is terminated by an entry
  1134. * specifying mask 0. Returns the number of fatal interrupt conditions.
  1135. */
  1136. static int t3_handle_intr_status(struct adapter *adapter, unsigned int reg,
  1137. unsigned int mask,
  1138. const struct intr_info *acts,
  1139. unsigned long *stats)
  1140. {
  1141. int fatal = 0;
  1142. unsigned int status = t3_read_reg(adapter, reg) & mask;
  1143. for (; acts->mask; ++acts) {
  1144. if (!(status & acts->mask))
  1145. continue;
  1146. if (acts->fatal) {
  1147. fatal++;
  1148. CH_ALERT(adapter, "%s (0x%x)\n",
  1149. acts->msg, status & acts->mask);
  1150. } else if (acts->msg)
  1151. CH_WARN(adapter, "%s (0x%x)\n",
  1152. acts->msg, status & acts->mask);
  1153. if (acts->stat_idx >= 0)
  1154. stats[acts->stat_idx]++;
  1155. }
  1156. if (status) /* clear processed interrupts */
  1157. t3_write_reg(adapter, reg, status);
  1158. return fatal;
  1159. }
  1160. #define SGE_INTR_MASK (F_RSPQDISABLED | \
  1161. F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR | \
  1162. F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
  1163. F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
  1164. V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
  1165. F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
  1166. F_HIRCQPARITYERROR)
  1167. #define MC5_INTR_MASK (F_PARITYERR | F_ACTRGNFULL | F_UNKNOWNCMD | \
  1168. F_REQQPARERR | F_DISPQPARERR | F_DELACTEMPTY | \
  1169. F_NFASRCHFAIL)
  1170. #define MC7_INTR_MASK (F_AE | F_UE | F_CE | V_PE(M_PE))
  1171. #define XGM_INTR_MASK (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
  1172. V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR) | \
  1173. F_TXFIFO_UNDERRUN | F_RXFIFO_OVERFLOW)
  1174. #define PCIX_INTR_MASK (F_MSTDETPARERR | F_SIGTARABT | F_RCVTARABT | \
  1175. F_RCVMSTABT | F_SIGSYSERR | F_DETPARERR | \
  1176. F_SPLCMPDIS | F_UNXSPLCMP | F_RCVSPLCMPERR | \
  1177. F_DETCORECCERR | F_DETUNCECCERR | F_PIOPARERR | \
  1178. V_WFPARERR(M_WFPARERR) | V_RFPARERR(M_RFPARERR) | \
  1179. V_CFPARERR(M_CFPARERR) /* | V_MSIXPARERR(M_MSIXPARERR) */)
  1180. #define PCIE_INTR_MASK (F_UNXSPLCPLERRR | F_UNXSPLCPLERRC | F_PCIE_PIOPARERR |\
  1181. F_PCIE_WFPARERR | F_PCIE_RFPARERR | F_PCIE_CFPARERR | \
  1182. /* V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR) | */ \
  1183. F_RETRYBUFPARERR | F_RETRYLUTPARERR | F_RXPARERR | \
  1184. F_TXPARERR | V_BISTERR(M_BISTERR))
  1185. #define ULPRX_INTR_MASK (F_PARERRDATA | F_PARERRPCMD | F_ARBPF1PERR | \
  1186. F_ARBPF0PERR | F_ARBFPERR | F_PCMDMUXPERR | \
  1187. F_DATASELFRAMEERR1 | F_DATASELFRAMEERR0)
  1188. #define ULPTX_INTR_MASK 0xfc
  1189. #define CPLSW_INTR_MASK (F_CIM_OP_MAP_PERR | F_TP_FRAMING_ERROR | \
  1190. F_SGE_FRAMING_ERROR | F_CIM_FRAMING_ERROR | \
  1191. F_ZERO_SWITCH_ERROR)
  1192. #define CIM_INTR_MASK (F_BLKWRPLINT | F_BLKRDPLINT | F_BLKWRCTLINT | \
  1193. F_BLKRDCTLINT | F_BLKWRFLASHINT | F_BLKRDFLASHINT | \
  1194. F_SGLWRFLASHINT | F_WRBLKFLASHINT | F_BLKWRBOOTINT | \
  1195. F_FLASHRANGEINT | F_SDRAMRANGEINT | F_RSVDSPACEINT | \
  1196. F_DRAMPARERR | F_ICACHEPARERR | F_DCACHEPARERR | \
  1197. F_OBQSGEPARERR | F_OBQULPHIPARERR | F_OBQULPLOPARERR | \
  1198. F_IBQSGELOPARERR | F_IBQSGEHIPARERR | F_IBQULPPARERR | \
  1199. F_IBQTPPARERR | F_ITAGPARERR | F_DTAGPARERR)
  1200. #define PMTX_INTR_MASK (F_ZERO_C_CMD_ERROR | ICSPI_FRM_ERR | OESPI_FRM_ERR | \
  1201. V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR) | \
  1202. V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR))
  1203. #define PMRX_INTR_MASK (F_ZERO_E_CMD_ERROR | IESPI_FRM_ERR | OCSPI_FRM_ERR | \
  1204. V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR) | \
  1205. V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR))
  1206. #define MPS_INTR_MASK (V_TX0TPPARERRENB(M_TX0TPPARERRENB) | \
  1207. V_TX1TPPARERRENB(M_TX1TPPARERRENB) | \
  1208. V_RXTPPARERRENB(M_RXTPPARERRENB) | \
  1209. V_MCAPARERRENB(M_MCAPARERRENB))
  1210. #define PL_INTR_MASK (F_T3DBG | F_XGMAC0_0 | F_XGMAC0_1 | F_MC5A | F_PM1_TX | \
  1211. F_PM1_RX | F_ULP2_TX | F_ULP2_RX | F_TP1 | F_CIM | \
  1212. F_MC7_CM | F_MC7_PMTX | F_MC7_PMRX | F_SGE3 | F_PCIM0 | \
  1213. F_MPS0 | F_CPL_SWITCH)
  1214. /*
  1215. * Interrupt handler for the PCIX1 module.
  1216. */
  1217. static void pci_intr_handler(struct adapter *adapter)
  1218. {
  1219. static const struct intr_info pcix1_intr_info[] = {
  1220. {F_MSTDETPARERR, "PCI master detected parity error", -1, 1},
  1221. {F_SIGTARABT, "PCI signaled target abort", -1, 1},
  1222. {F_RCVTARABT, "PCI received target abort", -1, 1},
  1223. {F_RCVMSTABT, "PCI received master abort", -1, 1},
  1224. {F_SIGSYSERR, "PCI signaled system error", -1, 1},
  1225. {F_DETPARERR, "PCI detected parity error", -1, 1},
  1226. {F_SPLCMPDIS, "PCI split completion discarded", -1, 1},
  1227. {F_UNXSPLCMP, "PCI unexpected split completion error", -1, 1},
  1228. {F_RCVSPLCMPERR, "PCI received split completion error", -1,
  1229. 1},
  1230. {F_DETCORECCERR, "PCI correctable ECC error",
  1231. STAT_PCI_CORR_ECC, 0},
  1232. {F_DETUNCECCERR, "PCI uncorrectable ECC error", -1, 1},
  1233. {F_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
  1234. {V_WFPARERR(M_WFPARERR), "PCI write FIFO parity error", -1,
  1235. 1},
  1236. {V_RFPARERR(M_RFPARERR), "PCI read FIFO parity error", -1,
  1237. 1},
  1238. {V_CFPARERR(M_CFPARERR), "PCI command FIFO parity error", -1,
  1239. 1},
  1240. {V_MSIXPARERR(M_MSIXPARERR), "PCI MSI-X table/PBA parity "
  1241. "error", -1, 1},
  1242. {0}
  1243. };
  1244. if (t3_handle_intr_status(adapter, A_PCIX_INT_CAUSE, PCIX_INTR_MASK,
  1245. pcix1_intr_info, adapter->irq_stats))
  1246. t3_fatal_err(adapter);
  1247. }
  1248. /*
  1249. * Interrupt handler for the PCIE module.
  1250. */
  1251. static void pcie_intr_handler(struct adapter *adapter)
  1252. {
  1253. static const struct intr_info pcie_intr_info[] = {
  1254. {F_PEXERR, "PCI PEX error", -1, 1},
  1255. {F_UNXSPLCPLERRR,
  1256. "PCI unexpected split completion DMA read error", -1, 1},
  1257. {F_UNXSPLCPLERRC,
  1258. "PCI unexpected split completion DMA command error", -1, 1},
  1259. {F_PCIE_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
  1260. {F_PCIE_WFPARERR, "PCI write FIFO parity error", -1, 1},
  1261. {F_PCIE_RFPARERR, "PCI read FIFO parity error", -1, 1},
  1262. {F_PCIE_CFPARERR, "PCI command FIFO parity error", -1, 1},
  1263. {V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR),
  1264. "PCI MSI-X table/PBA parity error", -1, 1},
  1265. {F_RETRYBUFPARERR, "PCI retry buffer parity error", -1, 1},
  1266. {F_RETRYLUTPARERR, "PCI retry LUT parity error", -1, 1},
  1267. {F_RXPARERR, "PCI Rx parity error", -1, 1},
  1268. {F_TXPARERR, "PCI Tx parity error", -1, 1},
  1269. {V_BISTERR(M_BISTERR), "PCI BIST error", -1, 1},
  1270. {0}
  1271. };
  1272. if (t3_read_reg(adapter, A_PCIE_INT_CAUSE) & F_PEXERR)
  1273. CH_ALERT(adapter, "PEX error code 0x%x\n",
  1274. t3_read_reg(adapter, A_PCIE_PEX_ERR));
  1275. if (t3_handle_intr_status(adapter, A_PCIE_INT_CAUSE, PCIE_INTR_MASK,
  1276. pcie_intr_info, adapter->irq_stats))
  1277. t3_fatal_err(adapter);
  1278. }
  1279. /*
  1280. * TP interrupt handler.
  1281. */
  1282. static void tp_intr_handler(struct adapter *adapter)
  1283. {
  1284. static const struct intr_info tp_intr_info[] = {
  1285. {0xffffff, "TP parity error", -1, 1},
  1286. {0x1000000, "TP out of Rx pages", -1, 1},
  1287. {0x2000000, "TP out of Tx pages", -1, 1},
  1288. {0}
  1289. };
  1290. static struct intr_info tp_intr_info_t3c[] = {
  1291. {0x1fffffff, "TP parity error", -1, 1},
  1292. {F_FLMRXFLSTEMPTY, "TP out of Rx pages", -1, 1},
  1293. {F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1},
  1294. {0}
  1295. };
  1296. if (t3_handle_intr_status(adapter, A_TP_INT_CAUSE, 0xffffffff,
  1297. adapter->params.rev < T3_REV_C ?
  1298. tp_intr_info : tp_intr_info_t3c, NULL))
  1299. t3_fatal_err(adapter);
  1300. }
  1301. /*
  1302. * CIM interrupt handler.
  1303. */
  1304. static void cim_intr_handler(struct adapter *adapter)
  1305. {
  1306. static const struct intr_info cim_intr_info[] = {
  1307. {F_RSVDSPACEINT, "CIM reserved space write", -1, 1},
  1308. {F_SDRAMRANGEINT, "CIM SDRAM address out of range", -1, 1},
  1309. {F_FLASHRANGEINT, "CIM flash address out of range", -1, 1},
  1310. {F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1},
  1311. {F_WRBLKFLASHINT, "CIM write to cached flash space", -1, 1},
  1312. {F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1},
  1313. {F_BLKRDFLASHINT, "CIM block read from flash space", -1, 1},
  1314. {F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1},
  1315. {F_BLKRDCTLINT, "CIM block read from CTL space", -1, 1},
  1316. {F_BLKWRCTLINT, "CIM block write to CTL space", -1, 1},
  1317. {F_BLKRDPLINT, "CIM block read from PL space", -1, 1},
  1318. {F_BLKWRPLINT, "CIM block write to PL space", -1, 1},
  1319. {F_DRAMPARERR, "CIM DRAM parity error", -1, 1},
  1320. {F_ICACHEPARERR, "CIM icache parity error", -1, 1},
  1321. {F_DCACHEPARERR, "CIM dcache parity error", -1, 1},
  1322. {F_OBQSGEPARERR, "CIM OBQ SGE parity error", -1, 1},
  1323. {F_OBQULPHIPARERR, "CIM OBQ ULPHI parity error", -1, 1},
  1324. {F_OBQULPLOPARERR, "CIM OBQ ULPLO parity error", -1, 1},
  1325. {F_IBQSGELOPARERR, "CIM IBQ SGELO parity error", -1, 1},
  1326. {F_IBQSGEHIPARERR, "CIM IBQ SGEHI parity error", -1, 1},
  1327. {F_IBQULPPARERR, "CIM IBQ ULP parity error", -1, 1},
  1328. {F_IBQTPPARERR, "CIM IBQ TP parity error", -1, 1},
  1329. {F_ITAGPARERR, "CIM itag parity error", -1, 1},
  1330. {F_DTAGPARERR, "CIM dtag parity error", -1, 1},
  1331. {0}
  1332. };
  1333. if (t3_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE, 0xffffffff,
  1334. cim_intr_info, NULL))
  1335. t3_fatal_err(adapter);
  1336. }
  1337. /*
  1338. * ULP RX interrupt handler.
  1339. */
  1340. static void ulprx_intr_handler(struct adapter *adapter)
  1341. {
  1342. static const struct intr_info ulprx_intr_info[] = {
  1343. {F_PARERRDATA, "ULP RX data parity error", -1, 1},
  1344. {F_PARERRPCMD, "ULP RX command parity error", -1, 1},
  1345. {F_ARBPF1PERR, "ULP RX ArbPF1 parity error", -1, 1},
  1346. {F_ARBPF0PERR, "ULP RX ArbPF0 parity error", -1, 1},
  1347. {F_ARBFPERR, "ULP RX ArbF parity error", -1, 1},
  1348. {F_PCMDMUXPERR, "ULP RX PCMDMUX parity error", -1, 1},
  1349. {F_DATASELFRAMEERR1, "ULP RX frame error", -1, 1},
  1350. {F_DATASELFRAMEERR0, "ULP RX frame error", -1, 1},
  1351. {0}
  1352. };
  1353. if (t3_handle_intr_status(adapter, A_ULPRX_INT_CAUSE, 0xffffffff,
  1354. ulprx_intr_info, NULL))
  1355. t3_fatal_err(adapter);
  1356. }
  1357. /*
  1358. * ULP TX interrupt handler.
  1359. */
  1360. static void ulptx_intr_handler(struct adapter *adapter)
  1361. {
  1362. static const struct intr_info ulptx_intr_info[] = {
  1363. {F_PBL_BOUND_ERR_CH0, "ULP TX channel 0 PBL out of bounds",
  1364. STAT_ULP_CH0_PBL_OOB, 0},
  1365. {F_PBL_BOUND_ERR_CH1, "ULP TX channel 1 PBL out of bounds",
  1366. STAT_ULP_CH1_PBL_OOB, 0},
  1367. {0xfc, "ULP TX parity error", -1, 1},
  1368. {0}
  1369. };
  1370. if (t3_handle_intr_status(adapter, A_ULPTX_INT_CAUSE, 0xffffffff,
  1371. ulptx_intr_info, adapter->irq_stats))
  1372. t3_fatal_err(adapter);
  1373. }
  1374. #define ICSPI_FRM_ERR (F_ICSPI0_FIFO2X_RX_FRAMING_ERROR | \
  1375. F_ICSPI1_FIFO2X_RX_FRAMING_ERROR | F_ICSPI0_RX_FRAMING_ERROR | \
  1376. F_ICSPI1_RX_FRAMING_ERROR | F_ICSPI0_TX_FRAMING_ERROR | \
  1377. F_ICSPI1_TX_FRAMING_ERROR)
  1378. #define OESPI_FRM_ERR (F_OESPI0_RX_FRAMING_ERROR | \
  1379. F_OESPI1_RX_FRAMING_ERROR | F_OESPI0_TX_FRAMING_ERROR | \
  1380. F_OESPI1_TX_FRAMING_ERROR | F_OESPI0_OFIFO2X_TX_FRAMING_ERROR | \
  1381. F_OESPI1_OFIFO2X_TX_FRAMING_ERROR)
  1382. /*
  1383. * PM TX interrupt handler.
  1384. */
  1385. static void pmtx_intr_handler(struct adapter *adapter)
  1386. {
  1387. static const struct intr_info pmtx_intr_info[] = {
  1388. {F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1},
  1389. {ICSPI_FRM_ERR, "PMTX ispi framing error", -1, 1},
  1390. {OESPI_FRM_ERR, "PMTX ospi framing error", -1, 1},
  1391. {V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR),
  1392. "PMTX ispi parity error", -1, 1},
  1393. {V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR),
  1394. "PMTX ospi parity error", -1, 1},
  1395. {0}
  1396. };
  1397. if (t3_handle_intr_status(adapter, A_PM1_TX_INT_CAUSE, 0xffffffff,
  1398. pmtx_intr_info, NULL))
  1399. t3_fatal_err(adapter);
  1400. }
  1401. #define IESPI_FRM_ERR (F_IESPI0_FIFO2X_RX_FRAMING_ERROR | \
  1402. F_IESPI1_FIFO2X_RX_FRAMING_ERROR | F_IESPI0_RX_FRAMING_ERROR | \
  1403. F_IESPI1_RX_FRAMING_ERROR | F_IESPI0_TX_FRAMING_ERROR | \
  1404. F_IESPI1_TX_FRAMING_ERROR)
  1405. #define OCSPI_FRM_ERR (F_OCSPI0_RX_FRAMING_ERROR | \
  1406. F_OCSPI1_RX_FRAMING_ERROR | F_OCSPI0_TX_FRAMING_ERROR | \
  1407. F_OCSPI1_TX_FRAMING_ERROR | F_OCSPI0_OFIFO2X_TX_FRAMING_ERROR | \
  1408. F_OCSPI1_OFIFO2X_TX_FRAMING_ERROR)
  1409. /*
  1410. * PM RX interrupt handler.
  1411. */
  1412. static void pmrx_intr_handler(struct adapter *adapter)
  1413. {
  1414. static const struct intr_info pmrx_intr_info[] = {
  1415. {F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1},
  1416. {IESPI_FRM_ERR, "PMRX ispi framing error", -1, 1},
  1417. {OCSPI_FRM_ERR, "PMRX ospi framing error", -1, 1},
  1418. {V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR),
  1419. "PMRX ispi parity error", -1, 1},
  1420. {V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR),
  1421. "PMRX ospi parity error", -1, 1},
  1422. {0}
  1423. };
  1424. if (t3_handle_intr_status(adapter, A_PM1_RX_INT_CAUSE, 0xffffffff,
  1425. pmrx_intr_info, NULL))
  1426. t3_fatal_err(adapter);
  1427. }
  1428. /*
  1429. * CPL switch interrupt handler.
  1430. */
  1431. static void cplsw_intr_handler(struct adapter *adapter)
  1432. {
  1433. static const struct intr_info cplsw_intr_info[] = {
  1434. {F_CIM_OP_MAP_PERR, "CPL switch CIM parity error", -1, 1},
  1435. {F_CIM_OVFL_ERROR, "CPL switch CIM overflow", -1, 1},
  1436. {F_TP_FRAMING_ERROR, "CPL switch TP framing error", -1, 1},
  1437. {F_SGE_FRAMING_ERROR, "CPL switch SGE framing error", -1, 1},
  1438. {F_CIM_FRAMING_ERROR, "CPL switch CIM framing error", -1, 1},
  1439. {F_ZERO_SWITCH_ERROR, "CPL switch no-switch error", -1, 1},
  1440. {0}
  1441. };
  1442. if (t3_handle_intr_status(adapter, A_CPL_INTR_CAUSE, 0xffffffff,
  1443. cplsw_intr_info, NULL))
  1444. t3_fatal_err(adapter);
  1445. }
  1446. /*
  1447. * MPS interrupt handler.
  1448. */
  1449. static void mps_intr_handler(struct adapter *adapter)
  1450. {
  1451. static const struct intr_info mps_intr_info[] = {
  1452. {0x1ff, "MPS parity error", -1, 1},
  1453. {0}
  1454. };
  1455. if (t3_handle_intr_status(adapter, A_MPS_INT_CAUSE, 0xffffffff,
  1456. mps_intr_info, NULL))
  1457. t3_fatal_err(adapter);
  1458. }
  1459. #define MC7_INTR_FATAL (F_UE | V_PE(M_PE) | F_AE)
  1460. /*
  1461. * MC7 interrupt handler.
  1462. */
  1463. static void mc7_intr_handler(struct mc7 *mc7)
  1464. {
  1465. struct adapter *adapter = mc7->adapter;
  1466. u32 cause = t3_read_reg(adapter, mc7->offset + A_MC7_INT_CAUSE);
  1467. if (cause & F_CE) {
  1468. mc7->stats.corr_err++;
  1469. CH_WARN(adapter, "%s MC7 correctable error at addr 0x%x, "
  1470. "data 0x%x 0x%x 0x%x\n", mc7->name,
  1471. t3_read_reg(adapter, mc7->offset + A_MC7_CE_ADDR),
  1472. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA0),
  1473. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA1),
  1474. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA2));
  1475. }
  1476. if (cause & F_UE) {
  1477. mc7->stats.uncorr_err++;
  1478. CH_ALERT(adapter, "%s MC7 uncorrectable error at addr 0x%x, "
  1479. "data 0x%x 0x%x 0x%x\n", mc7->name,
  1480. t3_read_reg(adapter, mc7->offset + A_MC7_UE_ADDR),
  1481. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA0),
  1482. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA1),
  1483. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA2));
  1484. }
  1485. if (G_PE(cause)) {
  1486. mc7->stats.parity_err++;
  1487. CH_ALERT(adapter, "%s MC7 parity error 0x%x\n",
  1488. mc7->name, G_PE(cause));
  1489. }
  1490. if (cause & F_AE) {
  1491. u32 addr = 0;
  1492. if (adapter->params.rev > 0)
  1493. addr = t3_read_reg(adapter,
  1494. mc7->offset + A_MC7_ERR_ADDR);
  1495. mc7->stats.addr_err++;
  1496. CH_ALERT(adapter, "%s MC7 address error: 0x%x\n",
  1497. mc7->name, addr);
  1498. }
  1499. if (cause & MC7_INTR_FATAL)
  1500. t3_fatal_err(adapter);
  1501. t3_write_reg(adapter, mc7->offset + A_MC7_INT_CAUSE, cause);
  1502. }
  1503. #define XGM_INTR_FATAL (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
  1504. V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR))
  1505. /*
  1506. * XGMAC interrupt handler.
  1507. */
  1508. static int mac_intr_handler(struct adapter *adap, unsigned int idx)
  1509. {
  1510. struct cmac *mac = &adap2pinfo(adap, idx)->mac;
  1511. u32 cause = t3_read_reg(adap, A_XGM_INT_CAUSE + mac->offset);
  1512. if (cause & V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR)) {
  1513. mac->stats.tx_fifo_parity_err++;
  1514. CH_ALERT(adap, "port%d: MAC TX FIFO parity error\n", idx);
  1515. }
  1516. if (cause & V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) {
  1517. mac->stats.rx_fifo_parity_err++;
  1518. CH_ALERT(adap, "port%d: MAC RX FIFO parity error\n", idx);
  1519. }
  1520. if (cause & F_TXFIFO_UNDERRUN)
  1521. mac->stats.tx_fifo_urun++;
  1522. if (cause & F_RXFIFO_OVERFLOW)
  1523. mac->stats.rx_fifo_ovfl++;
  1524. if (cause & V_SERDES_LOS(M_SERDES_LOS))
  1525. mac->stats.serdes_signal_loss++;
  1526. if (cause & F_XAUIPCSCTCERR)
  1527. mac->stats.xaui_pcs_ctc_err++;
  1528. if (cause & F_XAUIPCSALIGNCHANGE)
  1529. mac->stats.xaui_pcs_align_change++;
  1530. t3_write_reg(adap, A_XGM_INT_CAUSE + mac->offset, cause);
  1531. if (cause & XGM_INTR_FATAL)
  1532. t3_fatal_err(adap);
  1533. return cause != 0;
  1534. }
  1535. /*
  1536. * Interrupt handler for PHY events.
  1537. */
  1538. int t3_phy_intr_handler(struct adapter *adapter)
  1539. {
  1540. u32 i, cause = t3_read_reg(adapter, A_T3DBG_INT_CAUSE);
  1541. for_each_port(adapter, i) {
  1542. struct port_info *p = adap2pinfo(adapter, i);
  1543. if (!(p->phy.caps & SUPPORTED_IRQ))
  1544. continue;
  1545. if (cause & (1 << adapter_info(adapter)->gpio_intr[i])) {
  1546. int phy_cause = p->phy.ops->intr_handler(&p->phy);
  1547. if (phy_cause & cphy_cause_link_change)
  1548. t3_link_changed(adapter, i);
  1549. if (phy_cause & cphy_cause_fifo_error)
  1550. p->phy.fifo_errors++;
  1551. if (phy_cause & cphy_cause_module_change)
  1552. t3_os_phymod_changed(adapter, i);
  1553. }
  1554. }
  1555. t3_write_reg(adapter, A_T3DBG_INT_CAUSE, cause);
  1556. return 0;
  1557. }
  1558. /*
  1559. * T3 slow path (non-data) interrupt handler.
  1560. */
  1561. int t3_slow_intr_handler(struct adapter *adapter)
  1562. {
  1563. u32 cause = t3_read_reg(adapter, A_PL_INT_CAUSE0);
  1564. cause &= adapter->slow_intr_mask;
  1565. if (!cause)
  1566. return 0;
  1567. if (cause & F_PCIM0) {
  1568. if (is_pcie(adapter))
  1569. pcie_intr_handler(adapter);
  1570. else
  1571. pci_intr_handler(adapter);
  1572. }
  1573. if (cause & F_SGE3)
  1574. t3_sge_err_intr_handler(adapter);
  1575. if (cause & F_MC7_PMRX)
  1576. mc7_intr_handler(&adapter->pmrx);
  1577. if (cause & F_MC7_PMTX)
  1578. mc7_intr_handler(&adapter->pmtx);
  1579. if (cause & F_MC7_CM)
  1580. mc7_intr_handler(&adapter->cm);
  1581. if (cause & F_CIM)
  1582. cim_intr_handler(adapter);
  1583. if (cause & F_TP1)
  1584. tp_intr_handler(adapter);
  1585. if (cause & F_ULP2_RX)
  1586. ulprx_intr_handler(adapter);
  1587. if (cause & F_ULP2_TX)
  1588. ulptx_intr_handler(adapter);
  1589. if (cause & F_PM1_RX)
  1590. pmrx_intr_handler(adapter);
  1591. if (cause & F_PM1_TX)
  1592. pmtx_intr_handler(adapter);
  1593. if (cause & F_CPL_SWITCH)
  1594. cplsw_intr_handler(adapter);
  1595. if (cause & F_MPS0)
  1596. mps_intr_handler(adapter);
  1597. if (cause & F_MC5A)
  1598. t3_mc5_intr_handler(&adapter->mc5);
  1599. if (cause & F_XGMAC0_0)
  1600. mac_intr_handler(adapter, 0);
  1601. if (cause & F_XGMAC0_1)
  1602. mac_intr_handler(adapter, 1);
  1603. if (cause & F_T3DBG)
  1604. t3_os_ext_intr_handler(adapter);
  1605. /* Clear the interrupts just processed. */
  1606. t3_write_reg(adapter, A_PL_INT_CAUSE0, cause);
  1607. t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
  1608. return 1;
  1609. }
  1610. static unsigned int calc_gpio_intr(struct adapter *adap)
  1611. {
  1612. unsigned int i, gpi_intr = 0;
  1613. for_each_port(adap, i)
  1614. if ((adap2pinfo(adap, i)->phy.caps & SUPPORTED_IRQ) &&
  1615. adapter_info(adap)->gpio_intr[i])
  1616. gpi_intr |= 1 << adapter_info(adap)->gpio_intr[i];
  1617. return gpi_intr;
  1618. }
  1619. /**
  1620. * t3_intr_enable - enable interrupts
  1621. * @adapter: the adapter whose interrupts should be enabled
  1622. *
  1623. * Enable interrupts by setting the interrupt enable registers of the
  1624. * various HW modules and then enabling the top-level interrupt
  1625. * concentrator.
  1626. */
  1627. void t3_intr_enable(struct adapter *adapter)
  1628. {
  1629. static const struct addr_val_pair intr_en_avp[] = {
  1630. {A_SG_INT_ENABLE, SGE_INTR_MASK},
  1631. {A_MC7_INT_ENABLE, MC7_INTR_MASK},
  1632. {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
  1633. MC7_INTR_MASK},
  1634. {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
  1635. MC7_INTR_MASK},
  1636. {A_MC5_DB_INT_ENABLE, MC5_INTR_MASK},
  1637. {A_ULPRX_INT_ENABLE, ULPRX_INTR_MASK},
  1638. {A_PM1_TX_INT_ENABLE, PMTX_INTR_MASK},
  1639. {A_PM1_RX_INT_ENABLE, PMRX_INTR_MASK},
  1640. {A_CIM_HOST_INT_ENABLE, CIM_INTR_MASK},
  1641. {A_MPS_INT_ENABLE, MPS_INTR_MASK},
  1642. };
  1643. adapter->slow_intr_mask = PL_INTR_MASK;
  1644. t3_write_regs(adapter, intr_en_avp, ARRAY_SIZE(intr_en_avp), 0);
  1645. t3_write_reg(adapter, A_TP_INT_ENABLE,
  1646. adapter->params.rev >= T3_REV_C ? 0x2bfffff : 0x3bfffff);
  1647. if (adapter->params.rev > 0) {
  1648. t3_write_reg(adapter, A_CPL_INTR_ENABLE,
  1649. CPLSW_INTR_MASK | F_CIM_OVFL_ERROR);
  1650. t3_write_reg(adapter, A_ULPTX_INT_ENABLE,
  1651. ULPTX_INTR_MASK | F_PBL_BOUND_ERR_CH0 |
  1652. F_PBL_BOUND_ERR_CH1);
  1653. } else {
  1654. t3_write_reg(adapter, A_CPL_INTR_ENABLE, CPLSW_INTR_MASK);
  1655. t3_write_reg(adapter, A_ULPTX_INT_ENABLE, ULPTX_INTR_MASK);
  1656. }
  1657. t3_write_reg(adapter, A_T3DBG_INT_ENABLE, calc_gpio_intr(adapter));
  1658. if (is_pcie(adapter))
  1659. t3_write_reg(adapter, A_PCIE_INT_ENABLE, PCIE_INTR_MASK);
  1660. else
  1661. t3_write_reg(adapter, A_PCIX_INT_ENABLE, PCIX_INTR_MASK);
  1662. t3_write_reg(adapter, A_PL_INT_ENABLE0, adapter->slow_intr_mask);
  1663. t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
  1664. }
  1665. /**
  1666. * t3_intr_disable - disable a card's interrupts
  1667. * @adapter: the adapter whose interrupts should be disabled
  1668. *
  1669. * Disable interrupts. We only disable the top-level interrupt
  1670. * concentrator and the SGE data interrupts.
  1671. */
  1672. void t3_intr_disable(struct adapter *adapter)
  1673. {
  1674. t3_write_reg(adapter, A_PL_INT_ENABLE0, 0);
  1675. t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
  1676. adapter->slow_intr_mask = 0;
  1677. }
  1678. /**
  1679. * t3_intr_clear - clear all interrupts
  1680. * @adapter: the adapter whose interrupts should be cleared
  1681. *
  1682. * Clears all interrupts.
  1683. */
  1684. void t3_intr_clear(struct adapter *adapter)
  1685. {
  1686. static const unsigned int cause_reg_addr[] = {
  1687. A_SG_INT_CAUSE,
  1688. A_SG_RSPQ_FL_STATUS,
  1689. A_PCIX_INT_CAUSE,
  1690. A_MC7_INT_CAUSE,
  1691. A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
  1692. A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
  1693. A_CIM_HOST_INT_CAUSE,
  1694. A_TP_INT_CAUSE,
  1695. A_MC5_DB_INT_CAUSE,
  1696. A_ULPRX_INT_CAUSE,
  1697. A_ULPTX_INT_CAUSE,
  1698. A_CPL_INTR_CAUSE,
  1699. A_PM1_TX_INT_CAUSE,
  1700. A_PM1_RX_INT_CAUSE,
  1701. A_MPS_INT_CAUSE,
  1702. A_T3DBG_INT_CAUSE,
  1703. };
  1704. unsigned int i;
  1705. /* Clear PHY and MAC interrupts for each port. */
  1706. for_each_port(adapter, i)
  1707. t3_port_intr_clear(adapter, i);
  1708. for (i = 0; i < ARRAY_SIZE(cause_reg_addr); ++i)
  1709. t3_write_reg(adapter, cause_reg_addr[i], 0xffffffff);
  1710. if (is_pcie(adapter))
  1711. t3_write_reg(adapter, A_PCIE_PEX_ERR, 0xffffffff);
  1712. t3_write_reg(adapter, A_PL_INT_CAUSE0, 0xffffffff);
  1713. t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
  1714. }
  1715. /**
  1716. * t3_port_intr_enable - enable port-specific interrupts
  1717. * @adapter: associated adapter
  1718. * @idx: index of port whose interrupts should be enabled
  1719. *
  1720. * Enable port-specific (i.e., MAC and PHY) interrupts for the given
  1721. * adapter port.
  1722. */
  1723. void t3_port_intr_enable(struct adapter *adapter, int idx)
  1724. {
  1725. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1726. t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), XGM_INTR_MASK);
  1727. t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
  1728. phy->ops->intr_enable(phy);
  1729. }
  1730. /**
  1731. * t3_port_intr_disable - disable port-specific interrupts
  1732. * @adapter: associated adapter
  1733. * @idx: index of port whose interrupts should be disabled
  1734. *
  1735. * Disable port-specific (i.e., MAC and PHY) interrupts for the given
  1736. * adapter port.
  1737. */
  1738. void t3_port_intr_disable(struct adapter *adapter, int idx)
  1739. {
  1740. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1741. t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), 0);
  1742. t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
  1743. phy->ops->intr_disable(phy);
  1744. }
  1745. /**
  1746. * t3_port_intr_clear - clear port-specific interrupts
  1747. * @adapter: associated adapter
  1748. * @idx: index of port whose interrupts to clear
  1749. *
  1750. * Clear port-specific (i.e., MAC and PHY) interrupts for the given
  1751. * adapter port.
  1752. */
  1753. void t3_port_intr_clear(struct adapter *adapter, int idx)
  1754. {
  1755. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1756. t3_write_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx), 0xffffffff);
  1757. t3_read_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx)); /* flush */
  1758. phy->ops->intr_clear(phy);
  1759. }
  1760. #define SG_CONTEXT_CMD_ATTEMPTS 100
  1761. /**
  1762. * t3_sge_write_context - write an SGE context
  1763. * @adapter: the adapter
  1764. * @id: the context id
  1765. * @type: the context type
  1766. *
  1767. * Program an SGE context with the values already loaded in the
  1768. * CONTEXT_DATA? registers.
  1769. */
  1770. static int t3_sge_write_context(struct adapter *adapter, unsigned int id,
  1771. unsigned int type)
  1772. {
  1773. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff);
  1774. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff);
  1775. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0xffffffff);
  1776. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff);
  1777. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1778. V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id));
  1779. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1780. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  1781. }
  1782. static int clear_sge_ctxt(struct adapter *adap, unsigned int id,
  1783. unsigned int type)
  1784. {
  1785. t3_write_reg(adap, A_SG_CONTEXT_DATA0, 0);
  1786. t3_write_reg(adap, A_SG_CONTEXT_DATA1, 0);
  1787. t3_write_reg(adap, A_SG_CONTEXT_DATA2, 0);
  1788. t3_write_reg(adap, A_SG_CONTEXT_DATA3, 0);
  1789. return t3_sge_write_context(adap, id, type);
  1790. }
  1791. /**
  1792. * t3_sge_init_ecntxt - initialize an SGE egress context
  1793. * @adapter: the adapter to configure
  1794. * @id: the context id
  1795. * @gts_enable: whether to enable GTS for the context
  1796. * @type: the egress context type
  1797. * @respq: associated response queue
  1798. * @base_addr: base address of queue
  1799. * @size: number of queue entries
  1800. * @token: uP token
  1801. * @gen: initial generation value for the context
  1802. * @cidx: consumer pointer
  1803. *
  1804. * Initialize an SGE egress context and make it ready for use. If the
  1805. * platform allows concurrent context operations, the caller is
  1806. * responsible for appropriate locking.
  1807. */
  1808. int t3_sge_init_ecntxt(struct adapter *adapter, unsigned int id, int gts_enable,
  1809. enum sge_context_type type, int respq, u64 base_addr,
  1810. unsigned int size, unsigned int token, int gen,
  1811. unsigned int cidx)
  1812. {
  1813. unsigned int credits = type == SGE_CNTXT_OFLD ? 0 : FW_WR_NUM;
  1814. if (base_addr & 0xfff) /* must be 4K aligned */
  1815. return -EINVAL;
  1816. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1817. return -EBUSY;
  1818. base_addr >>= 12;
  1819. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_EC_INDEX(cidx) |
  1820. V_EC_CREDITS(credits) | V_EC_GTS(gts_enable));
  1821. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, V_EC_SIZE(size) |
  1822. V_EC_BASE_LO(base_addr & 0xffff));
  1823. base_addr >>= 16;
  1824. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, base_addr);
  1825. base_addr >>= 32;
  1826. t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
  1827. V_EC_BASE_HI(base_addr & 0xf) | V_EC_RESPQ(respq) |
  1828. V_EC_TYPE(type) | V_EC_GEN(gen) | V_EC_UP_TOKEN(token) |
  1829. F_EC_VALID);
  1830. return t3_sge_write_context(adapter, id, F_EGRESS);
  1831. }
  1832. /**
  1833. * t3_sge_init_flcntxt - initialize an SGE free-buffer list context
  1834. * @adapter: the adapter to configure
  1835. * @id: the context id
  1836. * @gts_enable: whether to enable GTS for the context
  1837. * @base_addr: base address of queue
  1838. * @size: number of queue entries
  1839. * @bsize: size of each buffer for this queue
  1840. * @cong_thres: threshold to signal congestion to upstream producers
  1841. * @gen: initial generation value for the context
  1842. * @cidx: consumer pointer
  1843. *
  1844. * Initialize an SGE free list context and make it ready for use. The
  1845. * caller is responsible for ensuring only one context operation occurs
  1846. * at a time.
  1847. */
  1848. int t3_sge_init_flcntxt(struct adapter *adapter, unsigned int id,
  1849. int gts_enable, u64 base_addr, unsigned int size,
  1850. unsigned int bsize, unsigned int cong_thres, int gen,
  1851. unsigned int cidx)
  1852. {
  1853. if (base_addr & 0xfff) /* must be 4K aligned */
  1854. return -EINVAL;
  1855. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1856. return -EBUSY;
  1857. base_addr >>= 12;
  1858. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, base_addr);
  1859. base_addr >>= 32;
  1860. t3_write_reg(adapter, A_SG_CONTEXT_DATA1,
  1861. V_FL_BASE_HI((u32) base_addr) |
  1862. V_FL_INDEX_LO(cidx & M_FL_INDEX_LO));
  1863. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, V_FL_SIZE(size) |
  1864. V_FL_GEN(gen) | V_FL_INDEX_HI(cidx >> 12) |
  1865. V_FL_ENTRY_SIZE_LO(bsize & M_FL_ENTRY_SIZE_LO));
  1866. t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
  1867. V_FL_ENTRY_SIZE_HI(bsize >> (32 - S_FL_ENTRY_SIZE_LO)) |
  1868. V_FL_CONG_THRES(cong_thres) | V_FL_GTS(gts_enable));
  1869. return t3_sge_write_context(adapter, id, F_FREELIST);
  1870. }
  1871. /**
  1872. * t3_sge_init_rspcntxt - initialize an SGE response queue context
  1873. * @adapter: the adapter to configure
  1874. * @id: the context id
  1875. * @irq_vec_idx: MSI-X interrupt vector index, 0 if no MSI-X, -1 if no IRQ
  1876. * @base_addr: base address of queue
  1877. * @size: number of queue entries
  1878. * @fl_thres: threshold for selecting the normal or jumbo free list
  1879. * @gen: initial generation value for the context
  1880. * @cidx: consumer pointer
  1881. *
  1882. * Initialize an SGE response queue context and make it ready for use.
  1883. * The caller is responsible for ensuring only one context operation
  1884. * occurs at a time.
  1885. */
  1886. int t3_sge_init_rspcntxt(struct adapter *adapter, unsigned int id,
  1887. int irq_vec_idx, u64 base_addr, unsigned int size,
  1888. unsigned int fl_thres, int gen, unsigned int cidx)
  1889. {
  1890. unsigned int intr = 0;
  1891. if (base_addr & 0xfff) /* must be 4K aligned */
  1892. return -EINVAL;
  1893. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1894. return -EBUSY;
  1895. base_addr >>= 12;
  1896. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size) |
  1897. V_CQ_INDEX(cidx));
  1898. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
  1899. base_addr >>= 32;
  1900. if (irq_vec_idx >= 0)
  1901. intr = V_RQ_MSI_VEC(irq_vec_idx) | F_RQ_INTR_EN;
  1902. t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
  1903. V_CQ_BASE_HI((u32) base_addr) | intr | V_RQ_GEN(gen));
  1904. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, fl_thres);
  1905. return t3_sge_write_context(adapter, id, F_RESPONSEQ);
  1906. }
  1907. /**
  1908. * t3_sge_init_cqcntxt - initialize an SGE completion queue context
  1909. * @adapter: the adapter to configure
  1910. * @id: the context id
  1911. * @base_addr: base address of queue
  1912. * @size: number of queue entries
  1913. * @rspq: response queue for async notifications
  1914. * @ovfl_mode: CQ overflow mode
  1915. * @credits: completion queue credits
  1916. * @credit_thres: the credit threshold
  1917. *
  1918. * Initialize an SGE completion queue context and make it ready for use.
  1919. * The caller is responsible for ensuring only one context operation
  1920. * occurs at a time.
  1921. */
  1922. int t3_sge_init_cqcntxt(struct adapter *adapter, unsigned int id, u64 base_addr,
  1923. unsigned int size, int rspq, int ovfl_mode,
  1924. unsigned int credits, unsigned int credit_thres)
  1925. {
  1926. if (base_addr & 0xfff) /* must be 4K aligned */
  1927. return -EINVAL;
  1928. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1929. return -EBUSY;
  1930. base_addr >>= 12;
  1931. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size));
  1932. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
  1933. base_addr >>= 32;
  1934. t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
  1935. V_CQ_BASE_HI((u32) base_addr) | V_CQ_RSPQ(rspq) |
  1936. V_CQ_GEN(1) | V_CQ_OVERFLOW_MODE(ovfl_mode) |
  1937. V_CQ_ERR(ovfl_mode));
  1938. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_CQ_CREDITS(credits) |
  1939. V_CQ_CREDIT_THRES(credit_thres));
  1940. return t3_sge_write_context(adapter, id, F_CQ);
  1941. }
  1942. /**
  1943. * t3_sge_enable_ecntxt - enable/disable an SGE egress context
  1944. * @adapter: the adapter
  1945. * @id: the egress context id
  1946. * @enable: enable (1) or disable (0) the context
  1947. *
  1948. * Enable or disable an SGE egress context. The caller is responsible for
  1949. * ensuring only one context operation occurs at a time.
  1950. */
  1951. int t3_sge_enable_ecntxt(struct adapter *adapter, unsigned int id, int enable)
  1952. {
  1953. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1954. return -EBUSY;
  1955. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
  1956. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  1957. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  1958. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, F_EC_VALID);
  1959. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_EC_VALID(enable));
  1960. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1961. V_CONTEXT_CMD_OPCODE(1) | F_EGRESS | V_CONTEXT(id));
  1962. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1963. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  1964. }
  1965. /**
  1966. * t3_sge_disable_fl - disable an SGE free-buffer list
  1967. * @adapter: the adapter
  1968. * @id: the free list context id
  1969. *
  1970. * Disable an SGE free-buffer list. The caller is responsible for
  1971. * ensuring only one context operation occurs at a time.
  1972. */
  1973. int t3_sge_disable_fl(struct adapter *adapter, unsigned int id)
  1974. {
  1975. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1976. return -EBUSY;
  1977. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
  1978. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  1979. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, V_FL_SIZE(M_FL_SIZE));
  1980. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  1981. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 0);
  1982. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1983. V_CONTEXT_CMD_OPCODE(1) | F_FREELIST | V_CONTEXT(id));
  1984. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1985. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  1986. }
  1987. /**
  1988. * t3_sge_disable_rspcntxt - disable an SGE response queue
  1989. * @adapter: the adapter
  1990. * @id: the response queue context id
  1991. *
  1992. * Disable an SGE response queue. The caller is responsible for
  1993. * ensuring only one context operation occurs at a time.
  1994. */
  1995. int t3_sge_disable_rspcntxt(struct adapter *adapter, unsigned int id)
  1996. {
  1997. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1998. return -EBUSY;
  1999. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
  2000. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  2001. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  2002. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  2003. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
  2004. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2005. V_CONTEXT_CMD_OPCODE(1) | F_RESPONSEQ | V_CONTEXT(id));
  2006. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  2007. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  2008. }
  2009. /**
  2010. * t3_sge_disable_cqcntxt - disable an SGE completion queue
  2011. * @adapter: the adapter
  2012. * @id: the completion queue context id
  2013. *
  2014. * Disable an SGE completion queue. The caller is responsible for
  2015. * ensuring only one context operation occurs at a time.
  2016. */
  2017. int t3_sge_disable_cqcntxt(struct adapter *adapter, unsigned int id)
  2018. {
  2019. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2020. return -EBUSY;
  2021. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
  2022. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  2023. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  2024. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  2025. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
  2026. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2027. V_CONTEXT_CMD_OPCODE(1) | F_CQ | V_CONTEXT(id));
  2028. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  2029. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  2030. }
  2031. /**
  2032. * t3_sge_cqcntxt_op - perform an operation on a completion queue context
  2033. * @adapter: the adapter
  2034. * @id: the context id
  2035. * @op: the operation to perform
  2036. *
  2037. * Perform the selected operation on an SGE completion queue context.
  2038. * The caller is responsible for ensuring only one context operation
  2039. * occurs at a time.
  2040. */
  2041. int t3_sge_cqcntxt_op(struct adapter *adapter, unsigned int id, unsigned int op,
  2042. unsigned int credits)
  2043. {
  2044. u32 val;
  2045. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2046. return -EBUSY;
  2047. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, credits << 16);
  2048. t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(op) |
  2049. V_CONTEXT(id) | F_CQ);
  2050. if (t3_wait_op_done_val(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  2051. 0, SG_CONTEXT_CMD_ATTEMPTS, 1, &val))
  2052. return -EIO;
  2053. if (op >= 2 && op < 7) {
  2054. if (adapter->params.rev > 0)
  2055. return G_CQ_INDEX(val);
  2056. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2057. V_CONTEXT_CMD_OPCODE(0) | F_CQ | V_CONTEXT(id));
  2058. if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD,
  2059. F_CONTEXT_CMD_BUSY, 0,
  2060. SG_CONTEXT_CMD_ATTEMPTS, 1))
  2061. return -EIO;
  2062. return G_CQ_INDEX(t3_read_reg(adapter, A_SG_CONTEXT_DATA0));
  2063. }
  2064. return 0;
  2065. }
  2066. /**
  2067. * t3_sge_read_context - read an SGE context
  2068. * @type: the context type
  2069. * @adapter: the adapter
  2070. * @id: the context id
  2071. * @data: holds the retrieved context
  2072. *
  2073. * Read an SGE egress context. The caller is responsible for ensuring
  2074. * only one context operation occurs at a time.
  2075. */
  2076. static int t3_sge_read_context(unsigned int type, struct adapter *adapter,
  2077. unsigned int id, u32 data[4])
  2078. {
  2079. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2080. return -EBUSY;
  2081. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2082. V_CONTEXT_CMD_OPCODE(0) | type | V_CONTEXT(id));
  2083. if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 0,
  2084. SG_CONTEXT_CMD_ATTEMPTS, 1))
  2085. return -EIO;
  2086. data[0] = t3_read_reg(adapter, A_SG_CONTEXT_DATA0);
  2087. data[1] = t3_read_reg(adapter, A_SG_CONTEXT_DATA1);
  2088. data[2] = t3_read_reg(adapter, A_SG_CONTEXT_DATA2);
  2089. data[3] = t3_read_reg(adapter, A_SG_CONTEXT_DATA3);
  2090. return 0;
  2091. }
  2092. /**
  2093. * t3_sge_read_ecntxt - read an SGE egress context
  2094. * @adapter: the adapter
  2095. * @id: the context id
  2096. * @data: holds the retrieved context
  2097. *
  2098. * Read an SGE egress context. The caller is responsible for ensuring
  2099. * only one context operation occurs at a time.
  2100. */
  2101. int t3_sge_read_ecntxt(struct adapter *adapter, unsigned int id, u32 data[4])
  2102. {
  2103. if (id >= 65536)
  2104. return -EINVAL;
  2105. return t3_sge_read_context(F_EGRESS, adapter, id, data);
  2106. }
  2107. /**
  2108. * t3_sge_read_cq - read an SGE CQ context
  2109. * @adapter: the adapter
  2110. * @id: the context id
  2111. * @data: holds the retrieved context
  2112. *
  2113. * Read an SGE CQ context. The caller is responsible for ensuring
  2114. * only one context operation occurs at a time.
  2115. */
  2116. int t3_sge_read_cq(struct adapter *adapter, unsigned int id, u32 data[4])
  2117. {
  2118. if (id >= 65536)
  2119. return -EINVAL;
  2120. return t3_sge_read_context(F_CQ, adapter, id, data);
  2121. }
  2122. /**
  2123. * t3_sge_read_fl - read an SGE free-list context
  2124. * @adapter: the adapter
  2125. * @id: the context id
  2126. * @data: holds the retrieved context
  2127. *
  2128. * Read an SGE free-list context. The caller is responsible for ensuring
  2129. * only one context operation occurs at a time.
  2130. */
  2131. int t3_sge_read_fl(struct adapter *adapter, unsigned int id, u32 data[4])
  2132. {
  2133. if (id >= SGE_QSETS * 2)
  2134. return -EINVAL;
  2135. return t3_sge_read_context(F_FREELIST, adapter, id, data);
  2136. }
  2137. /**
  2138. * t3_sge_read_rspq - read an SGE response queue context
  2139. * @adapter: the adapter
  2140. * @id: the context id
  2141. * @data: holds the retrieved context
  2142. *
  2143. * Read an SGE response queue context. The caller is responsible for
  2144. * ensuring only one context operation occurs at a time.
  2145. */
  2146. int t3_sge_read_rspq(struct adapter *adapter, unsigned int id, u32 data[4])
  2147. {
  2148. if (id >= SGE_QSETS)
  2149. return -EINVAL;
  2150. return t3_sge_read_context(F_RESPONSEQ, adapter, id, data);
  2151. }
  2152. /**
  2153. * t3_config_rss - configure Rx packet steering
  2154. * @adapter: the adapter
  2155. * @rss_config: RSS settings (written to TP_RSS_CONFIG)
  2156. * @cpus: values for the CPU lookup table (0xff terminated)
  2157. * @rspq: values for the response queue lookup table (0xffff terminated)
  2158. *
  2159. * Programs the receive packet steering logic. @cpus and @rspq provide
  2160. * the values for the CPU and response queue lookup tables. If they
  2161. * provide fewer values than the size of the tables the supplied values
  2162. * are used repeatedly until the tables are fully populated.
  2163. */
  2164. void t3_config_rss(struct adapter *adapter, unsigned int rss_config,
  2165. const u8 * cpus, const u16 *rspq)
  2166. {
  2167. int i, j, cpu_idx = 0, q_idx = 0;
  2168. if (cpus)
  2169. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2170. u32 val = i << 16;
  2171. for (j = 0; j < 2; ++j) {
  2172. val |= (cpus[cpu_idx++] & 0x3f) << (8 * j);
  2173. if (cpus[cpu_idx] == 0xff)
  2174. cpu_idx = 0;
  2175. }
  2176. t3_write_reg(adapter, A_TP_RSS_LKP_TABLE, val);
  2177. }
  2178. if (rspq)
  2179. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2180. t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
  2181. (i << 16) | rspq[q_idx++]);
  2182. if (rspq[q_idx] == 0xffff)
  2183. q_idx = 0;
  2184. }
  2185. t3_write_reg(adapter, A_TP_RSS_CONFIG, rss_config);
  2186. }
  2187. /**
  2188. * t3_read_rss - read the contents of the RSS tables
  2189. * @adapter: the adapter
  2190. * @lkup: holds the contents of the RSS lookup table
  2191. * @map: holds the contents of the RSS map table
  2192. *
  2193. * Reads the contents of the receive packet steering tables.
  2194. */
  2195. int t3_read_rss(struct adapter *adapter, u8 * lkup, u16 *map)
  2196. {
  2197. int i;
  2198. u32 val;
  2199. if (lkup)
  2200. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2201. t3_write_reg(adapter, A_TP_RSS_LKP_TABLE,
  2202. 0xffff0000 | i);
  2203. val = t3_read_reg(adapter, A_TP_RSS_LKP_TABLE);
  2204. if (!(val & 0x80000000))
  2205. return -EAGAIN;
  2206. *lkup++ = val;
  2207. *lkup++ = (val >> 8);
  2208. }
  2209. if (map)
  2210. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2211. t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
  2212. 0xffff0000 | i);
  2213. val = t3_read_reg(adapter, A_TP_RSS_MAP_TABLE);
  2214. if (!(val & 0x80000000))
  2215. return -EAGAIN;
  2216. *map++ = val;
  2217. }
  2218. return 0;
  2219. }
  2220. /**
  2221. * t3_tp_set_offload_mode - put TP in NIC/offload mode
  2222. * @adap: the adapter
  2223. * @enable: 1 to select offload mode, 0 for regular NIC
  2224. *
  2225. * Switches TP to NIC/offload mode.
  2226. */
  2227. void t3_tp_set_offload_mode(struct adapter *adap, int enable)
  2228. {
  2229. if (is_offload(adap) || !enable)
  2230. t3_set_reg_field(adap, A_TP_IN_CONFIG, F_NICMODE,
  2231. V_NICMODE(!enable));
  2232. }
  2233. /**
  2234. * pm_num_pages - calculate the number of pages of the payload memory
  2235. * @mem_size: the size of the payload memory
  2236. * @pg_size: the size of each payload memory page
  2237. *
  2238. * Calculate the number of pages, each of the given size, that fit in a
  2239. * memory of the specified size, respecting the HW requirement that the
  2240. * number of pages must be a multiple of 24.
  2241. */
  2242. static inline unsigned int pm_num_pages(unsigned int mem_size,
  2243. unsigned int pg_size)
  2244. {
  2245. unsigned int n = mem_size / pg_size;
  2246. return n - n % 24;
  2247. }
  2248. #define mem_region(adap, start, size, reg) \
  2249. t3_write_reg((adap), A_ ## reg, (start)); \
  2250. start += size
  2251. /**
  2252. * partition_mem - partition memory and configure TP memory settings
  2253. * @adap: the adapter
  2254. * @p: the TP parameters
  2255. *
  2256. * Partitions context and payload memory and configures TP's memory
  2257. * registers.
  2258. */
  2259. static void partition_mem(struct adapter *adap, const struct tp_params *p)
  2260. {
  2261. unsigned int m, pstructs, tids = t3_mc5_size(&adap->mc5);
  2262. unsigned int timers = 0, timers_shift = 22;
  2263. if (adap->params.rev > 0) {
  2264. if (tids <= 16 * 1024) {
  2265. timers = 1;
  2266. timers_shift = 16;
  2267. } else if (tids <= 64 * 1024) {
  2268. timers = 2;
  2269. timers_shift = 18;
  2270. } else if (tids <= 256 * 1024) {
  2271. timers = 3;
  2272. timers_shift = 20;
  2273. }
  2274. }
  2275. t3_write_reg(adap, A_TP_PMM_SIZE,
  2276. p->chan_rx_size | (p->chan_tx_size >> 16));
  2277. t3_write_reg(adap, A_TP_PMM_TX_BASE, 0);
  2278. t3_write_reg(adap, A_TP_PMM_TX_PAGE_SIZE, p->tx_pg_size);
  2279. t3_write_reg(adap, A_TP_PMM_TX_MAX_PAGE, p->tx_num_pgs);
  2280. t3_set_reg_field(adap, A_TP_PARA_REG3, V_TXDATAACKIDX(M_TXDATAACKIDX),
  2281. V_TXDATAACKIDX(fls(p->tx_pg_size) - 12));
  2282. t3_write_reg(adap, A_TP_PMM_RX_BASE, 0);
  2283. t3_write_reg(adap, A_TP_PMM_RX_PAGE_SIZE, p->rx_pg_size);
  2284. t3_write_reg(adap, A_TP_PMM_RX_MAX_PAGE, p->rx_num_pgs);
  2285. pstructs = p->rx_num_pgs + p->tx_num_pgs;
  2286. /* Add a bit of headroom and make multiple of 24 */
  2287. pstructs += 48;
  2288. pstructs -= pstructs % 24;
  2289. t3_write_reg(adap, A_TP_CMM_MM_MAX_PSTRUCT, pstructs);
  2290. m = tids * TCB_SIZE;
  2291. mem_region(adap, m, (64 << 10) * 64, SG_EGR_CNTX_BADDR);
  2292. mem_region(adap, m, (64 << 10) * 64, SG_CQ_CONTEXT_BADDR);
  2293. t3_write_reg(adap, A_TP_CMM_TIMER_BASE, V_CMTIMERMAXNUM(timers) | m);
  2294. m += ((p->ntimer_qs - 1) << timers_shift) + (1 << 22);
  2295. mem_region(adap, m, pstructs * 64, TP_CMM_MM_BASE);
  2296. mem_region(adap, m, 64 * (pstructs / 24), TP_CMM_MM_PS_FLST_BASE);
  2297. mem_region(adap, m, 64 * (p->rx_num_pgs / 24), TP_CMM_MM_RX_FLST_BASE);
  2298. mem_region(adap, m, 64 * (p->tx_num_pgs / 24), TP_CMM_MM_TX_FLST_BASE);
  2299. m = (m + 4095) & ~0xfff;
  2300. t3_write_reg(adap, A_CIM_SDRAM_BASE_ADDR, m);
  2301. t3_write_reg(adap, A_CIM_SDRAM_ADDR_SIZE, p->cm_size - m);
  2302. tids = (p->cm_size - m - (3 << 20)) / 3072 - 32;
  2303. m = t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
  2304. adap->params.mc5.nfilters - adap->params.mc5.nroutes;
  2305. if (tids < m)
  2306. adap->params.mc5.nservers += m - tids;
  2307. }
  2308. static inline void tp_wr_indirect(struct adapter *adap, unsigned int addr,
  2309. u32 val)
  2310. {
  2311. t3_write_reg(adap, A_TP_PIO_ADDR, addr);
  2312. t3_write_reg(adap, A_TP_PIO_DATA, val);
  2313. }
  2314. static void tp_config(struct adapter *adap, const struct tp_params *p)
  2315. {
  2316. t3_write_reg(adap, A_TP_GLOBAL_CONFIG, F_TXPACINGENABLE | F_PATHMTU |
  2317. F_IPCHECKSUMOFFLOAD | F_UDPCHECKSUMOFFLOAD |
  2318. F_TCPCHECKSUMOFFLOAD | V_IPTTL(64));
  2319. t3_write_reg(adap, A_TP_TCP_OPTIONS, V_MTUDEFAULT(576) |
  2320. F_MTUENABLE | V_WINDOWSCALEMODE(1) |
  2321. V_TIMESTAMPSMODE(0) | V_SACKMODE(1) | V_SACKRX(1));
  2322. t3_write_reg(adap, A_TP_DACK_CONFIG, V_AUTOSTATE3(1) |
  2323. V_AUTOSTATE2(1) | V_AUTOSTATE1(0) |
  2324. V_BYTETHRESHOLD(16384) | V_MSSTHRESHOLD(2) |
  2325. F_AUTOCAREFUL | F_AUTOENABLE | V_DACK_MODE(1));
  2326. t3_set_reg_field(adap, A_TP_IN_CONFIG, F_RXFBARBPRIO | F_TXFBARBPRIO,
  2327. F_IPV6ENABLE | F_NICMODE);
  2328. t3_write_reg(adap, A_TP_TX_RESOURCE_LIMIT, 0x18141814);
  2329. t3_write_reg(adap, A_TP_PARA_REG4, 0x5050105);
  2330. t3_set_reg_field(adap, A_TP_PARA_REG6, 0,
  2331. adap->params.rev > 0 ? F_ENABLEESND :
  2332. F_T3A_ENABLEESND);
  2333. t3_set_reg_field(adap, A_TP_PC_CONFIG,
  2334. F_ENABLEEPCMDAFULL,
  2335. F_ENABLEOCSPIFULL |F_TXDEFERENABLE | F_HEARBEATDACK |
  2336. F_TXCONGESTIONMODE | F_RXCONGESTIONMODE);
  2337. t3_set_reg_field(adap, A_TP_PC_CONFIG2, F_CHDRAFULL,
  2338. F_ENABLEIPV6RSS | F_ENABLENONOFDTNLSYN |
  2339. F_ENABLEARPMISS | F_DISBLEDAPARBIT0);
  2340. t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1080);
  2341. t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1000);
  2342. if (adap->params.rev > 0) {
  2343. tp_wr_indirect(adap, A_TP_EGRESS_CONFIG, F_REWRITEFORCETOSIZE);
  2344. t3_set_reg_field(adap, A_TP_PARA_REG3, F_TXPACEAUTO,
  2345. F_TXPACEAUTO);
  2346. t3_set_reg_field(adap, A_TP_PC_CONFIG, F_LOCKTID, F_LOCKTID);
  2347. t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEAUTOSTRICT);
  2348. } else
  2349. t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEFIXED);
  2350. if (adap->params.rev == T3_REV_C)
  2351. t3_set_reg_field(adap, A_TP_PC_CONFIG,
  2352. V_TABLELATENCYDELTA(M_TABLELATENCYDELTA),
  2353. V_TABLELATENCYDELTA(4));
  2354. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT1, 0);
  2355. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0, 0);
  2356. t3_write_reg(adap, A_TP_MOD_CHANNEL_WEIGHT, 0);
  2357. t3_write_reg(adap, A_TP_MOD_RATE_LIMIT, 0xf2200000);
  2358. }
  2359. /* Desired TP timer resolution in usec */
  2360. #define TP_TMR_RES 50
  2361. /* TCP timer values in ms */
  2362. #define TP_DACK_TIMER 50
  2363. #define TP_RTO_MIN 250
  2364. /**
  2365. * tp_set_timers - set TP timing parameters
  2366. * @adap: the adapter to set
  2367. * @core_clk: the core clock frequency in Hz
  2368. *
  2369. * Set TP's timing parameters, such as the various timer resolutions and
  2370. * the TCP timer values.
  2371. */
  2372. static void tp_set_timers(struct adapter *adap, unsigned int core_clk)
  2373. {
  2374. unsigned int tre = fls(core_clk / (1000000 / TP_TMR_RES)) - 1;
  2375. unsigned int dack_re = fls(core_clk / 5000) - 1; /* 200us */
  2376. unsigned int tstamp_re = fls(core_clk / 1000); /* 1ms, at least */
  2377. unsigned int tps = core_clk >> tre;
  2378. t3_write_reg(adap, A_TP_TIMER_RESOLUTION, V_TIMERRESOLUTION(tre) |
  2379. V_DELAYEDACKRESOLUTION(dack_re) |
  2380. V_TIMESTAMPRESOLUTION(tstamp_re));
  2381. t3_write_reg(adap, A_TP_DACK_TIMER,
  2382. (core_clk >> dack_re) / (1000 / TP_DACK_TIMER));
  2383. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG0, 0x3020100);
  2384. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG1, 0x7060504);
  2385. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG2, 0xb0a0908);
  2386. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG3, 0xf0e0d0c);
  2387. t3_write_reg(adap, A_TP_SHIFT_CNT, V_SYNSHIFTMAX(6) |
  2388. V_RXTSHIFTMAXR1(4) | V_RXTSHIFTMAXR2(15) |
  2389. V_PERSHIFTBACKOFFMAX(8) | V_PERSHIFTMAX(8) |
  2390. V_KEEPALIVEMAX(9));
  2391. #define SECONDS * tps
  2392. t3_write_reg(adap, A_TP_MSL, adap->params.rev > 0 ? 0 : 2 SECONDS);
  2393. t3_write_reg(adap, A_TP_RXT_MIN, tps / (1000 / TP_RTO_MIN));
  2394. t3_write_reg(adap, A_TP_RXT_MAX, 64 SECONDS);
  2395. t3_write_reg(adap, A_TP_PERS_MIN, 5 SECONDS);
  2396. t3_write_reg(adap, A_TP_PERS_MAX, 64 SECONDS);
  2397. t3_write_reg(adap, A_TP_KEEP_IDLE, 7200 SECONDS);
  2398. t3_write_reg(adap, A_TP_KEEP_INTVL, 75 SECONDS);
  2399. t3_write_reg(adap, A_TP_INIT_SRTT, 3 SECONDS);
  2400. t3_write_reg(adap, A_TP_FINWAIT2_TIMER, 600 SECONDS);
  2401. #undef SECONDS
  2402. }
  2403. /**
  2404. * t3_tp_set_coalescing_size - set receive coalescing size
  2405. * @adap: the adapter
  2406. * @size: the receive coalescing size
  2407. * @psh: whether a set PSH bit should deliver coalesced data
  2408. *
  2409. * Set the receive coalescing size and PSH bit handling.
  2410. */
  2411. int t3_tp_set_coalescing_size(struct adapter *adap, unsigned int size, int psh)
  2412. {
  2413. u32 val;
  2414. if (size > MAX_RX_COALESCING_LEN)
  2415. return -EINVAL;
  2416. val = t3_read_reg(adap, A_TP_PARA_REG3);
  2417. val &= ~(F_RXCOALESCEENABLE | F_RXCOALESCEPSHEN);
  2418. if (size) {
  2419. val |= F_RXCOALESCEENABLE;
  2420. if (psh)
  2421. val |= F_RXCOALESCEPSHEN;
  2422. size = min(MAX_RX_COALESCING_LEN, size);
  2423. t3_write_reg(adap, A_TP_PARA_REG2, V_RXCOALESCESIZE(size) |
  2424. V_MAXRXDATA(MAX_RX_COALESCING_LEN));
  2425. }
  2426. t3_write_reg(adap, A_TP_PARA_REG3, val);
  2427. return 0;
  2428. }
  2429. /**
  2430. * t3_tp_set_max_rxsize - set the max receive size
  2431. * @adap: the adapter
  2432. * @size: the max receive size
  2433. *
  2434. * Set TP's max receive size. This is the limit that applies when
  2435. * receive coalescing is disabled.
  2436. */
  2437. void t3_tp_set_max_rxsize(struct adapter *adap, unsigned int size)
  2438. {
  2439. t3_write_reg(adap, A_TP_PARA_REG7,
  2440. V_PMMAXXFERLEN0(size) | V_PMMAXXFERLEN1(size));
  2441. }
  2442. static void init_mtus(unsigned short mtus[])
  2443. {
  2444. /*
  2445. * See draft-mathis-plpmtud-00.txt for the values. The min is 88 so
  2446. * it can accomodate max size TCP/IP headers when SACK and timestamps
  2447. * are enabled and still have at least 8 bytes of payload.
  2448. */
  2449. mtus[0] = 88;
  2450. mtus[1] = 88;
  2451. mtus[2] = 256;
  2452. mtus[3] = 512;
  2453. mtus[4] = 576;
  2454. mtus[5] = 1024;
  2455. mtus[6] = 1280;
  2456. mtus[7] = 1492;
  2457. mtus[8] = 1500;
  2458. mtus[9] = 2002;
  2459. mtus[10] = 2048;
  2460. mtus[11] = 4096;
  2461. mtus[12] = 4352;
  2462. mtus[13] = 8192;
  2463. mtus[14] = 9000;
  2464. mtus[15] = 9600;
  2465. }
  2466. /*
  2467. * Initial congestion control parameters.
  2468. */
  2469. static void init_cong_ctrl(unsigned short *a, unsigned short *b)
  2470. {
  2471. a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
  2472. a[9] = 2;
  2473. a[10] = 3;
  2474. a[11] = 4;
  2475. a[12] = 5;
  2476. a[13] = 6;
  2477. a[14] = 7;
  2478. a[15] = 8;
  2479. a[16] = 9;
  2480. a[17] = 10;
  2481. a[18] = 14;
  2482. a[19] = 17;
  2483. a[20] = 21;
  2484. a[21] = 25;
  2485. a[22] = 30;
  2486. a[23] = 35;
  2487. a[24] = 45;
  2488. a[25] = 60;
  2489. a[26] = 80;
  2490. a[27] = 100;
  2491. a[28] = 200;
  2492. a[29] = 300;
  2493. a[30] = 400;
  2494. a[31] = 500;
  2495. b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
  2496. b[9] = b[10] = 1;
  2497. b[11] = b[12] = 2;
  2498. b[13] = b[14] = b[15] = b[16] = 3;
  2499. b[17] = b[18] = b[19] = b[20] = b[21] = 4;
  2500. b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
  2501. b[28] = b[29] = 6;
  2502. b[30] = b[31] = 7;
  2503. }
  2504. /* The minimum additive increment value for the congestion control table */
  2505. #define CC_MIN_INCR 2U
  2506. /**
  2507. * t3_load_mtus - write the MTU and congestion control HW tables
  2508. * @adap: the adapter
  2509. * @mtus: the unrestricted values for the MTU table
  2510. * @alphs: the values for the congestion control alpha parameter
  2511. * @beta: the values for the congestion control beta parameter
  2512. * @mtu_cap: the maximum permitted effective MTU
  2513. *
  2514. * Write the MTU table with the supplied MTUs capping each at &mtu_cap.
  2515. * Update the high-speed congestion control table with the supplied alpha,
  2516. * beta, and MTUs.
  2517. */
  2518. void t3_load_mtus(struct adapter *adap, unsigned short mtus[NMTUS],
  2519. unsigned short alpha[NCCTRL_WIN],
  2520. unsigned short beta[NCCTRL_WIN], unsigned short mtu_cap)
  2521. {
  2522. static const unsigned int avg_pkts[NCCTRL_WIN] = {
  2523. 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
  2524. 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
  2525. 28672, 40960, 57344, 81920, 114688, 163840, 229376
  2526. };
  2527. unsigned int i, w;
  2528. for (i = 0; i < NMTUS; ++i) {
  2529. unsigned int mtu = min(mtus[i], mtu_cap);
  2530. unsigned int log2 = fls(mtu);
  2531. if (!(mtu & ((1 << log2) >> 2))) /* round */
  2532. log2--;
  2533. t3_write_reg(adap, A_TP_MTU_TABLE,
  2534. (i << 24) | (log2 << 16) | mtu);
  2535. for (w = 0; w < NCCTRL_WIN; ++w) {
  2536. unsigned int inc;
  2537. inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
  2538. CC_MIN_INCR);
  2539. t3_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
  2540. (w << 16) | (beta[w] << 13) | inc);
  2541. }
  2542. }
  2543. }
  2544. /**
  2545. * t3_read_hw_mtus - returns the values in the HW MTU table
  2546. * @adap: the adapter
  2547. * @mtus: where to store the HW MTU values
  2548. *
  2549. * Reads the HW MTU table.
  2550. */
  2551. void t3_read_hw_mtus(struct adapter *adap, unsigned short mtus[NMTUS])
  2552. {
  2553. int i;
  2554. for (i = 0; i < NMTUS; ++i) {
  2555. unsigned int val;
  2556. t3_write_reg(adap, A_TP_MTU_TABLE, 0xff000000 | i);
  2557. val = t3_read_reg(adap, A_TP_MTU_TABLE);
  2558. mtus[i] = val & 0x3fff;
  2559. }
  2560. }
  2561. /**
  2562. * t3_get_cong_cntl_tab - reads the congestion control table
  2563. * @adap: the adapter
  2564. * @incr: where to store the alpha values
  2565. *
  2566. * Reads the additive increments programmed into the HW congestion
  2567. * control table.
  2568. */
  2569. void t3_get_cong_cntl_tab(struct adapter *adap,
  2570. unsigned short incr[NMTUS][NCCTRL_WIN])
  2571. {
  2572. unsigned int mtu, w;
  2573. for (mtu = 0; mtu < NMTUS; ++mtu)
  2574. for (w = 0; w < NCCTRL_WIN; ++w) {
  2575. t3_write_reg(adap, A_TP_CCTRL_TABLE,
  2576. 0xffff0000 | (mtu << 5) | w);
  2577. incr[mtu][w] = t3_read_reg(adap, A_TP_CCTRL_TABLE) &
  2578. 0x1fff;
  2579. }
  2580. }
  2581. /**
  2582. * t3_tp_get_mib_stats - read TP's MIB counters
  2583. * @adap: the adapter
  2584. * @tps: holds the returned counter values
  2585. *
  2586. * Returns the values of TP's MIB counters.
  2587. */
  2588. void t3_tp_get_mib_stats(struct adapter *adap, struct tp_mib_stats *tps)
  2589. {
  2590. t3_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_RDATA, (u32 *) tps,
  2591. sizeof(*tps) / sizeof(u32), 0);
  2592. }
  2593. #define ulp_region(adap, name, start, len) \
  2594. t3_write_reg((adap), A_ULPRX_ ## name ## _LLIMIT, (start)); \
  2595. t3_write_reg((adap), A_ULPRX_ ## name ## _ULIMIT, \
  2596. (start) + (len) - 1); \
  2597. start += len
  2598. #define ulptx_region(adap, name, start, len) \
  2599. t3_write_reg((adap), A_ULPTX_ ## name ## _LLIMIT, (start)); \
  2600. t3_write_reg((adap), A_ULPTX_ ## name ## _ULIMIT, \
  2601. (start) + (len) - 1)
  2602. static void ulp_config(struct adapter *adap, const struct tp_params *p)
  2603. {
  2604. unsigned int m = p->chan_rx_size;
  2605. ulp_region(adap, ISCSI, m, p->chan_rx_size / 8);
  2606. ulp_region(adap, TDDP, m, p->chan_rx_size / 8);
  2607. ulptx_region(adap, TPT, m, p->chan_rx_size / 4);
  2608. ulp_region(adap, STAG, m, p->chan_rx_size / 4);
  2609. ulp_region(adap, RQ, m, p->chan_rx_size / 4);
  2610. ulptx_region(adap, PBL, m, p->chan_rx_size / 4);
  2611. ulp_region(adap, PBL, m, p->chan_rx_size / 4);
  2612. t3_write_reg(adap, A_ULPRX_TDDP_TAGMASK, 0xffffffff);
  2613. }
  2614. /**
  2615. * t3_set_proto_sram - set the contents of the protocol sram
  2616. * @adapter: the adapter
  2617. * @data: the protocol image
  2618. *
  2619. * Write the contents of the protocol SRAM.
  2620. */
  2621. int t3_set_proto_sram(struct adapter *adap, const u8 *data)
  2622. {
  2623. int i;
  2624. const __be32 *buf = (const __be32 *)data;
  2625. for (i = 0; i < PROTO_SRAM_LINES; i++) {
  2626. t3_write_reg(adap, A_TP_EMBED_OP_FIELD5, be32_to_cpu(*buf++));
  2627. t3_write_reg(adap, A_TP_EMBED_OP_FIELD4, be32_to_cpu(*buf++));
  2628. t3_write_reg(adap, A_TP_EMBED_OP_FIELD3, be32_to_cpu(*buf++));
  2629. t3_write_reg(adap, A_TP_EMBED_OP_FIELD2, be32_to_cpu(*buf++));
  2630. t3_write_reg(adap, A_TP_EMBED_OP_FIELD1, be32_to_cpu(*buf++));
  2631. t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, i << 1 | 1 << 31);
  2632. if (t3_wait_op_done(adap, A_TP_EMBED_OP_FIELD0, 1, 1, 5, 1))
  2633. return -EIO;
  2634. }
  2635. t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, 0);
  2636. return 0;
  2637. }
  2638. void t3_config_trace_filter(struct adapter *adapter,
  2639. const struct trace_params *tp, int filter_index,
  2640. int invert, int enable)
  2641. {
  2642. u32 addr, key[4], mask[4];
  2643. key[0] = tp->sport | (tp->sip << 16);
  2644. key[1] = (tp->sip >> 16) | (tp->dport << 16);
  2645. key[2] = tp->dip;
  2646. key[3] = tp->proto | (tp->vlan << 8) | (tp->intf << 20);
  2647. mask[0] = tp->sport_mask | (tp->sip_mask << 16);
  2648. mask[1] = (tp->sip_mask >> 16) | (tp->dport_mask << 16);
  2649. mask[2] = tp->dip_mask;
  2650. mask[3] = tp->proto_mask | (tp->vlan_mask << 8) | (tp->intf_mask << 20);
  2651. if (invert)
  2652. key[3] |= (1 << 29);
  2653. if (enable)
  2654. key[3] |= (1 << 28);
  2655. addr = filter_index ? A_TP_RX_TRC_KEY0 : A_TP_TX_TRC_KEY0;
  2656. tp_wr_indirect(adapter, addr++, key[0]);
  2657. tp_wr_indirect(adapter, addr++, mask[0]);
  2658. tp_wr_indirect(adapter, addr++, key[1]);
  2659. tp_wr_indirect(adapter, addr++, mask[1]);
  2660. tp_wr_indirect(adapter, addr++, key[2]);
  2661. tp_wr_indirect(adapter, addr++, mask[2]);
  2662. tp_wr_indirect(adapter, addr++, key[3]);
  2663. tp_wr_indirect(adapter, addr, mask[3]);
  2664. t3_read_reg(adapter, A_TP_PIO_DATA);
  2665. }
  2666. /**
  2667. * t3_config_sched - configure a HW traffic scheduler
  2668. * @adap: the adapter
  2669. * @kbps: target rate in Kbps
  2670. * @sched: the scheduler index
  2671. *
  2672. * Configure a HW scheduler for the target rate
  2673. */
  2674. int t3_config_sched(struct adapter *adap, unsigned int kbps, int sched)
  2675. {
  2676. unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
  2677. unsigned int clk = adap->params.vpd.cclk * 1000;
  2678. unsigned int selected_cpt = 0, selected_bpt = 0;
  2679. if (kbps > 0) {
  2680. kbps *= 125; /* -> bytes */
  2681. for (cpt = 1; cpt <= 255; cpt++) {
  2682. tps = clk / cpt;
  2683. bpt = (kbps + tps / 2) / tps;
  2684. if (bpt > 0 && bpt <= 255) {
  2685. v = bpt * tps;
  2686. delta = v >= kbps ? v - kbps : kbps - v;
  2687. if (delta <= mindelta) {
  2688. mindelta = delta;
  2689. selected_cpt = cpt;
  2690. selected_bpt = bpt;
  2691. }
  2692. } else if (selected_cpt)
  2693. break;
  2694. }
  2695. if (!selected_cpt)
  2696. return -EINVAL;
  2697. }
  2698. t3_write_reg(adap, A_TP_TM_PIO_ADDR,
  2699. A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
  2700. v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
  2701. if (sched & 1)
  2702. v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
  2703. else
  2704. v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
  2705. t3_write_reg(adap, A_TP_TM_PIO_DATA, v);
  2706. return 0;
  2707. }
  2708. static int tp_init(struct adapter *adap, const struct tp_params *p)
  2709. {
  2710. int busy = 0;
  2711. tp_config(adap, p);
  2712. t3_set_vlan_accel(adap, 3, 0);
  2713. if (is_offload(adap)) {
  2714. tp_set_timers(adap, adap->params.vpd.cclk * 1000);
  2715. t3_write_reg(adap, A_TP_RESET, F_FLSTINITENABLE);
  2716. busy = t3_wait_op_done(adap, A_TP_RESET, F_FLSTINITENABLE,
  2717. 0, 1000, 5);
  2718. if (busy)
  2719. CH_ERR(adap, "TP initialization timed out\n");
  2720. }
  2721. if (!busy)
  2722. t3_write_reg(adap, A_TP_RESET, F_TPRESET);
  2723. return busy;
  2724. }
  2725. int t3_mps_set_active_ports(struct adapter *adap, unsigned int port_mask)
  2726. {
  2727. if (port_mask & ~((1 << adap->params.nports) - 1))
  2728. return -EINVAL;
  2729. t3_set_reg_field(adap, A_MPS_CFG, F_PORT1ACTIVE | F_PORT0ACTIVE,
  2730. port_mask << S_PORT0ACTIVE);
  2731. return 0;
  2732. }
  2733. /*
  2734. * Perform the bits of HW initialization that are dependent on the number
  2735. * of available ports.
  2736. */
  2737. static void init_hw_for_avail_ports(struct adapter *adap, int nports)
  2738. {
  2739. int i;
  2740. if (nports == 1) {
  2741. t3_set_reg_field(adap, A_ULPRX_CTL, F_ROUND_ROBIN, 0);
  2742. t3_set_reg_field(adap, A_ULPTX_CONFIG, F_CFG_RR_ARB, 0);
  2743. t3_write_reg(adap, A_MPS_CFG, F_TPRXPORTEN | F_TPTXPORT0EN |
  2744. F_PORT0ACTIVE | F_ENFORCEPKT);
  2745. t3_write_reg(adap, A_PM1_TX_CFG, 0xffffffff);
  2746. } else {
  2747. t3_set_reg_field(adap, A_ULPRX_CTL, 0, F_ROUND_ROBIN);
  2748. t3_set_reg_field(adap, A_ULPTX_CONFIG, 0, F_CFG_RR_ARB);
  2749. t3_write_reg(adap, A_ULPTX_DMA_WEIGHT,
  2750. V_D1_WEIGHT(16) | V_D0_WEIGHT(16));
  2751. t3_write_reg(adap, A_MPS_CFG, F_TPTXPORT0EN | F_TPTXPORT1EN |
  2752. F_TPRXPORTEN | F_PORT0ACTIVE | F_PORT1ACTIVE |
  2753. F_ENFORCEPKT);
  2754. t3_write_reg(adap, A_PM1_TX_CFG, 0x80008000);
  2755. t3_set_reg_field(adap, A_TP_PC_CONFIG, 0, F_TXTOSQUEUEMAPMODE);
  2756. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
  2757. V_TX_MOD_QUEUE_REQ_MAP(0xaa));
  2758. for (i = 0; i < 16; i++)
  2759. t3_write_reg(adap, A_TP_TX_MOD_QUE_TABLE,
  2760. (i << 16) | 0x1010);
  2761. }
  2762. }
  2763. static int calibrate_xgm(struct adapter *adapter)
  2764. {
  2765. if (uses_xaui(adapter)) {
  2766. unsigned int v, i;
  2767. for (i = 0; i < 5; ++i) {
  2768. t3_write_reg(adapter, A_XGM_XAUI_IMP, 0);
  2769. t3_read_reg(adapter, A_XGM_XAUI_IMP);
  2770. msleep(1);
  2771. v = t3_read_reg(adapter, A_XGM_XAUI_IMP);
  2772. if (!(v & (F_XGM_CALFAULT | F_CALBUSY))) {
  2773. t3_write_reg(adapter, A_XGM_XAUI_IMP,
  2774. V_XAUIIMP(G_CALIMP(v) >> 2));
  2775. return 0;
  2776. }
  2777. }
  2778. CH_ERR(adapter, "MAC calibration failed\n");
  2779. return -1;
  2780. } else {
  2781. t3_write_reg(adapter, A_XGM_RGMII_IMP,
  2782. V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
  2783. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
  2784. F_XGM_IMPSETUPDATE);
  2785. }
  2786. return 0;
  2787. }
  2788. static void calibrate_xgm_t3b(struct adapter *adapter)
  2789. {
  2790. if (!uses_xaui(adapter)) {
  2791. t3_write_reg(adapter, A_XGM_RGMII_IMP, F_CALRESET |
  2792. F_CALUPDATE | V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
  2793. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALRESET, 0);
  2794. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0,
  2795. F_XGM_IMPSETUPDATE);
  2796. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
  2797. 0);
  2798. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALUPDATE, 0);
  2799. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, F_CALUPDATE);
  2800. }
  2801. }
  2802. struct mc7_timing_params {
  2803. unsigned char ActToPreDly;
  2804. unsigned char ActToRdWrDly;
  2805. unsigned char PreCyc;
  2806. unsigned char RefCyc[5];
  2807. unsigned char BkCyc;
  2808. unsigned char WrToRdDly;
  2809. unsigned char RdToWrDly;
  2810. };
  2811. /*
  2812. * Write a value to a register and check that the write completed. These
  2813. * writes normally complete in a cycle or two, so one read should suffice.
  2814. * The very first read exists to flush the posted write to the device.
  2815. */
  2816. static int wrreg_wait(struct adapter *adapter, unsigned int addr, u32 val)
  2817. {
  2818. t3_write_reg(adapter, addr, val);
  2819. t3_read_reg(adapter, addr); /* flush */
  2820. if (!(t3_read_reg(adapter, addr) & F_BUSY))
  2821. return 0;
  2822. CH_ERR(adapter, "write to MC7 register 0x%x timed out\n", addr);
  2823. return -EIO;
  2824. }
  2825. static int mc7_init(struct mc7 *mc7, unsigned int mc7_clock, int mem_type)
  2826. {
  2827. static const unsigned int mc7_mode[] = {
  2828. 0x632, 0x642, 0x652, 0x432, 0x442
  2829. };
  2830. static const struct mc7_timing_params mc7_timings[] = {
  2831. {12, 3, 4, {20, 28, 34, 52, 0}, 15, 6, 4},
  2832. {12, 4, 5, {20, 28, 34, 52, 0}, 16, 7, 4},
  2833. {12, 5, 6, {20, 28, 34, 52, 0}, 17, 8, 4},
  2834. {9, 3, 4, {15, 21, 26, 39, 0}, 12, 6, 4},
  2835. {9, 4, 5, {15, 21, 26, 39, 0}, 13, 7, 4}
  2836. };
  2837. u32 val;
  2838. unsigned int width, density, slow, attempts;
  2839. struct adapter *adapter = mc7->adapter;
  2840. const struct mc7_timing_params *p = &mc7_timings[mem_type];
  2841. if (!mc7->size)
  2842. return 0;
  2843. val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
  2844. slow = val & F_SLOW;
  2845. width = G_WIDTH(val);
  2846. density = G_DEN(val);
  2847. t3_write_reg(adapter, mc7->offset + A_MC7_CFG, val | F_IFEN);
  2848. val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
  2849. msleep(1);
  2850. if (!slow) {
  2851. t3_write_reg(adapter, mc7->offset + A_MC7_CAL, F_SGL_CAL_EN);
  2852. t3_read_reg(adapter, mc7->offset + A_MC7_CAL);
  2853. msleep(1);
  2854. if (t3_read_reg(adapter, mc7->offset + A_MC7_CAL) &
  2855. (F_BUSY | F_SGL_CAL_EN | F_CAL_FAULT)) {
  2856. CH_ERR(adapter, "%s MC7 calibration timed out\n",
  2857. mc7->name);
  2858. goto out_fail;
  2859. }
  2860. }
  2861. t3_write_reg(adapter, mc7->offset + A_MC7_PARM,
  2862. V_ACTTOPREDLY(p->ActToPreDly) |
  2863. V_ACTTORDWRDLY(p->ActToRdWrDly) | V_PRECYC(p->PreCyc) |
  2864. V_REFCYC(p->RefCyc[density]) | V_BKCYC(p->BkCyc) |
  2865. V_WRTORDDLY(p->WrToRdDly) | V_RDTOWRDLY(p->RdToWrDly));
  2866. t3_write_reg(adapter, mc7->offset + A_MC7_CFG,
  2867. val | F_CLKEN | F_TERM150);
  2868. t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
  2869. if (!slow)
  2870. t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLENB,
  2871. F_DLLENB);
  2872. udelay(1);
  2873. val = slow ? 3 : 6;
  2874. if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
  2875. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE2, 0) ||
  2876. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE3, 0) ||
  2877. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
  2878. goto out_fail;
  2879. if (!slow) {
  2880. t3_write_reg(adapter, mc7->offset + A_MC7_MODE, 0x100);
  2881. t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLRST, 0);
  2882. udelay(5);
  2883. }
  2884. if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
  2885. wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
  2886. wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
  2887. wrreg_wait(adapter, mc7->offset + A_MC7_MODE,
  2888. mc7_mode[mem_type]) ||
  2889. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val | 0x380) ||
  2890. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
  2891. goto out_fail;
  2892. /* clock value is in KHz */
  2893. mc7_clock = mc7_clock * 7812 + mc7_clock / 2; /* ns */
  2894. mc7_clock /= 1000000; /* KHz->MHz, ns->us */
  2895. t3_write_reg(adapter, mc7->offset + A_MC7_REF,
  2896. F_PERREFEN | V_PREREFDIV(mc7_clock));
  2897. t3_read_reg(adapter, mc7->offset + A_MC7_REF); /* flush */
  2898. t3_write_reg(adapter, mc7->offset + A_MC7_ECC, F_ECCGENEN | F_ECCCHKEN);
  2899. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_DATA, 0);
  2900. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_BEG, 0);
  2901. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_END,
  2902. (mc7->size << width) - 1);
  2903. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_OP, V_OP(1));
  2904. t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP); /* flush */
  2905. attempts = 50;
  2906. do {
  2907. msleep(250);
  2908. val = t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP);
  2909. } while ((val & F_BUSY) && --attempts);
  2910. if (val & F_BUSY) {
  2911. CH_ERR(adapter, "%s MC7 BIST timed out\n", mc7->name);
  2912. goto out_fail;
  2913. }
  2914. /* Enable normal memory accesses. */
  2915. t3_set_reg_field(adapter, mc7->offset + A_MC7_CFG, 0, F_RDY);
  2916. return 0;
  2917. out_fail:
  2918. return -1;
  2919. }
  2920. static void config_pcie(struct adapter *adap)
  2921. {
  2922. static const u16 ack_lat[4][6] = {
  2923. {237, 416, 559, 1071, 2095, 4143},
  2924. {128, 217, 289, 545, 1057, 2081},
  2925. {73, 118, 154, 282, 538, 1050},
  2926. {67, 107, 86, 150, 278, 534}
  2927. };
  2928. static const u16 rpl_tmr[4][6] = {
  2929. {711, 1248, 1677, 3213, 6285, 12429},
  2930. {384, 651, 867, 1635, 3171, 6243},
  2931. {219, 354, 462, 846, 1614, 3150},
  2932. {201, 321, 258, 450, 834, 1602}
  2933. };
  2934. u16 val;
  2935. unsigned int log2_width, pldsize;
  2936. unsigned int fst_trn_rx, fst_trn_tx, acklat, rpllmt;
  2937. pci_read_config_word(adap->pdev,
  2938. adap->params.pci.pcie_cap_addr + PCI_EXP_DEVCTL,
  2939. &val);
  2940. pldsize = (val & PCI_EXP_DEVCTL_PAYLOAD) >> 5;
  2941. pci_read_config_word(adap->pdev,
  2942. adap->params.pci.pcie_cap_addr + PCI_EXP_LNKCTL,
  2943. &val);
  2944. fst_trn_tx = G_NUMFSTTRNSEQ(t3_read_reg(adap, A_PCIE_PEX_CTRL0));
  2945. fst_trn_rx = adap->params.rev == 0 ? fst_trn_tx :
  2946. G_NUMFSTTRNSEQRX(t3_read_reg(adap, A_PCIE_MODE));
  2947. log2_width = fls(adap->params.pci.width) - 1;
  2948. acklat = ack_lat[log2_width][pldsize];
  2949. if (val & 1) /* check LOsEnable */
  2950. acklat += fst_trn_tx * 4;
  2951. rpllmt = rpl_tmr[log2_width][pldsize] + fst_trn_rx * 4;
  2952. if (adap->params.rev == 0)
  2953. t3_set_reg_field(adap, A_PCIE_PEX_CTRL1,
  2954. V_T3A_ACKLAT(M_T3A_ACKLAT),
  2955. V_T3A_ACKLAT(acklat));
  2956. else
  2957. t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, V_ACKLAT(M_ACKLAT),
  2958. V_ACKLAT(acklat));
  2959. t3_set_reg_field(adap, A_PCIE_PEX_CTRL0, V_REPLAYLMT(M_REPLAYLMT),
  2960. V_REPLAYLMT(rpllmt));
  2961. t3_write_reg(adap, A_PCIE_PEX_ERR, 0xffffffff);
  2962. t3_set_reg_field(adap, A_PCIE_CFG, 0,
  2963. F_ENABLELINKDWNDRST | F_ENABLELINKDOWNRST |
  2964. F_PCIE_DMASTOPEN | F_PCIE_CLIDECEN);
  2965. }
  2966. /*
  2967. * Initialize and configure T3 HW modules. This performs the
  2968. * initialization steps that need to be done once after a card is reset.
  2969. * MAC and PHY initialization is handled separarely whenever a port is enabled.
  2970. *
  2971. * fw_params are passed to FW and their value is platform dependent. Only the
  2972. * top 8 bits are available for use, the rest must be 0.
  2973. */
  2974. int t3_init_hw(struct adapter *adapter, u32 fw_params)
  2975. {
  2976. int err = -EIO, attempts, i;
  2977. const struct vpd_params *vpd = &adapter->params.vpd;
  2978. if (adapter->params.rev > 0)
  2979. calibrate_xgm_t3b(adapter);
  2980. else if (calibrate_xgm(adapter))
  2981. goto out_err;
  2982. if (vpd->mclk) {
  2983. partition_mem(adapter, &adapter->params.tp);
  2984. if (mc7_init(&adapter->pmrx, vpd->mclk, vpd->mem_timing) ||
  2985. mc7_init(&adapter->pmtx, vpd->mclk, vpd->mem_timing) ||
  2986. mc7_init(&adapter->cm, vpd->mclk, vpd->mem_timing) ||
  2987. t3_mc5_init(&adapter->mc5, adapter->params.mc5.nservers,
  2988. adapter->params.mc5.nfilters,
  2989. adapter->params.mc5.nroutes))
  2990. goto out_err;
  2991. for (i = 0; i < 32; i++)
  2992. if (clear_sge_ctxt(adapter, i, F_CQ))
  2993. goto out_err;
  2994. }
  2995. if (tp_init(adapter, &adapter->params.tp))
  2996. goto out_err;
  2997. t3_tp_set_coalescing_size(adapter,
  2998. min(adapter->params.sge.max_pkt_size,
  2999. MAX_RX_COALESCING_LEN), 1);
  3000. t3_tp_set_max_rxsize(adapter,
  3001. min(adapter->params.sge.max_pkt_size, 16384U));
  3002. ulp_config(adapter, &adapter->params.tp);
  3003. if (is_pcie(adapter))
  3004. config_pcie(adapter);
  3005. else
  3006. t3_set_reg_field(adapter, A_PCIX_CFG, 0,
  3007. F_DMASTOPEN | F_CLIDECEN);
  3008. if (adapter->params.rev == T3_REV_C)
  3009. t3_set_reg_field(adapter, A_ULPTX_CONFIG, 0,
  3010. F_CFG_CQE_SOP_MASK);
  3011. t3_write_reg(adapter, A_PM1_RX_CFG, 0xffffffff);
  3012. t3_write_reg(adapter, A_PM1_RX_MODE, 0);
  3013. t3_write_reg(adapter, A_PM1_TX_MODE, 0);
  3014. init_hw_for_avail_ports(adapter, adapter->params.nports);
  3015. t3_sge_init(adapter, &adapter->params.sge);
  3016. t3_write_reg(adapter, A_T3DBG_GPIO_ACT_LOW, calc_gpio_intr(adapter));
  3017. t3_write_reg(adapter, A_CIM_HOST_ACC_DATA, vpd->uclk | fw_params);
  3018. t3_write_reg(adapter, A_CIM_BOOT_CFG,
  3019. V_BOOTADDR(FW_FLASH_BOOT_ADDR >> 2));
  3020. t3_read_reg(adapter, A_CIM_BOOT_CFG); /* flush */
  3021. attempts = 100;
  3022. do { /* wait for uP to initialize */
  3023. msleep(20);
  3024. } while (t3_read_reg(adapter, A_CIM_HOST_ACC_DATA) && --attempts);
  3025. if (!attempts) {
  3026. CH_ERR(adapter, "uP initialization timed out\n");
  3027. goto out_err;
  3028. }
  3029. err = 0;
  3030. out_err:
  3031. return err;
  3032. }
  3033. /**
  3034. * get_pci_mode - determine a card's PCI mode
  3035. * @adapter: the adapter
  3036. * @p: where to store the PCI settings
  3037. *
  3038. * Determines a card's PCI mode and associated parameters, such as speed
  3039. * and width.
  3040. */
  3041. static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
  3042. {
  3043. static unsigned short speed_map[] = { 33, 66, 100, 133 };
  3044. u32 pci_mode, pcie_cap;
  3045. pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
  3046. if (pcie_cap) {
  3047. u16 val;
  3048. p->variant = PCI_VARIANT_PCIE;
  3049. p->pcie_cap_addr = pcie_cap;
  3050. pci_read_config_word(adapter->pdev, pcie_cap + PCI_EXP_LNKSTA,
  3051. &val);
  3052. p->width = (val >> 4) & 0x3f;
  3053. return;
  3054. }
  3055. pci_mode = t3_read_reg(adapter, A_PCIX_MODE);
  3056. p->speed = speed_map[G_PCLKRANGE(pci_mode)];
  3057. p->width = (pci_mode & F_64BIT) ? 64 : 32;
  3058. pci_mode = G_PCIXINITPAT(pci_mode);
  3059. if (pci_mode == 0)
  3060. p->variant = PCI_VARIANT_PCI;
  3061. else if (pci_mode < 4)
  3062. p->variant = PCI_VARIANT_PCIX_MODE1_PARITY;
  3063. else if (pci_mode < 8)
  3064. p->variant = PCI_VARIANT_PCIX_MODE1_ECC;
  3065. else
  3066. p->variant = PCI_VARIANT_PCIX_266_MODE2;
  3067. }
  3068. /**
  3069. * init_link_config - initialize a link's SW state
  3070. * @lc: structure holding the link state
  3071. * @ai: information about the current card
  3072. *
  3073. * Initializes the SW state maintained for each link, including the link's
  3074. * capabilities and default speed/duplex/flow-control/autonegotiation
  3075. * settings.
  3076. */
  3077. static void init_link_config(struct link_config *lc, unsigned int caps)
  3078. {
  3079. lc->supported = caps;
  3080. lc->requested_speed = lc->speed = SPEED_INVALID;
  3081. lc->requested_duplex = lc->duplex = DUPLEX_INVALID;
  3082. lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
  3083. if (lc->supported & SUPPORTED_Autoneg) {
  3084. lc->advertising = lc->supported;
  3085. lc->autoneg = AUTONEG_ENABLE;
  3086. lc->requested_fc |= PAUSE_AUTONEG;
  3087. } else {
  3088. lc->advertising = 0;
  3089. lc->autoneg = AUTONEG_DISABLE;
  3090. }
  3091. }
  3092. /**
  3093. * mc7_calc_size - calculate MC7 memory size
  3094. * @cfg: the MC7 configuration
  3095. *
  3096. * Calculates the size of an MC7 memory in bytes from the value of its
  3097. * configuration register.
  3098. */
  3099. static unsigned int mc7_calc_size(u32 cfg)
  3100. {
  3101. unsigned int width = G_WIDTH(cfg);
  3102. unsigned int banks = !!(cfg & F_BKS) + 1;
  3103. unsigned int org = !!(cfg & F_ORG) + 1;
  3104. unsigned int density = G_DEN(cfg);
  3105. unsigned int MBs = ((256 << density) * banks) / (org << width);
  3106. return MBs << 20;
  3107. }
  3108. static void mc7_prep(struct adapter *adapter, struct mc7 *mc7,
  3109. unsigned int base_addr, const char *name)
  3110. {
  3111. u32 cfg;
  3112. mc7->adapter = adapter;
  3113. mc7->name = name;
  3114. mc7->offset = base_addr - MC7_PMRX_BASE_ADDR;
  3115. cfg = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
  3116. mc7->size = mc7->size = G_DEN(cfg) == M_DEN ? 0 : mc7_calc_size(cfg);
  3117. mc7->width = G_WIDTH(cfg);
  3118. }
  3119. void mac_prep(struct cmac *mac, struct adapter *adapter, int index)
  3120. {
  3121. mac->adapter = adapter;
  3122. mac->offset = (XGMAC0_1_BASE_ADDR - XGMAC0_0_BASE_ADDR) * index;
  3123. mac->nucast = 1;
  3124. if (adapter->params.rev == 0 && uses_xaui(adapter)) {
  3125. t3_write_reg(adapter, A_XGM_SERDES_CTRL + mac->offset,
  3126. is_10G(adapter) ? 0x2901c04 : 0x2301c04);
  3127. t3_set_reg_field(adapter, A_XGM_PORT_CFG + mac->offset,
  3128. F_ENRGMII, 0);
  3129. }
  3130. }
  3131. void early_hw_init(struct adapter *adapter, const struct adapter_info *ai)
  3132. {
  3133. u32 val = V_PORTSPEED(is_10G(adapter) ? 3 : 2);
  3134. mi1_init(adapter, ai);
  3135. t3_write_reg(adapter, A_I2C_CFG, /* set for 80KHz */
  3136. V_I2C_CLKDIV(adapter->params.vpd.cclk / 80 - 1));
  3137. t3_write_reg(adapter, A_T3DBG_GPIO_EN,
  3138. ai->gpio_out | F_GPIO0_OEN | F_GPIO0_OUT_VAL);
  3139. t3_write_reg(adapter, A_MC5_DB_SERVER_INDEX, 0);
  3140. t3_write_reg(adapter, A_SG_OCO_BASE, V_BASE1(0xfff));
  3141. if (adapter->params.rev == 0 || !uses_xaui(adapter))
  3142. val |= F_ENRGMII;
  3143. /* Enable MAC clocks so we can access the registers */
  3144. t3_write_reg(adapter, A_XGM_PORT_CFG, val);
  3145. t3_read_reg(adapter, A_XGM_PORT_CFG);
  3146. val |= F_CLKDIVRESET_;
  3147. t3_write_reg(adapter, A_XGM_PORT_CFG, val);
  3148. t3_read_reg(adapter, A_XGM_PORT_CFG);
  3149. t3_write_reg(adapter, XGM_REG(A_XGM_PORT_CFG, 1), val);
  3150. t3_read_reg(adapter, A_XGM_PORT_CFG);
  3151. }
  3152. /*
  3153. * Reset the adapter.
  3154. * Older PCIe cards lose their config space during reset, PCI-X
  3155. * ones don't.
  3156. */
  3157. int t3_reset_adapter(struct adapter *adapter)
  3158. {
  3159. int i, save_and_restore_pcie =
  3160. adapter->params.rev < T3_REV_B2 && is_pcie(adapter);
  3161. uint16_t devid = 0;
  3162. if (save_and_restore_pcie)
  3163. pci_save_state(adapter->pdev);
  3164. t3_write_reg(adapter, A_PL_RST, F_CRSTWRM | F_CRSTWRMMODE);
  3165. /*
  3166. * Delay. Give Some time to device to reset fully.
  3167. * XXX The delay time should be modified.
  3168. */
  3169. for (i = 0; i < 10; i++) {
  3170. msleep(50);
  3171. pci_read_config_word(adapter->pdev, 0x00, &devid);
  3172. if (devid == 0x1425)
  3173. break;
  3174. }
  3175. if (devid != 0x1425)
  3176. return -1;
  3177. if (save_and_restore_pcie)
  3178. pci_restore_state(adapter->pdev);
  3179. return 0;
  3180. }
  3181. static int init_parity(struct adapter *adap)
  3182. {
  3183. int i, err, addr;
  3184. if (t3_read_reg(adap, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  3185. return -EBUSY;
  3186. for (err = i = 0; !err && i < 16; i++)
  3187. err = clear_sge_ctxt(adap, i, F_EGRESS);
  3188. for (i = 0xfff0; !err && i <= 0xffff; i++)
  3189. err = clear_sge_ctxt(adap, i, F_EGRESS);
  3190. for (i = 0; !err && i < SGE_QSETS; i++)
  3191. err = clear_sge_ctxt(adap, i, F_RESPONSEQ);
  3192. if (err)
  3193. return err;
  3194. t3_write_reg(adap, A_CIM_IBQ_DBG_DATA, 0);
  3195. for (i = 0; i < 4; i++)
  3196. for (addr = 0; addr <= M_IBQDBGADDR; addr++) {
  3197. t3_write_reg(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGEN |
  3198. F_IBQDBGWR | V_IBQDBGQID(i) |
  3199. V_IBQDBGADDR(addr));
  3200. err = t3_wait_op_done(adap, A_CIM_IBQ_DBG_CFG,
  3201. F_IBQDBGBUSY, 0, 2, 1);
  3202. if (err)
  3203. return err;
  3204. }
  3205. return 0;
  3206. }
  3207. /*
  3208. * Initialize adapter SW state for the various HW modules, set initial values
  3209. * for some adapter tunables, take PHYs out of reset, and initialize the MDIO
  3210. * interface.
  3211. */
  3212. int t3_prep_adapter(struct adapter *adapter, const struct adapter_info *ai,
  3213. int reset)
  3214. {
  3215. int ret;
  3216. unsigned int i, j = -1;
  3217. get_pci_mode(adapter, &adapter->params.pci);
  3218. adapter->params.info = ai;
  3219. adapter->params.nports = ai->nports;
  3220. adapter->params.rev = t3_read_reg(adapter, A_PL_REV);
  3221. adapter->params.linkpoll_period = 0;
  3222. adapter->params.stats_update_period = is_10G(adapter) ?
  3223. MAC_STATS_ACCUM_SECS : (MAC_STATS_ACCUM_SECS * 10);
  3224. adapter->params.pci.vpd_cap_addr =
  3225. pci_find_capability(adapter->pdev, PCI_CAP_ID_VPD);
  3226. ret = get_vpd_params(adapter, &adapter->params.vpd);
  3227. if (ret < 0)
  3228. return ret;
  3229. if (reset && t3_reset_adapter(adapter))
  3230. return -1;
  3231. t3_sge_prep(adapter, &adapter->params.sge);
  3232. if (adapter->params.vpd.mclk) {
  3233. struct tp_params *p = &adapter->params.tp;
  3234. mc7_prep(adapter, &adapter->pmrx, MC7_PMRX_BASE_ADDR, "PMRX");
  3235. mc7_prep(adapter, &adapter->pmtx, MC7_PMTX_BASE_ADDR, "PMTX");
  3236. mc7_prep(adapter, &adapter->cm, MC7_CM_BASE_ADDR, "CM");
  3237. p->nchan = ai->nports;
  3238. p->pmrx_size = t3_mc7_size(&adapter->pmrx);
  3239. p->pmtx_size = t3_mc7_size(&adapter->pmtx);
  3240. p->cm_size = t3_mc7_size(&adapter->cm);
  3241. p->chan_rx_size = p->pmrx_size / 2; /* only 1 Rx channel */
  3242. p->chan_tx_size = p->pmtx_size / p->nchan;
  3243. p->rx_pg_size = 64 * 1024;
  3244. p->tx_pg_size = is_10G(adapter) ? 64 * 1024 : 16 * 1024;
  3245. p->rx_num_pgs = pm_num_pages(p->chan_rx_size, p->rx_pg_size);
  3246. p->tx_num_pgs = pm_num_pages(p->chan_tx_size, p->tx_pg_size);
  3247. p->ntimer_qs = p->cm_size >= (128 << 20) ||
  3248. adapter->params.rev > 0 ? 12 : 6;
  3249. }
  3250. adapter->params.offload = t3_mc7_size(&adapter->pmrx) &&
  3251. t3_mc7_size(&adapter->pmtx) &&
  3252. t3_mc7_size(&adapter->cm);
  3253. if (is_offload(adapter)) {
  3254. adapter->params.mc5.nservers = DEFAULT_NSERVERS;
  3255. adapter->params.mc5.nfilters = adapter->params.rev > 0 ?
  3256. DEFAULT_NFILTERS : 0;
  3257. adapter->params.mc5.nroutes = 0;
  3258. t3_mc5_prep(adapter, &adapter->mc5, MC5_MODE_144_BIT);
  3259. init_mtus(adapter->params.mtus);
  3260. init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
  3261. }
  3262. early_hw_init(adapter, ai);
  3263. ret = init_parity(adapter);
  3264. if (ret)
  3265. return ret;
  3266. for_each_port(adapter, i) {
  3267. u8 hw_addr[6];
  3268. const struct port_type_info *pti;
  3269. struct port_info *p = adap2pinfo(adapter, i);
  3270. while (!adapter->params.vpd.port_type[++j])
  3271. ;
  3272. pti = &port_types[adapter->params.vpd.port_type[j]];
  3273. if (!pti->phy_prep) {
  3274. CH_ALERT(adapter, "Invalid port type index %d\n",
  3275. adapter->params.vpd.port_type[j]);
  3276. return -EINVAL;
  3277. }
  3278. ret = pti->phy_prep(&p->phy, adapter, ai->phy_base_addr + j,
  3279. ai->mdio_ops);
  3280. if (ret)
  3281. return ret;
  3282. mac_prep(&p->mac, adapter, j);
  3283. /*
  3284. * The VPD EEPROM stores the base Ethernet address for the
  3285. * card. A port's address is derived from the base by adding
  3286. * the port's index to the base's low octet.
  3287. */
  3288. memcpy(hw_addr, adapter->params.vpd.eth_base, 5);
  3289. hw_addr[5] = adapter->params.vpd.eth_base[5] + i;
  3290. memcpy(adapter->port[i]->dev_addr, hw_addr,
  3291. ETH_ALEN);
  3292. memcpy(adapter->port[i]->perm_addr, hw_addr,
  3293. ETH_ALEN);
  3294. init_link_config(&p->link_config, p->phy.caps);
  3295. p->phy.ops->power_down(&p->phy, 1);
  3296. if (!(p->phy.caps & SUPPORTED_IRQ))
  3297. adapter->params.linkpoll_period = 10;
  3298. }
  3299. return 0;
  3300. }
  3301. void t3_led_ready(struct adapter *adapter)
  3302. {
  3303. t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
  3304. F_GPIO0_OUT_VAL);
  3305. }
  3306. int t3_replay_prep_adapter(struct adapter *adapter)
  3307. {
  3308. const struct adapter_info *ai = adapter->params.info;
  3309. unsigned int i, j = -1;
  3310. int ret;
  3311. early_hw_init(adapter, ai);
  3312. ret = init_parity(adapter);
  3313. if (ret)
  3314. return ret;
  3315. for_each_port(adapter, i) {
  3316. const struct port_type_info *pti;
  3317. struct port_info *p = adap2pinfo(adapter, i);
  3318. while (!adapter->params.vpd.port_type[++j])
  3319. ;
  3320. pti = &port_types[adapter->params.vpd.port_type[j]];
  3321. ret = pti->phy_prep(&p->phy, adapter, p->phy.addr, NULL);
  3322. if (ret)
  3323. return ret;
  3324. p->phy.ops->power_down(&p->phy, 1);
  3325. }
  3326. return 0;
  3327. }