intel_display.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/i2c.h>
  27. #include "drmP.h"
  28. #include "intel_drv.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "drm_crtc_helper.h"
  32. bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
  33. typedef struct {
  34. /* given values */
  35. int n;
  36. int m1, m2;
  37. int p1, p2;
  38. /* derived values */
  39. int dot;
  40. int vco;
  41. int m;
  42. int p;
  43. } intel_clock_t;
  44. typedef struct {
  45. int min, max;
  46. } intel_range_t;
  47. typedef struct {
  48. int dot_limit;
  49. int p2_slow, p2_fast;
  50. } intel_p2_t;
  51. #define INTEL_P2_NUM 2
  52. typedef struct {
  53. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  54. intel_p2_t p2;
  55. } intel_limit_t;
  56. #define I8XX_DOT_MIN 25000
  57. #define I8XX_DOT_MAX 350000
  58. #define I8XX_VCO_MIN 930000
  59. #define I8XX_VCO_MAX 1400000
  60. #define I8XX_N_MIN 3
  61. #define I8XX_N_MAX 16
  62. #define I8XX_M_MIN 96
  63. #define I8XX_M_MAX 140
  64. #define I8XX_M1_MIN 18
  65. #define I8XX_M1_MAX 26
  66. #define I8XX_M2_MIN 6
  67. #define I8XX_M2_MAX 16
  68. #define I8XX_P_MIN 4
  69. #define I8XX_P_MAX 128
  70. #define I8XX_P1_MIN 2
  71. #define I8XX_P1_MAX 33
  72. #define I8XX_P1_LVDS_MIN 1
  73. #define I8XX_P1_LVDS_MAX 6
  74. #define I8XX_P2_SLOW 4
  75. #define I8XX_P2_FAST 2
  76. #define I8XX_P2_LVDS_SLOW 14
  77. #define I8XX_P2_LVDS_FAST 14 /* No fast option */
  78. #define I8XX_P2_SLOW_LIMIT 165000
  79. #define I9XX_DOT_MIN 20000
  80. #define I9XX_DOT_MAX 400000
  81. #define I9XX_VCO_MIN 1400000
  82. #define I9XX_VCO_MAX 2800000
  83. #define I9XX_N_MIN 3
  84. #define I9XX_N_MAX 8
  85. #define I9XX_M_MIN 70
  86. #define I9XX_M_MAX 120
  87. #define I9XX_M1_MIN 10
  88. #define I9XX_M1_MAX 20
  89. #define I9XX_M2_MIN 5
  90. #define I9XX_M2_MAX 9
  91. #define I9XX_P_SDVO_DAC_MIN 5
  92. #define I9XX_P_SDVO_DAC_MAX 80
  93. #define I9XX_P_LVDS_MIN 7
  94. #define I9XX_P_LVDS_MAX 98
  95. #define I9XX_P1_MIN 1
  96. #define I9XX_P1_MAX 8
  97. #define I9XX_P2_SDVO_DAC_SLOW 10
  98. #define I9XX_P2_SDVO_DAC_FAST 5
  99. #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
  100. #define I9XX_P2_LVDS_SLOW 14
  101. #define I9XX_P2_LVDS_FAST 7
  102. #define I9XX_P2_LVDS_SLOW_LIMIT 112000
  103. #define INTEL_LIMIT_I8XX_DVO_DAC 0
  104. #define INTEL_LIMIT_I8XX_LVDS 1
  105. #define INTEL_LIMIT_I9XX_SDVO_DAC 2
  106. #define INTEL_LIMIT_I9XX_LVDS 3
  107. static const intel_limit_t intel_limits[] = {
  108. { /* INTEL_LIMIT_I8XX_DVO_DAC */
  109. .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
  110. .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
  111. .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
  112. .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
  113. .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
  114. .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
  115. .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
  116. .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
  117. .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
  118. .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
  119. },
  120. { /* INTEL_LIMIT_I8XX_LVDS */
  121. .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
  122. .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
  123. .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
  124. .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
  125. .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
  126. .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
  127. .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
  128. .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
  129. .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
  130. .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
  131. },
  132. { /* INTEL_LIMIT_I9XX_SDVO_DAC */
  133. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
  134. .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
  135. .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
  136. .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
  137. .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
  138. .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
  139. .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
  140. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  141. .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
  142. .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
  143. },
  144. { /* INTEL_LIMIT_I9XX_LVDS */
  145. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
  146. .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
  147. .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
  148. .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
  149. .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
  150. .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
  151. .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
  152. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  153. /* The single-channel range is 25-112Mhz, and dual-channel
  154. * is 80-224Mhz. Prefer single channel as much as possible.
  155. */
  156. .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
  157. .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
  158. },
  159. };
  160. static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
  161. {
  162. struct drm_device *dev = crtc->dev;
  163. const intel_limit_t *limit;
  164. if (IS_I9XX(dev)) {
  165. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  166. limit = &intel_limits[INTEL_LIMIT_I9XX_LVDS];
  167. else
  168. limit = &intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
  169. } else {
  170. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  171. limit = &intel_limits[INTEL_LIMIT_I8XX_LVDS];
  172. else
  173. limit = &intel_limits[INTEL_LIMIT_I8XX_DVO_DAC];
  174. }
  175. return limit;
  176. }
  177. /** Derive the pixel clock for the given refclk and divisors for 8xx chips. */
  178. static void i8xx_clock(int refclk, intel_clock_t *clock)
  179. {
  180. clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
  181. clock->p = clock->p1 * clock->p2;
  182. clock->vco = refclk * clock->m / (clock->n + 2);
  183. clock->dot = clock->vco / clock->p;
  184. }
  185. /** Derive the pixel clock for the given refclk and divisors for 9xx chips. */
  186. static void i9xx_clock(int refclk, intel_clock_t *clock)
  187. {
  188. clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
  189. clock->p = clock->p1 * clock->p2;
  190. clock->vco = refclk * clock->m / (clock->n + 2);
  191. clock->dot = clock->vco / clock->p;
  192. }
  193. static void intel_clock(struct drm_device *dev, int refclk,
  194. intel_clock_t *clock)
  195. {
  196. if (IS_I9XX(dev))
  197. i9xx_clock (refclk, clock);
  198. else
  199. i8xx_clock (refclk, clock);
  200. }
  201. /**
  202. * Returns whether any output on the specified pipe is of the specified type
  203. */
  204. bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
  205. {
  206. struct drm_device *dev = crtc->dev;
  207. struct drm_mode_config *mode_config = &dev->mode_config;
  208. struct drm_connector *l_entry;
  209. list_for_each_entry(l_entry, &mode_config->connector_list, head) {
  210. if (l_entry->encoder &&
  211. l_entry->encoder->crtc == crtc) {
  212. struct intel_output *intel_output = to_intel_output(l_entry);
  213. if (intel_output->type == type)
  214. return true;
  215. }
  216. }
  217. return false;
  218. }
  219. #define INTELPllInvalid(s) { /* ErrorF (s) */; return false; }
  220. /**
  221. * Returns whether the given set of divisors are valid for a given refclk with
  222. * the given connectors.
  223. */
  224. static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
  225. {
  226. const intel_limit_t *limit = intel_limit (crtc);
  227. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  228. INTELPllInvalid ("p1 out of range\n");
  229. if (clock->p < limit->p.min || limit->p.max < clock->p)
  230. INTELPllInvalid ("p out of range\n");
  231. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  232. INTELPllInvalid ("m2 out of range\n");
  233. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  234. INTELPllInvalid ("m1 out of range\n");
  235. if (clock->m1 <= clock->m2)
  236. INTELPllInvalid ("m1 <= m2\n");
  237. if (clock->m < limit->m.min || limit->m.max < clock->m)
  238. INTELPllInvalid ("m out of range\n");
  239. if (clock->n < limit->n.min || limit->n.max < clock->n)
  240. INTELPllInvalid ("n out of range\n");
  241. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  242. INTELPllInvalid ("vco out of range\n");
  243. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  244. * connector, etc., rather than just a single range.
  245. */
  246. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  247. INTELPllInvalid ("dot out of range\n");
  248. return true;
  249. }
  250. /**
  251. * Returns a set of divisors for the desired target clock with the given
  252. * refclk, or FALSE. The returned values represent the clock equation:
  253. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  254. */
  255. static bool intel_find_best_PLL(struct drm_crtc *crtc, int target,
  256. int refclk, intel_clock_t *best_clock)
  257. {
  258. struct drm_device *dev = crtc->dev;
  259. struct drm_i915_private *dev_priv = dev->dev_private;
  260. intel_clock_t clock;
  261. const intel_limit_t *limit = intel_limit(crtc);
  262. int err = target;
  263. if (IS_I9XX(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  264. (I915_READ(LVDS) & LVDS_PORT_EN) != 0) {
  265. /*
  266. * For LVDS, if the panel is on, just rely on its current
  267. * settings for dual-channel. We haven't figured out how to
  268. * reliably set up different single/dual channel state, if we
  269. * even can.
  270. */
  271. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  272. LVDS_CLKB_POWER_UP)
  273. clock.p2 = limit->p2.p2_fast;
  274. else
  275. clock.p2 = limit->p2.p2_slow;
  276. } else {
  277. if (target < limit->p2.dot_limit)
  278. clock.p2 = limit->p2.p2_slow;
  279. else
  280. clock.p2 = limit->p2.p2_fast;
  281. }
  282. memset (best_clock, 0, sizeof (*best_clock));
  283. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
  284. for (clock.m2 = limit->m2.min; clock.m2 < clock.m1 &&
  285. clock.m2 <= limit->m2.max; clock.m2++) {
  286. for (clock.n = limit->n.min; clock.n <= limit->n.max;
  287. clock.n++) {
  288. for (clock.p1 = limit->p1.min;
  289. clock.p1 <= limit->p1.max; clock.p1++) {
  290. int this_err;
  291. intel_clock(dev, refclk, &clock);
  292. if (!intel_PLL_is_valid(crtc, &clock))
  293. continue;
  294. this_err = abs(clock.dot - target);
  295. if (this_err < err) {
  296. *best_clock = clock;
  297. err = this_err;
  298. }
  299. }
  300. }
  301. }
  302. }
  303. return (err != target);
  304. }
  305. void
  306. intel_wait_for_vblank(struct drm_device *dev)
  307. {
  308. /* Wait for 20ms, i.e. one cycle at 50hz. */
  309. udelay(20000);
  310. }
  311. static void
  312. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  313. struct drm_framebuffer *old_fb)
  314. {
  315. struct drm_device *dev = crtc->dev;
  316. struct drm_i915_private *dev_priv = dev->dev_private;
  317. struct drm_i915_master_private *master_priv;
  318. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  319. struct intel_framebuffer *intel_fb;
  320. struct drm_i915_gem_object *obj_priv;
  321. struct drm_gem_object *obj;
  322. int pipe = intel_crtc->pipe;
  323. unsigned long Start, Offset;
  324. int dspbase = (pipe == 0 ? DSPAADDR : DSPBADDR);
  325. int dspsurf = (pipe == 0 ? DSPASURF : DSPBSURF);
  326. int dspstride = (pipe == 0) ? DSPASTRIDE : DSPBSTRIDE;
  327. int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
  328. u32 dspcntr, alignment;
  329. /* no fb bound */
  330. if (!crtc->fb) {
  331. DRM_DEBUG("No FB bound\n");
  332. return;
  333. }
  334. intel_fb = to_intel_framebuffer(crtc->fb);
  335. obj = intel_fb->obj;
  336. obj_priv = obj->driver_private;
  337. switch (obj_priv->tiling_mode) {
  338. case I915_TILING_NONE:
  339. alignment = 64 * 1024;
  340. break;
  341. case I915_TILING_X:
  342. if (IS_I9XX(dev))
  343. alignment = 1024 * 1024;
  344. else
  345. alignment = 512 * 1024;
  346. break;
  347. case I915_TILING_Y:
  348. /* FIXME: Is this true? */
  349. DRM_ERROR("Y tiled not allowed for scan out buffers\n");
  350. return;
  351. default:
  352. BUG();
  353. }
  354. if (i915_gem_object_pin(intel_fb->obj, alignment))
  355. return;
  356. i915_gem_object_set_to_gtt_domain(intel_fb->obj, 1);
  357. Start = obj_priv->gtt_offset;
  358. Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
  359. I915_WRITE(dspstride, crtc->fb->pitch);
  360. dspcntr = I915_READ(dspcntr_reg);
  361. switch (crtc->fb->bits_per_pixel) {
  362. case 8:
  363. dspcntr |= DISPPLANE_8BPP;
  364. break;
  365. case 16:
  366. if (crtc->fb->depth == 15)
  367. dspcntr |= DISPPLANE_15_16BPP;
  368. else
  369. dspcntr |= DISPPLANE_16BPP;
  370. break;
  371. case 24:
  372. case 32:
  373. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  374. break;
  375. default:
  376. DRM_ERROR("Unknown color depth\n");
  377. return;
  378. }
  379. I915_WRITE(dspcntr_reg, dspcntr);
  380. DRM_DEBUG("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
  381. if (IS_I965G(dev)) {
  382. I915_WRITE(dspbase, Offset);
  383. I915_READ(dspbase);
  384. I915_WRITE(dspsurf, Start);
  385. I915_READ(dspsurf);
  386. } else {
  387. I915_WRITE(dspbase, Start + Offset);
  388. I915_READ(dspbase);
  389. }
  390. intel_wait_for_vblank(dev);
  391. if (old_fb) {
  392. intel_fb = to_intel_framebuffer(old_fb);
  393. i915_gem_object_unpin(intel_fb->obj);
  394. }
  395. if (!dev->primary->master)
  396. return;
  397. master_priv = dev->primary->master->driver_priv;
  398. if (!master_priv->sarea_priv)
  399. return;
  400. switch (pipe) {
  401. case 0:
  402. master_priv->sarea_priv->pipeA_x = x;
  403. master_priv->sarea_priv->pipeA_y = y;
  404. break;
  405. case 1:
  406. master_priv->sarea_priv->pipeB_x = x;
  407. master_priv->sarea_priv->pipeB_y = y;
  408. break;
  409. default:
  410. DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
  411. break;
  412. }
  413. }
  414. /**
  415. * Sets the power management mode of the pipe and plane.
  416. *
  417. * This code should probably grow support for turning the cursor off and back
  418. * on appropriately at the same time as we're turning the pipe off/on.
  419. */
  420. static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
  421. {
  422. struct drm_device *dev = crtc->dev;
  423. struct drm_i915_master_private *master_priv;
  424. struct drm_i915_private *dev_priv = dev->dev_private;
  425. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  426. int pipe = intel_crtc->pipe;
  427. int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
  428. int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
  429. int dspbase_reg = (pipe == 0) ? DSPAADDR : DSPBADDR;
  430. int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
  431. u32 temp;
  432. bool enabled;
  433. /* XXX: When our outputs are all unaware of DPMS modes other than off
  434. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  435. */
  436. switch (mode) {
  437. case DRM_MODE_DPMS_ON:
  438. case DRM_MODE_DPMS_STANDBY:
  439. case DRM_MODE_DPMS_SUSPEND:
  440. /* Enable the DPLL */
  441. temp = I915_READ(dpll_reg);
  442. if ((temp & DPLL_VCO_ENABLE) == 0) {
  443. I915_WRITE(dpll_reg, temp);
  444. I915_READ(dpll_reg);
  445. /* Wait for the clocks to stabilize. */
  446. udelay(150);
  447. I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
  448. I915_READ(dpll_reg);
  449. /* Wait for the clocks to stabilize. */
  450. udelay(150);
  451. I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
  452. I915_READ(dpll_reg);
  453. /* Wait for the clocks to stabilize. */
  454. udelay(150);
  455. }
  456. /* Enable the pipe */
  457. temp = I915_READ(pipeconf_reg);
  458. if ((temp & PIPEACONF_ENABLE) == 0)
  459. I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
  460. /* Enable the plane */
  461. temp = I915_READ(dspcntr_reg);
  462. if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
  463. I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
  464. /* Flush the plane changes */
  465. I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
  466. }
  467. intel_crtc_load_lut(crtc);
  468. /* Give the overlay scaler a chance to enable if it's on this pipe */
  469. //intel_crtc_dpms_video(crtc, true); TODO
  470. break;
  471. case DRM_MODE_DPMS_OFF:
  472. /* Give the overlay scaler a chance to disable if it's on this pipe */
  473. //intel_crtc_dpms_video(crtc, FALSE); TODO
  474. /* Disable the VGA plane that we never use */
  475. I915_WRITE(VGACNTRL, VGA_DISP_DISABLE);
  476. /* Disable display plane */
  477. temp = I915_READ(dspcntr_reg);
  478. if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
  479. I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
  480. /* Flush the plane changes */
  481. I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
  482. I915_READ(dspbase_reg);
  483. }
  484. if (!IS_I9XX(dev)) {
  485. /* Wait for vblank for the disable to take effect */
  486. intel_wait_for_vblank(dev);
  487. }
  488. /* Next, disable display pipes */
  489. temp = I915_READ(pipeconf_reg);
  490. if ((temp & PIPEACONF_ENABLE) != 0) {
  491. I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
  492. I915_READ(pipeconf_reg);
  493. }
  494. /* Wait for vblank for the disable to take effect. */
  495. intel_wait_for_vblank(dev);
  496. temp = I915_READ(dpll_reg);
  497. if ((temp & DPLL_VCO_ENABLE) != 0) {
  498. I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
  499. I915_READ(dpll_reg);
  500. }
  501. /* Wait for the clocks to turn off. */
  502. udelay(150);
  503. break;
  504. }
  505. if (!dev->primary->master)
  506. return;
  507. master_priv = dev->primary->master->driver_priv;
  508. if (!master_priv->sarea_priv)
  509. return;
  510. enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
  511. switch (pipe) {
  512. case 0:
  513. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  514. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  515. break;
  516. case 1:
  517. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  518. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  519. break;
  520. default:
  521. DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
  522. break;
  523. }
  524. intel_crtc->dpms_mode = mode;
  525. }
  526. static void intel_crtc_prepare (struct drm_crtc *crtc)
  527. {
  528. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  529. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
  530. }
  531. static void intel_crtc_commit (struct drm_crtc *crtc)
  532. {
  533. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  534. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  535. }
  536. void intel_encoder_prepare (struct drm_encoder *encoder)
  537. {
  538. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  539. /* lvds has its own version of prepare see intel_lvds_prepare */
  540. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
  541. }
  542. void intel_encoder_commit (struct drm_encoder *encoder)
  543. {
  544. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  545. /* lvds has its own version of commit see intel_lvds_commit */
  546. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  547. }
  548. static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
  549. struct drm_display_mode *mode,
  550. struct drm_display_mode *adjusted_mode)
  551. {
  552. return true;
  553. }
  554. /** Returns the core display clock speed for i830 - i945 */
  555. static int intel_get_core_clock_speed(struct drm_device *dev)
  556. {
  557. /* Core clock values taken from the published datasheets.
  558. * The 830 may go up to 166 Mhz, which we should check.
  559. */
  560. if (IS_I945G(dev))
  561. return 400000;
  562. else if (IS_I915G(dev))
  563. return 333000;
  564. else if (IS_I945GM(dev) || IS_845G(dev))
  565. return 200000;
  566. else if (IS_I915GM(dev)) {
  567. u16 gcfgc = 0;
  568. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  569. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  570. return 133000;
  571. else {
  572. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  573. case GC_DISPLAY_CLOCK_333_MHZ:
  574. return 333000;
  575. default:
  576. case GC_DISPLAY_CLOCK_190_200_MHZ:
  577. return 190000;
  578. }
  579. }
  580. } else if (IS_I865G(dev))
  581. return 266000;
  582. else if (IS_I855(dev)) {
  583. u16 hpllcc = 0;
  584. /* Assume that the hardware is in the high speed state. This
  585. * should be the default.
  586. */
  587. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  588. case GC_CLOCK_133_200:
  589. case GC_CLOCK_100_200:
  590. return 200000;
  591. case GC_CLOCK_166_250:
  592. return 250000;
  593. case GC_CLOCK_100_133:
  594. return 133000;
  595. }
  596. } else /* 852, 830 */
  597. return 133000;
  598. return 0; /* Silence gcc warning */
  599. }
  600. /**
  601. * Return the pipe currently connected to the panel fitter,
  602. * or -1 if the panel fitter is not present or not in use
  603. */
  604. static int intel_panel_fitter_pipe (struct drm_device *dev)
  605. {
  606. struct drm_i915_private *dev_priv = dev->dev_private;
  607. u32 pfit_control;
  608. /* i830 doesn't have a panel fitter */
  609. if (IS_I830(dev))
  610. return -1;
  611. pfit_control = I915_READ(PFIT_CONTROL);
  612. /* See if the panel fitter is in use */
  613. if ((pfit_control & PFIT_ENABLE) == 0)
  614. return -1;
  615. /* 965 can place panel fitter on either pipe */
  616. if (IS_I965G(dev))
  617. return (pfit_control >> 29) & 0x3;
  618. /* older chips can only use pipe 1 */
  619. return 1;
  620. }
  621. static void intel_crtc_mode_set(struct drm_crtc *crtc,
  622. struct drm_display_mode *mode,
  623. struct drm_display_mode *adjusted_mode,
  624. int x, int y,
  625. struct drm_framebuffer *old_fb)
  626. {
  627. struct drm_device *dev = crtc->dev;
  628. struct drm_i915_private *dev_priv = dev->dev_private;
  629. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  630. int pipe = intel_crtc->pipe;
  631. int fp_reg = (pipe == 0) ? FPA0 : FPB0;
  632. int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
  633. int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
  634. int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
  635. int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
  636. int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
  637. int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
  638. int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
  639. int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
  640. int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
  641. int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
  642. int dspsize_reg = (pipe == 0) ? DSPASIZE : DSPBSIZE;
  643. int dsppos_reg = (pipe == 0) ? DSPAPOS : DSPBPOS;
  644. int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
  645. int refclk;
  646. intel_clock_t clock;
  647. u32 dpll = 0, fp = 0, dspcntr, pipeconf;
  648. bool ok, is_sdvo = false, is_dvo = false;
  649. bool is_crt = false, is_lvds = false, is_tv = false;
  650. struct drm_mode_config *mode_config = &dev->mode_config;
  651. struct drm_connector *connector;
  652. drm_vblank_pre_modeset(dev, pipe);
  653. list_for_each_entry(connector, &mode_config->connector_list, head) {
  654. struct intel_output *intel_output = to_intel_output(connector);
  655. if (!connector->encoder || connector->encoder->crtc != crtc)
  656. continue;
  657. switch (intel_output->type) {
  658. case INTEL_OUTPUT_LVDS:
  659. is_lvds = true;
  660. break;
  661. case INTEL_OUTPUT_SDVO:
  662. is_sdvo = true;
  663. break;
  664. case INTEL_OUTPUT_DVO:
  665. is_dvo = true;
  666. break;
  667. case INTEL_OUTPUT_TVOUT:
  668. is_tv = true;
  669. break;
  670. case INTEL_OUTPUT_ANALOG:
  671. is_crt = true;
  672. break;
  673. }
  674. }
  675. if (IS_I9XX(dev)) {
  676. refclk = 96000;
  677. } else {
  678. refclk = 48000;
  679. }
  680. ok = intel_find_best_PLL(crtc, adjusted_mode->clock, refclk, &clock);
  681. if (!ok) {
  682. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  683. return;
  684. }
  685. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  686. dpll = DPLL_VGA_MODE_DIS;
  687. if (IS_I9XX(dev)) {
  688. if (is_lvds)
  689. dpll |= DPLLB_MODE_LVDS;
  690. else
  691. dpll |= DPLLB_MODE_DAC_SERIAL;
  692. if (is_sdvo) {
  693. dpll |= DPLL_DVO_HIGH_SPEED;
  694. if (IS_I945G(dev) || IS_I945GM(dev)) {
  695. int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
  696. dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
  697. }
  698. }
  699. /* compute bitmask from p1 value */
  700. dpll |= (1 << (clock.p1 - 1)) << 16;
  701. switch (clock.p2) {
  702. case 5:
  703. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  704. break;
  705. case 7:
  706. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  707. break;
  708. case 10:
  709. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  710. break;
  711. case 14:
  712. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  713. break;
  714. }
  715. if (IS_I965G(dev))
  716. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  717. } else {
  718. if (is_lvds) {
  719. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  720. } else {
  721. if (clock.p1 == 2)
  722. dpll |= PLL_P1_DIVIDE_BY_TWO;
  723. else
  724. dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  725. if (clock.p2 == 4)
  726. dpll |= PLL_P2_DIVIDE_BY_4;
  727. }
  728. }
  729. if (is_tv) {
  730. /* XXX: just matching BIOS for now */
  731. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  732. dpll |= 3;
  733. }
  734. else
  735. dpll |= PLL_REF_INPUT_DREFCLK;
  736. /* setup pipeconf */
  737. pipeconf = I915_READ(pipeconf_reg);
  738. /* Set up the display plane register */
  739. dspcntr = DISPPLANE_GAMMA_ENABLE;
  740. if (pipe == 0)
  741. dspcntr |= DISPPLANE_SEL_PIPE_A;
  742. else
  743. dspcntr |= DISPPLANE_SEL_PIPE_B;
  744. if (pipe == 0 && !IS_I965G(dev)) {
  745. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  746. * core speed.
  747. *
  748. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  749. * pipe == 0 check?
  750. */
  751. if (mode->clock > intel_get_core_clock_speed(dev) * 9 / 10)
  752. pipeconf |= PIPEACONF_DOUBLE_WIDE;
  753. else
  754. pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
  755. }
  756. dspcntr |= DISPLAY_PLANE_ENABLE;
  757. pipeconf |= PIPEACONF_ENABLE;
  758. dpll |= DPLL_VCO_ENABLE;
  759. /* Disable the panel fitter if it was on our pipe */
  760. if (intel_panel_fitter_pipe(dev) == pipe)
  761. I915_WRITE(PFIT_CONTROL, 0);
  762. DRM_DEBUG("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
  763. drm_mode_debug_printmodeline(mode);
  764. if (dpll & DPLL_VCO_ENABLE) {
  765. I915_WRITE(fp_reg, fp);
  766. I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
  767. I915_READ(dpll_reg);
  768. udelay(150);
  769. }
  770. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  771. * This is an exception to the general rule that mode_set doesn't turn
  772. * things on.
  773. */
  774. if (is_lvds) {
  775. u32 lvds = I915_READ(LVDS);
  776. lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
  777. /* Set the B0-B3 data pairs corresponding to whether we're going to
  778. * set the DPLLs for dual-channel mode or not.
  779. */
  780. if (clock.p2 == 7)
  781. lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  782. else
  783. lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  784. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  785. * appropriately here, but we need to look more thoroughly into how
  786. * panels behave in the two modes.
  787. */
  788. I915_WRITE(LVDS, lvds);
  789. I915_READ(LVDS);
  790. }
  791. I915_WRITE(fp_reg, fp);
  792. I915_WRITE(dpll_reg, dpll);
  793. I915_READ(dpll_reg);
  794. /* Wait for the clocks to stabilize. */
  795. udelay(150);
  796. if (IS_I965G(dev)) {
  797. int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
  798. I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
  799. ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
  800. } else {
  801. /* write it again -- the BIOS does, after all */
  802. I915_WRITE(dpll_reg, dpll);
  803. }
  804. I915_READ(dpll_reg);
  805. /* Wait for the clocks to stabilize. */
  806. udelay(150);
  807. I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
  808. ((adjusted_mode->crtc_htotal - 1) << 16));
  809. I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
  810. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  811. I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
  812. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  813. I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
  814. ((adjusted_mode->crtc_vtotal - 1) << 16));
  815. I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
  816. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  817. I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
  818. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  819. /* pipesrc and dspsize control the size that is scaled from, which should
  820. * always be the user's requested size.
  821. */
  822. I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
  823. I915_WRITE(dsppos_reg, 0);
  824. I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  825. I915_WRITE(pipeconf_reg, pipeconf);
  826. I915_READ(pipeconf_reg);
  827. intel_wait_for_vblank(dev);
  828. I915_WRITE(dspcntr_reg, dspcntr);
  829. /* Flush the plane changes */
  830. intel_pipe_set_base(crtc, x, y, old_fb);
  831. drm_vblank_post_modeset(dev, pipe);
  832. }
  833. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  834. void intel_crtc_load_lut(struct drm_crtc *crtc)
  835. {
  836. struct drm_device *dev = crtc->dev;
  837. struct drm_i915_private *dev_priv = dev->dev_private;
  838. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  839. int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
  840. int i;
  841. /* The clocks have to be on to load the palette. */
  842. if (!crtc->enabled)
  843. return;
  844. for (i = 0; i < 256; i++) {
  845. I915_WRITE(palreg + 4 * i,
  846. (intel_crtc->lut_r[i] << 16) |
  847. (intel_crtc->lut_g[i] << 8) |
  848. intel_crtc->lut_b[i]);
  849. }
  850. }
  851. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  852. struct drm_file *file_priv,
  853. uint32_t handle,
  854. uint32_t width, uint32_t height)
  855. {
  856. struct drm_device *dev = crtc->dev;
  857. struct drm_i915_private *dev_priv = dev->dev_private;
  858. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  859. struct drm_gem_object *bo;
  860. struct drm_i915_gem_object *obj_priv;
  861. int pipe = intel_crtc->pipe;
  862. uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
  863. uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
  864. uint32_t temp;
  865. size_t addr;
  866. DRM_DEBUG("\n");
  867. /* if we want to turn off the cursor ignore width and height */
  868. if (!handle) {
  869. DRM_DEBUG("cursor off\n");
  870. /* turn of the cursor */
  871. temp = 0;
  872. temp |= CURSOR_MODE_DISABLE;
  873. I915_WRITE(control, temp);
  874. I915_WRITE(base, 0);
  875. return 0;
  876. }
  877. /* Currently we only support 64x64 cursors */
  878. if (width != 64 || height != 64) {
  879. DRM_ERROR("we currently only support 64x64 cursors\n");
  880. return -EINVAL;
  881. }
  882. bo = drm_gem_object_lookup(dev, file_priv, handle);
  883. if (!bo)
  884. return -ENOENT;
  885. obj_priv = bo->driver_private;
  886. if (bo->size < width * height * 4) {
  887. DRM_ERROR("buffer is to small\n");
  888. drm_gem_object_unreference(bo);
  889. return -ENOMEM;
  890. }
  891. if (dev_priv->cursor_needs_physical) {
  892. addr = dev->agp->base + obj_priv->gtt_offset;
  893. } else {
  894. addr = obj_priv->gtt_offset;
  895. }
  896. intel_crtc->cursor_addr = addr;
  897. temp = 0;
  898. /* set the pipe for the cursor */
  899. temp |= (pipe << 28);
  900. temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  901. I915_WRITE(control, temp);
  902. I915_WRITE(base, addr);
  903. return 0;
  904. }
  905. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  906. {
  907. struct drm_device *dev = crtc->dev;
  908. struct drm_i915_private *dev_priv = dev->dev_private;
  909. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  910. int pipe = intel_crtc->pipe;
  911. uint32_t temp = 0;
  912. uint32_t adder;
  913. if (x < 0) {
  914. temp |= (CURSOR_POS_SIGN << CURSOR_X_SHIFT);
  915. x = -x;
  916. }
  917. if (y < 0) {
  918. temp |= (CURSOR_POS_SIGN << CURSOR_Y_SHIFT);
  919. y = -y;
  920. }
  921. temp |= ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT);
  922. temp |= ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
  923. adder = intel_crtc->cursor_addr;
  924. I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
  925. I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
  926. return 0;
  927. }
  928. /** Sets the color ramps on behalf of RandR */
  929. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  930. u16 blue, int regno)
  931. {
  932. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  933. intel_crtc->lut_r[regno] = red >> 8;
  934. intel_crtc->lut_g[regno] = green >> 8;
  935. intel_crtc->lut_b[regno] = blue >> 8;
  936. }
  937. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  938. u16 *blue, uint32_t size)
  939. {
  940. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  941. int i;
  942. if (size != 256)
  943. return;
  944. for (i = 0; i < 256; i++) {
  945. intel_crtc->lut_r[i] = red[i] >> 8;
  946. intel_crtc->lut_g[i] = green[i] >> 8;
  947. intel_crtc->lut_b[i] = blue[i] >> 8;
  948. }
  949. intel_crtc_load_lut(crtc);
  950. }
  951. /**
  952. * Get a pipe with a simple mode set on it for doing load-based monitor
  953. * detection.
  954. *
  955. * It will be up to the load-detect code to adjust the pipe as appropriate for
  956. * its requirements. The pipe will be connected to no other outputs.
  957. *
  958. * Currently this code will only succeed if there is a pipe with no outputs
  959. * configured for it. In the future, it could choose to temporarily disable
  960. * some outputs to free up a pipe for its use.
  961. *
  962. * \return crtc, or NULL if no pipes are available.
  963. */
  964. /* VESA 640x480x72Hz mode to set on the pipe */
  965. static struct drm_display_mode load_detect_mode = {
  966. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  967. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  968. };
  969. struct drm_crtc *intel_get_load_detect_pipe(struct intel_output *intel_output,
  970. struct drm_display_mode *mode,
  971. int *dpms_mode)
  972. {
  973. struct intel_crtc *intel_crtc;
  974. struct drm_crtc *possible_crtc;
  975. struct drm_crtc *supported_crtc =NULL;
  976. struct drm_encoder *encoder = &intel_output->enc;
  977. struct drm_crtc *crtc = NULL;
  978. struct drm_device *dev = encoder->dev;
  979. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  980. struct drm_crtc_helper_funcs *crtc_funcs;
  981. int i = -1;
  982. /*
  983. * Algorithm gets a little messy:
  984. * - if the connector already has an assigned crtc, use it (but make
  985. * sure it's on first)
  986. * - try to find the first unused crtc that can drive this connector,
  987. * and use that if we find one
  988. * - if there are no unused crtcs available, try to use the first
  989. * one we found that supports the connector
  990. */
  991. /* See if we already have a CRTC for this connector */
  992. if (encoder->crtc) {
  993. crtc = encoder->crtc;
  994. /* Make sure the crtc and connector are running */
  995. intel_crtc = to_intel_crtc(crtc);
  996. *dpms_mode = intel_crtc->dpms_mode;
  997. if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
  998. crtc_funcs = crtc->helper_private;
  999. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  1000. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  1001. }
  1002. return crtc;
  1003. }
  1004. /* Find an unused one (if possible) */
  1005. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  1006. i++;
  1007. if (!(encoder->possible_crtcs & (1 << i)))
  1008. continue;
  1009. if (!possible_crtc->enabled) {
  1010. crtc = possible_crtc;
  1011. break;
  1012. }
  1013. if (!supported_crtc)
  1014. supported_crtc = possible_crtc;
  1015. }
  1016. /*
  1017. * If we didn't find an unused CRTC, don't use any.
  1018. */
  1019. if (!crtc) {
  1020. return NULL;
  1021. }
  1022. encoder->crtc = crtc;
  1023. intel_output->load_detect_temp = true;
  1024. intel_crtc = to_intel_crtc(crtc);
  1025. *dpms_mode = intel_crtc->dpms_mode;
  1026. if (!crtc->enabled) {
  1027. if (!mode)
  1028. mode = &load_detect_mode;
  1029. drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
  1030. } else {
  1031. if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
  1032. crtc_funcs = crtc->helper_private;
  1033. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  1034. }
  1035. /* Add this connector to the crtc */
  1036. encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
  1037. encoder_funcs->commit(encoder);
  1038. }
  1039. /* let the connector get through one full cycle before testing */
  1040. intel_wait_for_vblank(dev);
  1041. return crtc;
  1042. }
  1043. void intel_release_load_detect_pipe(struct intel_output *intel_output, int dpms_mode)
  1044. {
  1045. struct drm_encoder *encoder = &intel_output->enc;
  1046. struct drm_device *dev = encoder->dev;
  1047. struct drm_crtc *crtc = encoder->crtc;
  1048. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  1049. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  1050. if (intel_output->load_detect_temp) {
  1051. encoder->crtc = NULL;
  1052. intel_output->load_detect_temp = false;
  1053. crtc->enabled = drm_helper_crtc_in_use(crtc);
  1054. drm_helper_disable_unused_functions(dev);
  1055. }
  1056. /* Switch crtc and output back off if necessary */
  1057. if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
  1058. if (encoder->crtc == crtc)
  1059. encoder_funcs->dpms(encoder, dpms_mode);
  1060. crtc_funcs->dpms(crtc, dpms_mode);
  1061. }
  1062. }
  1063. /* Returns the clock of the currently programmed mode of the given pipe. */
  1064. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  1065. {
  1066. struct drm_i915_private *dev_priv = dev->dev_private;
  1067. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1068. int pipe = intel_crtc->pipe;
  1069. u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
  1070. u32 fp;
  1071. intel_clock_t clock;
  1072. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  1073. fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
  1074. else
  1075. fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
  1076. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  1077. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  1078. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  1079. if (IS_I9XX(dev)) {
  1080. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  1081. DPLL_FPA01_P1_POST_DIV_SHIFT);
  1082. switch (dpll & DPLL_MODE_MASK) {
  1083. case DPLLB_MODE_DAC_SERIAL:
  1084. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  1085. 5 : 10;
  1086. break;
  1087. case DPLLB_MODE_LVDS:
  1088. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  1089. 7 : 14;
  1090. break;
  1091. default:
  1092. DRM_DEBUG("Unknown DPLL mode %08x in programmed "
  1093. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  1094. return 0;
  1095. }
  1096. /* XXX: Handle the 100Mhz refclk */
  1097. i9xx_clock(96000, &clock);
  1098. } else {
  1099. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  1100. if (is_lvds) {
  1101. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  1102. DPLL_FPA01_P1_POST_DIV_SHIFT);
  1103. clock.p2 = 14;
  1104. if ((dpll & PLL_REF_INPUT_MASK) ==
  1105. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  1106. /* XXX: might not be 66MHz */
  1107. i8xx_clock(66000, &clock);
  1108. } else
  1109. i8xx_clock(48000, &clock);
  1110. } else {
  1111. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  1112. clock.p1 = 2;
  1113. else {
  1114. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  1115. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  1116. }
  1117. if (dpll & PLL_P2_DIVIDE_BY_4)
  1118. clock.p2 = 4;
  1119. else
  1120. clock.p2 = 2;
  1121. i8xx_clock(48000, &clock);
  1122. }
  1123. }
  1124. /* XXX: It would be nice to validate the clocks, but we can't reuse
  1125. * i830PllIsValid() because it relies on the xf86_config connector
  1126. * configuration being accurate, which it isn't necessarily.
  1127. */
  1128. return clock.dot;
  1129. }
  1130. /** Returns the currently programmed mode of the given pipe. */
  1131. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  1132. struct drm_crtc *crtc)
  1133. {
  1134. struct drm_i915_private *dev_priv = dev->dev_private;
  1135. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1136. int pipe = intel_crtc->pipe;
  1137. struct drm_display_mode *mode;
  1138. int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
  1139. int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
  1140. int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
  1141. int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
  1142. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  1143. if (!mode)
  1144. return NULL;
  1145. mode->clock = intel_crtc_clock_get(dev, crtc);
  1146. mode->hdisplay = (htot & 0xffff) + 1;
  1147. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  1148. mode->hsync_start = (hsync & 0xffff) + 1;
  1149. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  1150. mode->vdisplay = (vtot & 0xffff) + 1;
  1151. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  1152. mode->vsync_start = (vsync & 0xffff) + 1;
  1153. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  1154. drm_mode_set_name(mode);
  1155. drm_mode_set_crtcinfo(mode, 0);
  1156. return mode;
  1157. }
  1158. static void intel_crtc_destroy(struct drm_crtc *crtc)
  1159. {
  1160. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1161. drm_crtc_cleanup(crtc);
  1162. kfree(intel_crtc);
  1163. }
  1164. static const struct drm_crtc_helper_funcs intel_helper_funcs = {
  1165. .dpms = intel_crtc_dpms,
  1166. .mode_fixup = intel_crtc_mode_fixup,
  1167. .mode_set = intel_crtc_mode_set,
  1168. .mode_set_base = intel_pipe_set_base,
  1169. .prepare = intel_crtc_prepare,
  1170. .commit = intel_crtc_commit,
  1171. };
  1172. static const struct drm_crtc_funcs intel_crtc_funcs = {
  1173. .cursor_set = intel_crtc_cursor_set,
  1174. .cursor_move = intel_crtc_cursor_move,
  1175. .gamma_set = intel_crtc_gamma_set,
  1176. .set_config = drm_crtc_helper_set_config,
  1177. .destroy = intel_crtc_destroy,
  1178. };
  1179. static void intel_crtc_init(struct drm_device *dev, int pipe)
  1180. {
  1181. struct intel_crtc *intel_crtc;
  1182. int i;
  1183. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  1184. if (intel_crtc == NULL)
  1185. return;
  1186. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  1187. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  1188. intel_crtc->pipe = pipe;
  1189. for (i = 0; i < 256; i++) {
  1190. intel_crtc->lut_r[i] = i;
  1191. intel_crtc->lut_g[i] = i;
  1192. intel_crtc->lut_b[i] = i;
  1193. }
  1194. intel_crtc->cursor_addr = 0;
  1195. intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
  1196. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  1197. intel_crtc->mode_set.crtc = &intel_crtc->base;
  1198. intel_crtc->mode_set.connectors = (struct drm_connector **)(intel_crtc + 1);
  1199. intel_crtc->mode_set.num_connectors = 0;
  1200. if (i915_fbpercrtc) {
  1201. }
  1202. }
  1203. struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
  1204. {
  1205. struct drm_crtc *crtc = NULL;
  1206. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1207. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1208. if (intel_crtc->pipe == pipe)
  1209. break;
  1210. }
  1211. return crtc;
  1212. }
  1213. static int intel_connector_clones(struct drm_device *dev, int type_mask)
  1214. {
  1215. int index_mask = 0;
  1216. struct drm_connector *connector;
  1217. int entry = 0;
  1218. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  1219. struct intel_output *intel_output = to_intel_output(connector);
  1220. if (type_mask & (1 << intel_output->type))
  1221. index_mask |= (1 << entry);
  1222. entry++;
  1223. }
  1224. return index_mask;
  1225. }
  1226. static void intel_setup_outputs(struct drm_device *dev)
  1227. {
  1228. struct drm_connector *connector;
  1229. intel_crt_init(dev);
  1230. /* Set up integrated LVDS */
  1231. if (IS_MOBILE(dev) && !IS_I830(dev))
  1232. intel_lvds_init(dev);
  1233. if (IS_I9XX(dev)) {
  1234. intel_sdvo_init(dev, SDVOB);
  1235. intel_sdvo_init(dev, SDVOC);
  1236. } else
  1237. intel_dvo_init(dev);
  1238. if (IS_I9XX(dev) && !IS_I915G(dev))
  1239. intel_tv_init(dev);
  1240. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  1241. struct intel_output *intel_output = to_intel_output(connector);
  1242. struct drm_encoder *encoder = &intel_output->enc;
  1243. int crtc_mask = 0, clone_mask = 0;
  1244. /* valid crtcs */
  1245. switch(intel_output->type) {
  1246. case INTEL_OUTPUT_DVO:
  1247. case INTEL_OUTPUT_SDVO:
  1248. crtc_mask = ((1 << 0)|
  1249. (1 << 1));
  1250. clone_mask = ((1 << INTEL_OUTPUT_ANALOG) |
  1251. (1 << INTEL_OUTPUT_DVO) |
  1252. (1 << INTEL_OUTPUT_SDVO));
  1253. break;
  1254. case INTEL_OUTPUT_ANALOG:
  1255. crtc_mask = ((1 << 0)|
  1256. (1 << 1));
  1257. clone_mask = ((1 << INTEL_OUTPUT_ANALOG) |
  1258. (1 << INTEL_OUTPUT_DVO) |
  1259. (1 << INTEL_OUTPUT_SDVO));
  1260. break;
  1261. case INTEL_OUTPUT_LVDS:
  1262. crtc_mask = (1 << 1);
  1263. clone_mask = (1 << INTEL_OUTPUT_LVDS);
  1264. break;
  1265. case INTEL_OUTPUT_TVOUT:
  1266. crtc_mask = ((1 << 0) |
  1267. (1 << 1));
  1268. clone_mask = (1 << INTEL_OUTPUT_TVOUT);
  1269. break;
  1270. }
  1271. encoder->possible_crtcs = crtc_mask;
  1272. encoder->possible_clones = intel_connector_clones(dev, clone_mask);
  1273. }
  1274. }
  1275. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  1276. {
  1277. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1278. struct drm_device *dev = fb->dev;
  1279. if (fb->fbdev)
  1280. intelfb_remove(dev, fb);
  1281. drm_framebuffer_cleanup(fb);
  1282. mutex_lock(&dev->struct_mutex);
  1283. drm_gem_object_unreference(intel_fb->obj);
  1284. mutex_unlock(&dev->struct_mutex);
  1285. kfree(intel_fb);
  1286. }
  1287. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  1288. struct drm_file *file_priv,
  1289. unsigned int *handle)
  1290. {
  1291. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1292. struct drm_gem_object *object = intel_fb->obj;
  1293. return drm_gem_handle_create(file_priv, object, handle);
  1294. }
  1295. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  1296. .destroy = intel_user_framebuffer_destroy,
  1297. .create_handle = intel_user_framebuffer_create_handle,
  1298. };
  1299. int intel_framebuffer_create(struct drm_device *dev,
  1300. struct drm_mode_fb_cmd *mode_cmd,
  1301. struct drm_framebuffer **fb,
  1302. struct drm_gem_object *obj)
  1303. {
  1304. struct intel_framebuffer *intel_fb;
  1305. int ret;
  1306. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  1307. if (!intel_fb)
  1308. return -ENOMEM;
  1309. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  1310. if (ret) {
  1311. DRM_ERROR("framebuffer init failed %d\n", ret);
  1312. return ret;
  1313. }
  1314. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  1315. intel_fb->obj = obj;
  1316. *fb = &intel_fb->base;
  1317. return 0;
  1318. }
  1319. static struct drm_framebuffer *
  1320. intel_user_framebuffer_create(struct drm_device *dev,
  1321. struct drm_file *filp,
  1322. struct drm_mode_fb_cmd *mode_cmd)
  1323. {
  1324. struct drm_gem_object *obj;
  1325. struct drm_framebuffer *fb;
  1326. int ret;
  1327. obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
  1328. if (!obj)
  1329. return NULL;
  1330. ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
  1331. if (ret) {
  1332. drm_gem_object_unreference(obj);
  1333. return NULL;
  1334. }
  1335. return fb;
  1336. }
  1337. static const struct drm_mode_config_funcs intel_mode_funcs = {
  1338. .fb_create = intel_user_framebuffer_create,
  1339. .fb_changed = intelfb_probe,
  1340. };
  1341. void intel_modeset_init(struct drm_device *dev)
  1342. {
  1343. int num_pipe;
  1344. int i;
  1345. drm_mode_config_init(dev);
  1346. dev->mode_config.min_width = 0;
  1347. dev->mode_config.min_height = 0;
  1348. dev->mode_config.funcs = (void *)&intel_mode_funcs;
  1349. if (IS_I965G(dev)) {
  1350. dev->mode_config.max_width = 8192;
  1351. dev->mode_config.max_height = 8192;
  1352. } else {
  1353. dev->mode_config.max_width = 2048;
  1354. dev->mode_config.max_height = 2048;
  1355. }
  1356. /* set memory base */
  1357. if (IS_I9XX(dev))
  1358. dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
  1359. else
  1360. dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
  1361. if (IS_MOBILE(dev) || IS_I9XX(dev))
  1362. num_pipe = 2;
  1363. else
  1364. num_pipe = 1;
  1365. DRM_DEBUG("%d display pipe%s available.\n",
  1366. num_pipe, num_pipe > 1 ? "s" : "");
  1367. for (i = 0; i < num_pipe; i++) {
  1368. intel_crtc_init(dev, i);
  1369. }
  1370. intel_setup_outputs(dev);
  1371. }
  1372. void intel_modeset_cleanup(struct drm_device *dev)
  1373. {
  1374. drm_mode_config_cleanup(dev);
  1375. }
  1376. /* current intel driver doesn't take advantage of encoders
  1377. always give back the encoder for the connector
  1378. */
  1379. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  1380. {
  1381. struct intel_output *intel_output = to_intel_output(connector);
  1382. return &intel_output->enc;
  1383. }