dma.c 26 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103
  1. /*
  2. * Filename: dma.c
  3. *
  4. *
  5. * Authors: Joshua Morris <josh.h.morris@us.ibm.com>
  6. * Philip Kelleher <pjk1939@linux.vnet.ibm.com>
  7. *
  8. * (C) Copyright 2013 IBM Corporation
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License as
  12. * published by the Free Software Foundation; either version 2 of the
  13. * License, or (at your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful, but
  16. * WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software Foundation,
  22. * Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  23. */
  24. #include <linux/slab.h>
  25. #include "rsxx_priv.h"
  26. struct rsxx_dma {
  27. struct list_head list;
  28. u8 cmd;
  29. unsigned int laddr; /* Logical address */
  30. struct {
  31. u32 off;
  32. u32 cnt;
  33. } sub_page;
  34. dma_addr_t dma_addr;
  35. struct page *page;
  36. unsigned int pg_off; /* Page Offset */
  37. rsxx_dma_cb cb;
  38. void *cb_data;
  39. };
  40. /* This timeout is used to detect a stalled DMA channel */
  41. #define DMA_ACTIVITY_TIMEOUT msecs_to_jiffies(10000)
  42. struct hw_status {
  43. u8 status;
  44. u8 tag;
  45. __le16 count;
  46. __le32 _rsvd2;
  47. __le64 _rsvd3;
  48. } __packed;
  49. enum rsxx_dma_status {
  50. DMA_SW_ERR = 0x1,
  51. DMA_HW_FAULT = 0x2,
  52. DMA_CANCELLED = 0x4,
  53. };
  54. struct hw_cmd {
  55. u8 command;
  56. u8 tag;
  57. u8 _rsvd;
  58. u8 sub_page; /* Bit[0:2]: 512byte offset */
  59. /* Bit[4:6]: 512byte count */
  60. __le32 device_addr;
  61. __le64 host_addr;
  62. } __packed;
  63. enum rsxx_hw_cmd {
  64. HW_CMD_BLK_DISCARD = 0x70,
  65. HW_CMD_BLK_WRITE = 0x80,
  66. HW_CMD_BLK_READ = 0xC0,
  67. HW_CMD_BLK_RECON_READ = 0xE0,
  68. };
  69. enum rsxx_hw_status {
  70. HW_STATUS_CRC = 0x01,
  71. HW_STATUS_HARD_ERR = 0x02,
  72. HW_STATUS_SOFT_ERR = 0x04,
  73. HW_STATUS_FAULT = 0x08,
  74. };
  75. static struct kmem_cache *rsxx_dma_pool;
  76. struct dma_tracker {
  77. int next_tag;
  78. struct rsxx_dma *dma;
  79. };
  80. #define DMA_TRACKER_LIST_SIZE8 (sizeof(struct dma_tracker_list) + \
  81. (sizeof(struct dma_tracker) * RSXX_MAX_OUTSTANDING_CMDS))
  82. struct dma_tracker_list {
  83. spinlock_t lock;
  84. int head;
  85. struct dma_tracker list[0];
  86. };
  87. /*----------------- Misc Utility Functions -------------------*/
  88. static unsigned int rsxx_addr8_to_laddr(u64 addr8, struct rsxx_cardinfo *card)
  89. {
  90. unsigned long long tgt_addr8;
  91. tgt_addr8 = ((addr8 >> card->_stripe.upper_shift) &
  92. card->_stripe.upper_mask) |
  93. ((addr8) & card->_stripe.lower_mask);
  94. do_div(tgt_addr8, RSXX_HW_BLK_SIZE);
  95. return tgt_addr8;
  96. }
  97. static unsigned int rsxx_get_dma_tgt(struct rsxx_cardinfo *card, u64 addr8)
  98. {
  99. unsigned int tgt;
  100. tgt = (addr8 >> card->_stripe.target_shift) & card->_stripe.target_mask;
  101. return tgt;
  102. }
  103. void rsxx_dma_queue_reset(struct rsxx_cardinfo *card)
  104. {
  105. /* Reset all DMA Command/Status Queues */
  106. iowrite32(DMA_QUEUE_RESET, card->regmap + RESET);
  107. }
  108. static unsigned int get_dma_size(struct rsxx_dma *dma)
  109. {
  110. if (dma->sub_page.cnt)
  111. return dma->sub_page.cnt << 9;
  112. else
  113. return RSXX_HW_BLK_SIZE;
  114. }
  115. /*----------------- DMA Tracker -------------------*/
  116. static void set_tracker_dma(struct dma_tracker_list *trackers,
  117. int tag,
  118. struct rsxx_dma *dma)
  119. {
  120. trackers->list[tag].dma = dma;
  121. }
  122. static struct rsxx_dma *get_tracker_dma(struct dma_tracker_list *trackers,
  123. int tag)
  124. {
  125. return trackers->list[tag].dma;
  126. }
  127. static int pop_tracker(struct dma_tracker_list *trackers)
  128. {
  129. int tag;
  130. spin_lock(&trackers->lock);
  131. tag = trackers->head;
  132. if (tag != -1) {
  133. trackers->head = trackers->list[tag].next_tag;
  134. trackers->list[tag].next_tag = -1;
  135. }
  136. spin_unlock(&trackers->lock);
  137. return tag;
  138. }
  139. static void push_tracker(struct dma_tracker_list *trackers, int tag)
  140. {
  141. spin_lock(&trackers->lock);
  142. trackers->list[tag].next_tag = trackers->head;
  143. trackers->head = tag;
  144. trackers->list[tag].dma = NULL;
  145. spin_unlock(&trackers->lock);
  146. }
  147. /*----------------- Interrupt Coalescing -------------*/
  148. /*
  149. * Interrupt Coalescing Register Format:
  150. * Interrupt Timer (64ns units) [15:0]
  151. * Interrupt Count [24:16]
  152. * Reserved [31:25]
  153. */
  154. #define INTR_COAL_LATENCY_MASK (0x0000ffff)
  155. #define INTR_COAL_COUNT_SHIFT 16
  156. #define INTR_COAL_COUNT_BITS 9
  157. #define INTR_COAL_COUNT_MASK (((1 << INTR_COAL_COUNT_BITS) - 1) << \
  158. INTR_COAL_COUNT_SHIFT)
  159. #define INTR_COAL_LATENCY_UNITS_NS 64
  160. static u32 dma_intr_coal_val(u32 mode, u32 count, u32 latency)
  161. {
  162. u32 latency_units = latency / INTR_COAL_LATENCY_UNITS_NS;
  163. if (mode == RSXX_INTR_COAL_DISABLED)
  164. return 0;
  165. return ((count << INTR_COAL_COUNT_SHIFT) & INTR_COAL_COUNT_MASK) |
  166. (latency_units & INTR_COAL_LATENCY_MASK);
  167. }
  168. static void dma_intr_coal_auto_tune(struct rsxx_cardinfo *card)
  169. {
  170. int i;
  171. u32 q_depth = 0;
  172. u32 intr_coal;
  173. if (card->config.data.intr_coal.mode != RSXX_INTR_COAL_AUTO_TUNE ||
  174. unlikely(card->eeh_state))
  175. return;
  176. for (i = 0; i < card->n_targets; i++)
  177. q_depth += atomic_read(&card->ctrl[i].stats.hw_q_depth);
  178. intr_coal = dma_intr_coal_val(card->config.data.intr_coal.mode,
  179. q_depth / 2,
  180. card->config.data.intr_coal.latency);
  181. iowrite32(intr_coal, card->regmap + INTR_COAL);
  182. }
  183. /*----------------- RSXX DMA Handling -------------------*/
  184. static void rsxx_free_dma(struct rsxx_dma_ctrl *ctrl, struct rsxx_dma *dma)
  185. {
  186. if (dma->cmd != HW_CMD_BLK_DISCARD) {
  187. if (!pci_dma_mapping_error(ctrl->card->dev, dma->dma_addr)) {
  188. pci_unmap_page(ctrl->card->dev, dma->dma_addr,
  189. get_dma_size(dma),
  190. dma->cmd == HW_CMD_BLK_WRITE ?
  191. PCI_DMA_TODEVICE :
  192. PCI_DMA_FROMDEVICE);
  193. }
  194. }
  195. kmem_cache_free(rsxx_dma_pool, dma);
  196. }
  197. static void rsxx_complete_dma(struct rsxx_dma_ctrl *ctrl,
  198. struct rsxx_dma *dma,
  199. unsigned int status)
  200. {
  201. if (status & DMA_SW_ERR)
  202. ctrl->stats.dma_sw_err++;
  203. if (status & DMA_HW_FAULT)
  204. ctrl->stats.dma_hw_fault++;
  205. if (status & DMA_CANCELLED)
  206. ctrl->stats.dma_cancelled++;
  207. if (dma->cb)
  208. dma->cb(ctrl->card, dma->cb_data, status ? 1 : 0);
  209. rsxx_free_dma(ctrl, dma);
  210. }
  211. int rsxx_cleanup_dma_queue(struct rsxx_dma_ctrl *ctrl,
  212. struct list_head *q, unsigned int done)
  213. {
  214. struct rsxx_dma *dma;
  215. struct rsxx_dma *tmp;
  216. int cnt = 0;
  217. list_for_each_entry_safe(dma, tmp, q, list) {
  218. list_del(&dma->list);
  219. if (done & COMPLETE_DMA)
  220. rsxx_complete_dma(ctrl, dma, DMA_CANCELLED);
  221. else
  222. rsxx_free_dma(ctrl, dma);
  223. cnt++;
  224. }
  225. return cnt;
  226. }
  227. static void rsxx_requeue_dma(struct rsxx_dma_ctrl *ctrl,
  228. struct rsxx_dma *dma)
  229. {
  230. /*
  231. * Requeued DMAs go to the front of the queue so they are issued
  232. * first.
  233. */
  234. spin_lock_bh(&ctrl->queue_lock);
  235. ctrl->stats.sw_q_depth++;
  236. list_add(&dma->list, &ctrl->queue);
  237. spin_unlock_bh(&ctrl->queue_lock);
  238. }
  239. static void rsxx_handle_dma_error(struct rsxx_dma_ctrl *ctrl,
  240. struct rsxx_dma *dma,
  241. u8 hw_st)
  242. {
  243. unsigned int status = 0;
  244. int requeue_cmd = 0;
  245. dev_dbg(CARD_TO_DEV(ctrl->card),
  246. "Handling DMA error(cmd x%02x, laddr x%08x st:x%02x)\n",
  247. dma->cmd, dma->laddr, hw_st);
  248. if (hw_st & HW_STATUS_CRC)
  249. ctrl->stats.crc_errors++;
  250. if (hw_st & HW_STATUS_HARD_ERR)
  251. ctrl->stats.hard_errors++;
  252. if (hw_st & HW_STATUS_SOFT_ERR)
  253. ctrl->stats.soft_errors++;
  254. switch (dma->cmd) {
  255. case HW_CMD_BLK_READ:
  256. if (hw_st & (HW_STATUS_CRC | HW_STATUS_HARD_ERR)) {
  257. if (ctrl->card->scrub_hard) {
  258. dma->cmd = HW_CMD_BLK_RECON_READ;
  259. requeue_cmd = 1;
  260. ctrl->stats.reads_retried++;
  261. } else {
  262. status |= DMA_HW_FAULT;
  263. ctrl->stats.reads_failed++;
  264. }
  265. } else if (hw_st & HW_STATUS_FAULT) {
  266. status |= DMA_HW_FAULT;
  267. ctrl->stats.reads_failed++;
  268. }
  269. break;
  270. case HW_CMD_BLK_RECON_READ:
  271. if (hw_st & (HW_STATUS_CRC | HW_STATUS_HARD_ERR)) {
  272. /* Data could not be reconstructed. */
  273. status |= DMA_HW_FAULT;
  274. ctrl->stats.reads_failed++;
  275. }
  276. break;
  277. case HW_CMD_BLK_WRITE:
  278. status |= DMA_HW_FAULT;
  279. ctrl->stats.writes_failed++;
  280. break;
  281. case HW_CMD_BLK_DISCARD:
  282. status |= DMA_HW_FAULT;
  283. ctrl->stats.discards_failed++;
  284. break;
  285. default:
  286. dev_err(CARD_TO_DEV(ctrl->card),
  287. "Unknown command in DMA!(cmd: x%02x "
  288. "laddr x%08x st: x%02x\n",
  289. dma->cmd, dma->laddr, hw_st);
  290. status |= DMA_SW_ERR;
  291. break;
  292. }
  293. if (requeue_cmd)
  294. rsxx_requeue_dma(ctrl, dma);
  295. else
  296. rsxx_complete_dma(ctrl, dma, status);
  297. }
  298. static void dma_engine_stalled(unsigned long data)
  299. {
  300. struct rsxx_dma_ctrl *ctrl = (struct rsxx_dma_ctrl *)data;
  301. int cnt;
  302. if (atomic_read(&ctrl->stats.hw_q_depth) == 0 ||
  303. unlikely(ctrl->card->eeh_state))
  304. return;
  305. if (ctrl->cmd.idx != ioread32(ctrl->regmap + SW_CMD_IDX)) {
  306. /*
  307. * The dma engine was stalled because the SW_CMD_IDX write
  308. * was lost. Issue it again to recover.
  309. */
  310. dev_warn(CARD_TO_DEV(ctrl->card),
  311. "SW_CMD_IDX write was lost, re-writing...\n");
  312. iowrite32(ctrl->cmd.idx, ctrl->regmap + SW_CMD_IDX);
  313. mod_timer(&ctrl->activity_timer,
  314. jiffies + DMA_ACTIVITY_TIMEOUT);
  315. } else {
  316. dev_warn(CARD_TO_DEV(ctrl->card),
  317. "DMA channel %d has stalled, faulting interface.\n",
  318. ctrl->id);
  319. ctrl->card->dma_fault = 1;
  320. /* Clean up the DMA queue */
  321. spin_lock(&ctrl->queue_lock);
  322. cnt = rsxx_cleanup_dma_queue(ctrl, &ctrl->queue, COMPLETE_DMA);
  323. spin_unlock(&ctrl->queue_lock);
  324. cnt += rsxx_dma_cancel(ctrl);
  325. if (cnt)
  326. dev_info(CARD_TO_DEV(ctrl->card),
  327. "Freed %d queued DMAs on channel %d\n",
  328. cnt, ctrl->id);
  329. }
  330. }
  331. static void rsxx_issue_dmas(struct rsxx_dma_ctrl *ctrl)
  332. {
  333. struct rsxx_dma *dma;
  334. int tag;
  335. int cmds_pending = 0;
  336. struct hw_cmd *hw_cmd_buf;
  337. int dir;
  338. hw_cmd_buf = ctrl->cmd.buf;
  339. if (unlikely(ctrl->card->halt) ||
  340. unlikely(ctrl->card->eeh_state))
  341. return;
  342. while (1) {
  343. spin_lock_bh(&ctrl->queue_lock);
  344. if (list_empty(&ctrl->queue)) {
  345. spin_unlock_bh(&ctrl->queue_lock);
  346. break;
  347. }
  348. spin_unlock_bh(&ctrl->queue_lock);
  349. tag = pop_tracker(ctrl->trackers);
  350. if (tag == -1)
  351. break;
  352. spin_lock_bh(&ctrl->queue_lock);
  353. dma = list_entry(ctrl->queue.next, struct rsxx_dma, list);
  354. list_del(&dma->list);
  355. ctrl->stats.sw_q_depth--;
  356. spin_unlock_bh(&ctrl->queue_lock);
  357. /*
  358. * This will catch any DMAs that slipped in right before the
  359. * fault, but was queued after all the other DMAs were
  360. * cancelled.
  361. */
  362. if (unlikely(ctrl->card->dma_fault)) {
  363. push_tracker(ctrl->trackers, tag);
  364. rsxx_complete_dma(ctrl, dma, DMA_CANCELLED);
  365. continue;
  366. }
  367. if (dma->cmd != HW_CMD_BLK_DISCARD) {
  368. if (dma->cmd == HW_CMD_BLK_WRITE)
  369. dir = PCI_DMA_TODEVICE;
  370. else
  371. dir = PCI_DMA_FROMDEVICE;
  372. /*
  373. * The function pci_map_page is placed here because we
  374. * can only, by design, issue up to 255 commands to the
  375. * hardware at one time per DMA channel. So the maximum
  376. * amount of mapped memory would be 255 * 4 channels *
  377. * 4096 Bytes which is less than 2GB, the limit of a x8
  378. * Non-HWWD PCIe slot. This way the pci_map_page
  379. * function should never fail because of a lack of
  380. * mappable memory.
  381. */
  382. dma->dma_addr = pci_map_page(ctrl->card->dev, dma->page,
  383. dma->pg_off, dma->sub_page.cnt << 9, dir);
  384. if (pci_dma_mapping_error(ctrl->card->dev, dma->dma_addr)) {
  385. push_tracker(ctrl->trackers, tag);
  386. rsxx_complete_dma(ctrl, dma, DMA_CANCELLED);
  387. continue;
  388. }
  389. }
  390. set_tracker_dma(ctrl->trackers, tag, dma);
  391. hw_cmd_buf[ctrl->cmd.idx].command = dma->cmd;
  392. hw_cmd_buf[ctrl->cmd.idx].tag = tag;
  393. hw_cmd_buf[ctrl->cmd.idx]._rsvd = 0;
  394. hw_cmd_buf[ctrl->cmd.idx].sub_page =
  395. ((dma->sub_page.cnt & 0x7) << 4) |
  396. (dma->sub_page.off & 0x7);
  397. hw_cmd_buf[ctrl->cmd.idx].device_addr =
  398. cpu_to_le32(dma->laddr);
  399. hw_cmd_buf[ctrl->cmd.idx].host_addr =
  400. cpu_to_le64(dma->dma_addr);
  401. dev_dbg(CARD_TO_DEV(ctrl->card),
  402. "Issue DMA%d(laddr %d tag %d) to idx %d\n",
  403. ctrl->id, dma->laddr, tag, ctrl->cmd.idx);
  404. ctrl->cmd.idx = (ctrl->cmd.idx + 1) & RSXX_CS_IDX_MASK;
  405. cmds_pending++;
  406. if (dma->cmd == HW_CMD_BLK_WRITE)
  407. ctrl->stats.writes_issued++;
  408. else if (dma->cmd == HW_CMD_BLK_DISCARD)
  409. ctrl->stats.discards_issued++;
  410. else
  411. ctrl->stats.reads_issued++;
  412. }
  413. /* Let HW know we've queued commands. */
  414. if (cmds_pending) {
  415. atomic_add(cmds_pending, &ctrl->stats.hw_q_depth);
  416. mod_timer(&ctrl->activity_timer,
  417. jiffies + DMA_ACTIVITY_TIMEOUT);
  418. if (unlikely(ctrl->card->eeh_state)) {
  419. del_timer_sync(&ctrl->activity_timer);
  420. return;
  421. }
  422. iowrite32(ctrl->cmd.idx, ctrl->regmap + SW_CMD_IDX);
  423. }
  424. }
  425. static void rsxx_dma_done(struct rsxx_dma_ctrl *ctrl)
  426. {
  427. struct rsxx_dma *dma;
  428. unsigned long flags;
  429. u16 count;
  430. u8 status;
  431. u8 tag;
  432. struct hw_status *hw_st_buf;
  433. hw_st_buf = ctrl->status.buf;
  434. if (unlikely(ctrl->card->halt) ||
  435. unlikely(ctrl->card->dma_fault) ||
  436. unlikely(ctrl->card->eeh_state))
  437. return;
  438. count = le16_to_cpu(hw_st_buf[ctrl->status.idx].count);
  439. while (count == ctrl->e_cnt) {
  440. /*
  441. * The read memory-barrier is necessary to keep aggressive
  442. * processors/optimizers (such as the PPC Apple G5) from
  443. * reordering the following status-buffer tag & status read
  444. * *before* the count read on subsequent iterations of the
  445. * loop!
  446. */
  447. rmb();
  448. status = hw_st_buf[ctrl->status.idx].status;
  449. tag = hw_st_buf[ctrl->status.idx].tag;
  450. dma = get_tracker_dma(ctrl->trackers, tag);
  451. if (dma == NULL) {
  452. spin_lock_irqsave(&ctrl->card->irq_lock, flags);
  453. rsxx_disable_ier(ctrl->card, CR_INTR_DMA_ALL);
  454. spin_unlock_irqrestore(&ctrl->card->irq_lock, flags);
  455. dev_err(CARD_TO_DEV(ctrl->card),
  456. "No tracker for tag %d "
  457. "(idx %d id %d)\n",
  458. tag, ctrl->status.idx, ctrl->id);
  459. return;
  460. }
  461. dev_dbg(CARD_TO_DEV(ctrl->card),
  462. "Completing DMA%d"
  463. "(laddr x%x tag %d st: x%x cnt: x%04x) from idx %d.\n",
  464. ctrl->id, dma->laddr, tag, status, count,
  465. ctrl->status.idx);
  466. atomic_dec(&ctrl->stats.hw_q_depth);
  467. mod_timer(&ctrl->activity_timer,
  468. jiffies + DMA_ACTIVITY_TIMEOUT);
  469. if (status)
  470. rsxx_handle_dma_error(ctrl, dma, status);
  471. else
  472. rsxx_complete_dma(ctrl, dma, 0);
  473. push_tracker(ctrl->trackers, tag);
  474. ctrl->status.idx = (ctrl->status.idx + 1) &
  475. RSXX_CS_IDX_MASK;
  476. ctrl->e_cnt++;
  477. count = le16_to_cpu(hw_st_buf[ctrl->status.idx].count);
  478. }
  479. dma_intr_coal_auto_tune(ctrl->card);
  480. if (atomic_read(&ctrl->stats.hw_q_depth) == 0)
  481. del_timer_sync(&ctrl->activity_timer);
  482. spin_lock_irqsave(&ctrl->card->irq_lock, flags);
  483. rsxx_enable_ier(ctrl->card, CR_INTR_DMA(ctrl->id));
  484. spin_unlock_irqrestore(&ctrl->card->irq_lock, flags);
  485. spin_lock_bh(&ctrl->queue_lock);
  486. if (ctrl->stats.sw_q_depth)
  487. queue_work(ctrl->issue_wq, &ctrl->issue_dma_work);
  488. spin_unlock_bh(&ctrl->queue_lock);
  489. }
  490. static void rsxx_schedule_issue(struct work_struct *work)
  491. {
  492. struct rsxx_dma_ctrl *ctrl;
  493. ctrl = container_of(work, struct rsxx_dma_ctrl, issue_dma_work);
  494. mutex_lock(&ctrl->work_lock);
  495. rsxx_issue_dmas(ctrl);
  496. mutex_unlock(&ctrl->work_lock);
  497. }
  498. static void rsxx_schedule_done(struct work_struct *work)
  499. {
  500. struct rsxx_dma_ctrl *ctrl;
  501. ctrl = container_of(work, struct rsxx_dma_ctrl, dma_done_work);
  502. mutex_lock(&ctrl->work_lock);
  503. rsxx_dma_done(ctrl);
  504. mutex_unlock(&ctrl->work_lock);
  505. }
  506. static int rsxx_queue_discard(struct rsxx_cardinfo *card,
  507. struct list_head *q,
  508. unsigned int laddr,
  509. rsxx_dma_cb cb,
  510. void *cb_data)
  511. {
  512. struct rsxx_dma *dma;
  513. dma = kmem_cache_alloc(rsxx_dma_pool, GFP_KERNEL);
  514. if (!dma)
  515. return -ENOMEM;
  516. dma->cmd = HW_CMD_BLK_DISCARD;
  517. dma->laddr = laddr;
  518. dma->dma_addr = 0;
  519. dma->sub_page.off = 0;
  520. dma->sub_page.cnt = 0;
  521. dma->page = NULL;
  522. dma->pg_off = 0;
  523. dma->cb = cb;
  524. dma->cb_data = cb_data;
  525. dev_dbg(CARD_TO_DEV(card), "Queuing[D] laddr %x\n", dma->laddr);
  526. list_add_tail(&dma->list, q);
  527. return 0;
  528. }
  529. static int rsxx_queue_dma(struct rsxx_cardinfo *card,
  530. struct list_head *q,
  531. int dir,
  532. unsigned int dma_off,
  533. unsigned int dma_len,
  534. unsigned int laddr,
  535. struct page *page,
  536. unsigned int pg_off,
  537. rsxx_dma_cb cb,
  538. void *cb_data)
  539. {
  540. struct rsxx_dma *dma;
  541. dma = kmem_cache_alloc(rsxx_dma_pool, GFP_KERNEL);
  542. if (!dma)
  543. return -ENOMEM;
  544. dma->cmd = dir ? HW_CMD_BLK_WRITE : HW_CMD_BLK_READ;
  545. dma->laddr = laddr;
  546. dma->sub_page.off = (dma_off >> 9);
  547. dma->sub_page.cnt = (dma_len >> 9);
  548. dma->page = page;
  549. dma->pg_off = pg_off;
  550. dma->cb = cb;
  551. dma->cb_data = cb_data;
  552. dev_dbg(CARD_TO_DEV(card),
  553. "Queuing[%c] laddr %x off %d cnt %d page %p pg_off %d\n",
  554. dir ? 'W' : 'R', dma->laddr, dma->sub_page.off,
  555. dma->sub_page.cnt, dma->page, dma->pg_off);
  556. /* Queue the DMA */
  557. list_add_tail(&dma->list, q);
  558. return 0;
  559. }
  560. int rsxx_dma_queue_bio(struct rsxx_cardinfo *card,
  561. struct bio *bio,
  562. atomic_t *n_dmas,
  563. rsxx_dma_cb cb,
  564. void *cb_data)
  565. {
  566. struct list_head dma_list[RSXX_MAX_TARGETS];
  567. struct bio_vec *bvec;
  568. unsigned long long addr8;
  569. unsigned int laddr;
  570. unsigned int bv_len;
  571. unsigned int bv_off;
  572. unsigned int dma_off;
  573. unsigned int dma_len;
  574. int dma_cnt[RSXX_MAX_TARGETS];
  575. int tgt;
  576. int st;
  577. int i;
  578. addr8 = bio->bi_sector << 9; /* sectors are 512 bytes */
  579. atomic_set(n_dmas, 0);
  580. for (i = 0; i < card->n_targets; i++) {
  581. INIT_LIST_HEAD(&dma_list[i]);
  582. dma_cnt[i] = 0;
  583. }
  584. if (bio->bi_rw & REQ_DISCARD) {
  585. bv_len = bio->bi_size;
  586. while (bv_len > 0) {
  587. tgt = rsxx_get_dma_tgt(card, addr8);
  588. laddr = rsxx_addr8_to_laddr(addr8, card);
  589. st = rsxx_queue_discard(card, &dma_list[tgt], laddr,
  590. cb, cb_data);
  591. if (st)
  592. goto bvec_err;
  593. dma_cnt[tgt]++;
  594. atomic_inc(n_dmas);
  595. addr8 += RSXX_HW_BLK_SIZE;
  596. bv_len -= RSXX_HW_BLK_SIZE;
  597. }
  598. } else {
  599. bio_for_each_segment(bvec, bio, i) {
  600. bv_len = bvec->bv_len;
  601. bv_off = bvec->bv_offset;
  602. while (bv_len > 0) {
  603. tgt = rsxx_get_dma_tgt(card, addr8);
  604. laddr = rsxx_addr8_to_laddr(addr8, card);
  605. dma_off = addr8 & RSXX_HW_BLK_MASK;
  606. dma_len = min(bv_len,
  607. RSXX_HW_BLK_SIZE - dma_off);
  608. st = rsxx_queue_dma(card, &dma_list[tgt],
  609. bio_data_dir(bio),
  610. dma_off, dma_len,
  611. laddr, bvec->bv_page,
  612. bv_off, cb, cb_data);
  613. if (st)
  614. goto bvec_err;
  615. dma_cnt[tgt]++;
  616. atomic_inc(n_dmas);
  617. addr8 += dma_len;
  618. bv_off += dma_len;
  619. bv_len -= dma_len;
  620. }
  621. }
  622. }
  623. for (i = 0; i < card->n_targets; i++) {
  624. if (!list_empty(&dma_list[i])) {
  625. spin_lock_bh(&card->ctrl[i].queue_lock);
  626. card->ctrl[i].stats.sw_q_depth += dma_cnt[i];
  627. list_splice_tail(&dma_list[i], &card->ctrl[i].queue);
  628. spin_unlock_bh(&card->ctrl[i].queue_lock);
  629. queue_work(card->ctrl[i].issue_wq,
  630. &card->ctrl[i].issue_dma_work);
  631. }
  632. }
  633. return 0;
  634. bvec_err:
  635. for (i = 0; i < card->n_targets; i++)
  636. rsxx_cleanup_dma_queue(&card->ctrl[i], &dma_list[i],
  637. FREE_DMA);
  638. return st;
  639. }
  640. /*----------------- DMA Engine Initialization & Setup -------------------*/
  641. int rsxx_hw_buffers_init(struct pci_dev *dev, struct rsxx_dma_ctrl *ctrl)
  642. {
  643. ctrl->status.buf = pci_alloc_consistent(dev, STATUS_BUFFER_SIZE8,
  644. &ctrl->status.dma_addr);
  645. ctrl->cmd.buf = pci_alloc_consistent(dev, COMMAND_BUFFER_SIZE8,
  646. &ctrl->cmd.dma_addr);
  647. if (ctrl->status.buf == NULL || ctrl->cmd.buf == NULL)
  648. return -ENOMEM;
  649. memset(ctrl->status.buf, 0xac, STATUS_BUFFER_SIZE8);
  650. iowrite32(lower_32_bits(ctrl->status.dma_addr),
  651. ctrl->regmap + SB_ADD_LO);
  652. iowrite32(upper_32_bits(ctrl->status.dma_addr),
  653. ctrl->regmap + SB_ADD_HI);
  654. memset(ctrl->cmd.buf, 0x83, COMMAND_BUFFER_SIZE8);
  655. iowrite32(lower_32_bits(ctrl->cmd.dma_addr), ctrl->regmap + CB_ADD_LO);
  656. iowrite32(upper_32_bits(ctrl->cmd.dma_addr), ctrl->regmap + CB_ADD_HI);
  657. ctrl->status.idx = ioread32(ctrl->regmap + HW_STATUS_CNT);
  658. if (ctrl->status.idx > RSXX_MAX_OUTSTANDING_CMDS) {
  659. dev_crit(&dev->dev, "Failed reading status cnt x%x\n",
  660. ctrl->status.idx);
  661. return -EINVAL;
  662. }
  663. iowrite32(ctrl->status.idx, ctrl->regmap + HW_STATUS_CNT);
  664. iowrite32(ctrl->status.idx, ctrl->regmap + SW_STATUS_CNT);
  665. ctrl->cmd.idx = ioread32(ctrl->regmap + HW_CMD_IDX);
  666. if (ctrl->cmd.idx > RSXX_MAX_OUTSTANDING_CMDS) {
  667. dev_crit(&dev->dev, "Failed reading cmd cnt x%x\n",
  668. ctrl->status.idx);
  669. return -EINVAL;
  670. }
  671. iowrite32(ctrl->cmd.idx, ctrl->regmap + HW_CMD_IDX);
  672. iowrite32(ctrl->cmd.idx, ctrl->regmap + SW_CMD_IDX);
  673. return 0;
  674. }
  675. static int rsxx_dma_ctrl_init(struct pci_dev *dev,
  676. struct rsxx_dma_ctrl *ctrl)
  677. {
  678. int i;
  679. int st;
  680. memset(&ctrl->stats, 0, sizeof(ctrl->stats));
  681. ctrl->trackers = vmalloc(DMA_TRACKER_LIST_SIZE8);
  682. if (!ctrl->trackers)
  683. return -ENOMEM;
  684. ctrl->trackers->head = 0;
  685. for (i = 0; i < RSXX_MAX_OUTSTANDING_CMDS; i++) {
  686. ctrl->trackers->list[i].next_tag = i + 1;
  687. ctrl->trackers->list[i].dma = NULL;
  688. }
  689. ctrl->trackers->list[RSXX_MAX_OUTSTANDING_CMDS-1].next_tag = -1;
  690. spin_lock_init(&ctrl->trackers->lock);
  691. spin_lock_init(&ctrl->queue_lock);
  692. mutex_init(&ctrl->work_lock);
  693. INIT_LIST_HEAD(&ctrl->queue);
  694. setup_timer(&ctrl->activity_timer, dma_engine_stalled,
  695. (unsigned long)ctrl);
  696. ctrl->issue_wq = alloc_ordered_workqueue(DRIVER_NAME"_issue", 0);
  697. if (!ctrl->issue_wq)
  698. return -ENOMEM;
  699. ctrl->done_wq = alloc_ordered_workqueue(DRIVER_NAME"_done", 0);
  700. if (!ctrl->done_wq)
  701. return -ENOMEM;
  702. INIT_WORK(&ctrl->issue_dma_work, rsxx_schedule_issue);
  703. INIT_WORK(&ctrl->dma_done_work, rsxx_schedule_done);
  704. st = rsxx_hw_buffers_init(dev, ctrl);
  705. if (st)
  706. return st;
  707. return 0;
  708. }
  709. static int rsxx_dma_stripe_setup(struct rsxx_cardinfo *card,
  710. unsigned int stripe_size8)
  711. {
  712. if (!is_power_of_2(stripe_size8)) {
  713. dev_err(CARD_TO_DEV(card),
  714. "stripe_size is NOT a power of 2!\n");
  715. return -EINVAL;
  716. }
  717. card->_stripe.lower_mask = stripe_size8 - 1;
  718. card->_stripe.upper_mask = ~(card->_stripe.lower_mask);
  719. card->_stripe.upper_shift = ffs(card->n_targets) - 1;
  720. card->_stripe.target_mask = card->n_targets - 1;
  721. card->_stripe.target_shift = ffs(stripe_size8) - 1;
  722. dev_dbg(CARD_TO_DEV(card), "_stripe.lower_mask = x%016llx\n",
  723. card->_stripe.lower_mask);
  724. dev_dbg(CARD_TO_DEV(card), "_stripe.upper_shift = x%016llx\n",
  725. card->_stripe.upper_shift);
  726. dev_dbg(CARD_TO_DEV(card), "_stripe.upper_mask = x%016llx\n",
  727. card->_stripe.upper_mask);
  728. dev_dbg(CARD_TO_DEV(card), "_stripe.target_mask = x%016llx\n",
  729. card->_stripe.target_mask);
  730. dev_dbg(CARD_TO_DEV(card), "_stripe.target_shift = x%016llx\n",
  731. card->_stripe.target_shift);
  732. return 0;
  733. }
  734. int rsxx_dma_configure(struct rsxx_cardinfo *card)
  735. {
  736. u32 intr_coal;
  737. intr_coal = dma_intr_coal_val(card->config.data.intr_coal.mode,
  738. card->config.data.intr_coal.count,
  739. card->config.data.intr_coal.latency);
  740. iowrite32(intr_coal, card->regmap + INTR_COAL);
  741. return rsxx_dma_stripe_setup(card, card->config.data.stripe_size);
  742. }
  743. int rsxx_dma_setup(struct rsxx_cardinfo *card)
  744. {
  745. unsigned long flags;
  746. int st;
  747. int i;
  748. dev_info(CARD_TO_DEV(card),
  749. "Initializing %d DMA targets\n",
  750. card->n_targets);
  751. /* Regmap is divided up into 4K chunks. One for each DMA channel */
  752. for (i = 0; i < card->n_targets; i++)
  753. card->ctrl[i].regmap = card->regmap + (i * 4096);
  754. card->dma_fault = 0;
  755. /* Reset the DMA queues */
  756. rsxx_dma_queue_reset(card);
  757. /************* Setup DMA Control *************/
  758. for (i = 0; i < card->n_targets; i++) {
  759. st = rsxx_dma_ctrl_init(card->dev, &card->ctrl[i]);
  760. if (st)
  761. goto failed_dma_setup;
  762. card->ctrl[i].card = card;
  763. card->ctrl[i].id = i;
  764. }
  765. card->scrub_hard = 1;
  766. if (card->config_valid)
  767. rsxx_dma_configure(card);
  768. /* Enable the interrupts after all setup has completed. */
  769. for (i = 0; i < card->n_targets; i++) {
  770. spin_lock_irqsave(&card->irq_lock, flags);
  771. rsxx_enable_ier_and_isr(card, CR_INTR_DMA(i));
  772. spin_unlock_irqrestore(&card->irq_lock, flags);
  773. }
  774. return 0;
  775. failed_dma_setup:
  776. for (i = 0; i < card->n_targets; i++) {
  777. struct rsxx_dma_ctrl *ctrl = &card->ctrl[i];
  778. if (ctrl->issue_wq) {
  779. destroy_workqueue(ctrl->issue_wq);
  780. ctrl->issue_wq = NULL;
  781. }
  782. if (ctrl->done_wq) {
  783. destroy_workqueue(ctrl->done_wq);
  784. ctrl->done_wq = NULL;
  785. }
  786. if (ctrl->trackers)
  787. vfree(ctrl->trackers);
  788. if (ctrl->status.buf)
  789. pci_free_consistent(card->dev, STATUS_BUFFER_SIZE8,
  790. ctrl->status.buf,
  791. ctrl->status.dma_addr);
  792. if (ctrl->cmd.buf)
  793. pci_free_consistent(card->dev, COMMAND_BUFFER_SIZE8,
  794. ctrl->cmd.buf, ctrl->cmd.dma_addr);
  795. }
  796. return st;
  797. }
  798. int rsxx_dma_cancel(struct rsxx_dma_ctrl *ctrl)
  799. {
  800. struct rsxx_dma *dma;
  801. int i;
  802. int cnt = 0;
  803. /* Clean up issued DMAs */
  804. for (i = 0; i < RSXX_MAX_OUTSTANDING_CMDS; i++) {
  805. dma = get_tracker_dma(ctrl->trackers, i);
  806. if (dma) {
  807. atomic_dec(&ctrl->stats.hw_q_depth);
  808. rsxx_complete_dma(ctrl, dma, DMA_CANCELLED);
  809. push_tracker(ctrl->trackers, i);
  810. cnt++;
  811. }
  812. }
  813. return cnt;
  814. }
  815. void rsxx_dma_destroy(struct rsxx_cardinfo *card)
  816. {
  817. struct rsxx_dma_ctrl *ctrl;
  818. int i;
  819. for (i = 0; i < card->n_targets; i++) {
  820. ctrl = &card->ctrl[i];
  821. if (ctrl->issue_wq) {
  822. destroy_workqueue(ctrl->issue_wq);
  823. ctrl->issue_wq = NULL;
  824. }
  825. if (ctrl->done_wq) {
  826. destroy_workqueue(ctrl->done_wq);
  827. ctrl->done_wq = NULL;
  828. }
  829. if (timer_pending(&ctrl->activity_timer))
  830. del_timer_sync(&ctrl->activity_timer);
  831. /* Clean up the DMA queue */
  832. spin_lock_bh(&ctrl->queue_lock);
  833. rsxx_cleanup_dma_queue(ctrl, &ctrl->queue, COMPLETE_DMA);
  834. spin_unlock_bh(&ctrl->queue_lock);
  835. rsxx_dma_cancel(ctrl);
  836. vfree(ctrl->trackers);
  837. pci_free_consistent(card->dev, STATUS_BUFFER_SIZE8,
  838. ctrl->status.buf, ctrl->status.dma_addr);
  839. pci_free_consistent(card->dev, COMMAND_BUFFER_SIZE8,
  840. ctrl->cmd.buf, ctrl->cmd.dma_addr);
  841. }
  842. }
  843. int rsxx_eeh_save_issued_dmas(struct rsxx_cardinfo *card)
  844. {
  845. int i;
  846. int j;
  847. int cnt;
  848. struct rsxx_dma *dma;
  849. struct list_head *issued_dmas;
  850. issued_dmas = kzalloc(sizeof(*issued_dmas) * card->n_targets,
  851. GFP_KERNEL);
  852. if (!issued_dmas)
  853. return -ENOMEM;
  854. for (i = 0; i < card->n_targets; i++) {
  855. INIT_LIST_HEAD(&issued_dmas[i]);
  856. cnt = 0;
  857. for (j = 0; j < RSXX_MAX_OUTSTANDING_CMDS; j++) {
  858. dma = get_tracker_dma(card->ctrl[i].trackers, j);
  859. if (dma == NULL)
  860. continue;
  861. if (dma->cmd == HW_CMD_BLK_WRITE)
  862. card->ctrl[i].stats.writes_issued--;
  863. else if (dma->cmd == HW_CMD_BLK_DISCARD)
  864. card->ctrl[i].stats.discards_issued--;
  865. else
  866. card->ctrl[i].stats.reads_issued--;
  867. if (dma->cmd != HW_CMD_BLK_DISCARD) {
  868. pci_unmap_page(card->dev, dma->dma_addr,
  869. get_dma_size(dma),
  870. dma->cmd == HW_CMD_BLK_WRITE ?
  871. PCI_DMA_TODEVICE :
  872. PCI_DMA_FROMDEVICE);
  873. }
  874. list_add_tail(&dma->list, &issued_dmas[i]);
  875. push_tracker(card->ctrl[i].trackers, j);
  876. cnt++;
  877. }
  878. spin_lock_bh(&card->ctrl[i].queue_lock);
  879. list_splice(&issued_dmas[i], &card->ctrl[i].queue);
  880. atomic_sub(cnt, &card->ctrl[i].stats.hw_q_depth);
  881. card->ctrl[i].stats.sw_q_depth += cnt;
  882. card->ctrl[i].e_cnt = 0;
  883. spin_unlock_bh(&card->ctrl[i].queue_lock);
  884. }
  885. kfree(issued_dmas);
  886. return 0;
  887. }
  888. int rsxx_dma_init(void)
  889. {
  890. rsxx_dma_pool = KMEM_CACHE(rsxx_dma, SLAB_HWCACHE_ALIGN);
  891. if (!rsxx_dma_pool)
  892. return -ENOMEM;
  893. return 0;
  894. }
  895. void rsxx_dma_cleanup(void)
  896. {
  897. kmem_cache_destroy(rsxx_dma_pool);
  898. }