lm85.c 47 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566
  1. /*
  2. lm85.c - Part of lm_sensors, Linux kernel modules for hardware
  3. monitoring
  4. Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
  5. Copyright (c) 2002, 2003 Philip Pokorny <ppokorny@penguincomputing.com>
  6. Copyright (c) 2003 Margit Schubert-While <margitsw@t-online.de>
  7. Copyright (c) 2004 Justin Thiessen <jthiessen@penguincomputing.com>
  8. Copyright (C) 2007, 2008 Jean Delvare <khali@linux-fr.org>
  9. Chip details at <http://www.national.com/ds/LM/LM85.pdf>
  10. This program is free software; you can redistribute it and/or modify
  11. it under the terms of the GNU General Public License as published by
  12. the Free Software Foundation; either version 2 of the License, or
  13. (at your option) any later version.
  14. This program is distributed in the hope that it will be useful,
  15. but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. GNU General Public License for more details.
  18. You should have received a copy of the GNU General Public License
  19. along with this program; if not, write to the Free Software
  20. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21. */
  22. #include <linux/module.h>
  23. #include <linux/init.h>
  24. #include <linux/slab.h>
  25. #include <linux/jiffies.h>
  26. #include <linux/i2c.h>
  27. #include <linux/hwmon.h>
  28. #include <linux/hwmon-vid.h>
  29. #include <linux/hwmon-sysfs.h>
  30. #include <linux/err.h>
  31. #include <linux/mutex.h>
  32. /* Addresses to scan */
  33. static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
  34. /* Insmod parameters */
  35. I2C_CLIENT_INSMOD_7(lm85b, lm85c, adm1027, adt7463, adt7468, emc6d100,
  36. emc6d102);
  37. /* The LM85 registers */
  38. #define LM85_REG_IN(nr) (0x20 + (nr))
  39. #define LM85_REG_IN_MIN(nr) (0x44 + (nr) * 2)
  40. #define LM85_REG_IN_MAX(nr) (0x45 + (nr) * 2)
  41. #define LM85_REG_TEMP(nr) (0x25 + (nr))
  42. #define LM85_REG_TEMP_MIN(nr) (0x4e + (nr) * 2)
  43. #define LM85_REG_TEMP_MAX(nr) (0x4f + (nr) * 2)
  44. /* Fan speeds are LSB, MSB (2 bytes) */
  45. #define LM85_REG_FAN(nr) (0x28 + (nr) * 2)
  46. #define LM85_REG_FAN_MIN(nr) (0x54 + (nr) * 2)
  47. #define LM85_REG_PWM(nr) (0x30 + (nr))
  48. #define LM85_REG_COMPANY 0x3e
  49. #define LM85_REG_VERSTEP 0x3f
  50. #define ADT7468_REG_CFG5 0x7c
  51. #define ADT7468_OFF64 0x01
  52. #define IS_ADT7468_OFF64(data) \
  53. ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64))
  54. /* These are the recognized values for the above regs */
  55. #define LM85_COMPANY_NATIONAL 0x01
  56. #define LM85_COMPANY_ANALOG_DEV 0x41
  57. #define LM85_COMPANY_SMSC 0x5c
  58. #define LM85_VERSTEP_VMASK 0xf0
  59. #define LM85_VERSTEP_GENERIC 0x60
  60. #define LM85_VERSTEP_LM85C 0x60
  61. #define LM85_VERSTEP_LM85B 0x62
  62. #define LM85_VERSTEP_ADM1027 0x60
  63. #define LM85_VERSTEP_ADT7463 0x62
  64. #define LM85_VERSTEP_ADT7463C 0x6A
  65. #define LM85_VERSTEP_ADT7468_1 0x71
  66. #define LM85_VERSTEP_ADT7468_2 0x72
  67. #define LM85_VERSTEP_EMC6D100_A0 0x60
  68. #define LM85_VERSTEP_EMC6D100_A1 0x61
  69. #define LM85_VERSTEP_EMC6D102 0x65
  70. #define LM85_REG_CONFIG 0x40
  71. #define LM85_REG_ALARM1 0x41
  72. #define LM85_REG_ALARM2 0x42
  73. #define LM85_REG_VID 0x43
  74. /* Automated FAN control */
  75. #define LM85_REG_AFAN_CONFIG(nr) (0x5c + (nr))
  76. #define LM85_REG_AFAN_RANGE(nr) (0x5f + (nr))
  77. #define LM85_REG_AFAN_SPIKE1 0x62
  78. #define LM85_REG_AFAN_MINPWM(nr) (0x64 + (nr))
  79. #define LM85_REG_AFAN_LIMIT(nr) (0x67 + (nr))
  80. #define LM85_REG_AFAN_CRITICAL(nr) (0x6a + (nr))
  81. #define LM85_REG_AFAN_HYST1 0x6d
  82. #define LM85_REG_AFAN_HYST2 0x6e
  83. #define ADM1027_REG_EXTEND_ADC1 0x76
  84. #define ADM1027_REG_EXTEND_ADC2 0x77
  85. #define EMC6D100_REG_ALARM3 0x7d
  86. /* IN5, IN6 and IN7 */
  87. #define EMC6D100_REG_IN(nr) (0x70 + ((nr) - 5))
  88. #define EMC6D100_REG_IN_MIN(nr) (0x73 + ((nr) - 5) * 2)
  89. #define EMC6D100_REG_IN_MAX(nr) (0x74 + ((nr) - 5) * 2)
  90. #define EMC6D102_REG_EXTEND_ADC1 0x85
  91. #define EMC6D102_REG_EXTEND_ADC2 0x86
  92. #define EMC6D102_REG_EXTEND_ADC3 0x87
  93. #define EMC6D102_REG_EXTEND_ADC4 0x88
  94. /* Conversions. Rounding and limit checking is only done on the TO_REG
  95. variants. Note that you should be a bit careful with which arguments
  96. these macros are called: arguments may be evaluated more than once.
  97. */
  98. /* IN are scaled acording to built-in resistors */
  99. static const int lm85_scaling[] = { /* .001 Volts */
  100. 2500, 2250, 3300, 5000, 12000,
  101. 3300, 1500, 1800 /*EMC6D100*/
  102. };
  103. #define SCALE(val, from, to) (((val) * (to) + ((from) / 2)) / (from))
  104. #define INS_TO_REG(n, val) \
  105. SENSORS_LIMIT(SCALE(val, lm85_scaling[n], 192), 0, 255)
  106. #define INSEXT_FROM_REG(n, val, ext) \
  107. SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
  108. #define INS_FROM_REG(n, val) SCALE((val), 192, lm85_scaling[n])
  109. /* FAN speed is measured using 90kHz clock */
  110. static inline u16 FAN_TO_REG(unsigned long val)
  111. {
  112. if (!val)
  113. return 0xffff;
  114. return SENSORS_LIMIT(5400000 / val, 1, 0xfffe);
  115. }
  116. #define FAN_FROM_REG(val) ((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
  117. 5400000 / (val))
  118. /* Temperature is reported in .001 degC increments */
  119. #define TEMP_TO_REG(val) \
  120. SENSORS_LIMIT(SCALE(val, 1000, 1), -127, 127)
  121. #define TEMPEXT_FROM_REG(val, ext) \
  122. SCALE(((val) << 4) + (ext), 16, 1000)
  123. #define TEMP_FROM_REG(val) ((val) * 1000)
  124. #define PWM_TO_REG(val) SENSORS_LIMIT(val, 0, 255)
  125. #define PWM_FROM_REG(val) (val)
  126. /* ZONEs have the following parameters:
  127. * Limit (low) temp, 1. degC
  128. * Hysteresis (below limit), 1. degC (0-15)
  129. * Range of speed control, .1 degC (2-80)
  130. * Critical (high) temp, 1. degC
  131. *
  132. * FAN PWMs have the following parameters:
  133. * Reference Zone, 1, 2, 3, etc.
  134. * Spinup time, .05 sec
  135. * PWM value at limit/low temp, 1 count
  136. * PWM Frequency, 1. Hz
  137. * PWM is Min or OFF below limit, flag
  138. * Invert PWM output, flag
  139. *
  140. * Some chips filter the temp, others the fan.
  141. * Filter constant (or disabled) .1 seconds
  142. */
  143. /* These are the zone temperature range encodings in .001 degree C */
  144. static const int lm85_range_map[] = {
  145. 2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
  146. 13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
  147. };
  148. static int RANGE_TO_REG(int range)
  149. {
  150. int i;
  151. /* Find the closest match */
  152. for (i = 0; i < 15; ++i) {
  153. if (range <= (lm85_range_map[i] + lm85_range_map[i + 1]) / 2)
  154. break;
  155. }
  156. return i;
  157. }
  158. #define RANGE_FROM_REG(val) lm85_range_map[(val) & 0x0f]
  159. /* These are the PWM frequency encodings */
  160. static const int lm85_freq_map[8] = { /* 1 Hz */
  161. 10, 15, 23, 30, 38, 47, 61, 94
  162. };
  163. static const int adm1027_freq_map[8] = { /* 1 Hz */
  164. 11, 15, 22, 29, 35, 44, 59, 88
  165. };
  166. static int FREQ_TO_REG(const int *map, int freq)
  167. {
  168. int i;
  169. /* Find the closest match */
  170. for (i = 0; i < 7; ++i)
  171. if (freq <= (map[i] + map[i + 1]) / 2)
  172. break;
  173. return i;
  174. }
  175. static int FREQ_FROM_REG(const int *map, u8 reg)
  176. {
  177. return map[reg & 0x07];
  178. }
  179. /* Since we can't use strings, I'm abusing these numbers
  180. * to stand in for the following meanings:
  181. * 1 -- PWM responds to Zone 1
  182. * 2 -- PWM responds to Zone 2
  183. * 3 -- PWM responds to Zone 3
  184. * 23 -- PWM responds to the higher temp of Zone 2 or 3
  185. * 123 -- PWM responds to highest of Zone 1, 2, or 3
  186. * 0 -- PWM is always at 0% (ie, off)
  187. * -1 -- PWM is always at 100%
  188. * -2 -- PWM responds to manual control
  189. */
  190. static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
  191. #define ZONE_FROM_REG(val) lm85_zone_map[(val) >> 5]
  192. static int ZONE_TO_REG(int zone)
  193. {
  194. int i;
  195. for (i = 0; i <= 7; ++i)
  196. if (zone == lm85_zone_map[i])
  197. break;
  198. if (i > 7) /* Not found. */
  199. i = 3; /* Always 100% */
  200. return i << 5;
  201. }
  202. #define HYST_TO_REG(val) SENSORS_LIMIT(((val) + 500) / 1000, 0, 15)
  203. #define HYST_FROM_REG(val) ((val) * 1000)
  204. /* Chip sampling rates
  205. *
  206. * Some sensors are not updated more frequently than once per second
  207. * so it doesn't make sense to read them more often than that.
  208. * We cache the results and return the saved data if the driver
  209. * is called again before a second has elapsed.
  210. *
  211. * Also, there is significant configuration data for this chip
  212. * given the automatic PWM fan control that is possible. There
  213. * are about 47 bytes of config data to only 22 bytes of actual
  214. * readings. So, we keep the config data up to date in the cache
  215. * when it is written and only sample it once every 1 *minute*
  216. */
  217. #define LM85_DATA_INTERVAL (HZ + HZ / 2)
  218. #define LM85_CONFIG_INTERVAL (1 * 60 * HZ)
  219. /* LM85 can automatically adjust fan speeds based on temperature
  220. * This structure encapsulates an entire Zone config. There are
  221. * three zones (one for each temperature input) on the lm85
  222. */
  223. struct lm85_zone {
  224. s8 limit; /* Low temp limit */
  225. u8 hyst; /* Low limit hysteresis. (0-15) */
  226. u8 range; /* Temp range, encoded */
  227. s8 critical; /* "All fans ON" temp limit */
  228. u8 off_desired; /* Actual "off" temperature specified. Preserved
  229. * to prevent "drift" as other autofan control
  230. * values change.
  231. */
  232. u8 max_desired; /* Actual "max" temperature specified. Preserved
  233. * to prevent "drift" as other autofan control
  234. * values change.
  235. */
  236. };
  237. struct lm85_autofan {
  238. u8 config; /* Register value */
  239. u8 min_pwm; /* Minimum PWM value, encoded */
  240. u8 min_off; /* Min PWM or OFF below "limit", flag */
  241. };
  242. /* For each registered chip, we need to keep some data in memory.
  243. The structure is dynamically allocated. */
  244. struct lm85_data {
  245. struct device *hwmon_dev;
  246. const int *freq_map;
  247. enum chips type;
  248. struct mutex update_lock;
  249. int valid; /* !=0 if following fields are valid */
  250. unsigned long last_reading; /* In jiffies */
  251. unsigned long last_config; /* In jiffies */
  252. u8 in[8]; /* Register value */
  253. u8 in_max[8]; /* Register value */
  254. u8 in_min[8]; /* Register value */
  255. s8 temp[3]; /* Register value */
  256. s8 temp_min[3]; /* Register value */
  257. s8 temp_max[3]; /* Register value */
  258. u16 fan[4]; /* Register value */
  259. u16 fan_min[4]; /* Register value */
  260. u8 pwm[3]; /* Register value */
  261. u8 pwm_freq[3]; /* Register encoding */
  262. u8 temp_ext[3]; /* Decoded values */
  263. u8 in_ext[8]; /* Decoded values */
  264. u8 vid; /* Register value */
  265. u8 vrm; /* VRM version */
  266. u32 alarms; /* Register encoding, combined */
  267. u8 cfg5; /* Config Register 5 on ADT7468 */
  268. struct lm85_autofan autofan[3];
  269. struct lm85_zone zone[3];
  270. };
  271. static int lm85_detect(struct i2c_client *client, int kind,
  272. struct i2c_board_info *info);
  273. static int lm85_probe(struct i2c_client *client,
  274. const struct i2c_device_id *id);
  275. static int lm85_remove(struct i2c_client *client);
  276. static int lm85_read_value(struct i2c_client *client, u8 reg);
  277. static void lm85_write_value(struct i2c_client *client, u8 reg, int value);
  278. static struct lm85_data *lm85_update_device(struct device *dev);
  279. static const struct i2c_device_id lm85_id[] = {
  280. { "adm1027", adm1027 },
  281. { "adt7463", adt7463 },
  282. { "lm85", any_chip },
  283. { "lm85b", lm85b },
  284. { "lm85c", lm85c },
  285. { "emc6d100", emc6d100 },
  286. { "emc6d101", emc6d100 },
  287. { "emc6d102", emc6d102 },
  288. { }
  289. };
  290. MODULE_DEVICE_TABLE(i2c, lm85_id);
  291. static struct i2c_driver lm85_driver = {
  292. .class = I2C_CLASS_HWMON,
  293. .driver = {
  294. .name = "lm85",
  295. },
  296. .probe = lm85_probe,
  297. .remove = lm85_remove,
  298. .id_table = lm85_id,
  299. .detect = lm85_detect,
  300. .address_data = &addr_data,
  301. };
  302. /* 4 Fans */
  303. static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
  304. char *buf)
  305. {
  306. int nr = to_sensor_dev_attr(attr)->index;
  307. struct lm85_data *data = lm85_update_device(dev);
  308. return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
  309. }
  310. static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
  311. char *buf)
  312. {
  313. int nr = to_sensor_dev_attr(attr)->index;
  314. struct lm85_data *data = lm85_update_device(dev);
  315. return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
  316. }
  317. static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
  318. const char *buf, size_t count)
  319. {
  320. int nr = to_sensor_dev_attr(attr)->index;
  321. struct i2c_client *client = to_i2c_client(dev);
  322. struct lm85_data *data = i2c_get_clientdata(client);
  323. unsigned long val = simple_strtoul(buf, NULL, 10);
  324. mutex_lock(&data->update_lock);
  325. data->fan_min[nr] = FAN_TO_REG(val);
  326. lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
  327. mutex_unlock(&data->update_lock);
  328. return count;
  329. }
  330. #define show_fan_offset(offset) \
  331. static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
  332. show_fan, NULL, offset - 1); \
  333. static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
  334. show_fan_min, set_fan_min, offset - 1)
  335. show_fan_offset(1);
  336. show_fan_offset(2);
  337. show_fan_offset(3);
  338. show_fan_offset(4);
  339. /* vid, vrm, alarms */
  340. static ssize_t show_vid_reg(struct device *dev, struct device_attribute *attr,
  341. char *buf)
  342. {
  343. struct lm85_data *data = lm85_update_device(dev);
  344. int vid;
  345. if (data->type == adt7463 && (data->vid & 0x80)) {
  346. /* 6-pin VID (VRM 10) */
  347. vid = vid_from_reg(data->vid & 0x3f, data->vrm);
  348. } else {
  349. /* 5-pin VID (VRM 9) */
  350. vid = vid_from_reg(data->vid & 0x1f, data->vrm);
  351. }
  352. return sprintf(buf, "%d\n", vid);
  353. }
  354. static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL);
  355. static ssize_t show_vrm_reg(struct device *dev, struct device_attribute *attr,
  356. char *buf)
  357. {
  358. struct lm85_data *data = dev_get_drvdata(dev);
  359. return sprintf(buf, "%ld\n", (long) data->vrm);
  360. }
  361. static ssize_t store_vrm_reg(struct device *dev, struct device_attribute *attr,
  362. const char *buf, size_t count)
  363. {
  364. struct lm85_data *data = dev_get_drvdata(dev);
  365. data->vrm = simple_strtoul(buf, NULL, 10);
  366. return count;
  367. }
  368. static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg);
  369. static ssize_t show_alarms_reg(struct device *dev, struct device_attribute
  370. *attr, char *buf)
  371. {
  372. struct lm85_data *data = lm85_update_device(dev);
  373. return sprintf(buf, "%u\n", data->alarms);
  374. }
  375. static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL);
  376. static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
  377. char *buf)
  378. {
  379. int nr = to_sensor_dev_attr(attr)->index;
  380. struct lm85_data *data = lm85_update_device(dev);
  381. return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
  382. }
  383. static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
  384. static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
  385. static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
  386. static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
  387. static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
  388. static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 18);
  389. static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 16);
  390. static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 17);
  391. static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
  392. static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14);
  393. static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
  394. static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 6);
  395. static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 15);
  396. static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10);
  397. static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11);
  398. static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 12);
  399. static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 13);
  400. /* pwm */
  401. static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
  402. char *buf)
  403. {
  404. int nr = to_sensor_dev_attr(attr)->index;
  405. struct lm85_data *data = lm85_update_device(dev);
  406. return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
  407. }
  408. static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
  409. const char *buf, size_t count)
  410. {
  411. int nr = to_sensor_dev_attr(attr)->index;
  412. struct i2c_client *client = to_i2c_client(dev);
  413. struct lm85_data *data = i2c_get_clientdata(client);
  414. long val = simple_strtol(buf, NULL, 10);
  415. mutex_lock(&data->update_lock);
  416. data->pwm[nr] = PWM_TO_REG(val);
  417. lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
  418. mutex_unlock(&data->update_lock);
  419. return count;
  420. }
  421. static ssize_t show_pwm_enable(struct device *dev, struct device_attribute
  422. *attr, char *buf)
  423. {
  424. int nr = to_sensor_dev_attr(attr)->index;
  425. struct lm85_data *data = lm85_update_device(dev);
  426. int pwm_zone, enable;
  427. pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
  428. switch (pwm_zone) {
  429. case -1: /* PWM is always at 100% */
  430. enable = 0;
  431. break;
  432. case 0: /* PWM is always at 0% */
  433. case -2: /* PWM responds to manual control */
  434. enable = 1;
  435. break;
  436. default: /* PWM in automatic mode */
  437. enable = 2;
  438. }
  439. return sprintf(buf, "%d\n", enable);
  440. }
  441. static ssize_t set_pwm_enable(struct device *dev, struct device_attribute
  442. *attr, const char *buf, size_t count)
  443. {
  444. int nr = to_sensor_dev_attr(attr)->index;
  445. struct i2c_client *client = to_i2c_client(dev);
  446. struct lm85_data *data = i2c_get_clientdata(client);
  447. long val = simple_strtol(buf, NULL, 10);
  448. u8 config;
  449. switch (val) {
  450. case 0:
  451. config = 3;
  452. break;
  453. case 1:
  454. config = 7;
  455. break;
  456. case 2:
  457. /* Here we have to choose arbitrarily one of the 5 possible
  458. configurations; I go for the safest */
  459. config = 6;
  460. break;
  461. default:
  462. return -EINVAL;
  463. }
  464. mutex_lock(&data->update_lock);
  465. data->autofan[nr].config = lm85_read_value(client,
  466. LM85_REG_AFAN_CONFIG(nr));
  467. data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
  468. | (config << 5);
  469. lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
  470. data->autofan[nr].config);
  471. mutex_unlock(&data->update_lock);
  472. return count;
  473. }
  474. static ssize_t show_pwm_freq(struct device *dev,
  475. struct device_attribute *attr, char *buf)
  476. {
  477. int nr = to_sensor_dev_attr(attr)->index;
  478. struct lm85_data *data = lm85_update_device(dev);
  479. return sprintf(buf, "%d\n", FREQ_FROM_REG(data->freq_map,
  480. data->pwm_freq[nr]));
  481. }
  482. static ssize_t set_pwm_freq(struct device *dev,
  483. struct device_attribute *attr, const char *buf, size_t count)
  484. {
  485. int nr = to_sensor_dev_attr(attr)->index;
  486. struct i2c_client *client = to_i2c_client(dev);
  487. struct lm85_data *data = i2c_get_clientdata(client);
  488. long val = simple_strtol(buf, NULL, 10);
  489. mutex_lock(&data->update_lock);
  490. data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map, val);
  491. lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
  492. (data->zone[nr].range << 4)
  493. | data->pwm_freq[nr]);
  494. mutex_unlock(&data->update_lock);
  495. return count;
  496. }
  497. #define show_pwm_reg(offset) \
  498. static SENSOR_DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR, \
  499. show_pwm, set_pwm, offset - 1); \
  500. static SENSOR_DEVICE_ATTR(pwm##offset##_enable, S_IRUGO | S_IWUSR, \
  501. show_pwm_enable, set_pwm_enable, offset - 1); \
  502. static SENSOR_DEVICE_ATTR(pwm##offset##_freq, S_IRUGO | S_IWUSR, \
  503. show_pwm_freq, set_pwm_freq, offset - 1)
  504. show_pwm_reg(1);
  505. show_pwm_reg(2);
  506. show_pwm_reg(3);
  507. /* Voltages */
  508. static ssize_t show_in(struct device *dev, struct device_attribute *attr,
  509. char *buf)
  510. {
  511. int nr = to_sensor_dev_attr(attr)->index;
  512. struct lm85_data *data = lm85_update_device(dev);
  513. return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
  514. data->in_ext[nr]));
  515. }
  516. static ssize_t show_in_min(struct device *dev, struct device_attribute *attr,
  517. char *buf)
  518. {
  519. int nr = to_sensor_dev_attr(attr)->index;
  520. struct lm85_data *data = lm85_update_device(dev);
  521. return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
  522. }
  523. static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
  524. const char *buf, size_t count)
  525. {
  526. int nr = to_sensor_dev_attr(attr)->index;
  527. struct i2c_client *client = to_i2c_client(dev);
  528. struct lm85_data *data = i2c_get_clientdata(client);
  529. long val = simple_strtol(buf, NULL, 10);
  530. mutex_lock(&data->update_lock);
  531. data->in_min[nr] = INS_TO_REG(nr, val);
  532. lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
  533. mutex_unlock(&data->update_lock);
  534. return count;
  535. }
  536. static ssize_t show_in_max(struct device *dev, struct device_attribute *attr,
  537. char *buf)
  538. {
  539. int nr = to_sensor_dev_attr(attr)->index;
  540. struct lm85_data *data = lm85_update_device(dev);
  541. return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
  542. }
  543. static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
  544. const char *buf, size_t count)
  545. {
  546. int nr = to_sensor_dev_attr(attr)->index;
  547. struct i2c_client *client = to_i2c_client(dev);
  548. struct lm85_data *data = i2c_get_clientdata(client);
  549. long val = simple_strtol(buf, NULL, 10);
  550. mutex_lock(&data->update_lock);
  551. data->in_max[nr] = INS_TO_REG(nr, val);
  552. lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
  553. mutex_unlock(&data->update_lock);
  554. return count;
  555. }
  556. #define show_in_reg(offset) \
  557. static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
  558. show_in, NULL, offset); \
  559. static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
  560. show_in_min, set_in_min, offset); \
  561. static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
  562. show_in_max, set_in_max, offset)
  563. show_in_reg(0);
  564. show_in_reg(1);
  565. show_in_reg(2);
  566. show_in_reg(3);
  567. show_in_reg(4);
  568. show_in_reg(5);
  569. show_in_reg(6);
  570. show_in_reg(7);
  571. /* Temps */
  572. static ssize_t show_temp(struct device *dev, struct device_attribute *attr,
  573. char *buf)
  574. {
  575. int nr = to_sensor_dev_attr(attr)->index;
  576. struct lm85_data *data = lm85_update_device(dev);
  577. return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
  578. data->temp_ext[nr]));
  579. }
  580. static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr,
  581. char *buf)
  582. {
  583. int nr = to_sensor_dev_attr(attr)->index;
  584. struct lm85_data *data = lm85_update_device(dev);
  585. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
  586. }
  587. static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
  588. const char *buf, size_t count)
  589. {
  590. int nr = to_sensor_dev_attr(attr)->index;
  591. struct i2c_client *client = to_i2c_client(dev);
  592. struct lm85_data *data = i2c_get_clientdata(client);
  593. long val = simple_strtol(buf, NULL, 10);
  594. if (IS_ADT7468_OFF64(data))
  595. val += 64;
  596. mutex_lock(&data->update_lock);
  597. data->temp_min[nr] = TEMP_TO_REG(val);
  598. lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
  599. mutex_unlock(&data->update_lock);
  600. return count;
  601. }
  602. static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr,
  603. char *buf)
  604. {
  605. int nr = to_sensor_dev_attr(attr)->index;
  606. struct lm85_data *data = lm85_update_device(dev);
  607. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
  608. }
  609. static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
  610. const char *buf, size_t count)
  611. {
  612. int nr = to_sensor_dev_attr(attr)->index;
  613. struct i2c_client *client = to_i2c_client(dev);
  614. struct lm85_data *data = i2c_get_clientdata(client);
  615. long val = simple_strtol(buf, NULL, 10);
  616. if (IS_ADT7468_OFF64(data))
  617. val += 64;
  618. mutex_lock(&data->update_lock);
  619. data->temp_max[nr] = TEMP_TO_REG(val);
  620. lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
  621. mutex_unlock(&data->update_lock);
  622. return count;
  623. }
  624. #define show_temp_reg(offset) \
  625. static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \
  626. show_temp, NULL, offset - 1); \
  627. static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR, \
  628. show_temp_min, set_temp_min, offset - 1); \
  629. static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \
  630. show_temp_max, set_temp_max, offset - 1);
  631. show_temp_reg(1);
  632. show_temp_reg(2);
  633. show_temp_reg(3);
  634. /* Automatic PWM control */
  635. static ssize_t show_pwm_auto_channels(struct device *dev,
  636. struct device_attribute *attr, char *buf)
  637. {
  638. int nr = to_sensor_dev_attr(attr)->index;
  639. struct lm85_data *data = lm85_update_device(dev);
  640. return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
  641. }
  642. static ssize_t set_pwm_auto_channels(struct device *dev,
  643. struct device_attribute *attr, const char *buf, size_t count)
  644. {
  645. int nr = to_sensor_dev_attr(attr)->index;
  646. struct i2c_client *client = to_i2c_client(dev);
  647. struct lm85_data *data = i2c_get_clientdata(client);
  648. long val = simple_strtol(buf, NULL, 10);
  649. mutex_lock(&data->update_lock);
  650. data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
  651. | ZONE_TO_REG(val);
  652. lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
  653. data->autofan[nr].config);
  654. mutex_unlock(&data->update_lock);
  655. return count;
  656. }
  657. static ssize_t show_pwm_auto_pwm_min(struct device *dev,
  658. struct device_attribute *attr, char *buf)
  659. {
  660. int nr = to_sensor_dev_attr(attr)->index;
  661. struct lm85_data *data = lm85_update_device(dev);
  662. return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
  663. }
  664. static ssize_t set_pwm_auto_pwm_min(struct device *dev,
  665. struct device_attribute *attr, const char *buf, size_t count)
  666. {
  667. int nr = to_sensor_dev_attr(attr)->index;
  668. struct i2c_client *client = to_i2c_client(dev);
  669. struct lm85_data *data = i2c_get_clientdata(client);
  670. long val = simple_strtol(buf, NULL, 10);
  671. mutex_lock(&data->update_lock);
  672. data->autofan[nr].min_pwm = PWM_TO_REG(val);
  673. lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
  674. data->autofan[nr].min_pwm);
  675. mutex_unlock(&data->update_lock);
  676. return count;
  677. }
  678. static ssize_t show_pwm_auto_pwm_minctl(struct device *dev,
  679. struct device_attribute *attr, char *buf)
  680. {
  681. int nr = to_sensor_dev_attr(attr)->index;
  682. struct lm85_data *data = lm85_update_device(dev);
  683. return sprintf(buf, "%d\n", data->autofan[nr].min_off);
  684. }
  685. static ssize_t set_pwm_auto_pwm_minctl(struct device *dev,
  686. struct device_attribute *attr, const char *buf, size_t count)
  687. {
  688. int nr = to_sensor_dev_attr(attr)->index;
  689. struct i2c_client *client = to_i2c_client(dev);
  690. struct lm85_data *data = i2c_get_clientdata(client);
  691. long val = simple_strtol(buf, NULL, 10);
  692. u8 tmp;
  693. mutex_lock(&data->update_lock);
  694. data->autofan[nr].min_off = val;
  695. tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
  696. tmp &= ~(0x20 << nr);
  697. if (data->autofan[nr].min_off)
  698. tmp |= 0x20 << nr;
  699. lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
  700. mutex_unlock(&data->update_lock);
  701. return count;
  702. }
  703. #define pwm_auto(offset) \
  704. static SENSOR_DEVICE_ATTR(pwm##offset##_auto_channels, \
  705. S_IRUGO | S_IWUSR, show_pwm_auto_channels, \
  706. set_pwm_auto_channels, offset - 1); \
  707. static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_min, \
  708. S_IRUGO | S_IWUSR, show_pwm_auto_pwm_min, \
  709. set_pwm_auto_pwm_min, offset - 1); \
  710. static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_minctl, \
  711. S_IRUGO | S_IWUSR, show_pwm_auto_pwm_minctl, \
  712. set_pwm_auto_pwm_minctl, offset - 1)
  713. pwm_auto(1);
  714. pwm_auto(2);
  715. pwm_auto(3);
  716. /* Temperature settings for automatic PWM control */
  717. static ssize_t show_temp_auto_temp_off(struct device *dev,
  718. struct device_attribute *attr, char *buf)
  719. {
  720. int nr = to_sensor_dev_attr(attr)->index;
  721. struct lm85_data *data = lm85_update_device(dev);
  722. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
  723. HYST_FROM_REG(data->zone[nr].hyst));
  724. }
  725. static ssize_t set_temp_auto_temp_off(struct device *dev,
  726. struct device_attribute *attr, const char *buf, size_t count)
  727. {
  728. int nr = to_sensor_dev_attr(attr)->index;
  729. struct i2c_client *client = to_i2c_client(dev);
  730. struct lm85_data *data = i2c_get_clientdata(client);
  731. int min;
  732. long val = simple_strtol(buf, NULL, 10);
  733. mutex_lock(&data->update_lock);
  734. min = TEMP_FROM_REG(data->zone[nr].limit);
  735. data->zone[nr].off_desired = TEMP_TO_REG(val);
  736. data->zone[nr].hyst = HYST_TO_REG(min - val);
  737. if (nr == 0 || nr == 1) {
  738. lm85_write_value(client, LM85_REG_AFAN_HYST1,
  739. (data->zone[0].hyst << 4)
  740. | data->zone[1].hyst);
  741. } else {
  742. lm85_write_value(client, LM85_REG_AFAN_HYST2,
  743. (data->zone[2].hyst << 4));
  744. }
  745. mutex_unlock(&data->update_lock);
  746. return count;
  747. }
  748. static ssize_t show_temp_auto_temp_min(struct device *dev,
  749. struct device_attribute *attr, char *buf)
  750. {
  751. int nr = to_sensor_dev_attr(attr)->index;
  752. struct lm85_data *data = lm85_update_device(dev);
  753. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
  754. }
  755. static ssize_t set_temp_auto_temp_min(struct device *dev,
  756. struct device_attribute *attr, const char *buf, size_t count)
  757. {
  758. int nr = to_sensor_dev_attr(attr)->index;
  759. struct i2c_client *client = to_i2c_client(dev);
  760. struct lm85_data *data = i2c_get_clientdata(client);
  761. long val = simple_strtol(buf, NULL, 10);
  762. mutex_lock(&data->update_lock);
  763. data->zone[nr].limit = TEMP_TO_REG(val);
  764. lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
  765. data->zone[nr].limit);
  766. /* Update temp_auto_max and temp_auto_range */
  767. data->zone[nr].range = RANGE_TO_REG(
  768. TEMP_FROM_REG(data->zone[nr].max_desired) -
  769. TEMP_FROM_REG(data->zone[nr].limit));
  770. lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
  771. ((data->zone[nr].range & 0x0f) << 4)
  772. | (data->pwm_freq[nr] & 0x07));
  773. /* Update temp_auto_hyst and temp_auto_off */
  774. data->zone[nr].hyst = HYST_TO_REG(TEMP_FROM_REG(
  775. data->zone[nr].limit) - TEMP_FROM_REG(
  776. data->zone[nr].off_desired));
  777. if (nr == 0 || nr == 1) {
  778. lm85_write_value(client, LM85_REG_AFAN_HYST1,
  779. (data->zone[0].hyst << 4)
  780. | data->zone[1].hyst);
  781. } else {
  782. lm85_write_value(client, LM85_REG_AFAN_HYST2,
  783. (data->zone[2].hyst << 4));
  784. }
  785. mutex_unlock(&data->update_lock);
  786. return count;
  787. }
  788. static ssize_t show_temp_auto_temp_max(struct device *dev,
  789. struct device_attribute *attr, char *buf)
  790. {
  791. int nr = to_sensor_dev_attr(attr)->index;
  792. struct lm85_data *data = lm85_update_device(dev);
  793. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
  794. RANGE_FROM_REG(data->zone[nr].range));
  795. }
  796. static ssize_t set_temp_auto_temp_max(struct device *dev,
  797. struct device_attribute *attr, const char *buf, size_t count)
  798. {
  799. int nr = to_sensor_dev_attr(attr)->index;
  800. struct i2c_client *client = to_i2c_client(dev);
  801. struct lm85_data *data = i2c_get_clientdata(client);
  802. int min;
  803. long val = simple_strtol(buf, NULL, 10);
  804. mutex_lock(&data->update_lock);
  805. min = TEMP_FROM_REG(data->zone[nr].limit);
  806. data->zone[nr].max_desired = TEMP_TO_REG(val);
  807. data->zone[nr].range = RANGE_TO_REG(
  808. val - min);
  809. lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
  810. ((data->zone[nr].range & 0x0f) << 4)
  811. | (data->pwm_freq[nr] & 0x07));
  812. mutex_unlock(&data->update_lock);
  813. return count;
  814. }
  815. static ssize_t show_temp_auto_temp_crit(struct device *dev,
  816. struct device_attribute *attr, char *buf)
  817. {
  818. int nr = to_sensor_dev_attr(attr)->index;
  819. struct lm85_data *data = lm85_update_device(dev);
  820. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
  821. }
  822. static ssize_t set_temp_auto_temp_crit(struct device *dev,
  823. struct device_attribute *attr, const char *buf, size_t count)
  824. {
  825. int nr = to_sensor_dev_attr(attr)->index;
  826. struct i2c_client *client = to_i2c_client(dev);
  827. struct lm85_data *data = i2c_get_clientdata(client);
  828. long val = simple_strtol(buf, NULL, 10);
  829. mutex_lock(&data->update_lock);
  830. data->zone[nr].critical = TEMP_TO_REG(val);
  831. lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
  832. data->zone[nr].critical);
  833. mutex_unlock(&data->update_lock);
  834. return count;
  835. }
  836. #define temp_auto(offset) \
  837. static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_off, \
  838. S_IRUGO | S_IWUSR, show_temp_auto_temp_off, \
  839. set_temp_auto_temp_off, offset - 1); \
  840. static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_min, \
  841. S_IRUGO | S_IWUSR, show_temp_auto_temp_min, \
  842. set_temp_auto_temp_min, offset - 1); \
  843. static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_max, \
  844. S_IRUGO | S_IWUSR, show_temp_auto_temp_max, \
  845. set_temp_auto_temp_max, offset - 1); \
  846. static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_crit, \
  847. S_IRUGO | S_IWUSR, show_temp_auto_temp_crit, \
  848. set_temp_auto_temp_crit, offset - 1);
  849. temp_auto(1);
  850. temp_auto(2);
  851. temp_auto(3);
  852. static struct attribute *lm85_attributes[] = {
  853. &sensor_dev_attr_fan1_input.dev_attr.attr,
  854. &sensor_dev_attr_fan2_input.dev_attr.attr,
  855. &sensor_dev_attr_fan3_input.dev_attr.attr,
  856. &sensor_dev_attr_fan4_input.dev_attr.attr,
  857. &sensor_dev_attr_fan1_min.dev_attr.attr,
  858. &sensor_dev_attr_fan2_min.dev_attr.attr,
  859. &sensor_dev_attr_fan3_min.dev_attr.attr,
  860. &sensor_dev_attr_fan4_min.dev_attr.attr,
  861. &sensor_dev_attr_fan1_alarm.dev_attr.attr,
  862. &sensor_dev_attr_fan2_alarm.dev_attr.attr,
  863. &sensor_dev_attr_fan3_alarm.dev_attr.attr,
  864. &sensor_dev_attr_fan4_alarm.dev_attr.attr,
  865. &sensor_dev_attr_pwm1.dev_attr.attr,
  866. &sensor_dev_attr_pwm2.dev_attr.attr,
  867. &sensor_dev_attr_pwm3.dev_attr.attr,
  868. &sensor_dev_attr_pwm1_enable.dev_attr.attr,
  869. &sensor_dev_attr_pwm2_enable.dev_attr.attr,
  870. &sensor_dev_attr_pwm3_enable.dev_attr.attr,
  871. &sensor_dev_attr_pwm1_freq.dev_attr.attr,
  872. &sensor_dev_attr_pwm2_freq.dev_attr.attr,
  873. &sensor_dev_attr_pwm3_freq.dev_attr.attr,
  874. &sensor_dev_attr_in0_input.dev_attr.attr,
  875. &sensor_dev_attr_in1_input.dev_attr.attr,
  876. &sensor_dev_attr_in2_input.dev_attr.attr,
  877. &sensor_dev_attr_in3_input.dev_attr.attr,
  878. &sensor_dev_attr_in0_min.dev_attr.attr,
  879. &sensor_dev_attr_in1_min.dev_attr.attr,
  880. &sensor_dev_attr_in2_min.dev_attr.attr,
  881. &sensor_dev_attr_in3_min.dev_attr.attr,
  882. &sensor_dev_attr_in0_max.dev_attr.attr,
  883. &sensor_dev_attr_in1_max.dev_attr.attr,
  884. &sensor_dev_attr_in2_max.dev_attr.attr,
  885. &sensor_dev_attr_in3_max.dev_attr.attr,
  886. &sensor_dev_attr_in0_alarm.dev_attr.attr,
  887. &sensor_dev_attr_in1_alarm.dev_attr.attr,
  888. &sensor_dev_attr_in2_alarm.dev_attr.attr,
  889. &sensor_dev_attr_in3_alarm.dev_attr.attr,
  890. &sensor_dev_attr_temp1_input.dev_attr.attr,
  891. &sensor_dev_attr_temp2_input.dev_attr.attr,
  892. &sensor_dev_attr_temp3_input.dev_attr.attr,
  893. &sensor_dev_attr_temp1_min.dev_attr.attr,
  894. &sensor_dev_attr_temp2_min.dev_attr.attr,
  895. &sensor_dev_attr_temp3_min.dev_attr.attr,
  896. &sensor_dev_attr_temp1_max.dev_attr.attr,
  897. &sensor_dev_attr_temp2_max.dev_attr.attr,
  898. &sensor_dev_attr_temp3_max.dev_attr.attr,
  899. &sensor_dev_attr_temp1_alarm.dev_attr.attr,
  900. &sensor_dev_attr_temp2_alarm.dev_attr.attr,
  901. &sensor_dev_attr_temp3_alarm.dev_attr.attr,
  902. &sensor_dev_attr_temp1_fault.dev_attr.attr,
  903. &sensor_dev_attr_temp3_fault.dev_attr.attr,
  904. &sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
  905. &sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
  906. &sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
  907. &sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
  908. &sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
  909. &sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
  910. &sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
  911. &sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
  912. &sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
  913. &sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
  914. &sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
  915. &sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
  916. &sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
  917. &sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
  918. &sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
  919. &sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
  920. &sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
  921. &sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
  922. &sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
  923. &sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
  924. &sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
  925. &dev_attr_vrm.attr,
  926. &dev_attr_cpu0_vid.attr,
  927. &dev_attr_alarms.attr,
  928. NULL
  929. };
  930. static const struct attribute_group lm85_group = {
  931. .attrs = lm85_attributes,
  932. };
  933. static struct attribute *lm85_attributes_in4[] = {
  934. &sensor_dev_attr_in4_input.dev_attr.attr,
  935. &sensor_dev_attr_in4_min.dev_attr.attr,
  936. &sensor_dev_attr_in4_max.dev_attr.attr,
  937. &sensor_dev_attr_in4_alarm.dev_attr.attr,
  938. NULL
  939. };
  940. static const struct attribute_group lm85_group_in4 = {
  941. .attrs = lm85_attributes_in4,
  942. };
  943. static struct attribute *lm85_attributes_in567[] = {
  944. &sensor_dev_attr_in5_input.dev_attr.attr,
  945. &sensor_dev_attr_in6_input.dev_attr.attr,
  946. &sensor_dev_attr_in7_input.dev_attr.attr,
  947. &sensor_dev_attr_in5_min.dev_attr.attr,
  948. &sensor_dev_attr_in6_min.dev_attr.attr,
  949. &sensor_dev_attr_in7_min.dev_attr.attr,
  950. &sensor_dev_attr_in5_max.dev_attr.attr,
  951. &sensor_dev_attr_in6_max.dev_attr.attr,
  952. &sensor_dev_attr_in7_max.dev_attr.attr,
  953. &sensor_dev_attr_in5_alarm.dev_attr.attr,
  954. &sensor_dev_attr_in6_alarm.dev_attr.attr,
  955. &sensor_dev_attr_in7_alarm.dev_attr.attr,
  956. NULL
  957. };
  958. static const struct attribute_group lm85_group_in567 = {
  959. .attrs = lm85_attributes_in567,
  960. };
  961. static void lm85_init_client(struct i2c_client *client)
  962. {
  963. int value;
  964. /* Start monitoring if needed */
  965. value = lm85_read_value(client, LM85_REG_CONFIG);
  966. if (!(value & 0x01)) {
  967. dev_info(&client->dev, "Starting monitoring\n");
  968. lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
  969. }
  970. /* Warn about unusual configuration bits */
  971. if (value & 0x02)
  972. dev_warn(&client->dev, "Device configuration is locked\n");
  973. if (!(value & 0x04))
  974. dev_warn(&client->dev, "Device is not ready\n");
  975. }
  976. /* Return 0 if detection is successful, -ENODEV otherwise */
  977. static int lm85_detect(struct i2c_client *client, int kind,
  978. struct i2c_board_info *info)
  979. {
  980. struct i2c_adapter *adapter = client->adapter;
  981. int address = client->addr;
  982. const char *type_name;
  983. if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
  984. /* We need to be able to do byte I/O */
  985. return -ENODEV;
  986. }
  987. /* If auto-detecting, determine the chip type */
  988. if (kind < 0) {
  989. int company = lm85_read_value(client, LM85_REG_COMPANY);
  990. int verstep = lm85_read_value(client, LM85_REG_VERSTEP);
  991. dev_dbg(&adapter->dev, "Detecting device at 0x%02x with "
  992. "COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
  993. address, company, verstep);
  994. /* All supported chips have the version in common */
  995. if ((verstep & LM85_VERSTEP_VMASK) != LM85_VERSTEP_GENERIC) {
  996. dev_dbg(&adapter->dev, "Autodetection failed: "
  997. "unsupported version\n");
  998. return -ENODEV;
  999. }
  1000. kind = any_chip;
  1001. /* Now, refine the detection */
  1002. if (company == LM85_COMPANY_NATIONAL) {
  1003. switch (verstep) {
  1004. case LM85_VERSTEP_LM85C:
  1005. kind = lm85c;
  1006. break;
  1007. case LM85_VERSTEP_LM85B:
  1008. kind = lm85b;
  1009. break;
  1010. }
  1011. } else if (company == LM85_COMPANY_ANALOG_DEV) {
  1012. switch (verstep) {
  1013. case LM85_VERSTEP_ADM1027:
  1014. kind = adm1027;
  1015. break;
  1016. case LM85_VERSTEP_ADT7463:
  1017. case LM85_VERSTEP_ADT7463C:
  1018. kind = adt7463;
  1019. break;
  1020. case LM85_VERSTEP_ADT7468_1:
  1021. case LM85_VERSTEP_ADT7468_2:
  1022. kind = adt7468;
  1023. break;
  1024. }
  1025. } else if (company == LM85_COMPANY_SMSC) {
  1026. switch (verstep) {
  1027. case LM85_VERSTEP_EMC6D100_A0:
  1028. case LM85_VERSTEP_EMC6D100_A1:
  1029. /* Note: we can't tell a '100 from a '101 */
  1030. kind = emc6d100;
  1031. break;
  1032. case LM85_VERSTEP_EMC6D102:
  1033. kind = emc6d102;
  1034. break;
  1035. }
  1036. } else {
  1037. dev_dbg(&adapter->dev, "Autodetection failed: "
  1038. "unknown vendor\n");
  1039. return -ENODEV;
  1040. }
  1041. }
  1042. switch (kind) {
  1043. case lm85b:
  1044. type_name = "lm85b";
  1045. break;
  1046. case lm85c:
  1047. type_name = "lm85c";
  1048. break;
  1049. case adm1027:
  1050. type_name = "adm1027";
  1051. break;
  1052. case adt7463:
  1053. type_name = "adt7463";
  1054. break;
  1055. case adt7468:
  1056. type_name = "adt7468";
  1057. break;
  1058. case emc6d100:
  1059. type_name = "emc6d100";
  1060. break;
  1061. case emc6d102:
  1062. type_name = "emc6d102";
  1063. break;
  1064. default:
  1065. type_name = "lm85";
  1066. }
  1067. strlcpy(info->type, type_name, I2C_NAME_SIZE);
  1068. return 0;
  1069. }
  1070. static int lm85_probe(struct i2c_client *client,
  1071. const struct i2c_device_id *id)
  1072. {
  1073. struct lm85_data *data;
  1074. int err;
  1075. data = kzalloc(sizeof(struct lm85_data), GFP_KERNEL);
  1076. if (!data)
  1077. return -ENOMEM;
  1078. i2c_set_clientdata(client, data);
  1079. data->type = id->driver_data;
  1080. mutex_init(&data->update_lock);
  1081. /* Fill in the chip specific driver values */
  1082. switch (data->type) {
  1083. case adm1027:
  1084. case adt7463:
  1085. case emc6d100:
  1086. case emc6d102:
  1087. data->freq_map = adm1027_freq_map;
  1088. break;
  1089. default:
  1090. data->freq_map = lm85_freq_map;
  1091. }
  1092. /* Set the VRM version */
  1093. data->vrm = vid_which_vrm();
  1094. /* Initialize the LM85 chip */
  1095. lm85_init_client(client);
  1096. /* Register sysfs hooks */
  1097. err = sysfs_create_group(&client->dev.kobj, &lm85_group);
  1098. if (err)
  1099. goto err_kfree;
  1100. /* The ADT7463/68 have an optional VRM 10 mode where pin 21 is used
  1101. as a sixth digital VID input rather than an analog input. */
  1102. data->vid = lm85_read_value(client, LM85_REG_VID);
  1103. if (!((data->type == adt7463 || data->type == adt7468) &&
  1104. (data->vid & 0x80)))
  1105. if ((err = sysfs_create_group(&client->dev.kobj,
  1106. &lm85_group_in4)))
  1107. goto err_remove_files;
  1108. /* The EMC6D100 has 3 additional voltage inputs */
  1109. if (data->type == emc6d100)
  1110. if ((err = sysfs_create_group(&client->dev.kobj,
  1111. &lm85_group_in567)))
  1112. goto err_remove_files;
  1113. data->hwmon_dev = hwmon_device_register(&client->dev);
  1114. if (IS_ERR(data->hwmon_dev)) {
  1115. err = PTR_ERR(data->hwmon_dev);
  1116. goto err_remove_files;
  1117. }
  1118. return 0;
  1119. /* Error out and cleanup code */
  1120. err_remove_files:
  1121. sysfs_remove_group(&client->dev.kobj, &lm85_group);
  1122. sysfs_remove_group(&client->dev.kobj, &lm85_group_in4);
  1123. if (data->type == emc6d100)
  1124. sysfs_remove_group(&client->dev.kobj, &lm85_group_in567);
  1125. err_kfree:
  1126. kfree(data);
  1127. return err;
  1128. }
  1129. static int lm85_remove(struct i2c_client *client)
  1130. {
  1131. struct lm85_data *data = i2c_get_clientdata(client);
  1132. hwmon_device_unregister(data->hwmon_dev);
  1133. sysfs_remove_group(&client->dev.kobj, &lm85_group);
  1134. sysfs_remove_group(&client->dev.kobj, &lm85_group_in4);
  1135. if (data->type == emc6d100)
  1136. sysfs_remove_group(&client->dev.kobj, &lm85_group_in567);
  1137. kfree(data);
  1138. return 0;
  1139. }
  1140. static int lm85_read_value(struct i2c_client *client, u8 reg)
  1141. {
  1142. int res;
  1143. /* What size location is it? */
  1144. switch (reg) {
  1145. case LM85_REG_FAN(0): /* Read WORD data */
  1146. case LM85_REG_FAN(1):
  1147. case LM85_REG_FAN(2):
  1148. case LM85_REG_FAN(3):
  1149. case LM85_REG_FAN_MIN(0):
  1150. case LM85_REG_FAN_MIN(1):
  1151. case LM85_REG_FAN_MIN(2):
  1152. case LM85_REG_FAN_MIN(3):
  1153. case LM85_REG_ALARM1: /* Read both bytes at once */
  1154. res = i2c_smbus_read_byte_data(client, reg) & 0xff;
  1155. res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
  1156. break;
  1157. default: /* Read BYTE data */
  1158. res = i2c_smbus_read_byte_data(client, reg);
  1159. break;
  1160. }
  1161. return res;
  1162. }
  1163. static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
  1164. {
  1165. switch (reg) {
  1166. case LM85_REG_FAN(0): /* Write WORD data */
  1167. case LM85_REG_FAN(1):
  1168. case LM85_REG_FAN(2):
  1169. case LM85_REG_FAN(3):
  1170. case LM85_REG_FAN_MIN(0):
  1171. case LM85_REG_FAN_MIN(1):
  1172. case LM85_REG_FAN_MIN(2):
  1173. case LM85_REG_FAN_MIN(3):
  1174. /* NOTE: ALARM is read only, so not included here */
  1175. i2c_smbus_write_byte_data(client, reg, value & 0xff);
  1176. i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
  1177. break;
  1178. default: /* Write BYTE data */
  1179. i2c_smbus_write_byte_data(client, reg, value);
  1180. break;
  1181. }
  1182. }
  1183. static struct lm85_data *lm85_update_device(struct device *dev)
  1184. {
  1185. struct i2c_client *client = to_i2c_client(dev);
  1186. struct lm85_data *data = i2c_get_clientdata(client);
  1187. int i;
  1188. mutex_lock(&data->update_lock);
  1189. if (!data->valid ||
  1190. time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
  1191. /* Things that change quickly */
  1192. dev_dbg(&client->dev, "Reading sensor values\n");
  1193. /* Have to read extended bits first to "freeze" the
  1194. * more significant bits that are read later.
  1195. * There are 2 additional resolution bits per channel and we
  1196. * have room for 4, so we shift them to the left.
  1197. */
  1198. if (data->type == adm1027 || data->type == adt7463 ||
  1199. data->type == adt7468) {
  1200. int ext1 = lm85_read_value(client,
  1201. ADM1027_REG_EXTEND_ADC1);
  1202. int ext2 = lm85_read_value(client,
  1203. ADM1027_REG_EXTEND_ADC2);
  1204. int val = (ext1 << 8) + ext2;
  1205. for (i = 0; i <= 4; i++)
  1206. data->in_ext[i] =
  1207. ((val >> (i * 2)) & 0x03) << 2;
  1208. for (i = 0; i <= 2; i++)
  1209. data->temp_ext[i] =
  1210. (val >> ((i + 4) * 2)) & 0x0c;
  1211. }
  1212. data->vid = lm85_read_value(client, LM85_REG_VID);
  1213. for (i = 0; i <= 3; ++i) {
  1214. data->in[i] =
  1215. lm85_read_value(client, LM85_REG_IN(i));
  1216. data->fan[i] =
  1217. lm85_read_value(client, LM85_REG_FAN(i));
  1218. }
  1219. if (!((data->type == adt7463 || data->type == adt7468) &&
  1220. (data->vid & 0x80))) {
  1221. data->in[4] = lm85_read_value(client,
  1222. LM85_REG_IN(4));
  1223. }
  1224. if (data->type == adt7468)
  1225. data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5);
  1226. for (i = 0; i <= 2; ++i) {
  1227. data->temp[i] =
  1228. lm85_read_value(client, LM85_REG_TEMP(i));
  1229. data->pwm[i] =
  1230. lm85_read_value(client, LM85_REG_PWM(i));
  1231. if (IS_ADT7468_OFF64(data))
  1232. data->temp[i] -= 64;
  1233. }
  1234. data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
  1235. if (data->type == emc6d100) {
  1236. /* Three more voltage sensors */
  1237. for (i = 5; i <= 7; ++i) {
  1238. data->in[i] = lm85_read_value(client,
  1239. EMC6D100_REG_IN(i));
  1240. }
  1241. /* More alarm bits */
  1242. data->alarms |= lm85_read_value(client,
  1243. EMC6D100_REG_ALARM3) << 16;
  1244. } else if (data->type == emc6d102) {
  1245. /* Have to read LSB bits after the MSB ones because
  1246. the reading of the MSB bits has frozen the
  1247. LSBs (backward from the ADM1027).
  1248. */
  1249. int ext1 = lm85_read_value(client,
  1250. EMC6D102_REG_EXTEND_ADC1);
  1251. int ext2 = lm85_read_value(client,
  1252. EMC6D102_REG_EXTEND_ADC2);
  1253. int ext3 = lm85_read_value(client,
  1254. EMC6D102_REG_EXTEND_ADC3);
  1255. int ext4 = lm85_read_value(client,
  1256. EMC6D102_REG_EXTEND_ADC4);
  1257. data->in_ext[0] = ext3 & 0x0f;
  1258. data->in_ext[1] = ext4 & 0x0f;
  1259. data->in_ext[2] = ext4 >> 4;
  1260. data->in_ext[3] = ext3 >> 4;
  1261. data->in_ext[4] = ext2 >> 4;
  1262. data->temp_ext[0] = ext1 & 0x0f;
  1263. data->temp_ext[1] = ext2 & 0x0f;
  1264. data->temp_ext[2] = ext1 >> 4;
  1265. }
  1266. data->last_reading = jiffies;
  1267. } /* last_reading */
  1268. if (!data->valid ||
  1269. time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
  1270. /* Things that don't change often */
  1271. dev_dbg(&client->dev, "Reading config values\n");
  1272. for (i = 0; i <= 3; ++i) {
  1273. data->in_min[i] =
  1274. lm85_read_value(client, LM85_REG_IN_MIN(i));
  1275. data->in_max[i] =
  1276. lm85_read_value(client, LM85_REG_IN_MAX(i));
  1277. data->fan_min[i] =
  1278. lm85_read_value(client, LM85_REG_FAN_MIN(i));
  1279. }
  1280. if (!((data->type == adt7463 || data->type == adt7468) &&
  1281. (data->vid & 0x80))) {
  1282. data->in_min[4] = lm85_read_value(client,
  1283. LM85_REG_IN_MIN(4));
  1284. data->in_max[4] = lm85_read_value(client,
  1285. LM85_REG_IN_MAX(4));
  1286. }
  1287. if (data->type == emc6d100) {
  1288. for (i = 5; i <= 7; ++i) {
  1289. data->in_min[i] = lm85_read_value(client,
  1290. EMC6D100_REG_IN_MIN(i));
  1291. data->in_max[i] = lm85_read_value(client,
  1292. EMC6D100_REG_IN_MAX(i));
  1293. }
  1294. }
  1295. for (i = 0; i <= 2; ++i) {
  1296. int val;
  1297. data->temp_min[i] =
  1298. lm85_read_value(client, LM85_REG_TEMP_MIN(i));
  1299. data->temp_max[i] =
  1300. lm85_read_value(client, LM85_REG_TEMP_MAX(i));
  1301. data->autofan[i].config =
  1302. lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
  1303. val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
  1304. data->pwm_freq[i] = val & 0x07;
  1305. data->zone[i].range = val >> 4;
  1306. data->autofan[i].min_pwm =
  1307. lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
  1308. data->zone[i].limit =
  1309. lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
  1310. data->zone[i].critical =
  1311. lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
  1312. if (IS_ADT7468_OFF64(data)) {
  1313. data->temp_min[i] -= 64;
  1314. data->temp_max[i] -= 64;
  1315. data->zone[i].limit -= 64;
  1316. data->zone[i].critical -= 64;
  1317. }
  1318. }
  1319. i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
  1320. data->autofan[0].min_off = (i & 0x20) != 0;
  1321. data->autofan[1].min_off = (i & 0x40) != 0;
  1322. data->autofan[2].min_off = (i & 0x80) != 0;
  1323. i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
  1324. data->zone[0].hyst = i >> 4;
  1325. data->zone[1].hyst = i & 0x0f;
  1326. i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
  1327. data->zone[2].hyst = i >> 4;
  1328. data->last_config = jiffies;
  1329. } /* last_config */
  1330. data->valid = 1;
  1331. mutex_unlock(&data->update_lock);
  1332. return data;
  1333. }
  1334. static int __init sm_lm85_init(void)
  1335. {
  1336. return i2c_add_driver(&lm85_driver);
  1337. }
  1338. static void __exit sm_lm85_exit(void)
  1339. {
  1340. i2c_del_driver(&lm85_driver);
  1341. }
  1342. MODULE_LICENSE("GPL");
  1343. MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
  1344. "Margit Schubert-While <margitsw@t-online.de>, "
  1345. "Justin Thiessen <jthiessen@penguincomputing.com>");
  1346. MODULE_DESCRIPTION("LM85-B, LM85-C driver");
  1347. module_init(sm_lm85_init);
  1348. module_exit(sm_lm85_exit);