smp.c 8.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363
  1. #include <linux/types.h>
  2. #include <asm/delay.h>
  3. #include <irq.h>
  4. #include <hwregs/intr_vect.h>
  5. #include <hwregs/intr_vect_defs.h>
  6. #include <asm/tlbflush.h>
  7. #include <asm/mmu_context.h>
  8. #include <hwregs/asm/mmu_defs_asm.h>
  9. #include <hwregs/supp_reg.h>
  10. #include <asm/atomic.h>
  11. #include <linux/err.h>
  12. #include <linux/init.h>
  13. #include <linux/timex.h>
  14. #include <linux/sched.h>
  15. #include <linux/kernel.h>
  16. #include <linux/cpumask.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/module.h>
  19. #define IPI_SCHEDULE 1
  20. #define IPI_CALL 2
  21. #define IPI_FLUSH_TLB 4
  22. #define IPI_BOOT 8
  23. #define FLUSH_ALL (void*)0xffffffff
  24. /* Vector of locks used for various atomic operations */
  25. spinlock_t cris_atomic_locks[] = { [0 ... LOCK_COUNT - 1] = SPIN_LOCK_UNLOCKED};
  26. /* CPU masks */
  27. cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
  28. EXPORT_SYMBOL(phys_cpu_present_map);
  29. /* Variables used during SMP boot */
  30. volatile int cpu_now_booting = 0;
  31. volatile struct thread_info *smp_init_current_idle_thread;
  32. /* Variables used during IPI */
  33. static DEFINE_SPINLOCK(call_lock);
  34. static DEFINE_SPINLOCK(tlbstate_lock);
  35. struct call_data_struct {
  36. void (*func) (void *info);
  37. void *info;
  38. int wait;
  39. };
  40. static struct call_data_struct * call_data;
  41. static struct mm_struct* flush_mm;
  42. static struct vm_area_struct* flush_vma;
  43. static unsigned long flush_addr;
  44. extern int setup_irq(int, struct irqaction *);
  45. /* Mode registers */
  46. static unsigned long irq_regs[NR_CPUS] = {
  47. regi_irq,
  48. regi_irq2
  49. };
  50. static irqreturn_t crisv32_ipi_interrupt(int irq, void *dev_id);
  51. static int send_ipi(int vector, int wait, cpumask_t cpu_mask);
  52. static struct irqaction irq_ipi = {
  53. .handler = crisv32_ipi_interrupt,
  54. .flags = IRQF_DISABLED,
  55. .mask = CPU_MASK_NONE,
  56. .name = "ipi",
  57. };
  58. extern void cris_mmu_init(void);
  59. extern void cris_timer_init(void);
  60. /* SMP initialization */
  61. void __init smp_prepare_cpus(unsigned int max_cpus)
  62. {
  63. int i;
  64. /* From now on we can expect IPIs so set them up */
  65. setup_irq(IPI_INTR_VECT, &irq_ipi);
  66. /* Mark all possible CPUs as present */
  67. for (i = 0; i < max_cpus; i++)
  68. cpu_set(i, phys_cpu_present_map);
  69. }
  70. void __devinit smp_prepare_boot_cpu(void)
  71. {
  72. /* PGD pointer has moved after per_cpu initialization so
  73. * update the MMU.
  74. */
  75. pgd_t **pgd;
  76. pgd = (pgd_t**)&per_cpu(current_pgd, smp_processor_id());
  77. SUPP_BANK_SEL(1);
  78. SUPP_REG_WR(RW_MM_TLB_PGD, pgd);
  79. SUPP_BANK_SEL(2);
  80. SUPP_REG_WR(RW_MM_TLB_PGD, pgd);
  81. cpu_set(0, cpu_online_map);
  82. cpu_set(0, phys_cpu_present_map);
  83. cpu_set(0, cpu_possible_map);
  84. }
  85. void __init smp_cpus_done(unsigned int max_cpus)
  86. {
  87. }
  88. /* Bring one cpu online.*/
  89. static int __init
  90. smp_boot_one_cpu(int cpuid)
  91. {
  92. unsigned timeout;
  93. struct task_struct *idle;
  94. cpumask_t cpu_mask = CPU_MASK_NONE;
  95. idle = fork_idle(cpuid);
  96. if (IS_ERR(idle))
  97. panic("SMP: fork failed for CPU:%d", cpuid);
  98. task_thread_info(idle)->cpu = cpuid;
  99. /* Information to the CPU that is about to boot */
  100. smp_init_current_idle_thread = task_thread_info(idle);
  101. cpu_now_booting = cpuid;
  102. /* Kick it */
  103. cpu_set(cpuid, cpu_online_map);
  104. cpu_set(cpuid, cpu_mask);
  105. send_ipi(IPI_BOOT, 0, cpu_mask);
  106. cpu_clear(cpuid, cpu_online_map);
  107. /* Wait for CPU to come online */
  108. for (timeout = 0; timeout < 10000; timeout++) {
  109. if(cpu_online(cpuid)) {
  110. cpu_now_booting = 0;
  111. smp_init_current_idle_thread = NULL;
  112. return 0; /* CPU online */
  113. }
  114. udelay(100);
  115. barrier();
  116. }
  117. put_task_struct(idle);
  118. idle = NULL;
  119. printk(KERN_CRIT "SMP: CPU:%d is stuck.\n", cpuid);
  120. return -1;
  121. }
  122. /* Secondary CPUs starts using C here. Here we need to setup CPU
  123. * specific stuff such as the local timer and the MMU. */
  124. void __init smp_callin(void)
  125. {
  126. extern void cpu_idle(void);
  127. int cpu = cpu_now_booting;
  128. reg_intr_vect_rw_mask vect_mask = {0};
  129. /* Initialise the idle task for this CPU */
  130. atomic_inc(&init_mm.mm_count);
  131. current->active_mm = &init_mm;
  132. /* Set up MMU */
  133. cris_mmu_init();
  134. __flush_tlb_all();
  135. /* Setup local timer. */
  136. cris_timer_init();
  137. /* Enable IRQ and idle */
  138. REG_WR(intr_vect, irq_regs[cpu], rw_mask, vect_mask);
  139. unmask_irq(IPI_INTR_VECT);
  140. unmask_irq(TIMER0_INTR_VECT);
  141. preempt_disable();
  142. notify_cpu_starting(cpu);
  143. local_irq_enable();
  144. cpu_set(cpu, cpu_online_map);
  145. cpu_idle();
  146. }
  147. /* Stop execution on this CPU.*/
  148. void stop_this_cpu(void* dummy)
  149. {
  150. local_irq_disable();
  151. asm volatile("halt");
  152. }
  153. /* Other calls */
  154. void smp_send_stop(void)
  155. {
  156. smp_call_function(stop_this_cpu, NULL, 0);
  157. }
  158. int setup_profiling_timer(unsigned int multiplier)
  159. {
  160. return -EINVAL;
  161. }
  162. /* cache_decay_ticks is used by the scheduler to decide if a process
  163. * is "hot" on one CPU. A higher value means a higher penalty to move
  164. * a process to another CPU. Our cache is rather small so we report
  165. * 1 tick.
  166. */
  167. unsigned long cache_decay_ticks = 1;
  168. int __cpuinit __cpu_up(unsigned int cpu)
  169. {
  170. smp_boot_one_cpu(cpu);
  171. return cpu_online(cpu) ? 0 : -ENOSYS;
  172. }
  173. void smp_send_reschedule(int cpu)
  174. {
  175. cpumask_t cpu_mask = CPU_MASK_NONE;
  176. cpu_set(cpu, cpu_mask);
  177. send_ipi(IPI_SCHEDULE, 0, cpu_mask);
  178. }
  179. /* TLB flushing
  180. *
  181. * Flush needs to be done on the local CPU and on any other CPU that
  182. * may have the same mapping. The mm->cpu_vm_mask is used to keep track
  183. * of which CPUs that a specific process has been executed on.
  184. */
  185. void flush_tlb_common(struct mm_struct* mm, struct vm_area_struct* vma, unsigned long addr)
  186. {
  187. unsigned long flags;
  188. cpumask_t cpu_mask;
  189. spin_lock_irqsave(&tlbstate_lock, flags);
  190. cpu_mask = (mm == FLUSH_ALL ? CPU_MASK_ALL : mm->cpu_vm_mask);
  191. cpu_clear(smp_processor_id(), cpu_mask);
  192. flush_mm = mm;
  193. flush_vma = vma;
  194. flush_addr = addr;
  195. send_ipi(IPI_FLUSH_TLB, 1, cpu_mask);
  196. spin_unlock_irqrestore(&tlbstate_lock, flags);
  197. }
  198. void flush_tlb_all(void)
  199. {
  200. __flush_tlb_all();
  201. flush_tlb_common(FLUSH_ALL, FLUSH_ALL, 0);
  202. }
  203. void flush_tlb_mm(struct mm_struct *mm)
  204. {
  205. __flush_tlb_mm(mm);
  206. flush_tlb_common(mm, FLUSH_ALL, 0);
  207. /* No more mappings in other CPUs */
  208. cpus_clear(mm->cpu_vm_mask);
  209. cpu_set(smp_processor_id(), mm->cpu_vm_mask);
  210. }
  211. void flush_tlb_page(struct vm_area_struct *vma,
  212. unsigned long addr)
  213. {
  214. __flush_tlb_page(vma, addr);
  215. flush_tlb_common(vma->vm_mm, vma, addr);
  216. }
  217. /* Inter processor interrupts
  218. *
  219. * The IPIs are used for:
  220. * * Force a schedule on a CPU
  221. * * FLush TLB on other CPUs
  222. * * Call a function on other CPUs
  223. */
  224. int send_ipi(int vector, int wait, cpumask_t cpu_mask)
  225. {
  226. int i = 0;
  227. reg_intr_vect_rw_ipi ipi = REG_RD(intr_vect, irq_regs[i], rw_ipi);
  228. int ret = 0;
  229. /* Calculate CPUs to send to. */
  230. cpus_and(cpu_mask, cpu_mask, cpu_online_map);
  231. /* Send the IPI. */
  232. for_each_cpu_mask(i, cpu_mask)
  233. {
  234. ipi.vector |= vector;
  235. REG_WR(intr_vect, irq_regs[i], rw_ipi, ipi);
  236. }
  237. /* Wait for IPI to finish on other CPUS */
  238. if (wait) {
  239. for_each_cpu_mask(i, cpu_mask) {
  240. int j;
  241. for (j = 0 ; j < 1000; j++) {
  242. ipi = REG_RD(intr_vect, irq_regs[i], rw_ipi);
  243. if (!ipi.vector)
  244. break;
  245. udelay(100);
  246. }
  247. /* Timeout? */
  248. if (ipi.vector) {
  249. printk("SMP call timeout from %d to %d\n", smp_processor_id(), i);
  250. ret = -ETIMEDOUT;
  251. dump_stack();
  252. }
  253. }
  254. }
  255. return ret;
  256. }
  257. /*
  258. * You must not call this function with disabled interrupts or from a
  259. * hardware interrupt handler or from a bottom half handler.
  260. */
  261. int smp_call_function(void (*func)(void *info), void *info, int wait)
  262. {
  263. cpumask_t cpu_mask = CPU_MASK_ALL;
  264. struct call_data_struct data;
  265. int ret;
  266. cpu_clear(smp_processor_id(), cpu_mask);
  267. WARN_ON(irqs_disabled());
  268. data.func = func;
  269. data.info = info;
  270. data.wait = wait;
  271. spin_lock(&call_lock);
  272. call_data = &data;
  273. ret = send_ipi(IPI_CALL, wait, cpu_mask);
  274. spin_unlock(&call_lock);
  275. return ret;
  276. }
  277. irqreturn_t crisv32_ipi_interrupt(int irq, void *dev_id)
  278. {
  279. void (*func) (void *info) = call_data->func;
  280. void *info = call_data->info;
  281. reg_intr_vect_rw_ipi ipi;
  282. ipi = REG_RD(intr_vect, irq_regs[smp_processor_id()], rw_ipi);
  283. if (ipi.vector & IPI_CALL) {
  284. func(info);
  285. }
  286. if (ipi.vector & IPI_FLUSH_TLB) {
  287. if (flush_mm == FLUSH_ALL)
  288. __flush_tlb_all();
  289. else if (flush_vma == FLUSH_ALL)
  290. __flush_tlb_mm(flush_mm);
  291. else
  292. __flush_tlb_page(flush_vma, flush_addr);
  293. }
  294. ipi.vector = 0;
  295. REG_WR(intr_vect, irq_regs[smp_processor_id()], rw_ipi, ipi);
  296. return IRQ_HANDLED;
  297. }