acenic.c 85 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226
  1. /*
  2. * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card
  3. * and other Tigon based cards.
  4. *
  5. * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>.
  6. *
  7. * Thanks to Alteon and 3Com for providing hardware and documentation
  8. * enabling me to write this driver.
  9. *
  10. * A mailing list for discussing the use of this driver has been
  11. * setup, please subscribe to the lists if you have any questions
  12. * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to
  13. * see how to subscribe.
  14. *
  15. * This program is free software; you can redistribute it and/or modify
  16. * it under the terms of the GNU General Public License as published by
  17. * the Free Software Foundation; either version 2 of the License, or
  18. * (at your option) any later version.
  19. *
  20. * Additional credits:
  21. * Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace
  22. * dump support. The trace dump support has not been
  23. * integrated yet however.
  24. * Troy Benjegerdes: Big Endian (PPC) patches.
  25. * Nate Stahl: Better out of memory handling and stats support.
  26. * Aman Singla: Nasty race between interrupt handler and tx code dealing
  27. * with 'testing the tx_ret_csm and setting tx_full'
  28. * David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping
  29. * infrastructure and Sparc support
  30. * Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the
  31. * driver under Linux/Sparc64
  32. * Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards
  33. * ETHTOOL_GDRVINFO support
  34. * Chip Salzenberg <chip@valinux.com>: Fix race condition between tx
  35. * handler and close() cleanup.
  36. * Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether
  37. * memory mapped IO is enabled to
  38. * make the driver work on RS/6000.
  39. * Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem
  40. * where the driver would disable
  41. * bus master mode if it had to disable
  42. * write and invalidate.
  43. * Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little
  44. * endian systems.
  45. * Val Henson <vhenson@esscom.com>: Reset Jumbo skb producer and
  46. * rx producer index when
  47. * flushing the Jumbo ring.
  48. * Hans Grobler <grobh@sun.ac.za>: Memory leak fixes in the
  49. * driver init path.
  50. * Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes.
  51. */
  52. #include <linux/module.h>
  53. #include <linux/moduleparam.h>
  54. #include <linux/types.h>
  55. #include <linux/errno.h>
  56. #include <linux/ioport.h>
  57. #include <linux/pci.h>
  58. #include <linux/dma-mapping.h>
  59. #include <linux/kernel.h>
  60. #include <linux/netdevice.h>
  61. #include <linux/etherdevice.h>
  62. #include <linux/skbuff.h>
  63. #include <linux/init.h>
  64. #include <linux/delay.h>
  65. #include <linux/mm.h>
  66. #include <linux/highmem.h>
  67. #include <linux/sockios.h>
  68. #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  69. #include <linux/if_vlan.h>
  70. #endif
  71. #ifdef SIOCETHTOOL
  72. #include <linux/ethtool.h>
  73. #endif
  74. #include <net/sock.h>
  75. #include <net/ip.h>
  76. #include <asm/system.h>
  77. #include <asm/io.h>
  78. #include <asm/irq.h>
  79. #include <asm/byteorder.h>
  80. #include <asm/uaccess.h>
  81. #define DRV_NAME "acenic"
  82. #undef INDEX_DEBUG
  83. #ifdef CONFIG_ACENIC_OMIT_TIGON_I
  84. #define ACE_IS_TIGON_I(ap) 0
  85. #define ACE_TX_RING_ENTRIES(ap) MAX_TX_RING_ENTRIES
  86. #else
  87. #define ACE_IS_TIGON_I(ap) (ap->version == 1)
  88. #define ACE_TX_RING_ENTRIES(ap) ap->tx_ring_entries
  89. #endif
  90. #ifndef PCI_VENDOR_ID_ALTEON
  91. #define PCI_VENDOR_ID_ALTEON 0x12ae
  92. #endif
  93. #ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
  94. #define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE 0x0001
  95. #define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002
  96. #endif
  97. #ifndef PCI_DEVICE_ID_3COM_3C985
  98. #define PCI_DEVICE_ID_3COM_3C985 0x0001
  99. #endif
  100. #ifndef PCI_VENDOR_ID_NETGEAR
  101. #define PCI_VENDOR_ID_NETGEAR 0x1385
  102. #define PCI_DEVICE_ID_NETGEAR_GA620 0x620a
  103. #endif
  104. #ifndef PCI_DEVICE_ID_NETGEAR_GA620T
  105. #define PCI_DEVICE_ID_NETGEAR_GA620T 0x630a
  106. #endif
  107. /*
  108. * Farallon used the DEC vendor ID by mistake and they seem not
  109. * to care - stinky!
  110. */
  111. #ifndef PCI_DEVICE_ID_FARALLON_PN9000SX
  112. #define PCI_DEVICE_ID_FARALLON_PN9000SX 0x1a
  113. #endif
  114. #ifndef PCI_DEVICE_ID_FARALLON_PN9100T
  115. #define PCI_DEVICE_ID_FARALLON_PN9100T 0xfa
  116. #endif
  117. #ifndef PCI_VENDOR_ID_SGI
  118. #define PCI_VENDOR_ID_SGI 0x10a9
  119. #endif
  120. #ifndef PCI_DEVICE_ID_SGI_ACENIC
  121. #define PCI_DEVICE_ID_SGI_ACENIC 0x0009
  122. #endif
  123. static struct pci_device_id acenic_pci_tbl[] = {
  124. { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE,
  125. PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
  126. { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER,
  127. PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
  128. { PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C985,
  129. PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
  130. { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620,
  131. PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
  132. { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620T,
  133. PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
  134. /*
  135. * Farallon used the DEC vendor ID on their cards incorrectly,
  136. * then later Alteon's ID.
  137. */
  138. { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_FARALLON_PN9000SX,
  139. PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
  140. { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_FARALLON_PN9100T,
  141. PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
  142. { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_ACENIC,
  143. PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
  144. { }
  145. };
  146. MODULE_DEVICE_TABLE(pci, acenic_pci_tbl);
  147. #define ace_sync_irq(irq) synchronize_irq(irq)
  148. #ifndef offset_in_page
  149. #define offset_in_page(ptr) ((unsigned long)(ptr) & ~PAGE_MASK)
  150. #endif
  151. #define ACE_MAX_MOD_PARMS 8
  152. #define BOARD_IDX_STATIC 0
  153. #define BOARD_IDX_OVERFLOW -1
  154. #if (defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)) && \
  155. defined(NETIF_F_HW_VLAN_RX)
  156. #define ACENIC_DO_VLAN 1
  157. #define ACE_RCB_VLAN_FLAG RCB_FLG_VLAN_ASSIST
  158. #else
  159. #define ACENIC_DO_VLAN 0
  160. #define ACE_RCB_VLAN_FLAG 0
  161. #endif
  162. #include "acenic.h"
  163. /*
  164. * These must be defined before the firmware is included.
  165. */
  166. #define MAX_TEXT_LEN 96*1024
  167. #define MAX_RODATA_LEN 8*1024
  168. #define MAX_DATA_LEN 2*1024
  169. #include "acenic_firmware.h"
  170. #ifndef tigon2FwReleaseLocal
  171. #define tigon2FwReleaseLocal 0
  172. #endif
  173. /*
  174. * This driver currently supports Tigon I and Tigon II based cards
  175. * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear
  176. * GA620. The driver should also work on the SGI, DEC and Farallon
  177. * versions of the card, however I have not been able to test that
  178. * myself.
  179. *
  180. * This card is really neat, it supports receive hardware checksumming
  181. * and jumbo frames (up to 9000 bytes) and does a lot of work in the
  182. * firmware. Also the programming interface is quite neat, except for
  183. * the parts dealing with the i2c eeprom on the card ;-)
  184. *
  185. * Using jumbo frames:
  186. *
  187. * To enable jumbo frames, simply specify an mtu between 1500 and 9000
  188. * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time
  189. * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet
  190. * interface number and <MTU> being the MTU value.
  191. *
  192. * Module parameters:
  193. *
  194. * When compiled as a loadable module, the driver allows for a number
  195. * of module parameters to be specified. The driver supports the
  196. * following module parameters:
  197. *
  198. * trace=<val> - Firmware trace level. This requires special traced
  199. * firmware to replace the firmware supplied with
  200. * the driver - for debugging purposes only.
  201. *
  202. * link=<val> - Link state. Normally you want to use the default link
  203. * parameters set by the driver. This can be used to
  204. * override these in case your switch doesn't negotiate
  205. * the link properly. Valid values are:
  206. * 0x0001 - Force half duplex link.
  207. * 0x0002 - Do not negotiate line speed with the other end.
  208. * 0x0010 - 10Mbit/sec link.
  209. * 0x0020 - 100Mbit/sec link.
  210. * 0x0040 - 1000Mbit/sec link.
  211. * 0x0100 - Do not negotiate flow control.
  212. * 0x0200 - Enable RX flow control Y
  213. * 0x0400 - Enable TX flow control Y (Tigon II NICs only).
  214. * Default value is 0x0270, ie. enable link+flow
  215. * control negotiation. Negotiating the highest
  216. * possible link speed with RX flow control enabled.
  217. *
  218. * When disabling link speed negotiation, only one link
  219. * speed is allowed to be specified!
  220. *
  221. * tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
  222. * to wait for more packets to arive before
  223. * interrupting the host, from the time the first
  224. * packet arrives.
  225. *
  226. * rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
  227. * to wait for more packets to arive in the transmit ring,
  228. * before interrupting the host, after transmitting the
  229. * first packet in the ring.
  230. *
  231. * max_tx_desc=<val> - maximum number of transmit descriptors
  232. * (packets) transmitted before interrupting the host.
  233. *
  234. * max_rx_desc=<val> - maximum number of receive descriptors
  235. * (packets) received before interrupting the host.
  236. *
  237. * tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th
  238. * increments of the NIC's on board memory to be used for
  239. * transmit and receive buffers. For the 1MB NIC app. 800KB
  240. * is available, on the 1/2MB NIC app. 300KB is available.
  241. * 68KB will always be available as a minimum for both
  242. * directions. The default value is a 50/50 split.
  243. * dis_pci_mem_inval=<val> - disable PCI memory write and invalidate
  244. * operations, default (1) is to always disable this as
  245. * that is what Alteon does on NT. I have not been able
  246. * to measure any real performance differences with
  247. * this on my systems. Set <val>=0 if you want to
  248. * enable these operations.
  249. *
  250. * If you use more than one NIC, specify the parameters for the
  251. * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to
  252. * run tracing on NIC #2 but not on NIC #1 and #3.
  253. *
  254. * TODO:
  255. *
  256. * - Proper multicast support.
  257. * - NIC dump support.
  258. * - More tuning parameters.
  259. *
  260. * The mini ring is not used under Linux and I am not sure it makes sense
  261. * to actually use it.
  262. *
  263. * New interrupt handler strategy:
  264. *
  265. * The old interrupt handler worked using the traditional method of
  266. * replacing an skbuff with a new one when a packet arrives. However
  267. * the rx rings do not need to contain a static number of buffer
  268. * descriptors, thus it makes sense to move the memory allocation out
  269. * of the main interrupt handler and do it in a bottom half handler
  270. * and only allocate new buffers when the number of buffers in the
  271. * ring is below a certain threshold. In order to avoid starving the
  272. * NIC under heavy load it is however necessary to force allocation
  273. * when hitting a minimum threshold. The strategy for alloction is as
  274. * follows:
  275. *
  276. * RX_LOW_BUF_THRES - allocate buffers in the bottom half
  277. * RX_PANIC_LOW_THRES - we are very low on buffers, allocate
  278. * the buffers in the interrupt handler
  279. * RX_RING_THRES - maximum number of buffers in the rx ring
  280. * RX_MINI_THRES - maximum number of buffers in the mini ring
  281. * RX_JUMBO_THRES - maximum number of buffers in the jumbo ring
  282. *
  283. * One advantagous side effect of this allocation approach is that the
  284. * entire rx processing can be done without holding any spin lock
  285. * since the rx rings and registers are totally independent of the tx
  286. * ring and its registers. This of course includes the kmalloc's of
  287. * new skb's. Thus start_xmit can run in parallel with rx processing
  288. * and the memory allocation on SMP systems.
  289. *
  290. * Note that running the skb reallocation in a bottom half opens up
  291. * another can of races which needs to be handled properly. In
  292. * particular it can happen that the interrupt handler tries to run
  293. * the reallocation while the bottom half is either running on another
  294. * CPU or was interrupted on the same CPU. To get around this the
  295. * driver uses bitops to prevent the reallocation routines from being
  296. * reentered.
  297. *
  298. * TX handling can also be done without holding any spin lock, wheee
  299. * this is fun! since tx_ret_csm is only written to by the interrupt
  300. * handler. The case to be aware of is when shutting down the device
  301. * and cleaning up where it is necessary to make sure that
  302. * start_xmit() is not running while this is happening. Well DaveM
  303. * informs me that this case is already protected against ... bye bye
  304. * Mr. Spin Lock, it was nice to know you.
  305. *
  306. * TX interrupts are now partly disabled so the NIC will only generate
  307. * TX interrupts for the number of coal ticks, not for the number of
  308. * TX packets in the queue. This should reduce the number of TX only,
  309. * ie. when no RX processing is done, interrupts seen.
  310. */
  311. /*
  312. * Threshold values for RX buffer allocation - the low water marks for
  313. * when to start refilling the rings are set to 75% of the ring
  314. * sizes. It seems to make sense to refill the rings entirely from the
  315. * intrrupt handler once it gets below the panic threshold, that way
  316. * we don't risk that the refilling is moved to another CPU when the
  317. * one running the interrupt handler just got the slab code hot in its
  318. * cache.
  319. */
  320. #define RX_RING_SIZE 72
  321. #define RX_MINI_SIZE 64
  322. #define RX_JUMBO_SIZE 48
  323. #define RX_PANIC_STD_THRES 16
  324. #define RX_PANIC_STD_REFILL (3*RX_PANIC_STD_THRES)/2
  325. #define RX_LOW_STD_THRES (3*RX_RING_SIZE)/4
  326. #define RX_PANIC_MINI_THRES 12
  327. #define RX_PANIC_MINI_REFILL (3*RX_PANIC_MINI_THRES)/2
  328. #define RX_LOW_MINI_THRES (3*RX_MINI_SIZE)/4
  329. #define RX_PANIC_JUMBO_THRES 6
  330. #define RX_PANIC_JUMBO_REFILL (3*RX_PANIC_JUMBO_THRES)/2
  331. #define RX_LOW_JUMBO_THRES (3*RX_JUMBO_SIZE)/4
  332. /*
  333. * Size of the mini ring entries, basically these just should be big
  334. * enough to take TCP ACKs
  335. */
  336. #define ACE_MINI_SIZE 100
  337. #define ACE_MINI_BUFSIZE ACE_MINI_SIZE
  338. #define ACE_STD_BUFSIZE (ACE_STD_MTU + ETH_HLEN + 4)
  339. #define ACE_JUMBO_BUFSIZE (ACE_JUMBO_MTU + ETH_HLEN + 4)
  340. /*
  341. * There seems to be a magic difference in the effect between 995 and 996
  342. * but little difference between 900 and 995 ... no idea why.
  343. *
  344. * There is now a default set of tuning parameters which is set, depending
  345. * on whether or not the user enables Jumbo frames. It's assumed that if
  346. * Jumbo frames are enabled, the user wants optimal tuning for that case.
  347. */
  348. #define DEF_TX_COAL 400 /* 996 */
  349. #define DEF_TX_MAX_DESC 60 /* was 40 */
  350. #define DEF_RX_COAL 120 /* 1000 */
  351. #define DEF_RX_MAX_DESC 25
  352. #define DEF_TX_RATIO 21 /* 24 */
  353. #define DEF_JUMBO_TX_COAL 20
  354. #define DEF_JUMBO_TX_MAX_DESC 60
  355. #define DEF_JUMBO_RX_COAL 30
  356. #define DEF_JUMBO_RX_MAX_DESC 6
  357. #define DEF_JUMBO_TX_RATIO 21
  358. #if tigon2FwReleaseLocal < 20001118
  359. /*
  360. * Standard firmware and early modifications duplicate
  361. * IRQ load without this flag (coal timer is never reset).
  362. * Note that with this flag tx_coal should be less than
  363. * time to xmit full tx ring.
  364. * 400usec is not so bad for tx ring size of 128.
  365. */
  366. #define TX_COAL_INTS_ONLY 1 /* worth it */
  367. #else
  368. /*
  369. * With modified firmware, this is not necessary, but still useful.
  370. */
  371. #define TX_COAL_INTS_ONLY 1
  372. #endif
  373. #define DEF_TRACE 0
  374. #define DEF_STAT (2 * TICKS_PER_SEC)
  375. static int link_state[ACE_MAX_MOD_PARMS];
  376. static int trace[ACE_MAX_MOD_PARMS];
  377. static int tx_coal_tick[ACE_MAX_MOD_PARMS];
  378. static int rx_coal_tick[ACE_MAX_MOD_PARMS];
  379. static int max_tx_desc[ACE_MAX_MOD_PARMS];
  380. static int max_rx_desc[ACE_MAX_MOD_PARMS];
  381. static int tx_ratio[ACE_MAX_MOD_PARMS];
  382. static int dis_pci_mem_inval[ACE_MAX_MOD_PARMS] = {1, 1, 1, 1, 1, 1, 1, 1};
  383. MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>");
  384. MODULE_LICENSE("GPL");
  385. MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver");
  386. module_param_array_named(link, link_state, int, NULL, 0);
  387. module_param_array(trace, int, NULL, 0);
  388. module_param_array(tx_coal_tick, int, NULL, 0);
  389. module_param_array(max_tx_desc, int, NULL, 0);
  390. module_param_array(rx_coal_tick, int, NULL, 0);
  391. module_param_array(max_rx_desc, int, NULL, 0);
  392. module_param_array(tx_ratio, int, NULL, 0);
  393. MODULE_PARM_DESC(link, "AceNIC/3C985/NetGear link state");
  394. MODULE_PARM_DESC(trace, "AceNIC/3C985/NetGear firmware trace level");
  395. MODULE_PARM_DESC(tx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives");
  396. MODULE_PARM_DESC(max_tx_desc, "AceNIC/3C985/GA620 max number of transmit descriptors to wait");
  397. MODULE_PARM_DESC(rx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives");
  398. MODULE_PARM_DESC(max_rx_desc, "AceNIC/3C985/GA620 max number of receive descriptors to wait");
  399. MODULE_PARM_DESC(tx_ratio, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)");
  400. static char version[] __devinitdata =
  401. "acenic.c: v0.92 08/05/2002 Jes Sorensen, linux-acenic@SunSITE.dk\n"
  402. " http://home.cern.ch/~jes/gige/acenic.html\n";
  403. static int ace_get_settings(struct net_device *, struct ethtool_cmd *);
  404. static int ace_set_settings(struct net_device *, struct ethtool_cmd *);
  405. static void ace_get_drvinfo(struct net_device *, struct ethtool_drvinfo *);
  406. static const struct ethtool_ops ace_ethtool_ops = {
  407. .get_settings = ace_get_settings,
  408. .set_settings = ace_set_settings,
  409. .get_drvinfo = ace_get_drvinfo,
  410. };
  411. static void ace_watchdog(struct net_device *dev);
  412. static const struct net_device_ops ace_netdev_ops = {
  413. .ndo_open = ace_open,
  414. .ndo_stop = ace_close,
  415. .ndo_tx_timeout = ace_watchdog,
  416. .ndo_get_stats = ace_get_stats,
  417. .ndo_start_xmit = ace_start_xmit,
  418. .ndo_set_multicast_list = ace_set_multicast_list,
  419. .ndo_set_mac_address = ace_set_mac_addr,
  420. .ndo_change_mtu = ace_change_mtu,
  421. #if ACENIC_DO_VLAN
  422. .ndo_vlan_rx_register = ace_vlan_rx_register,
  423. #endif
  424. };
  425. static int __devinit acenic_probe_one(struct pci_dev *pdev,
  426. const struct pci_device_id *id)
  427. {
  428. struct net_device *dev;
  429. struct ace_private *ap;
  430. static int boards_found;
  431. dev = alloc_etherdev(sizeof(struct ace_private));
  432. if (dev == NULL) {
  433. printk(KERN_ERR "acenic: Unable to allocate "
  434. "net_device structure!\n");
  435. return -ENOMEM;
  436. }
  437. SET_NETDEV_DEV(dev, &pdev->dev);
  438. ap = netdev_priv(dev);
  439. ap->pdev = pdev;
  440. ap->name = pci_name(pdev);
  441. dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
  442. #if ACENIC_DO_VLAN
  443. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  444. #endif
  445. dev->watchdog_timeo = 5*HZ;
  446. dev->netdev_ops = &ace_netdev_ops;
  447. SET_ETHTOOL_OPS(dev, &ace_ethtool_ops);
  448. /* we only display this string ONCE */
  449. if (!boards_found)
  450. printk(version);
  451. if (pci_enable_device(pdev))
  452. goto fail_free_netdev;
  453. /*
  454. * Enable master mode before we start playing with the
  455. * pci_command word since pci_set_master() will modify
  456. * it.
  457. */
  458. pci_set_master(pdev);
  459. pci_read_config_word(pdev, PCI_COMMAND, &ap->pci_command);
  460. /* OpenFirmware on Mac's does not set this - DOH.. */
  461. if (!(ap->pci_command & PCI_COMMAND_MEMORY)) {
  462. printk(KERN_INFO "%s: Enabling PCI Memory Mapped "
  463. "access - was not enabled by BIOS/Firmware\n",
  464. ap->name);
  465. ap->pci_command = ap->pci_command | PCI_COMMAND_MEMORY;
  466. pci_write_config_word(ap->pdev, PCI_COMMAND,
  467. ap->pci_command);
  468. wmb();
  469. }
  470. pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &ap->pci_latency);
  471. if (ap->pci_latency <= 0x40) {
  472. ap->pci_latency = 0x40;
  473. pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ap->pci_latency);
  474. }
  475. /*
  476. * Remap the regs into kernel space - this is abuse of
  477. * dev->base_addr since it was means for I/O port
  478. * addresses but who gives a damn.
  479. */
  480. dev->base_addr = pci_resource_start(pdev, 0);
  481. ap->regs = ioremap(dev->base_addr, 0x4000);
  482. if (!ap->regs) {
  483. printk(KERN_ERR "%s: Unable to map I/O register, "
  484. "AceNIC %i will be disabled.\n",
  485. ap->name, boards_found);
  486. goto fail_free_netdev;
  487. }
  488. switch(pdev->vendor) {
  489. case PCI_VENDOR_ID_ALTEON:
  490. if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9100T) {
  491. printk(KERN_INFO "%s: Farallon PN9100-T ",
  492. ap->name);
  493. } else {
  494. printk(KERN_INFO "%s: Alteon AceNIC ",
  495. ap->name);
  496. }
  497. break;
  498. case PCI_VENDOR_ID_3COM:
  499. printk(KERN_INFO "%s: 3Com 3C985 ", ap->name);
  500. break;
  501. case PCI_VENDOR_ID_NETGEAR:
  502. printk(KERN_INFO "%s: NetGear GA620 ", ap->name);
  503. break;
  504. case PCI_VENDOR_ID_DEC:
  505. if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9000SX) {
  506. printk(KERN_INFO "%s: Farallon PN9000-SX ",
  507. ap->name);
  508. break;
  509. }
  510. case PCI_VENDOR_ID_SGI:
  511. printk(KERN_INFO "%s: SGI AceNIC ", ap->name);
  512. break;
  513. default:
  514. printk(KERN_INFO "%s: Unknown AceNIC ", ap->name);
  515. break;
  516. }
  517. printk("Gigabit Ethernet at 0x%08lx, ", dev->base_addr);
  518. printk("irq %d\n", pdev->irq);
  519. #ifdef CONFIG_ACENIC_OMIT_TIGON_I
  520. if ((readl(&ap->regs->HostCtrl) >> 28) == 4) {
  521. printk(KERN_ERR "%s: Driver compiled without Tigon I"
  522. " support - NIC disabled\n", dev->name);
  523. goto fail_uninit;
  524. }
  525. #endif
  526. if (ace_allocate_descriptors(dev))
  527. goto fail_free_netdev;
  528. #ifdef MODULE
  529. if (boards_found >= ACE_MAX_MOD_PARMS)
  530. ap->board_idx = BOARD_IDX_OVERFLOW;
  531. else
  532. ap->board_idx = boards_found;
  533. #else
  534. ap->board_idx = BOARD_IDX_STATIC;
  535. #endif
  536. if (ace_init(dev))
  537. goto fail_free_netdev;
  538. if (register_netdev(dev)) {
  539. printk(KERN_ERR "acenic: device registration failed\n");
  540. goto fail_uninit;
  541. }
  542. ap->name = dev->name;
  543. if (ap->pci_using_dac)
  544. dev->features |= NETIF_F_HIGHDMA;
  545. pci_set_drvdata(pdev, dev);
  546. boards_found++;
  547. return 0;
  548. fail_uninit:
  549. ace_init_cleanup(dev);
  550. fail_free_netdev:
  551. free_netdev(dev);
  552. return -ENODEV;
  553. }
  554. static void __devexit acenic_remove_one(struct pci_dev *pdev)
  555. {
  556. struct net_device *dev = pci_get_drvdata(pdev);
  557. struct ace_private *ap = netdev_priv(dev);
  558. struct ace_regs __iomem *regs = ap->regs;
  559. short i;
  560. unregister_netdev(dev);
  561. writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
  562. if (ap->version >= 2)
  563. writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
  564. /*
  565. * This clears any pending interrupts
  566. */
  567. writel(1, &regs->Mb0Lo);
  568. readl(&regs->CpuCtrl); /* flush */
  569. /*
  570. * Make sure no other CPUs are processing interrupts
  571. * on the card before the buffers are being released.
  572. * Otherwise one might experience some `interesting'
  573. * effects.
  574. *
  575. * Then release the RX buffers - jumbo buffers were
  576. * already released in ace_close().
  577. */
  578. ace_sync_irq(dev->irq);
  579. for (i = 0; i < RX_STD_RING_ENTRIES; i++) {
  580. struct sk_buff *skb = ap->skb->rx_std_skbuff[i].skb;
  581. if (skb) {
  582. struct ring_info *ringp;
  583. dma_addr_t mapping;
  584. ringp = &ap->skb->rx_std_skbuff[i];
  585. mapping = pci_unmap_addr(ringp, mapping);
  586. pci_unmap_page(ap->pdev, mapping,
  587. ACE_STD_BUFSIZE,
  588. PCI_DMA_FROMDEVICE);
  589. ap->rx_std_ring[i].size = 0;
  590. ap->skb->rx_std_skbuff[i].skb = NULL;
  591. dev_kfree_skb(skb);
  592. }
  593. }
  594. if (ap->version >= 2) {
  595. for (i = 0; i < RX_MINI_RING_ENTRIES; i++) {
  596. struct sk_buff *skb = ap->skb->rx_mini_skbuff[i].skb;
  597. if (skb) {
  598. struct ring_info *ringp;
  599. dma_addr_t mapping;
  600. ringp = &ap->skb->rx_mini_skbuff[i];
  601. mapping = pci_unmap_addr(ringp,mapping);
  602. pci_unmap_page(ap->pdev, mapping,
  603. ACE_MINI_BUFSIZE,
  604. PCI_DMA_FROMDEVICE);
  605. ap->rx_mini_ring[i].size = 0;
  606. ap->skb->rx_mini_skbuff[i].skb = NULL;
  607. dev_kfree_skb(skb);
  608. }
  609. }
  610. }
  611. for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
  612. struct sk_buff *skb = ap->skb->rx_jumbo_skbuff[i].skb;
  613. if (skb) {
  614. struct ring_info *ringp;
  615. dma_addr_t mapping;
  616. ringp = &ap->skb->rx_jumbo_skbuff[i];
  617. mapping = pci_unmap_addr(ringp, mapping);
  618. pci_unmap_page(ap->pdev, mapping,
  619. ACE_JUMBO_BUFSIZE,
  620. PCI_DMA_FROMDEVICE);
  621. ap->rx_jumbo_ring[i].size = 0;
  622. ap->skb->rx_jumbo_skbuff[i].skb = NULL;
  623. dev_kfree_skb(skb);
  624. }
  625. }
  626. ace_init_cleanup(dev);
  627. free_netdev(dev);
  628. }
  629. static struct pci_driver acenic_pci_driver = {
  630. .name = "acenic",
  631. .id_table = acenic_pci_tbl,
  632. .probe = acenic_probe_one,
  633. .remove = __devexit_p(acenic_remove_one),
  634. };
  635. static int __init acenic_init(void)
  636. {
  637. return pci_register_driver(&acenic_pci_driver);
  638. }
  639. static void __exit acenic_exit(void)
  640. {
  641. pci_unregister_driver(&acenic_pci_driver);
  642. }
  643. module_init(acenic_init);
  644. module_exit(acenic_exit);
  645. static void ace_free_descriptors(struct net_device *dev)
  646. {
  647. struct ace_private *ap = netdev_priv(dev);
  648. int size;
  649. if (ap->rx_std_ring != NULL) {
  650. size = (sizeof(struct rx_desc) *
  651. (RX_STD_RING_ENTRIES +
  652. RX_JUMBO_RING_ENTRIES +
  653. RX_MINI_RING_ENTRIES +
  654. RX_RETURN_RING_ENTRIES));
  655. pci_free_consistent(ap->pdev, size, ap->rx_std_ring,
  656. ap->rx_ring_base_dma);
  657. ap->rx_std_ring = NULL;
  658. ap->rx_jumbo_ring = NULL;
  659. ap->rx_mini_ring = NULL;
  660. ap->rx_return_ring = NULL;
  661. }
  662. if (ap->evt_ring != NULL) {
  663. size = (sizeof(struct event) * EVT_RING_ENTRIES);
  664. pci_free_consistent(ap->pdev, size, ap->evt_ring,
  665. ap->evt_ring_dma);
  666. ap->evt_ring = NULL;
  667. }
  668. if (ap->tx_ring != NULL && !ACE_IS_TIGON_I(ap)) {
  669. size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
  670. pci_free_consistent(ap->pdev, size, ap->tx_ring,
  671. ap->tx_ring_dma);
  672. }
  673. ap->tx_ring = NULL;
  674. if (ap->evt_prd != NULL) {
  675. pci_free_consistent(ap->pdev, sizeof(u32),
  676. (void *)ap->evt_prd, ap->evt_prd_dma);
  677. ap->evt_prd = NULL;
  678. }
  679. if (ap->rx_ret_prd != NULL) {
  680. pci_free_consistent(ap->pdev, sizeof(u32),
  681. (void *)ap->rx_ret_prd,
  682. ap->rx_ret_prd_dma);
  683. ap->rx_ret_prd = NULL;
  684. }
  685. if (ap->tx_csm != NULL) {
  686. pci_free_consistent(ap->pdev, sizeof(u32),
  687. (void *)ap->tx_csm, ap->tx_csm_dma);
  688. ap->tx_csm = NULL;
  689. }
  690. }
  691. static int ace_allocate_descriptors(struct net_device *dev)
  692. {
  693. struct ace_private *ap = netdev_priv(dev);
  694. int size;
  695. size = (sizeof(struct rx_desc) *
  696. (RX_STD_RING_ENTRIES +
  697. RX_JUMBO_RING_ENTRIES +
  698. RX_MINI_RING_ENTRIES +
  699. RX_RETURN_RING_ENTRIES));
  700. ap->rx_std_ring = pci_alloc_consistent(ap->pdev, size,
  701. &ap->rx_ring_base_dma);
  702. if (ap->rx_std_ring == NULL)
  703. goto fail;
  704. ap->rx_jumbo_ring = ap->rx_std_ring + RX_STD_RING_ENTRIES;
  705. ap->rx_mini_ring = ap->rx_jumbo_ring + RX_JUMBO_RING_ENTRIES;
  706. ap->rx_return_ring = ap->rx_mini_ring + RX_MINI_RING_ENTRIES;
  707. size = (sizeof(struct event) * EVT_RING_ENTRIES);
  708. ap->evt_ring = pci_alloc_consistent(ap->pdev, size, &ap->evt_ring_dma);
  709. if (ap->evt_ring == NULL)
  710. goto fail;
  711. /*
  712. * Only allocate a host TX ring for the Tigon II, the Tigon I
  713. * has to use PCI registers for this ;-(
  714. */
  715. if (!ACE_IS_TIGON_I(ap)) {
  716. size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
  717. ap->tx_ring = pci_alloc_consistent(ap->pdev, size,
  718. &ap->tx_ring_dma);
  719. if (ap->tx_ring == NULL)
  720. goto fail;
  721. }
  722. ap->evt_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
  723. &ap->evt_prd_dma);
  724. if (ap->evt_prd == NULL)
  725. goto fail;
  726. ap->rx_ret_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
  727. &ap->rx_ret_prd_dma);
  728. if (ap->rx_ret_prd == NULL)
  729. goto fail;
  730. ap->tx_csm = pci_alloc_consistent(ap->pdev, sizeof(u32),
  731. &ap->tx_csm_dma);
  732. if (ap->tx_csm == NULL)
  733. goto fail;
  734. return 0;
  735. fail:
  736. /* Clean up. */
  737. ace_init_cleanup(dev);
  738. return 1;
  739. }
  740. /*
  741. * Generic cleanup handling data allocated during init. Used when the
  742. * module is unloaded or if an error occurs during initialization
  743. */
  744. static void ace_init_cleanup(struct net_device *dev)
  745. {
  746. struct ace_private *ap;
  747. ap = netdev_priv(dev);
  748. ace_free_descriptors(dev);
  749. if (ap->info)
  750. pci_free_consistent(ap->pdev, sizeof(struct ace_info),
  751. ap->info, ap->info_dma);
  752. kfree(ap->skb);
  753. kfree(ap->trace_buf);
  754. if (dev->irq)
  755. free_irq(dev->irq, dev);
  756. iounmap(ap->regs);
  757. }
  758. /*
  759. * Commands are considered to be slow.
  760. */
  761. static inline void ace_issue_cmd(struct ace_regs __iomem *regs, struct cmd *cmd)
  762. {
  763. u32 idx;
  764. idx = readl(&regs->CmdPrd);
  765. writel(*(u32 *)(cmd), &regs->CmdRng[idx]);
  766. idx = (idx + 1) % CMD_RING_ENTRIES;
  767. writel(idx, &regs->CmdPrd);
  768. }
  769. static int __devinit ace_init(struct net_device *dev)
  770. {
  771. struct ace_private *ap;
  772. struct ace_regs __iomem *regs;
  773. struct ace_info *info = NULL;
  774. struct pci_dev *pdev;
  775. unsigned long myjif;
  776. u64 tmp_ptr;
  777. u32 tig_ver, mac1, mac2, tmp, pci_state;
  778. int board_idx, ecode = 0;
  779. short i;
  780. unsigned char cache_size;
  781. ap = netdev_priv(dev);
  782. regs = ap->regs;
  783. board_idx = ap->board_idx;
  784. /*
  785. * aman@sgi.com - its useful to do a NIC reset here to
  786. * address the `Firmware not running' problem subsequent
  787. * to any crashes involving the NIC
  788. */
  789. writel(HW_RESET | (HW_RESET << 24), &regs->HostCtrl);
  790. readl(&regs->HostCtrl); /* PCI write posting */
  791. udelay(5);
  792. /*
  793. * Don't access any other registers before this point!
  794. */
  795. #ifdef __BIG_ENDIAN
  796. /*
  797. * This will most likely need BYTE_SWAP once we switch
  798. * to using __raw_writel()
  799. */
  800. writel((WORD_SWAP | CLR_INT | ((WORD_SWAP | CLR_INT) << 24)),
  801. &regs->HostCtrl);
  802. #else
  803. writel((CLR_INT | WORD_SWAP | ((CLR_INT | WORD_SWAP) << 24)),
  804. &regs->HostCtrl);
  805. #endif
  806. readl(&regs->HostCtrl); /* PCI write posting */
  807. /*
  808. * Stop the NIC CPU and clear pending interrupts
  809. */
  810. writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
  811. readl(&regs->CpuCtrl); /* PCI write posting */
  812. writel(0, &regs->Mb0Lo);
  813. tig_ver = readl(&regs->HostCtrl) >> 28;
  814. switch(tig_ver){
  815. #ifndef CONFIG_ACENIC_OMIT_TIGON_I
  816. case 4:
  817. case 5:
  818. printk(KERN_INFO " Tigon I (Rev. %i), Firmware: %i.%i.%i, ",
  819. tig_ver, tigonFwReleaseMajor, tigonFwReleaseMinor,
  820. tigonFwReleaseFix);
  821. writel(0, &regs->LocalCtrl);
  822. ap->version = 1;
  823. ap->tx_ring_entries = TIGON_I_TX_RING_ENTRIES;
  824. break;
  825. #endif
  826. case 6:
  827. printk(KERN_INFO " Tigon II (Rev. %i), Firmware: %i.%i.%i, ",
  828. tig_ver, tigon2FwReleaseMajor, tigon2FwReleaseMinor,
  829. tigon2FwReleaseFix);
  830. writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
  831. readl(&regs->CpuBCtrl); /* PCI write posting */
  832. /*
  833. * The SRAM bank size does _not_ indicate the amount
  834. * of memory on the card, it controls the _bank_ size!
  835. * Ie. a 1MB AceNIC will have two banks of 512KB.
  836. */
  837. writel(SRAM_BANK_512K, &regs->LocalCtrl);
  838. writel(SYNC_SRAM_TIMING, &regs->MiscCfg);
  839. ap->version = 2;
  840. ap->tx_ring_entries = MAX_TX_RING_ENTRIES;
  841. break;
  842. default:
  843. printk(KERN_WARNING " Unsupported Tigon version detected "
  844. "(%i)\n", tig_ver);
  845. ecode = -ENODEV;
  846. goto init_error;
  847. }
  848. /*
  849. * ModeStat _must_ be set after the SRAM settings as this change
  850. * seems to corrupt the ModeStat and possible other registers.
  851. * The SRAM settings survive resets and setting it to the same
  852. * value a second time works as well. This is what caused the
  853. * `Firmware not running' problem on the Tigon II.
  854. */
  855. #ifdef __BIG_ENDIAN
  856. writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | ACE_BYTE_SWAP_BD |
  857. ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
  858. #else
  859. writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL |
  860. ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
  861. #endif
  862. readl(&regs->ModeStat); /* PCI write posting */
  863. mac1 = 0;
  864. for(i = 0; i < 4; i++) {
  865. int t;
  866. mac1 = mac1 << 8;
  867. t = read_eeprom_byte(dev, 0x8c+i);
  868. if (t < 0) {
  869. ecode = -EIO;
  870. goto init_error;
  871. } else
  872. mac1 |= (t & 0xff);
  873. }
  874. mac2 = 0;
  875. for(i = 4; i < 8; i++) {
  876. int t;
  877. mac2 = mac2 << 8;
  878. t = read_eeprom_byte(dev, 0x8c+i);
  879. if (t < 0) {
  880. ecode = -EIO;
  881. goto init_error;
  882. } else
  883. mac2 |= (t & 0xff);
  884. }
  885. writel(mac1, &regs->MacAddrHi);
  886. writel(mac2, &regs->MacAddrLo);
  887. dev->dev_addr[0] = (mac1 >> 8) & 0xff;
  888. dev->dev_addr[1] = mac1 & 0xff;
  889. dev->dev_addr[2] = (mac2 >> 24) & 0xff;
  890. dev->dev_addr[3] = (mac2 >> 16) & 0xff;
  891. dev->dev_addr[4] = (mac2 >> 8) & 0xff;
  892. dev->dev_addr[5] = mac2 & 0xff;
  893. printk("MAC: %pM\n", dev->dev_addr);
  894. /*
  895. * Looks like this is necessary to deal with on all architectures,
  896. * even this %$#%$# N440BX Intel based thing doesn't get it right.
  897. * Ie. having two NICs in the machine, one will have the cache
  898. * line set at boot time, the other will not.
  899. */
  900. pdev = ap->pdev;
  901. pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_size);
  902. cache_size <<= 2;
  903. if (cache_size != SMP_CACHE_BYTES) {
  904. printk(KERN_INFO " PCI cache line size set incorrectly "
  905. "(%i bytes) by BIOS/FW, ", cache_size);
  906. if (cache_size > SMP_CACHE_BYTES)
  907. printk("expecting %i\n", SMP_CACHE_BYTES);
  908. else {
  909. printk("correcting to %i\n", SMP_CACHE_BYTES);
  910. pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
  911. SMP_CACHE_BYTES >> 2);
  912. }
  913. }
  914. pci_state = readl(&regs->PciState);
  915. printk(KERN_INFO " PCI bus width: %i bits, speed: %iMHz, "
  916. "latency: %i clks\n",
  917. (pci_state & PCI_32BIT) ? 32 : 64,
  918. (pci_state & PCI_66MHZ) ? 66 : 33,
  919. ap->pci_latency);
  920. /*
  921. * Set the max DMA transfer size. Seems that for most systems
  922. * the performance is better when no MAX parameter is
  923. * set. However for systems enabling PCI write and invalidate,
  924. * DMA writes must be set to the L1 cache line size to get
  925. * optimal performance.
  926. *
  927. * The default is now to turn the PCI write and invalidate off
  928. * - that is what Alteon does for NT.
  929. */
  930. tmp = READ_CMD_MEM | WRITE_CMD_MEM;
  931. if (ap->version >= 2) {
  932. tmp |= (MEM_READ_MULTIPLE | (pci_state & PCI_66MHZ));
  933. /*
  934. * Tuning parameters only supported for 8 cards
  935. */
  936. if (board_idx == BOARD_IDX_OVERFLOW ||
  937. dis_pci_mem_inval[board_idx]) {
  938. if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
  939. ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
  940. pci_write_config_word(pdev, PCI_COMMAND,
  941. ap->pci_command);
  942. printk(KERN_INFO " Disabling PCI memory "
  943. "write and invalidate\n");
  944. }
  945. } else if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
  946. printk(KERN_INFO " PCI memory write & invalidate "
  947. "enabled by BIOS, enabling counter measures\n");
  948. switch(SMP_CACHE_BYTES) {
  949. case 16:
  950. tmp |= DMA_WRITE_MAX_16;
  951. break;
  952. case 32:
  953. tmp |= DMA_WRITE_MAX_32;
  954. break;
  955. case 64:
  956. tmp |= DMA_WRITE_MAX_64;
  957. break;
  958. case 128:
  959. tmp |= DMA_WRITE_MAX_128;
  960. break;
  961. default:
  962. printk(KERN_INFO " Cache line size %i not "
  963. "supported, PCI write and invalidate "
  964. "disabled\n", SMP_CACHE_BYTES);
  965. ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
  966. pci_write_config_word(pdev, PCI_COMMAND,
  967. ap->pci_command);
  968. }
  969. }
  970. }
  971. #ifdef __sparc__
  972. /*
  973. * On this platform, we know what the best dma settings
  974. * are. We use 64-byte maximum bursts, because if we
  975. * burst larger than the cache line size (or even cross
  976. * a 64byte boundary in a single burst) the UltraSparc
  977. * PCI controller will disconnect at 64-byte multiples.
  978. *
  979. * Read-multiple will be properly enabled above, and when
  980. * set will give the PCI controller proper hints about
  981. * prefetching.
  982. */
  983. tmp &= ~DMA_READ_WRITE_MASK;
  984. tmp |= DMA_READ_MAX_64;
  985. tmp |= DMA_WRITE_MAX_64;
  986. #endif
  987. #ifdef __alpha__
  988. tmp &= ~DMA_READ_WRITE_MASK;
  989. tmp |= DMA_READ_MAX_128;
  990. /*
  991. * All the docs say MUST NOT. Well, I did.
  992. * Nothing terrible happens, if we load wrong size.
  993. * Bit w&i still works better!
  994. */
  995. tmp |= DMA_WRITE_MAX_128;
  996. #endif
  997. writel(tmp, &regs->PciState);
  998. #if 0
  999. /*
  1000. * The Host PCI bus controller driver has to set FBB.
  1001. * If all devices on that PCI bus support FBB, then the controller
  1002. * can enable FBB support in the Host PCI Bus controller (or on
  1003. * the PCI-PCI bridge if that applies).
  1004. * -ggg
  1005. */
  1006. /*
  1007. * I have received reports from people having problems when this
  1008. * bit is enabled.
  1009. */
  1010. if (!(ap->pci_command & PCI_COMMAND_FAST_BACK)) {
  1011. printk(KERN_INFO " Enabling PCI Fast Back to Back\n");
  1012. ap->pci_command |= PCI_COMMAND_FAST_BACK;
  1013. pci_write_config_word(pdev, PCI_COMMAND, ap->pci_command);
  1014. }
  1015. #endif
  1016. /*
  1017. * Configure DMA attributes.
  1018. */
  1019. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  1020. ap->pci_using_dac = 1;
  1021. } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
  1022. ap->pci_using_dac = 0;
  1023. } else {
  1024. ecode = -ENODEV;
  1025. goto init_error;
  1026. }
  1027. /*
  1028. * Initialize the generic info block and the command+event rings
  1029. * and the control blocks for the transmit and receive rings
  1030. * as they need to be setup once and for all.
  1031. */
  1032. if (!(info = pci_alloc_consistent(ap->pdev, sizeof(struct ace_info),
  1033. &ap->info_dma))) {
  1034. ecode = -EAGAIN;
  1035. goto init_error;
  1036. }
  1037. ap->info = info;
  1038. /*
  1039. * Get the memory for the skb rings.
  1040. */
  1041. if (!(ap->skb = kmalloc(sizeof(struct ace_skb), GFP_KERNEL))) {
  1042. ecode = -EAGAIN;
  1043. goto init_error;
  1044. }
  1045. ecode = request_irq(pdev->irq, ace_interrupt, IRQF_SHARED,
  1046. DRV_NAME, dev);
  1047. if (ecode) {
  1048. printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
  1049. DRV_NAME, pdev->irq);
  1050. goto init_error;
  1051. } else
  1052. dev->irq = pdev->irq;
  1053. #ifdef INDEX_DEBUG
  1054. spin_lock_init(&ap->debug_lock);
  1055. ap->last_tx = ACE_TX_RING_ENTRIES(ap) - 1;
  1056. ap->last_std_rx = 0;
  1057. ap->last_mini_rx = 0;
  1058. #endif
  1059. memset(ap->info, 0, sizeof(struct ace_info));
  1060. memset(ap->skb, 0, sizeof(struct ace_skb));
  1061. ace_load_firmware(dev);
  1062. ap->fw_running = 0;
  1063. tmp_ptr = ap->info_dma;
  1064. writel(tmp_ptr >> 32, &regs->InfoPtrHi);
  1065. writel(tmp_ptr & 0xffffffff, &regs->InfoPtrLo);
  1066. memset(ap->evt_ring, 0, EVT_RING_ENTRIES * sizeof(struct event));
  1067. set_aceaddr(&info->evt_ctrl.rngptr, ap->evt_ring_dma);
  1068. info->evt_ctrl.flags = 0;
  1069. *(ap->evt_prd) = 0;
  1070. wmb();
  1071. set_aceaddr(&info->evt_prd_ptr, ap->evt_prd_dma);
  1072. writel(0, &regs->EvtCsm);
  1073. set_aceaddr(&info->cmd_ctrl.rngptr, 0x100);
  1074. info->cmd_ctrl.flags = 0;
  1075. info->cmd_ctrl.max_len = 0;
  1076. for (i = 0; i < CMD_RING_ENTRIES; i++)
  1077. writel(0, &regs->CmdRng[i]);
  1078. writel(0, &regs->CmdPrd);
  1079. writel(0, &regs->CmdCsm);
  1080. tmp_ptr = ap->info_dma;
  1081. tmp_ptr += (unsigned long) &(((struct ace_info *)0)->s.stats);
  1082. set_aceaddr(&info->stats2_ptr, (dma_addr_t) tmp_ptr);
  1083. set_aceaddr(&info->rx_std_ctrl.rngptr, ap->rx_ring_base_dma);
  1084. info->rx_std_ctrl.max_len = ACE_STD_BUFSIZE;
  1085. info->rx_std_ctrl.flags =
  1086. RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
  1087. memset(ap->rx_std_ring, 0,
  1088. RX_STD_RING_ENTRIES * sizeof(struct rx_desc));
  1089. for (i = 0; i < RX_STD_RING_ENTRIES; i++)
  1090. ap->rx_std_ring[i].flags = BD_FLG_TCP_UDP_SUM;
  1091. ap->rx_std_skbprd = 0;
  1092. atomic_set(&ap->cur_rx_bufs, 0);
  1093. set_aceaddr(&info->rx_jumbo_ctrl.rngptr,
  1094. (ap->rx_ring_base_dma +
  1095. (sizeof(struct rx_desc) * RX_STD_RING_ENTRIES)));
  1096. info->rx_jumbo_ctrl.max_len = 0;
  1097. info->rx_jumbo_ctrl.flags =
  1098. RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
  1099. memset(ap->rx_jumbo_ring, 0,
  1100. RX_JUMBO_RING_ENTRIES * sizeof(struct rx_desc));
  1101. for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++)
  1102. ap->rx_jumbo_ring[i].flags = BD_FLG_TCP_UDP_SUM | BD_FLG_JUMBO;
  1103. ap->rx_jumbo_skbprd = 0;
  1104. atomic_set(&ap->cur_jumbo_bufs, 0);
  1105. memset(ap->rx_mini_ring, 0,
  1106. RX_MINI_RING_ENTRIES * sizeof(struct rx_desc));
  1107. if (ap->version >= 2) {
  1108. set_aceaddr(&info->rx_mini_ctrl.rngptr,
  1109. (ap->rx_ring_base_dma +
  1110. (sizeof(struct rx_desc) *
  1111. (RX_STD_RING_ENTRIES +
  1112. RX_JUMBO_RING_ENTRIES))));
  1113. info->rx_mini_ctrl.max_len = ACE_MINI_SIZE;
  1114. info->rx_mini_ctrl.flags =
  1115. RCB_FLG_TCP_UDP_SUM|RCB_FLG_NO_PSEUDO_HDR|ACE_RCB_VLAN_FLAG;
  1116. for (i = 0; i < RX_MINI_RING_ENTRIES; i++)
  1117. ap->rx_mini_ring[i].flags =
  1118. BD_FLG_TCP_UDP_SUM | BD_FLG_MINI;
  1119. } else {
  1120. set_aceaddr(&info->rx_mini_ctrl.rngptr, 0);
  1121. info->rx_mini_ctrl.flags = RCB_FLG_RNG_DISABLE;
  1122. info->rx_mini_ctrl.max_len = 0;
  1123. }
  1124. ap->rx_mini_skbprd = 0;
  1125. atomic_set(&ap->cur_mini_bufs, 0);
  1126. set_aceaddr(&info->rx_return_ctrl.rngptr,
  1127. (ap->rx_ring_base_dma +
  1128. (sizeof(struct rx_desc) *
  1129. (RX_STD_RING_ENTRIES +
  1130. RX_JUMBO_RING_ENTRIES +
  1131. RX_MINI_RING_ENTRIES))));
  1132. info->rx_return_ctrl.flags = 0;
  1133. info->rx_return_ctrl.max_len = RX_RETURN_RING_ENTRIES;
  1134. memset(ap->rx_return_ring, 0,
  1135. RX_RETURN_RING_ENTRIES * sizeof(struct rx_desc));
  1136. set_aceaddr(&info->rx_ret_prd_ptr, ap->rx_ret_prd_dma);
  1137. *(ap->rx_ret_prd) = 0;
  1138. writel(TX_RING_BASE, &regs->WinBase);
  1139. if (ACE_IS_TIGON_I(ap)) {
  1140. ap->tx_ring = (__force struct tx_desc *) regs->Window;
  1141. for (i = 0; i < (TIGON_I_TX_RING_ENTRIES
  1142. * sizeof(struct tx_desc)) / sizeof(u32); i++)
  1143. writel(0, (__force void __iomem *)ap->tx_ring + i * 4);
  1144. set_aceaddr(&info->tx_ctrl.rngptr, TX_RING_BASE);
  1145. } else {
  1146. memset(ap->tx_ring, 0,
  1147. MAX_TX_RING_ENTRIES * sizeof(struct tx_desc));
  1148. set_aceaddr(&info->tx_ctrl.rngptr, ap->tx_ring_dma);
  1149. }
  1150. info->tx_ctrl.max_len = ACE_TX_RING_ENTRIES(ap);
  1151. tmp = RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
  1152. /*
  1153. * The Tigon I does not like having the TX ring in host memory ;-(
  1154. */
  1155. if (!ACE_IS_TIGON_I(ap))
  1156. tmp |= RCB_FLG_TX_HOST_RING;
  1157. #if TX_COAL_INTS_ONLY
  1158. tmp |= RCB_FLG_COAL_INT_ONLY;
  1159. #endif
  1160. info->tx_ctrl.flags = tmp;
  1161. set_aceaddr(&info->tx_csm_ptr, ap->tx_csm_dma);
  1162. /*
  1163. * Potential item for tuning parameter
  1164. */
  1165. #if 0 /* NO */
  1166. writel(DMA_THRESH_16W, &regs->DmaReadCfg);
  1167. writel(DMA_THRESH_16W, &regs->DmaWriteCfg);
  1168. #else
  1169. writel(DMA_THRESH_8W, &regs->DmaReadCfg);
  1170. writel(DMA_THRESH_8W, &regs->DmaWriteCfg);
  1171. #endif
  1172. writel(0, &regs->MaskInt);
  1173. writel(1, &regs->IfIdx);
  1174. #if 0
  1175. /*
  1176. * McKinley boxes do not like us fiddling with AssistState
  1177. * this early
  1178. */
  1179. writel(1, &regs->AssistState);
  1180. #endif
  1181. writel(DEF_STAT, &regs->TuneStatTicks);
  1182. writel(DEF_TRACE, &regs->TuneTrace);
  1183. ace_set_rxtx_parms(dev, 0);
  1184. if (board_idx == BOARD_IDX_OVERFLOW) {
  1185. printk(KERN_WARNING "%s: more than %i NICs detected, "
  1186. "ignoring module parameters!\n",
  1187. ap->name, ACE_MAX_MOD_PARMS);
  1188. } else if (board_idx >= 0) {
  1189. if (tx_coal_tick[board_idx])
  1190. writel(tx_coal_tick[board_idx],
  1191. &regs->TuneTxCoalTicks);
  1192. if (max_tx_desc[board_idx])
  1193. writel(max_tx_desc[board_idx], &regs->TuneMaxTxDesc);
  1194. if (rx_coal_tick[board_idx])
  1195. writel(rx_coal_tick[board_idx],
  1196. &regs->TuneRxCoalTicks);
  1197. if (max_rx_desc[board_idx])
  1198. writel(max_rx_desc[board_idx], &regs->TuneMaxRxDesc);
  1199. if (trace[board_idx])
  1200. writel(trace[board_idx], &regs->TuneTrace);
  1201. if ((tx_ratio[board_idx] > 0) && (tx_ratio[board_idx] < 64))
  1202. writel(tx_ratio[board_idx], &regs->TxBufRat);
  1203. }
  1204. /*
  1205. * Default link parameters
  1206. */
  1207. tmp = LNK_ENABLE | LNK_FULL_DUPLEX | LNK_1000MB | LNK_100MB |
  1208. LNK_10MB | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL | LNK_NEGOTIATE;
  1209. if(ap->version >= 2)
  1210. tmp |= LNK_TX_FLOW_CTL_Y;
  1211. /*
  1212. * Override link default parameters
  1213. */
  1214. if ((board_idx >= 0) && link_state[board_idx]) {
  1215. int option = link_state[board_idx];
  1216. tmp = LNK_ENABLE;
  1217. if (option & 0x01) {
  1218. printk(KERN_INFO "%s: Setting half duplex link\n",
  1219. ap->name);
  1220. tmp &= ~LNK_FULL_DUPLEX;
  1221. }
  1222. if (option & 0x02)
  1223. tmp &= ~LNK_NEGOTIATE;
  1224. if (option & 0x10)
  1225. tmp |= LNK_10MB;
  1226. if (option & 0x20)
  1227. tmp |= LNK_100MB;
  1228. if (option & 0x40)
  1229. tmp |= LNK_1000MB;
  1230. if ((option & 0x70) == 0) {
  1231. printk(KERN_WARNING "%s: No media speed specified, "
  1232. "forcing auto negotiation\n", ap->name);
  1233. tmp |= LNK_NEGOTIATE | LNK_1000MB |
  1234. LNK_100MB | LNK_10MB;
  1235. }
  1236. if ((option & 0x100) == 0)
  1237. tmp |= LNK_NEG_FCTL;
  1238. else
  1239. printk(KERN_INFO "%s: Disabling flow control "
  1240. "negotiation\n", ap->name);
  1241. if (option & 0x200)
  1242. tmp |= LNK_RX_FLOW_CTL_Y;
  1243. if ((option & 0x400) && (ap->version >= 2)) {
  1244. printk(KERN_INFO "%s: Enabling TX flow control\n",
  1245. ap->name);
  1246. tmp |= LNK_TX_FLOW_CTL_Y;
  1247. }
  1248. }
  1249. ap->link = tmp;
  1250. writel(tmp, &regs->TuneLink);
  1251. if (ap->version >= 2)
  1252. writel(tmp, &regs->TuneFastLink);
  1253. if (ACE_IS_TIGON_I(ap))
  1254. writel(tigonFwStartAddr, &regs->Pc);
  1255. if (ap->version == 2)
  1256. writel(tigon2FwStartAddr, &regs->Pc);
  1257. writel(0, &regs->Mb0Lo);
  1258. /*
  1259. * Set tx_csm before we start receiving interrupts, otherwise
  1260. * the interrupt handler might think it is supposed to process
  1261. * tx ints before we are up and running, which may cause a null
  1262. * pointer access in the int handler.
  1263. */
  1264. ap->cur_rx = 0;
  1265. ap->tx_prd = *(ap->tx_csm) = ap->tx_ret_csm = 0;
  1266. wmb();
  1267. ace_set_txprd(regs, ap, 0);
  1268. writel(0, &regs->RxRetCsm);
  1269. /*
  1270. * Enable DMA engine now.
  1271. * If we do this sooner, Mckinley box pukes.
  1272. * I assume it's because Tigon II DMA engine wants to check
  1273. * *something* even before the CPU is started.
  1274. */
  1275. writel(1, &regs->AssistState); /* enable DMA */
  1276. /*
  1277. * Start the NIC CPU
  1278. */
  1279. writel(readl(&regs->CpuCtrl) & ~(CPU_HALT|CPU_TRACE), &regs->CpuCtrl);
  1280. readl(&regs->CpuCtrl);
  1281. /*
  1282. * Wait for the firmware to spin up - max 3 seconds.
  1283. */
  1284. myjif = jiffies + 3 * HZ;
  1285. while (time_before(jiffies, myjif) && !ap->fw_running)
  1286. cpu_relax();
  1287. if (!ap->fw_running) {
  1288. printk(KERN_ERR "%s: Firmware NOT running!\n", ap->name);
  1289. ace_dump_trace(ap);
  1290. writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
  1291. readl(&regs->CpuCtrl);
  1292. /* aman@sgi.com - account for badly behaving firmware/NIC:
  1293. * - have observed that the NIC may continue to generate
  1294. * interrupts for some reason; attempt to stop it - halt
  1295. * second CPU for Tigon II cards, and also clear Mb0
  1296. * - if we're a module, we'll fail to load if this was
  1297. * the only GbE card in the system => if the kernel does
  1298. * see an interrupt from the NIC, code to handle it is
  1299. * gone and OOps! - so free_irq also
  1300. */
  1301. if (ap->version >= 2)
  1302. writel(readl(&regs->CpuBCtrl) | CPU_HALT,
  1303. &regs->CpuBCtrl);
  1304. writel(0, &regs->Mb0Lo);
  1305. readl(&regs->Mb0Lo);
  1306. ecode = -EBUSY;
  1307. goto init_error;
  1308. }
  1309. /*
  1310. * We load the ring here as there seem to be no way to tell the
  1311. * firmware to wipe the ring without re-initializing it.
  1312. */
  1313. if (!test_and_set_bit(0, &ap->std_refill_busy))
  1314. ace_load_std_rx_ring(ap, RX_RING_SIZE);
  1315. else
  1316. printk(KERN_ERR "%s: Someone is busy refilling the RX ring\n",
  1317. ap->name);
  1318. if (ap->version >= 2) {
  1319. if (!test_and_set_bit(0, &ap->mini_refill_busy))
  1320. ace_load_mini_rx_ring(ap, RX_MINI_SIZE);
  1321. else
  1322. printk(KERN_ERR "%s: Someone is busy refilling "
  1323. "the RX mini ring\n", ap->name);
  1324. }
  1325. return 0;
  1326. init_error:
  1327. ace_init_cleanup(dev);
  1328. return ecode;
  1329. }
  1330. static void ace_set_rxtx_parms(struct net_device *dev, int jumbo)
  1331. {
  1332. struct ace_private *ap = netdev_priv(dev);
  1333. struct ace_regs __iomem *regs = ap->regs;
  1334. int board_idx = ap->board_idx;
  1335. if (board_idx >= 0) {
  1336. if (!jumbo) {
  1337. if (!tx_coal_tick[board_idx])
  1338. writel(DEF_TX_COAL, &regs->TuneTxCoalTicks);
  1339. if (!max_tx_desc[board_idx])
  1340. writel(DEF_TX_MAX_DESC, &regs->TuneMaxTxDesc);
  1341. if (!rx_coal_tick[board_idx])
  1342. writel(DEF_RX_COAL, &regs->TuneRxCoalTicks);
  1343. if (!max_rx_desc[board_idx])
  1344. writel(DEF_RX_MAX_DESC, &regs->TuneMaxRxDesc);
  1345. if (!tx_ratio[board_idx])
  1346. writel(DEF_TX_RATIO, &regs->TxBufRat);
  1347. } else {
  1348. if (!tx_coal_tick[board_idx])
  1349. writel(DEF_JUMBO_TX_COAL,
  1350. &regs->TuneTxCoalTicks);
  1351. if (!max_tx_desc[board_idx])
  1352. writel(DEF_JUMBO_TX_MAX_DESC,
  1353. &regs->TuneMaxTxDesc);
  1354. if (!rx_coal_tick[board_idx])
  1355. writel(DEF_JUMBO_RX_COAL,
  1356. &regs->TuneRxCoalTicks);
  1357. if (!max_rx_desc[board_idx])
  1358. writel(DEF_JUMBO_RX_MAX_DESC,
  1359. &regs->TuneMaxRxDesc);
  1360. if (!tx_ratio[board_idx])
  1361. writel(DEF_JUMBO_TX_RATIO, &regs->TxBufRat);
  1362. }
  1363. }
  1364. }
  1365. static void ace_watchdog(struct net_device *data)
  1366. {
  1367. struct net_device *dev = data;
  1368. struct ace_private *ap = netdev_priv(dev);
  1369. struct ace_regs __iomem *regs = ap->regs;
  1370. /*
  1371. * We haven't received a stats update event for more than 2.5
  1372. * seconds and there is data in the transmit queue, thus we
  1373. * asume the card is stuck.
  1374. */
  1375. if (*ap->tx_csm != ap->tx_ret_csm) {
  1376. printk(KERN_WARNING "%s: Transmitter is stuck, %08x\n",
  1377. dev->name, (unsigned int)readl(&regs->HostCtrl));
  1378. /* This can happen due to ieee flow control. */
  1379. } else {
  1380. printk(KERN_DEBUG "%s: BUG... transmitter died. Kicking it.\n",
  1381. dev->name);
  1382. #if 0
  1383. netif_wake_queue(dev);
  1384. #endif
  1385. }
  1386. }
  1387. static void ace_tasklet(unsigned long dev)
  1388. {
  1389. struct ace_private *ap = netdev_priv((struct net_device *)dev);
  1390. int cur_size;
  1391. cur_size = atomic_read(&ap->cur_rx_bufs);
  1392. if ((cur_size < RX_LOW_STD_THRES) &&
  1393. !test_and_set_bit(0, &ap->std_refill_busy)) {
  1394. #ifdef DEBUG
  1395. printk("refilling buffers (current %i)\n", cur_size);
  1396. #endif
  1397. ace_load_std_rx_ring(ap, RX_RING_SIZE - cur_size);
  1398. }
  1399. if (ap->version >= 2) {
  1400. cur_size = atomic_read(&ap->cur_mini_bufs);
  1401. if ((cur_size < RX_LOW_MINI_THRES) &&
  1402. !test_and_set_bit(0, &ap->mini_refill_busy)) {
  1403. #ifdef DEBUG
  1404. printk("refilling mini buffers (current %i)\n",
  1405. cur_size);
  1406. #endif
  1407. ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size);
  1408. }
  1409. }
  1410. cur_size = atomic_read(&ap->cur_jumbo_bufs);
  1411. if (ap->jumbo && (cur_size < RX_LOW_JUMBO_THRES) &&
  1412. !test_and_set_bit(0, &ap->jumbo_refill_busy)) {
  1413. #ifdef DEBUG
  1414. printk("refilling jumbo buffers (current %i)\n", cur_size);
  1415. #endif
  1416. ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size);
  1417. }
  1418. ap->tasklet_pending = 0;
  1419. }
  1420. /*
  1421. * Copy the contents of the NIC's trace buffer to kernel memory.
  1422. */
  1423. static void ace_dump_trace(struct ace_private *ap)
  1424. {
  1425. #if 0
  1426. if (!ap->trace_buf)
  1427. if (!(ap->trace_buf = kmalloc(ACE_TRACE_SIZE, GFP_KERNEL)))
  1428. return;
  1429. #endif
  1430. }
  1431. /*
  1432. * Load the standard rx ring.
  1433. *
  1434. * Loading rings is safe without holding the spin lock since this is
  1435. * done only before the device is enabled, thus no interrupts are
  1436. * generated and by the interrupt handler/tasklet handler.
  1437. */
  1438. static void ace_load_std_rx_ring(struct ace_private *ap, int nr_bufs)
  1439. {
  1440. struct ace_regs __iomem *regs = ap->regs;
  1441. short i, idx;
  1442. prefetchw(&ap->cur_rx_bufs);
  1443. idx = ap->rx_std_skbprd;
  1444. for (i = 0; i < nr_bufs; i++) {
  1445. struct sk_buff *skb;
  1446. struct rx_desc *rd;
  1447. dma_addr_t mapping;
  1448. skb = alloc_skb(ACE_STD_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
  1449. if (!skb)
  1450. break;
  1451. skb_reserve(skb, NET_IP_ALIGN);
  1452. mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
  1453. offset_in_page(skb->data),
  1454. ACE_STD_BUFSIZE,
  1455. PCI_DMA_FROMDEVICE);
  1456. ap->skb->rx_std_skbuff[idx].skb = skb;
  1457. pci_unmap_addr_set(&ap->skb->rx_std_skbuff[idx],
  1458. mapping, mapping);
  1459. rd = &ap->rx_std_ring[idx];
  1460. set_aceaddr(&rd->addr, mapping);
  1461. rd->size = ACE_STD_BUFSIZE;
  1462. rd->idx = idx;
  1463. idx = (idx + 1) % RX_STD_RING_ENTRIES;
  1464. }
  1465. if (!i)
  1466. goto error_out;
  1467. atomic_add(i, &ap->cur_rx_bufs);
  1468. ap->rx_std_skbprd = idx;
  1469. if (ACE_IS_TIGON_I(ap)) {
  1470. struct cmd cmd;
  1471. cmd.evt = C_SET_RX_PRD_IDX;
  1472. cmd.code = 0;
  1473. cmd.idx = ap->rx_std_skbprd;
  1474. ace_issue_cmd(regs, &cmd);
  1475. } else {
  1476. writel(idx, &regs->RxStdPrd);
  1477. wmb();
  1478. }
  1479. out:
  1480. clear_bit(0, &ap->std_refill_busy);
  1481. return;
  1482. error_out:
  1483. printk(KERN_INFO "Out of memory when allocating "
  1484. "standard receive buffers\n");
  1485. goto out;
  1486. }
  1487. static void ace_load_mini_rx_ring(struct ace_private *ap, int nr_bufs)
  1488. {
  1489. struct ace_regs __iomem *regs = ap->regs;
  1490. short i, idx;
  1491. prefetchw(&ap->cur_mini_bufs);
  1492. idx = ap->rx_mini_skbprd;
  1493. for (i = 0; i < nr_bufs; i++) {
  1494. struct sk_buff *skb;
  1495. struct rx_desc *rd;
  1496. dma_addr_t mapping;
  1497. skb = alloc_skb(ACE_MINI_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
  1498. if (!skb)
  1499. break;
  1500. skb_reserve(skb, NET_IP_ALIGN);
  1501. mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
  1502. offset_in_page(skb->data),
  1503. ACE_MINI_BUFSIZE,
  1504. PCI_DMA_FROMDEVICE);
  1505. ap->skb->rx_mini_skbuff[idx].skb = skb;
  1506. pci_unmap_addr_set(&ap->skb->rx_mini_skbuff[idx],
  1507. mapping, mapping);
  1508. rd = &ap->rx_mini_ring[idx];
  1509. set_aceaddr(&rd->addr, mapping);
  1510. rd->size = ACE_MINI_BUFSIZE;
  1511. rd->idx = idx;
  1512. idx = (idx + 1) % RX_MINI_RING_ENTRIES;
  1513. }
  1514. if (!i)
  1515. goto error_out;
  1516. atomic_add(i, &ap->cur_mini_bufs);
  1517. ap->rx_mini_skbprd = idx;
  1518. writel(idx, &regs->RxMiniPrd);
  1519. wmb();
  1520. out:
  1521. clear_bit(0, &ap->mini_refill_busy);
  1522. return;
  1523. error_out:
  1524. printk(KERN_INFO "Out of memory when allocating "
  1525. "mini receive buffers\n");
  1526. goto out;
  1527. }
  1528. /*
  1529. * Load the jumbo rx ring, this may happen at any time if the MTU
  1530. * is changed to a value > 1500.
  1531. */
  1532. static void ace_load_jumbo_rx_ring(struct ace_private *ap, int nr_bufs)
  1533. {
  1534. struct ace_regs __iomem *regs = ap->regs;
  1535. short i, idx;
  1536. idx = ap->rx_jumbo_skbprd;
  1537. for (i = 0; i < nr_bufs; i++) {
  1538. struct sk_buff *skb;
  1539. struct rx_desc *rd;
  1540. dma_addr_t mapping;
  1541. skb = alloc_skb(ACE_JUMBO_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
  1542. if (!skb)
  1543. break;
  1544. skb_reserve(skb, NET_IP_ALIGN);
  1545. mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
  1546. offset_in_page(skb->data),
  1547. ACE_JUMBO_BUFSIZE,
  1548. PCI_DMA_FROMDEVICE);
  1549. ap->skb->rx_jumbo_skbuff[idx].skb = skb;
  1550. pci_unmap_addr_set(&ap->skb->rx_jumbo_skbuff[idx],
  1551. mapping, mapping);
  1552. rd = &ap->rx_jumbo_ring[idx];
  1553. set_aceaddr(&rd->addr, mapping);
  1554. rd->size = ACE_JUMBO_BUFSIZE;
  1555. rd->idx = idx;
  1556. idx = (idx + 1) % RX_JUMBO_RING_ENTRIES;
  1557. }
  1558. if (!i)
  1559. goto error_out;
  1560. atomic_add(i, &ap->cur_jumbo_bufs);
  1561. ap->rx_jumbo_skbprd = idx;
  1562. if (ACE_IS_TIGON_I(ap)) {
  1563. struct cmd cmd;
  1564. cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
  1565. cmd.code = 0;
  1566. cmd.idx = ap->rx_jumbo_skbprd;
  1567. ace_issue_cmd(regs, &cmd);
  1568. } else {
  1569. writel(idx, &regs->RxJumboPrd);
  1570. wmb();
  1571. }
  1572. out:
  1573. clear_bit(0, &ap->jumbo_refill_busy);
  1574. return;
  1575. error_out:
  1576. if (net_ratelimit())
  1577. printk(KERN_INFO "Out of memory when allocating "
  1578. "jumbo receive buffers\n");
  1579. goto out;
  1580. }
  1581. /*
  1582. * All events are considered to be slow (RX/TX ints do not generate
  1583. * events) and are handled here, outside the main interrupt handler,
  1584. * to reduce the size of the handler.
  1585. */
  1586. static u32 ace_handle_event(struct net_device *dev, u32 evtcsm, u32 evtprd)
  1587. {
  1588. struct ace_private *ap;
  1589. ap = netdev_priv(dev);
  1590. while (evtcsm != evtprd) {
  1591. switch (ap->evt_ring[evtcsm].evt) {
  1592. case E_FW_RUNNING:
  1593. printk(KERN_INFO "%s: Firmware up and running\n",
  1594. ap->name);
  1595. ap->fw_running = 1;
  1596. wmb();
  1597. break;
  1598. case E_STATS_UPDATED:
  1599. break;
  1600. case E_LNK_STATE:
  1601. {
  1602. u16 code = ap->evt_ring[evtcsm].code;
  1603. switch (code) {
  1604. case E_C_LINK_UP:
  1605. {
  1606. u32 state = readl(&ap->regs->GigLnkState);
  1607. printk(KERN_WARNING "%s: Optical link UP "
  1608. "(%s Duplex, Flow Control: %s%s)\n",
  1609. ap->name,
  1610. state & LNK_FULL_DUPLEX ? "Full":"Half",
  1611. state & LNK_TX_FLOW_CTL_Y ? "TX " : "",
  1612. state & LNK_RX_FLOW_CTL_Y ? "RX" : "");
  1613. break;
  1614. }
  1615. case E_C_LINK_DOWN:
  1616. printk(KERN_WARNING "%s: Optical link DOWN\n",
  1617. ap->name);
  1618. break;
  1619. case E_C_LINK_10_100:
  1620. printk(KERN_WARNING "%s: 10/100BaseT link "
  1621. "UP\n", ap->name);
  1622. break;
  1623. default:
  1624. printk(KERN_ERR "%s: Unknown optical link "
  1625. "state %02x\n", ap->name, code);
  1626. }
  1627. break;
  1628. }
  1629. case E_ERROR:
  1630. switch(ap->evt_ring[evtcsm].code) {
  1631. case E_C_ERR_INVAL_CMD:
  1632. printk(KERN_ERR "%s: invalid command error\n",
  1633. ap->name);
  1634. break;
  1635. case E_C_ERR_UNIMP_CMD:
  1636. printk(KERN_ERR "%s: unimplemented command "
  1637. "error\n", ap->name);
  1638. break;
  1639. case E_C_ERR_BAD_CFG:
  1640. printk(KERN_ERR "%s: bad config error\n",
  1641. ap->name);
  1642. break;
  1643. default:
  1644. printk(KERN_ERR "%s: unknown error %02x\n",
  1645. ap->name, ap->evt_ring[evtcsm].code);
  1646. }
  1647. break;
  1648. case E_RESET_JUMBO_RNG:
  1649. {
  1650. int i;
  1651. for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
  1652. if (ap->skb->rx_jumbo_skbuff[i].skb) {
  1653. ap->rx_jumbo_ring[i].size = 0;
  1654. set_aceaddr(&ap->rx_jumbo_ring[i].addr, 0);
  1655. dev_kfree_skb(ap->skb->rx_jumbo_skbuff[i].skb);
  1656. ap->skb->rx_jumbo_skbuff[i].skb = NULL;
  1657. }
  1658. }
  1659. if (ACE_IS_TIGON_I(ap)) {
  1660. struct cmd cmd;
  1661. cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
  1662. cmd.code = 0;
  1663. cmd.idx = 0;
  1664. ace_issue_cmd(ap->regs, &cmd);
  1665. } else {
  1666. writel(0, &((ap->regs)->RxJumboPrd));
  1667. wmb();
  1668. }
  1669. ap->jumbo = 0;
  1670. ap->rx_jumbo_skbprd = 0;
  1671. printk(KERN_INFO "%s: Jumbo ring flushed\n",
  1672. ap->name);
  1673. clear_bit(0, &ap->jumbo_refill_busy);
  1674. break;
  1675. }
  1676. default:
  1677. printk(KERN_ERR "%s: Unhandled event 0x%02x\n",
  1678. ap->name, ap->evt_ring[evtcsm].evt);
  1679. }
  1680. evtcsm = (evtcsm + 1) % EVT_RING_ENTRIES;
  1681. }
  1682. return evtcsm;
  1683. }
  1684. static void ace_rx_int(struct net_device *dev, u32 rxretprd, u32 rxretcsm)
  1685. {
  1686. struct ace_private *ap = netdev_priv(dev);
  1687. u32 idx;
  1688. int mini_count = 0, std_count = 0;
  1689. idx = rxretcsm;
  1690. prefetchw(&ap->cur_rx_bufs);
  1691. prefetchw(&ap->cur_mini_bufs);
  1692. while (idx != rxretprd) {
  1693. struct ring_info *rip;
  1694. struct sk_buff *skb;
  1695. struct rx_desc *rxdesc, *retdesc;
  1696. u32 skbidx;
  1697. int bd_flags, desc_type, mapsize;
  1698. u16 csum;
  1699. /* make sure the rx descriptor isn't read before rxretprd */
  1700. if (idx == rxretcsm)
  1701. rmb();
  1702. retdesc = &ap->rx_return_ring[idx];
  1703. skbidx = retdesc->idx;
  1704. bd_flags = retdesc->flags;
  1705. desc_type = bd_flags & (BD_FLG_JUMBO | BD_FLG_MINI);
  1706. switch(desc_type) {
  1707. /*
  1708. * Normal frames do not have any flags set
  1709. *
  1710. * Mini and normal frames arrive frequently,
  1711. * so use a local counter to avoid doing
  1712. * atomic operations for each packet arriving.
  1713. */
  1714. case 0:
  1715. rip = &ap->skb->rx_std_skbuff[skbidx];
  1716. mapsize = ACE_STD_BUFSIZE;
  1717. rxdesc = &ap->rx_std_ring[skbidx];
  1718. std_count++;
  1719. break;
  1720. case BD_FLG_JUMBO:
  1721. rip = &ap->skb->rx_jumbo_skbuff[skbidx];
  1722. mapsize = ACE_JUMBO_BUFSIZE;
  1723. rxdesc = &ap->rx_jumbo_ring[skbidx];
  1724. atomic_dec(&ap->cur_jumbo_bufs);
  1725. break;
  1726. case BD_FLG_MINI:
  1727. rip = &ap->skb->rx_mini_skbuff[skbidx];
  1728. mapsize = ACE_MINI_BUFSIZE;
  1729. rxdesc = &ap->rx_mini_ring[skbidx];
  1730. mini_count++;
  1731. break;
  1732. default:
  1733. printk(KERN_INFO "%s: unknown frame type (0x%02x) "
  1734. "returned by NIC\n", dev->name,
  1735. retdesc->flags);
  1736. goto error;
  1737. }
  1738. skb = rip->skb;
  1739. rip->skb = NULL;
  1740. pci_unmap_page(ap->pdev,
  1741. pci_unmap_addr(rip, mapping),
  1742. mapsize,
  1743. PCI_DMA_FROMDEVICE);
  1744. skb_put(skb, retdesc->size);
  1745. /*
  1746. * Fly baby, fly!
  1747. */
  1748. csum = retdesc->tcp_udp_csum;
  1749. skb->protocol = eth_type_trans(skb, dev);
  1750. /*
  1751. * Instead of forcing the poor tigon mips cpu to calculate
  1752. * pseudo hdr checksum, we do this ourselves.
  1753. */
  1754. if (bd_flags & BD_FLG_TCP_UDP_SUM) {
  1755. skb->csum = htons(csum);
  1756. skb->ip_summed = CHECKSUM_COMPLETE;
  1757. } else {
  1758. skb->ip_summed = CHECKSUM_NONE;
  1759. }
  1760. /* send it up */
  1761. #if ACENIC_DO_VLAN
  1762. if (ap->vlgrp && (bd_flags & BD_FLG_VLAN_TAG)) {
  1763. vlan_hwaccel_rx(skb, ap->vlgrp, retdesc->vlan);
  1764. } else
  1765. #endif
  1766. netif_rx(skb);
  1767. dev->stats.rx_packets++;
  1768. dev->stats.rx_bytes += retdesc->size;
  1769. idx = (idx + 1) % RX_RETURN_RING_ENTRIES;
  1770. }
  1771. atomic_sub(std_count, &ap->cur_rx_bufs);
  1772. if (!ACE_IS_TIGON_I(ap))
  1773. atomic_sub(mini_count, &ap->cur_mini_bufs);
  1774. out:
  1775. /*
  1776. * According to the documentation RxRetCsm is obsolete with
  1777. * the 12.3.x Firmware - my Tigon I NICs seem to disagree!
  1778. */
  1779. if (ACE_IS_TIGON_I(ap)) {
  1780. writel(idx, &ap->regs->RxRetCsm);
  1781. }
  1782. ap->cur_rx = idx;
  1783. return;
  1784. error:
  1785. idx = rxretprd;
  1786. goto out;
  1787. }
  1788. static inline void ace_tx_int(struct net_device *dev,
  1789. u32 txcsm, u32 idx)
  1790. {
  1791. struct ace_private *ap = netdev_priv(dev);
  1792. do {
  1793. struct sk_buff *skb;
  1794. dma_addr_t mapping;
  1795. struct tx_ring_info *info;
  1796. info = ap->skb->tx_skbuff + idx;
  1797. skb = info->skb;
  1798. mapping = pci_unmap_addr(info, mapping);
  1799. if (mapping) {
  1800. pci_unmap_page(ap->pdev, mapping,
  1801. pci_unmap_len(info, maplen),
  1802. PCI_DMA_TODEVICE);
  1803. pci_unmap_addr_set(info, mapping, 0);
  1804. }
  1805. if (skb) {
  1806. dev->stats.tx_packets++;
  1807. dev->stats.tx_bytes += skb->len;
  1808. dev_kfree_skb_irq(skb);
  1809. info->skb = NULL;
  1810. }
  1811. idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
  1812. } while (idx != txcsm);
  1813. if (netif_queue_stopped(dev))
  1814. netif_wake_queue(dev);
  1815. wmb();
  1816. ap->tx_ret_csm = txcsm;
  1817. /* So... tx_ret_csm is advanced _after_ check for device wakeup.
  1818. *
  1819. * We could try to make it before. In this case we would get
  1820. * the following race condition: hard_start_xmit on other cpu
  1821. * enters after we advanced tx_ret_csm and fills space,
  1822. * which we have just freed, so that we make illegal device wakeup.
  1823. * There is no good way to workaround this (at entry
  1824. * to ace_start_xmit detects this condition and prevents
  1825. * ring corruption, but it is not a good workaround.)
  1826. *
  1827. * When tx_ret_csm is advanced after, we wake up device _only_
  1828. * if we really have some space in ring (though the core doing
  1829. * hard_start_xmit can see full ring for some period and has to
  1830. * synchronize.) Superb.
  1831. * BUT! We get another subtle race condition. hard_start_xmit
  1832. * may think that ring is full between wakeup and advancing
  1833. * tx_ret_csm and will stop device instantly! It is not so bad.
  1834. * We are guaranteed that there is something in ring, so that
  1835. * the next irq will resume transmission. To speedup this we could
  1836. * mark descriptor, which closes ring with BD_FLG_COAL_NOW
  1837. * (see ace_start_xmit).
  1838. *
  1839. * Well, this dilemma exists in all lock-free devices.
  1840. * We, following scheme used in drivers by Donald Becker,
  1841. * select the least dangerous.
  1842. * --ANK
  1843. */
  1844. }
  1845. static irqreturn_t ace_interrupt(int irq, void *dev_id)
  1846. {
  1847. struct net_device *dev = (struct net_device *)dev_id;
  1848. struct ace_private *ap = netdev_priv(dev);
  1849. struct ace_regs __iomem *regs = ap->regs;
  1850. u32 idx;
  1851. u32 txcsm, rxretcsm, rxretprd;
  1852. u32 evtcsm, evtprd;
  1853. /*
  1854. * In case of PCI shared interrupts or spurious interrupts,
  1855. * we want to make sure it is actually our interrupt before
  1856. * spending any time in here.
  1857. */
  1858. if (!(readl(&regs->HostCtrl) & IN_INT))
  1859. return IRQ_NONE;
  1860. /*
  1861. * ACK intr now. Otherwise we will lose updates to rx_ret_prd,
  1862. * which happened _after_ rxretprd = *ap->rx_ret_prd; but before
  1863. * writel(0, &regs->Mb0Lo).
  1864. *
  1865. * "IRQ avoidance" recommended in docs applies to IRQs served
  1866. * threads and it is wrong even for that case.
  1867. */
  1868. writel(0, &regs->Mb0Lo);
  1869. readl(&regs->Mb0Lo);
  1870. /*
  1871. * There is no conflict between transmit handling in
  1872. * start_xmit and receive processing, thus there is no reason
  1873. * to take a spin lock for RX handling. Wait until we start
  1874. * working on the other stuff - hey we don't need a spin lock
  1875. * anymore.
  1876. */
  1877. rxretprd = *ap->rx_ret_prd;
  1878. rxretcsm = ap->cur_rx;
  1879. if (rxretprd != rxretcsm)
  1880. ace_rx_int(dev, rxretprd, rxretcsm);
  1881. txcsm = *ap->tx_csm;
  1882. idx = ap->tx_ret_csm;
  1883. if (txcsm != idx) {
  1884. /*
  1885. * If each skb takes only one descriptor this check degenerates
  1886. * to identity, because new space has just been opened.
  1887. * But if skbs are fragmented we must check that this index
  1888. * update releases enough of space, otherwise we just
  1889. * wait for device to make more work.
  1890. */
  1891. if (!tx_ring_full(ap, txcsm, ap->tx_prd))
  1892. ace_tx_int(dev, txcsm, idx);
  1893. }
  1894. evtcsm = readl(&regs->EvtCsm);
  1895. evtprd = *ap->evt_prd;
  1896. if (evtcsm != evtprd) {
  1897. evtcsm = ace_handle_event(dev, evtcsm, evtprd);
  1898. writel(evtcsm, &regs->EvtCsm);
  1899. }
  1900. /*
  1901. * This has to go last in the interrupt handler and run with
  1902. * the spin lock released ... what lock?
  1903. */
  1904. if (netif_running(dev)) {
  1905. int cur_size;
  1906. int run_tasklet = 0;
  1907. cur_size = atomic_read(&ap->cur_rx_bufs);
  1908. if (cur_size < RX_LOW_STD_THRES) {
  1909. if ((cur_size < RX_PANIC_STD_THRES) &&
  1910. !test_and_set_bit(0, &ap->std_refill_busy)) {
  1911. #ifdef DEBUG
  1912. printk("low on std buffers %i\n", cur_size);
  1913. #endif
  1914. ace_load_std_rx_ring(ap,
  1915. RX_RING_SIZE - cur_size);
  1916. } else
  1917. run_tasklet = 1;
  1918. }
  1919. if (!ACE_IS_TIGON_I(ap)) {
  1920. cur_size = atomic_read(&ap->cur_mini_bufs);
  1921. if (cur_size < RX_LOW_MINI_THRES) {
  1922. if ((cur_size < RX_PANIC_MINI_THRES) &&
  1923. !test_and_set_bit(0,
  1924. &ap->mini_refill_busy)) {
  1925. #ifdef DEBUG
  1926. printk("low on mini buffers %i\n",
  1927. cur_size);
  1928. #endif
  1929. ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size);
  1930. } else
  1931. run_tasklet = 1;
  1932. }
  1933. }
  1934. if (ap->jumbo) {
  1935. cur_size = atomic_read(&ap->cur_jumbo_bufs);
  1936. if (cur_size < RX_LOW_JUMBO_THRES) {
  1937. if ((cur_size < RX_PANIC_JUMBO_THRES) &&
  1938. !test_and_set_bit(0,
  1939. &ap->jumbo_refill_busy)){
  1940. #ifdef DEBUG
  1941. printk("low on jumbo buffers %i\n",
  1942. cur_size);
  1943. #endif
  1944. ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size);
  1945. } else
  1946. run_tasklet = 1;
  1947. }
  1948. }
  1949. if (run_tasklet && !ap->tasklet_pending) {
  1950. ap->tasklet_pending = 1;
  1951. tasklet_schedule(&ap->ace_tasklet);
  1952. }
  1953. }
  1954. return IRQ_HANDLED;
  1955. }
  1956. #if ACENIC_DO_VLAN
  1957. static void ace_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  1958. {
  1959. struct ace_private *ap = netdev_priv(dev);
  1960. unsigned long flags;
  1961. local_irq_save(flags);
  1962. ace_mask_irq(dev);
  1963. ap->vlgrp = grp;
  1964. ace_unmask_irq(dev);
  1965. local_irq_restore(flags);
  1966. }
  1967. #endif /* ACENIC_DO_VLAN */
  1968. static int ace_open(struct net_device *dev)
  1969. {
  1970. struct ace_private *ap = netdev_priv(dev);
  1971. struct ace_regs __iomem *regs = ap->regs;
  1972. struct cmd cmd;
  1973. if (!(ap->fw_running)) {
  1974. printk(KERN_WARNING "%s: Firmware not running!\n", dev->name);
  1975. return -EBUSY;
  1976. }
  1977. writel(dev->mtu + ETH_HLEN + 4, &regs->IfMtu);
  1978. cmd.evt = C_CLEAR_STATS;
  1979. cmd.code = 0;
  1980. cmd.idx = 0;
  1981. ace_issue_cmd(regs, &cmd);
  1982. cmd.evt = C_HOST_STATE;
  1983. cmd.code = C_C_STACK_UP;
  1984. cmd.idx = 0;
  1985. ace_issue_cmd(regs, &cmd);
  1986. if (ap->jumbo &&
  1987. !test_and_set_bit(0, &ap->jumbo_refill_busy))
  1988. ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE);
  1989. if (dev->flags & IFF_PROMISC) {
  1990. cmd.evt = C_SET_PROMISC_MODE;
  1991. cmd.code = C_C_PROMISC_ENABLE;
  1992. cmd.idx = 0;
  1993. ace_issue_cmd(regs, &cmd);
  1994. ap->promisc = 1;
  1995. }else
  1996. ap->promisc = 0;
  1997. ap->mcast_all = 0;
  1998. #if 0
  1999. cmd.evt = C_LNK_NEGOTIATION;
  2000. cmd.code = 0;
  2001. cmd.idx = 0;
  2002. ace_issue_cmd(regs, &cmd);
  2003. #endif
  2004. netif_start_queue(dev);
  2005. /*
  2006. * Setup the bottom half rx ring refill handler
  2007. */
  2008. tasklet_init(&ap->ace_tasklet, ace_tasklet, (unsigned long)dev);
  2009. return 0;
  2010. }
  2011. static int ace_close(struct net_device *dev)
  2012. {
  2013. struct ace_private *ap = netdev_priv(dev);
  2014. struct ace_regs __iomem *regs = ap->regs;
  2015. struct cmd cmd;
  2016. unsigned long flags;
  2017. short i;
  2018. /*
  2019. * Without (or before) releasing irq and stopping hardware, this
  2020. * is an absolute non-sense, by the way. It will be reset instantly
  2021. * by the first irq.
  2022. */
  2023. netif_stop_queue(dev);
  2024. if (ap->promisc) {
  2025. cmd.evt = C_SET_PROMISC_MODE;
  2026. cmd.code = C_C_PROMISC_DISABLE;
  2027. cmd.idx = 0;
  2028. ace_issue_cmd(regs, &cmd);
  2029. ap->promisc = 0;
  2030. }
  2031. cmd.evt = C_HOST_STATE;
  2032. cmd.code = C_C_STACK_DOWN;
  2033. cmd.idx = 0;
  2034. ace_issue_cmd(regs, &cmd);
  2035. tasklet_kill(&ap->ace_tasklet);
  2036. /*
  2037. * Make sure one CPU is not processing packets while
  2038. * buffers are being released by another.
  2039. */
  2040. local_irq_save(flags);
  2041. ace_mask_irq(dev);
  2042. for (i = 0; i < ACE_TX_RING_ENTRIES(ap); i++) {
  2043. struct sk_buff *skb;
  2044. dma_addr_t mapping;
  2045. struct tx_ring_info *info;
  2046. info = ap->skb->tx_skbuff + i;
  2047. skb = info->skb;
  2048. mapping = pci_unmap_addr(info, mapping);
  2049. if (mapping) {
  2050. if (ACE_IS_TIGON_I(ap)) {
  2051. /* NB: TIGON_1 is special, tx_ring is in io space */
  2052. struct tx_desc __iomem *tx;
  2053. tx = (__force struct tx_desc __iomem *) &ap->tx_ring[i];
  2054. writel(0, &tx->addr.addrhi);
  2055. writel(0, &tx->addr.addrlo);
  2056. writel(0, &tx->flagsize);
  2057. } else
  2058. memset(ap->tx_ring + i, 0,
  2059. sizeof(struct tx_desc));
  2060. pci_unmap_page(ap->pdev, mapping,
  2061. pci_unmap_len(info, maplen),
  2062. PCI_DMA_TODEVICE);
  2063. pci_unmap_addr_set(info, mapping, 0);
  2064. }
  2065. if (skb) {
  2066. dev_kfree_skb(skb);
  2067. info->skb = NULL;
  2068. }
  2069. }
  2070. if (ap->jumbo) {
  2071. cmd.evt = C_RESET_JUMBO_RNG;
  2072. cmd.code = 0;
  2073. cmd.idx = 0;
  2074. ace_issue_cmd(regs, &cmd);
  2075. }
  2076. ace_unmask_irq(dev);
  2077. local_irq_restore(flags);
  2078. return 0;
  2079. }
  2080. static inline dma_addr_t
  2081. ace_map_tx_skb(struct ace_private *ap, struct sk_buff *skb,
  2082. struct sk_buff *tail, u32 idx)
  2083. {
  2084. dma_addr_t mapping;
  2085. struct tx_ring_info *info;
  2086. mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
  2087. offset_in_page(skb->data),
  2088. skb->len, PCI_DMA_TODEVICE);
  2089. info = ap->skb->tx_skbuff + idx;
  2090. info->skb = tail;
  2091. pci_unmap_addr_set(info, mapping, mapping);
  2092. pci_unmap_len_set(info, maplen, skb->len);
  2093. return mapping;
  2094. }
  2095. static inline void
  2096. ace_load_tx_bd(struct ace_private *ap, struct tx_desc *desc, u64 addr,
  2097. u32 flagsize, u32 vlan_tag)
  2098. {
  2099. #if !USE_TX_COAL_NOW
  2100. flagsize &= ~BD_FLG_COAL_NOW;
  2101. #endif
  2102. if (ACE_IS_TIGON_I(ap)) {
  2103. struct tx_desc __iomem *io = (__force struct tx_desc __iomem *) desc;
  2104. writel(addr >> 32, &io->addr.addrhi);
  2105. writel(addr & 0xffffffff, &io->addr.addrlo);
  2106. writel(flagsize, &io->flagsize);
  2107. #if ACENIC_DO_VLAN
  2108. writel(vlan_tag, &io->vlanres);
  2109. #endif
  2110. } else {
  2111. desc->addr.addrhi = addr >> 32;
  2112. desc->addr.addrlo = addr;
  2113. desc->flagsize = flagsize;
  2114. #if ACENIC_DO_VLAN
  2115. desc->vlanres = vlan_tag;
  2116. #endif
  2117. }
  2118. }
  2119. static int ace_start_xmit(struct sk_buff *skb, struct net_device *dev)
  2120. {
  2121. struct ace_private *ap = netdev_priv(dev);
  2122. struct ace_regs __iomem *regs = ap->regs;
  2123. struct tx_desc *desc;
  2124. u32 idx, flagsize;
  2125. unsigned long maxjiff = jiffies + 3*HZ;
  2126. restart:
  2127. idx = ap->tx_prd;
  2128. if (tx_ring_full(ap, ap->tx_ret_csm, idx))
  2129. goto overflow;
  2130. if (!skb_shinfo(skb)->nr_frags) {
  2131. dma_addr_t mapping;
  2132. u32 vlan_tag = 0;
  2133. mapping = ace_map_tx_skb(ap, skb, skb, idx);
  2134. flagsize = (skb->len << 16) | (BD_FLG_END);
  2135. if (skb->ip_summed == CHECKSUM_PARTIAL)
  2136. flagsize |= BD_FLG_TCP_UDP_SUM;
  2137. #if ACENIC_DO_VLAN
  2138. if (vlan_tx_tag_present(skb)) {
  2139. flagsize |= BD_FLG_VLAN_TAG;
  2140. vlan_tag = vlan_tx_tag_get(skb);
  2141. }
  2142. #endif
  2143. desc = ap->tx_ring + idx;
  2144. idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
  2145. /* Look at ace_tx_int for explanations. */
  2146. if (tx_ring_full(ap, ap->tx_ret_csm, idx))
  2147. flagsize |= BD_FLG_COAL_NOW;
  2148. ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
  2149. } else {
  2150. dma_addr_t mapping;
  2151. u32 vlan_tag = 0;
  2152. int i, len = 0;
  2153. mapping = ace_map_tx_skb(ap, skb, NULL, idx);
  2154. flagsize = (skb_headlen(skb) << 16);
  2155. if (skb->ip_summed == CHECKSUM_PARTIAL)
  2156. flagsize |= BD_FLG_TCP_UDP_SUM;
  2157. #if ACENIC_DO_VLAN
  2158. if (vlan_tx_tag_present(skb)) {
  2159. flagsize |= BD_FLG_VLAN_TAG;
  2160. vlan_tag = vlan_tx_tag_get(skb);
  2161. }
  2162. #endif
  2163. ace_load_tx_bd(ap, ap->tx_ring + idx, mapping, flagsize, vlan_tag);
  2164. idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
  2165. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2166. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2167. struct tx_ring_info *info;
  2168. len += frag->size;
  2169. info = ap->skb->tx_skbuff + idx;
  2170. desc = ap->tx_ring + idx;
  2171. mapping = pci_map_page(ap->pdev, frag->page,
  2172. frag->page_offset, frag->size,
  2173. PCI_DMA_TODEVICE);
  2174. flagsize = (frag->size << 16);
  2175. if (skb->ip_summed == CHECKSUM_PARTIAL)
  2176. flagsize |= BD_FLG_TCP_UDP_SUM;
  2177. idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
  2178. if (i == skb_shinfo(skb)->nr_frags - 1) {
  2179. flagsize |= BD_FLG_END;
  2180. if (tx_ring_full(ap, ap->tx_ret_csm, idx))
  2181. flagsize |= BD_FLG_COAL_NOW;
  2182. /*
  2183. * Only the last fragment frees
  2184. * the skb!
  2185. */
  2186. info->skb = skb;
  2187. } else {
  2188. info->skb = NULL;
  2189. }
  2190. pci_unmap_addr_set(info, mapping, mapping);
  2191. pci_unmap_len_set(info, maplen, frag->size);
  2192. ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
  2193. }
  2194. }
  2195. wmb();
  2196. ap->tx_prd = idx;
  2197. ace_set_txprd(regs, ap, idx);
  2198. if (flagsize & BD_FLG_COAL_NOW) {
  2199. netif_stop_queue(dev);
  2200. /*
  2201. * A TX-descriptor producer (an IRQ) might have gotten
  2202. * inbetween, making the ring free again. Since xmit is
  2203. * serialized, this is the only situation we have to
  2204. * re-test.
  2205. */
  2206. if (!tx_ring_full(ap, ap->tx_ret_csm, idx))
  2207. netif_wake_queue(dev);
  2208. }
  2209. dev->trans_start = jiffies;
  2210. return NETDEV_TX_OK;
  2211. overflow:
  2212. /*
  2213. * This race condition is unavoidable with lock-free drivers.
  2214. * We wake up the queue _before_ tx_prd is advanced, so that we can
  2215. * enter hard_start_xmit too early, while tx ring still looks closed.
  2216. * This happens ~1-4 times per 100000 packets, so that we can allow
  2217. * to loop syncing to other CPU. Probably, we need an additional
  2218. * wmb() in ace_tx_intr as well.
  2219. *
  2220. * Note that this race is relieved by reserving one more entry
  2221. * in tx ring than it is necessary (see original non-SG driver).
  2222. * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which
  2223. * is already overkill.
  2224. *
  2225. * Alternative is to return with 1 not throttling queue. In this
  2226. * case loop becomes longer, no more useful effects.
  2227. */
  2228. if (time_before(jiffies, maxjiff)) {
  2229. barrier();
  2230. cpu_relax();
  2231. goto restart;
  2232. }
  2233. /* The ring is stuck full. */
  2234. printk(KERN_WARNING "%s: Transmit ring stuck full\n", dev->name);
  2235. return NETDEV_TX_BUSY;
  2236. }
  2237. static int ace_change_mtu(struct net_device *dev, int new_mtu)
  2238. {
  2239. struct ace_private *ap = netdev_priv(dev);
  2240. struct ace_regs __iomem *regs = ap->regs;
  2241. if (new_mtu > ACE_JUMBO_MTU)
  2242. return -EINVAL;
  2243. writel(new_mtu + ETH_HLEN + 4, &regs->IfMtu);
  2244. dev->mtu = new_mtu;
  2245. if (new_mtu > ACE_STD_MTU) {
  2246. if (!(ap->jumbo)) {
  2247. printk(KERN_INFO "%s: Enabling Jumbo frame "
  2248. "support\n", dev->name);
  2249. ap->jumbo = 1;
  2250. if (!test_and_set_bit(0, &ap->jumbo_refill_busy))
  2251. ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE);
  2252. ace_set_rxtx_parms(dev, 1);
  2253. }
  2254. } else {
  2255. while (test_and_set_bit(0, &ap->jumbo_refill_busy));
  2256. ace_sync_irq(dev->irq);
  2257. ace_set_rxtx_parms(dev, 0);
  2258. if (ap->jumbo) {
  2259. struct cmd cmd;
  2260. cmd.evt = C_RESET_JUMBO_RNG;
  2261. cmd.code = 0;
  2262. cmd.idx = 0;
  2263. ace_issue_cmd(regs, &cmd);
  2264. }
  2265. }
  2266. return 0;
  2267. }
  2268. static int ace_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  2269. {
  2270. struct ace_private *ap = netdev_priv(dev);
  2271. struct ace_regs __iomem *regs = ap->regs;
  2272. u32 link;
  2273. memset(ecmd, 0, sizeof(struct ethtool_cmd));
  2274. ecmd->supported =
  2275. (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  2276. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  2277. SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full |
  2278. SUPPORTED_Autoneg | SUPPORTED_FIBRE);
  2279. ecmd->port = PORT_FIBRE;
  2280. ecmd->transceiver = XCVR_INTERNAL;
  2281. link = readl(&regs->GigLnkState);
  2282. if (link & LNK_1000MB)
  2283. ecmd->speed = SPEED_1000;
  2284. else {
  2285. link = readl(&regs->FastLnkState);
  2286. if (link & LNK_100MB)
  2287. ecmd->speed = SPEED_100;
  2288. else if (link & LNK_10MB)
  2289. ecmd->speed = SPEED_10;
  2290. else
  2291. ecmd->speed = 0;
  2292. }
  2293. if (link & LNK_FULL_DUPLEX)
  2294. ecmd->duplex = DUPLEX_FULL;
  2295. else
  2296. ecmd->duplex = DUPLEX_HALF;
  2297. if (link & LNK_NEGOTIATE)
  2298. ecmd->autoneg = AUTONEG_ENABLE;
  2299. else
  2300. ecmd->autoneg = AUTONEG_DISABLE;
  2301. #if 0
  2302. /*
  2303. * Current struct ethtool_cmd is insufficient
  2304. */
  2305. ecmd->trace = readl(&regs->TuneTrace);
  2306. ecmd->txcoal = readl(&regs->TuneTxCoalTicks);
  2307. ecmd->rxcoal = readl(&regs->TuneRxCoalTicks);
  2308. #endif
  2309. ecmd->maxtxpkt = readl(&regs->TuneMaxTxDesc);
  2310. ecmd->maxrxpkt = readl(&regs->TuneMaxRxDesc);
  2311. return 0;
  2312. }
  2313. static int ace_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  2314. {
  2315. struct ace_private *ap = netdev_priv(dev);
  2316. struct ace_regs __iomem *regs = ap->regs;
  2317. u32 link, speed;
  2318. link = readl(&regs->GigLnkState);
  2319. if (link & LNK_1000MB)
  2320. speed = SPEED_1000;
  2321. else {
  2322. link = readl(&regs->FastLnkState);
  2323. if (link & LNK_100MB)
  2324. speed = SPEED_100;
  2325. else if (link & LNK_10MB)
  2326. speed = SPEED_10;
  2327. else
  2328. speed = SPEED_100;
  2329. }
  2330. link = LNK_ENABLE | LNK_1000MB | LNK_100MB | LNK_10MB |
  2331. LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL;
  2332. if (!ACE_IS_TIGON_I(ap))
  2333. link |= LNK_TX_FLOW_CTL_Y;
  2334. if (ecmd->autoneg == AUTONEG_ENABLE)
  2335. link |= LNK_NEGOTIATE;
  2336. if (ecmd->speed != speed) {
  2337. link &= ~(LNK_1000MB | LNK_100MB | LNK_10MB);
  2338. switch (speed) {
  2339. case SPEED_1000:
  2340. link |= LNK_1000MB;
  2341. break;
  2342. case SPEED_100:
  2343. link |= LNK_100MB;
  2344. break;
  2345. case SPEED_10:
  2346. link |= LNK_10MB;
  2347. break;
  2348. }
  2349. }
  2350. if (ecmd->duplex == DUPLEX_FULL)
  2351. link |= LNK_FULL_DUPLEX;
  2352. if (link != ap->link) {
  2353. struct cmd cmd;
  2354. printk(KERN_INFO "%s: Renegotiating link state\n",
  2355. dev->name);
  2356. ap->link = link;
  2357. writel(link, &regs->TuneLink);
  2358. if (!ACE_IS_TIGON_I(ap))
  2359. writel(link, &regs->TuneFastLink);
  2360. wmb();
  2361. cmd.evt = C_LNK_NEGOTIATION;
  2362. cmd.code = 0;
  2363. cmd.idx = 0;
  2364. ace_issue_cmd(regs, &cmd);
  2365. }
  2366. return 0;
  2367. }
  2368. static void ace_get_drvinfo(struct net_device *dev,
  2369. struct ethtool_drvinfo *info)
  2370. {
  2371. struct ace_private *ap = netdev_priv(dev);
  2372. strlcpy(info->driver, "acenic", sizeof(info->driver));
  2373. snprintf(info->version, sizeof(info->version), "%i.%i.%i",
  2374. tigonFwReleaseMajor, tigonFwReleaseMinor,
  2375. tigonFwReleaseFix);
  2376. if (ap->pdev)
  2377. strlcpy(info->bus_info, pci_name(ap->pdev),
  2378. sizeof(info->bus_info));
  2379. }
  2380. /*
  2381. * Set the hardware MAC address.
  2382. */
  2383. static int ace_set_mac_addr(struct net_device *dev, void *p)
  2384. {
  2385. struct ace_private *ap = netdev_priv(dev);
  2386. struct ace_regs __iomem *regs = ap->regs;
  2387. struct sockaddr *addr=p;
  2388. u8 *da;
  2389. struct cmd cmd;
  2390. if(netif_running(dev))
  2391. return -EBUSY;
  2392. memcpy(dev->dev_addr, addr->sa_data,dev->addr_len);
  2393. da = (u8 *)dev->dev_addr;
  2394. writel(da[0] << 8 | da[1], &regs->MacAddrHi);
  2395. writel((da[2] << 24) | (da[3] << 16) | (da[4] << 8) | da[5],
  2396. &regs->MacAddrLo);
  2397. cmd.evt = C_SET_MAC_ADDR;
  2398. cmd.code = 0;
  2399. cmd.idx = 0;
  2400. ace_issue_cmd(regs, &cmd);
  2401. return 0;
  2402. }
  2403. static void ace_set_multicast_list(struct net_device *dev)
  2404. {
  2405. struct ace_private *ap = netdev_priv(dev);
  2406. struct ace_regs __iomem *regs = ap->regs;
  2407. struct cmd cmd;
  2408. if ((dev->flags & IFF_ALLMULTI) && !(ap->mcast_all)) {
  2409. cmd.evt = C_SET_MULTICAST_MODE;
  2410. cmd.code = C_C_MCAST_ENABLE;
  2411. cmd.idx = 0;
  2412. ace_issue_cmd(regs, &cmd);
  2413. ap->mcast_all = 1;
  2414. } else if (ap->mcast_all) {
  2415. cmd.evt = C_SET_MULTICAST_MODE;
  2416. cmd.code = C_C_MCAST_DISABLE;
  2417. cmd.idx = 0;
  2418. ace_issue_cmd(regs, &cmd);
  2419. ap->mcast_all = 0;
  2420. }
  2421. if ((dev->flags & IFF_PROMISC) && !(ap->promisc)) {
  2422. cmd.evt = C_SET_PROMISC_MODE;
  2423. cmd.code = C_C_PROMISC_ENABLE;
  2424. cmd.idx = 0;
  2425. ace_issue_cmd(regs, &cmd);
  2426. ap->promisc = 1;
  2427. }else if (!(dev->flags & IFF_PROMISC) && (ap->promisc)) {
  2428. cmd.evt = C_SET_PROMISC_MODE;
  2429. cmd.code = C_C_PROMISC_DISABLE;
  2430. cmd.idx = 0;
  2431. ace_issue_cmd(regs, &cmd);
  2432. ap->promisc = 0;
  2433. }
  2434. /*
  2435. * For the time being multicast relies on the upper layers
  2436. * filtering it properly. The Firmware does not allow one to
  2437. * set the entire multicast list at a time and keeping track of
  2438. * it here is going to be messy.
  2439. */
  2440. if ((dev->mc_count) && !(ap->mcast_all)) {
  2441. cmd.evt = C_SET_MULTICAST_MODE;
  2442. cmd.code = C_C_MCAST_ENABLE;
  2443. cmd.idx = 0;
  2444. ace_issue_cmd(regs, &cmd);
  2445. }else if (!ap->mcast_all) {
  2446. cmd.evt = C_SET_MULTICAST_MODE;
  2447. cmd.code = C_C_MCAST_DISABLE;
  2448. cmd.idx = 0;
  2449. ace_issue_cmd(regs, &cmd);
  2450. }
  2451. }
  2452. static struct net_device_stats *ace_get_stats(struct net_device *dev)
  2453. {
  2454. struct ace_private *ap = netdev_priv(dev);
  2455. struct ace_mac_stats __iomem *mac_stats =
  2456. (struct ace_mac_stats __iomem *)ap->regs->Stats;
  2457. dev->stats.rx_missed_errors = readl(&mac_stats->drop_space);
  2458. dev->stats.multicast = readl(&mac_stats->kept_mc);
  2459. dev->stats.collisions = readl(&mac_stats->coll);
  2460. return &dev->stats;
  2461. }
  2462. static void __devinit ace_copy(struct ace_regs __iomem *regs, void *src,
  2463. u32 dest, int size)
  2464. {
  2465. void __iomem *tdest;
  2466. u32 *wsrc;
  2467. short tsize, i;
  2468. if (size <= 0)
  2469. return;
  2470. while (size > 0) {
  2471. tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
  2472. min_t(u32, size, ACE_WINDOW_SIZE));
  2473. tdest = (void __iomem *) &regs->Window +
  2474. (dest & (ACE_WINDOW_SIZE - 1));
  2475. writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
  2476. /*
  2477. * This requires byte swapping on big endian, however
  2478. * writel does that for us
  2479. */
  2480. wsrc = src;
  2481. for (i = 0; i < (tsize / 4); i++) {
  2482. writel(wsrc[i], tdest + i*4);
  2483. }
  2484. dest += tsize;
  2485. src += tsize;
  2486. size -= tsize;
  2487. }
  2488. return;
  2489. }
  2490. static void __devinit ace_clear(struct ace_regs __iomem *regs, u32 dest, int size)
  2491. {
  2492. void __iomem *tdest;
  2493. short tsize = 0, i;
  2494. if (size <= 0)
  2495. return;
  2496. while (size > 0) {
  2497. tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
  2498. min_t(u32, size, ACE_WINDOW_SIZE));
  2499. tdest = (void __iomem *) &regs->Window +
  2500. (dest & (ACE_WINDOW_SIZE - 1));
  2501. writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
  2502. for (i = 0; i < (tsize / 4); i++) {
  2503. writel(0, tdest + i*4);
  2504. }
  2505. dest += tsize;
  2506. size -= tsize;
  2507. }
  2508. return;
  2509. }
  2510. /*
  2511. * Download the firmware into the SRAM on the NIC
  2512. *
  2513. * This operation requires the NIC to be halted and is performed with
  2514. * interrupts disabled and with the spinlock hold.
  2515. */
  2516. static int __devinit ace_load_firmware(struct net_device *dev)
  2517. {
  2518. struct ace_private *ap = netdev_priv(dev);
  2519. struct ace_regs __iomem *regs = ap->regs;
  2520. if (!(readl(&regs->CpuCtrl) & CPU_HALTED)) {
  2521. printk(KERN_ERR "%s: trying to download firmware while the "
  2522. "CPU is running!\n", ap->name);
  2523. return -EFAULT;
  2524. }
  2525. /*
  2526. * Do not try to clear more than 512KB or we end up seeing
  2527. * funny things on NICs with only 512KB SRAM
  2528. */
  2529. ace_clear(regs, 0x2000, 0x80000-0x2000);
  2530. if (ACE_IS_TIGON_I(ap)) {
  2531. ace_copy(regs, tigonFwText, tigonFwTextAddr, tigonFwTextLen);
  2532. ace_copy(regs, tigonFwData, tigonFwDataAddr, tigonFwDataLen);
  2533. ace_copy(regs, tigonFwRodata, tigonFwRodataAddr,
  2534. tigonFwRodataLen);
  2535. ace_clear(regs, tigonFwBssAddr, tigonFwBssLen);
  2536. ace_clear(regs, tigonFwSbssAddr, tigonFwSbssLen);
  2537. }else if (ap->version == 2) {
  2538. ace_clear(regs, tigon2FwBssAddr, tigon2FwBssLen);
  2539. ace_clear(regs, tigon2FwSbssAddr, tigon2FwSbssLen);
  2540. ace_copy(regs, tigon2FwText, tigon2FwTextAddr,tigon2FwTextLen);
  2541. ace_copy(regs, tigon2FwRodata, tigon2FwRodataAddr,
  2542. tigon2FwRodataLen);
  2543. ace_copy(regs, tigon2FwData, tigon2FwDataAddr,tigon2FwDataLen);
  2544. }
  2545. return 0;
  2546. }
  2547. /*
  2548. * The eeprom on the AceNIC is an Atmel i2c EEPROM.
  2549. *
  2550. * Accessing the EEPROM is `interesting' to say the least - don't read
  2551. * this code right after dinner.
  2552. *
  2553. * This is all about black magic and bit-banging the device .... I
  2554. * wonder in what hospital they have put the guy who designed the i2c
  2555. * specs.
  2556. *
  2557. * Oh yes, this is only the beginning!
  2558. *
  2559. * Thanks to Stevarino Webinski for helping tracking down the bugs in the
  2560. * code i2c readout code by beta testing all my hacks.
  2561. */
  2562. static void __devinit eeprom_start(struct ace_regs __iomem *regs)
  2563. {
  2564. u32 local;
  2565. readl(&regs->LocalCtrl);
  2566. udelay(ACE_SHORT_DELAY);
  2567. local = readl(&regs->LocalCtrl);
  2568. local |= EEPROM_DATA_OUT | EEPROM_WRITE_ENABLE;
  2569. writel(local, &regs->LocalCtrl);
  2570. readl(&regs->LocalCtrl);
  2571. mb();
  2572. udelay(ACE_SHORT_DELAY);
  2573. local |= EEPROM_CLK_OUT;
  2574. writel(local, &regs->LocalCtrl);
  2575. readl(&regs->LocalCtrl);
  2576. mb();
  2577. udelay(ACE_SHORT_DELAY);
  2578. local &= ~EEPROM_DATA_OUT;
  2579. writel(local, &regs->LocalCtrl);
  2580. readl(&regs->LocalCtrl);
  2581. mb();
  2582. udelay(ACE_SHORT_DELAY);
  2583. local &= ~EEPROM_CLK_OUT;
  2584. writel(local, &regs->LocalCtrl);
  2585. readl(&regs->LocalCtrl);
  2586. mb();
  2587. }
  2588. static void __devinit eeprom_prep(struct ace_regs __iomem *regs, u8 magic)
  2589. {
  2590. short i;
  2591. u32 local;
  2592. udelay(ACE_SHORT_DELAY);
  2593. local = readl(&regs->LocalCtrl);
  2594. local &= ~EEPROM_DATA_OUT;
  2595. local |= EEPROM_WRITE_ENABLE;
  2596. writel(local, &regs->LocalCtrl);
  2597. readl(&regs->LocalCtrl);
  2598. mb();
  2599. for (i = 0; i < 8; i++, magic <<= 1) {
  2600. udelay(ACE_SHORT_DELAY);
  2601. if (magic & 0x80)
  2602. local |= EEPROM_DATA_OUT;
  2603. else
  2604. local &= ~EEPROM_DATA_OUT;
  2605. writel(local, &regs->LocalCtrl);
  2606. readl(&regs->LocalCtrl);
  2607. mb();
  2608. udelay(ACE_SHORT_DELAY);
  2609. local |= EEPROM_CLK_OUT;
  2610. writel(local, &regs->LocalCtrl);
  2611. readl(&regs->LocalCtrl);
  2612. mb();
  2613. udelay(ACE_SHORT_DELAY);
  2614. local &= ~(EEPROM_CLK_OUT | EEPROM_DATA_OUT);
  2615. writel(local, &regs->LocalCtrl);
  2616. readl(&regs->LocalCtrl);
  2617. mb();
  2618. }
  2619. }
  2620. static int __devinit eeprom_check_ack(struct ace_regs __iomem *regs)
  2621. {
  2622. int state;
  2623. u32 local;
  2624. local = readl(&regs->LocalCtrl);
  2625. local &= ~EEPROM_WRITE_ENABLE;
  2626. writel(local, &regs->LocalCtrl);
  2627. readl(&regs->LocalCtrl);
  2628. mb();
  2629. udelay(ACE_LONG_DELAY);
  2630. local |= EEPROM_CLK_OUT;
  2631. writel(local, &regs->LocalCtrl);
  2632. readl(&regs->LocalCtrl);
  2633. mb();
  2634. udelay(ACE_SHORT_DELAY);
  2635. /* sample data in middle of high clk */
  2636. state = (readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0;
  2637. udelay(ACE_SHORT_DELAY);
  2638. mb();
  2639. writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
  2640. readl(&regs->LocalCtrl);
  2641. mb();
  2642. return state;
  2643. }
  2644. static void __devinit eeprom_stop(struct ace_regs __iomem *regs)
  2645. {
  2646. u32 local;
  2647. udelay(ACE_SHORT_DELAY);
  2648. local = readl(&regs->LocalCtrl);
  2649. local |= EEPROM_WRITE_ENABLE;
  2650. writel(local, &regs->LocalCtrl);
  2651. readl(&regs->LocalCtrl);
  2652. mb();
  2653. udelay(ACE_SHORT_DELAY);
  2654. local &= ~EEPROM_DATA_OUT;
  2655. writel(local, &regs->LocalCtrl);
  2656. readl(&regs->LocalCtrl);
  2657. mb();
  2658. udelay(ACE_SHORT_DELAY);
  2659. local |= EEPROM_CLK_OUT;
  2660. writel(local, &regs->LocalCtrl);
  2661. readl(&regs->LocalCtrl);
  2662. mb();
  2663. udelay(ACE_SHORT_DELAY);
  2664. local |= EEPROM_DATA_OUT;
  2665. writel(local, &regs->LocalCtrl);
  2666. readl(&regs->LocalCtrl);
  2667. mb();
  2668. udelay(ACE_LONG_DELAY);
  2669. local &= ~EEPROM_CLK_OUT;
  2670. writel(local, &regs->LocalCtrl);
  2671. mb();
  2672. }
  2673. /*
  2674. * Read a whole byte from the EEPROM.
  2675. */
  2676. static int __devinit read_eeprom_byte(struct net_device *dev,
  2677. unsigned long offset)
  2678. {
  2679. struct ace_private *ap = netdev_priv(dev);
  2680. struct ace_regs __iomem *regs = ap->regs;
  2681. unsigned long flags;
  2682. u32 local;
  2683. int result = 0;
  2684. short i;
  2685. /*
  2686. * Don't take interrupts on this CPU will bit banging
  2687. * the %#%#@$ I2C device
  2688. */
  2689. local_irq_save(flags);
  2690. eeprom_start(regs);
  2691. eeprom_prep(regs, EEPROM_WRITE_SELECT);
  2692. if (eeprom_check_ack(regs)) {
  2693. local_irq_restore(flags);
  2694. printk(KERN_ERR "%s: Unable to sync eeprom\n", ap->name);
  2695. result = -EIO;
  2696. goto eeprom_read_error;
  2697. }
  2698. eeprom_prep(regs, (offset >> 8) & 0xff);
  2699. if (eeprom_check_ack(regs)) {
  2700. local_irq_restore(flags);
  2701. printk(KERN_ERR "%s: Unable to set address byte 0\n",
  2702. ap->name);
  2703. result = -EIO;
  2704. goto eeprom_read_error;
  2705. }
  2706. eeprom_prep(regs, offset & 0xff);
  2707. if (eeprom_check_ack(regs)) {
  2708. local_irq_restore(flags);
  2709. printk(KERN_ERR "%s: Unable to set address byte 1\n",
  2710. ap->name);
  2711. result = -EIO;
  2712. goto eeprom_read_error;
  2713. }
  2714. eeprom_start(regs);
  2715. eeprom_prep(regs, EEPROM_READ_SELECT);
  2716. if (eeprom_check_ack(regs)) {
  2717. local_irq_restore(flags);
  2718. printk(KERN_ERR "%s: Unable to set READ_SELECT\n",
  2719. ap->name);
  2720. result = -EIO;
  2721. goto eeprom_read_error;
  2722. }
  2723. for (i = 0; i < 8; i++) {
  2724. local = readl(&regs->LocalCtrl);
  2725. local &= ~EEPROM_WRITE_ENABLE;
  2726. writel(local, &regs->LocalCtrl);
  2727. readl(&regs->LocalCtrl);
  2728. udelay(ACE_LONG_DELAY);
  2729. mb();
  2730. local |= EEPROM_CLK_OUT;
  2731. writel(local, &regs->LocalCtrl);
  2732. readl(&regs->LocalCtrl);
  2733. mb();
  2734. udelay(ACE_SHORT_DELAY);
  2735. /* sample data mid high clk */
  2736. result = (result << 1) |
  2737. ((readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0);
  2738. udelay(ACE_SHORT_DELAY);
  2739. mb();
  2740. local = readl(&regs->LocalCtrl);
  2741. local &= ~EEPROM_CLK_OUT;
  2742. writel(local, &regs->LocalCtrl);
  2743. readl(&regs->LocalCtrl);
  2744. udelay(ACE_SHORT_DELAY);
  2745. mb();
  2746. if (i == 7) {
  2747. local |= EEPROM_WRITE_ENABLE;
  2748. writel(local, &regs->LocalCtrl);
  2749. readl(&regs->LocalCtrl);
  2750. mb();
  2751. udelay(ACE_SHORT_DELAY);
  2752. }
  2753. }
  2754. local |= EEPROM_DATA_OUT;
  2755. writel(local, &regs->LocalCtrl);
  2756. readl(&regs->LocalCtrl);
  2757. mb();
  2758. udelay(ACE_SHORT_DELAY);
  2759. writel(readl(&regs->LocalCtrl) | EEPROM_CLK_OUT, &regs->LocalCtrl);
  2760. readl(&regs->LocalCtrl);
  2761. udelay(ACE_LONG_DELAY);
  2762. writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
  2763. readl(&regs->LocalCtrl);
  2764. mb();
  2765. udelay(ACE_SHORT_DELAY);
  2766. eeprom_stop(regs);
  2767. local_irq_restore(flags);
  2768. out:
  2769. return result;
  2770. eeprom_read_error:
  2771. printk(KERN_ERR "%s: Unable to read eeprom byte 0x%02lx\n",
  2772. ap->name, offset);
  2773. goto out;
  2774. }