raid0.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531
  1. /*
  2. raid0.c : Multiple Devices driver for Linux
  3. Copyright (C) 1994-96 Marc ZYNGIER
  4. <zyngier@ufr-info-p7.ibp.fr> or
  5. <maz@gloups.fdn.fr>
  6. Copyright (C) 1999, 2000 Ingo Molnar, Red Hat
  7. RAID-0 management functions.
  8. This program is free software; you can redistribute it and/or modify
  9. it under the terms of the GNU General Public License as published by
  10. the Free Software Foundation; either version 2, or (at your option)
  11. any later version.
  12. You should have received a copy of the GNU General Public License
  13. (for example /usr/src/linux/COPYING); if not, write to the Free
  14. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  15. */
  16. #include <linux/raid/raid0.h>
  17. static void raid0_unplug(struct request_queue *q)
  18. {
  19. mddev_t *mddev = q->queuedata;
  20. raid0_conf_t *conf = mddev_to_conf(mddev);
  21. mdk_rdev_t **devlist = conf->strip_zone[0].dev;
  22. int i;
  23. for (i=0; i<mddev->raid_disks; i++) {
  24. struct request_queue *r_queue = bdev_get_queue(devlist[i]->bdev);
  25. blk_unplug(r_queue);
  26. }
  27. }
  28. static int raid0_congested(void *data, int bits)
  29. {
  30. mddev_t *mddev = data;
  31. raid0_conf_t *conf = mddev_to_conf(mddev);
  32. mdk_rdev_t **devlist = conf->strip_zone[0].dev;
  33. int i, ret = 0;
  34. for (i = 0; i < mddev->raid_disks && !ret ; i++) {
  35. struct request_queue *q = bdev_get_queue(devlist[i]->bdev);
  36. ret |= bdi_congested(&q->backing_dev_info, bits);
  37. }
  38. return ret;
  39. }
  40. static int create_strip_zones (mddev_t *mddev)
  41. {
  42. int i, c, j;
  43. sector_t current_offset, curr_zone_offset;
  44. sector_t min_spacing;
  45. raid0_conf_t *conf = mddev_to_conf(mddev);
  46. mdk_rdev_t *smallest, *rdev1, *rdev2, *rdev;
  47. struct list_head *tmp1, *tmp2;
  48. struct strip_zone *zone;
  49. int cnt;
  50. char b[BDEVNAME_SIZE];
  51. /*
  52. * The number of 'same size groups'
  53. */
  54. conf->nr_strip_zones = 0;
  55. rdev_for_each(rdev1, tmp1, mddev) {
  56. printk("raid0: looking at %s\n",
  57. bdevname(rdev1->bdev,b));
  58. c = 0;
  59. rdev_for_each(rdev2, tmp2, mddev) {
  60. printk("raid0: comparing %s(%llu)",
  61. bdevname(rdev1->bdev,b),
  62. (unsigned long long)rdev1->size);
  63. printk(" with %s(%llu)\n",
  64. bdevname(rdev2->bdev,b),
  65. (unsigned long long)rdev2->size);
  66. if (rdev2 == rdev1) {
  67. printk("raid0: END\n");
  68. break;
  69. }
  70. if (rdev2->size == rdev1->size)
  71. {
  72. /*
  73. * Not unique, don't count it as a new
  74. * group
  75. */
  76. printk("raid0: EQUAL\n");
  77. c = 1;
  78. break;
  79. }
  80. printk("raid0: NOT EQUAL\n");
  81. }
  82. if (!c) {
  83. printk("raid0: ==> UNIQUE\n");
  84. conf->nr_strip_zones++;
  85. printk("raid0: %d zones\n", conf->nr_strip_zones);
  86. }
  87. }
  88. printk("raid0: FINAL %d zones\n", conf->nr_strip_zones);
  89. conf->strip_zone = kzalloc(sizeof(struct strip_zone)*
  90. conf->nr_strip_zones, GFP_KERNEL);
  91. if (!conf->strip_zone)
  92. return 1;
  93. conf->devlist = kzalloc(sizeof(mdk_rdev_t*)*
  94. conf->nr_strip_zones*mddev->raid_disks,
  95. GFP_KERNEL);
  96. if (!conf->devlist)
  97. return 1;
  98. /* The first zone must contain all devices, so here we check that
  99. * there is a proper alignment of slots to devices and find them all
  100. */
  101. zone = &conf->strip_zone[0];
  102. cnt = 0;
  103. smallest = NULL;
  104. zone->dev = conf->devlist;
  105. rdev_for_each(rdev1, tmp1, mddev) {
  106. int j = rdev1->raid_disk;
  107. if (j < 0 || j >= mddev->raid_disks) {
  108. printk("raid0: bad disk number %d - aborting!\n", j);
  109. goto abort;
  110. }
  111. if (zone->dev[j]) {
  112. printk("raid0: multiple devices for %d - aborting!\n",
  113. j);
  114. goto abort;
  115. }
  116. zone->dev[j] = rdev1;
  117. blk_queue_stack_limits(mddev->queue,
  118. rdev1->bdev->bd_disk->queue);
  119. /* as we don't honour merge_bvec_fn, we must never risk
  120. * violating it, so limit ->max_sector to one PAGE, as
  121. * a one page request is never in violation.
  122. */
  123. if (rdev1->bdev->bd_disk->queue->merge_bvec_fn &&
  124. mddev->queue->max_sectors > (PAGE_SIZE>>9))
  125. blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
  126. if (!smallest || (rdev1->size <smallest->size))
  127. smallest = rdev1;
  128. cnt++;
  129. }
  130. if (cnt != mddev->raid_disks) {
  131. printk("raid0: too few disks (%d of %d) - aborting!\n",
  132. cnt, mddev->raid_disks);
  133. goto abort;
  134. }
  135. zone->nb_dev = cnt;
  136. zone->size = smallest->size * cnt;
  137. zone->zone_offset = 0;
  138. current_offset = smallest->size;
  139. curr_zone_offset = zone->size;
  140. /* now do the other zones */
  141. for (i = 1; i < conf->nr_strip_zones; i++)
  142. {
  143. zone = conf->strip_zone + i;
  144. zone->dev = conf->strip_zone[i-1].dev + mddev->raid_disks;
  145. printk("raid0: zone %d\n", i);
  146. zone->dev_offset = current_offset;
  147. smallest = NULL;
  148. c = 0;
  149. for (j=0; j<cnt; j++) {
  150. char b[BDEVNAME_SIZE];
  151. rdev = conf->strip_zone[0].dev[j];
  152. printk("raid0: checking %s ...", bdevname(rdev->bdev,b));
  153. if (rdev->size > current_offset)
  154. {
  155. printk(" contained as device %d\n", c);
  156. zone->dev[c] = rdev;
  157. c++;
  158. if (!smallest || (rdev->size <smallest->size)) {
  159. smallest = rdev;
  160. printk(" (%llu) is smallest!.\n",
  161. (unsigned long long)rdev->size);
  162. }
  163. } else
  164. printk(" nope.\n");
  165. }
  166. zone->nb_dev = c;
  167. zone->size = (smallest->size - current_offset) * c;
  168. printk("raid0: zone->nb_dev: %d, size: %llu\n",
  169. zone->nb_dev, (unsigned long long)zone->size);
  170. zone->zone_offset = curr_zone_offset;
  171. curr_zone_offset += zone->size;
  172. current_offset = smallest->size;
  173. printk("raid0: current zone offset: %llu\n",
  174. (unsigned long long)current_offset);
  175. }
  176. /* Now find appropriate hash spacing.
  177. * We want a number which causes most hash entries to cover
  178. * at most two strips, but the hash table must be at most
  179. * 1 PAGE. We choose the smallest strip, or contiguous collection
  180. * of strips, that has big enough size. We never consider the last
  181. * strip though as it's size has no bearing on the efficacy of the hash
  182. * table.
  183. */
  184. conf->hash_spacing = curr_zone_offset;
  185. min_spacing = curr_zone_offset;
  186. sector_div(min_spacing, PAGE_SIZE/sizeof(struct strip_zone*));
  187. for (i=0; i < conf->nr_strip_zones-1; i++) {
  188. sector_t sz = 0;
  189. for (j=i; j<conf->nr_strip_zones-1 &&
  190. sz < min_spacing ; j++)
  191. sz += conf->strip_zone[j].size;
  192. if (sz >= min_spacing && sz < conf->hash_spacing)
  193. conf->hash_spacing = sz;
  194. }
  195. mddev->queue->unplug_fn = raid0_unplug;
  196. mddev->queue->backing_dev_info.congested_fn = raid0_congested;
  197. mddev->queue->backing_dev_info.congested_data = mddev;
  198. printk("raid0: done.\n");
  199. return 0;
  200. abort:
  201. return 1;
  202. }
  203. /**
  204. * raid0_mergeable_bvec -- tell bio layer if a two requests can be merged
  205. * @q: request queue
  206. * @bvm: properties of new bio
  207. * @biovec: the request that could be merged to it.
  208. *
  209. * Return amount of bytes we can accept at this offset
  210. */
  211. static int raid0_mergeable_bvec(struct request_queue *q,
  212. struct bvec_merge_data *bvm,
  213. struct bio_vec *biovec)
  214. {
  215. mddev_t *mddev = q->queuedata;
  216. sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
  217. int max;
  218. unsigned int chunk_sectors = mddev->chunk_size >> 9;
  219. unsigned int bio_sectors = bvm->bi_size >> 9;
  220. max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
  221. if (max < 0) max = 0; /* bio_add cannot handle a negative return */
  222. if (max <= biovec->bv_len && bio_sectors == 0)
  223. return biovec->bv_len;
  224. else
  225. return max;
  226. }
  227. static int raid0_run (mddev_t *mddev)
  228. {
  229. unsigned cur=0, i=0, nb_zone;
  230. s64 size;
  231. raid0_conf_t *conf;
  232. mdk_rdev_t *rdev;
  233. struct list_head *tmp;
  234. if (mddev->chunk_size == 0) {
  235. printk(KERN_ERR "md/raid0: non-zero chunk size required.\n");
  236. return -EINVAL;
  237. }
  238. printk(KERN_INFO "%s: setting max_sectors to %d, segment boundary to %d\n",
  239. mdname(mddev),
  240. mddev->chunk_size >> 9,
  241. (mddev->chunk_size>>1)-1);
  242. blk_queue_max_sectors(mddev->queue, mddev->chunk_size >> 9);
  243. blk_queue_segment_boundary(mddev->queue, (mddev->chunk_size>>1) - 1);
  244. mddev->queue->queue_lock = &mddev->queue->__queue_lock;
  245. conf = kmalloc(sizeof (raid0_conf_t), GFP_KERNEL);
  246. if (!conf)
  247. goto out;
  248. mddev->private = (void *)conf;
  249. conf->strip_zone = NULL;
  250. conf->devlist = NULL;
  251. if (create_strip_zones (mddev))
  252. goto out_free_conf;
  253. /* calculate array device size */
  254. mddev->array_sectors = 0;
  255. rdev_for_each(rdev, tmp, mddev)
  256. mddev->array_sectors += rdev->size * 2;
  257. printk("raid0 : md_size is %llu blocks.\n",
  258. (unsigned long long)mddev->array_sectors / 2);
  259. printk("raid0 : conf->hash_spacing is %llu blocks.\n",
  260. (unsigned long long)conf->hash_spacing);
  261. {
  262. sector_t s = mddev->array_sectors / 2;
  263. sector_t space = conf->hash_spacing;
  264. int round;
  265. conf->preshift = 0;
  266. if (sizeof(sector_t) > sizeof(u32)) {
  267. /*shift down space and s so that sector_div will work */
  268. while (space > (sector_t) (~(u32)0)) {
  269. s >>= 1;
  270. space >>= 1;
  271. s += 1; /* force round-up */
  272. conf->preshift++;
  273. }
  274. }
  275. round = sector_div(s, (u32)space) ? 1 : 0;
  276. nb_zone = s + round;
  277. }
  278. printk("raid0 : nb_zone is %d.\n", nb_zone);
  279. printk("raid0 : Allocating %Zd bytes for hash.\n",
  280. nb_zone*sizeof(struct strip_zone*));
  281. conf->hash_table = kmalloc (sizeof (struct strip_zone *)*nb_zone, GFP_KERNEL);
  282. if (!conf->hash_table)
  283. goto out_free_conf;
  284. size = conf->strip_zone[cur].size;
  285. conf->hash_table[0] = conf->strip_zone + cur;
  286. for (i=1; i< nb_zone; i++) {
  287. while (size <= conf->hash_spacing) {
  288. cur++;
  289. size += conf->strip_zone[cur].size;
  290. }
  291. size -= conf->hash_spacing;
  292. conf->hash_table[i] = conf->strip_zone + cur;
  293. }
  294. if (conf->preshift) {
  295. conf->hash_spacing >>= conf->preshift;
  296. /* round hash_spacing up so when we divide by it, we
  297. * err on the side of too-low, which is safest
  298. */
  299. conf->hash_spacing++;
  300. }
  301. /* calculate the max read-ahead size.
  302. * For read-ahead of large files to be effective, we need to
  303. * readahead at least twice a whole stripe. i.e. number of devices
  304. * multiplied by chunk size times 2.
  305. * If an individual device has an ra_pages greater than the
  306. * chunk size, then we will not drive that device as hard as it
  307. * wants. We consider this a configuration error: a larger
  308. * chunksize should be used in that case.
  309. */
  310. {
  311. int stripe = mddev->raid_disks * mddev->chunk_size / PAGE_SIZE;
  312. if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
  313. mddev->queue->backing_dev_info.ra_pages = 2* stripe;
  314. }
  315. blk_queue_merge_bvec(mddev->queue, raid0_mergeable_bvec);
  316. return 0;
  317. out_free_conf:
  318. kfree(conf->strip_zone);
  319. kfree(conf->devlist);
  320. kfree(conf);
  321. mddev->private = NULL;
  322. out:
  323. return -ENOMEM;
  324. }
  325. static int raid0_stop (mddev_t *mddev)
  326. {
  327. raid0_conf_t *conf = mddev_to_conf(mddev);
  328. blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
  329. kfree(conf->hash_table);
  330. conf->hash_table = NULL;
  331. kfree(conf->strip_zone);
  332. conf->strip_zone = NULL;
  333. kfree(conf);
  334. mddev->private = NULL;
  335. return 0;
  336. }
  337. static int raid0_make_request (struct request_queue *q, struct bio *bio)
  338. {
  339. mddev_t *mddev = q->queuedata;
  340. unsigned int sect_in_chunk, chunksize_bits, chunk_size, chunk_sects;
  341. raid0_conf_t *conf = mddev_to_conf(mddev);
  342. struct strip_zone *zone;
  343. mdk_rdev_t *tmp_dev;
  344. sector_t chunk;
  345. sector_t block, rsect;
  346. const int rw = bio_data_dir(bio);
  347. int cpu;
  348. if (unlikely(bio_barrier(bio))) {
  349. bio_endio(bio, -EOPNOTSUPP);
  350. return 0;
  351. }
  352. cpu = part_stat_lock();
  353. part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
  354. part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
  355. bio_sectors(bio));
  356. part_stat_unlock();
  357. chunk_size = mddev->chunk_size >> 10;
  358. chunk_sects = mddev->chunk_size >> 9;
  359. chunksize_bits = ffz(~chunk_size);
  360. block = bio->bi_sector >> 1;
  361. if (unlikely(chunk_sects < (bio->bi_sector & (chunk_sects - 1)) + (bio->bi_size >> 9))) {
  362. struct bio_pair *bp;
  363. /* Sanity check -- queue functions should prevent this happening */
  364. if (bio->bi_vcnt != 1 ||
  365. bio->bi_idx != 0)
  366. goto bad_map;
  367. /* This is a one page bio that upper layers
  368. * refuse to split for us, so we need to split it.
  369. */
  370. bp = bio_split(bio, chunk_sects - (bio->bi_sector & (chunk_sects - 1)));
  371. if (raid0_make_request(q, &bp->bio1))
  372. generic_make_request(&bp->bio1);
  373. if (raid0_make_request(q, &bp->bio2))
  374. generic_make_request(&bp->bio2);
  375. bio_pair_release(bp);
  376. return 0;
  377. }
  378. {
  379. sector_t x = block >> conf->preshift;
  380. sector_div(x, (u32)conf->hash_spacing);
  381. zone = conf->hash_table[x];
  382. }
  383. while (block >= (zone->zone_offset + zone->size))
  384. zone++;
  385. sect_in_chunk = bio->bi_sector & ((chunk_size<<1) -1);
  386. {
  387. sector_t x = (block - zone->zone_offset) >> chunksize_bits;
  388. sector_div(x, zone->nb_dev);
  389. chunk = x;
  390. x = block >> chunksize_bits;
  391. tmp_dev = zone->dev[sector_div(x, zone->nb_dev)];
  392. }
  393. rsect = (((chunk << chunksize_bits) + zone->dev_offset)<<1)
  394. + sect_in_chunk;
  395. bio->bi_bdev = tmp_dev->bdev;
  396. bio->bi_sector = rsect + tmp_dev->data_offset;
  397. /*
  398. * Let the main block layer submit the IO and resolve recursion:
  399. */
  400. return 1;
  401. bad_map:
  402. printk("raid0_make_request bug: can't convert block across chunks"
  403. " or bigger than %dk %llu %d\n", chunk_size,
  404. (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
  405. bio_io_error(bio);
  406. return 0;
  407. }
  408. static void raid0_status (struct seq_file *seq, mddev_t *mddev)
  409. {
  410. #undef MD_DEBUG
  411. #ifdef MD_DEBUG
  412. int j, k, h;
  413. char b[BDEVNAME_SIZE];
  414. raid0_conf_t *conf = mddev_to_conf(mddev);
  415. h = 0;
  416. for (j = 0; j < conf->nr_strip_zones; j++) {
  417. seq_printf(seq, " z%d", j);
  418. if (conf->hash_table[h] == conf->strip_zone+j)
  419. seq_printf(seq, "(h%d)", h++);
  420. seq_printf(seq, "=[");
  421. for (k = 0; k < conf->strip_zone[j].nb_dev; k++)
  422. seq_printf(seq, "%s/", bdevname(
  423. conf->strip_zone[j].dev[k]->bdev,b));
  424. seq_printf(seq, "] zo=%d do=%d s=%d\n",
  425. conf->strip_zone[j].zone_offset,
  426. conf->strip_zone[j].dev_offset,
  427. conf->strip_zone[j].size);
  428. }
  429. #endif
  430. seq_printf(seq, " %dk chunks", mddev->chunk_size/1024);
  431. return;
  432. }
  433. static struct mdk_personality raid0_personality=
  434. {
  435. .name = "raid0",
  436. .level = 0,
  437. .owner = THIS_MODULE,
  438. .make_request = raid0_make_request,
  439. .run = raid0_run,
  440. .stop = raid0_stop,
  441. .status = raid0_status,
  442. };
  443. static int __init raid0_init (void)
  444. {
  445. return register_md_personality (&raid0_personality);
  446. }
  447. static void raid0_exit (void)
  448. {
  449. unregister_md_personality (&raid0_personality);
  450. }
  451. module_init(raid0_init);
  452. module_exit(raid0_exit);
  453. MODULE_LICENSE("GPL");
  454. MODULE_ALIAS("md-personality-2"); /* RAID0 */
  455. MODULE_ALIAS("md-raid0");
  456. MODULE_ALIAS("md-level-0");