ide-dma.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501
  1. /*
  2. * IDE DMA support (including IDE PCI BM-DMA).
  3. *
  4. * Copyright (C) 1995-1998 Mark Lord
  5. * Copyright (C) 1999-2000 Andre Hedrick <andre@linux-ide.org>
  6. * Copyright (C) 2004, 2007 Bartlomiej Zolnierkiewicz
  7. *
  8. * May be copied or modified under the terms of the GNU General Public License
  9. *
  10. * DMA is supported for all IDE devices (disk drives, cdroms, tapes, floppies).
  11. */
  12. /*
  13. * Special Thanks to Mark for his Six years of work.
  14. */
  15. /*
  16. * Thanks to "Christopher J. Reimer" <reimer@doe.carleton.ca> for
  17. * fixing the problem with the BIOS on some Acer motherboards.
  18. *
  19. * Thanks to "Benoit Poulot-Cazajous" <poulot@chorus.fr> for testing
  20. * "TX" chipset compatibility and for providing patches for the "TX" chipset.
  21. *
  22. * Thanks to Christian Brunner <chb@muc.de> for taking a good first crack
  23. * at generic DMA -- his patches were referred to when preparing this code.
  24. *
  25. * Most importantly, thanks to Robert Bringman <rob@mars.trion.com>
  26. * for supplying a Promise UDMA board & WD UDMA drive for this work!
  27. */
  28. #include <linux/types.h>
  29. #include <linux/kernel.h>
  30. #include <linux/ide.h>
  31. #include <linux/scatterlist.h>
  32. #include <linux/dma-mapping.h>
  33. static const struct drive_list_entry drive_whitelist[] = {
  34. { "Micropolis 2112A" , NULL },
  35. { "CONNER CTMA 4000" , NULL },
  36. { "CONNER CTT8000-A" , NULL },
  37. { "ST34342A" , NULL },
  38. { NULL , NULL }
  39. };
  40. static const struct drive_list_entry drive_blacklist[] = {
  41. { "WDC AC11000H" , NULL },
  42. { "WDC AC22100H" , NULL },
  43. { "WDC AC32500H" , NULL },
  44. { "WDC AC33100H" , NULL },
  45. { "WDC AC31600H" , NULL },
  46. { "WDC AC32100H" , "24.09P07" },
  47. { "WDC AC23200L" , "21.10N21" },
  48. { "Compaq CRD-8241B" , NULL },
  49. { "CRD-8400B" , NULL },
  50. { "CRD-8480B", NULL },
  51. { "CRD-8482B", NULL },
  52. { "CRD-84" , NULL },
  53. { "SanDisk SDP3B" , NULL },
  54. { "SanDisk SDP3B-64" , NULL },
  55. { "SANYO CD-ROM CRD" , NULL },
  56. { "HITACHI CDR-8" , NULL },
  57. { "HITACHI CDR-8335" , NULL },
  58. { "HITACHI CDR-8435" , NULL },
  59. { "Toshiba CD-ROM XM-6202B" , NULL },
  60. { "TOSHIBA CD-ROM XM-1702BC", NULL },
  61. { "CD-532E-A" , NULL },
  62. { "E-IDE CD-ROM CR-840", NULL },
  63. { "CD-ROM Drive/F5A", NULL },
  64. { "WPI CDD-820", NULL },
  65. { "SAMSUNG CD-ROM SC-148C", NULL },
  66. { "SAMSUNG CD-ROM SC", NULL },
  67. { "ATAPI CD-ROM DRIVE 40X MAXIMUM", NULL },
  68. { "_NEC DV5800A", NULL },
  69. { "SAMSUNG CD-ROM SN-124", "N001" },
  70. { "Seagate STT20000A", NULL },
  71. { "CD-ROM CDR_U200", "1.09" },
  72. { NULL , NULL }
  73. };
  74. /**
  75. * ide_dma_intr - IDE DMA interrupt handler
  76. * @drive: the drive the interrupt is for
  77. *
  78. * Handle an interrupt completing a read/write DMA transfer on an
  79. * IDE device
  80. */
  81. ide_startstop_t ide_dma_intr(ide_drive_t *drive)
  82. {
  83. ide_hwif_t *hwif = drive->hwif;
  84. u8 stat = 0, dma_stat = 0;
  85. dma_stat = hwif->dma_ops->dma_end(drive);
  86. stat = hwif->tp_ops->read_status(hwif);
  87. if (OK_STAT(stat, DRIVE_READY, drive->bad_wstat | ATA_DRQ)) {
  88. if (!dma_stat) {
  89. struct request *rq = hwif->hwgroup->rq;
  90. task_end_request(drive, rq, stat);
  91. return ide_stopped;
  92. }
  93. printk(KERN_ERR "%s: %s: bad DMA status (0x%02x)\n",
  94. drive->name, __func__, dma_stat);
  95. }
  96. return ide_error(drive, "dma_intr", stat);
  97. }
  98. EXPORT_SYMBOL_GPL(ide_dma_intr);
  99. int ide_dma_good_drive(ide_drive_t *drive)
  100. {
  101. return ide_in_drive_list(drive->id, drive_whitelist);
  102. }
  103. /**
  104. * ide_build_sglist - map IDE scatter gather for DMA I/O
  105. * @drive: the drive to build the DMA table for
  106. * @rq: the request holding the sg list
  107. *
  108. * Perform the DMA mapping magic necessary to access the source or
  109. * target buffers of a request via DMA. The lower layers of the
  110. * kernel provide the necessary cache management so that we can
  111. * operate in a portable fashion.
  112. */
  113. int ide_build_sglist(ide_drive_t *drive, struct request *rq)
  114. {
  115. ide_hwif_t *hwif = drive->hwif;
  116. struct scatterlist *sg = hwif->sg_table;
  117. ide_map_sg(drive, rq);
  118. if (rq_data_dir(rq) == READ)
  119. hwif->sg_dma_direction = DMA_FROM_DEVICE;
  120. else
  121. hwif->sg_dma_direction = DMA_TO_DEVICE;
  122. return dma_map_sg(hwif->dev, sg, hwif->sg_nents,
  123. hwif->sg_dma_direction);
  124. }
  125. EXPORT_SYMBOL_GPL(ide_build_sglist);
  126. /**
  127. * ide_destroy_dmatable - clean up DMA mapping
  128. * @drive: The drive to unmap
  129. *
  130. * Teardown mappings after DMA has completed. This must be called
  131. * after the completion of each use of ide_build_dmatable and before
  132. * the next use of ide_build_dmatable. Failure to do so will cause
  133. * an oops as only one mapping can be live for each target at a given
  134. * time.
  135. */
  136. void ide_destroy_dmatable(ide_drive_t *drive)
  137. {
  138. ide_hwif_t *hwif = drive->hwif;
  139. dma_unmap_sg(hwif->dev, hwif->sg_table, hwif->sg_nents,
  140. hwif->sg_dma_direction);
  141. }
  142. EXPORT_SYMBOL_GPL(ide_destroy_dmatable);
  143. /**
  144. * ide_dma_off_quietly - Generic DMA kill
  145. * @drive: drive to control
  146. *
  147. * Turn off the current DMA on this IDE controller.
  148. */
  149. void ide_dma_off_quietly(ide_drive_t *drive)
  150. {
  151. drive->dev_flags &= ~IDE_DFLAG_USING_DMA;
  152. ide_toggle_bounce(drive, 0);
  153. drive->hwif->dma_ops->dma_host_set(drive, 0);
  154. }
  155. EXPORT_SYMBOL(ide_dma_off_quietly);
  156. /**
  157. * ide_dma_off - disable DMA on a device
  158. * @drive: drive to disable DMA on
  159. *
  160. * Disable IDE DMA for a device on this IDE controller.
  161. * Inform the user that DMA has been disabled.
  162. */
  163. void ide_dma_off(ide_drive_t *drive)
  164. {
  165. printk(KERN_INFO "%s: DMA disabled\n", drive->name);
  166. ide_dma_off_quietly(drive);
  167. }
  168. EXPORT_SYMBOL(ide_dma_off);
  169. /**
  170. * ide_dma_on - Enable DMA on a device
  171. * @drive: drive to enable DMA on
  172. *
  173. * Enable IDE DMA for a device on this IDE controller.
  174. */
  175. void ide_dma_on(ide_drive_t *drive)
  176. {
  177. drive->dev_flags |= IDE_DFLAG_USING_DMA;
  178. ide_toggle_bounce(drive, 1);
  179. drive->hwif->dma_ops->dma_host_set(drive, 1);
  180. }
  181. int __ide_dma_bad_drive(ide_drive_t *drive)
  182. {
  183. u16 *id = drive->id;
  184. int blacklist = ide_in_drive_list(id, drive_blacklist);
  185. if (blacklist) {
  186. printk(KERN_WARNING "%s: Disabling (U)DMA for %s (blacklisted)\n",
  187. drive->name, (char *)&id[ATA_ID_PROD]);
  188. return blacklist;
  189. }
  190. return 0;
  191. }
  192. EXPORT_SYMBOL(__ide_dma_bad_drive);
  193. static const u8 xfer_mode_bases[] = {
  194. XFER_UDMA_0,
  195. XFER_MW_DMA_0,
  196. XFER_SW_DMA_0,
  197. };
  198. static unsigned int ide_get_mode_mask(ide_drive_t *drive, u8 base, u8 req_mode)
  199. {
  200. u16 *id = drive->id;
  201. ide_hwif_t *hwif = drive->hwif;
  202. const struct ide_port_ops *port_ops = hwif->port_ops;
  203. unsigned int mask = 0;
  204. switch (base) {
  205. case XFER_UDMA_0:
  206. if ((id[ATA_ID_FIELD_VALID] & 4) == 0)
  207. break;
  208. if (port_ops && port_ops->udma_filter)
  209. mask = port_ops->udma_filter(drive);
  210. else
  211. mask = hwif->ultra_mask;
  212. mask &= id[ATA_ID_UDMA_MODES];
  213. /*
  214. * avoid false cable warning from eighty_ninty_three()
  215. */
  216. if (req_mode > XFER_UDMA_2) {
  217. if ((mask & 0x78) && (eighty_ninty_three(drive) == 0))
  218. mask &= 0x07;
  219. }
  220. break;
  221. case XFER_MW_DMA_0:
  222. if ((id[ATA_ID_FIELD_VALID] & 2) == 0)
  223. break;
  224. if (port_ops && port_ops->mdma_filter)
  225. mask = port_ops->mdma_filter(drive);
  226. else
  227. mask = hwif->mwdma_mask;
  228. mask &= id[ATA_ID_MWDMA_MODES];
  229. break;
  230. case XFER_SW_DMA_0:
  231. if (id[ATA_ID_FIELD_VALID] & 2) {
  232. mask = id[ATA_ID_SWDMA_MODES] & hwif->swdma_mask;
  233. } else if (id[ATA_ID_OLD_DMA_MODES] >> 8) {
  234. u8 mode = id[ATA_ID_OLD_DMA_MODES] >> 8;
  235. /*
  236. * if the mode is valid convert it to the mask
  237. * (the maximum allowed mode is XFER_SW_DMA_2)
  238. */
  239. if (mode <= 2)
  240. mask = ((2 << mode) - 1) & hwif->swdma_mask;
  241. }
  242. break;
  243. default:
  244. BUG();
  245. break;
  246. }
  247. return mask;
  248. }
  249. /**
  250. * ide_find_dma_mode - compute DMA speed
  251. * @drive: IDE device
  252. * @req_mode: requested mode
  253. *
  254. * Checks the drive/host capabilities and finds the speed to use for
  255. * the DMA transfer. The speed is then limited by the requested mode.
  256. *
  257. * Returns 0 if the drive/host combination is incapable of DMA transfers
  258. * or if the requested mode is not a DMA mode.
  259. */
  260. u8 ide_find_dma_mode(ide_drive_t *drive, u8 req_mode)
  261. {
  262. ide_hwif_t *hwif = drive->hwif;
  263. unsigned int mask;
  264. int x, i;
  265. u8 mode = 0;
  266. if (drive->media != ide_disk) {
  267. if (hwif->host_flags & IDE_HFLAG_NO_ATAPI_DMA)
  268. return 0;
  269. }
  270. for (i = 0; i < ARRAY_SIZE(xfer_mode_bases); i++) {
  271. if (req_mode < xfer_mode_bases[i])
  272. continue;
  273. mask = ide_get_mode_mask(drive, xfer_mode_bases[i], req_mode);
  274. x = fls(mask) - 1;
  275. if (x >= 0) {
  276. mode = xfer_mode_bases[i] + x;
  277. break;
  278. }
  279. }
  280. if (hwif->chipset == ide_acorn && mode == 0) {
  281. /*
  282. * is this correct?
  283. */
  284. if (ide_dma_good_drive(drive) &&
  285. drive->id[ATA_ID_EIDE_DMA_TIME] < 150)
  286. mode = XFER_MW_DMA_1;
  287. }
  288. mode = min(mode, req_mode);
  289. printk(KERN_INFO "%s: %s mode selected\n", drive->name,
  290. mode ? ide_xfer_verbose(mode) : "no DMA");
  291. return mode;
  292. }
  293. EXPORT_SYMBOL_GPL(ide_find_dma_mode);
  294. static int ide_tune_dma(ide_drive_t *drive)
  295. {
  296. ide_hwif_t *hwif = drive->hwif;
  297. u8 speed;
  298. if (ata_id_has_dma(drive->id) == 0 ||
  299. (drive->dev_flags & IDE_DFLAG_NODMA))
  300. return 0;
  301. /* consult the list of known "bad" drives */
  302. if (__ide_dma_bad_drive(drive))
  303. return 0;
  304. if (ide_id_dma_bug(drive))
  305. return 0;
  306. if (hwif->host_flags & IDE_HFLAG_TRUST_BIOS_FOR_DMA)
  307. return config_drive_for_dma(drive);
  308. speed = ide_max_dma_mode(drive);
  309. if (!speed)
  310. return 0;
  311. if (ide_set_dma_mode(drive, speed))
  312. return 0;
  313. return 1;
  314. }
  315. static int ide_dma_check(ide_drive_t *drive)
  316. {
  317. ide_hwif_t *hwif = drive->hwif;
  318. if (ide_tune_dma(drive))
  319. return 0;
  320. /* TODO: always do PIO fallback */
  321. if (hwif->host_flags & IDE_HFLAG_TRUST_BIOS_FOR_DMA)
  322. return -1;
  323. ide_set_max_pio(drive);
  324. return -1;
  325. }
  326. int ide_id_dma_bug(ide_drive_t *drive)
  327. {
  328. u16 *id = drive->id;
  329. if (id[ATA_ID_FIELD_VALID] & 4) {
  330. if ((id[ATA_ID_UDMA_MODES] >> 8) &&
  331. (id[ATA_ID_MWDMA_MODES] >> 8))
  332. goto err_out;
  333. } else if (id[ATA_ID_FIELD_VALID] & 2) {
  334. if ((id[ATA_ID_MWDMA_MODES] >> 8) &&
  335. (id[ATA_ID_SWDMA_MODES] >> 8))
  336. goto err_out;
  337. }
  338. return 0;
  339. err_out:
  340. printk(KERN_ERR "%s: bad DMA info in identify block\n", drive->name);
  341. return 1;
  342. }
  343. int ide_set_dma(ide_drive_t *drive)
  344. {
  345. int rc;
  346. /*
  347. * Force DMAing for the beginning of the check.
  348. * Some chipsets appear to do interesting
  349. * things, if not checked and cleared.
  350. * PARANOIA!!!
  351. */
  352. ide_dma_off_quietly(drive);
  353. rc = ide_dma_check(drive);
  354. if (rc)
  355. return rc;
  356. ide_dma_on(drive);
  357. return 0;
  358. }
  359. void ide_check_dma_crc(ide_drive_t *drive)
  360. {
  361. u8 mode;
  362. ide_dma_off_quietly(drive);
  363. drive->crc_count = 0;
  364. mode = drive->current_speed;
  365. /*
  366. * Don't try non Ultra-DMA modes without iCRC's. Force the
  367. * device to PIO and make the user enable SWDMA/MWDMA modes.
  368. */
  369. if (mode > XFER_UDMA_0 && mode <= XFER_UDMA_7)
  370. mode--;
  371. else
  372. mode = XFER_PIO_4;
  373. ide_set_xfer_rate(drive, mode);
  374. if (drive->current_speed >= XFER_SW_DMA_0)
  375. ide_dma_on(drive);
  376. }
  377. void ide_dma_lost_irq(ide_drive_t *drive)
  378. {
  379. printk(KERN_ERR "%s: DMA interrupt recovery\n", drive->name);
  380. }
  381. EXPORT_SYMBOL_GPL(ide_dma_lost_irq);
  382. void ide_dma_timeout(ide_drive_t *drive)
  383. {
  384. ide_hwif_t *hwif = drive->hwif;
  385. printk(KERN_ERR "%s: timeout waiting for DMA\n", drive->name);
  386. if (hwif->dma_ops->dma_test_irq(drive))
  387. return;
  388. ide_dump_status(drive, "DMA timeout", hwif->tp_ops->read_status(hwif));
  389. hwif->dma_ops->dma_end(drive);
  390. }
  391. EXPORT_SYMBOL_GPL(ide_dma_timeout);
  392. void ide_release_dma_engine(ide_hwif_t *hwif)
  393. {
  394. if (hwif->dmatable_cpu) {
  395. int prd_size = hwif->prd_max_nents * hwif->prd_ent_size;
  396. dma_free_coherent(hwif->dev, prd_size,
  397. hwif->dmatable_cpu, hwif->dmatable_dma);
  398. hwif->dmatable_cpu = NULL;
  399. }
  400. }
  401. EXPORT_SYMBOL_GPL(ide_release_dma_engine);
  402. int ide_allocate_dma_engine(ide_hwif_t *hwif)
  403. {
  404. int prd_size;
  405. if (hwif->prd_max_nents == 0)
  406. hwif->prd_max_nents = PRD_ENTRIES;
  407. if (hwif->prd_ent_size == 0)
  408. hwif->prd_ent_size = PRD_BYTES;
  409. prd_size = hwif->prd_max_nents * hwif->prd_ent_size;
  410. hwif->dmatable_cpu = dma_alloc_coherent(hwif->dev, prd_size,
  411. &hwif->dmatable_dma,
  412. GFP_ATOMIC);
  413. if (hwif->dmatable_cpu == NULL) {
  414. printk(KERN_ERR "%s: unable to allocate PRD table\n",
  415. hwif->name);
  416. return -ENOMEM;
  417. }
  418. return 0;
  419. }
  420. EXPORT_SYMBOL_GPL(ide_allocate_dma_engine);