fsldma.c 27 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036
  1. /*
  2. * Freescale MPC85xx, MPC83xx DMA Engine support
  3. *
  4. * Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved.
  5. *
  6. * Author:
  7. * Zhang Wei <wei.zhang@freescale.com>, Jul 2007
  8. * Ebony Zhu <ebony.zhu@freescale.com>, May 2007
  9. *
  10. * Description:
  11. * DMA engine driver for Freescale MPC8540 DMA controller, which is
  12. * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
  13. * The support for MPC8349 DMA contorller is also added.
  14. *
  15. * This is free software; you can redistribute it and/or modify
  16. * it under the terms of the GNU General Public License as published by
  17. * the Free Software Foundation; either version 2 of the License, or
  18. * (at your option) any later version.
  19. *
  20. */
  21. #include <linux/init.h>
  22. #include <linux/module.h>
  23. #include <linux/pci.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/dmaengine.h>
  26. #include <linux/delay.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/dmapool.h>
  29. #include <linux/of_platform.h>
  30. #include "fsldma.h"
  31. static void dma_init(struct fsl_dma_chan *fsl_chan)
  32. {
  33. /* Reset the channel */
  34. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 0, 32);
  35. switch (fsl_chan->feature & FSL_DMA_IP_MASK) {
  36. case FSL_DMA_IP_85XX:
  37. /* Set the channel to below modes:
  38. * EIE - Error interrupt enable
  39. * EOSIE - End of segments interrupt enable (basic mode)
  40. * EOLNIE - End of links interrupt enable
  41. */
  42. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, FSL_DMA_MR_EIE
  43. | FSL_DMA_MR_EOLNIE | FSL_DMA_MR_EOSIE, 32);
  44. break;
  45. case FSL_DMA_IP_83XX:
  46. /* Set the channel to below modes:
  47. * EOTIE - End-of-transfer interrupt enable
  48. */
  49. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, FSL_DMA_MR_EOTIE,
  50. 32);
  51. break;
  52. }
  53. }
  54. static void set_sr(struct fsl_dma_chan *fsl_chan, u32 val)
  55. {
  56. DMA_OUT(fsl_chan, &fsl_chan->reg_base->sr, val, 32);
  57. }
  58. static u32 get_sr(struct fsl_dma_chan *fsl_chan)
  59. {
  60. return DMA_IN(fsl_chan, &fsl_chan->reg_base->sr, 32);
  61. }
  62. static void set_desc_cnt(struct fsl_dma_chan *fsl_chan,
  63. struct fsl_dma_ld_hw *hw, u32 count)
  64. {
  65. hw->count = CPU_TO_DMA(fsl_chan, count, 32);
  66. }
  67. static void set_desc_src(struct fsl_dma_chan *fsl_chan,
  68. struct fsl_dma_ld_hw *hw, dma_addr_t src)
  69. {
  70. u64 snoop_bits;
  71. snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
  72. ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
  73. hw->src_addr = CPU_TO_DMA(fsl_chan, snoop_bits | src, 64);
  74. }
  75. static void set_desc_dest(struct fsl_dma_chan *fsl_chan,
  76. struct fsl_dma_ld_hw *hw, dma_addr_t dest)
  77. {
  78. u64 snoop_bits;
  79. snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
  80. ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
  81. hw->dst_addr = CPU_TO_DMA(fsl_chan, snoop_bits | dest, 64);
  82. }
  83. static void set_desc_next(struct fsl_dma_chan *fsl_chan,
  84. struct fsl_dma_ld_hw *hw, dma_addr_t next)
  85. {
  86. u64 snoop_bits;
  87. snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
  88. ? FSL_DMA_SNEN : 0;
  89. hw->next_ln_addr = CPU_TO_DMA(fsl_chan, snoop_bits | next, 64);
  90. }
  91. static void set_cdar(struct fsl_dma_chan *fsl_chan, dma_addr_t addr)
  92. {
  93. DMA_OUT(fsl_chan, &fsl_chan->reg_base->cdar, addr | FSL_DMA_SNEN, 64);
  94. }
  95. static dma_addr_t get_cdar(struct fsl_dma_chan *fsl_chan)
  96. {
  97. return DMA_IN(fsl_chan, &fsl_chan->reg_base->cdar, 64) & ~FSL_DMA_SNEN;
  98. }
  99. static void set_ndar(struct fsl_dma_chan *fsl_chan, dma_addr_t addr)
  100. {
  101. DMA_OUT(fsl_chan, &fsl_chan->reg_base->ndar, addr, 64);
  102. }
  103. static dma_addr_t get_ndar(struct fsl_dma_chan *fsl_chan)
  104. {
  105. return DMA_IN(fsl_chan, &fsl_chan->reg_base->ndar, 64);
  106. }
  107. static u32 get_bcr(struct fsl_dma_chan *fsl_chan)
  108. {
  109. return DMA_IN(fsl_chan, &fsl_chan->reg_base->bcr, 32);
  110. }
  111. static int dma_is_idle(struct fsl_dma_chan *fsl_chan)
  112. {
  113. u32 sr = get_sr(fsl_chan);
  114. return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
  115. }
  116. static void dma_start(struct fsl_dma_chan *fsl_chan)
  117. {
  118. u32 mr_set = 0;;
  119. if (fsl_chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
  120. DMA_OUT(fsl_chan, &fsl_chan->reg_base->bcr, 0, 32);
  121. mr_set |= FSL_DMA_MR_EMP_EN;
  122. } else
  123. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
  124. DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32)
  125. & ~FSL_DMA_MR_EMP_EN, 32);
  126. if (fsl_chan->feature & FSL_DMA_CHAN_START_EXT)
  127. mr_set |= FSL_DMA_MR_EMS_EN;
  128. else
  129. mr_set |= FSL_DMA_MR_CS;
  130. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
  131. DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32)
  132. | mr_set, 32);
  133. }
  134. static void dma_halt(struct fsl_dma_chan *fsl_chan)
  135. {
  136. int i = 0;
  137. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
  138. DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) | FSL_DMA_MR_CA,
  139. 32);
  140. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
  141. DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) & ~(FSL_DMA_MR_CS
  142. | FSL_DMA_MR_EMS_EN | FSL_DMA_MR_CA), 32);
  143. while (!dma_is_idle(fsl_chan) && (i++ < 100))
  144. udelay(10);
  145. if (i >= 100 && !dma_is_idle(fsl_chan))
  146. dev_err(fsl_chan->dev, "DMA halt timeout!\n");
  147. }
  148. static void set_ld_eol(struct fsl_dma_chan *fsl_chan,
  149. struct fsl_desc_sw *desc)
  150. {
  151. desc->hw.next_ln_addr = CPU_TO_DMA(fsl_chan,
  152. DMA_TO_CPU(fsl_chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL,
  153. 64);
  154. }
  155. static void append_ld_queue(struct fsl_dma_chan *fsl_chan,
  156. struct fsl_desc_sw *new_desc)
  157. {
  158. struct fsl_desc_sw *queue_tail = to_fsl_desc(fsl_chan->ld_queue.prev);
  159. if (list_empty(&fsl_chan->ld_queue))
  160. return;
  161. /* Link to the new descriptor physical address and
  162. * Enable End-of-segment interrupt for
  163. * the last link descriptor.
  164. * (the previous node's next link descriptor)
  165. *
  166. * For FSL_DMA_IP_83xx, the snoop enable bit need be set.
  167. */
  168. queue_tail->hw.next_ln_addr = CPU_TO_DMA(fsl_chan,
  169. new_desc->async_tx.phys | FSL_DMA_EOSIE |
  170. (((fsl_chan->feature & FSL_DMA_IP_MASK)
  171. == FSL_DMA_IP_83XX) ? FSL_DMA_SNEN : 0), 64);
  172. }
  173. /**
  174. * fsl_chan_set_src_loop_size - Set source address hold transfer size
  175. * @fsl_chan : Freescale DMA channel
  176. * @size : Address loop size, 0 for disable loop
  177. *
  178. * The set source address hold transfer size. The source
  179. * address hold or loop transfer size is when the DMA transfer
  180. * data from source address (SA), if the loop size is 4, the DMA will
  181. * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
  182. * SA + 1 ... and so on.
  183. */
  184. static void fsl_chan_set_src_loop_size(struct fsl_dma_chan *fsl_chan, int size)
  185. {
  186. switch (size) {
  187. case 0:
  188. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
  189. DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) &
  190. (~FSL_DMA_MR_SAHE), 32);
  191. break;
  192. case 1:
  193. case 2:
  194. case 4:
  195. case 8:
  196. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
  197. DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) |
  198. FSL_DMA_MR_SAHE | (__ilog2(size) << 14),
  199. 32);
  200. break;
  201. }
  202. }
  203. /**
  204. * fsl_chan_set_dest_loop_size - Set destination address hold transfer size
  205. * @fsl_chan : Freescale DMA channel
  206. * @size : Address loop size, 0 for disable loop
  207. *
  208. * The set destination address hold transfer size. The destination
  209. * address hold or loop transfer size is when the DMA transfer
  210. * data to destination address (TA), if the loop size is 4, the DMA will
  211. * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
  212. * TA + 1 ... and so on.
  213. */
  214. static void fsl_chan_set_dest_loop_size(struct fsl_dma_chan *fsl_chan, int size)
  215. {
  216. switch (size) {
  217. case 0:
  218. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
  219. DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) &
  220. (~FSL_DMA_MR_DAHE), 32);
  221. break;
  222. case 1:
  223. case 2:
  224. case 4:
  225. case 8:
  226. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
  227. DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32) |
  228. FSL_DMA_MR_DAHE | (__ilog2(size) << 16),
  229. 32);
  230. break;
  231. }
  232. }
  233. /**
  234. * fsl_chan_toggle_ext_pause - Toggle channel external pause status
  235. * @fsl_chan : Freescale DMA channel
  236. * @size : Pause control size, 0 for disable external pause control.
  237. * The maximum is 1024.
  238. *
  239. * The Freescale DMA channel can be controlled by the external
  240. * signal DREQ#. The pause control size is how many bytes are allowed
  241. * to transfer before pausing the channel, after which a new assertion
  242. * of DREQ# resumes channel operation.
  243. */
  244. static void fsl_chan_toggle_ext_pause(struct fsl_dma_chan *fsl_chan, int size)
  245. {
  246. if (size > 1024)
  247. return;
  248. if (size) {
  249. DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
  250. DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32)
  251. | ((__ilog2(size) << 24) & 0x0f000000),
  252. 32);
  253. fsl_chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
  254. } else
  255. fsl_chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
  256. }
  257. /**
  258. * fsl_chan_toggle_ext_start - Toggle channel external start status
  259. * @fsl_chan : Freescale DMA channel
  260. * @enable : 0 is disabled, 1 is enabled.
  261. *
  262. * If enable the external start, the channel can be started by an
  263. * external DMA start pin. So the dma_start() does not start the
  264. * transfer immediately. The DMA channel will wait for the
  265. * control pin asserted.
  266. */
  267. static void fsl_chan_toggle_ext_start(struct fsl_dma_chan *fsl_chan, int enable)
  268. {
  269. if (enable)
  270. fsl_chan->feature |= FSL_DMA_CHAN_START_EXT;
  271. else
  272. fsl_chan->feature &= ~FSL_DMA_CHAN_START_EXT;
  273. }
  274. static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
  275. {
  276. struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
  277. struct fsl_dma_chan *fsl_chan = to_fsl_chan(tx->chan);
  278. unsigned long flags;
  279. dma_cookie_t cookie;
  280. /* cookie increment and adding to ld_queue must be atomic */
  281. spin_lock_irqsave(&fsl_chan->desc_lock, flags);
  282. cookie = fsl_chan->common.cookie;
  283. cookie++;
  284. if (cookie < 0)
  285. cookie = 1;
  286. desc->async_tx.cookie = cookie;
  287. fsl_chan->common.cookie = desc->async_tx.cookie;
  288. append_ld_queue(fsl_chan, desc);
  289. list_splice_init(&desc->async_tx.tx_list, fsl_chan->ld_queue.prev);
  290. spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
  291. return cookie;
  292. }
  293. /**
  294. * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
  295. * @fsl_chan : Freescale DMA channel
  296. *
  297. * Return - The descriptor allocated. NULL for failed.
  298. */
  299. static struct fsl_desc_sw *fsl_dma_alloc_descriptor(
  300. struct fsl_dma_chan *fsl_chan)
  301. {
  302. dma_addr_t pdesc;
  303. struct fsl_desc_sw *desc_sw;
  304. desc_sw = dma_pool_alloc(fsl_chan->desc_pool, GFP_ATOMIC, &pdesc);
  305. if (desc_sw) {
  306. memset(desc_sw, 0, sizeof(struct fsl_desc_sw));
  307. dma_async_tx_descriptor_init(&desc_sw->async_tx,
  308. &fsl_chan->common);
  309. desc_sw->async_tx.tx_submit = fsl_dma_tx_submit;
  310. INIT_LIST_HEAD(&desc_sw->async_tx.tx_list);
  311. desc_sw->async_tx.phys = pdesc;
  312. }
  313. return desc_sw;
  314. }
  315. /**
  316. * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
  317. * @fsl_chan : Freescale DMA channel
  318. *
  319. * This function will create a dma pool for descriptor allocation.
  320. *
  321. * Return - The number of descriptors allocated.
  322. */
  323. static int fsl_dma_alloc_chan_resources(struct dma_chan *chan,
  324. struct dma_client *client)
  325. {
  326. struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
  327. /* Has this channel already been allocated? */
  328. if (fsl_chan->desc_pool)
  329. return 1;
  330. /* We need the descriptor to be aligned to 32bytes
  331. * for meeting FSL DMA specification requirement.
  332. */
  333. fsl_chan->desc_pool = dma_pool_create("fsl_dma_engine_desc_pool",
  334. fsl_chan->dev, sizeof(struct fsl_desc_sw),
  335. 32, 0);
  336. if (!fsl_chan->desc_pool) {
  337. dev_err(fsl_chan->dev, "No memory for channel %d "
  338. "descriptor dma pool.\n", fsl_chan->id);
  339. return 0;
  340. }
  341. return 1;
  342. }
  343. /**
  344. * fsl_dma_free_chan_resources - Free all resources of the channel.
  345. * @fsl_chan : Freescale DMA channel
  346. */
  347. static void fsl_dma_free_chan_resources(struct dma_chan *chan)
  348. {
  349. struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
  350. struct fsl_desc_sw *desc, *_desc;
  351. unsigned long flags;
  352. dev_dbg(fsl_chan->dev, "Free all channel resources.\n");
  353. spin_lock_irqsave(&fsl_chan->desc_lock, flags);
  354. list_for_each_entry_safe(desc, _desc, &fsl_chan->ld_queue, node) {
  355. #ifdef FSL_DMA_LD_DEBUG
  356. dev_dbg(fsl_chan->dev,
  357. "LD %p will be released.\n", desc);
  358. #endif
  359. list_del(&desc->node);
  360. /* free link descriptor */
  361. dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys);
  362. }
  363. spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
  364. dma_pool_destroy(fsl_chan->desc_pool);
  365. fsl_chan->desc_pool = NULL;
  366. }
  367. static struct dma_async_tx_descriptor *
  368. fsl_dma_prep_interrupt(struct dma_chan *chan, unsigned long flags)
  369. {
  370. struct fsl_dma_chan *fsl_chan;
  371. struct fsl_desc_sw *new;
  372. if (!chan)
  373. return NULL;
  374. fsl_chan = to_fsl_chan(chan);
  375. new = fsl_dma_alloc_descriptor(fsl_chan);
  376. if (!new) {
  377. dev_err(fsl_chan->dev, "No free memory for link descriptor\n");
  378. return NULL;
  379. }
  380. new->async_tx.cookie = -EBUSY;
  381. new->async_tx.flags = flags;
  382. /* Insert the link descriptor to the LD ring */
  383. list_add_tail(&new->node, &new->async_tx.tx_list);
  384. /* Set End-of-link to the last link descriptor of new list*/
  385. set_ld_eol(fsl_chan, new);
  386. return &new->async_tx;
  387. }
  388. static struct dma_async_tx_descriptor *fsl_dma_prep_memcpy(
  389. struct dma_chan *chan, dma_addr_t dma_dest, dma_addr_t dma_src,
  390. size_t len, unsigned long flags)
  391. {
  392. struct fsl_dma_chan *fsl_chan;
  393. struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
  394. size_t copy;
  395. LIST_HEAD(link_chain);
  396. if (!chan)
  397. return NULL;
  398. if (!len)
  399. return NULL;
  400. fsl_chan = to_fsl_chan(chan);
  401. do {
  402. /* Allocate the link descriptor from DMA pool */
  403. new = fsl_dma_alloc_descriptor(fsl_chan);
  404. if (!new) {
  405. dev_err(fsl_chan->dev,
  406. "No free memory for link descriptor\n");
  407. return NULL;
  408. }
  409. #ifdef FSL_DMA_LD_DEBUG
  410. dev_dbg(fsl_chan->dev, "new link desc alloc %p\n", new);
  411. #endif
  412. copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
  413. set_desc_cnt(fsl_chan, &new->hw, copy);
  414. set_desc_src(fsl_chan, &new->hw, dma_src);
  415. set_desc_dest(fsl_chan, &new->hw, dma_dest);
  416. if (!first)
  417. first = new;
  418. else
  419. set_desc_next(fsl_chan, &prev->hw, new->async_tx.phys);
  420. new->async_tx.cookie = 0;
  421. async_tx_ack(&new->async_tx);
  422. prev = new;
  423. len -= copy;
  424. dma_src += copy;
  425. dma_dest += copy;
  426. /* Insert the link descriptor to the LD ring */
  427. list_add_tail(&new->node, &first->async_tx.tx_list);
  428. } while (len);
  429. new->async_tx.flags = flags; /* client is in control of this ack */
  430. new->async_tx.cookie = -EBUSY;
  431. /* Set End-of-link to the last link descriptor of new list*/
  432. set_ld_eol(fsl_chan, new);
  433. return first ? &first->async_tx : NULL;
  434. }
  435. /**
  436. * fsl_dma_update_completed_cookie - Update the completed cookie.
  437. * @fsl_chan : Freescale DMA channel
  438. */
  439. static void fsl_dma_update_completed_cookie(struct fsl_dma_chan *fsl_chan)
  440. {
  441. struct fsl_desc_sw *cur_desc, *desc;
  442. dma_addr_t ld_phy;
  443. ld_phy = get_cdar(fsl_chan) & FSL_DMA_NLDA_MASK;
  444. if (ld_phy) {
  445. cur_desc = NULL;
  446. list_for_each_entry(desc, &fsl_chan->ld_queue, node)
  447. if (desc->async_tx.phys == ld_phy) {
  448. cur_desc = desc;
  449. break;
  450. }
  451. if (cur_desc && cur_desc->async_tx.cookie) {
  452. if (dma_is_idle(fsl_chan))
  453. fsl_chan->completed_cookie =
  454. cur_desc->async_tx.cookie;
  455. else
  456. fsl_chan->completed_cookie =
  457. cur_desc->async_tx.cookie - 1;
  458. }
  459. }
  460. }
  461. /**
  462. * fsl_chan_ld_cleanup - Clean up link descriptors
  463. * @fsl_chan : Freescale DMA channel
  464. *
  465. * This function clean up the ld_queue of DMA channel.
  466. * If 'in_intr' is set, the function will move the link descriptor to
  467. * the recycle list. Otherwise, free it directly.
  468. */
  469. static void fsl_chan_ld_cleanup(struct fsl_dma_chan *fsl_chan)
  470. {
  471. struct fsl_desc_sw *desc, *_desc;
  472. unsigned long flags;
  473. spin_lock_irqsave(&fsl_chan->desc_lock, flags);
  474. dev_dbg(fsl_chan->dev, "chan completed_cookie = %d\n",
  475. fsl_chan->completed_cookie);
  476. list_for_each_entry_safe(desc, _desc, &fsl_chan->ld_queue, node) {
  477. dma_async_tx_callback callback;
  478. void *callback_param;
  479. if (dma_async_is_complete(desc->async_tx.cookie,
  480. fsl_chan->completed_cookie, fsl_chan->common.cookie)
  481. == DMA_IN_PROGRESS)
  482. break;
  483. callback = desc->async_tx.callback;
  484. callback_param = desc->async_tx.callback_param;
  485. /* Remove from ld_queue list */
  486. list_del(&desc->node);
  487. dev_dbg(fsl_chan->dev, "link descriptor %p will be recycle.\n",
  488. desc);
  489. dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys);
  490. /* Run the link descriptor callback function */
  491. if (callback) {
  492. spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
  493. dev_dbg(fsl_chan->dev, "link descriptor %p callback\n",
  494. desc);
  495. callback(callback_param);
  496. spin_lock_irqsave(&fsl_chan->desc_lock, flags);
  497. }
  498. }
  499. spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
  500. }
  501. /**
  502. * fsl_chan_xfer_ld_queue - Transfer link descriptors in channel ld_queue.
  503. * @fsl_chan : Freescale DMA channel
  504. */
  505. static void fsl_chan_xfer_ld_queue(struct fsl_dma_chan *fsl_chan)
  506. {
  507. struct list_head *ld_node;
  508. dma_addr_t next_dest_addr;
  509. unsigned long flags;
  510. if (!dma_is_idle(fsl_chan))
  511. return;
  512. dma_halt(fsl_chan);
  513. /* If there are some link descriptors
  514. * not transfered in queue. We need to start it.
  515. */
  516. spin_lock_irqsave(&fsl_chan->desc_lock, flags);
  517. /* Find the first un-transfer desciptor */
  518. for (ld_node = fsl_chan->ld_queue.next;
  519. (ld_node != &fsl_chan->ld_queue)
  520. && (dma_async_is_complete(
  521. to_fsl_desc(ld_node)->async_tx.cookie,
  522. fsl_chan->completed_cookie,
  523. fsl_chan->common.cookie) == DMA_SUCCESS);
  524. ld_node = ld_node->next);
  525. spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
  526. if (ld_node != &fsl_chan->ld_queue) {
  527. /* Get the ld start address from ld_queue */
  528. next_dest_addr = to_fsl_desc(ld_node)->async_tx.phys;
  529. dev_dbg(fsl_chan->dev, "xfer LDs staring from %p\n",
  530. (void *)next_dest_addr);
  531. set_cdar(fsl_chan, next_dest_addr);
  532. dma_start(fsl_chan);
  533. } else {
  534. set_cdar(fsl_chan, 0);
  535. set_ndar(fsl_chan, 0);
  536. }
  537. }
  538. /**
  539. * fsl_dma_memcpy_issue_pending - Issue the DMA start command
  540. * @fsl_chan : Freescale DMA channel
  541. */
  542. static void fsl_dma_memcpy_issue_pending(struct dma_chan *chan)
  543. {
  544. struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
  545. #ifdef FSL_DMA_LD_DEBUG
  546. struct fsl_desc_sw *ld;
  547. unsigned long flags;
  548. spin_lock_irqsave(&fsl_chan->desc_lock, flags);
  549. if (list_empty(&fsl_chan->ld_queue)) {
  550. spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
  551. return;
  552. }
  553. dev_dbg(fsl_chan->dev, "--memcpy issue--\n");
  554. list_for_each_entry(ld, &fsl_chan->ld_queue, node) {
  555. int i;
  556. dev_dbg(fsl_chan->dev, "Ch %d, LD %08x\n",
  557. fsl_chan->id, ld->async_tx.phys);
  558. for (i = 0; i < 8; i++)
  559. dev_dbg(fsl_chan->dev, "LD offset %d: %08x\n",
  560. i, *(((u32 *)&ld->hw) + i));
  561. }
  562. dev_dbg(fsl_chan->dev, "----------------\n");
  563. spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
  564. #endif
  565. fsl_chan_xfer_ld_queue(fsl_chan);
  566. }
  567. /**
  568. * fsl_dma_is_complete - Determine the DMA status
  569. * @fsl_chan : Freescale DMA channel
  570. */
  571. static enum dma_status fsl_dma_is_complete(struct dma_chan *chan,
  572. dma_cookie_t cookie,
  573. dma_cookie_t *done,
  574. dma_cookie_t *used)
  575. {
  576. struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
  577. dma_cookie_t last_used;
  578. dma_cookie_t last_complete;
  579. fsl_chan_ld_cleanup(fsl_chan);
  580. last_used = chan->cookie;
  581. last_complete = fsl_chan->completed_cookie;
  582. if (done)
  583. *done = last_complete;
  584. if (used)
  585. *used = last_used;
  586. return dma_async_is_complete(cookie, last_complete, last_used);
  587. }
  588. static irqreturn_t fsl_dma_chan_do_interrupt(int irq, void *data)
  589. {
  590. struct fsl_dma_chan *fsl_chan = (struct fsl_dma_chan *)data;
  591. u32 stat;
  592. int update_cookie = 0;
  593. int xfer_ld_q = 0;
  594. stat = get_sr(fsl_chan);
  595. dev_dbg(fsl_chan->dev, "event: channel %d, stat = 0x%x\n",
  596. fsl_chan->id, stat);
  597. set_sr(fsl_chan, stat); /* Clear the event register */
  598. stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
  599. if (!stat)
  600. return IRQ_NONE;
  601. if (stat & FSL_DMA_SR_TE)
  602. dev_err(fsl_chan->dev, "Transfer Error!\n");
  603. /* Programming Error
  604. * The DMA_INTERRUPT async_tx is a NULL transfer, which will
  605. * triger a PE interrupt.
  606. */
  607. if (stat & FSL_DMA_SR_PE) {
  608. dev_dbg(fsl_chan->dev, "event: Programming Error INT\n");
  609. if (get_bcr(fsl_chan) == 0) {
  610. /* BCR register is 0, this is a DMA_INTERRUPT async_tx.
  611. * Now, update the completed cookie, and continue the
  612. * next uncompleted transfer.
  613. */
  614. update_cookie = 1;
  615. xfer_ld_q = 1;
  616. }
  617. stat &= ~FSL_DMA_SR_PE;
  618. }
  619. /* If the link descriptor segment transfer finishes,
  620. * we will recycle the used descriptor.
  621. */
  622. if (stat & FSL_DMA_SR_EOSI) {
  623. dev_dbg(fsl_chan->dev, "event: End-of-segments INT\n");
  624. dev_dbg(fsl_chan->dev, "event: clndar %p, nlndar %p\n",
  625. (void *)get_cdar(fsl_chan), (void *)get_ndar(fsl_chan));
  626. stat &= ~FSL_DMA_SR_EOSI;
  627. update_cookie = 1;
  628. }
  629. /* For MPC8349, EOCDI event need to update cookie
  630. * and start the next transfer if it exist.
  631. */
  632. if (stat & FSL_DMA_SR_EOCDI) {
  633. dev_dbg(fsl_chan->dev, "event: End-of-Chain link INT\n");
  634. stat &= ~FSL_DMA_SR_EOCDI;
  635. update_cookie = 1;
  636. xfer_ld_q = 1;
  637. }
  638. /* If it current transfer is the end-of-transfer,
  639. * we should clear the Channel Start bit for
  640. * prepare next transfer.
  641. */
  642. if (stat & FSL_DMA_SR_EOLNI) {
  643. dev_dbg(fsl_chan->dev, "event: End-of-link INT\n");
  644. stat &= ~FSL_DMA_SR_EOLNI;
  645. xfer_ld_q = 1;
  646. }
  647. if (update_cookie)
  648. fsl_dma_update_completed_cookie(fsl_chan);
  649. if (xfer_ld_q)
  650. fsl_chan_xfer_ld_queue(fsl_chan);
  651. if (stat)
  652. dev_dbg(fsl_chan->dev, "event: unhandled sr 0x%02x\n",
  653. stat);
  654. dev_dbg(fsl_chan->dev, "event: Exit\n");
  655. tasklet_schedule(&fsl_chan->tasklet);
  656. return IRQ_HANDLED;
  657. }
  658. static irqreturn_t fsl_dma_do_interrupt(int irq, void *data)
  659. {
  660. struct fsl_dma_device *fdev = (struct fsl_dma_device *)data;
  661. u32 gsr;
  662. int ch_nr;
  663. gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->reg_base)
  664. : in_le32(fdev->reg_base);
  665. ch_nr = (32 - ffs(gsr)) / 8;
  666. return fdev->chan[ch_nr] ? fsl_dma_chan_do_interrupt(irq,
  667. fdev->chan[ch_nr]) : IRQ_NONE;
  668. }
  669. static void dma_do_tasklet(unsigned long data)
  670. {
  671. struct fsl_dma_chan *fsl_chan = (struct fsl_dma_chan *)data;
  672. fsl_chan_ld_cleanup(fsl_chan);
  673. }
  674. static int __devinit fsl_dma_chan_probe(struct fsl_dma_device *fdev,
  675. struct device_node *node, u32 feature, const char *compatible)
  676. {
  677. struct fsl_dma_chan *new_fsl_chan;
  678. int err;
  679. /* alloc channel */
  680. new_fsl_chan = kzalloc(sizeof(struct fsl_dma_chan), GFP_KERNEL);
  681. if (!new_fsl_chan) {
  682. dev_err(fdev->dev, "No free memory for allocating "
  683. "dma channels!\n");
  684. return -ENOMEM;
  685. }
  686. /* get dma channel register base */
  687. err = of_address_to_resource(node, 0, &new_fsl_chan->reg);
  688. if (err) {
  689. dev_err(fdev->dev, "Can't get %s property 'reg'\n",
  690. node->full_name);
  691. goto err_no_reg;
  692. }
  693. new_fsl_chan->feature = feature;
  694. if (!fdev->feature)
  695. fdev->feature = new_fsl_chan->feature;
  696. /* If the DMA device's feature is different than its channels',
  697. * report the bug.
  698. */
  699. WARN_ON(fdev->feature != new_fsl_chan->feature);
  700. new_fsl_chan->dev = &new_fsl_chan->common.dev;
  701. new_fsl_chan->reg_base = ioremap(new_fsl_chan->reg.start,
  702. new_fsl_chan->reg.end - new_fsl_chan->reg.start + 1);
  703. new_fsl_chan->id = ((new_fsl_chan->reg.start - 0x100) & 0xfff) >> 7;
  704. if (new_fsl_chan->id > FSL_DMA_MAX_CHANS_PER_DEVICE) {
  705. dev_err(fdev->dev, "There is no %d channel!\n",
  706. new_fsl_chan->id);
  707. err = -EINVAL;
  708. goto err_no_chan;
  709. }
  710. fdev->chan[new_fsl_chan->id] = new_fsl_chan;
  711. tasklet_init(&new_fsl_chan->tasklet, dma_do_tasklet,
  712. (unsigned long)new_fsl_chan);
  713. /* Init the channel */
  714. dma_init(new_fsl_chan);
  715. /* Clear cdar registers */
  716. set_cdar(new_fsl_chan, 0);
  717. switch (new_fsl_chan->feature & FSL_DMA_IP_MASK) {
  718. case FSL_DMA_IP_85XX:
  719. new_fsl_chan->toggle_ext_start = fsl_chan_toggle_ext_start;
  720. new_fsl_chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
  721. case FSL_DMA_IP_83XX:
  722. new_fsl_chan->set_src_loop_size = fsl_chan_set_src_loop_size;
  723. new_fsl_chan->set_dest_loop_size = fsl_chan_set_dest_loop_size;
  724. }
  725. spin_lock_init(&new_fsl_chan->desc_lock);
  726. INIT_LIST_HEAD(&new_fsl_chan->ld_queue);
  727. new_fsl_chan->common.device = &fdev->common;
  728. /* Add the channel to DMA device channel list */
  729. list_add_tail(&new_fsl_chan->common.device_node,
  730. &fdev->common.channels);
  731. fdev->common.chancnt++;
  732. new_fsl_chan->irq = irq_of_parse_and_map(node, 0);
  733. if (new_fsl_chan->irq != NO_IRQ) {
  734. err = request_irq(new_fsl_chan->irq,
  735. &fsl_dma_chan_do_interrupt, IRQF_SHARED,
  736. "fsldma-channel", new_fsl_chan);
  737. if (err) {
  738. dev_err(fdev->dev, "DMA channel %s request_irq error "
  739. "with return %d\n", node->full_name, err);
  740. goto err_no_irq;
  741. }
  742. }
  743. dev_info(fdev->dev, "#%d (%s), irq %d\n", new_fsl_chan->id,
  744. compatible, new_fsl_chan->irq);
  745. return 0;
  746. err_no_irq:
  747. list_del(&new_fsl_chan->common.device_node);
  748. err_no_chan:
  749. iounmap(new_fsl_chan->reg_base);
  750. err_no_reg:
  751. kfree(new_fsl_chan);
  752. return err;
  753. }
  754. static void fsl_dma_chan_remove(struct fsl_dma_chan *fchan)
  755. {
  756. free_irq(fchan->irq, fchan);
  757. list_del(&fchan->common.device_node);
  758. iounmap(fchan->reg_base);
  759. kfree(fchan);
  760. }
  761. static int __devinit of_fsl_dma_probe(struct of_device *dev,
  762. const struct of_device_id *match)
  763. {
  764. int err;
  765. struct fsl_dma_device *fdev;
  766. struct device_node *child;
  767. fdev = kzalloc(sizeof(struct fsl_dma_device), GFP_KERNEL);
  768. if (!fdev) {
  769. dev_err(&dev->dev, "No enough memory for 'priv'\n");
  770. return -ENOMEM;
  771. }
  772. fdev->dev = &dev->dev;
  773. INIT_LIST_HEAD(&fdev->common.channels);
  774. /* get DMA controller register base */
  775. err = of_address_to_resource(dev->node, 0, &fdev->reg);
  776. if (err) {
  777. dev_err(&dev->dev, "Can't get %s property 'reg'\n",
  778. dev->node->full_name);
  779. goto err_no_reg;
  780. }
  781. dev_info(&dev->dev, "Probe the Freescale DMA driver for %s "
  782. "controller at %p...\n",
  783. match->compatible, (void *)fdev->reg.start);
  784. fdev->reg_base = ioremap(fdev->reg.start, fdev->reg.end
  785. - fdev->reg.start + 1);
  786. dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
  787. dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask);
  788. fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
  789. fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
  790. fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt;
  791. fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
  792. fdev->common.device_is_tx_complete = fsl_dma_is_complete;
  793. fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
  794. fdev->common.dev = &dev->dev;
  795. fdev->irq = irq_of_parse_and_map(dev->node, 0);
  796. if (fdev->irq != NO_IRQ) {
  797. err = request_irq(fdev->irq, &fsl_dma_do_interrupt, IRQF_SHARED,
  798. "fsldma-device", fdev);
  799. if (err) {
  800. dev_err(&dev->dev, "DMA device request_irq error "
  801. "with return %d\n", err);
  802. goto err;
  803. }
  804. }
  805. dev_set_drvdata(&(dev->dev), fdev);
  806. /* We cannot use of_platform_bus_probe() because there is no
  807. * of_platform_bus_remove. Instead, we manually instantiate every DMA
  808. * channel object.
  809. */
  810. for_each_child_of_node(dev->node, child) {
  811. if (of_device_is_compatible(child, "fsl,eloplus-dma-channel"))
  812. fsl_dma_chan_probe(fdev, child,
  813. FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
  814. "fsl,eloplus-dma-channel");
  815. if (of_device_is_compatible(child, "fsl,elo-dma-channel"))
  816. fsl_dma_chan_probe(fdev, child,
  817. FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
  818. "fsl,elo-dma-channel");
  819. }
  820. dma_async_device_register(&fdev->common);
  821. return 0;
  822. err:
  823. iounmap(fdev->reg_base);
  824. err_no_reg:
  825. kfree(fdev);
  826. return err;
  827. }
  828. static int of_fsl_dma_remove(struct of_device *of_dev)
  829. {
  830. struct fsl_dma_device *fdev;
  831. unsigned int i;
  832. fdev = dev_get_drvdata(&of_dev->dev);
  833. dma_async_device_unregister(&fdev->common);
  834. for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++)
  835. if (fdev->chan[i])
  836. fsl_dma_chan_remove(fdev->chan[i]);
  837. if (fdev->irq != NO_IRQ)
  838. free_irq(fdev->irq, fdev);
  839. iounmap(fdev->reg_base);
  840. kfree(fdev);
  841. dev_set_drvdata(&of_dev->dev, NULL);
  842. return 0;
  843. }
  844. static struct of_device_id of_fsl_dma_ids[] = {
  845. { .compatible = "fsl,eloplus-dma", },
  846. { .compatible = "fsl,elo-dma", },
  847. {}
  848. };
  849. static struct of_platform_driver of_fsl_dma_driver = {
  850. .name = "fsl-elo-dma",
  851. .match_table = of_fsl_dma_ids,
  852. .probe = of_fsl_dma_probe,
  853. .remove = of_fsl_dma_remove,
  854. };
  855. static __init int of_fsl_dma_init(void)
  856. {
  857. int ret;
  858. pr_info("Freescale Elo / Elo Plus DMA driver\n");
  859. ret = of_register_platform_driver(&of_fsl_dma_driver);
  860. if (ret)
  861. pr_err("fsldma: failed to register platform driver\n");
  862. return ret;
  863. }
  864. static void __exit of_fsl_dma_exit(void)
  865. {
  866. of_unregister_platform_driver(&of_fsl_dma_driver);
  867. }
  868. subsys_initcall(of_fsl_dma_init);
  869. module_exit(of_fsl_dma_exit);
  870. MODULE_DESCRIPTION("Freescale Elo / Elo Plus DMA driver");
  871. MODULE_LICENSE("GPL");