i460-agp.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657
  1. /*
  2. * For documentation on the i460 AGP interface, see Chapter 7 (AGP Subsystem) of
  3. * the "Intel 460GTX Chipset Software Developer's Manual":
  4. * http://developer.intel.com/design/itanium/downloads/24870401s.htm
  5. */
  6. /*
  7. * 460GX support by Chris Ahna <christopher.j.ahna@intel.com>
  8. * Clean up & simplification by David Mosberger-Tang <davidm@hpl.hp.com>
  9. */
  10. #include <linux/module.h>
  11. #include <linux/pci.h>
  12. #include <linux/init.h>
  13. #include <linux/string.h>
  14. #include <linux/slab.h>
  15. #include <linux/agp_backend.h>
  16. #include <linux/log2.h>
  17. #include "agp.h"
  18. #define INTEL_I460_BAPBASE 0x98
  19. #define INTEL_I460_GXBCTL 0xa0
  20. #define INTEL_I460_AGPSIZ 0xa2
  21. #define INTEL_I460_ATTBASE 0xfe200000
  22. #define INTEL_I460_GATT_VALID (1UL << 24)
  23. #define INTEL_I460_GATT_COHERENT (1UL << 25)
  24. /*
  25. * The i460 can operate with large (4MB) pages, but there is no sane way to support this
  26. * within the current kernel/DRM environment, so we disable the relevant code for now.
  27. * See also comments in ia64_alloc_page()...
  28. */
  29. #define I460_LARGE_IO_PAGES 0
  30. #if I460_LARGE_IO_PAGES
  31. # define I460_IO_PAGE_SHIFT i460.io_page_shift
  32. #else
  33. # define I460_IO_PAGE_SHIFT 12
  34. #endif
  35. #define I460_IOPAGES_PER_KPAGE (PAGE_SIZE >> I460_IO_PAGE_SHIFT)
  36. #define I460_KPAGES_PER_IOPAGE (1 << (I460_IO_PAGE_SHIFT - PAGE_SHIFT))
  37. #define I460_SRAM_IO_DISABLE (1 << 4)
  38. #define I460_BAPBASE_ENABLE (1 << 3)
  39. #define I460_AGPSIZ_MASK 0x7
  40. #define I460_4M_PS (1 << 1)
  41. /* Control bits for Out-Of-GART coherency and Burst Write Combining */
  42. #define I460_GXBCTL_OOG (1UL << 0)
  43. #define I460_GXBCTL_BWC (1UL << 2)
  44. /*
  45. * gatt_table entries are 32-bits wide on the i460; the generic code ought to declare the
  46. * gatt_table and gatt_table_real pointers a "void *"...
  47. */
  48. #define RD_GATT(index) readl((u32 *) i460.gatt + (index))
  49. #define WR_GATT(index, val) writel((val), (u32 *) i460.gatt + (index))
  50. /*
  51. * The 460 spec says we have to read the last location written to make sure that all
  52. * writes have taken effect
  53. */
  54. #define WR_FLUSH_GATT(index) RD_GATT(index)
  55. static struct {
  56. void *gatt; /* ioremap'd GATT area */
  57. /* i460 supports multiple GART page sizes, so GART pageshift is dynamic: */
  58. u8 io_page_shift;
  59. /* BIOS configures chipset to one of 2 possible apbase values: */
  60. u8 dynamic_apbase;
  61. /* structure for tracking partial use of 4MB GART pages: */
  62. struct lp_desc {
  63. unsigned long *alloced_map; /* bitmap of kernel-pages in use */
  64. int refcount; /* number of kernel pages using the large page */
  65. u64 paddr; /* physical address of large page */
  66. } *lp_desc;
  67. } i460;
  68. static const struct aper_size_info_8 i460_sizes[3] =
  69. {
  70. /*
  71. * The 32GB aperture is only available with a 4M GART page size. Due to the
  72. * dynamic GART page size, we can't figure out page_order or num_entries until
  73. * runtime.
  74. */
  75. {32768, 0, 0, 4},
  76. {1024, 0, 0, 2},
  77. {256, 0, 0, 1}
  78. };
  79. static struct gatt_mask i460_masks[] =
  80. {
  81. {
  82. .mask = INTEL_I460_GATT_VALID | INTEL_I460_GATT_COHERENT,
  83. .type = 0
  84. }
  85. };
  86. static int i460_fetch_size (void)
  87. {
  88. int i;
  89. u8 temp;
  90. struct aper_size_info_8 *values;
  91. /* Determine the GART page size */
  92. pci_read_config_byte(agp_bridge->dev, INTEL_I460_GXBCTL, &temp);
  93. i460.io_page_shift = (temp & I460_4M_PS) ? 22 : 12;
  94. pr_debug("i460_fetch_size: io_page_shift=%d\n", i460.io_page_shift);
  95. if (i460.io_page_shift != I460_IO_PAGE_SHIFT) {
  96. printk(KERN_ERR PFX
  97. "I/O (GART) page-size %luKB doesn't match expected "
  98. "size %luKB\n",
  99. 1UL << (i460.io_page_shift - 10),
  100. 1UL << (I460_IO_PAGE_SHIFT));
  101. return 0;
  102. }
  103. values = A_SIZE_8(agp_bridge->driver->aperture_sizes);
  104. pci_read_config_byte(agp_bridge->dev, INTEL_I460_AGPSIZ, &temp);
  105. /* Exit now if the IO drivers for the GART SRAMS are turned off */
  106. if (temp & I460_SRAM_IO_DISABLE) {
  107. printk(KERN_ERR PFX "GART SRAMS disabled on 460GX chipset\n");
  108. printk(KERN_ERR PFX "AGPGART operation not possible\n");
  109. return 0;
  110. }
  111. /* Make sure we don't try to create an 2 ^ 23 entry GATT */
  112. if ((i460.io_page_shift == 0) && ((temp & I460_AGPSIZ_MASK) == 4)) {
  113. printk(KERN_ERR PFX "We can't have a 32GB aperture with 4KB GART pages\n");
  114. return 0;
  115. }
  116. /* Determine the proper APBASE register */
  117. if (temp & I460_BAPBASE_ENABLE)
  118. i460.dynamic_apbase = INTEL_I460_BAPBASE;
  119. else
  120. i460.dynamic_apbase = AGP_APBASE;
  121. for (i = 0; i < agp_bridge->driver->num_aperture_sizes; i++) {
  122. /*
  123. * Dynamically calculate the proper num_entries and page_order values for
  124. * the define aperture sizes. Take care not to shift off the end of
  125. * values[i].size.
  126. */
  127. values[i].num_entries = (values[i].size << 8) >> (I460_IO_PAGE_SHIFT - 12);
  128. values[i].page_order = ilog2((sizeof(u32)*values[i].num_entries) >> PAGE_SHIFT);
  129. }
  130. for (i = 0; i < agp_bridge->driver->num_aperture_sizes; i++) {
  131. /* Neglect control bits when matching up size_value */
  132. if ((temp & I460_AGPSIZ_MASK) == values[i].size_value) {
  133. agp_bridge->previous_size = agp_bridge->current_size = (void *) (values + i);
  134. agp_bridge->aperture_size_idx = i;
  135. return values[i].size;
  136. }
  137. }
  138. return 0;
  139. }
  140. /* There isn't anything to do here since 460 has no GART TLB. */
  141. static void i460_tlb_flush (struct agp_memory *mem)
  142. {
  143. return;
  144. }
  145. /*
  146. * This utility function is needed to prevent corruption of the control bits
  147. * which are stored along with the aperture size in 460's AGPSIZ register
  148. */
  149. static void i460_write_agpsiz (u8 size_value)
  150. {
  151. u8 temp;
  152. pci_read_config_byte(agp_bridge->dev, INTEL_I460_AGPSIZ, &temp);
  153. pci_write_config_byte(agp_bridge->dev, INTEL_I460_AGPSIZ,
  154. ((temp & ~I460_AGPSIZ_MASK) | size_value));
  155. }
  156. static void i460_cleanup (void)
  157. {
  158. struct aper_size_info_8 *previous_size;
  159. previous_size = A_SIZE_8(agp_bridge->previous_size);
  160. i460_write_agpsiz(previous_size->size_value);
  161. if (I460_IO_PAGE_SHIFT > PAGE_SHIFT)
  162. kfree(i460.lp_desc);
  163. }
  164. static int i460_configure (void)
  165. {
  166. union {
  167. u32 small[2];
  168. u64 large;
  169. } temp;
  170. size_t size;
  171. u8 scratch;
  172. struct aper_size_info_8 *current_size;
  173. temp.large = 0;
  174. current_size = A_SIZE_8(agp_bridge->current_size);
  175. i460_write_agpsiz(current_size->size_value);
  176. /*
  177. * Do the necessary rigmarole to read all eight bytes of APBASE.
  178. * This has to be done since the AGP aperture can be above 4GB on
  179. * 460 based systems.
  180. */
  181. pci_read_config_dword(agp_bridge->dev, i460.dynamic_apbase, &(temp.small[0]));
  182. pci_read_config_dword(agp_bridge->dev, i460.dynamic_apbase + 4, &(temp.small[1]));
  183. /* Clear BAR control bits */
  184. agp_bridge->gart_bus_addr = temp.large & ~((1UL << 3) - 1);
  185. pci_read_config_byte(agp_bridge->dev, INTEL_I460_GXBCTL, &scratch);
  186. pci_write_config_byte(agp_bridge->dev, INTEL_I460_GXBCTL,
  187. (scratch & 0x02) | I460_GXBCTL_OOG | I460_GXBCTL_BWC);
  188. /*
  189. * Initialize partial allocation trackers if a GART page is bigger than a kernel
  190. * page.
  191. */
  192. if (I460_IO_PAGE_SHIFT > PAGE_SHIFT) {
  193. size = current_size->num_entries * sizeof(i460.lp_desc[0]);
  194. i460.lp_desc = kzalloc(size, GFP_KERNEL);
  195. if (!i460.lp_desc)
  196. return -ENOMEM;
  197. }
  198. return 0;
  199. }
  200. static int i460_create_gatt_table (struct agp_bridge_data *bridge)
  201. {
  202. int page_order, num_entries, i;
  203. void *temp;
  204. /*
  205. * Load up the fixed address of the GART SRAMS which hold our GATT table.
  206. */
  207. temp = agp_bridge->current_size;
  208. page_order = A_SIZE_8(temp)->page_order;
  209. num_entries = A_SIZE_8(temp)->num_entries;
  210. i460.gatt = ioremap(INTEL_I460_ATTBASE, PAGE_SIZE << page_order);
  211. if (!i460.gatt) {
  212. printk(KERN_ERR PFX "ioremap failed\n");
  213. return -ENOMEM;
  214. }
  215. /* These are no good, the should be removed from the agp_bridge strucure... */
  216. agp_bridge->gatt_table_real = NULL;
  217. agp_bridge->gatt_table = NULL;
  218. agp_bridge->gatt_bus_addr = 0;
  219. for (i = 0; i < num_entries; ++i)
  220. WR_GATT(i, 0);
  221. WR_FLUSH_GATT(i - 1);
  222. return 0;
  223. }
  224. static int i460_free_gatt_table (struct agp_bridge_data *bridge)
  225. {
  226. int num_entries, i;
  227. void *temp;
  228. temp = agp_bridge->current_size;
  229. num_entries = A_SIZE_8(temp)->num_entries;
  230. for (i = 0; i < num_entries; ++i)
  231. WR_GATT(i, 0);
  232. WR_FLUSH_GATT(num_entries - 1);
  233. iounmap(i460.gatt);
  234. return 0;
  235. }
  236. /*
  237. * The following functions are called when the I/O (GART) page size is smaller than
  238. * PAGE_SIZE.
  239. */
  240. static int i460_insert_memory_small_io_page (struct agp_memory *mem,
  241. off_t pg_start, int type)
  242. {
  243. unsigned long paddr, io_pg_start, io_page_size;
  244. int i, j, k, num_entries;
  245. void *temp;
  246. pr_debug("i460_insert_memory_small_io_page(mem=%p, pg_start=%ld, type=%d, paddr0=0x%lx)\n",
  247. mem, pg_start, type, mem->memory[0]);
  248. if (type >= AGP_USER_TYPES || mem->type >= AGP_USER_TYPES)
  249. return -EINVAL;
  250. io_pg_start = I460_IOPAGES_PER_KPAGE * pg_start;
  251. temp = agp_bridge->current_size;
  252. num_entries = A_SIZE_8(temp)->num_entries;
  253. if ((io_pg_start + I460_IOPAGES_PER_KPAGE * mem->page_count) > num_entries) {
  254. printk(KERN_ERR PFX "Looks like we're out of AGP memory\n");
  255. return -EINVAL;
  256. }
  257. j = io_pg_start;
  258. while (j < (io_pg_start + I460_IOPAGES_PER_KPAGE * mem->page_count)) {
  259. if (!PGE_EMPTY(agp_bridge, RD_GATT(j))) {
  260. pr_debug("i460_insert_memory_small_io_page: GATT[%d]=0x%x is busy\n",
  261. j, RD_GATT(j));
  262. return -EBUSY;
  263. }
  264. j++;
  265. }
  266. io_page_size = 1UL << I460_IO_PAGE_SHIFT;
  267. for (i = 0, j = io_pg_start; i < mem->page_count; i++) {
  268. paddr = mem->memory[i];
  269. for (k = 0; k < I460_IOPAGES_PER_KPAGE; k++, j++, paddr += io_page_size)
  270. WR_GATT(j, agp_bridge->driver->mask_memory(agp_bridge,
  271. paddr, mem->type));
  272. }
  273. WR_FLUSH_GATT(j - 1);
  274. return 0;
  275. }
  276. static int i460_remove_memory_small_io_page(struct agp_memory *mem,
  277. off_t pg_start, int type)
  278. {
  279. int i;
  280. pr_debug("i460_remove_memory_small_io_page(mem=%p, pg_start=%ld, type=%d)\n",
  281. mem, pg_start, type);
  282. pg_start = I460_IOPAGES_PER_KPAGE * pg_start;
  283. for (i = pg_start; i < (pg_start + I460_IOPAGES_PER_KPAGE * mem->page_count); i++)
  284. WR_GATT(i, 0);
  285. WR_FLUSH_GATT(i - 1);
  286. return 0;
  287. }
  288. #if I460_LARGE_IO_PAGES
  289. /*
  290. * These functions are called when the I/O (GART) page size exceeds PAGE_SIZE.
  291. *
  292. * This situation is interesting since AGP memory allocations that are smaller than a
  293. * single GART page are possible. The i460.lp_desc array tracks partial allocation of the
  294. * large GART pages to work around this issue.
  295. *
  296. * i460.lp_desc[pg_num].refcount tracks the number of kernel pages in use within GART page
  297. * pg_num. i460.lp_desc[pg_num].paddr is the physical address of the large page and
  298. * i460.lp_desc[pg_num].alloced_map is a bitmap of kernel pages that are in use (allocated).
  299. */
  300. static int i460_alloc_large_page (struct lp_desc *lp)
  301. {
  302. unsigned long order = I460_IO_PAGE_SHIFT - PAGE_SHIFT;
  303. size_t map_size;
  304. void *lpage;
  305. lpage = (void *) __get_free_pages(GFP_KERNEL, order);
  306. if (!lpage) {
  307. printk(KERN_ERR PFX "Couldn't alloc 4M GART page...\n");
  308. return -ENOMEM;
  309. }
  310. map_size = ((I460_KPAGES_PER_IOPAGE + BITS_PER_LONG - 1) & -BITS_PER_LONG)/8;
  311. lp->alloced_map = kzalloc(map_size, GFP_KERNEL);
  312. if (!lp->alloced_map) {
  313. free_pages((unsigned long) lpage, order);
  314. printk(KERN_ERR PFX "Out of memory, we're in trouble...\n");
  315. return -ENOMEM;
  316. }
  317. lp->paddr = virt_to_gart(lpage);
  318. lp->refcount = 0;
  319. atomic_add(I460_KPAGES_PER_IOPAGE, &agp_bridge->current_memory_agp);
  320. return 0;
  321. }
  322. static void i460_free_large_page (struct lp_desc *lp)
  323. {
  324. kfree(lp->alloced_map);
  325. lp->alloced_map = NULL;
  326. free_pages((unsigned long) gart_to_virt(lp->paddr), I460_IO_PAGE_SHIFT - PAGE_SHIFT);
  327. atomic_sub(I460_KPAGES_PER_IOPAGE, &agp_bridge->current_memory_agp);
  328. }
  329. static int i460_insert_memory_large_io_page (struct agp_memory *mem,
  330. off_t pg_start, int type)
  331. {
  332. int i, start_offset, end_offset, idx, pg, num_entries;
  333. struct lp_desc *start, *end, *lp;
  334. void *temp;
  335. if (type >= AGP_USER_TYPES || mem->type >= AGP_USER_TYPES)
  336. return -EINVAL;
  337. temp = agp_bridge->current_size;
  338. num_entries = A_SIZE_8(temp)->num_entries;
  339. /* Figure out what pg_start means in terms of our large GART pages */
  340. start = &i460.lp_desc[pg_start / I460_KPAGES_PER_IOPAGE];
  341. end = &i460.lp_desc[(pg_start + mem->page_count - 1) / I460_KPAGES_PER_IOPAGE];
  342. start_offset = pg_start % I460_KPAGES_PER_IOPAGE;
  343. end_offset = (pg_start + mem->page_count - 1) % I460_KPAGES_PER_IOPAGE;
  344. if (end > i460.lp_desc + num_entries) {
  345. printk(KERN_ERR PFX "Looks like we're out of AGP memory\n");
  346. return -EINVAL;
  347. }
  348. /* Check if the requested region of the aperture is free */
  349. for (lp = start; lp <= end; ++lp) {
  350. if (!lp->alloced_map)
  351. continue; /* OK, the entire large page is available... */
  352. for (idx = ((lp == start) ? start_offset : 0);
  353. idx < ((lp == end) ? (end_offset + 1) : I460_KPAGES_PER_IOPAGE);
  354. idx++)
  355. {
  356. if (test_bit(idx, lp->alloced_map))
  357. return -EBUSY;
  358. }
  359. }
  360. for (lp = start, i = 0; lp <= end; ++lp) {
  361. if (!lp->alloced_map) {
  362. /* Allocate new GART pages... */
  363. if (i460_alloc_large_page(lp) < 0)
  364. return -ENOMEM;
  365. pg = lp - i460.lp_desc;
  366. WR_GATT(pg, agp_bridge->driver->mask_memory(agp_bridge,
  367. lp->paddr, 0));
  368. WR_FLUSH_GATT(pg);
  369. }
  370. for (idx = ((lp == start) ? start_offset : 0);
  371. idx < ((lp == end) ? (end_offset + 1) : I460_KPAGES_PER_IOPAGE);
  372. idx++, i++)
  373. {
  374. mem->memory[i] = lp->paddr + idx*PAGE_SIZE;
  375. __set_bit(idx, lp->alloced_map);
  376. ++lp->refcount;
  377. }
  378. }
  379. return 0;
  380. }
  381. static int i460_remove_memory_large_io_page (struct agp_memory *mem,
  382. off_t pg_start, int type)
  383. {
  384. int i, pg, start_offset, end_offset, idx, num_entries;
  385. struct lp_desc *start, *end, *lp;
  386. void *temp;
  387. temp = agp_bridge->driver->current_size;
  388. num_entries = A_SIZE_8(temp)->num_entries;
  389. /* Figure out what pg_start means in terms of our large GART pages */
  390. start = &i460.lp_desc[pg_start / I460_KPAGES_PER_IOPAGE];
  391. end = &i460.lp_desc[(pg_start + mem->page_count - 1) / I460_KPAGES_PER_IOPAGE];
  392. start_offset = pg_start % I460_KPAGES_PER_IOPAGE;
  393. end_offset = (pg_start + mem->page_count - 1) % I460_KPAGES_PER_IOPAGE;
  394. for (i = 0, lp = start; lp <= end; ++lp) {
  395. for (idx = ((lp == start) ? start_offset : 0);
  396. idx < ((lp == end) ? (end_offset + 1) : I460_KPAGES_PER_IOPAGE);
  397. idx++, i++)
  398. {
  399. mem->memory[i] = 0;
  400. __clear_bit(idx, lp->alloced_map);
  401. --lp->refcount;
  402. }
  403. /* Free GART pages if they are unused */
  404. if (lp->refcount == 0) {
  405. pg = lp - i460.lp_desc;
  406. WR_GATT(pg, 0);
  407. WR_FLUSH_GATT(pg);
  408. i460_free_large_page(lp);
  409. }
  410. }
  411. return 0;
  412. }
  413. /* Wrapper routines to call the approriate {small_io_page,large_io_page} function */
  414. static int i460_insert_memory (struct agp_memory *mem,
  415. off_t pg_start, int type)
  416. {
  417. if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT)
  418. return i460_insert_memory_small_io_page(mem, pg_start, type);
  419. else
  420. return i460_insert_memory_large_io_page(mem, pg_start, type);
  421. }
  422. static int i460_remove_memory (struct agp_memory *mem,
  423. off_t pg_start, int type)
  424. {
  425. if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT)
  426. return i460_remove_memory_small_io_page(mem, pg_start, type);
  427. else
  428. return i460_remove_memory_large_io_page(mem, pg_start, type);
  429. }
  430. /*
  431. * If the I/O (GART) page size is bigger than the kernel page size, we don't want to
  432. * allocate memory until we know where it is to be bound in the aperture (a
  433. * multi-kernel-page alloc might fit inside of an already allocated GART page).
  434. *
  435. * Let's just hope nobody counts on the allocated AGP memory being there before bind time
  436. * (I don't think current drivers do)...
  437. */
  438. static void *i460_alloc_page (struct agp_bridge_data *bridge)
  439. {
  440. void *page;
  441. if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT) {
  442. page = agp_generic_alloc_page(agp_bridge);
  443. } else
  444. /* Returning NULL would cause problems */
  445. /* AK: really dubious code. */
  446. page = (void *)~0UL;
  447. return page;
  448. }
  449. static void i460_destroy_page (void *page, int flags)
  450. {
  451. if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT) {
  452. agp_generic_destroy_page(page, flags);
  453. }
  454. }
  455. #endif /* I460_LARGE_IO_PAGES */
  456. static unsigned long i460_mask_memory (struct agp_bridge_data *bridge,
  457. unsigned long addr, int type)
  458. {
  459. /* Make sure the returned address is a valid GATT entry */
  460. return bridge->driver->masks[0].mask
  461. | (((addr & ~((1 << I460_IO_PAGE_SHIFT) - 1)) & 0xfffff000) >> 12);
  462. }
  463. const struct agp_bridge_driver intel_i460_driver = {
  464. .owner = THIS_MODULE,
  465. .aperture_sizes = i460_sizes,
  466. .size_type = U8_APER_SIZE,
  467. .num_aperture_sizes = 3,
  468. .configure = i460_configure,
  469. .fetch_size = i460_fetch_size,
  470. .cleanup = i460_cleanup,
  471. .tlb_flush = i460_tlb_flush,
  472. .mask_memory = i460_mask_memory,
  473. .masks = i460_masks,
  474. .agp_enable = agp_generic_enable,
  475. .cache_flush = global_cache_flush,
  476. .create_gatt_table = i460_create_gatt_table,
  477. .free_gatt_table = i460_free_gatt_table,
  478. #if I460_LARGE_IO_PAGES
  479. .insert_memory = i460_insert_memory,
  480. .remove_memory = i460_remove_memory,
  481. .agp_alloc_page = i460_alloc_page,
  482. .agp_destroy_page = i460_destroy_page,
  483. #else
  484. .insert_memory = i460_insert_memory_small_io_page,
  485. .remove_memory = i460_remove_memory_small_io_page,
  486. .agp_alloc_page = agp_generic_alloc_page,
  487. .agp_alloc_pages = agp_generic_alloc_pages,
  488. .agp_destroy_page = agp_generic_destroy_page,
  489. .agp_destroy_pages = agp_generic_destroy_pages,
  490. #endif
  491. .alloc_by_type = agp_generic_alloc_by_type,
  492. .free_by_type = agp_generic_free_by_type,
  493. .agp_type_to_mask_type = agp_generic_type_to_mask_type,
  494. .cant_use_aperture = true,
  495. };
  496. static int __devinit agp_intel_i460_probe(struct pci_dev *pdev,
  497. const struct pci_device_id *ent)
  498. {
  499. struct agp_bridge_data *bridge;
  500. u8 cap_ptr;
  501. cap_ptr = pci_find_capability(pdev, PCI_CAP_ID_AGP);
  502. if (!cap_ptr)
  503. return -ENODEV;
  504. bridge = agp_alloc_bridge();
  505. if (!bridge)
  506. return -ENOMEM;
  507. bridge->driver = &intel_i460_driver;
  508. bridge->dev = pdev;
  509. bridge->capndx = cap_ptr;
  510. printk(KERN_INFO PFX "Detected Intel 460GX chipset\n");
  511. pci_set_drvdata(pdev, bridge);
  512. return agp_add_bridge(bridge);
  513. }
  514. static void __devexit agp_intel_i460_remove(struct pci_dev *pdev)
  515. {
  516. struct agp_bridge_data *bridge = pci_get_drvdata(pdev);
  517. agp_remove_bridge(bridge);
  518. agp_put_bridge(bridge);
  519. }
  520. static struct pci_device_id agp_intel_i460_pci_table[] = {
  521. {
  522. .class = (PCI_CLASS_BRIDGE_HOST << 8),
  523. .class_mask = ~0,
  524. .vendor = PCI_VENDOR_ID_INTEL,
  525. .device = PCI_DEVICE_ID_INTEL_84460GX,
  526. .subvendor = PCI_ANY_ID,
  527. .subdevice = PCI_ANY_ID,
  528. },
  529. { }
  530. };
  531. MODULE_DEVICE_TABLE(pci, agp_intel_i460_pci_table);
  532. static struct pci_driver agp_intel_i460_pci_driver = {
  533. .name = "agpgart-intel-i460",
  534. .id_table = agp_intel_i460_pci_table,
  535. .probe = agp_intel_i460_probe,
  536. .remove = __devexit_p(agp_intel_i460_remove),
  537. };
  538. static int __init agp_intel_i460_init(void)
  539. {
  540. if (agp_off)
  541. return -EINVAL;
  542. return pci_register_driver(&agp_intel_i460_pci_driver);
  543. }
  544. static void __exit agp_intel_i460_cleanup(void)
  545. {
  546. pci_unregister_driver(&agp_intel_i460_pci_driver);
  547. }
  548. module_init(agp_intel_i460_init);
  549. module_exit(agp_intel_i460_cleanup);
  550. MODULE_AUTHOR("Chris Ahna <Christopher.J.Ahna@intel.com>");
  551. MODULE_LICENSE("GPL and additional rights");