i915_gem.c 132 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. #include <linux/intel-gtt.h>
  37. static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
  38. static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
  39. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  40. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  41. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  42. int write);
  43. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  44. uint64_t offset,
  45. uint64_t size);
  46. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  47. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  48. bool interruptible);
  49. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  50. unsigned alignment);
  51. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  52. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  53. struct drm_i915_gem_pwrite *args,
  54. struct drm_file *file_priv);
  55. static void i915_gem_free_object_tail(struct drm_gem_object *obj);
  56. static LIST_HEAD(shrink_list);
  57. static DEFINE_SPINLOCK(shrink_list_lock);
  58. static inline bool
  59. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
  60. {
  61. return obj_priv->gtt_space &&
  62. !obj_priv->active &&
  63. obj_priv->pin_count == 0;
  64. }
  65. int i915_gem_do_init(struct drm_device *dev, unsigned long start,
  66. unsigned long end)
  67. {
  68. drm_i915_private_t *dev_priv = dev->dev_private;
  69. if (start >= end ||
  70. (start & (PAGE_SIZE - 1)) != 0 ||
  71. (end & (PAGE_SIZE - 1)) != 0) {
  72. return -EINVAL;
  73. }
  74. drm_mm_init(&dev_priv->mm.gtt_space, start,
  75. end - start);
  76. dev->gtt_total = (uint32_t) (end - start);
  77. return 0;
  78. }
  79. int
  80. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  81. struct drm_file *file_priv)
  82. {
  83. struct drm_i915_gem_init *args = data;
  84. int ret;
  85. mutex_lock(&dev->struct_mutex);
  86. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
  87. mutex_unlock(&dev->struct_mutex);
  88. return ret;
  89. }
  90. int
  91. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  92. struct drm_file *file_priv)
  93. {
  94. struct drm_i915_gem_get_aperture *args = data;
  95. if (!(dev->driver->driver_features & DRIVER_GEM))
  96. return -ENODEV;
  97. args->aper_size = dev->gtt_total;
  98. args->aper_available_size = (args->aper_size -
  99. atomic_read(&dev->pin_memory));
  100. return 0;
  101. }
  102. /**
  103. * Creates a new mm object and returns a handle to it.
  104. */
  105. int
  106. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  107. struct drm_file *file_priv)
  108. {
  109. struct drm_i915_gem_create *args = data;
  110. struct drm_gem_object *obj;
  111. int ret;
  112. u32 handle;
  113. args->size = roundup(args->size, PAGE_SIZE);
  114. /* Allocate the new object */
  115. obj = i915_gem_alloc_object(dev, args->size);
  116. if (obj == NULL)
  117. return -ENOMEM;
  118. ret = drm_gem_handle_create(file_priv, obj, &handle);
  119. if (ret) {
  120. drm_gem_object_unreference_unlocked(obj);
  121. return ret;
  122. }
  123. /* Sink the floating reference from kref_init(handlecount) */
  124. drm_gem_object_handle_unreference_unlocked(obj);
  125. args->handle = handle;
  126. return 0;
  127. }
  128. static inline int
  129. fast_shmem_read(struct page **pages,
  130. loff_t page_base, int page_offset,
  131. char __user *data,
  132. int length)
  133. {
  134. char __iomem *vaddr;
  135. int unwritten;
  136. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  137. if (vaddr == NULL)
  138. return -ENOMEM;
  139. unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
  140. kunmap_atomic(vaddr, KM_USER0);
  141. if (unwritten)
  142. return -EFAULT;
  143. return 0;
  144. }
  145. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  146. {
  147. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  148. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  149. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  150. obj_priv->tiling_mode != I915_TILING_NONE;
  151. }
  152. static inline void
  153. slow_shmem_copy(struct page *dst_page,
  154. int dst_offset,
  155. struct page *src_page,
  156. int src_offset,
  157. int length)
  158. {
  159. char *dst_vaddr, *src_vaddr;
  160. dst_vaddr = kmap(dst_page);
  161. src_vaddr = kmap(src_page);
  162. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  163. kunmap(src_page);
  164. kunmap(dst_page);
  165. }
  166. static inline void
  167. slow_shmem_bit17_copy(struct page *gpu_page,
  168. int gpu_offset,
  169. struct page *cpu_page,
  170. int cpu_offset,
  171. int length,
  172. int is_read)
  173. {
  174. char *gpu_vaddr, *cpu_vaddr;
  175. /* Use the unswizzled path if this page isn't affected. */
  176. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  177. if (is_read)
  178. return slow_shmem_copy(cpu_page, cpu_offset,
  179. gpu_page, gpu_offset, length);
  180. else
  181. return slow_shmem_copy(gpu_page, gpu_offset,
  182. cpu_page, cpu_offset, length);
  183. }
  184. gpu_vaddr = kmap(gpu_page);
  185. cpu_vaddr = kmap(cpu_page);
  186. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  187. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  188. */
  189. while (length > 0) {
  190. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  191. int this_length = min(cacheline_end - gpu_offset, length);
  192. int swizzled_gpu_offset = gpu_offset ^ 64;
  193. if (is_read) {
  194. memcpy(cpu_vaddr + cpu_offset,
  195. gpu_vaddr + swizzled_gpu_offset,
  196. this_length);
  197. } else {
  198. memcpy(gpu_vaddr + swizzled_gpu_offset,
  199. cpu_vaddr + cpu_offset,
  200. this_length);
  201. }
  202. cpu_offset += this_length;
  203. gpu_offset += this_length;
  204. length -= this_length;
  205. }
  206. kunmap(cpu_page);
  207. kunmap(gpu_page);
  208. }
  209. /**
  210. * This is the fast shmem pread path, which attempts to copy_from_user directly
  211. * from the backing pages of the object to the user's address space. On a
  212. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  213. */
  214. static int
  215. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  216. struct drm_i915_gem_pread *args,
  217. struct drm_file *file_priv)
  218. {
  219. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  220. ssize_t remain;
  221. loff_t offset, page_base;
  222. char __user *user_data;
  223. int page_offset, page_length;
  224. int ret;
  225. user_data = (char __user *) (uintptr_t) args->data_ptr;
  226. remain = args->size;
  227. mutex_lock(&dev->struct_mutex);
  228. ret = i915_gem_object_get_pages(obj, 0);
  229. if (ret != 0)
  230. goto fail_unlock;
  231. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  232. args->size);
  233. if (ret != 0)
  234. goto fail_put_pages;
  235. obj_priv = to_intel_bo(obj);
  236. offset = args->offset;
  237. while (remain > 0) {
  238. /* Operation in this page
  239. *
  240. * page_base = page offset within aperture
  241. * page_offset = offset within page
  242. * page_length = bytes to copy for this page
  243. */
  244. page_base = (offset & ~(PAGE_SIZE-1));
  245. page_offset = offset & (PAGE_SIZE-1);
  246. page_length = remain;
  247. if ((page_offset + remain) > PAGE_SIZE)
  248. page_length = PAGE_SIZE - page_offset;
  249. ret = fast_shmem_read(obj_priv->pages,
  250. page_base, page_offset,
  251. user_data, page_length);
  252. if (ret)
  253. goto fail_put_pages;
  254. remain -= page_length;
  255. user_data += page_length;
  256. offset += page_length;
  257. }
  258. fail_put_pages:
  259. i915_gem_object_put_pages(obj);
  260. fail_unlock:
  261. mutex_unlock(&dev->struct_mutex);
  262. return ret;
  263. }
  264. static int
  265. i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
  266. {
  267. int ret;
  268. ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
  269. /* If we've insufficient memory to map in the pages, attempt
  270. * to make some space by throwing out some old buffers.
  271. */
  272. if (ret == -ENOMEM) {
  273. struct drm_device *dev = obj->dev;
  274. ret = i915_gem_evict_something(dev, obj->size,
  275. i915_gem_get_gtt_alignment(obj));
  276. if (ret)
  277. return ret;
  278. ret = i915_gem_object_get_pages(obj, 0);
  279. }
  280. return ret;
  281. }
  282. /**
  283. * This is the fallback shmem pread path, which allocates temporary storage
  284. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  285. * can copy out of the object's backing pages while holding the struct mutex
  286. * and not take page faults.
  287. */
  288. static int
  289. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  290. struct drm_i915_gem_pread *args,
  291. struct drm_file *file_priv)
  292. {
  293. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  294. struct mm_struct *mm = current->mm;
  295. struct page **user_pages;
  296. ssize_t remain;
  297. loff_t offset, pinned_pages, i;
  298. loff_t first_data_page, last_data_page, num_pages;
  299. int shmem_page_index, shmem_page_offset;
  300. int data_page_index, data_page_offset;
  301. int page_length;
  302. int ret;
  303. uint64_t data_ptr = args->data_ptr;
  304. int do_bit17_swizzling;
  305. remain = args->size;
  306. /* Pin the user pages containing the data. We can't fault while
  307. * holding the struct mutex, yet we want to hold it while
  308. * dereferencing the user data.
  309. */
  310. first_data_page = data_ptr / PAGE_SIZE;
  311. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  312. num_pages = last_data_page - first_data_page + 1;
  313. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  314. if (user_pages == NULL)
  315. return -ENOMEM;
  316. down_read(&mm->mmap_sem);
  317. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  318. num_pages, 1, 0, user_pages, NULL);
  319. up_read(&mm->mmap_sem);
  320. if (pinned_pages < num_pages) {
  321. ret = -EFAULT;
  322. goto fail_put_user_pages;
  323. }
  324. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  325. mutex_lock(&dev->struct_mutex);
  326. ret = i915_gem_object_get_pages_or_evict(obj);
  327. if (ret)
  328. goto fail_unlock;
  329. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  330. args->size);
  331. if (ret != 0)
  332. goto fail_put_pages;
  333. obj_priv = to_intel_bo(obj);
  334. offset = args->offset;
  335. while (remain > 0) {
  336. /* Operation in this page
  337. *
  338. * shmem_page_index = page number within shmem file
  339. * shmem_page_offset = offset within page in shmem file
  340. * data_page_index = page number in get_user_pages return
  341. * data_page_offset = offset with data_page_index page.
  342. * page_length = bytes to copy for this page
  343. */
  344. shmem_page_index = offset / PAGE_SIZE;
  345. shmem_page_offset = offset & ~PAGE_MASK;
  346. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  347. data_page_offset = data_ptr & ~PAGE_MASK;
  348. page_length = remain;
  349. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  350. page_length = PAGE_SIZE - shmem_page_offset;
  351. if ((data_page_offset + page_length) > PAGE_SIZE)
  352. page_length = PAGE_SIZE - data_page_offset;
  353. if (do_bit17_swizzling) {
  354. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  355. shmem_page_offset,
  356. user_pages[data_page_index],
  357. data_page_offset,
  358. page_length,
  359. 1);
  360. } else {
  361. slow_shmem_copy(user_pages[data_page_index],
  362. data_page_offset,
  363. obj_priv->pages[shmem_page_index],
  364. shmem_page_offset,
  365. page_length);
  366. }
  367. remain -= page_length;
  368. data_ptr += page_length;
  369. offset += page_length;
  370. }
  371. fail_put_pages:
  372. i915_gem_object_put_pages(obj);
  373. fail_unlock:
  374. mutex_unlock(&dev->struct_mutex);
  375. fail_put_user_pages:
  376. for (i = 0; i < pinned_pages; i++) {
  377. SetPageDirty(user_pages[i]);
  378. page_cache_release(user_pages[i]);
  379. }
  380. drm_free_large(user_pages);
  381. return ret;
  382. }
  383. /**
  384. * Reads data from the object referenced by handle.
  385. *
  386. * On error, the contents of *data are undefined.
  387. */
  388. int
  389. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  390. struct drm_file *file_priv)
  391. {
  392. struct drm_i915_gem_pread *args = data;
  393. struct drm_gem_object *obj;
  394. struct drm_i915_gem_object *obj_priv;
  395. int ret;
  396. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  397. if (obj == NULL)
  398. return -ENOENT;
  399. obj_priv = to_intel_bo(obj);
  400. /* Bounds check source.
  401. *
  402. * XXX: This could use review for overflow issues...
  403. */
  404. if (args->offset > obj->size || args->size > obj->size ||
  405. args->offset + args->size > obj->size) {
  406. drm_gem_object_unreference_unlocked(obj);
  407. return -EINVAL;
  408. }
  409. if (i915_gem_object_needs_bit17_swizzle(obj)) {
  410. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  411. } else {
  412. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  413. if (ret != 0)
  414. ret = i915_gem_shmem_pread_slow(dev, obj, args,
  415. file_priv);
  416. }
  417. drm_gem_object_unreference_unlocked(obj);
  418. return ret;
  419. }
  420. /* This is the fast write path which cannot handle
  421. * page faults in the source data
  422. */
  423. static inline int
  424. fast_user_write(struct io_mapping *mapping,
  425. loff_t page_base, int page_offset,
  426. char __user *user_data,
  427. int length)
  428. {
  429. char *vaddr_atomic;
  430. unsigned long unwritten;
  431. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
  432. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  433. user_data, length);
  434. io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
  435. if (unwritten)
  436. return -EFAULT;
  437. return 0;
  438. }
  439. /* Here's the write path which can sleep for
  440. * page faults
  441. */
  442. static inline void
  443. slow_kernel_write(struct io_mapping *mapping,
  444. loff_t gtt_base, int gtt_offset,
  445. struct page *user_page, int user_offset,
  446. int length)
  447. {
  448. char __iomem *dst_vaddr;
  449. char *src_vaddr;
  450. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  451. src_vaddr = kmap(user_page);
  452. memcpy_toio(dst_vaddr + gtt_offset,
  453. src_vaddr + user_offset,
  454. length);
  455. kunmap(user_page);
  456. io_mapping_unmap(dst_vaddr);
  457. }
  458. static inline int
  459. fast_shmem_write(struct page **pages,
  460. loff_t page_base, int page_offset,
  461. char __user *data,
  462. int length)
  463. {
  464. char __iomem *vaddr;
  465. unsigned long unwritten;
  466. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  467. if (vaddr == NULL)
  468. return -ENOMEM;
  469. unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
  470. kunmap_atomic(vaddr, KM_USER0);
  471. if (unwritten)
  472. return -EFAULT;
  473. return 0;
  474. }
  475. /**
  476. * This is the fast pwrite path, where we copy the data directly from the
  477. * user into the GTT, uncached.
  478. */
  479. static int
  480. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  481. struct drm_i915_gem_pwrite *args,
  482. struct drm_file *file_priv)
  483. {
  484. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  485. drm_i915_private_t *dev_priv = dev->dev_private;
  486. ssize_t remain;
  487. loff_t offset, page_base;
  488. char __user *user_data;
  489. int page_offset, page_length;
  490. int ret;
  491. user_data = (char __user *) (uintptr_t) args->data_ptr;
  492. remain = args->size;
  493. if (!access_ok(VERIFY_READ, user_data, remain))
  494. return -EFAULT;
  495. mutex_lock(&dev->struct_mutex);
  496. ret = i915_gem_object_pin(obj, 0);
  497. if (ret) {
  498. mutex_unlock(&dev->struct_mutex);
  499. return ret;
  500. }
  501. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  502. if (ret)
  503. goto fail;
  504. obj_priv = to_intel_bo(obj);
  505. offset = obj_priv->gtt_offset + args->offset;
  506. while (remain > 0) {
  507. /* Operation in this page
  508. *
  509. * page_base = page offset within aperture
  510. * page_offset = offset within page
  511. * page_length = bytes to copy for this page
  512. */
  513. page_base = (offset & ~(PAGE_SIZE-1));
  514. page_offset = offset & (PAGE_SIZE-1);
  515. page_length = remain;
  516. if ((page_offset + remain) > PAGE_SIZE)
  517. page_length = PAGE_SIZE - page_offset;
  518. ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
  519. page_offset, user_data, page_length);
  520. /* If we get a fault while copying data, then (presumably) our
  521. * source page isn't available. Return the error and we'll
  522. * retry in the slow path.
  523. */
  524. if (ret)
  525. goto fail;
  526. remain -= page_length;
  527. user_data += page_length;
  528. offset += page_length;
  529. }
  530. fail:
  531. i915_gem_object_unpin(obj);
  532. mutex_unlock(&dev->struct_mutex);
  533. return ret;
  534. }
  535. /**
  536. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  537. * the memory and maps it using kmap_atomic for copying.
  538. *
  539. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  540. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  541. */
  542. static int
  543. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  544. struct drm_i915_gem_pwrite *args,
  545. struct drm_file *file_priv)
  546. {
  547. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  548. drm_i915_private_t *dev_priv = dev->dev_private;
  549. ssize_t remain;
  550. loff_t gtt_page_base, offset;
  551. loff_t first_data_page, last_data_page, num_pages;
  552. loff_t pinned_pages, i;
  553. struct page **user_pages;
  554. struct mm_struct *mm = current->mm;
  555. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  556. int ret;
  557. uint64_t data_ptr = args->data_ptr;
  558. remain = args->size;
  559. /* Pin the user pages containing the data. We can't fault while
  560. * holding the struct mutex, and all of the pwrite implementations
  561. * want to hold it while dereferencing the user data.
  562. */
  563. first_data_page = data_ptr / PAGE_SIZE;
  564. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  565. num_pages = last_data_page - first_data_page + 1;
  566. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  567. if (user_pages == NULL)
  568. return -ENOMEM;
  569. down_read(&mm->mmap_sem);
  570. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  571. num_pages, 0, 0, user_pages, NULL);
  572. up_read(&mm->mmap_sem);
  573. if (pinned_pages < num_pages) {
  574. ret = -EFAULT;
  575. goto out_unpin_pages;
  576. }
  577. mutex_lock(&dev->struct_mutex);
  578. ret = i915_gem_object_pin(obj, 0);
  579. if (ret)
  580. goto out_unlock;
  581. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  582. if (ret)
  583. goto out_unpin_object;
  584. obj_priv = to_intel_bo(obj);
  585. offset = obj_priv->gtt_offset + args->offset;
  586. while (remain > 0) {
  587. /* Operation in this page
  588. *
  589. * gtt_page_base = page offset within aperture
  590. * gtt_page_offset = offset within page in aperture
  591. * data_page_index = page number in get_user_pages return
  592. * data_page_offset = offset with data_page_index page.
  593. * page_length = bytes to copy for this page
  594. */
  595. gtt_page_base = offset & PAGE_MASK;
  596. gtt_page_offset = offset & ~PAGE_MASK;
  597. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  598. data_page_offset = data_ptr & ~PAGE_MASK;
  599. page_length = remain;
  600. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  601. page_length = PAGE_SIZE - gtt_page_offset;
  602. if ((data_page_offset + page_length) > PAGE_SIZE)
  603. page_length = PAGE_SIZE - data_page_offset;
  604. slow_kernel_write(dev_priv->mm.gtt_mapping,
  605. gtt_page_base, gtt_page_offset,
  606. user_pages[data_page_index],
  607. data_page_offset,
  608. page_length);
  609. remain -= page_length;
  610. offset += page_length;
  611. data_ptr += page_length;
  612. }
  613. out_unpin_object:
  614. i915_gem_object_unpin(obj);
  615. out_unlock:
  616. mutex_unlock(&dev->struct_mutex);
  617. out_unpin_pages:
  618. for (i = 0; i < pinned_pages; i++)
  619. page_cache_release(user_pages[i]);
  620. drm_free_large(user_pages);
  621. return ret;
  622. }
  623. /**
  624. * This is the fast shmem pwrite path, which attempts to directly
  625. * copy_from_user into the kmapped pages backing the object.
  626. */
  627. static int
  628. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  629. struct drm_i915_gem_pwrite *args,
  630. struct drm_file *file_priv)
  631. {
  632. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  633. ssize_t remain;
  634. loff_t offset, page_base;
  635. char __user *user_data;
  636. int page_offset, page_length;
  637. int ret;
  638. user_data = (char __user *) (uintptr_t) args->data_ptr;
  639. remain = args->size;
  640. mutex_lock(&dev->struct_mutex);
  641. ret = i915_gem_object_get_pages(obj, 0);
  642. if (ret != 0)
  643. goto fail_unlock;
  644. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  645. if (ret != 0)
  646. goto fail_put_pages;
  647. obj_priv = to_intel_bo(obj);
  648. offset = args->offset;
  649. obj_priv->dirty = 1;
  650. while (remain > 0) {
  651. /* Operation in this page
  652. *
  653. * page_base = page offset within aperture
  654. * page_offset = offset within page
  655. * page_length = bytes to copy for this page
  656. */
  657. page_base = (offset & ~(PAGE_SIZE-1));
  658. page_offset = offset & (PAGE_SIZE-1);
  659. page_length = remain;
  660. if ((page_offset + remain) > PAGE_SIZE)
  661. page_length = PAGE_SIZE - page_offset;
  662. ret = fast_shmem_write(obj_priv->pages,
  663. page_base, page_offset,
  664. user_data, page_length);
  665. if (ret)
  666. goto fail_put_pages;
  667. remain -= page_length;
  668. user_data += page_length;
  669. offset += page_length;
  670. }
  671. fail_put_pages:
  672. i915_gem_object_put_pages(obj);
  673. fail_unlock:
  674. mutex_unlock(&dev->struct_mutex);
  675. return ret;
  676. }
  677. /**
  678. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  679. * the memory and maps it using kmap_atomic for copying.
  680. *
  681. * This avoids taking mmap_sem for faulting on the user's address while the
  682. * struct_mutex is held.
  683. */
  684. static int
  685. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  686. struct drm_i915_gem_pwrite *args,
  687. struct drm_file *file_priv)
  688. {
  689. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  690. struct mm_struct *mm = current->mm;
  691. struct page **user_pages;
  692. ssize_t remain;
  693. loff_t offset, pinned_pages, i;
  694. loff_t first_data_page, last_data_page, num_pages;
  695. int shmem_page_index, shmem_page_offset;
  696. int data_page_index, data_page_offset;
  697. int page_length;
  698. int ret;
  699. uint64_t data_ptr = args->data_ptr;
  700. int do_bit17_swizzling;
  701. remain = args->size;
  702. /* Pin the user pages containing the data. We can't fault while
  703. * holding the struct mutex, and all of the pwrite implementations
  704. * want to hold it while dereferencing the user data.
  705. */
  706. first_data_page = data_ptr / PAGE_SIZE;
  707. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  708. num_pages = last_data_page - first_data_page + 1;
  709. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  710. if (user_pages == NULL)
  711. return -ENOMEM;
  712. down_read(&mm->mmap_sem);
  713. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  714. num_pages, 0, 0, user_pages, NULL);
  715. up_read(&mm->mmap_sem);
  716. if (pinned_pages < num_pages) {
  717. ret = -EFAULT;
  718. goto fail_put_user_pages;
  719. }
  720. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  721. mutex_lock(&dev->struct_mutex);
  722. ret = i915_gem_object_get_pages_or_evict(obj);
  723. if (ret)
  724. goto fail_unlock;
  725. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  726. if (ret != 0)
  727. goto fail_put_pages;
  728. obj_priv = to_intel_bo(obj);
  729. offset = args->offset;
  730. obj_priv->dirty = 1;
  731. while (remain > 0) {
  732. /* Operation in this page
  733. *
  734. * shmem_page_index = page number within shmem file
  735. * shmem_page_offset = offset within page in shmem file
  736. * data_page_index = page number in get_user_pages return
  737. * data_page_offset = offset with data_page_index page.
  738. * page_length = bytes to copy for this page
  739. */
  740. shmem_page_index = offset / PAGE_SIZE;
  741. shmem_page_offset = offset & ~PAGE_MASK;
  742. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  743. data_page_offset = data_ptr & ~PAGE_MASK;
  744. page_length = remain;
  745. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  746. page_length = PAGE_SIZE - shmem_page_offset;
  747. if ((data_page_offset + page_length) > PAGE_SIZE)
  748. page_length = PAGE_SIZE - data_page_offset;
  749. if (do_bit17_swizzling) {
  750. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  751. shmem_page_offset,
  752. user_pages[data_page_index],
  753. data_page_offset,
  754. page_length,
  755. 0);
  756. } else {
  757. slow_shmem_copy(obj_priv->pages[shmem_page_index],
  758. shmem_page_offset,
  759. user_pages[data_page_index],
  760. data_page_offset,
  761. page_length);
  762. }
  763. remain -= page_length;
  764. data_ptr += page_length;
  765. offset += page_length;
  766. }
  767. fail_put_pages:
  768. i915_gem_object_put_pages(obj);
  769. fail_unlock:
  770. mutex_unlock(&dev->struct_mutex);
  771. fail_put_user_pages:
  772. for (i = 0; i < pinned_pages; i++)
  773. page_cache_release(user_pages[i]);
  774. drm_free_large(user_pages);
  775. return ret;
  776. }
  777. /**
  778. * Writes data to the object referenced by handle.
  779. *
  780. * On error, the contents of the buffer that were to be modified are undefined.
  781. */
  782. int
  783. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  784. struct drm_file *file_priv)
  785. {
  786. struct drm_i915_gem_pwrite *args = data;
  787. struct drm_gem_object *obj;
  788. struct drm_i915_gem_object *obj_priv;
  789. int ret = 0;
  790. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  791. if (obj == NULL)
  792. return -ENOENT;
  793. obj_priv = to_intel_bo(obj);
  794. /* Bounds check destination.
  795. *
  796. * XXX: This could use review for overflow issues...
  797. */
  798. if (args->offset > obj->size || args->size > obj->size ||
  799. args->offset + args->size > obj->size) {
  800. drm_gem_object_unreference_unlocked(obj);
  801. return -EINVAL;
  802. }
  803. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  804. * it would end up going through the fenced access, and we'll get
  805. * different detiling behavior between reading and writing.
  806. * pread/pwrite currently are reading and writing from the CPU
  807. * perspective, requiring manual detiling by the client.
  808. */
  809. if (obj_priv->phys_obj)
  810. ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
  811. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  812. dev->gtt_total != 0 &&
  813. obj->write_domain != I915_GEM_DOMAIN_CPU) {
  814. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
  815. if (ret == -EFAULT) {
  816. ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
  817. file_priv);
  818. }
  819. } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
  820. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
  821. } else {
  822. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
  823. if (ret == -EFAULT) {
  824. ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
  825. file_priv);
  826. }
  827. }
  828. #if WATCH_PWRITE
  829. if (ret)
  830. DRM_INFO("pwrite failed %d\n", ret);
  831. #endif
  832. drm_gem_object_unreference_unlocked(obj);
  833. return ret;
  834. }
  835. /**
  836. * Called when user space prepares to use an object with the CPU, either
  837. * through the mmap ioctl's mapping or a GTT mapping.
  838. */
  839. int
  840. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  841. struct drm_file *file_priv)
  842. {
  843. struct drm_i915_private *dev_priv = dev->dev_private;
  844. struct drm_i915_gem_set_domain *args = data;
  845. struct drm_gem_object *obj;
  846. struct drm_i915_gem_object *obj_priv;
  847. uint32_t read_domains = args->read_domains;
  848. uint32_t write_domain = args->write_domain;
  849. int ret;
  850. if (!(dev->driver->driver_features & DRIVER_GEM))
  851. return -ENODEV;
  852. /* Only handle setting domains to types used by the CPU. */
  853. if (write_domain & I915_GEM_GPU_DOMAINS)
  854. return -EINVAL;
  855. if (read_domains & I915_GEM_GPU_DOMAINS)
  856. return -EINVAL;
  857. /* Having something in the write domain implies it's in the read
  858. * domain, and only that read domain. Enforce that in the request.
  859. */
  860. if (write_domain != 0 && read_domains != write_domain)
  861. return -EINVAL;
  862. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  863. if (obj == NULL)
  864. return -ENOENT;
  865. obj_priv = to_intel_bo(obj);
  866. mutex_lock(&dev->struct_mutex);
  867. intel_mark_busy(dev, obj);
  868. #if WATCH_BUF
  869. DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
  870. obj, obj->size, read_domains, write_domain);
  871. #endif
  872. if (read_domains & I915_GEM_DOMAIN_GTT) {
  873. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  874. /* Update the LRU on the fence for the CPU access that's
  875. * about to occur.
  876. */
  877. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  878. struct drm_i915_fence_reg *reg =
  879. &dev_priv->fence_regs[obj_priv->fence_reg];
  880. list_move_tail(&reg->lru_list,
  881. &dev_priv->mm.fence_list);
  882. }
  883. /* Silently promote "you're not bound, there was nothing to do"
  884. * to success, since the client was just asking us to
  885. * make sure everything was done.
  886. */
  887. if (ret == -EINVAL)
  888. ret = 0;
  889. } else {
  890. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  891. }
  892. /* Maintain LRU order of "inactive" objects */
  893. if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
  894. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  895. drm_gem_object_unreference(obj);
  896. mutex_unlock(&dev->struct_mutex);
  897. return ret;
  898. }
  899. /**
  900. * Called when user space has done writes to this buffer
  901. */
  902. int
  903. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  904. struct drm_file *file_priv)
  905. {
  906. struct drm_i915_gem_sw_finish *args = data;
  907. struct drm_gem_object *obj;
  908. struct drm_i915_gem_object *obj_priv;
  909. int ret = 0;
  910. if (!(dev->driver->driver_features & DRIVER_GEM))
  911. return -ENODEV;
  912. mutex_lock(&dev->struct_mutex);
  913. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  914. if (obj == NULL) {
  915. mutex_unlock(&dev->struct_mutex);
  916. return -ENOENT;
  917. }
  918. #if WATCH_BUF
  919. DRM_INFO("%s: sw_finish %d (%p %zd)\n",
  920. __func__, args->handle, obj, obj->size);
  921. #endif
  922. obj_priv = to_intel_bo(obj);
  923. /* Pinned buffers may be scanout, so flush the cache */
  924. if (obj_priv->pin_count)
  925. i915_gem_object_flush_cpu_write_domain(obj);
  926. drm_gem_object_unreference(obj);
  927. mutex_unlock(&dev->struct_mutex);
  928. return ret;
  929. }
  930. /**
  931. * Maps the contents of an object, returning the address it is mapped
  932. * into.
  933. *
  934. * While the mapping holds a reference on the contents of the object, it doesn't
  935. * imply a ref on the object itself.
  936. */
  937. int
  938. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  939. struct drm_file *file_priv)
  940. {
  941. struct drm_i915_gem_mmap *args = data;
  942. struct drm_gem_object *obj;
  943. loff_t offset;
  944. unsigned long addr;
  945. if (!(dev->driver->driver_features & DRIVER_GEM))
  946. return -ENODEV;
  947. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  948. if (obj == NULL)
  949. return -ENOENT;
  950. offset = args->offset;
  951. down_write(&current->mm->mmap_sem);
  952. addr = do_mmap(obj->filp, 0, args->size,
  953. PROT_READ | PROT_WRITE, MAP_SHARED,
  954. args->offset);
  955. up_write(&current->mm->mmap_sem);
  956. drm_gem_object_unreference_unlocked(obj);
  957. if (IS_ERR((void *)addr))
  958. return addr;
  959. args->addr_ptr = (uint64_t) addr;
  960. return 0;
  961. }
  962. /**
  963. * i915_gem_fault - fault a page into the GTT
  964. * vma: VMA in question
  965. * vmf: fault info
  966. *
  967. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  968. * from userspace. The fault handler takes care of binding the object to
  969. * the GTT (if needed), allocating and programming a fence register (again,
  970. * only if needed based on whether the old reg is still valid or the object
  971. * is tiled) and inserting a new PTE into the faulting process.
  972. *
  973. * Note that the faulting process may involve evicting existing objects
  974. * from the GTT and/or fence registers to make room. So performance may
  975. * suffer if the GTT working set is large or there are few fence registers
  976. * left.
  977. */
  978. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  979. {
  980. struct drm_gem_object *obj = vma->vm_private_data;
  981. struct drm_device *dev = obj->dev;
  982. drm_i915_private_t *dev_priv = dev->dev_private;
  983. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  984. pgoff_t page_offset;
  985. unsigned long pfn;
  986. int ret = 0;
  987. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  988. /* We don't use vmf->pgoff since that has the fake offset */
  989. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  990. PAGE_SHIFT;
  991. /* Now bind it into the GTT if needed */
  992. mutex_lock(&dev->struct_mutex);
  993. if (!obj_priv->gtt_space) {
  994. ret = i915_gem_object_bind_to_gtt(obj, 0);
  995. if (ret)
  996. goto unlock;
  997. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  998. if (ret)
  999. goto unlock;
  1000. }
  1001. /* Need a new fence register? */
  1002. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  1003. ret = i915_gem_object_get_fence_reg(obj);
  1004. if (ret)
  1005. goto unlock;
  1006. }
  1007. if (i915_gem_object_is_inactive(obj_priv))
  1008. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1009. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  1010. page_offset;
  1011. /* Finally, remap it using the new GTT offset */
  1012. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1013. unlock:
  1014. mutex_unlock(&dev->struct_mutex);
  1015. switch (ret) {
  1016. case 0:
  1017. case -ERESTARTSYS:
  1018. return VM_FAULT_NOPAGE;
  1019. case -ENOMEM:
  1020. case -EAGAIN:
  1021. return VM_FAULT_OOM;
  1022. default:
  1023. return VM_FAULT_SIGBUS;
  1024. }
  1025. }
  1026. /**
  1027. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1028. * @obj: obj in question
  1029. *
  1030. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1031. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1032. * up the object based on the offset and sets up the various memory mapping
  1033. * structures.
  1034. *
  1035. * This routine allocates and attaches a fake offset for @obj.
  1036. */
  1037. static int
  1038. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1039. {
  1040. struct drm_device *dev = obj->dev;
  1041. struct drm_gem_mm *mm = dev->mm_private;
  1042. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1043. struct drm_map_list *list;
  1044. struct drm_local_map *map;
  1045. int ret = 0;
  1046. /* Set the object up for mmap'ing */
  1047. list = &obj->map_list;
  1048. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1049. if (!list->map)
  1050. return -ENOMEM;
  1051. map = list->map;
  1052. map->type = _DRM_GEM;
  1053. map->size = obj->size;
  1054. map->handle = obj;
  1055. /* Get a DRM GEM mmap offset allocated... */
  1056. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1057. obj->size / PAGE_SIZE, 0, 0);
  1058. if (!list->file_offset_node) {
  1059. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1060. ret = -ENOMEM;
  1061. goto out_free_list;
  1062. }
  1063. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1064. obj->size / PAGE_SIZE, 0);
  1065. if (!list->file_offset_node) {
  1066. ret = -ENOMEM;
  1067. goto out_free_list;
  1068. }
  1069. list->hash.key = list->file_offset_node->start;
  1070. if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
  1071. DRM_ERROR("failed to add to map hash\n");
  1072. ret = -ENOMEM;
  1073. goto out_free_mm;
  1074. }
  1075. /* By now we should be all set, any drm_mmap request on the offset
  1076. * below will get to our mmap & fault handler */
  1077. obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
  1078. return 0;
  1079. out_free_mm:
  1080. drm_mm_put_block(list->file_offset_node);
  1081. out_free_list:
  1082. kfree(list->map);
  1083. return ret;
  1084. }
  1085. /**
  1086. * i915_gem_release_mmap - remove physical page mappings
  1087. * @obj: obj in question
  1088. *
  1089. * Preserve the reservation of the mmapping with the DRM core code, but
  1090. * relinquish ownership of the pages back to the system.
  1091. *
  1092. * It is vital that we remove the page mapping if we have mapped a tiled
  1093. * object through the GTT and then lose the fence register due to
  1094. * resource pressure. Similarly if the object has been moved out of the
  1095. * aperture, than pages mapped into userspace must be revoked. Removing the
  1096. * mapping will then trigger a page fault on the next user access, allowing
  1097. * fixup by i915_gem_fault().
  1098. */
  1099. void
  1100. i915_gem_release_mmap(struct drm_gem_object *obj)
  1101. {
  1102. struct drm_device *dev = obj->dev;
  1103. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1104. if (dev->dev_mapping)
  1105. unmap_mapping_range(dev->dev_mapping,
  1106. obj_priv->mmap_offset, obj->size, 1);
  1107. }
  1108. static void
  1109. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1110. {
  1111. struct drm_device *dev = obj->dev;
  1112. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1113. struct drm_gem_mm *mm = dev->mm_private;
  1114. struct drm_map_list *list;
  1115. list = &obj->map_list;
  1116. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1117. if (list->file_offset_node) {
  1118. drm_mm_put_block(list->file_offset_node);
  1119. list->file_offset_node = NULL;
  1120. }
  1121. if (list->map) {
  1122. kfree(list->map);
  1123. list->map = NULL;
  1124. }
  1125. obj_priv->mmap_offset = 0;
  1126. }
  1127. /**
  1128. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1129. * @obj: object to check
  1130. *
  1131. * Return the required GTT alignment for an object, taking into account
  1132. * potential fence register mapping if needed.
  1133. */
  1134. static uint32_t
  1135. i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
  1136. {
  1137. struct drm_device *dev = obj->dev;
  1138. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1139. int start, i;
  1140. /*
  1141. * Minimum alignment is 4k (GTT page size), but might be greater
  1142. * if a fence register is needed for the object.
  1143. */
  1144. if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
  1145. return 4096;
  1146. /*
  1147. * Previous chips need to be aligned to the size of the smallest
  1148. * fence register that can contain the object.
  1149. */
  1150. if (IS_I9XX(dev))
  1151. start = 1024*1024;
  1152. else
  1153. start = 512*1024;
  1154. for (i = start; i < obj->size; i <<= 1)
  1155. ;
  1156. return i;
  1157. }
  1158. /**
  1159. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1160. * @dev: DRM device
  1161. * @data: GTT mapping ioctl data
  1162. * @file_priv: GEM object info
  1163. *
  1164. * Simply returns the fake offset to userspace so it can mmap it.
  1165. * The mmap call will end up in drm_gem_mmap(), which will set things
  1166. * up so we can get faults in the handler above.
  1167. *
  1168. * The fault handler will take care of binding the object into the GTT
  1169. * (since it may have been evicted to make room for something), allocating
  1170. * a fence register, and mapping the appropriate aperture address into
  1171. * userspace.
  1172. */
  1173. int
  1174. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1175. struct drm_file *file_priv)
  1176. {
  1177. struct drm_i915_gem_mmap_gtt *args = data;
  1178. struct drm_gem_object *obj;
  1179. struct drm_i915_gem_object *obj_priv;
  1180. int ret;
  1181. if (!(dev->driver->driver_features & DRIVER_GEM))
  1182. return -ENODEV;
  1183. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1184. if (obj == NULL)
  1185. return -ENOENT;
  1186. mutex_lock(&dev->struct_mutex);
  1187. obj_priv = to_intel_bo(obj);
  1188. if (obj_priv->madv != I915_MADV_WILLNEED) {
  1189. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1190. drm_gem_object_unreference(obj);
  1191. mutex_unlock(&dev->struct_mutex);
  1192. return -EINVAL;
  1193. }
  1194. if (!obj_priv->mmap_offset) {
  1195. ret = i915_gem_create_mmap_offset(obj);
  1196. if (ret) {
  1197. drm_gem_object_unreference(obj);
  1198. mutex_unlock(&dev->struct_mutex);
  1199. return ret;
  1200. }
  1201. }
  1202. args->offset = obj_priv->mmap_offset;
  1203. /*
  1204. * Pull it into the GTT so that we have a page list (makes the
  1205. * initial fault faster and any subsequent flushing possible).
  1206. */
  1207. if (!obj_priv->agp_mem) {
  1208. ret = i915_gem_object_bind_to_gtt(obj, 0);
  1209. if (ret) {
  1210. drm_gem_object_unreference(obj);
  1211. mutex_unlock(&dev->struct_mutex);
  1212. return ret;
  1213. }
  1214. }
  1215. drm_gem_object_unreference(obj);
  1216. mutex_unlock(&dev->struct_mutex);
  1217. return 0;
  1218. }
  1219. void
  1220. i915_gem_object_put_pages(struct drm_gem_object *obj)
  1221. {
  1222. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1223. int page_count = obj->size / PAGE_SIZE;
  1224. int i;
  1225. BUG_ON(obj_priv->pages_refcount == 0);
  1226. BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
  1227. if (--obj_priv->pages_refcount != 0)
  1228. return;
  1229. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1230. i915_gem_object_save_bit_17_swizzle(obj);
  1231. if (obj_priv->madv == I915_MADV_DONTNEED)
  1232. obj_priv->dirty = 0;
  1233. for (i = 0; i < page_count; i++) {
  1234. if (obj_priv->dirty)
  1235. set_page_dirty(obj_priv->pages[i]);
  1236. if (obj_priv->madv == I915_MADV_WILLNEED)
  1237. mark_page_accessed(obj_priv->pages[i]);
  1238. page_cache_release(obj_priv->pages[i]);
  1239. }
  1240. obj_priv->dirty = 0;
  1241. drm_free_large(obj_priv->pages);
  1242. obj_priv->pages = NULL;
  1243. }
  1244. static uint32_t
  1245. i915_gem_next_request_seqno(struct drm_device *dev)
  1246. {
  1247. drm_i915_private_t *dev_priv = dev->dev_private;
  1248. return dev_priv->next_seqno;
  1249. }
  1250. static void
  1251. i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno,
  1252. struct intel_ring_buffer *ring)
  1253. {
  1254. struct drm_device *dev = obj->dev;
  1255. drm_i915_private_t *dev_priv = dev->dev_private;
  1256. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1257. BUG_ON(ring == NULL);
  1258. obj_priv->ring = ring;
  1259. /* Add a reference if we're newly entering the active list. */
  1260. if (!obj_priv->active) {
  1261. drm_gem_object_reference(obj);
  1262. obj_priv->active = 1;
  1263. }
  1264. /* Take the seqno of the next request if none is given */
  1265. if (seqno == 0)
  1266. seqno = i915_gem_next_request_seqno(dev);
  1267. /* Move from whatever list we were on to the tail of execution. */
  1268. spin_lock(&dev_priv->mm.active_list_lock);
  1269. list_move_tail(&obj_priv->list, &ring->active_list);
  1270. spin_unlock(&dev_priv->mm.active_list_lock);
  1271. obj_priv->last_rendering_seqno = seqno;
  1272. }
  1273. static void
  1274. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1275. {
  1276. struct drm_device *dev = obj->dev;
  1277. drm_i915_private_t *dev_priv = dev->dev_private;
  1278. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1279. BUG_ON(!obj_priv->active);
  1280. list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
  1281. obj_priv->last_rendering_seqno = 0;
  1282. }
  1283. /* Immediately discard the backing storage */
  1284. static void
  1285. i915_gem_object_truncate(struct drm_gem_object *obj)
  1286. {
  1287. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1288. struct inode *inode;
  1289. /* Our goal here is to return as much of the memory as
  1290. * is possible back to the system as we are called from OOM.
  1291. * To do this we must instruct the shmfs to drop all of its
  1292. * backing pages, *now*. Here we mirror the actions taken
  1293. * when by shmem_delete_inode() to release the backing store.
  1294. */
  1295. inode = obj->filp->f_path.dentry->d_inode;
  1296. truncate_inode_pages(inode->i_mapping, 0);
  1297. if (inode->i_op->truncate_range)
  1298. inode->i_op->truncate_range(inode, 0, (loff_t)-1);
  1299. obj_priv->madv = __I915_MADV_PURGED;
  1300. }
  1301. static inline int
  1302. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
  1303. {
  1304. return obj_priv->madv == I915_MADV_DONTNEED;
  1305. }
  1306. static void
  1307. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1308. {
  1309. struct drm_device *dev = obj->dev;
  1310. drm_i915_private_t *dev_priv = dev->dev_private;
  1311. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1312. i915_verify_inactive(dev, __FILE__, __LINE__);
  1313. if (obj_priv->pin_count != 0)
  1314. list_del_init(&obj_priv->list);
  1315. else
  1316. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1317. BUG_ON(!list_empty(&obj_priv->gpu_write_list));
  1318. obj_priv->last_rendering_seqno = 0;
  1319. obj_priv->ring = NULL;
  1320. if (obj_priv->active) {
  1321. obj_priv->active = 0;
  1322. drm_gem_object_unreference(obj);
  1323. }
  1324. i915_verify_inactive(dev, __FILE__, __LINE__);
  1325. }
  1326. static void
  1327. i915_gem_process_flushing_list(struct drm_device *dev,
  1328. uint32_t flush_domains, uint32_t seqno,
  1329. struct intel_ring_buffer *ring)
  1330. {
  1331. drm_i915_private_t *dev_priv = dev->dev_private;
  1332. struct drm_i915_gem_object *obj_priv, *next;
  1333. list_for_each_entry_safe(obj_priv, next,
  1334. &dev_priv->mm.gpu_write_list,
  1335. gpu_write_list) {
  1336. struct drm_gem_object *obj = &obj_priv->base;
  1337. if ((obj->write_domain & flush_domains) ==
  1338. obj->write_domain &&
  1339. obj_priv->ring->ring_flag == ring->ring_flag) {
  1340. uint32_t old_write_domain = obj->write_domain;
  1341. obj->write_domain = 0;
  1342. list_del_init(&obj_priv->gpu_write_list);
  1343. i915_gem_object_move_to_active(obj, seqno, ring);
  1344. /* update the fence lru list */
  1345. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1346. struct drm_i915_fence_reg *reg =
  1347. &dev_priv->fence_regs[obj_priv->fence_reg];
  1348. list_move_tail(&reg->lru_list,
  1349. &dev_priv->mm.fence_list);
  1350. }
  1351. trace_i915_gem_object_change_domain(obj,
  1352. obj->read_domains,
  1353. old_write_domain);
  1354. }
  1355. }
  1356. }
  1357. uint32_t
  1358. i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
  1359. uint32_t flush_domains, struct intel_ring_buffer *ring)
  1360. {
  1361. drm_i915_private_t *dev_priv = dev->dev_private;
  1362. struct drm_i915_file_private *i915_file_priv = NULL;
  1363. struct drm_i915_gem_request *request;
  1364. uint32_t seqno;
  1365. int was_empty;
  1366. if (file_priv != NULL)
  1367. i915_file_priv = file_priv->driver_priv;
  1368. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1369. if (request == NULL)
  1370. return 0;
  1371. seqno = ring->add_request(dev, ring, file_priv, flush_domains);
  1372. request->seqno = seqno;
  1373. request->ring = ring;
  1374. request->emitted_jiffies = jiffies;
  1375. was_empty = list_empty(&ring->request_list);
  1376. list_add_tail(&request->list, &ring->request_list);
  1377. if (i915_file_priv) {
  1378. list_add_tail(&request->client_list,
  1379. &i915_file_priv->mm.request_list);
  1380. } else {
  1381. INIT_LIST_HEAD(&request->client_list);
  1382. }
  1383. /* Associate any objects on the flushing list matching the write
  1384. * domain we're flushing with our flush.
  1385. */
  1386. if (flush_domains != 0)
  1387. i915_gem_process_flushing_list(dev, flush_domains, seqno, ring);
  1388. if (!dev_priv->mm.suspended) {
  1389. mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
  1390. if (was_empty)
  1391. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1392. }
  1393. return seqno;
  1394. }
  1395. /**
  1396. * Command execution barrier
  1397. *
  1398. * Ensures that all commands in the ring are finished
  1399. * before signalling the CPU
  1400. */
  1401. static uint32_t
  1402. i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
  1403. {
  1404. uint32_t flush_domains = 0;
  1405. /* The sampler always gets flushed on i965 (sigh) */
  1406. if (IS_I965G(dev))
  1407. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1408. ring->flush(dev, ring,
  1409. I915_GEM_DOMAIN_COMMAND, flush_domains);
  1410. return flush_domains;
  1411. }
  1412. /**
  1413. * Moves buffers associated only with the given active seqno from the active
  1414. * to inactive list, potentially freeing them.
  1415. */
  1416. static void
  1417. i915_gem_retire_request(struct drm_device *dev,
  1418. struct drm_i915_gem_request *request)
  1419. {
  1420. drm_i915_private_t *dev_priv = dev->dev_private;
  1421. trace_i915_gem_request_retire(dev, request->seqno);
  1422. /* Move any buffers on the active list that are no longer referenced
  1423. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1424. */
  1425. spin_lock(&dev_priv->mm.active_list_lock);
  1426. while (!list_empty(&request->ring->active_list)) {
  1427. struct drm_gem_object *obj;
  1428. struct drm_i915_gem_object *obj_priv;
  1429. obj_priv = list_first_entry(&request->ring->active_list,
  1430. struct drm_i915_gem_object,
  1431. list);
  1432. obj = &obj_priv->base;
  1433. /* If the seqno being retired doesn't match the oldest in the
  1434. * list, then the oldest in the list must still be newer than
  1435. * this seqno.
  1436. */
  1437. if (obj_priv->last_rendering_seqno != request->seqno)
  1438. goto out;
  1439. #if WATCH_LRU
  1440. DRM_INFO("%s: retire %d moves to inactive list %p\n",
  1441. __func__, request->seqno, obj);
  1442. #endif
  1443. if (obj->write_domain != 0)
  1444. i915_gem_object_move_to_flushing(obj);
  1445. else {
  1446. /* Take a reference on the object so it won't be
  1447. * freed while the spinlock is held. The list
  1448. * protection for this spinlock is safe when breaking
  1449. * the lock like this since the next thing we do
  1450. * is just get the head of the list again.
  1451. */
  1452. drm_gem_object_reference(obj);
  1453. i915_gem_object_move_to_inactive(obj);
  1454. spin_unlock(&dev_priv->mm.active_list_lock);
  1455. drm_gem_object_unreference(obj);
  1456. spin_lock(&dev_priv->mm.active_list_lock);
  1457. }
  1458. }
  1459. out:
  1460. spin_unlock(&dev_priv->mm.active_list_lock);
  1461. }
  1462. /**
  1463. * Returns true if seq1 is later than seq2.
  1464. */
  1465. bool
  1466. i915_seqno_passed(uint32_t seq1, uint32_t seq2)
  1467. {
  1468. return (int32_t)(seq1 - seq2) >= 0;
  1469. }
  1470. uint32_t
  1471. i915_get_gem_seqno(struct drm_device *dev,
  1472. struct intel_ring_buffer *ring)
  1473. {
  1474. return ring->get_gem_seqno(dev, ring);
  1475. }
  1476. /**
  1477. * This function clears the request list as sequence numbers are passed.
  1478. */
  1479. static void
  1480. i915_gem_retire_requests_ring(struct drm_device *dev,
  1481. struct intel_ring_buffer *ring)
  1482. {
  1483. drm_i915_private_t *dev_priv = dev->dev_private;
  1484. uint32_t seqno;
  1485. if (!ring->status_page.page_addr
  1486. || list_empty(&ring->request_list))
  1487. return;
  1488. seqno = i915_get_gem_seqno(dev, ring);
  1489. while (!list_empty(&ring->request_list)) {
  1490. struct drm_i915_gem_request *request;
  1491. uint32_t retiring_seqno;
  1492. request = list_first_entry(&ring->request_list,
  1493. struct drm_i915_gem_request,
  1494. list);
  1495. retiring_seqno = request->seqno;
  1496. if (i915_seqno_passed(seqno, retiring_seqno) ||
  1497. atomic_read(&dev_priv->mm.wedged)) {
  1498. i915_gem_retire_request(dev, request);
  1499. list_del(&request->list);
  1500. list_del(&request->client_list);
  1501. kfree(request);
  1502. } else
  1503. break;
  1504. }
  1505. if (unlikely (dev_priv->trace_irq_seqno &&
  1506. i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
  1507. ring->user_irq_put(dev, ring);
  1508. dev_priv->trace_irq_seqno = 0;
  1509. }
  1510. }
  1511. void
  1512. i915_gem_retire_requests(struct drm_device *dev)
  1513. {
  1514. drm_i915_private_t *dev_priv = dev->dev_private;
  1515. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1516. struct drm_i915_gem_object *obj_priv, *tmp;
  1517. /* We must be careful that during unbind() we do not
  1518. * accidentally infinitely recurse into retire requests.
  1519. * Currently:
  1520. * retire -> free -> unbind -> wait -> retire_ring
  1521. */
  1522. list_for_each_entry_safe(obj_priv, tmp,
  1523. &dev_priv->mm.deferred_free_list,
  1524. list)
  1525. i915_gem_free_object_tail(&obj_priv->base);
  1526. }
  1527. i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
  1528. if (HAS_BSD(dev))
  1529. i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
  1530. }
  1531. static void
  1532. i915_gem_retire_work_handler(struct work_struct *work)
  1533. {
  1534. drm_i915_private_t *dev_priv;
  1535. struct drm_device *dev;
  1536. dev_priv = container_of(work, drm_i915_private_t,
  1537. mm.retire_work.work);
  1538. dev = dev_priv->dev;
  1539. mutex_lock(&dev->struct_mutex);
  1540. i915_gem_retire_requests(dev);
  1541. if (!dev_priv->mm.suspended &&
  1542. (!list_empty(&dev_priv->render_ring.request_list) ||
  1543. (HAS_BSD(dev) &&
  1544. !list_empty(&dev_priv->bsd_ring.request_list))))
  1545. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1546. mutex_unlock(&dev->struct_mutex);
  1547. }
  1548. int
  1549. i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
  1550. int interruptible, struct intel_ring_buffer *ring)
  1551. {
  1552. drm_i915_private_t *dev_priv = dev->dev_private;
  1553. u32 ier;
  1554. int ret = 0;
  1555. BUG_ON(seqno == 0);
  1556. if (seqno == dev_priv->next_seqno) {
  1557. seqno = i915_add_request(dev, NULL, 0, ring);
  1558. if (seqno == 0)
  1559. return -ENOMEM;
  1560. }
  1561. if (atomic_read(&dev_priv->mm.wedged))
  1562. return -EIO;
  1563. if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
  1564. if (HAS_PCH_SPLIT(dev))
  1565. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1566. else
  1567. ier = I915_READ(IER);
  1568. if (!ier) {
  1569. DRM_ERROR("something (likely vbetool) disabled "
  1570. "interrupts, re-enabling\n");
  1571. i915_driver_irq_preinstall(dev);
  1572. i915_driver_irq_postinstall(dev);
  1573. }
  1574. trace_i915_gem_request_wait_begin(dev, seqno);
  1575. ring->waiting_gem_seqno = seqno;
  1576. ring->user_irq_get(dev, ring);
  1577. if (interruptible)
  1578. ret = wait_event_interruptible(ring->irq_queue,
  1579. i915_seqno_passed(
  1580. ring->get_gem_seqno(dev, ring), seqno)
  1581. || atomic_read(&dev_priv->mm.wedged));
  1582. else
  1583. wait_event(ring->irq_queue,
  1584. i915_seqno_passed(
  1585. ring->get_gem_seqno(dev, ring), seqno)
  1586. || atomic_read(&dev_priv->mm.wedged));
  1587. ring->user_irq_put(dev, ring);
  1588. ring->waiting_gem_seqno = 0;
  1589. trace_i915_gem_request_wait_end(dev, seqno);
  1590. }
  1591. if (atomic_read(&dev_priv->mm.wedged))
  1592. ret = -EIO;
  1593. if (ret && ret != -ERESTARTSYS)
  1594. DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
  1595. __func__, ret, seqno, ring->get_gem_seqno(dev, ring));
  1596. /* Directly dispatch request retiring. While we have the work queue
  1597. * to handle this, the waiter on a request often wants an associated
  1598. * buffer to have made it to the inactive list, and we would need
  1599. * a separate wait queue to handle that.
  1600. */
  1601. if (ret == 0)
  1602. i915_gem_retire_requests_ring(dev, ring);
  1603. return ret;
  1604. }
  1605. /**
  1606. * Waits for a sequence number to be signaled, and cleans up the
  1607. * request and object lists appropriately for that event.
  1608. */
  1609. static int
  1610. i915_wait_request(struct drm_device *dev, uint32_t seqno,
  1611. struct intel_ring_buffer *ring)
  1612. {
  1613. return i915_do_wait_request(dev, seqno, 1, ring);
  1614. }
  1615. static void
  1616. i915_gem_flush(struct drm_device *dev,
  1617. uint32_t invalidate_domains,
  1618. uint32_t flush_domains)
  1619. {
  1620. drm_i915_private_t *dev_priv = dev->dev_private;
  1621. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1622. drm_agp_chipset_flush(dev);
  1623. dev_priv->render_ring.flush(dev, &dev_priv->render_ring,
  1624. invalidate_domains,
  1625. flush_domains);
  1626. if (HAS_BSD(dev))
  1627. dev_priv->bsd_ring.flush(dev, &dev_priv->bsd_ring,
  1628. invalidate_domains,
  1629. flush_domains);
  1630. }
  1631. /**
  1632. * Ensures that all rendering to the object has completed and the object is
  1633. * safe to unbind from the GTT or access from the CPU.
  1634. */
  1635. static int
  1636. i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  1637. bool interruptible)
  1638. {
  1639. struct drm_device *dev = obj->dev;
  1640. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1641. int ret;
  1642. /* This function only exists to support waiting for existing rendering,
  1643. * not for emitting required flushes.
  1644. */
  1645. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1646. /* If there is rendering queued on the buffer being evicted, wait for
  1647. * it.
  1648. */
  1649. if (obj_priv->active) {
  1650. #if WATCH_BUF
  1651. DRM_INFO("%s: object %p wait for seqno %08x\n",
  1652. __func__, obj, obj_priv->last_rendering_seqno);
  1653. #endif
  1654. ret = i915_do_wait_request(dev,
  1655. obj_priv->last_rendering_seqno,
  1656. interruptible,
  1657. obj_priv->ring);
  1658. if (ret != 0)
  1659. return ret;
  1660. }
  1661. return 0;
  1662. }
  1663. /**
  1664. * Unbinds an object from the GTT aperture.
  1665. */
  1666. int
  1667. i915_gem_object_unbind(struct drm_gem_object *obj)
  1668. {
  1669. struct drm_device *dev = obj->dev;
  1670. drm_i915_private_t *dev_priv = dev->dev_private;
  1671. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1672. int ret = 0;
  1673. #if WATCH_BUF
  1674. DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
  1675. DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
  1676. #endif
  1677. if (obj_priv->gtt_space == NULL)
  1678. return 0;
  1679. if (obj_priv->pin_count != 0) {
  1680. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1681. return -EINVAL;
  1682. }
  1683. /* blow away mappings if mapped through GTT */
  1684. i915_gem_release_mmap(obj);
  1685. /* Move the object to the CPU domain to ensure that
  1686. * any possible CPU writes while it's not in the GTT
  1687. * are flushed when we go to remap it. This will
  1688. * also ensure that all pending GPU writes are finished
  1689. * before we unbind.
  1690. */
  1691. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1692. if (ret == -ERESTARTSYS)
  1693. return ret;
  1694. /* Continue on if we fail due to EIO, the GPU is hung so we
  1695. * should be safe and we need to cleanup or else we might
  1696. * cause memory corruption through use-after-free.
  1697. */
  1698. /* release the fence reg _after_ flushing */
  1699. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1700. i915_gem_clear_fence_reg(obj);
  1701. if (obj_priv->agp_mem != NULL) {
  1702. drm_unbind_agp(obj_priv->agp_mem);
  1703. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1704. obj_priv->agp_mem = NULL;
  1705. }
  1706. i915_gem_object_put_pages(obj);
  1707. BUG_ON(obj_priv->pages_refcount);
  1708. if (obj_priv->gtt_space) {
  1709. atomic_dec(&dev->gtt_count);
  1710. atomic_sub(obj->size, &dev->gtt_memory);
  1711. drm_mm_put_block(obj_priv->gtt_space);
  1712. obj_priv->gtt_space = NULL;
  1713. }
  1714. /* Remove ourselves from the LRU list if present. */
  1715. spin_lock(&dev_priv->mm.active_list_lock);
  1716. if (!list_empty(&obj_priv->list))
  1717. list_del_init(&obj_priv->list);
  1718. spin_unlock(&dev_priv->mm.active_list_lock);
  1719. if (i915_gem_object_is_purgeable(obj_priv))
  1720. i915_gem_object_truncate(obj);
  1721. trace_i915_gem_object_unbind(obj);
  1722. return ret;
  1723. }
  1724. int
  1725. i915_gpu_idle(struct drm_device *dev)
  1726. {
  1727. drm_i915_private_t *dev_priv = dev->dev_private;
  1728. bool lists_empty;
  1729. uint32_t seqno1, seqno2;
  1730. int ret;
  1731. spin_lock(&dev_priv->mm.active_list_lock);
  1732. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1733. list_empty(&dev_priv->render_ring.active_list) &&
  1734. (!HAS_BSD(dev) ||
  1735. list_empty(&dev_priv->bsd_ring.active_list)));
  1736. spin_unlock(&dev_priv->mm.active_list_lock);
  1737. if (lists_empty)
  1738. return 0;
  1739. /* Flush everything onto the inactive list. */
  1740. i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1741. seqno1 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
  1742. &dev_priv->render_ring);
  1743. if (seqno1 == 0)
  1744. return -ENOMEM;
  1745. ret = i915_wait_request(dev, seqno1, &dev_priv->render_ring);
  1746. if (HAS_BSD(dev)) {
  1747. seqno2 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
  1748. &dev_priv->bsd_ring);
  1749. if (seqno2 == 0)
  1750. return -ENOMEM;
  1751. ret = i915_wait_request(dev, seqno2, &dev_priv->bsd_ring);
  1752. if (ret)
  1753. return ret;
  1754. }
  1755. return ret;
  1756. }
  1757. int
  1758. i915_gem_object_get_pages(struct drm_gem_object *obj,
  1759. gfp_t gfpmask)
  1760. {
  1761. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1762. int page_count, i;
  1763. struct address_space *mapping;
  1764. struct inode *inode;
  1765. struct page *page;
  1766. BUG_ON(obj_priv->pages_refcount
  1767. == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
  1768. if (obj_priv->pages_refcount++ != 0)
  1769. return 0;
  1770. /* Get the list of pages out of our struct file. They'll be pinned
  1771. * at this point until we release them.
  1772. */
  1773. page_count = obj->size / PAGE_SIZE;
  1774. BUG_ON(obj_priv->pages != NULL);
  1775. obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
  1776. if (obj_priv->pages == NULL) {
  1777. obj_priv->pages_refcount--;
  1778. return -ENOMEM;
  1779. }
  1780. inode = obj->filp->f_path.dentry->d_inode;
  1781. mapping = inode->i_mapping;
  1782. for (i = 0; i < page_count; i++) {
  1783. page = read_cache_page_gfp(mapping, i,
  1784. GFP_HIGHUSER |
  1785. __GFP_COLD |
  1786. __GFP_RECLAIMABLE |
  1787. gfpmask);
  1788. if (IS_ERR(page))
  1789. goto err_pages;
  1790. obj_priv->pages[i] = page;
  1791. }
  1792. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1793. i915_gem_object_do_bit_17_swizzle(obj);
  1794. return 0;
  1795. err_pages:
  1796. while (i--)
  1797. page_cache_release(obj_priv->pages[i]);
  1798. drm_free_large(obj_priv->pages);
  1799. obj_priv->pages = NULL;
  1800. obj_priv->pages_refcount--;
  1801. return PTR_ERR(page);
  1802. }
  1803. static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
  1804. {
  1805. struct drm_gem_object *obj = reg->obj;
  1806. struct drm_device *dev = obj->dev;
  1807. drm_i915_private_t *dev_priv = dev->dev_private;
  1808. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1809. int regnum = obj_priv->fence_reg;
  1810. uint64_t val;
  1811. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1812. 0xfffff000) << 32;
  1813. val |= obj_priv->gtt_offset & 0xfffff000;
  1814. val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
  1815. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1816. if (obj_priv->tiling_mode == I915_TILING_Y)
  1817. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1818. val |= I965_FENCE_REG_VALID;
  1819. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
  1820. }
  1821. static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
  1822. {
  1823. struct drm_gem_object *obj = reg->obj;
  1824. struct drm_device *dev = obj->dev;
  1825. drm_i915_private_t *dev_priv = dev->dev_private;
  1826. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1827. int regnum = obj_priv->fence_reg;
  1828. uint64_t val;
  1829. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1830. 0xfffff000) << 32;
  1831. val |= obj_priv->gtt_offset & 0xfffff000;
  1832. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1833. if (obj_priv->tiling_mode == I915_TILING_Y)
  1834. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1835. val |= I965_FENCE_REG_VALID;
  1836. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1837. }
  1838. static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
  1839. {
  1840. struct drm_gem_object *obj = reg->obj;
  1841. struct drm_device *dev = obj->dev;
  1842. drm_i915_private_t *dev_priv = dev->dev_private;
  1843. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1844. int regnum = obj_priv->fence_reg;
  1845. int tile_width;
  1846. uint32_t fence_reg, val;
  1847. uint32_t pitch_val;
  1848. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  1849. (obj_priv->gtt_offset & (obj->size - 1))) {
  1850. WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
  1851. __func__, obj_priv->gtt_offset, obj->size);
  1852. return;
  1853. }
  1854. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1855. HAS_128_BYTE_Y_TILING(dev))
  1856. tile_width = 128;
  1857. else
  1858. tile_width = 512;
  1859. /* Note: pitch better be a power of two tile widths */
  1860. pitch_val = obj_priv->stride / tile_width;
  1861. pitch_val = ffs(pitch_val) - 1;
  1862. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1863. HAS_128_BYTE_Y_TILING(dev))
  1864. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1865. else
  1866. WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
  1867. val = obj_priv->gtt_offset;
  1868. if (obj_priv->tiling_mode == I915_TILING_Y)
  1869. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1870. val |= I915_FENCE_SIZE_BITS(obj->size);
  1871. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1872. val |= I830_FENCE_REG_VALID;
  1873. if (regnum < 8)
  1874. fence_reg = FENCE_REG_830_0 + (regnum * 4);
  1875. else
  1876. fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
  1877. I915_WRITE(fence_reg, val);
  1878. }
  1879. static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
  1880. {
  1881. struct drm_gem_object *obj = reg->obj;
  1882. struct drm_device *dev = obj->dev;
  1883. drm_i915_private_t *dev_priv = dev->dev_private;
  1884. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1885. int regnum = obj_priv->fence_reg;
  1886. uint32_t val;
  1887. uint32_t pitch_val;
  1888. uint32_t fence_size_bits;
  1889. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  1890. (obj_priv->gtt_offset & (obj->size - 1))) {
  1891. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  1892. __func__, obj_priv->gtt_offset);
  1893. return;
  1894. }
  1895. pitch_val = obj_priv->stride / 128;
  1896. pitch_val = ffs(pitch_val) - 1;
  1897. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1898. val = obj_priv->gtt_offset;
  1899. if (obj_priv->tiling_mode == I915_TILING_Y)
  1900. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1901. fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
  1902. WARN_ON(fence_size_bits & ~0x00000f00);
  1903. val |= fence_size_bits;
  1904. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1905. val |= I830_FENCE_REG_VALID;
  1906. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  1907. }
  1908. static int i915_find_fence_reg(struct drm_device *dev)
  1909. {
  1910. struct drm_i915_fence_reg *reg = NULL;
  1911. struct drm_i915_gem_object *obj_priv = NULL;
  1912. struct drm_i915_private *dev_priv = dev->dev_private;
  1913. struct drm_gem_object *obj = NULL;
  1914. int i, avail, ret;
  1915. /* First try to find a free reg */
  1916. avail = 0;
  1917. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  1918. reg = &dev_priv->fence_regs[i];
  1919. if (!reg->obj)
  1920. return i;
  1921. obj_priv = to_intel_bo(reg->obj);
  1922. if (!obj_priv->pin_count)
  1923. avail++;
  1924. }
  1925. if (avail == 0)
  1926. return -ENOSPC;
  1927. /* None available, try to steal one or wait for a user to finish */
  1928. i = I915_FENCE_REG_NONE;
  1929. list_for_each_entry(reg, &dev_priv->mm.fence_list,
  1930. lru_list) {
  1931. obj = reg->obj;
  1932. obj_priv = to_intel_bo(obj);
  1933. if (obj_priv->pin_count)
  1934. continue;
  1935. /* found one! */
  1936. i = obj_priv->fence_reg;
  1937. break;
  1938. }
  1939. BUG_ON(i == I915_FENCE_REG_NONE);
  1940. /* We only have a reference on obj from the active list. put_fence_reg
  1941. * might drop that one, causing a use-after-free in it. So hold a
  1942. * private reference to obj like the other callers of put_fence_reg
  1943. * (set_tiling ioctl) do. */
  1944. drm_gem_object_reference(obj);
  1945. ret = i915_gem_object_put_fence_reg(obj);
  1946. drm_gem_object_unreference(obj);
  1947. if (ret != 0)
  1948. return ret;
  1949. return i;
  1950. }
  1951. /**
  1952. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  1953. * @obj: object to map through a fence reg
  1954. *
  1955. * When mapping objects through the GTT, userspace wants to be able to write
  1956. * to them without having to worry about swizzling if the object is tiled.
  1957. *
  1958. * This function walks the fence regs looking for a free one for @obj,
  1959. * stealing one if it can't find any.
  1960. *
  1961. * It then sets up the reg based on the object's properties: address, pitch
  1962. * and tiling format.
  1963. */
  1964. int
  1965. i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
  1966. {
  1967. struct drm_device *dev = obj->dev;
  1968. struct drm_i915_private *dev_priv = dev->dev_private;
  1969. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1970. struct drm_i915_fence_reg *reg = NULL;
  1971. int ret;
  1972. /* Just update our place in the LRU if our fence is getting used. */
  1973. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1974. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  1975. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1976. return 0;
  1977. }
  1978. switch (obj_priv->tiling_mode) {
  1979. case I915_TILING_NONE:
  1980. WARN(1, "allocating a fence for non-tiled object?\n");
  1981. break;
  1982. case I915_TILING_X:
  1983. if (!obj_priv->stride)
  1984. return -EINVAL;
  1985. WARN((obj_priv->stride & (512 - 1)),
  1986. "object 0x%08x is X tiled but has non-512B pitch\n",
  1987. obj_priv->gtt_offset);
  1988. break;
  1989. case I915_TILING_Y:
  1990. if (!obj_priv->stride)
  1991. return -EINVAL;
  1992. WARN((obj_priv->stride & (128 - 1)),
  1993. "object 0x%08x is Y tiled but has non-128B pitch\n",
  1994. obj_priv->gtt_offset);
  1995. break;
  1996. }
  1997. ret = i915_find_fence_reg(dev);
  1998. if (ret < 0)
  1999. return ret;
  2000. obj_priv->fence_reg = ret;
  2001. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2002. list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2003. reg->obj = obj;
  2004. if (IS_GEN6(dev))
  2005. sandybridge_write_fence_reg(reg);
  2006. else if (IS_I965G(dev))
  2007. i965_write_fence_reg(reg);
  2008. else if (IS_I9XX(dev))
  2009. i915_write_fence_reg(reg);
  2010. else
  2011. i830_write_fence_reg(reg);
  2012. trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
  2013. obj_priv->tiling_mode);
  2014. return 0;
  2015. }
  2016. /**
  2017. * i915_gem_clear_fence_reg - clear out fence register info
  2018. * @obj: object to clear
  2019. *
  2020. * Zeroes out the fence register itself and clears out the associated
  2021. * data structures in dev_priv and obj_priv.
  2022. */
  2023. static void
  2024. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  2025. {
  2026. struct drm_device *dev = obj->dev;
  2027. drm_i915_private_t *dev_priv = dev->dev_private;
  2028. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2029. struct drm_i915_fence_reg *reg =
  2030. &dev_priv->fence_regs[obj_priv->fence_reg];
  2031. if (IS_GEN6(dev)) {
  2032. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
  2033. (obj_priv->fence_reg * 8), 0);
  2034. } else if (IS_I965G(dev)) {
  2035. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  2036. } else {
  2037. uint32_t fence_reg;
  2038. if (obj_priv->fence_reg < 8)
  2039. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  2040. else
  2041. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
  2042. 8) * 4;
  2043. I915_WRITE(fence_reg, 0);
  2044. }
  2045. reg->obj = NULL;
  2046. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  2047. list_del_init(&reg->lru_list);
  2048. }
  2049. /**
  2050. * i915_gem_object_put_fence_reg - waits on outstanding fenced access
  2051. * to the buffer to finish, and then resets the fence register.
  2052. * @obj: tiled object holding a fence register.
  2053. *
  2054. * Zeroes out the fence register itself and clears out the associated
  2055. * data structures in dev_priv and obj_priv.
  2056. */
  2057. int
  2058. i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
  2059. {
  2060. struct drm_device *dev = obj->dev;
  2061. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2062. if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
  2063. return 0;
  2064. /* If we've changed tiling, GTT-mappings of the object
  2065. * need to re-fault to ensure that the correct fence register
  2066. * setup is in place.
  2067. */
  2068. i915_gem_release_mmap(obj);
  2069. /* On the i915, GPU access to tiled buffers is via a fence,
  2070. * therefore we must wait for any outstanding access to complete
  2071. * before clearing the fence.
  2072. */
  2073. if (!IS_I965G(dev)) {
  2074. int ret;
  2075. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2076. if (ret != 0)
  2077. return ret;
  2078. ret = i915_gem_object_wait_rendering(obj, true);
  2079. if (ret != 0)
  2080. return ret;
  2081. }
  2082. i915_gem_object_flush_gtt_write_domain(obj);
  2083. i915_gem_clear_fence_reg (obj);
  2084. return 0;
  2085. }
  2086. /**
  2087. * Finds free space in the GTT aperture and binds the object there.
  2088. */
  2089. static int
  2090. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
  2091. {
  2092. struct drm_device *dev = obj->dev;
  2093. drm_i915_private_t *dev_priv = dev->dev_private;
  2094. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2095. struct drm_mm_node *free_space;
  2096. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2097. int ret;
  2098. if (obj_priv->madv != I915_MADV_WILLNEED) {
  2099. DRM_ERROR("Attempting to bind a purgeable object\n");
  2100. return -EINVAL;
  2101. }
  2102. if (alignment == 0)
  2103. alignment = i915_gem_get_gtt_alignment(obj);
  2104. if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
  2105. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2106. return -EINVAL;
  2107. }
  2108. /* If the object is bigger than the entire aperture, reject it early
  2109. * before evicting everything in a vain attempt to find space.
  2110. */
  2111. if (obj->size > dev->gtt_total) {
  2112. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2113. return -E2BIG;
  2114. }
  2115. search_free:
  2116. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2117. obj->size, alignment, 0);
  2118. if (free_space != NULL) {
  2119. obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
  2120. alignment);
  2121. if (obj_priv->gtt_space != NULL)
  2122. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  2123. }
  2124. if (obj_priv->gtt_space == NULL) {
  2125. /* If the gtt is empty and we're still having trouble
  2126. * fitting our object in, we're out of memory.
  2127. */
  2128. #if WATCH_LRU
  2129. DRM_INFO("%s: GTT full, evicting something\n", __func__);
  2130. #endif
  2131. ret = i915_gem_evict_something(dev, obj->size, alignment);
  2132. if (ret)
  2133. return ret;
  2134. goto search_free;
  2135. }
  2136. #if WATCH_BUF
  2137. DRM_INFO("Binding object of size %zd at 0x%08x\n",
  2138. obj->size, obj_priv->gtt_offset);
  2139. #endif
  2140. ret = i915_gem_object_get_pages(obj, gfpmask);
  2141. if (ret) {
  2142. drm_mm_put_block(obj_priv->gtt_space);
  2143. obj_priv->gtt_space = NULL;
  2144. if (ret == -ENOMEM) {
  2145. /* first try to clear up some space from the GTT */
  2146. ret = i915_gem_evict_something(dev, obj->size,
  2147. alignment);
  2148. if (ret) {
  2149. /* now try to shrink everyone else */
  2150. if (gfpmask) {
  2151. gfpmask = 0;
  2152. goto search_free;
  2153. }
  2154. return ret;
  2155. }
  2156. goto search_free;
  2157. }
  2158. return ret;
  2159. }
  2160. /* Create an AGP memory structure pointing at our pages, and bind it
  2161. * into the GTT.
  2162. */
  2163. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  2164. obj_priv->pages,
  2165. obj->size >> PAGE_SHIFT,
  2166. obj_priv->gtt_offset,
  2167. obj_priv->agp_type);
  2168. if (obj_priv->agp_mem == NULL) {
  2169. i915_gem_object_put_pages(obj);
  2170. drm_mm_put_block(obj_priv->gtt_space);
  2171. obj_priv->gtt_space = NULL;
  2172. ret = i915_gem_evict_something(dev, obj->size, alignment);
  2173. if (ret)
  2174. return ret;
  2175. goto search_free;
  2176. }
  2177. atomic_inc(&dev->gtt_count);
  2178. atomic_add(obj->size, &dev->gtt_memory);
  2179. /* keep track of bounds object by adding it to the inactive list */
  2180. list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  2181. /* Assert that the object is not currently in any GPU domain. As it
  2182. * wasn't in the GTT, there shouldn't be any way it could have been in
  2183. * a GPU cache
  2184. */
  2185. BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
  2186. BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
  2187. trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
  2188. return 0;
  2189. }
  2190. void
  2191. i915_gem_clflush_object(struct drm_gem_object *obj)
  2192. {
  2193. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2194. /* If we don't have a page list set up, then we're not pinned
  2195. * to GPU, and we can ignore the cache flush because it'll happen
  2196. * again at bind time.
  2197. */
  2198. if (obj_priv->pages == NULL)
  2199. return;
  2200. trace_i915_gem_object_clflush(obj);
  2201. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2202. }
  2203. /** Flushes any GPU write domain for the object if it's dirty. */
  2204. static int
  2205. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
  2206. {
  2207. struct drm_device *dev = obj->dev;
  2208. uint32_t old_write_domain;
  2209. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2210. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2211. return 0;
  2212. /* Queue the GPU write cache flushing we need. */
  2213. old_write_domain = obj->write_domain;
  2214. i915_gem_flush(dev, 0, obj->write_domain);
  2215. if (i915_add_request(dev, NULL, obj->write_domain, obj_priv->ring) == 0)
  2216. return -ENOMEM;
  2217. trace_i915_gem_object_change_domain(obj,
  2218. obj->read_domains,
  2219. old_write_domain);
  2220. return 0;
  2221. }
  2222. /** Flushes the GTT write domain for the object if it's dirty. */
  2223. static void
  2224. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2225. {
  2226. uint32_t old_write_domain;
  2227. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2228. return;
  2229. /* No actual flushing is required for the GTT write domain. Writes
  2230. * to it immediately go to main memory as far as we know, so there's
  2231. * no chipset flush. It also doesn't land in render cache.
  2232. */
  2233. old_write_domain = obj->write_domain;
  2234. obj->write_domain = 0;
  2235. trace_i915_gem_object_change_domain(obj,
  2236. obj->read_domains,
  2237. old_write_domain);
  2238. }
  2239. /** Flushes the CPU write domain for the object if it's dirty. */
  2240. static void
  2241. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2242. {
  2243. struct drm_device *dev = obj->dev;
  2244. uint32_t old_write_domain;
  2245. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2246. return;
  2247. i915_gem_clflush_object(obj);
  2248. drm_agp_chipset_flush(dev);
  2249. old_write_domain = obj->write_domain;
  2250. obj->write_domain = 0;
  2251. trace_i915_gem_object_change_domain(obj,
  2252. obj->read_domains,
  2253. old_write_domain);
  2254. }
  2255. int
  2256. i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
  2257. {
  2258. int ret = 0;
  2259. switch (obj->write_domain) {
  2260. case I915_GEM_DOMAIN_GTT:
  2261. i915_gem_object_flush_gtt_write_domain(obj);
  2262. break;
  2263. case I915_GEM_DOMAIN_CPU:
  2264. i915_gem_object_flush_cpu_write_domain(obj);
  2265. break;
  2266. default:
  2267. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2268. break;
  2269. }
  2270. return ret;
  2271. }
  2272. /**
  2273. * Moves a single object to the GTT read, and possibly write domain.
  2274. *
  2275. * This function returns when the move is complete, including waiting on
  2276. * flushes to occur.
  2277. */
  2278. int
  2279. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2280. {
  2281. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2282. uint32_t old_write_domain, old_read_domains;
  2283. int ret;
  2284. /* Not valid to be called on unbound objects. */
  2285. if (obj_priv->gtt_space == NULL)
  2286. return -EINVAL;
  2287. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2288. if (ret != 0)
  2289. return ret;
  2290. /* Wait on any GPU rendering and flushing to occur. */
  2291. ret = i915_gem_object_wait_rendering(obj, true);
  2292. if (ret != 0)
  2293. return ret;
  2294. old_write_domain = obj->write_domain;
  2295. old_read_domains = obj->read_domains;
  2296. /* If we're writing through the GTT domain, then CPU and GPU caches
  2297. * will need to be invalidated at next use.
  2298. */
  2299. if (write)
  2300. obj->read_domains &= I915_GEM_DOMAIN_GTT;
  2301. i915_gem_object_flush_cpu_write_domain(obj);
  2302. /* It should now be out of any other write domains, and we can update
  2303. * the domain values for our changes.
  2304. */
  2305. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2306. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2307. if (write) {
  2308. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2309. obj_priv->dirty = 1;
  2310. }
  2311. trace_i915_gem_object_change_domain(obj,
  2312. old_read_domains,
  2313. old_write_domain);
  2314. return 0;
  2315. }
  2316. /*
  2317. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2318. * wait, as in modesetting process we're not supposed to be interrupted.
  2319. */
  2320. int
  2321. i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
  2322. {
  2323. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2324. uint32_t old_write_domain, old_read_domains;
  2325. int ret;
  2326. /* Not valid to be called on unbound objects. */
  2327. if (obj_priv->gtt_space == NULL)
  2328. return -EINVAL;
  2329. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2330. if (ret)
  2331. return ret;
  2332. /* Wait on any GPU rendering and flushing to occur. */
  2333. ret = i915_gem_object_wait_rendering(obj, false);
  2334. if (ret != 0)
  2335. return ret;
  2336. i915_gem_object_flush_cpu_write_domain(obj);
  2337. old_write_domain = obj->write_domain;
  2338. old_read_domains = obj->read_domains;
  2339. /* It should now be out of any other write domains, and we can update
  2340. * the domain values for our changes.
  2341. */
  2342. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2343. obj->read_domains = I915_GEM_DOMAIN_GTT;
  2344. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2345. obj_priv->dirty = 1;
  2346. trace_i915_gem_object_change_domain(obj,
  2347. old_read_domains,
  2348. old_write_domain);
  2349. return 0;
  2350. }
  2351. /**
  2352. * Moves a single object to the CPU read, and possibly write domain.
  2353. *
  2354. * This function returns when the move is complete, including waiting on
  2355. * flushes to occur.
  2356. */
  2357. static int
  2358. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2359. {
  2360. uint32_t old_write_domain, old_read_domains;
  2361. int ret;
  2362. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2363. if (ret)
  2364. return ret;
  2365. /* Wait on any GPU rendering and flushing to occur. */
  2366. ret = i915_gem_object_wait_rendering(obj, true);
  2367. if (ret != 0)
  2368. return ret;
  2369. i915_gem_object_flush_gtt_write_domain(obj);
  2370. /* If we have a partially-valid cache of the object in the CPU,
  2371. * finish invalidating it and free the per-page flags.
  2372. */
  2373. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2374. old_write_domain = obj->write_domain;
  2375. old_read_domains = obj->read_domains;
  2376. /* Flush the CPU cache if it's still invalid. */
  2377. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2378. i915_gem_clflush_object(obj);
  2379. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2380. }
  2381. /* It should now be out of any other write domains, and we can update
  2382. * the domain values for our changes.
  2383. */
  2384. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2385. /* If we're writing through the CPU, then the GPU read domains will
  2386. * need to be invalidated at next use.
  2387. */
  2388. if (write) {
  2389. obj->read_domains &= I915_GEM_DOMAIN_CPU;
  2390. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2391. }
  2392. trace_i915_gem_object_change_domain(obj,
  2393. old_read_domains,
  2394. old_write_domain);
  2395. return 0;
  2396. }
  2397. /*
  2398. * Set the next domain for the specified object. This
  2399. * may not actually perform the necessary flushing/invaliding though,
  2400. * as that may want to be batched with other set_domain operations
  2401. *
  2402. * This is (we hope) the only really tricky part of gem. The goal
  2403. * is fairly simple -- track which caches hold bits of the object
  2404. * and make sure they remain coherent. A few concrete examples may
  2405. * help to explain how it works. For shorthand, we use the notation
  2406. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2407. * a pair of read and write domain masks.
  2408. *
  2409. * Case 1: the batch buffer
  2410. *
  2411. * 1. Allocated
  2412. * 2. Written by CPU
  2413. * 3. Mapped to GTT
  2414. * 4. Read by GPU
  2415. * 5. Unmapped from GTT
  2416. * 6. Freed
  2417. *
  2418. * Let's take these a step at a time
  2419. *
  2420. * 1. Allocated
  2421. * Pages allocated from the kernel may still have
  2422. * cache contents, so we set them to (CPU, CPU) always.
  2423. * 2. Written by CPU (using pwrite)
  2424. * The pwrite function calls set_domain (CPU, CPU) and
  2425. * this function does nothing (as nothing changes)
  2426. * 3. Mapped by GTT
  2427. * This function asserts that the object is not
  2428. * currently in any GPU-based read or write domains
  2429. * 4. Read by GPU
  2430. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2431. * As write_domain is zero, this function adds in the
  2432. * current read domains (CPU+COMMAND, 0).
  2433. * flush_domains is set to CPU.
  2434. * invalidate_domains is set to COMMAND
  2435. * clflush is run to get data out of the CPU caches
  2436. * then i915_dev_set_domain calls i915_gem_flush to
  2437. * emit an MI_FLUSH and drm_agp_chipset_flush
  2438. * 5. Unmapped from GTT
  2439. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2440. * flush_domains and invalidate_domains end up both zero
  2441. * so no flushing/invalidating happens
  2442. * 6. Freed
  2443. * yay, done
  2444. *
  2445. * Case 2: The shared render buffer
  2446. *
  2447. * 1. Allocated
  2448. * 2. Mapped to GTT
  2449. * 3. Read/written by GPU
  2450. * 4. set_domain to (CPU,CPU)
  2451. * 5. Read/written by CPU
  2452. * 6. Read/written by GPU
  2453. *
  2454. * 1. Allocated
  2455. * Same as last example, (CPU, CPU)
  2456. * 2. Mapped to GTT
  2457. * Nothing changes (assertions find that it is not in the GPU)
  2458. * 3. Read/written by GPU
  2459. * execbuffer calls set_domain (RENDER, RENDER)
  2460. * flush_domains gets CPU
  2461. * invalidate_domains gets GPU
  2462. * clflush (obj)
  2463. * MI_FLUSH and drm_agp_chipset_flush
  2464. * 4. set_domain (CPU, CPU)
  2465. * flush_domains gets GPU
  2466. * invalidate_domains gets CPU
  2467. * wait_rendering (obj) to make sure all drawing is complete.
  2468. * This will include an MI_FLUSH to get the data from GPU
  2469. * to memory
  2470. * clflush (obj) to invalidate the CPU cache
  2471. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2472. * 5. Read/written by CPU
  2473. * cache lines are loaded and dirtied
  2474. * 6. Read written by GPU
  2475. * Same as last GPU access
  2476. *
  2477. * Case 3: The constant buffer
  2478. *
  2479. * 1. Allocated
  2480. * 2. Written by CPU
  2481. * 3. Read by GPU
  2482. * 4. Updated (written) by CPU again
  2483. * 5. Read by GPU
  2484. *
  2485. * 1. Allocated
  2486. * (CPU, CPU)
  2487. * 2. Written by CPU
  2488. * (CPU, CPU)
  2489. * 3. Read by GPU
  2490. * (CPU+RENDER, 0)
  2491. * flush_domains = CPU
  2492. * invalidate_domains = RENDER
  2493. * clflush (obj)
  2494. * MI_FLUSH
  2495. * drm_agp_chipset_flush
  2496. * 4. Updated (written) by CPU again
  2497. * (CPU, CPU)
  2498. * flush_domains = 0 (no previous write domain)
  2499. * invalidate_domains = 0 (no new read domains)
  2500. * 5. Read by GPU
  2501. * (CPU+RENDER, 0)
  2502. * flush_domains = CPU
  2503. * invalidate_domains = RENDER
  2504. * clflush (obj)
  2505. * MI_FLUSH
  2506. * drm_agp_chipset_flush
  2507. */
  2508. static void
  2509. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
  2510. {
  2511. struct drm_device *dev = obj->dev;
  2512. drm_i915_private_t *dev_priv = dev->dev_private;
  2513. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2514. uint32_t invalidate_domains = 0;
  2515. uint32_t flush_domains = 0;
  2516. uint32_t old_read_domains;
  2517. BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
  2518. BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
  2519. intel_mark_busy(dev, obj);
  2520. #if WATCH_BUF
  2521. DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
  2522. __func__, obj,
  2523. obj->read_domains, obj->pending_read_domains,
  2524. obj->write_domain, obj->pending_write_domain);
  2525. #endif
  2526. /*
  2527. * If the object isn't moving to a new write domain,
  2528. * let the object stay in multiple read domains
  2529. */
  2530. if (obj->pending_write_domain == 0)
  2531. obj->pending_read_domains |= obj->read_domains;
  2532. else
  2533. obj_priv->dirty = 1;
  2534. /*
  2535. * Flush the current write domain if
  2536. * the new read domains don't match. Invalidate
  2537. * any read domains which differ from the old
  2538. * write domain
  2539. */
  2540. if (obj->write_domain &&
  2541. obj->write_domain != obj->pending_read_domains) {
  2542. flush_domains |= obj->write_domain;
  2543. invalidate_domains |=
  2544. obj->pending_read_domains & ~obj->write_domain;
  2545. }
  2546. /*
  2547. * Invalidate any read caches which may have
  2548. * stale data. That is, any new read domains.
  2549. */
  2550. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2551. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
  2552. #if WATCH_BUF
  2553. DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
  2554. __func__, flush_domains, invalidate_domains);
  2555. #endif
  2556. i915_gem_clflush_object(obj);
  2557. }
  2558. old_read_domains = obj->read_domains;
  2559. /* The actual obj->write_domain will be updated with
  2560. * pending_write_domain after we emit the accumulated flush for all
  2561. * of our domain changes in execbuffers (which clears objects'
  2562. * write_domains). So if we have a current write domain that we
  2563. * aren't changing, set pending_write_domain to that.
  2564. */
  2565. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2566. obj->pending_write_domain = obj->write_domain;
  2567. obj->read_domains = obj->pending_read_domains;
  2568. if (flush_domains & I915_GEM_GPU_DOMAINS) {
  2569. if (obj_priv->ring == &dev_priv->render_ring)
  2570. dev_priv->flush_rings |= FLUSH_RENDER_RING;
  2571. else if (obj_priv->ring == &dev_priv->bsd_ring)
  2572. dev_priv->flush_rings |= FLUSH_BSD_RING;
  2573. }
  2574. dev->invalidate_domains |= invalidate_domains;
  2575. dev->flush_domains |= flush_domains;
  2576. #if WATCH_BUF
  2577. DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
  2578. __func__,
  2579. obj->read_domains, obj->write_domain,
  2580. dev->invalidate_domains, dev->flush_domains);
  2581. #endif
  2582. trace_i915_gem_object_change_domain(obj,
  2583. old_read_domains,
  2584. obj->write_domain);
  2585. }
  2586. /**
  2587. * Moves the object from a partially CPU read to a full one.
  2588. *
  2589. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2590. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2591. */
  2592. static void
  2593. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2594. {
  2595. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2596. if (!obj_priv->page_cpu_valid)
  2597. return;
  2598. /* If we're partially in the CPU read domain, finish moving it in.
  2599. */
  2600. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2601. int i;
  2602. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2603. if (obj_priv->page_cpu_valid[i])
  2604. continue;
  2605. drm_clflush_pages(obj_priv->pages + i, 1);
  2606. }
  2607. }
  2608. /* Free the page_cpu_valid mappings which are now stale, whether
  2609. * or not we've got I915_GEM_DOMAIN_CPU.
  2610. */
  2611. kfree(obj_priv->page_cpu_valid);
  2612. obj_priv->page_cpu_valid = NULL;
  2613. }
  2614. /**
  2615. * Set the CPU read domain on a range of the object.
  2616. *
  2617. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2618. * not entirely valid. The page_cpu_valid member of the object flags which
  2619. * pages have been flushed, and will be respected by
  2620. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2621. * of the whole object.
  2622. *
  2623. * This function returns when the move is complete, including waiting on
  2624. * flushes to occur.
  2625. */
  2626. static int
  2627. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2628. uint64_t offset, uint64_t size)
  2629. {
  2630. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2631. uint32_t old_read_domains;
  2632. int i, ret;
  2633. if (offset == 0 && size == obj->size)
  2634. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2635. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2636. if (ret)
  2637. return ret;
  2638. /* Wait on any GPU rendering and flushing to occur. */
  2639. ret = i915_gem_object_wait_rendering(obj, true);
  2640. if (ret != 0)
  2641. return ret;
  2642. i915_gem_object_flush_gtt_write_domain(obj);
  2643. /* If we're already fully in the CPU read domain, we're done. */
  2644. if (obj_priv->page_cpu_valid == NULL &&
  2645. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2646. return 0;
  2647. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2648. * newly adding I915_GEM_DOMAIN_CPU
  2649. */
  2650. if (obj_priv->page_cpu_valid == NULL) {
  2651. obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
  2652. GFP_KERNEL);
  2653. if (obj_priv->page_cpu_valid == NULL)
  2654. return -ENOMEM;
  2655. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2656. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2657. /* Flush the cache on any pages that are still invalid from the CPU's
  2658. * perspective.
  2659. */
  2660. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2661. i++) {
  2662. if (obj_priv->page_cpu_valid[i])
  2663. continue;
  2664. drm_clflush_pages(obj_priv->pages + i, 1);
  2665. obj_priv->page_cpu_valid[i] = 1;
  2666. }
  2667. /* It should now be out of any other write domains, and we can update
  2668. * the domain values for our changes.
  2669. */
  2670. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2671. old_read_domains = obj->read_domains;
  2672. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2673. trace_i915_gem_object_change_domain(obj,
  2674. old_read_domains,
  2675. obj->write_domain);
  2676. return 0;
  2677. }
  2678. /**
  2679. * Pin an object to the GTT and evaluate the relocations landing in it.
  2680. */
  2681. static int
  2682. i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
  2683. struct drm_file *file_priv,
  2684. struct drm_i915_gem_exec_object2 *entry,
  2685. struct drm_i915_gem_relocation_entry *relocs)
  2686. {
  2687. struct drm_device *dev = obj->dev;
  2688. drm_i915_private_t *dev_priv = dev->dev_private;
  2689. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2690. int i, ret;
  2691. void __iomem *reloc_page;
  2692. bool need_fence;
  2693. need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
  2694. obj_priv->tiling_mode != I915_TILING_NONE;
  2695. /* Check fence reg constraints and rebind if necessary */
  2696. if (need_fence &&
  2697. !i915_gem_object_fence_offset_ok(obj,
  2698. obj_priv->tiling_mode)) {
  2699. ret = i915_gem_object_unbind(obj);
  2700. if (ret)
  2701. return ret;
  2702. }
  2703. /* Choose the GTT offset for our buffer and put it there. */
  2704. ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
  2705. if (ret)
  2706. return ret;
  2707. /*
  2708. * Pre-965 chips need a fence register set up in order to
  2709. * properly handle blits to/from tiled surfaces.
  2710. */
  2711. if (need_fence) {
  2712. ret = i915_gem_object_get_fence_reg(obj);
  2713. if (ret != 0) {
  2714. i915_gem_object_unpin(obj);
  2715. return ret;
  2716. }
  2717. }
  2718. entry->offset = obj_priv->gtt_offset;
  2719. /* Apply the relocations, using the GTT aperture to avoid cache
  2720. * flushing requirements.
  2721. */
  2722. for (i = 0; i < entry->relocation_count; i++) {
  2723. struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
  2724. struct drm_gem_object *target_obj;
  2725. struct drm_i915_gem_object *target_obj_priv;
  2726. uint32_t reloc_val, reloc_offset;
  2727. uint32_t __iomem *reloc_entry;
  2728. target_obj = drm_gem_object_lookup(obj->dev, file_priv,
  2729. reloc->target_handle);
  2730. if (target_obj == NULL) {
  2731. i915_gem_object_unpin(obj);
  2732. return -ENOENT;
  2733. }
  2734. target_obj_priv = to_intel_bo(target_obj);
  2735. #if WATCH_RELOC
  2736. DRM_INFO("%s: obj %p offset %08x target %d "
  2737. "read %08x write %08x gtt %08x "
  2738. "presumed %08x delta %08x\n",
  2739. __func__,
  2740. obj,
  2741. (int) reloc->offset,
  2742. (int) reloc->target_handle,
  2743. (int) reloc->read_domains,
  2744. (int) reloc->write_domain,
  2745. (int) target_obj_priv->gtt_offset,
  2746. (int) reloc->presumed_offset,
  2747. reloc->delta);
  2748. #endif
  2749. /* The target buffer should have appeared before us in the
  2750. * exec_object list, so it should have a GTT space bound by now.
  2751. */
  2752. if (target_obj_priv->gtt_space == NULL) {
  2753. DRM_ERROR("No GTT space found for object %d\n",
  2754. reloc->target_handle);
  2755. drm_gem_object_unreference(target_obj);
  2756. i915_gem_object_unpin(obj);
  2757. return -EINVAL;
  2758. }
  2759. /* Validate that the target is in a valid r/w GPU domain */
  2760. if (reloc->write_domain & (reloc->write_domain - 1)) {
  2761. DRM_ERROR("reloc with multiple write domains: "
  2762. "obj %p target %d offset %d "
  2763. "read %08x write %08x",
  2764. obj, reloc->target_handle,
  2765. (int) reloc->offset,
  2766. reloc->read_domains,
  2767. reloc->write_domain);
  2768. return -EINVAL;
  2769. }
  2770. if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
  2771. reloc->read_domains & I915_GEM_DOMAIN_CPU) {
  2772. DRM_ERROR("reloc with read/write CPU domains: "
  2773. "obj %p target %d offset %d "
  2774. "read %08x write %08x",
  2775. obj, reloc->target_handle,
  2776. (int) reloc->offset,
  2777. reloc->read_domains,
  2778. reloc->write_domain);
  2779. drm_gem_object_unreference(target_obj);
  2780. i915_gem_object_unpin(obj);
  2781. return -EINVAL;
  2782. }
  2783. if (reloc->write_domain && target_obj->pending_write_domain &&
  2784. reloc->write_domain != target_obj->pending_write_domain) {
  2785. DRM_ERROR("Write domain conflict: "
  2786. "obj %p target %d offset %d "
  2787. "new %08x old %08x\n",
  2788. obj, reloc->target_handle,
  2789. (int) reloc->offset,
  2790. reloc->write_domain,
  2791. target_obj->pending_write_domain);
  2792. drm_gem_object_unreference(target_obj);
  2793. i915_gem_object_unpin(obj);
  2794. return -EINVAL;
  2795. }
  2796. target_obj->pending_read_domains |= reloc->read_domains;
  2797. target_obj->pending_write_domain |= reloc->write_domain;
  2798. /* If the relocation already has the right value in it, no
  2799. * more work needs to be done.
  2800. */
  2801. if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
  2802. drm_gem_object_unreference(target_obj);
  2803. continue;
  2804. }
  2805. /* Check that the relocation address is valid... */
  2806. if (reloc->offset > obj->size - 4) {
  2807. DRM_ERROR("Relocation beyond object bounds: "
  2808. "obj %p target %d offset %d size %d.\n",
  2809. obj, reloc->target_handle,
  2810. (int) reloc->offset, (int) obj->size);
  2811. drm_gem_object_unreference(target_obj);
  2812. i915_gem_object_unpin(obj);
  2813. return -EINVAL;
  2814. }
  2815. if (reloc->offset & 3) {
  2816. DRM_ERROR("Relocation not 4-byte aligned: "
  2817. "obj %p target %d offset %d.\n",
  2818. obj, reloc->target_handle,
  2819. (int) reloc->offset);
  2820. drm_gem_object_unreference(target_obj);
  2821. i915_gem_object_unpin(obj);
  2822. return -EINVAL;
  2823. }
  2824. /* and points to somewhere within the target object. */
  2825. if (reloc->delta >= target_obj->size) {
  2826. DRM_ERROR("Relocation beyond target object bounds: "
  2827. "obj %p target %d delta %d size %d.\n",
  2828. obj, reloc->target_handle,
  2829. (int) reloc->delta, (int) target_obj->size);
  2830. drm_gem_object_unreference(target_obj);
  2831. i915_gem_object_unpin(obj);
  2832. return -EINVAL;
  2833. }
  2834. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  2835. if (ret != 0) {
  2836. drm_gem_object_unreference(target_obj);
  2837. i915_gem_object_unpin(obj);
  2838. return -EINVAL;
  2839. }
  2840. /* Map the page containing the relocation we're going to
  2841. * perform.
  2842. */
  2843. reloc_offset = obj_priv->gtt_offset + reloc->offset;
  2844. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2845. (reloc_offset &
  2846. ~(PAGE_SIZE - 1)),
  2847. KM_USER0);
  2848. reloc_entry = (uint32_t __iomem *)(reloc_page +
  2849. (reloc_offset & (PAGE_SIZE - 1)));
  2850. reloc_val = target_obj_priv->gtt_offset + reloc->delta;
  2851. #if WATCH_BUF
  2852. DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
  2853. obj, (unsigned int) reloc->offset,
  2854. readl(reloc_entry), reloc_val);
  2855. #endif
  2856. writel(reloc_val, reloc_entry);
  2857. io_mapping_unmap_atomic(reloc_page, KM_USER0);
  2858. /* The updated presumed offset for this entry will be
  2859. * copied back out to the user.
  2860. */
  2861. reloc->presumed_offset = target_obj_priv->gtt_offset;
  2862. drm_gem_object_unreference(target_obj);
  2863. }
  2864. #if WATCH_BUF
  2865. if (0)
  2866. i915_gem_dump_object(obj, 128, __func__, ~0);
  2867. #endif
  2868. return 0;
  2869. }
  2870. /* Throttle our rendering by waiting until the ring has completed our requests
  2871. * emitted over 20 msec ago.
  2872. *
  2873. * Note that if we were to use the current jiffies each time around the loop,
  2874. * we wouldn't escape the function with any frames outstanding if the time to
  2875. * render a frame was over 20ms.
  2876. *
  2877. * This should get us reasonable parallelism between CPU and GPU but also
  2878. * relatively low latency when blocking on a particular request to finish.
  2879. */
  2880. static int
  2881. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
  2882. {
  2883. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  2884. int ret = 0;
  2885. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2886. mutex_lock(&dev->struct_mutex);
  2887. while (!list_empty(&i915_file_priv->mm.request_list)) {
  2888. struct drm_i915_gem_request *request;
  2889. request = list_first_entry(&i915_file_priv->mm.request_list,
  2890. struct drm_i915_gem_request,
  2891. client_list);
  2892. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2893. break;
  2894. ret = i915_wait_request(dev, request->seqno, request->ring);
  2895. if (ret != 0)
  2896. break;
  2897. }
  2898. mutex_unlock(&dev->struct_mutex);
  2899. return ret;
  2900. }
  2901. static int
  2902. i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
  2903. uint32_t buffer_count,
  2904. struct drm_i915_gem_relocation_entry **relocs)
  2905. {
  2906. uint32_t reloc_count = 0, reloc_index = 0, i;
  2907. int ret;
  2908. *relocs = NULL;
  2909. for (i = 0; i < buffer_count; i++) {
  2910. if (reloc_count + exec_list[i].relocation_count < reloc_count)
  2911. return -EINVAL;
  2912. reloc_count += exec_list[i].relocation_count;
  2913. }
  2914. *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
  2915. if (*relocs == NULL) {
  2916. DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
  2917. return -ENOMEM;
  2918. }
  2919. for (i = 0; i < buffer_count; i++) {
  2920. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2921. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2922. ret = copy_from_user(&(*relocs)[reloc_index],
  2923. user_relocs,
  2924. exec_list[i].relocation_count *
  2925. sizeof(**relocs));
  2926. if (ret != 0) {
  2927. drm_free_large(*relocs);
  2928. *relocs = NULL;
  2929. return -EFAULT;
  2930. }
  2931. reloc_index += exec_list[i].relocation_count;
  2932. }
  2933. return 0;
  2934. }
  2935. static int
  2936. i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
  2937. uint32_t buffer_count,
  2938. struct drm_i915_gem_relocation_entry *relocs)
  2939. {
  2940. uint32_t reloc_count = 0, i;
  2941. int ret = 0;
  2942. if (relocs == NULL)
  2943. return 0;
  2944. for (i = 0; i < buffer_count; i++) {
  2945. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2946. int unwritten;
  2947. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2948. unwritten = copy_to_user(user_relocs,
  2949. &relocs[reloc_count],
  2950. exec_list[i].relocation_count *
  2951. sizeof(*relocs));
  2952. if (unwritten) {
  2953. ret = -EFAULT;
  2954. goto err;
  2955. }
  2956. reloc_count += exec_list[i].relocation_count;
  2957. }
  2958. err:
  2959. drm_free_large(relocs);
  2960. return ret;
  2961. }
  2962. static int
  2963. i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
  2964. uint64_t exec_offset)
  2965. {
  2966. uint32_t exec_start, exec_len;
  2967. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  2968. exec_len = (uint32_t) exec->batch_len;
  2969. if ((exec_start | exec_len) & 0x7)
  2970. return -EINVAL;
  2971. if (!exec_start)
  2972. return -EINVAL;
  2973. return 0;
  2974. }
  2975. static int
  2976. i915_gem_wait_for_pending_flip(struct drm_device *dev,
  2977. struct drm_gem_object **object_list,
  2978. int count)
  2979. {
  2980. drm_i915_private_t *dev_priv = dev->dev_private;
  2981. struct drm_i915_gem_object *obj_priv;
  2982. DEFINE_WAIT(wait);
  2983. int i, ret = 0;
  2984. for (;;) {
  2985. prepare_to_wait(&dev_priv->pending_flip_queue,
  2986. &wait, TASK_INTERRUPTIBLE);
  2987. for (i = 0; i < count; i++) {
  2988. obj_priv = to_intel_bo(object_list[i]);
  2989. if (atomic_read(&obj_priv->pending_flip) > 0)
  2990. break;
  2991. }
  2992. if (i == count)
  2993. break;
  2994. if (!signal_pending(current)) {
  2995. mutex_unlock(&dev->struct_mutex);
  2996. schedule();
  2997. mutex_lock(&dev->struct_mutex);
  2998. continue;
  2999. }
  3000. ret = -ERESTARTSYS;
  3001. break;
  3002. }
  3003. finish_wait(&dev_priv->pending_flip_queue, &wait);
  3004. return ret;
  3005. }
  3006. int
  3007. i915_gem_do_execbuffer(struct drm_device *dev, void *data,
  3008. struct drm_file *file_priv,
  3009. struct drm_i915_gem_execbuffer2 *args,
  3010. struct drm_i915_gem_exec_object2 *exec_list)
  3011. {
  3012. drm_i915_private_t *dev_priv = dev->dev_private;
  3013. struct drm_gem_object **object_list = NULL;
  3014. struct drm_gem_object *batch_obj;
  3015. struct drm_i915_gem_object *obj_priv;
  3016. struct drm_clip_rect *cliprects = NULL;
  3017. struct drm_i915_gem_relocation_entry *relocs = NULL;
  3018. int ret = 0, ret2, i, pinned = 0;
  3019. uint64_t exec_offset;
  3020. uint32_t seqno, flush_domains, reloc_index;
  3021. int pin_tries, flips;
  3022. struct intel_ring_buffer *ring = NULL;
  3023. #if WATCH_EXEC
  3024. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3025. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3026. #endif
  3027. if (args->flags & I915_EXEC_BSD) {
  3028. if (!HAS_BSD(dev)) {
  3029. DRM_ERROR("execbuf with wrong flag\n");
  3030. return -EINVAL;
  3031. }
  3032. ring = &dev_priv->bsd_ring;
  3033. } else {
  3034. ring = &dev_priv->render_ring;
  3035. }
  3036. if (args->buffer_count < 1) {
  3037. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3038. return -EINVAL;
  3039. }
  3040. object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
  3041. if (object_list == NULL) {
  3042. DRM_ERROR("Failed to allocate object list for %d buffers\n",
  3043. args->buffer_count);
  3044. ret = -ENOMEM;
  3045. goto pre_mutex_err;
  3046. }
  3047. if (args->num_cliprects != 0) {
  3048. cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
  3049. GFP_KERNEL);
  3050. if (cliprects == NULL) {
  3051. ret = -ENOMEM;
  3052. goto pre_mutex_err;
  3053. }
  3054. ret = copy_from_user(cliprects,
  3055. (struct drm_clip_rect __user *)
  3056. (uintptr_t) args->cliprects_ptr,
  3057. sizeof(*cliprects) * args->num_cliprects);
  3058. if (ret != 0) {
  3059. DRM_ERROR("copy %d cliprects failed: %d\n",
  3060. args->num_cliprects, ret);
  3061. ret = -EFAULT;
  3062. goto pre_mutex_err;
  3063. }
  3064. }
  3065. ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
  3066. &relocs);
  3067. if (ret != 0)
  3068. goto pre_mutex_err;
  3069. mutex_lock(&dev->struct_mutex);
  3070. i915_verify_inactive(dev, __FILE__, __LINE__);
  3071. if (atomic_read(&dev_priv->mm.wedged)) {
  3072. mutex_unlock(&dev->struct_mutex);
  3073. ret = -EIO;
  3074. goto pre_mutex_err;
  3075. }
  3076. if (dev_priv->mm.suspended) {
  3077. mutex_unlock(&dev->struct_mutex);
  3078. ret = -EBUSY;
  3079. goto pre_mutex_err;
  3080. }
  3081. /* Look up object handles */
  3082. flips = 0;
  3083. for (i = 0; i < args->buffer_count; i++) {
  3084. object_list[i] = drm_gem_object_lookup(dev, file_priv,
  3085. exec_list[i].handle);
  3086. if (object_list[i] == NULL) {
  3087. DRM_ERROR("Invalid object handle %d at index %d\n",
  3088. exec_list[i].handle, i);
  3089. /* prevent error path from reading uninitialized data */
  3090. args->buffer_count = i + 1;
  3091. ret = -ENOENT;
  3092. goto err;
  3093. }
  3094. obj_priv = to_intel_bo(object_list[i]);
  3095. if (obj_priv->in_execbuffer) {
  3096. DRM_ERROR("Object %p appears more than once in object list\n",
  3097. object_list[i]);
  3098. /* prevent error path from reading uninitialized data */
  3099. args->buffer_count = i + 1;
  3100. ret = -EINVAL;
  3101. goto err;
  3102. }
  3103. obj_priv->in_execbuffer = true;
  3104. flips += atomic_read(&obj_priv->pending_flip);
  3105. }
  3106. if (flips > 0) {
  3107. ret = i915_gem_wait_for_pending_flip(dev, object_list,
  3108. args->buffer_count);
  3109. if (ret)
  3110. goto err;
  3111. }
  3112. /* Pin and relocate */
  3113. for (pin_tries = 0; ; pin_tries++) {
  3114. ret = 0;
  3115. reloc_index = 0;
  3116. for (i = 0; i < args->buffer_count; i++) {
  3117. object_list[i]->pending_read_domains = 0;
  3118. object_list[i]->pending_write_domain = 0;
  3119. ret = i915_gem_object_pin_and_relocate(object_list[i],
  3120. file_priv,
  3121. &exec_list[i],
  3122. &relocs[reloc_index]);
  3123. if (ret)
  3124. break;
  3125. pinned = i + 1;
  3126. reloc_index += exec_list[i].relocation_count;
  3127. }
  3128. /* success */
  3129. if (ret == 0)
  3130. break;
  3131. /* error other than GTT full, or we've already tried again */
  3132. if (ret != -ENOSPC || pin_tries >= 1) {
  3133. if (ret != -ERESTARTSYS) {
  3134. unsigned long long total_size = 0;
  3135. int num_fences = 0;
  3136. for (i = 0; i < args->buffer_count; i++) {
  3137. obj_priv = to_intel_bo(object_list[i]);
  3138. total_size += object_list[i]->size;
  3139. num_fences +=
  3140. exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
  3141. obj_priv->tiling_mode != I915_TILING_NONE;
  3142. }
  3143. DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
  3144. pinned+1, args->buffer_count,
  3145. total_size, num_fences,
  3146. ret);
  3147. DRM_ERROR("%d objects [%d pinned], "
  3148. "%d object bytes [%d pinned], "
  3149. "%d/%d gtt bytes\n",
  3150. atomic_read(&dev->object_count),
  3151. atomic_read(&dev->pin_count),
  3152. atomic_read(&dev->object_memory),
  3153. atomic_read(&dev->pin_memory),
  3154. atomic_read(&dev->gtt_memory),
  3155. dev->gtt_total);
  3156. }
  3157. goto err;
  3158. }
  3159. /* unpin all of our buffers */
  3160. for (i = 0; i < pinned; i++)
  3161. i915_gem_object_unpin(object_list[i]);
  3162. pinned = 0;
  3163. /* evict everyone we can from the aperture */
  3164. ret = i915_gem_evict_everything(dev);
  3165. if (ret && ret != -ENOSPC)
  3166. goto err;
  3167. }
  3168. /* Set the pending read domains for the batch buffer to COMMAND */
  3169. batch_obj = object_list[args->buffer_count-1];
  3170. if (batch_obj->pending_write_domain) {
  3171. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  3172. ret = -EINVAL;
  3173. goto err;
  3174. }
  3175. batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  3176. /* Sanity check the batch buffer, prior to moving objects */
  3177. exec_offset = exec_list[args->buffer_count - 1].offset;
  3178. ret = i915_gem_check_execbuffer (args, exec_offset);
  3179. if (ret != 0) {
  3180. DRM_ERROR("execbuf with invalid offset/length\n");
  3181. goto err;
  3182. }
  3183. i915_verify_inactive(dev, __FILE__, __LINE__);
  3184. /* Zero the global flush/invalidate flags. These
  3185. * will be modified as new domains are computed
  3186. * for each object
  3187. */
  3188. dev->invalidate_domains = 0;
  3189. dev->flush_domains = 0;
  3190. dev_priv->flush_rings = 0;
  3191. for (i = 0; i < args->buffer_count; i++) {
  3192. struct drm_gem_object *obj = object_list[i];
  3193. /* Compute new gpu domains and update invalidate/flush */
  3194. i915_gem_object_set_to_gpu_domain(obj);
  3195. }
  3196. i915_verify_inactive(dev, __FILE__, __LINE__);
  3197. if (dev->invalidate_domains | dev->flush_domains) {
  3198. #if WATCH_EXEC
  3199. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  3200. __func__,
  3201. dev->invalidate_domains,
  3202. dev->flush_domains);
  3203. #endif
  3204. i915_gem_flush(dev,
  3205. dev->invalidate_domains,
  3206. dev->flush_domains);
  3207. if (dev_priv->flush_rings & FLUSH_RENDER_RING)
  3208. (void)i915_add_request(dev, file_priv,
  3209. dev->flush_domains,
  3210. &dev_priv->render_ring);
  3211. if (dev_priv->flush_rings & FLUSH_BSD_RING)
  3212. (void)i915_add_request(dev, file_priv,
  3213. dev->flush_domains,
  3214. &dev_priv->bsd_ring);
  3215. }
  3216. for (i = 0; i < args->buffer_count; i++) {
  3217. struct drm_gem_object *obj = object_list[i];
  3218. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3219. uint32_t old_write_domain = obj->write_domain;
  3220. obj->write_domain = obj->pending_write_domain;
  3221. if (obj->write_domain)
  3222. list_move_tail(&obj_priv->gpu_write_list,
  3223. &dev_priv->mm.gpu_write_list);
  3224. else
  3225. list_del_init(&obj_priv->gpu_write_list);
  3226. trace_i915_gem_object_change_domain(obj,
  3227. obj->read_domains,
  3228. old_write_domain);
  3229. }
  3230. i915_verify_inactive(dev, __FILE__, __LINE__);
  3231. #if WATCH_COHERENCY
  3232. for (i = 0; i < args->buffer_count; i++) {
  3233. i915_gem_object_check_coherency(object_list[i],
  3234. exec_list[i].handle);
  3235. }
  3236. #endif
  3237. #if WATCH_EXEC
  3238. i915_gem_dump_object(batch_obj,
  3239. args->batch_len,
  3240. __func__,
  3241. ~0);
  3242. #endif
  3243. /* Exec the batchbuffer */
  3244. ret = ring->dispatch_gem_execbuffer(dev, ring, args,
  3245. cliprects, exec_offset);
  3246. if (ret) {
  3247. DRM_ERROR("dispatch failed %d\n", ret);
  3248. goto err;
  3249. }
  3250. /*
  3251. * Ensure that the commands in the batch buffer are
  3252. * finished before the interrupt fires
  3253. */
  3254. flush_domains = i915_retire_commands(dev, ring);
  3255. i915_verify_inactive(dev, __FILE__, __LINE__);
  3256. /*
  3257. * Get a seqno representing the execution of the current buffer,
  3258. * which we can wait on. We would like to mitigate these interrupts,
  3259. * likely by only creating seqnos occasionally (so that we have
  3260. * *some* interrupts representing completion of buffers that we can
  3261. * wait on when trying to clear up gtt space).
  3262. */
  3263. seqno = i915_add_request(dev, file_priv, flush_domains, ring);
  3264. BUG_ON(seqno == 0);
  3265. for (i = 0; i < args->buffer_count; i++) {
  3266. struct drm_gem_object *obj = object_list[i];
  3267. obj_priv = to_intel_bo(obj);
  3268. i915_gem_object_move_to_active(obj, seqno, ring);
  3269. #if WATCH_LRU
  3270. DRM_INFO("%s: move to exec list %p\n", __func__, obj);
  3271. #endif
  3272. }
  3273. #if WATCH_LRU
  3274. i915_dump_lru(dev, __func__);
  3275. #endif
  3276. i915_verify_inactive(dev, __FILE__, __LINE__);
  3277. err:
  3278. for (i = 0; i < pinned; i++)
  3279. i915_gem_object_unpin(object_list[i]);
  3280. for (i = 0; i < args->buffer_count; i++) {
  3281. if (object_list[i]) {
  3282. obj_priv = to_intel_bo(object_list[i]);
  3283. obj_priv->in_execbuffer = false;
  3284. }
  3285. drm_gem_object_unreference(object_list[i]);
  3286. }
  3287. mutex_unlock(&dev->struct_mutex);
  3288. pre_mutex_err:
  3289. /* Copy the updated relocations out regardless of current error
  3290. * state. Failure to update the relocs would mean that the next
  3291. * time userland calls execbuf, it would do so with presumed offset
  3292. * state that didn't match the actual object state.
  3293. */
  3294. ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
  3295. relocs);
  3296. if (ret2 != 0) {
  3297. DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
  3298. if (ret == 0)
  3299. ret = ret2;
  3300. }
  3301. drm_free_large(object_list);
  3302. kfree(cliprects);
  3303. return ret;
  3304. }
  3305. /*
  3306. * Legacy execbuffer just creates an exec2 list from the original exec object
  3307. * list array and passes it to the real function.
  3308. */
  3309. int
  3310. i915_gem_execbuffer(struct drm_device *dev, void *data,
  3311. struct drm_file *file_priv)
  3312. {
  3313. struct drm_i915_gem_execbuffer *args = data;
  3314. struct drm_i915_gem_execbuffer2 exec2;
  3315. struct drm_i915_gem_exec_object *exec_list = NULL;
  3316. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3317. int ret, i;
  3318. #if WATCH_EXEC
  3319. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3320. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3321. #endif
  3322. if (args->buffer_count < 1) {
  3323. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3324. return -EINVAL;
  3325. }
  3326. /* Copy in the exec list from userland */
  3327. exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
  3328. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3329. if (exec_list == NULL || exec2_list == NULL) {
  3330. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3331. args->buffer_count);
  3332. drm_free_large(exec_list);
  3333. drm_free_large(exec2_list);
  3334. return -ENOMEM;
  3335. }
  3336. ret = copy_from_user(exec_list,
  3337. (struct drm_i915_relocation_entry __user *)
  3338. (uintptr_t) args->buffers_ptr,
  3339. sizeof(*exec_list) * args->buffer_count);
  3340. if (ret != 0) {
  3341. DRM_ERROR("copy %d exec entries failed %d\n",
  3342. args->buffer_count, ret);
  3343. drm_free_large(exec_list);
  3344. drm_free_large(exec2_list);
  3345. return -EFAULT;
  3346. }
  3347. for (i = 0; i < args->buffer_count; i++) {
  3348. exec2_list[i].handle = exec_list[i].handle;
  3349. exec2_list[i].relocation_count = exec_list[i].relocation_count;
  3350. exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
  3351. exec2_list[i].alignment = exec_list[i].alignment;
  3352. exec2_list[i].offset = exec_list[i].offset;
  3353. if (!IS_I965G(dev))
  3354. exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
  3355. else
  3356. exec2_list[i].flags = 0;
  3357. }
  3358. exec2.buffers_ptr = args->buffers_ptr;
  3359. exec2.buffer_count = args->buffer_count;
  3360. exec2.batch_start_offset = args->batch_start_offset;
  3361. exec2.batch_len = args->batch_len;
  3362. exec2.DR1 = args->DR1;
  3363. exec2.DR4 = args->DR4;
  3364. exec2.num_cliprects = args->num_cliprects;
  3365. exec2.cliprects_ptr = args->cliprects_ptr;
  3366. exec2.flags = I915_EXEC_RENDER;
  3367. ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
  3368. if (!ret) {
  3369. /* Copy the new buffer offsets back to the user's exec list. */
  3370. for (i = 0; i < args->buffer_count; i++)
  3371. exec_list[i].offset = exec2_list[i].offset;
  3372. /* ... and back out to userspace */
  3373. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3374. (uintptr_t) args->buffers_ptr,
  3375. exec_list,
  3376. sizeof(*exec_list) * args->buffer_count);
  3377. if (ret) {
  3378. ret = -EFAULT;
  3379. DRM_ERROR("failed to copy %d exec entries "
  3380. "back to user (%d)\n",
  3381. args->buffer_count, ret);
  3382. }
  3383. }
  3384. drm_free_large(exec_list);
  3385. drm_free_large(exec2_list);
  3386. return ret;
  3387. }
  3388. int
  3389. i915_gem_execbuffer2(struct drm_device *dev, void *data,
  3390. struct drm_file *file_priv)
  3391. {
  3392. struct drm_i915_gem_execbuffer2 *args = data;
  3393. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3394. int ret;
  3395. #if WATCH_EXEC
  3396. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3397. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3398. #endif
  3399. if (args->buffer_count < 1) {
  3400. DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
  3401. return -EINVAL;
  3402. }
  3403. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3404. if (exec2_list == NULL) {
  3405. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3406. args->buffer_count);
  3407. return -ENOMEM;
  3408. }
  3409. ret = copy_from_user(exec2_list,
  3410. (struct drm_i915_relocation_entry __user *)
  3411. (uintptr_t) args->buffers_ptr,
  3412. sizeof(*exec2_list) * args->buffer_count);
  3413. if (ret != 0) {
  3414. DRM_ERROR("copy %d exec entries failed %d\n",
  3415. args->buffer_count, ret);
  3416. drm_free_large(exec2_list);
  3417. return -EFAULT;
  3418. }
  3419. ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
  3420. if (!ret) {
  3421. /* Copy the new buffer offsets back to the user's exec list. */
  3422. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3423. (uintptr_t) args->buffers_ptr,
  3424. exec2_list,
  3425. sizeof(*exec2_list) * args->buffer_count);
  3426. if (ret) {
  3427. ret = -EFAULT;
  3428. DRM_ERROR("failed to copy %d exec entries "
  3429. "back to user (%d)\n",
  3430. args->buffer_count, ret);
  3431. }
  3432. }
  3433. drm_free_large(exec2_list);
  3434. return ret;
  3435. }
  3436. int
  3437. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
  3438. {
  3439. struct drm_device *dev = obj->dev;
  3440. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3441. int ret;
  3442. BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  3443. i915_verify_inactive(dev, __FILE__, __LINE__);
  3444. if (obj_priv->gtt_space != NULL) {
  3445. if (alignment == 0)
  3446. alignment = i915_gem_get_gtt_alignment(obj);
  3447. if (obj_priv->gtt_offset & (alignment - 1)) {
  3448. WARN(obj_priv->pin_count,
  3449. "bo is already pinned with incorrect alignment:"
  3450. " offset=%x, req.alignment=%x\n",
  3451. obj_priv->gtt_offset, alignment);
  3452. ret = i915_gem_object_unbind(obj);
  3453. if (ret)
  3454. return ret;
  3455. }
  3456. }
  3457. if (obj_priv->gtt_space == NULL) {
  3458. ret = i915_gem_object_bind_to_gtt(obj, alignment);
  3459. if (ret)
  3460. return ret;
  3461. }
  3462. obj_priv->pin_count++;
  3463. /* If the object is not active and not pending a flush,
  3464. * remove it from the inactive list
  3465. */
  3466. if (obj_priv->pin_count == 1) {
  3467. atomic_inc(&dev->pin_count);
  3468. atomic_add(obj->size, &dev->pin_memory);
  3469. if (!obj_priv->active &&
  3470. (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  3471. list_del_init(&obj_priv->list);
  3472. }
  3473. i915_verify_inactive(dev, __FILE__, __LINE__);
  3474. return 0;
  3475. }
  3476. void
  3477. i915_gem_object_unpin(struct drm_gem_object *obj)
  3478. {
  3479. struct drm_device *dev = obj->dev;
  3480. drm_i915_private_t *dev_priv = dev->dev_private;
  3481. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3482. i915_verify_inactive(dev, __FILE__, __LINE__);
  3483. obj_priv->pin_count--;
  3484. BUG_ON(obj_priv->pin_count < 0);
  3485. BUG_ON(obj_priv->gtt_space == NULL);
  3486. /* If the object is no longer pinned, and is
  3487. * neither active nor being flushed, then stick it on
  3488. * the inactive list
  3489. */
  3490. if (obj_priv->pin_count == 0) {
  3491. if (!obj_priv->active &&
  3492. (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  3493. list_move_tail(&obj_priv->list,
  3494. &dev_priv->mm.inactive_list);
  3495. atomic_dec(&dev->pin_count);
  3496. atomic_sub(obj->size, &dev->pin_memory);
  3497. }
  3498. i915_verify_inactive(dev, __FILE__, __LINE__);
  3499. }
  3500. int
  3501. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3502. struct drm_file *file_priv)
  3503. {
  3504. struct drm_i915_gem_pin *args = data;
  3505. struct drm_gem_object *obj;
  3506. struct drm_i915_gem_object *obj_priv;
  3507. int ret;
  3508. mutex_lock(&dev->struct_mutex);
  3509. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3510. if (obj == NULL) {
  3511. DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
  3512. args->handle);
  3513. mutex_unlock(&dev->struct_mutex);
  3514. return -ENOENT;
  3515. }
  3516. obj_priv = to_intel_bo(obj);
  3517. if (obj_priv->madv != I915_MADV_WILLNEED) {
  3518. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  3519. drm_gem_object_unreference(obj);
  3520. mutex_unlock(&dev->struct_mutex);
  3521. return -EINVAL;
  3522. }
  3523. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3524. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3525. args->handle);
  3526. drm_gem_object_unreference(obj);
  3527. mutex_unlock(&dev->struct_mutex);
  3528. return -EINVAL;
  3529. }
  3530. obj_priv->user_pin_count++;
  3531. obj_priv->pin_filp = file_priv;
  3532. if (obj_priv->user_pin_count == 1) {
  3533. ret = i915_gem_object_pin(obj, args->alignment);
  3534. if (ret != 0) {
  3535. drm_gem_object_unreference(obj);
  3536. mutex_unlock(&dev->struct_mutex);
  3537. return ret;
  3538. }
  3539. }
  3540. /* XXX - flush the CPU caches for pinned objects
  3541. * as the X server doesn't manage domains yet
  3542. */
  3543. i915_gem_object_flush_cpu_write_domain(obj);
  3544. args->offset = obj_priv->gtt_offset;
  3545. drm_gem_object_unreference(obj);
  3546. mutex_unlock(&dev->struct_mutex);
  3547. return 0;
  3548. }
  3549. int
  3550. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3551. struct drm_file *file_priv)
  3552. {
  3553. struct drm_i915_gem_pin *args = data;
  3554. struct drm_gem_object *obj;
  3555. struct drm_i915_gem_object *obj_priv;
  3556. mutex_lock(&dev->struct_mutex);
  3557. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3558. if (obj == NULL) {
  3559. DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
  3560. args->handle);
  3561. mutex_unlock(&dev->struct_mutex);
  3562. return -ENOENT;
  3563. }
  3564. obj_priv = to_intel_bo(obj);
  3565. if (obj_priv->pin_filp != file_priv) {
  3566. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3567. args->handle);
  3568. drm_gem_object_unreference(obj);
  3569. mutex_unlock(&dev->struct_mutex);
  3570. return -EINVAL;
  3571. }
  3572. obj_priv->user_pin_count--;
  3573. if (obj_priv->user_pin_count == 0) {
  3574. obj_priv->pin_filp = NULL;
  3575. i915_gem_object_unpin(obj);
  3576. }
  3577. drm_gem_object_unreference(obj);
  3578. mutex_unlock(&dev->struct_mutex);
  3579. return 0;
  3580. }
  3581. int
  3582. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3583. struct drm_file *file_priv)
  3584. {
  3585. struct drm_i915_gem_busy *args = data;
  3586. struct drm_gem_object *obj;
  3587. struct drm_i915_gem_object *obj_priv;
  3588. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3589. if (obj == NULL) {
  3590. DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
  3591. args->handle);
  3592. return -ENOENT;
  3593. }
  3594. mutex_lock(&dev->struct_mutex);
  3595. /* Count all active objects as busy, even if they are currently not used
  3596. * by the gpu. Users of this interface expect objects to eventually
  3597. * become non-busy without any further actions, therefore emit any
  3598. * necessary flushes here.
  3599. */
  3600. obj_priv = to_intel_bo(obj);
  3601. args->busy = obj_priv->active;
  3602. if (args->busy) {
  3603. /* Unconditionally flush objects, even when the gpu still uses this
  3604. * object. Userspace calling this function indicates that it wants to
  3605. * use this buffer rather sooner than later, so issuing the required
  3606. * flush earlier is beneficial.
  3607. */
  3608. if (obj->write_domain) {
  3609. i915_gem_flush(dev, 0, obj->write_domain);
  3610. (void)i915_add_request(dev, file_priv, obj->write_domain, obj_priv->ring);
  3611. }
  3612. /* Update the active list for the hardware's current position.
  3613. * Otherwise this only updates on a delayed timer or when irqs
  3614. * are actually unmasked, and our working set ends up being
  3615. * larger than required.
  3616. */
  3617. i915_gem_retire_requests_ring(dev, obj_priv->ring);
  3618. args->busy = obj_priv->active;
  3619. }
  3620. drm_gem_object_unreference(obj);
  3621. mutex_unlock(&dev->struct_mutex);
  3622. return 0;
  3623. }
  3624. int
  3625. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3626. struct drm_file *file_priv)
  3627. {
  3628. return i915_gem_ring_throttle(dev, file_priv);
  3629. }
  3630. int
  3631. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3632. struct drm_file *file_priv)
  3633. {
  3634. struct drm_i915_gem_madvise *args = data;
  3635. struct drm_gem_object *obj;
  3636. struct drm_i915_gem_object *obj_priv;
  3637. switch (args->madv) {
  3638. case I915_MADV_DONTNEED:
  3639. case I915_MADV_WILLNEED:
  3640. break;
  3641. default:
  3642. return -EINVAL;
  3643. }
  3644. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3645. if (obj == NULL) {
  3646. DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
  3647. args->handle);
  3648. return -ENOENT;
  3649. }
  3650. mutex_lock(&dev->struct_mutex);
  3651. obj_priv = to_intel_bo(obj);
  3652. if (obj_priv->pin_count) {
  3653. drm_gem_object_unreference(obj);
  3654. mutex_unlock(&dev->struct_mutex);
  3655. DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
  3656. return -EINVAL;
  3657. }
  3658. if (obj_priv->madv != __I915_MADV_PURGED)
  3659. obj_priv->madv = args->madv;
  3660. /* if the object is no longer bound, discard its backing storage */
  3661. if (i915_gem_object_is_purgeable(obj_priv) &&
  3662. obj_priv->gtt_space == NULL)
  3663. i915_gem_object_truncate(obj);
  3664. args->retained = obj_priv->madv != __I915_MADV_PURGED;
  3665. drm_gem_object_unreference(obj);
  3666. mutex_unlock(&dev->struct_mutex);
  3667. return 0;
  3668. }
  3669. struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
  3670. size_t size)
  3671. {
  3672. struct drm_i915_gem_object *obj;
  3673. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  3674. if (obj == NULL)
  3675. return NULL;
  3676. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3677. kfree(obj);
  3678. return NULL;
  3679. }
  3680. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3681. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3682. obj->agp_type = AGP_USER_MEMORY;
  3683. obj->base.driver_private = NULL;
  3684. obj->fence_reg = I915_FENCE_REG_NONE;
  3685. INIT_LIST_HEAD(&obj->list);
  3686. INIT_LIST_HEAD(&obj->gpu_write_list);
  3687. obj->madv = I915_MADV_WILLNEED;
  3688. trace_i915_gem_object_create(&obj->base);
  3689. return &obj->base;
  3690. }
  3691. int i915_gem_init_object(struct drm_gem_object *obj)
  3692. {
  3693. BUG();
  3694. return 0;
  3695. }
  3696. static void i915_gem_free_object_tail(struct drm_gem_object *obj)
  3697. {
  3698. struct drm_device *dev = obj->dev;
  3699. drm_i915_private_t *dev_priv = dev->dev_private;
  3700. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3701. int ret;
  3702. ret = i915_gem_object_unbind(obj);
  3703. if (ret == -ERESTARTSYS) {
  3704. list_move(&obj_priv->list,
  3705. &dev_priv->mm.deferred_free_list);
  3706. return;
  3707. }
  3708. if (obj_priv->mmap_offset)
  3709. i915_gem_free_mmap_offset(obj);
  3710. drm_gem_object_release(obj);
  3711. kfree(obj_priv->page_cpu_valid);
  3712. kfree(obj_priv->bit_17);
  3713. kfree(obj_priv);
  3714. }
  3715. void i915_gem_free_object(struct drm_gem_object *obj)
  3716. {
  3717. struct drm_device *dev = obj->dev;
  3718. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3719. trace_i915_gem_object_destroy(obj);
  3720. while (obj_priv->pin_count > 0)
  3721. i915_gem_object_unpin(obj);
  3722. if (obj_priv->phys_obj)
  3723. i915_gem_detach_phys_object(dev, obj);
  3724. i915_gem_free_object_tail(obj);
  3725. }
  3726. int
  3727. i915_gem_idle(struct drm_device *dev)
  3728. {
  3729. drm_i915_private_t *dev_priv = dev->dev_private;
  3730. int ret;
  3731. mutex_lock(&dev->struct_mutex);
  3732. if (dev_priv->mm.suspended ||
  3733. (dev_priv->render_ring.gem_object == NULL) ||
  3734. (HAS_BSD(dev) &&
  3735. dev_priv->bsd_ring.gem_object == NULL)) {
  3736. mutex_unlock(&dev->struct_mutex);
  3737. return 0;
  3738. }
  3739. ret = i915_gpu_idle(dev);
  3740. if (ret) {
  3741. mutex_unlock(&dev->struct_mutex);
  3742. return ret;
  3743. }
  3744. /* Under UMS, be paranoid and evict. */
  3745. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3746. ret = i915_gem_evict_inactive(dev);
  3747. if (ret) {
  3748. mutex_unlock(&dev->struct_mutex);
  3749. return ret;
  3750. }
  3751. }
  3752. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3753. * We need to replace this with a semaphore, or something.
  3754. * And not confound mm.suspended!
  3755. */
  3756. dev_priv->mm.suspended = 1;
  3757. del_timer_sync(&dev_priv->hangcheck_timer);
  3758. i915_kernel_lost_context(dev);
  3759. i915_gem_cleanup_ringbuffer(dev);
  3760. mutex_unlock(&dev->struct_mutex);
  3761. /* Cancel the retire work handler, which should be idle now. */
  3762. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3763. return 0;
  3764. }
  3765. /*
  3766. * 965+ support PIPE_CONTROL commands, which provide finer grained control
  3767. * over cache flushing.
  3768. */
  3769. static int
  3770. i915_gem_init_pipe_control(struct drm_device *dev)
  3771. {
  3772. drm_i915_private_t *dev_priv = dev->dev_private;
  3773. struct drm_gem_object *obj;
  3774. struct drm_i915_gem_object *obj_priv;
  3775. int ret;
  3776. obj = i915_gem_alloc_object(dev, 4096);
  3777. if (obj == NULL) {
  3778. DRM_ERROR("Failed to allocate seqno page\n");
  3779. ret = -ENOMEM;
  3780. goto err;
  3781. }
  3782. obj_priv = to_intel_bo(obj);
  3783. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3784. ret = i915_gem_object_pin(obj, 4096);
  3785. if (ret)
  3786. goto err_unref;
  3787. dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
  3788. dev_priv->seqno_page = kmap(obj_priv->pages[0]);
  3789. if (dev_priv->seqno_page == NULL)
  3790. goto err_unpin;
  3791. dev_priv->seqno_obj = obj;
  3792. memset(dev_priv->seqno_page, 0, PAGE_SIZE);
  3793. return 0;
  3794. err_unpin:
  3795. i915_gem_object_unpin(obj);
  3796. err_unref:
  3797. drm_gem_object_unreference(obj);
  3798. err:
  3799. return ret;
  3800. }
  3801. static void
  3802. i915_gem_cleanup_pipe_control(struct drm_device *dev)
  3803. {
  3804. drm_i915_private_t *dev_priv = dev->dev_private;
  3805. struct drm_gem_object *obj;
  3806. struct drm_i915_gem_object *obj_priv;
  3807. obj = dev_priv->seqno_obj;
  3808. obj_priv = to_intel_bo(obj);
  3809. kunmap(obj_priv->pages[0]);
  3810. i915_gem_object_unpin(obj);
  3811. drm_gem_object_unreference(obj);
  3812. dev_priv->seqno_obj = NULL;
  3813. dev_priv->seqno_page = NULL;
  3814. }
  3815. int
  3816. i915_gem_init_ringbuffer(struct drm_device *dev)
  3817. {
  3818. drm_i915_private_t *dev_priv = dev->dev_private;
  3819. int ret;
  3820. dev_priv->render_ring = render_ring;
  3821. if (!I915_NEED_GFX_HWS(dev)) {
  3822. dev_priv->render_ring.status_page.page_addr
  3823. = dev_priv->status_page_dmah->vaddr;
  3824. memset(dev_priv->render_ring.status_page.page_addr,
  3825. 0, PAGE_SIZE);
  3826. }
  3827. if (HAS_PIPE_CONTROL(dev)) {
  3828. ret = i915_gem_init_pipe_control(dev);
  3829. if (ret)
  3830. return ret;
  3831. }
  3832. ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
  3833. if (ret)
  3834. goto cleanup_pipe_control;
  3835. if (HAS_BSD(dev)) {
  3836. dev_priv->bsd_ring = bsd_ring;
  3837. ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring);
  3838. if (ret)
  3839. goto cleanup_render_ring;
  3840. }
  3841. dev_priv->next_seqno = 1;
  3842. return 0;
  3843. cleanup_render_ring:
  3844. intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
  3845. cleanup_pipe_control:
  3846. if (HAS_PIPE_CONTROL(dev))
  3847. i915_gem_cleanup_pipe_control(dev);
  3848. return ret;
  3849. }
  3850. void
  3851. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3852. {
  3853. drm_i915_private_t *dev_priv = dev->dev_private;
  3854. intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
  3855. if (HAS_BSD(dev))
  3856. intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
  3857. if (HAS_PIPE_CONTROL(dev))
  3858. i915_gem_cleanup_pipe_control(dev);
  3859. }
  3860. int
  3861. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3862. struct drm_file *file_priv)
  3863. {
  3864. drm_i915_private_t *dev_priv = dev->dev_private;
  3865. int ret;
  3866. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3867. return 0;
  3868. if (atomic_read(&dev_priv->mm.wedged)) {
  3869. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3870. atomic_set(&dev_priv->mm.wedged, 0);
  3871. }
  3872. mutex_lock(&dev->struct_mutex);
  3873. dev_priv->mm.suspended = 0;
  3874. ret = i915_gem_init_ringbuffer(dev);
  3875. if (ret != 0) {
  3876. mutex_unlock(&dev->struct_mutex);
  3877. return ret;
  3878. }
  3879. spin_lock(&dev_priv->mm.active_list_lock);
  3880. BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
  3881. BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
  3882. spin_unlock(&dev_priv->mm.active_list_lock);
  3883. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3884. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3885. BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
  3886. BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
  3887. mutex_unlock(&dev->struct_mutex);
  3888. ret = drm_irq_install(dev);
  3889. if (ret)
  3890. goto cleanup_ringbuffer;
  3891. return 0;
  3892. cleanup_ringbuffer:
  3893. mutex_lock(&dev->struct_mutex);
  3894. i915_gem_cleanup_ringbuffer(dev);
  3895. dev_priv->mm.suspended = 1;
  3896. mutex_unlock(&dev->struct_mutex);
  3897. return ret;
  3898. }
  3899. int
  3900. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3901. struct drm_file *file_priv)
  3902. {
  3903. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3904. return 0;
  3905. drm_irq_uninstall(dev);
  3906. return i915_gem_idle(dev);
  3907. }
  3908. void
  3909. i915_gem_lastclose(struct drm_device *dev)
  3910. {
  3911. int ret;
  3912. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3913. return;
  3914. ret = i915_gem_idle(dev);
  3915. if (ret)
  3916. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3917. }
  3918. void
  3919. i915_gem_load(struct drm_device *dev)
  3920. {
  3921. int i;
  3922. drm_i915_private_t *dev_priv = dev->dev_private;
  3923. spin_lock_init(&dev_priv->mm.active_list_lock);
  3924. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3925. INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
  3926. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3927. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3928. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3929. INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
  3930. INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
  3931. if (HAS_BSD(dev)) {
  3932. INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
  3933. INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
  3934. }
  3935. for (i = 0; i < 16; i++)
  3936. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3937. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3938. i915_gem_retire_work_handler);
  3939. spin_lock(&shrink_list_lock);
  3940. list_add(&dev_priv->mm.shrink_list, &shrink_list);
  3941. spin_unlock(&shrink_list_lock);
  3942. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3943. if (IS_GEN3(dev)) {
  3944. u32 tmp = I915_READ(MI_ARB_STATE);
  3945. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3946. /* arb state is a masked write, so set bit + bit in mask */
  3947. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3948. I915_WRITE(MI_ARB_STATE, tmp);
  3949. }
  3950. }
  3951. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3952. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3953. dev_priv->fence_reg_start = 3;
  3954. if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3955. dev_priv->num_fence_regs = 16;
  3956. else
  3957. dev_priv->num_fence_regs = 8;
  3958. /* Initialize fence registers to zero */
  3959. if (IS_I965G(dev)) {
  3960. for (i = 0; i < 16; i++)
  3961. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  3962. } else {
  3963. for (i = 0; i < 8; i++)
  3964. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  3965. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3966. for (i = 0; i < 8; i++)
  3967. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  3968. }
  3969. i915_gem_detect_bit_6_swizzle(dev);
  3970. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3971. }
  3972. /*
  3973. * Create a physically contiguous memory object for this object
  3974. * e.g. for cursor + overlay regs
  3975. */
  3976. int i915_gem_init_phys_object(struct drm_device *dev,
  3977. int id, int size, int align)
  3978. {
  3979. drm_i915_private_t *dev_priv = dev->dev_private;
  3980. struct drm_i915_gem_phys_object *phys_obj;
  3981. int ret;
  3982. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3983. return 0;
  3984. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3985. if (!phys_obj)
  3986. return -ENOMEM;
  3987. phys_obj->id = id;
  3988. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3989. if (!phys_obj->handle) {
  3990. ret = -ENOMEM;
  3991. goto kfree_obj;
  3992. }
  3993. #ifdef CONFIG_X86
  3994. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3995. #endif
  3996. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3997. return 0;
  3998. kfree_obj:
  3999. kfree(phys_obj);
  4000. return ret;
  4001. }
  4002. void i915_gem_free_phys_object(struct drm_device *dev, int id)
  4003. {
  4004. drm_i915_private_t *dev_priv = dev->dev_private;
  4005. struct drm_i915_gem_phys_object *phys_obj;
  4006. if (!dev_priv->mm.phys_objs[id - 1])
  4007. return;
  4008. phys_obj = dev_priv->mm.phys_objs[id - 1];
  4009. if (phys_obj->cur_obj) {
  4010. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  4011. }
  4012. #ifdef CONFIG_X86
  4013. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4014. #endif
  4015. drm_pci_free(dev, phys_obj->handle);
  4016. kfree(phys_obj);
  4017. dev_priv->mm.phys_objs[id - 1] = NULL;
  4018. }
  4019. void i915_gem_free_all_phys_object(struct drm_device *dev)
  4020. {
  4021. int i;
  4022. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  4023. i915_gem_free_phys_object(dev, i);
  4024. }
  4025. void i915_gem_detach_phys_object(struct drm_device *dev,
  4026. struct drm_gem_object *obj)
  4027. {
  4028. struct drm_i915_gem_object *obj_priv;
  4029. int i;
  4030. int ret;
  4031. int page_count;
  4032. obj_priv = to_intel_bo(obj);
  4033. if (!obj_priv->phys_obj)
  4034. return;
  4035. ret = i915_gem_object_get_pages(obj, 0);
  4036. if (ret)
  4037. goto out;
  4038. page_count = obj->size / PAGE_SIZE;
  4039. for (i = 0; i < page_count; i++) {
  4040. char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
  4041. char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4042. memcpy(dst, src, PAGE_SIZE);
  4043. kunmap_atomic(dst, KM_USER0);
  4044. }
  4045. drm_clflush_pages(obj_priv->pages, page_count);
  4046. drm_agp_chipset_flush(dev);
  4047. i915_gem_object_put_pages(obj);
  4048. out:
  4049. obj_priv->phys_obj->cur_obj = NULL;
  4050. obj_priv->phys_obj = NULL;
  4051. }
  4052. int
  4053. i915_gem_attach_phys_object(struct drm_device *dev,
  4054. struct drm_gem_object *obj,
  4055. int id,
  4056. int align)
  4057. {
  4058. drm_i915_private_t *dev_priv = dev->dev_private;
  4059. struct drm_i915_gem_object *obj_priv;
  4060. int ret = 0;
  4061. int page_count;
  4062. int i;
  4063. if (id > I915_MAX_PHYS_OBJECT)
  4064. return -EINVAL;
  4065. obj_priv = to_intel_bo(obj);
  4066. if (obj_priv->phys_obj) {
  4067. if (obj_priv->phys_obj->id == id)
  4068. return 0;
  4069. i915_gem_detach_phys_object(dev, obj);
  4070. }
  4071. /* create a new object */
  4072. if (!dev_priv->mm.phys_objs[id - 1]) {
  4073. ret = i915_gem_init_phys_object(dev, id,
  4074. obj->size, align);
  4075. if (ret) {
  4076. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  4077. goto out;
  4078. }
  4079. }
  4080. /* bind to the object */
  4081. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  4082. obj_priv->phys_obj->cur_obj = obj;
  4083. ret = i915_gem_object_get_pages(obj, 0);
  4084. if (ret) {
  4085. DRM_ERROR("failed to get page list\n");
  4086. goto out;
  4087. }
  4088. page_count = obj->size / PAGE_SIZE;
  4089. for (i = 0; i < page_count; i++) {
  4090. char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
  4091. char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4092. memcpy(dst, src, PAGE_SIZE);
  4093. kunmap_atomic(src, KM_USER0);
  4094. }
  4095. i915_gem_object_put_pages(obj);
  4096. return 0;
  4097. out:
  4098. return ret;
  4099. }
  4100. static int
  4101. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  4102. struct drm_i915_gem_pwrite *args,
  4103. struct drm_file *file_priv)
  4104. {
  4105. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  4106. void *obj_addr;
  4107. int ret;
  4108. char __user *user_data;
  4109. user_data = (char __user *) (uintptr_t) args->data_ptr;
  4110. obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
  4111. DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
  4112. ret = copy_from_user(obj_addr, user_data, args->size);
  4113. if (ret)
  4114. return -EFAULT;
  4115. drm_agp_chipset_flush(dev);
  4116. return 0;
  4117. }
  4118. void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
  4119. {
  4120. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  4121. /* Clean up our request list when the client is going away, so that
  4122. * later retire_requests won't dereference our soon-to-be-gone
  4123. * file_priv.
  4124. */
  4125. mutex_lock(&dev->struct_mutex);
  4126. while (!list_empty(&i915_file_priv->mm.request_list))
  4127. list_del_init(i915_file_priv->mm.request_list.next);
  4128. mutex_unlock(&dev->struct_mutex);
  4129. }
  4130. static int
  4131. i915_gpu_is_active(struct drm_device *dev)
  4132. {
  4133. drm_i915_private_t *dev_priv = dev->dev_private;
  4134. int lists_empty;
  4135. spin_lock(&dev_priv->mm.active_list_lock);
  4136. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  4137. list_empty(&dev_priv->render_ring.active_list);
  4138. if (HAS_BSD(dev))
  4139. lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
  4140. spin_unlock(&dev_priv->mm.active_list_lock);
  4141. return !lists_empty;
  4142. }
  4143. static int
  4144. i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
  4145. {
  4146. drm_i915_private_t *dev_priv, *next_dev;
  4147. struct drm_i915_gem_object *obj_priv, *next_obj;
  4148. int cnt = 0;
  4149. int would_deadlock = 1;
  4150. /* "fast-path" to count number of available objects */
  4151. if (nr_to_scan == 0) {
  4152. spin_lock(&shrink_list_lock);
  4153. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4154. struct drm_device *dev = dev_priv->dev;
  4155. if (mutex_trylock(&dev->struct_mutex)) {
  4156. list_for_each_entry(obj_priv,
  4157. &dev_priv->mm.inactive_list,
  4158. list)
  4159. cnt++;
  4160. mutex_unlock(&dev->struct_mutex);
  4161. }
  4162. }
  4163. spin_unlock(&shrink_list_lock);
  4164. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4165. }
  4166. spin_lock(&shrink_list_lock);
  4167. rescan:
  4168. /* first scan for clean buffers */
  4169. list_for_each_entry_safe(dev_priv, next_dev,
  4170. &shrink_list, mm.shrink_list) {
  4171. struct drm_device *dev = dev_priv->dev;
  4172. if (! mutex_trylock(&dev->struct_mutex))
  4173. continue;
  4174. spin_unlock(&shrink_list_lock);
  4175. i915_gem_retire_requests(dev);
  4176. list_for_each_entry_safe(obj_priv, next_obj,
  4177. &dev_priv->mm.inactive_list,
  4178. list) {
  4179. if (i915_gem_object_is_purgeable(obj_priv)) {
  4180. i915_gem_object_unbind(&obj_priv->base);
  4181. if (--nr_to_scan <= 0)
  4182. break;
  4183. }
  4184. }
  4185. spin_lock(&shrink_list_lock);
  4186. mutex_unlock(&dev->struct_mutex);
  4187. would_deadlock = 0;
  4188. if (nr_to_scan <= 0)
  4189. break;
  4190. }
  4191. /* second pass, evict/count anything still on the inactive list */
  4192. list_for_each_entry_safe(dev_priv, next_dev,
  4193. &shrink_list, mm.shrink_list) {
  4194. struct drm_device *dev = dev_priv->dev;
  4195. if (! mutex_trylock(&dev->struct_mutex))
  4196. continue;
  4197. spin_unlock(&shrink_list_lock);
  4198. list_for_each_entry_safe(obj_priv, next_obj,
  4199. &dev_priv->mm.inactive_list,
  4200. list) {
  4201. if (nr_to_scan > 0) {
  4202. i915_gem_object_unbind(&obj_priv->base);
  4203. nr_to_scan--;
  4204. } else
  4205. cnt++;
  4206. }
  4207. spin_lock(&shrink_list_lock);
  4208. mutex_unlock(&dev->struct_mutex);
  4209. would_deadlock = 0;
  4210. }
  4211. if (nr_to_scan) {
  4212. int active = 0;
  4213. /*
  4214. * We are desperate for pages, so as a last resort, wait
  4215. * for the GPU to finish and discard whatever we can.
  4216. * This has a dramatic impact to reduce the number of
  4217. * OOM-killer events whilst running the GPU aggressively.
  4218. */
  4219. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4220. struct drm_device *dev = dev_priv->dev;
  4221. if (!mutex_trylock(&dev->struct_mutex))
  4222. continue;
  4223. spin_unlock(&shrink_list_lock);
  4224. if (i915_gpu_is_active(dev)) {
  4225. i915_gpu_idle(dev);
  4226. active++;
  4227. }
  4228. spin_lock(&shrink_list_lock);
  4229. mutex_unlock(&dev->struct_mutex);
  4230. }
  4231. if (active)
  4232. goto rescan;
  4233. }
  4234. spin_unlock(&shrink_list_lock);
  4235. if (would_deadlock)
  4236. return -1;
  4237. else if (cnt > 0)
  4238. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4239. else
  4240. return 0;
  4241. }
  4242. static struct shrinker shrinker = {
  4243. .shrink = i915_gem_shrink,
  4244. .seeks = DEFAULT_SEEKS,
  4245. };
  4246. __init void
  4247. i915_gem_shrinker_init(void)
  4248. {
  4249. register_shrinker(&shrinker);
  4250. }
  4251. __exit void
  4252. i915_gem_shrinker_exit(void)
  4253. {
  4254. unregister_shrinker(&shrinker);
  4255. }