eba.c 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230
  1. /*
  2. * Copyright (c) International Business Machines Corp., 2006
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  12. * the GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  17. *
  18. * Author: Artem Bityutskiy (Битюцкий Артём)
  19. */
  20. /*
  21. * The UBI Eraseblock Association (EBA) sub-system.
  22. *
  23. * This sub-system is responsible for I/O to/from logical eraseblock.
  24. *
  25. * Although in this implementation the EBA table is fully kept and managed in
  26. * RAM, which assumes poor scalability, it might be (partially) maintained on
  27. * flash in future implementations.
  28. *
  29. * The EBA sub-system implements per-logical eraseblock locking. Before
  30. * accessing a logical eraseblock it is locked for reading or writing. The
  31. * per-logical eraseblock locking is implemented by means of the lock tree. The
  32. * lock tree is an RB-tree which refers all the currently locked logical
  33. * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
  34. * They are indexed by (@vol_id, @lnum) pairs.
  35. *
  36. * EBA also maintains the global sequence counter which is incremented each
  37. * time a logical eraseblock is mapped to a physical eraseblock and it is
  38. * stored in the volume identifier header. This means that each VID header has
  39. * a unique sequence number. The sequence number is only increased an we assume
  40. * 64 bits is enough to never overflow.
  41. */
  42. #include <linux/slab.h>
  43. #include <linux/crc32.h>
  44. #include <linux/err.h>
  45. #include "ubi.h"
  46. /* Number of physical eraseblocks reserved for atomic LEB change operation */
  47. #define EBA_RESERVED_PEBS 1
  48. /**
  49. * next_sqnum - get next sequence number.
  50. * @ubi: UBI device description object
  51. *
  52. * This function returns next sequence number to use, which is just the current
  53. * global sequence counter value. It also increases the global sequence
  54. * counter.
  55. */
  56. static unsigned long long next_sqnum(struct ubi_device *ubi)
  57. {
  58. unsigned long long sqnum;
  59. spin_lock(&ubi->ltree_lock);
  60. sqnum = ubi->global_sqnum++;
  61. spin_unlock(&ubi->ltree_lock);
  62. return sqnum;
  63. }
  64. /**
  65. * ubi_get_compat - get compatibility flags of a volume.
  66. * @ubi: UBI device description object
  67. * @vol_id: volume ID
  68. *
  69. * This function returns compatibility flags for an internal volume. User
  70. * volumes have no compatibility flags, so %0 is returned.
  71. */
  72. static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
  73. {
  74. if (vol_id == UBI_LAYOUT_VOLUME_ID)
  75. return UBI_LAYOUT_VOLUME_COMPAT;
  76. return 0;
  77. }
  78. /**
  79. * ltree_lookup - look up the lock tree.
  80. * @ubi: UBI device description object
  81. * @vol_id: volume ID
  82. * @lnum: logical eraseblock number
  83. *
  84. * This function returns a pointer to the corresponding &struct ubi_ltree_entry
  85. * object if the logical eraseblock is locked and %NULL if it is not.
  86. * @ubi->ltree_lock has to be locked.
  87. */
  88. static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
  89. int lnum)
  90. {
  91. struct rb_node *p;
  92. p = ubi->ltree.rb_node;
  93. while (p) {
  94. struct ubi_ltree_entry *le;
  95. le = rb_entry(p, struct ubi_ltree_entry, rb);
  96. if (vol_id < le->vol_id)
  97. p = p->rb_left;
  98. else if (vol_id > le->vol_id)
  99. p = p->rb_right;
  100. else {
  101. if (lnum < le->lnum)
  102. p = p->rb_left;
  103. else if (lnum > le->lnum)
  104. p = p->rb_right;
  105. else
  106. return le;
  107. }
  108. }
  109. return NULL;
  110. }
  111. /**
  112. * ltree_add_entry - add new entry to the lock tree.
  113. * @ubi: UBI device description object
  114. * @vol_id: volume ID
  115. * @lnum: logical eraseblock number
  116. *
  117. * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
  118. * lock tree. If such entry is already there, its usage counter is increased.
  119. * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
  120. * failed.
  121. */
  122. static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
  123. int vol_id, int lnum)
  124. {
  125. struct ubi_ltree_entry *le, *le1, *le_free;
  126. le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
  127. if (!le)
  128. return ERR_PTR(-ENOMEM);
  129. le->users = 0;
  130. init_rwsem(&le->mutex);
  131. le->vol_id = vol_id;
  132. le->lnum = lnum;
  133. spin_lock(&ubi->ltree_lock);
  134. le1 = ltree_lookup(ubi, vol_id, lnum);
  135. if (le1) {
  136. /*
  137. * This logical eraseblock is already locked. The newly
  138. * allocated lock entry is not needed.
  139. */
  140. le_free = le;
  141. le = le1;
  142. } else {
  143. struct rb_node **p, *parent = NULL;
  144. /*
  145. * No lock entry, add the newly allocated one to the
  146. * @ubi->ltree RB-tree.
  147. */
  148. le_free = NULL;
  149. p = &ubi->ltree.rb_node;
  150. while (*p) {
  151. parent = *p;
  152. le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
  153. if (vol_id < le1->vol_id)
  154. p = &(*p)->rb_left;
  155. else if (vol_id > le1->vol_id)
  156. p = &(*p)->rb_right;
  157. else {
  158. ubi_assert(lnum != le1->lnum);
  159. if (lnum < le1->lnum)
  160. p = &(*p)->rb_left;
  161. else
  162. p = &(*p)->rb_right;
  163. }
  164. }
  165. rb_link_node(&le->rb, parent, p);
  166. rb_insert_color(&le->rb, &ubi->ltree);
  167. }
  168. le->users += 1;
  169. spin_unlock(&ubi->ltree_lock);
  170. kfree(le_free);
  171. return le;
  172. }
  173. /**
  174. * leb_read_lock - lock logical eraseblock for reading.
  175. * @ubi: UBI device description object
  176. * @vol_id: volume ID
  177. * @lnum: logical eraseblock number
  178. *
  179. * This function locks a logical eraseblock for reading. Returns zero in case
  180. * of success and a negative error code in case of failure.
  181. */
  182. static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
  183. {
  184. struct ubi_ltree_entry *le;
  185. le = ltree_add_entry(ubi, vol_id, lnum);
  186. if (IS_ERR(le))
  187. return PTR_ERR(le);
  188. down_read(&le->mutex);
  189. return 0;
  190. }
  191. /**
  192. * leb_read_unlock - unlock logical eraseblock.
  193. * @ubi: UBI device description object
  194. * @vol_id: volume ID
  195. * @lnum: logical eraseblock number
  196. */
  197. static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
  198. {
  199. struct ubi_ltree_entry *le;
  200. spin_lock(&ubi->ltree_lock);
  201. le = ltree_lookup(ubi, vol_id, lnum);
  202. le->users -= 1;
  203. ubi_assert(le->users >= 0);
  204. up_read(&le->mutex);
  205. if (le->users == 0) {
  206. rb_erase(&le->rb, &ubi->ltree);
  207. kfree(le);
  208. }
  209. spin_unlock(&ubi->ltree_lock);
  210. }
  211. /**
  212. * leb_write_lock - lock logical eraseblock for writing.
  213. * @ubi: UBI device description object
  214. * @vol_id: volume ID
  215. * @lnum: logical eraseblock number
  216. *
  217. * This function locks a logical eraseblock for writing. Returns zero in case
  218. * of success and a negative error code in case of failure.
  219. */
  220. static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
  221. {
  222. struct ubi_ltree_entry *le;
  223. le = ltree_add_entry(ubi, vol_id, lnum);
  224. if (IS_ERR(le))
  225. return PTR_ERR(le);
  226. down_write(&le->mutex);
  227. return 0;
  228. }
  229. /**
  230. * leb_write_lock - lock logical eraseblock for writing.
  231. * @ubi: UBI device description object
  232. * @vol_id: volume ID
  233. * @lnum: logical eraseblock number
  234. *
  235. * This function locks a logical eraseblock for writing if there is no
  236. * contention and does nothing if there is contention. Returns %0 in case of
  237. * success, %1 in case of contention, and and a negative error code in case of
  238. * failure.
  239. */
  240. static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
  241. {
  242. struct ubi_ltree_entry *le;
  243. le = ltree_add_entry(ubi, vol_id, lnum);
  244. if (IS_ERR(le))
  245. return PTR_ERR(le);
  246. if (down_write_trylock(&le->mutex))
  247. return 0;
  248. /* Contention, cancel */
  249. spin_lock(&ubi->ltree_lock);
  250. le->users -= 1;
  251. ubi_assert(le->users >= 0);
  252. if (le->users == 0) {
  253. rb_erase(&le->rb, &ubi->ltree);
  254. kfree(le);
  255. }
  256. spin_unlock(&ubi->ltree_lock);
  257. return 1;
  258. }
  259. /**
  260. * leb_write_unlock - unlock logical eraseblock.
  261. * @ubi: UBI device description object
  262. * @vol_id: volume ID
  263. * @lnum: logical eraseblock number
  264. */
  265. static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
  266. {
  267. struct ubi_ltree_entry *le;
  268. spin_lock(&ubi->ltree_lock);
  269. le = ltree_lookup(ubi, vol_id, lnum);
  270. le->users -= 1;
  271. ubi_assert(le->users >= 0);
  272. up_write(&le->mutex);
  273. if (le->users == 0) {
  274. rb_erase(&le->rb, &ubi->ltree);
  275. kfree(le);
  276. }
  277. spin_unlock(&ubi->ltree_lock);
  278. }
  279. /**
  280. * ubi_eba_unmap_leb - un-map logical eraseblock.
  281. * @ubi: UBI device description object
  282. * @vol: volume description object
  283. * @lnum: logical eraseblock number
  284. *
  285. * This function un-maps logical eraseblock @lnum and schedules corresponding
  286. * physical eraseblock for erasure. Returns zero in case of success and a
  287. * negative error code in case of failure.
  288. */
  289. int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
  290. int lnum)
  291. {
  292. int err, pnum, vol_id = vol->vol_id;
  293. if (ubi->ro_mode)
  294. return -EROFS;
  295. err = leb_write_lock(ubi, vol_id, lnum);
  296. if (err)
  297. return err;
  298. pnum = vol->eba_tbl[lnum];
  299. if (pnum < 0)
  300. /* This logical eraseblock is already unmapped */
  301. goto out_unlock;
  302. dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
  303. vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED;
  304. err = ubi_wl_put_peb(ubi, pnum, 0);
  305. out_unlock:
  306. leb_write_unlock(ubi, vol_id, lnum);
  307. return err;
  308. }
  309. /**
  310. * ubi_eba_read_leb - read data.
  311. * @ubi: UBI device description object
  312. * @vol: volume description object
  313. * @lnum: logical eraseblock number
  314. * @buf: buffer to store the read data
  315. * @offset: offset from where to read
  316. * @len: how many bytes to read
  317. * @check: data CRC check flag
  318. *
  319. * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
  320. * bytes. The @check flag only makes sense for static volumes and forces
  321. * eraseblock data CRC checking.
  322. *
  323. * In case of success this function returns zero. In case of a static volume,
  324. * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
  325. * returned for any volume type if an ECC error was detected by the MTD device
  326. * driver. Other negative error cored may be returned in case of other errors.
  327. */
  328. int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
  329. void *buf, int offset, int len, int check)
  330. {
  331. int err, pnum, scrub = 0, vol_id = vol->vol_id;
  332. struct ubi_vid_hdr *vid_hdr;
  333. uint32_t uninitialized_var(crc);
  334. err = leb_read_lock(ubi, vol_id, lnum);
  335. if (err)
  336. return err;
  337. pnum = vol->eba_tbl[lnum];
  338. if (pnum < 0) {
  339. /*
  340. * The logical eraseblock is not mapped, fill the whole buffer
  341. * with 0xFF bytes. The exception is static volumes for which
  342. * it is an error to read unmapped logical eraseblocks.
  343. */
  344. dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
  345. len, offset, vol_id, lnum);
  346. leb_read_unlock(ubi, vol_id, lnum);
  347. ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
  348. memset(buf, 0xFF, len);
  349. return 0;
  350. }
  351. dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
  352. len, offset, vol_id, lnum, pnum);
  353. if (vol->vol_type == UBI_DYNAMIC_VOLUME)
  354. check = 0;
  355. retry:
  356. if (check) {
  357. vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
  358. if (!vid_hdr) {
  359. err = -ENOMEM;
  360. goto out_unlock;
  361. }
  362. err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
  363. if (err && err != UBI_IO_BITFLIPS) {
  364. if (err > 0) {
  365. /*
  366. * The header is either absent or corrupted.
  367. * The former case means there is a bug -
  368. * switch to read-only mode just in case.
  369. * The latter case means a real corruption - we
  370. * may try to recover data. FIXME: but this is
  371. * not implemented.
  372. */
  373. if (err == UBI_IO_BAD_VID_HDR) {
  374. ubi_warn("bad VID header at PEB %d, LEB"
  375. "%d:%d", pnum, vol_id, lnum);
  376. err = -EBADMSG;
  377. } else
  378. ubi_ro_mode(ubi);
  379. }
  380. goto out_free;
  381. } else if (err == UBI_IO_BITFLIPS)
  382. scrub = 1;
  383. ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
  384. ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
  385. crc = be32_to_cpu(vid_hdr->data_crc);
  386. ubi_free_vid_hdr(ubi, vid_hdr);
  387. }
  388. err = ubi_io_read_data(ubi, buf, pnum, offset, len);
  389. if (err) {
  390. if (err == UBI_IO_BITFLIPS) {
  391. scrub = 1;
  392. err = 0;
  393. } else if (err == -EBADMSG) {
  394. if (vol->vol_type == UBI_DYNAMIC_VOLUME)
  395. goto out_unlock;
  396. scrub = 1;
  397. if (!check) {
  398. ubi_msg("force data checking");
  399. check = 1;
  400. goto retry;
  401. }
  402. } else
  403. goto out_unlock;
  404. }
  405. if (check) {
  406. uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
  407. if (crc1 != crc) {
  408. ubi_warn("CRC error: calculated %#08x, must be %#08x",
  409. crc1, crc);
  410. err = -EBADMSG;
  411. goto out_unlock;
  412. }
  413. }
  414. if (scrub)
  415. err = ubi_wl_scrub_peb(ubi, pnum);
  416. leb_read_unlock(ubi, vol_id, lnum);
  417. return err;
  418. out_free:
  419. ubi_free_vid_hdr(ubi, vid_hdr);
  420. out_unlock:
  421. leb_read_unlock(ubi, vol_id, lnum);
  422. return err;
  423. }
  424. /**
  425. * recover_peb - recover from write failure.
  426. * @ubi: UBI device description object
  427. * @pnum: the physical eraseblock to recover
  428. * @vol_id: volume ID
  429. * @lnum: logical eraseblock number
  430. * @buf: data which was not written because of the write failure
  431. * @offset: offset of the failed write
  432. * @len: how many bytes should have been written
  433. *
  434. * This function is called in case of a write failure and moves all good data
  435. * from the potentially bad physical eraseblock to a good physical eraseblock.
  436. * This function also writes the data which was not written due to the failure.
  437. * Returns new physical eraseblock number in case of success, and a negative
  438. * error code in case of failure.
  439. */
  440. static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
  441. const void *buf, int offset, int len)
  442. {
  443. int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0;
  444. struct ubi_volume *vol = ubi->volumes[idx];
  445. struct ubi_vid_hdr *vid_hdr;
  446. vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
  447. if (!vid_hdr)
  448. return -ENOMEM;
  449. retry:
  450. new_pnum = ubi_wl_get_peb(ubi, UBI_UNKNOWN);
  451. if (new_pnum < 0) {
  452. ubi_free_vid_hdr(ubi, vid_hdr);
  453. return new_pnum;
  454. }
  455. ubi_msg("recover PEB %d, move data to PEB %d", pnum, new_pnum);
  456. err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
  457. if (err && err != UBI_IO_BITFLIPS) {
  458. if (err > 0)
  459. err = -EIO;
  460. goto out_put;
  461. }
  462. vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
  463. err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
  464. if (err)
  465. goto write_error;
  466. data_size = offset + len;
  467. mutex_lock(&ubi->buf_mutex);
  468. memset(ubi->peb_buf1 + offset, 0xFF, len);
  469. /* Read everything before the area where the write failure happened */
  470. if (offset > 0) {
  471. err = ubi_io_read_data(ubi, ubi->peb_buf1, pnum, 0, offset);
  472. if (err && err != UBI_IO_BITFLIPS)
  473. goto out_unlock;
  474. }
  475. memcpy(ubi->peb_buf1 + offset, buf, len);
  476. err = ubi_io_write_data(ubi, ubi->peb_buf1, new_pnum, 0, data_size);
  477. if (err) {
  478. mutex_unlock(&ubi->buf_mutex);
  479. goto write_error;
  480. }
  481. mutex_unlock(&ubi->buf_mutex);
  482. ubi_free_vid_hdr(ubi, vid_hdr);
  483. vol->eba_tbl[lnum] = new_pnum;
  484. ubi_wl_put_peb(ubi, pnum, 1);
  485. ubi_msg("data was successfully recovered");
  486. return 0;
  487. out_unlock:
  488. mutex_unlock(&ubi->buf_mutex);
  489. out_put:
  490. ubi_wl_put_peb(ubi, new_pnum, 1);
  491. ubi_free_vid_hdr(ubi, vid_hdr);
  492. return err;
  493. write_error:
  494. /*
  495. * Bad luck? This physical eraseblock is bad too? Crud. Let's try to
  496. * get another one.
  497. */
  498. ubi_warn("failed to write to PEB %d", new_pnum);
  499. ubi_wl_put_peb(ubi, new_pnum, 1);
  500. if (++tries > UBI_IO_RETRIES) {
  501. ubi_free_vid_hdr(ubi, vid_hdr);
  502. return err;
  503. }
  504. ubi_msg("try again");
  505. goto retry;
  506. }
  507. /**
  508. * ubi_eba_write_leb - write data to dynamic volume.
  509. * @ubi: UBI device description object
  510. * @vol: volume description object
  511. * @lnum: logical eraseblock number
  512. * @buf: the data to write
  513. * @offset: offset within the logical eraseblock where to write
  514. * @len: how many bytes to write
  515. * @dtype: data type
  516. *
  517. * This function writes data to logical eraseblock @lnum of a dynamic volume
  518. * @vol. Returns zero in case of success and a negative error code in case
  519. * of failure. In case of error, it is possible that something was still
  520. * written to the flash media, but may be some garbage.
  521. */
  522. int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
  523. const void *buf, int offset, int len, int dtype)
  524. {
  525. int err, pnum, tries = 0, vol_id = vol->vol_id;
  526. struct ubi_vid_hdr *vid_hdr;
  527. if (ubi->ro_mode)
  528. return -EROFS;
  529. err = leb_write_lock(ubi, vol_id, lnum);
  530. if (err)
  531. return err;
  532. pnum = vol->eba_tbl[lnum];
  533. if (pnum >= 0) {
  534. dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
  535. len, offset, vol_id, lnum, pnum);
  536. err = ubi_io_write_data(ubi, buf, pnum, offset, len);
  537. if (err) {
  538. ubi_warn("failed to write data to PEB %d", pnum);
  539. if (err == -EIO && ubi->bad_allowed)
  540. err = recover_peb(ubi, pnum, vol_id, lnum, buf,
  541. offset, len);
  542. if (err)
  543. ubi_ro_mode(ubi);
  544. }
  545. leb_write_unlock(ubi, vol_id, lnum);
  546. return err;
  547. }
  548. /*
  549. * The logical eraseblock is not mapped. We have to get a free physical
  550. * eraseblock and write the volume identifier header there first.
  551. */
  552. vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
  553. if (!vid_hdr) {
  554. leb_write_unlock(ubi, vol_id, lnum);
  555. return -ENOMEM;
  556. }
  557. vid_hdr->vol_type = UBI_VID_DYNAMIC;
  558. vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
  559. vid_hdr->vol_id = cpu_to_be32(vol_id);
  560. vid_hdr->lnum = cpu_to_be32(lnum);
  561. vid_hdr->compat = ubi_get_compat(ubi, vol_id);
  562. vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
  563. retry:
  564. pnum = ubi_wl_get_peb(ubi, dtype);
  565. if (pnum < 0) {
  566. ubi_free_vid_hdr(ubi, vid_hdr);
  567. leb_write_unlock(ubi, vol_id, lnum);
  568. return pnum;
  569. }
  570. dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
  571. len, offset, vol_id, lnum, pnum);
  572. err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
  573. if (err) {
  574. ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
  575. vol_id, lnum, pnum);
  576. goto write_error;
  577. }
  578. if (len) {
  579. err = ubi_io_write_data(ubi, buf, pnum, offset, len);
  580. if (err) {
  581. ubi_warn("failed to write %d bytes at offset %d of "
  582. "LEB %d:%d, PEB %d", len, offset, vol_id,
  583. lnum, pnum);
  584. goto write_error;
  585. }
  586. }
  587. vol->eba_tbl[lnum] = pnum;
  588. leb_write_unlock(ubi, vol_id, lnum);
  589. ubi_free_vid_hdr(ubi, vid_hdr);
  590. return 0;
  591. write_error:
  592. if (err != -EIO || !ubi->bad_allowed) {
  593. ubi_ro_mode(ubi);
  594. leb_write_unlock(ubi, vol_id, lnum);
  595. ubi_free_vid_hdr(ubi, vid_hdr);
  596. return err;
  597. }
  598. /*
  599. * Fortunately, this is the first write operation to this physical
  600. * eraseblock, so just put it and request a new one. We assume that if
  601. * this physical eraseblock went bad, the erase code will handle that.
  602. */
  603. err = ubi_wl_put_peb(ubi, pnum, 1);
  604. if (err || ++tries > UBI_IO_RETRIES) {
  605. ubi_ro_mode(ubi);
  606. leb_write_unlock(ubi, vol_id, lnum);
  607. ubi_free_vid_hdr(ubi, vid_hdr);
  608. return err;
  609. }
  610. vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
  611. ubi_msg("try another PEB");
  612. goto retry;
  613. }
  614. /**
  615. * ubi_eba_write_leb_st - write data to static volume.
  616. * @ubi: UBI device description object
  617. * @vol: volume description object
  618. * @lnum: logical eraseblock number
  619. * @buf: data to write
  620. * @len: how many bytes to write
  621. * @dtype: data type
  622. * @used_ebs: how many logical eraseblocks will this volume contain
  623. *
  624. * This function writes data to logical eraseblock @lnum of static volume
  625. * @vol. The @used_ebs argument should contain total number of logical
  626. * eraseblock in this static volume.
  627. *
  628. * When writing to the last logical eraseblock, the @len argument doesn't have
  629. * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
  630. * to the real data size, although the @buf buffer has to contain the
  631. * alignment. In all other cases, @len has to be aligned.
  632. *
  633. * It is prohibited to write more then once to logical eraseblocks of static
  634. * volumes. This function returns zero in case of success and a negative error
  635. * code in case of failure.
  636. */
  637. int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
  638. int lnum, const void *buf, int len, int dtype,
  639. int used_ebs)
  640. {
  641. int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id;
  642. struct ubi_vid_hdr *vid_hdr;
  643. uint32_t crc;
  644. if (ubi->ro_mode)
  645. return -EROFS;
  646. if (lnum == used_ebs - 1)
  647. /* If this is the last LEB @len may be unaligned */
  648. len = ALIGN(data_size, ubi->min_io_size);
  649. else
  650. ubi_assert(!(len & (ubi->min_io_size - 1)));
  651. vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
  652. if (!vid_hdr)
  653. return -ENOMEM;
  654. err = leb_write_lock(ubi, vol_id, lnum);
  655. if (err) {
  656. ubi_free_vid_hdr(ubi, vid_hdr);
  657. return err;
  658. }
  659. vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
  660. vid_hdr->vol_id = cpu_to_be32(vol_id);
  661. vid_hdr->lnum = cpu_to_be32(lnum);
  662. vid_hdr->compat = ubi_get_compat(ubi, vol_id);
  663. vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
  664. crc = crc32(UBI_CRC32_INIT, buf, data_size);
  665. vid_hdr->vol_type = UBI_VID_STATIC;
  666. vid_hdr->data_size = cpu_to_be32(data_size);
  667. vid_hdr->used_ebs = cpu_to_be32(used_ebs);
  668. vid_hdr->data_crc = cpu_to_be32(crc);
  669. retry:
  670. pnum = ubi_wl_get_peb(ubi, dtype);
  671. if (pnum < 0) {
  672. ubi_free_vid_hdr(ubi, vid_hdr);
  673. leb_write_unlock(ubi, vol_id, lnum);
  674. return pnum;
  675. }
  676. dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d",
  677. len, vol_id, lnum, pnum, used_ebs);
  678. err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
  679. if (err) {
  680. ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
  681. vol_id, lnum, pnum);
  682. goto write_error;
  683. }
  684. err = ubi_io_write_data(ubi, buf, pnum, 0, len);
  685. if (err) {
  686. ubi_warn("failed to write %d bytes of data to PEB %d",
  687. len, pnum);
  688. goto write_error;
  689. }
  690. ubi_assert(vol->eba_tbl[lnum] < 0);
  691. vol->eba_tbl[lnum] = pnum;
  692. leb_write_unlock(ubi, vol_id, lnum);
  693. ubi_free_vid_hdr(ubi, vid_hdr);
  694. return 0;
  695. write_error:
  696. if (err != -EIO || !ubi->bad_allowed) {
  697. /*
  698. * This flash device does not admit of bad eraseblocks or
  699. * something nasty and unexpected happened. Switch to read-only
  700. * mode just in case.
  701. */
  702. ubi_ro_mode(ubi);
  703. leb_write_unlock(ubi, vol_id, lnum);
  704. ubi_free_vid_hdr(ubi, vid_hdr);
  705. return err;
  706. }
  707. err = ubi_wl_put_peb(ubi, pnum, 1);
  708. if (err || ++tries > UBI_IO_RETRIES) {
  709. ubi_ro_mode(ubi);
  710. leb_write_unlock(ubi, vol_id, lnum);
  711. ubi_free_vid_hdr(ubi, vid_hdr);
  712. return err;
  713. }
  714. vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
  715. ubi_msg("try another PEB");
  716. goto retry;
  717. }
  718. /*
  719. * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
  720. * @ubi: UBI device description object
  721. * @vol: volume description object
  722. * @lnum: logical eraseblock number
  723. * @buf: data to write
  724. * @len: how many bytes to write
  725. * @dtype: data type
  726. *
  727. * This function changes the contents of a logical eraseblock atomically. @buf
  728. * has to contain new logical eraseblock data, and @len - the length of the
  729. * data, which has to be aligned. This function guarantees that in case of an
  730. * unclean reboot the old contents is preserved. Returns zero in case of
  731. * success and a negative error code in case of failure.
  732. *
  733. * UBI reserves one LEB for the "atomic LEB change" operation, so only one
  734. * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
  735. */
  736. int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
  737. int lnum, const void *buf, int len, int dtype)
  738. {
  739. int err, pnum, tries = 0, vol_id = vol->vol_id;
  740. struct ubi_vid_hdr *vid_hdr;
  741. uint32_t crc;
  742. if (ubi->ro_mode)
  743. return -EROFS;
  744. if (len == 0) {
  745. /*
  746. * Special case when data length is zero. In this case the LEB
  747. * has to be unmapped and mapped somewhere else.
  748. */
  749. err = ubi_eba_unmap_leb(ubi, vol, lnum);
  750. if (err)
  751. return err;
  752. return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0, dtype);
  753. }
  754. vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
  755. if (!vid_hdr)
  756. return -ENOMEM;
  757. mutex_lock(&ubi->alc_mutex);
  758. err = leb_write_lock(ubi, vol_id, lnum);
  759. if (err)
  760. goto out_mutex;
  761. vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
  762. vid_hdr->vol_id = cpu_to_be32(vol_id);
  763. vid_hdr->lnum = cpu_to_be32(lnum);
  764. vid_hdr->compat = ubi_get_compat(ubi, vol_id);
  765. vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
  766. crc = crc32(UBI_CRC32_INIT, buf, len);
  767. vid_hdr->vol_type = UBI_VID_DYNAMIC;
  768. vid_hdr->data_size = cpu_to_be32(len);
  769. vid_hdr->copy_flag = 1;
  770. vid_hdr->data_crc = cpu_to_be32(crc);
  771. retry:
  772. pnum = ubi_wl_get_peb(ubi, dtype);
  773. if (pnum < 0) {
  774. err = pnum;
  775. goto out_leb_unlock;
  776. }
  777. dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d",
  778. vol_id, lnum, vol->eba_tbl[lnum], pnum);
  779. err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
  780. if (err) {
  781. ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
  782. vol_id, lnum, pnum);
  783. goto write_error;
  784. }
  785. err = ubi_io_write_data(ubi, buf, pnum, 0, len);
  786. if (err) {
  787. ubi_warn("failed to write %d bytes of data to PEB %d",
  788. len, pnum);
  789. goto write_error;
  790. }
  791. if (vol->eba_tbl[lnum] >= 0) {
  792. err = ubi_wl_put_peb(ubi, vol->eba_tbl[lnum], 0);
  793. if (err)
  794. goto out_leb_unlock;
  795. }
  796. vol->eba_tbl[lnum] = pnum;
  797. out_leb_unlock:
  798. leb_write_unlock(ubi, vol_id, lnum);
  799. out_mutex:
  800. mutex_unlock(&ubi->alc_mutex);
  801. ubi_free_vid_hdr(ubi, vid_hdr);
  802. return err;
  803. write_error:
  804. if (err != -EIO || !ubi->bad_allowed) {
  805. /*
  806. * This flash device does not admit of bad eraseblocks or
  807. * something nasty and unexpected happened. Switch to read-only
  808. * mode just in case.
  809. */
  810. ubi_ro_mode(ubi);
  811. goto out_leb_unlock;
  812. }
  813. err = ubi_wl_put_peb(ubi, pnum, 1);
  814. if (err || ++tries > UBI_IO_RETRIES) {
  815. ubi_ro_mode(ubi);
  816. goto out_leb_unlock;
  817. }
  818. vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
  819. ubi_msg("try another PEB");
  820. goto retry;
  821. }
  822. /**
  823. * ubi_eba_copy_leb - copy logical eraseblock.
  824. * @ubi: UBI device description object
  825. * @from: physical eraseblock number from where to copy
  826. * @to: physical eraseblock number where to copy
  827. * @vid_hdr: VID header of the @from physical eraseblock
  828. *
  829. * This function copies logical eraseblock from physical eraseblock @from to
  830. * physical eraseblock @to. The @vid_hdr buffer may be changed by this
  831. * function. Returns:
  832. * o %0 in case of success;
  833. * o %1 if the operation was canceled because the volume is being deleted
  834. * or because the PEB was put meanwhile;
  835. * o %2 if the operation was canceled because there was a write error to the
  836. * target PEB;
  837. * o %-EAGAIN if the operation was canceled because a bit-flip was detected
  838. * in the target PEB;
  839. * o a negative error code in case of failure.
  840. */
  841. int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
  842. struct ubi_vid_hdr *vid_hdr)
  843. {
  844. int err, vol_id, lnum, data_size, aldata_size, idx;
  845. struct ubi_volume *vol;
  846. uint32_t crc;
  847. vol_id = be32_to_cpu(vid_hdr->vol_id);
  848. lnum = be32_to_cpu(vid_hdr->lnum);
  849. dbg_eba("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
  850. if (vid_hdr->vol_type == UBI_VID_STATIC) {
  851. data_size = be32_to_cpu(vid_hdr->data_size);
  852. aldata_size = ALIGN(data_size, ubi->min_io_size);
  853. } else
  854. data_size = aldata_size =
  855. ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
  856. idx = vol_id2idx(ubi, vol_id);
  857. spin_lock(&ubi->volumes_lock);
  858. /*
  859. * Note, we may race with volume deletion, which means that the volume
  860. * this logical eraseblock belongs to might be being deleted. Since the
  861. * volume deletion un-maps all the volume's logical eraseblocks, it will
  862. * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
  863. */
  864. vol = ubi->volumes[idx];
  865. if (!vol) {
  866. /* No need to do further work, cancel */
  867. dbg_eba("volume %d is being removed, cancel", vol_id);
  868. spin_unlock(&ubi->volumes_lock);
  869. return 1;
  870. }
  871. spin_unlock(&ubi->volumes_lock);
  872. /*
  873. * We do not want anybody to write to this logical eraseblock while we
  874. * are moving it, so lock it.
  875. *
  876. * Note, we are using non-waiting locking here, because we cannot sleep
  877. * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
  878. * unmapping the LEB which is mapped to the PEB we are going to move
  879. * (@from). This task locks the LEB and goes sleep in the
  880. * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
  881. * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
  882. * LEB is already locked, we just do not move it and return %1.
  883. */
  884. err = leb_write_trylock(ubi, vol_id, lnum);
  885. if (err) {
  886. dbg_eba("contention on LEB %d:%d, cancel", vol_id, lnum);
  887. return err;
  888. }
  889. /*
  890. * The LEB might have been put meanwhile, and the task which put it is
  891. * probably waiting on @ubi->move_mutex. No need to continue the work,
  892. * cancel it.
  893. */
  894. if (vol->eba_tbl[lnum] != from) {
  895. dbg_eba("LEB %d:%d is no longer mapped to PEB %d, mapped to "
  896. "PEB %d, cancel", vol_id, lnum, from,
  897. vol->eba_tbl[lnum]);
  898. err = 1;
  899. goto out_unlock_leb;
  900. }
  901. /*
  902. * OK, now the LEB is locked and we can safely start moving it. Since
  903. * this function utilizes the @ubi->peb1_buf buffer which is shared
  904. * with some other functions, so lock the buffer by taking the
  905. * @ubi->buf_mutex.
  906. */
  907. mutex_lock(&ubi->buf_mutex);
  908. dbg_eba("read %d bytes of data", aldata_size);
  909. err = ubi_io_read_data(ubi, ubi->peb_buf1, from, 0, aldata_size);
  910. if (err && err != UBI_IO_BITFLIPS) {
  911. ubi_warn("error %d while reading data from PEB %d",
  912. err, from);
  913. goto out_unlock_buf;
  914. }
  915. /*
  916. * Now we have got to calculate how much data we have to to copy. In
  917. * case of a static volume it is fairly easy - the VID header contains
  918. * the data size. In case of a dynamic volume it is more difficult - we
  919. * have to read the contents, cut 0xFF bytes from the end and copy only
  920. * the first part. We must do this to avoid writing 0xFF bytes as it
  921. * may have some side-effects. And not only this. It is important not
  922. * to include those 0xFFs to CRC because later the they may be filled
  923. * by data.
  924. */
  925. if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
  926. aldata_size = data_size =
  927. ubi_calc_data_len(ubi, ubi->peb_buf1, data_size);
  928. cond_resched();
  929. crc = crc32(UBI_CRC32_INIT, ubi->peb_buf1, data_size);
  930. cond_resched();
  931. /*
  932. * It may turn out to me that the whole @from physical eraseblock
  933. * contains only 0xFF bytes. Then we have to only write the VID header
  934. * and do not write any data. This also means we should not set
  935. * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
  936. */
  937. if (data_size > 0) {
  938. vid_hdr->copy_flag = 1;
  939. vid_hdr->data_size = cpu_to_be32(data_size);
  940. vid_hdr->data_crc = cpu_to_be32(crc);
  941. }
  942. vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
  943. err = ubi_io_write_vid_hdr(ubi, to, vid_hdr);
  944. if (err) {
  945. if (err == -EIO)
  946. err = 2;
  947. goto out_unlock_buf;
  948. }
  949. cond_resched();
  950. /* Read the VID header back and check if it was written correctly */
  951. err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1);
  952. if (err) {
  953. if (err != UBI_IO_BITFLIPS)
  954. ubi_warn("cannot read VID header back from PEB %d", to);
  955. else
  956. err = -EAGAIN;
  957. goto out_unlock_buf;
  958. }
  959. if (data_size > 0) {
  960. err = ubi_io_write_data(ubi, ubi->peb_buf1, to, 0, aldata_size);
  961. if (err) {
  962. if (err == -EIO)
  963. err = 2;
  964. goto out_unlock_buf;
  965. }
  966. cond_resched();
  967. /*
  968. * We've written the data and are going to read it back to make
  969. * sure it was written correctly.
  970. */
  971. err = ubi_io_read_data(ubi, ubi->peb_buf2, to, 0, aldata_size);
  972. if (err) {
  973. if (err != UBI_IO_BITFLIPS)
  974. ubi_warn("cannot read data back from PEB %d",
  975. to);
  976. else
  977. err = -EAGAIN;
  978. goto out_unlock_buf;
  979. }
  980. cond_resched();
  981. if (memcmp(ubi->peb_buf1, ubi->peb_buf2, aldata_size)) {
  982. ubi_warn("read data back from PEB %d and it is "
  983. "different", to);
  984. err = -EINVAL;
  985. goto out_unlock_buf;
  986. }
  987. }
  988. ubi_assert(vol->eba_tbl[lnum] == from);
  989. vol->eba_tbl[lnum] = to;
  990. out_unlock_buf:
  991. mutex_unlock(&ubi->buf_mutex);
  992. out_unlock_leb:
  993. leb_write_unlock(ubi, vol_id, lnum);
  994. return err;
  995. }
  996. /**
  997. * ubi_eba_init_scan - initialize the EBA sub-system using scanning information.
  998. * @ubi: UBI device description object
  999. * @si: scanning information
  1000. *
  1001. * This function returns zero in case of success and a negative error code in
  1002. * case of failure.
  1003. */
  1004. int ubi_eba_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
  1005. {
  1006. int i, j, err, num_volumes;
  1007. struct ubi_scan_volume *sv;
  1008. struct ubi_volume *vol;
  1009. struct ubi_scan_leb *seb;
  1010. struct rb_node *rb;
  1011. dbg_eba("initialize EBA sub-system");
  1012. spin_lock_init(&ubi->ltree_lock);
  1013. mutex_init(&ubi->alc_mutex);
  1014. ubi->ltree = RB_ROOT;
  1015. ubi->global_sqnum = si->max_sqnum + 1;
  1016. num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
  1017. for (i = 0; i < num_volumes; i++) {
  1018. vol = ubi->volumes[i];
  1019. if (!vol)
  1020. continue;
  1021. cond_resched();
  1022. vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int),
  1023. GFP_KERNEL);
  1024. if (!vol->eba_tbl) {
  1025. err = -ENOMEM;
  1026. goto out_free;
  1027. }
  1028. for (j = 0; j < vol->reserved_pebs; j++)
  1029. vol->eba_tbl[j] = UBI_LEB_UNMAPPED;
  1030. sv = ubi_scan_find_sv(si, idx2vol_id(ubi, i));
  1031. if (!sv)
  1032. continue;
  1033. ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) {
  1034. if (seb->lnum >= vol->reserved_pebs)
  1035. /*
  1036. * This may happen in case of an unclean reboot
  1037. * during re-size.
  1038. */
  1039. ubi_scan_move_to_list(sv, seb, &si->erase);
  1040. vol->eba_tbl[seb->lnum] = seb->pnum;
  1041. }
  1042. }
  1043. if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
  1044. ubi_err("no enough physical eraseblocks (%d, need %d)",
  1045. ubi->avail_pebs, EBA_RESERVED_PEBS);
  1046. err = -ENOSPC;
  1047. goto out_free;
  1048. }
  1049. ubi->avail_pebs -= EBA_RESERVED_PEBS;
  1050. ubi->rsvd_pebs += EBA_RESERVED_PEBS;
  1051. if (ubi->bad_allowed) {
  1052. ubi_calculate_reserved(ubi);
  1053. if (ubi->avail_pebs < ubi->beb_rsvd_level) {
  1054. /* No enough free physical eraseblocks */
  1055. ubi->beb_rsvd_pebs = ubi->avail_pebs;
  1056. ubi_warn("cannot reserve enough PEBs for bad PEB "
  1057. "handling, reserved %d, need %d",
  1058. ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
  1059. } else
  1060. ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
  1061. ubi->avail_pebs -= ubi->beb_rsvd_pebs;
  1062. ubi->rsvd_pebs += ubi->beb_rsvd_pebs;
  1063. }
  1064. dbg_eba("EBA sub-system is initialized");
  1065. return 0;
  1066. out_free:
  1067. for (i = 0; i < num_volumes; i++) {
  1068. if (!ubi->volumes[i])
  1069. continue;
  1070. kfree(ubi->volumes[i]->eba_tbl);
  1071. }
  1072. return err;
  1073. }