tda18271-common.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672
  1. /*
  2. tda18271-common.c - driver for the Philips / NXP TDA18271 silicon tuner
  3. Copyright (C) 2007, 2008 Michael Krufky <mkrufky@linuxtv.org>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the Free Software
  14. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  15. */
  16. #include "tda18271-priv.h"
  17. static int tda18271_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
  18. {
  19. struct tda18271_priv *priv = fe->tuner_priv;
  20. enum tda18271_i2c_gate gate;
  21. int ret = 0;
  22. switch (priv->gate) {
  23. case TDA18271_GATE_DIGITAL:
  24. case TDA18271_GATE_ANALOG:
  25. gate = priv->gate;
  26. break;
  27. case TDA18271_GATE_AUTO:
  28. default:
  29. switch (priv->mode) {
  30. case TDA18271_DIGITAL:
  31. gate = TDA18271_GATE_DIGITAL;
  32. break;
  33. case TDA18271_ANALOG:
  34. default:
  35. gate = TDA18271_GATE_ANALOG;
  36. break;
  37. }
  38. }
  39. switch (gate) {
  40. case TDA18271_GATE_ANALOG:
  41. if (fe->ops.analog_ops.i2c_gate_ctrl)
  42. ret = fe->ops.analog_ops.i2c_gate_ctrl(fe, enable);
  43. break;
  44. case TDA18271_GATE_DIGITAL:
  45. if (fe->ops.i2c_gate_ctrl)
  46. ret = fe->ops.i2c_gate_ctrl(fe, enable);
  47. break;
  48. default:
  49. ret = -EINVAL;
  50. break;
  51. }
  52. return ret;
  53. };
  54. /*---------------------------------------------------------------------*/
  55. static void tda18271_dump_regs(struct dvb_frontend *fe, int extended)
  56. {
  57. struct tda18271_priv *priv = fe->tuner_priv;
  58. unsigned char *regs = priv->tda18271_regs;
  59. tda_reg("=== TDA18271 REG DUMP ===\n");
  60. tda_reg("ID_BYTE = 0x%02x\n", 0xff & regs[R_ID]);
  61. tda_reg("THERMO_BYTE = 0x%02x\n", 0xff & regs[R_TM]);
  62. tda_reg("POWER_LEVEL_BYTE = 0x%02x\n", 0xff & regs[R_PL]);
  63. tda_reg("EASY_PROG_BYTE_1 = 0x%02x\n", 0xff & regs[R_EP1]);
  64. tda_reg("EASY_PROG_BYTE_2 = 0x%02x\n", 0xff & regs[R_EP2]);
  65. tda_reg("EASY_PROG_BYTE_3 = 0x%02x\n", 0xff & regs[R_EP3]);
  66. tda_reg("EASY_PROG_BYTE_4 = 0x%02x\n", 0xff & regs[R_EP4]);
  67. tda_reg("EASY_PROG_BYTE_5 = 0x%02x\n", 0xff & regs[R_EP5]);
  68. tda_reg("CAL_POST_DIV_BYTE = 0x%02x\n", 0xff & regs[R_CPD]);
  69. tda_reg("CAL_DIV_BYTE_1 = 0x%02x\n", 0xff & regs[R_CD1]);
  70. tda_reg("CAL_DIV_BYTE_2 = 0x%02x\n", 0xff & regs[R_CD2]);
  71. tda_reg("CAL_DIV_BYTE_3 = 0x%02x\n", 0xff & regs[R_CD3]);
  72. tda_reg("MAIN_POST_DIV_BYTE = 0x%02x\n", 0xff & regs[R_MPD]);
  73. tda_reg("MAIN_DIV_BYTE_1 = 0x%02x\n", 0xff & regs[R_MD1]);
  74. tda_reg("MAIN_DIV_BYTE_2 = 0x%02x\n", 0xff & regs[R_MD2]);
  75. tda_reg("MAIN_DIV_BYTE_3 = 0x%02x\n", 0xff & regs[R_MD3]);
  76. /* only dump extended regs if DBG_ADV is set */
  77. if (!(tda18271_debug & DBG_ADV))
  78. return;
  79. /* W indicates write-only registers.
  80. * Register dump for write-only registers shows last value written. */
  81. tda_reg("EXTENDED_BYTE_1 = 0x%02x\n", 0xff & regs[R_EB1]);
  82. tda_reg("EXTENDED_BYTE_2 = 0x%02x\n", 0xff & regs[R_EB2]);
  83. tda_reg("EXTENDED_BYTE_3 = 0x%02x\n", 0xff & regs[R_EB3]);
  84. tda_reg("EXTENDED_BYTE_4 = 0x%02x\n", 0xff & regs[R_EB4]);
  85. tda_reg("EXTENDED_BYTE_5 = 0x%02x\n", 0xff & regs[R_EB5]);
  86. tda_reg("EXTENDED_BYTE_6 = 0x%02x\n", 0xff & regs[R_EB6]);
  87. tda_reg("EXTENDED_BYTE_7 = 0x%02x\n", 0xff & regs[R_EB7]);
  88. tda_reg("EXTENDED_BYTE_8 = 0x%02x\n", 0xff & regs[R_EB8]);
  89. tda_reg("EXTENDED_BYTE_9 W = 0x%02x\n", 0xff & regs[R_EB9]);
  90. tda_reg("EXTENDED_BYTE_10 = 0x%02x\n", 0xff & regs[R_EB10]);
  91. tda_reg("EXTENDED_BYTE_11 = 0x%02x\n", 0xff & regs[R_EB11]);
  92. tda_reg("EXTENDED_BYTE_12 = 0x%02x\n", 0xff & regs[R_EB12]);
  93. tda_reg("EXTENDED_BYTE_13 = 0x%02x\n", 0xff & regs[R_EB13]);
  94. tda_reg("EXTENDED_BYTE_14 = 0x%02x\n", 0xff & regs[R_EB14]);
  95. tda_reg("EXTENDED_BYTE_15 = 0x%02x\n", 0xff & regs[R_EB15]);
  96. tda_reg("EXTENDED_BYTE_16 W = 0x%02x\n", 0xff & regs[R_EB16]);
  97. tda_reg("EXTENDED_BYTE_17 W = 0x%02x\n", 0xff & regs[R_EB17]);
  98. tda_reg("EXTENDED_BYTE_18 = 0x%02x\n", 0xff & regs[R_EB18]);
  99. tda_reg("EXTENDED_BYTE_19 W = 0x%02x\n", 0xff & regs[R_EB19]);
  100. tda_reg("EXTENDED_BYTE_20 W = 0x%02x\n", 0xff & regs[R_EB20]);
  101. tda_reg("EXTENDED_BYTE_21 = 0x%02x\n", 0xff & regs[R_EB21]);
  102. tda_reg("EXTENDED_BYTE_22 = 0x%02x\n", 0xff & regs[R_EB22]);
  103. tda_reg("EXTENDED_BYTE_23 = 0x%02x\n", 0xff & regs[R_EB23]);
  104. }
  105. int tda18271_read_regs(struct dvb_frontend *fe)
  106. {
  107. struct tda18271_priv *priv = fe->tuner_priv;
  108. unsigned char *regs = priv->tda18271_regs;
  109. unsigned char buf = 0x00;
  110. int ret;
  111. struct i2c_msg msg[] = {
  112. { .addr = priv->i2c_props.addr, .flags = 0,
  113. .buf = &buf, .len = 1 },
  114. { .addr = priv->i2c_props.addr, .flags = I2C_M_RD,
  115. .buf = regs, .len = 16 }
  116. };
  117. tda18271_i2c_gate_ctrl(fe, 1);
  118. /* read all registers */
  119. ret = i2c_transfer(priv->i2c_props.adap, msg, 2);
  120. tda18271_i2c_gate_ctrl(fe, 0);
  121. if (ret != 2)
  122. tda_err("ERROR: i2c_transfer returned: %d\n", ret);
  123. if (tda18271_debug & DBG_REG)
  124. tda18271_dump_regs(fe, 0);
  125. return (ret == 2 ? 0 : ret);
  126. }
  127. int tda18271_read_extended(struct dvb_frontend *fe)
  128. {
  129. struct tda18271_priv *priv = fe->tuner_priv;
  130. unsigned char *regs = priv->tda18271_regs;
  131. unsigned char regdump[TDA18271_NUM_REGS];
  132. unsigned char buf = 0x00;
  133. int ret, i;
  134. struct i2c_msg msg[] = {
  135. { .addr = priv->i2c_props.addr, .flags = 0,
  136. .buf = &buf, .len = 1 },
  137. { .addr = priv->i2c_props.addr, .flags = I2C_M_RD,
  138. .buf = regdump, .len = TDA18271_NUM_REGS }
  139. };
  140. tda18271_i2c_gate_ctrl(fe, 1);
  141. /* read all registers */
  142. ret = i2c_transfer(priv->i2c_props.adap, msg, 2);
  143. tda18271_i2c_gate_ctrl(fe, 0);
  144. if (ret != 2)
  145. tda_err("ERROR: i2c_transfer returned: %d\n", ret);
  146. for (i = 0; i < TDA18271_NUM_REGS; i++) {
  147. /* don't update write-only registers */
  148. if ((i != R_EB9) &&
  149. (i != R_EB16) &&
  150. (i != R_EB17) &&
  151. (i != R_EB19) &&
  152. (i != R_EB20))
  153. regs[i] = regdump[i];
  154. }
  155. if (tda18271_debug & DBG_REG)
  156. tda18271_dump_regs(fe, 1);
  157. return (ret == 2 ? 0 : ret);
  158. }
  159. int tda18271_write_regs(struct dvb_frontend *fe, int idx, int len)
  160. {
  161. struct tda18271_priv *priv = fe->tuner_priv;
  162. unsigned char *regs = priv->tda18271_regs;
  163. unsigned char buf[TDA18271_NUM_REGS + 1];
  164. struct i2c_msg msg = { .addr = priv->i2c_props.addr, .flags = 0,
  165. .buf = buf, .len = len + 1 };
  166. int i, ret;
  167. BUG_ON((len == 0) || (idx + len > sizeof(buf)));
  168. buf[0] = idx;
  169. for (i = 1; i <= len; i++)
  170. buf[i] = regs[idx - 1 + i];
  171. tda18271_i2c_gate_ctrl(fe, 1);
  172. /* write registers */
  173. ret = i2c_transfer(priv->i2c_props.adap, &msg, 1);
  174. tda18271_i2c_gate_ctrl(fe, 0);
  175. if (ret != 1)
  176. tda_err("ERROR: i2c_transfer returned: %d\n", ret);
  177. return (ret == 1 ? 0 : ret);
  178. }
  179. /*---------------------------------------------------------------------*/
  180. int tda18271_charge_pump_source(struct dvb_frontend *fe,
  181. enum tda18271_pll pll, int force)
  182. {
  183. struct tda18271_priv *priv = fe->tuner_priv;
  184. unsigned char *regs = priv->tda18271_regs;
  185. int r_cp = (pll == TDA18271_CAL_PLL) ? R_EB7 : R_EB4;
  186. regs[r_cp] &= ~0x20;
  187. regs[r_cp] |= ((force & 1) << 5);
  188. return tda18271_write_regs(fe, r_cp, 1);
  189. }
  190. int tda18271_init_regs(struct dvb_frontend *fe)
  191. {
  192. struct tda18271_priv *priv = fe->tuner_priv;
  193. unsigned char *regs = priv->tda18271_regs;
  194. tda_dbg("initializing registers for device @ %d-%04x\n",
  195. i2c_adapter_id(priv->i2c_props.adap),
  196. priv->i2c_props.addr);
  197. /* initialize registers */
  198. switch (priv->id) {
  199. case TDA18271HDC1:
  200. regs[R_ID] = 0x83;
  201. break;
  202. case TDA18271HDC2:
  203. regs[R_ID] = 0x84;
  204. break;
  205. };
  206. regs[R_TM] = 0x08;
  207. regs[R_PL] = 0x80;
  208. regs[R_EP1] = 0xc6;
  209. regs[R_EP2] = 0xdf;
  210. regs[R_EP3] = 0x16;
  211. regs[R_EP4] = 0x60;
  212. regs[R_EP5] = 0x80;
  213. regs[R_CPD] = 0x80;
  214. regs[R_CD1] = 0x00;
  215. regs[R_CD2] = 0x00;
  216. regs[R_CD3] = 0x00;
  217. regs[R_MPD] = 0x00;
  218. regs[R_MD1] = 0x00;
  219. regs[R_MD2] = 0x00;
  220. regs[R_MD3] = 0x00;
  221. switch (priv->id) {
  222. case TDA18271HDC1:
  223. regs[R_EB1] = 0xff;
  224. break;
  225. case TDA18271HDC2:
  226. regs[R_EB1] = 0xfc;
  227. break;
  228. };
  229. regs[R_EB2] = 0x01;
  230. regs[R_EB3] = 0x84;
  231. regs[R_EB4] = 0x41;
  232. regs[R_EB5] = 0x01;
  233. regs[R_EB6] = 0x84;
  234. regs[R_EB7] = 0x40;
  235. regs[R_EB8] = 0x07;
  236. regs[R_EB9] = 0x00;
  237. regs[R_EB10] = 0x00;
  238. regs[R_EB11] = 0x96;
  239. switch (priv->id) {
  240. case TDA18271HDC1:
  241. regs[R_EB12] = 0x0f;
  242. break;
  243. case TDA18271HDC2:
  244. regs[R_EB12] = 0x33;
  245. break;
  246. };
  247. regs[R_EB13] = 0xc1;
  248. regs[R_EB14] = 0x00;
  249. regs[R_EB15] = 0x8f;
  250. regs[R_EB16] = 0x00;
  251. regs[R_EB17] = 0x00;
  252. switch (priv->id) {
  253. case TDA18271HDC1:
  254. regs[R_EB18] = 0x00;
  255. break;
  256. case TDA18271HDC2:
  257. regs[R_EB18] = 0x8c;
  258. break;
  259. };
  260. regs[R_EB19] = 0x00;
  261. regs[R_EB20] = 0x20;
  262. switch (priv->id) {
  263. case TDA18271HDC1:
  264. regs[R_EB21] = 0x33;
  265. break;
  266. case TDA18271HDC2:
  267. regs[R_EB21] = 0xb3;
  268. break;
  269. };
  270. regs[R_EB22] = 0x48;
  271. regs[R_EB23] = 0xb0;
  272. if (priv->small_i2c) {
  273. tda18271_write_regs(fe, 0x00, 0x10);
  274. tda18271_write_regs(fe, 0x10, 0x10);
  275. tda18271_write_regs(fe, 0x20, 0x07);
  276. } else
  277. tda18271_write_regs(fe, 0x00, TDA18271_NUM_REGS);
  278. /* setup agc1 gain */
  279. regs[R_EB17] = 0x00;
  280. tda18271_write_regs(fe, R_EB17, 1);
  281. regs[R_EB17] = 0x03;
  282. tda18271_write_regs(fe, R_EB17, 1);
  283. regs[R_EB17] = 0x43;
  284. tda18271_write_regs(fe, R_EB17, 1);
  285. regs[R_EB17] = 0x4c;
  286. tda18271_write_regs(fe, R_EB17, 1);
  287. /* setup agc2 gain */
  288. if ((priv->id) == TDA18271HDC1) {
  289. regs[R_EB20] = 0xa0;
  290. tda18271_write_regs(fe, R_EB20, 1);
  291. regs[R_EB20] = 0xa7;
  292. tda18271_write_regs(fe, R_EB20, 1);
  293. regs[R_EB20] = 0xe7;
  294. tda18271_write_regs(fe, R_EB20, 1);
  295. regs[R_EB20] = 0xec;
  296. tda18271_write_regs(fe, R_EB20, 1);
  297. }
  298. /* image rejection calibration */
  299. /* low-band */
  300. regs[R_EP3] = 0x1f;
  301. regs[R_EP4] = 0x66;
  302. regs[R_EP5] = 0x81;
  303. regs[R_CPD] = 0xcc;
  304. regs[R_CD1] = 0x6c;
  305. regs[R_CD2] = 0x00;
  306. regs[R_CD3] = 0x00;
  307. regs[R_MPD] = 0xcd;
  308. regs[R_MD1] = 0x77;
  309. regs[R_MD2] = 0x08;
  310. regs[R_MD3] = 0x00;
  311. tda18271_write_regs(fe, R_EP3, 11);
  312. if ((priv->id) == TDA18271HDC2) {
  313. /* main pll cp source on */
  314. tda18271_charge_pump_source(fe, TDA18271_MAIN_PLL, 1);
  315. msleep(1);
  316. /* main pll cp source off */
  317. tda18271_charge_pump_source(fe, TDA18271_MAIN_PLL, 0);
  318. }
  319. msleep(5); /* pll locking */
  320. /* launch detector */
  321. tda18271_write_regs(fe, R_EP1, 1);
  322. msleep(5); /* wanted low measurement */
  323. regs[R_EP5] = 0x85;
  324. regs[R_CPD] = 0xcb;
  325. regs[R_CD1] = 0x66;
  326. regs[R_CD2] = 0x70;
  327. tda18271_write_regs(fe, R_EP3, 7);
  328. msleep(5); /* pll locking */
  329. /* launch optimization algorithm */
  330. tda18271_write_regs(fe, R_EP2, 1);
  331. msleep(30); /* image low optimization completion */
  332. /* mid-band */
  333. regs[R_EP5] = 0x82;
  334. regs[R_CPD] = 0xa8;
  335. regs[R_CD2] = 0x00;
  336. regs[R_MPD] = 0xa9;
  337. regs[R_MD1] = 0x73;
  338. regs[R_MD2] = 0x1a;
  339. tda18271_write_regs(fe, R_EP3, 11);
  340. msleep(5); /* pll locking */
  341. /* launch detector */
  342. tda18271_write_regs(fe, R_EP1, 1);
  343. msleep(5); /* wanted mid measurement */
  344. regs[R_EP5] = 0x86;
  345. regs[R_CPD] = 0xa8;
  346. regs[R_CD1] = 0x66;
  347. regs[R_CD2] = 0xa0;
  348. tda18271_write_regs(fe, R_EP3, 7);
  349. msleep(5); /* pll locking */
  350. /* launch optimization algorithm */
  351. tda18271_write_regs(fe, R_EP2, 1);
  352. msleep(30); /* image mid optimization completion */
  353. /* high-band */
  354. regs[R_EP5] = 0x83;
  355. regs[R_CPD] = 0x98;
  356. regs[R_CD1] = 0x65;
  357. regs[R_CD2] = 0x00;
  358. regs[R_MPD] = 0x99;
  359. regs[R_MD1] = 0x71;
  360. regs[R_MD2] = 0xcd;
  361. tda18271_write_regs(fe, R_EP3, 11);
  362. msleep(5); /* pll locking */
  363. /* launch detector */
  364. tda18271_write_regs(fe, R_EP1, 1);
  365. msleep(5); /* wanted high measurement */
  366. regs[R_EP5] = 0x87;
  367. regs[R_CD1] = 0x65;
  368. regs[R_CD2] = 0x50;
  369. tda18271_write_regs(fe, R_EP3, 7);
  370. msleep(5); /* pll locking */
  371. /* launch optimization algorithm */
  372. tda18271_write_regs(fe, R_EP2, 1);
  373. msleep(30); /* image high optimization completion */
  374. /* return to normal mode */
  375. regs[R_EP4] = 0x64;
  376. tda18271_write_regs(fe, R_EP4, 1);
  377. /* synchronize */
  378. tda18271_write_regs(fe, R_EP1, 1);
  379. return 0;
  380. }
  381. /*---------------------------------------------------------------------*/
  382. /*
  383. * Standby modes, EP3 [7:5]
  384. *
  385. * | SM || SM_LT || SM_XT || mode description
  386. * |=====\\=======\\=======\\===================================
  387. * | 0 || 0 || 0 || normal mode
  388. * |-----||-------||-------||-----------------------------------
  389. * | || || || standby mode w/ slave tuner output
  390. * | 1 || 0 || 0 || & loop thru & xtal oscillator on
  391. * |-----||-------||-------||-----------------------------------
  392. * | 1 || 1 || 0 || standby mode w/ xtal oscillator on
  393. * |-----||-------||-------||-----------------------------------
  394. * | 1 || 1 || 1 || power off
  395. *
  396. */
  397. int tda18271_set_standby_mode(struct dvb_frontend *fe,
  398. int sm, int sm_lt, int sm_xt)
  399. {
  400. struct tda18271_priv *priv = fe->tuner_priv;
  401. unsigned char *regs = priv->tda18271_regs;
  402. if (tda18271_debug & DBG_ADV)
  403. tda_dbg("sm = %d, sm_lt = %d, sm_xt = %d\n", sm, sm_lt, sm_xt);
  404. regs[R_EP3] &= ~0xe0; /* clear sm, sm_lt, sm_xt */
  405. regs[R_EP3] |= sm ? (1 << 7) : 0 |
  406. sm_lt ? (1 << 6) : 0 |
  407. sm_xt ? (1 << 5) : 0;
  408. return tda18271_write_regs(fe, R_EP3, 1);
  409. }
  410. /*---------------------------------------------------------------------*/
  411. int tda18271_calc_main_pll(struct dvb_frontend *fe, u32 freq)
  412. {
  413. /* sets main post divider & divider bytes, but does not write them */
  414. struct tda18271_priv *priv = fe->tuner_priv;
  415. unsigned char *regs = priv->tda18271_regs;
  416. u8 d, pd;
  417. u32 div;
  418. int ret = tda18271_lookup_pll_map(fe, MAIN_PLL, &freq, &pd, &d);
  419. if (tda_fail(ret))
  420. goto fail;
  421. regs[R_MPD] = (0x77 & pd);
  422. switch (priv->mode) {
  423. case TDA18271_ANALOG:
  424. regs[R_MPD] &= ~0x08;
  425. break;
  426. case TDA18271_DIGITAL:
  427. regs[R_MPD] |= 0x08;
  428. break;
  429. }
  430. div = ((d * (freq / 1000)) << 7) / 125;
  431. regs[R_MD1] = 0x7f & (div >> 16);
  432. regs[R_MD2] = 0xff & (div >> 8);
  433. regs[R_MD3] = 0xff & div;
  434. fail:
  435. return ret;
  436. }
  437. int tda18271_calc_cal_pll(struct dvb_frontend *fe, u32 freq)
  438. {
  439. /* sets cal post divider & divider bytes, but does not write them */
  440. struct tda18271_priv *priv = fe->tuner_priv;
  441. unsigned char *regs = priv->tda18271_regs;
  442. u8 d, pd;
  443. u32 div;
  444. int ret = tda18271_lookup_pll_map(fe, CAL_PLL, &freq, &pd, &d);
  445. if (tda_fail(ret))
  446. goto fail;
  447. regs[R_CPD] = pd;
  448. div = ((d * (freq / 1000)) << 7) / 125;
  449. regs[R_CD1] = 0x7f & (div >> 16);
  450. regs[R_CD2] = 0xff & (div >> 8);
  451. regs[R_CD3] = 0xff & div;
  452. fail:
  453. return ret;
  454. }
  455. /*---------------------------------------------------------------------*/
  456. int tda18271_calc_bp_filter(struct dvb_frontend *fe, u32 *freq)
  457. {
  458. /* sets bp filter bits, but does not write them */
  459. struct tda18271_priv *priv = fe->tuner_priv;
  460. unsigned char *regs = priv->tda18271_regs;
  461. u8 val;
  462. int ret = tda18271_lookup_map(fe, BP_FILTER, freq, &val);
  463. if (tda_fail(ret))
  464. goto fail;
  465. regs[R_EP1] &= ~0x07; /* clear bp filter bits */
  466. regs[R_EP1] |= (0x07 & val);
  467. fail:
  468. return ret;
  469. }
  470. int tda18271_calc_km(struct dvb_frontend *fe, u32 *freq)
  471. {
  472. /* sets K & M bits, but does not write them */
  473. struct tda18271_priv *priv = fe->tuner_priv;
  474. unsigned char *regs = priv->tda18271_regs;
  475. u8 val;
  476. int ret = tda18271_lookup_map(fe, RF_CAL_KMCO, freq, &val);
  477. if (tda_fail(ret))
  478. goto fail;
  479. regs[R_EB13] &= ~0x7c; /* clear k & m bits */
  480. regs[R_EB13] |= (0x7c & val);
  481. fail:
  482. return ret;
  483. }
  484. int tda18271_calc_rf_band(struct dvb_frontend *fe, u32 *freq)
  485. {
  486. /* sets rf band bits, but does not write them */
  487. struct tda18271_priv *priv = fe->tuner_priv;
  488. unsigned char *regs = priv->tda18271_regs;
  489. u8 val;
  490. int ret = tda18271_lookup_map(fe, RF_BAND, freq, &val);
  491. if (tda_fail(ret))
  492. goto fail;
  493. regs[R_EP2] &= ~0xe0; /* clear rf band bits */
  494. regs[R_EP2] |= (0xe0 & (val << 5));
  495. fail:
  496. return ret;
  497. }
  498. int tda18271_calc_gain_taper(struct dvb_frontend *fe, u32 *freq)
  499. {
  500. /* sets gain taper bits, but does not write them */
  501. struct tda18271_priv *priv = fe->tuner_priv;
  502. unsigned char *regs = priv->tda18271_regs;
  503. u8 val;
  504. int ret = tda18271_lookup_map(fe, GAIN_TAPER, freq, &val);
  505. if (tda_fail(ret))
  506. goto fail;
  507. regs[R_EP2] &= ~0x1f; /* clear gain taper bits */
  508. regs[R_EP2] |= (0x1f & val);
  509. fail:
  510. return ret;
  511. }
  512. int tda18271_calc_ir_measure(struct dvb_frontend *fe, u32 *freq)
  513. {
  514. /* sets IR Meas bits, but does not write them */
  515. struct tda18271_priv *priv = fe->tuner_priv;
  516. unsigned char *regs = priv->tda18271_regs;
  517. u8 val;
  518. int ret = tda18271_lookup_map(fe, IR_MEASURE, freq, &val);
  519. if (tda_fail(ret))
  520. goto fail;
  521. regs[R_EP5] &= ~0x07;
  522. regs[R_EP5] |= (0x07 & val);
  523. fail:
  524. return ret;
  525. }
  526. int tda18271_calc_rf_cal(struct dvb_frontend *fe, u32 *freq)
  527. {
  528. /* sets rf cal byte (RFC_Cprog), but does not write it */
  529. struct tda18271_priv *priv = fe->tuner_priv;
  530. unsigned char *regs = priv->tda18271_regs;
  531. u8 val;
  532. int ret = tda18271_lookup_map(fe, RF_CAL, freq, &val);
  533. /* The TDA18271HD/C1 rf_cal map lookup is expected to go out of range
  534. * for frequencies above 61.1 MHz. In these cases, the internal RF
  535. * tracking filters calibration mechanism is used.
  536. *
  537. * There is no need to warn the user about this.
  538. */
  539. if (ret < 0)
  540. goto fail;
  541. regs[R_EB14] = val;
  542. fail:
  543. return ret;
  544. }
  545. /*
  546. * Overrides for Emacs so that we follow Linus's tabbing style.
  547. * ---------------------------------------------------------------------------
  548. * Local variables:
  549. * c-basic-offset: 8
  550. * End:
  551. */