sched.c 221 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/stop_machine.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/debugfs.h>
  70. #include <linux/ctype.h>
  71. #include <linux/ftrace.h>
  72. #include <linux/slab.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #include <asm/mutex.h>
  76. #include "sched_cpupri.h"
  77. #include "workqueue_sched.h"
  78. #include "sched_autogroup.h"
  79. #define CREATE_TRACE_POINTS
  80. #include <trace/events/sched.h>
  81. /*
  82. * Convert user-nice values [ -20 ... 0 ... 19 ]
  83. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  84. * and back.
  85. */
  86. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  87. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  88. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  89. /*
  90. * 'User priority' is the nice value converted to something we
  91. * can work with better when scaling various scheduler parameters,
  92. * it's a [ 0 ... 39 ] range.
  93. */
  94. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  95. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  96. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  97. /*
  98. * Helpers for converting nanosecond timing to jiffy resolution
  99. */
  100. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  101. #define NICE_0_LOAD SCHED_LOAD_SCALE
  102. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  103. /*
  104. * These are the 'tuning knobs' of the scheduler:
  105. *
  106. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  107. * Timeslices get refilled after they expire.
  108. */
  109. #define DEF_TIMESLICE (100 * HZ / 1000)
  110. /*
  111. * single value that denotes runtime == period, ie unlimited time.
  112. */
  113. #define RUNTIME_INF ((u64)~0ULL)
  114. static inline int rt_policy(int policy)
  115. {
  116. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  117. return 1;
  118. return 0;
  119. }
  120. static inline int task_has_rt_policy(struct task_struct *p)
  121. {
  122. return rt_policy(p->policy);
  123. }
  124. /*
  125. * This is the priority-queue data structure of the RT scheduling class:
  126. */
  127. struct rt_prio_array {
  128. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  129. struct list_head queue[MAX_RT_PRIO];
  130. };
  131. struct rt_bandwidth {
  132. /* nests inside the rq lock: */
  133. raw_spinlock_t rt_runtime_lock;
  134. ktime_t rt_period;
  135. u64 rt_runtime;
  136. struct hrtimer rt_period_timer;
  137. };
  138. static struct rt_bandwidth def_rt_bandwidth;
  139. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  140. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  141. {
  142. struct rt_bandwidth *rt_b =
  143. container_of(timer, struct rt_bandwidth, rt_period_timer);
  144. ktime_t now;
  145. int overrun;
  146. int idle = 0;
  147. for (;;) {
  148. now = hrtimer_cb_get_time(timer);
  149. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  150. if (!overrun)
  151. break;
  152. idle = do_sched_rt_period_timer(rt_b, overrun);
  153. }
  154. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  155. }
  156. static
  157. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  158. {
  159. rt_b->rt_period = ns_to_ktime(period);
  160. rt_b->rt_runtime = runtime;
  161. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  162. hrtimer_init(&rt_b->rt_period_timer,
  163. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  164. rt_b->rt_period_timer.function = sched_rt_period_timer;
  165. }
  166. static inline int rt_bandwidth_enabled(void)
  167. {
  168. return sysctl_sched_rt_runtime >= 0;
  169. }
  170. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  171. {
  172. ktime_t now;
  173. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  174. return;
  175. if (hrtimer_active(&rt_b->rt_period_timer))
  176. return;
  177. raw_spin_lock(&rt_b->rt_runtime_lock);
  178. for (;;) {
  179. unsigned long delta;
  180. ktime_t soft, hard;
  181. if (hrtimer_active(&rt_b->rt_period_timer))
  182. break;
  183. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  184. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  185. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  186. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  187. delta = ktime_to_ns(ktime_sub(hard, soft));
  188. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  189. HRTIMER_MODE_ABS_PINNED, 0);
  190. }
  191. raw_spin_unlock(&rt_b->rt_runtime_lock);
  192. }
  193. #ifdef CONFIG_RT_GROUP_SCHED
  194. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  195. {
  196. hrtimer_cancel(&rt_b->rt_period_timer);
  197. }
  198. #endif
  199. /*
  200. * sched_domains_mutex serializes calls to init_sched_domains,
  201. * detach_destroy_domains and partition_sched_domains.
  202. */
  203. static DEFINE_MUTEX(sched_domains_mutex);
  204. #ifdef CONFIG_CGROUP_SCHED
  205. #include <linux/cgroup.h>
  206. struct cfs_rq;
  207. static LIST_HEAD(task_groups);
  208. /* task group related information */
  209. struct task_group {
  210. struct cgroup_subsys_state css;
  211. #ifdef CONFIG_FAIR_GROUP_SCHED
  212. /* schedulable entities of this group on each cpu */
  213. struct sched_entity **se;
  214. /* runqueue "owned" by this group on each cpu */
  215. struct cfs_rq **cfs_rq;
  216. unsigned long shares;
  217. atomic_t load_weight;
  218. #endif
  219. #ifdef CONFIG_RT_GROUP_SCHED
  220. struct sched_rt_entity **rt_se;
  221. struct rt_rq **rt_rq;
  222. struct rt_bandwidth rt_bandwidth;
  223. #endif
  224. struct rcu_head rcu;
  225. struct list_head list;
  226. struct task_group *parent;
  227. struct list_head siblings;
  228. struct list_head children;
  229. #ifdef CONFIG_SCHED_AUTOGROUP
  230. struct autogroup *autogroup;
  231. #endif
  232. };
  233. /* task_group_lock serializes the addition/removal of task groups */
  234. static DEFINE_SPINLOCK(task_group_lock);
  235. #ifdef CONFIG_FAIR_GROUP_SCHED
  236. # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
  237. /*
  238. * A weight of 0 or 1 can cause arithmetics problems.
  239. * A weight of a cfs_rq is the sum of weights of which entities
  240. * are queued on this cfs_rq, so a weight of a entity should not be
  241. * too large, so as the shares value of a task group.
  242. * (The default weight is 1024 - so there's no practical
  243. * limitation from this.)
  244. */
  245. #define MIN_SHARES (1UL << 1)
  246. #define MAX_SHARES (1UL << 18)
  247. static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
  248. #endif
  249. /* Default task group.
  250. * Every task in system belong to this group at bootup.
  251. */
  252. struct task_group root_task_group;
  253. #endif /* CONFIG_CGROUP_SCHED */
  254. /* CFS-related fields in a runqueue */
  255. struct cfs_rq {
  256. struct load_weight load;
  257. unsigned long nr_running;
  258. u64 exec_clock;
  259. u64 min_vruntime;
  260. #ifndef CONFIG_64BIT
  261. u64 min_vruntime_copy;
  262. #endif
  263. struct rb_root tasks_timeline;
  264. struct rb_node *rb_leftmost;
  265. struct list_head tasks;
  266. struct list_head *balance_iterator;
  267. /*
  268. * 'curr' points to currently running entity on this cfs_rq.
  269. * It is set to NULL otherwise (i.e when none are currently running).
  270. */
  271. struct sched_entity *curr, *next, *last, *skip;
  272. #ifdef CONFIG_SCHED_DEBUG
  273. unsigned int nr_spread_over;
  274. #endif
  275. #ifdef CONFIG_FAIR_GROUP_SCHED
  276. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  277. /*
  278. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  279. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  280. * (like users, containers etc.)
  281. *
  282. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  283. * list is used during load balance.
  284. */
  285. int on_list;
  286. struct list_head leaf_cfs_rq_list;
  287. struct task_group *tg; /* group that "owns" this runqueue */
  288. #ifdef CONFIG_SMP
  289. /*
  290. * the part of load.weight contributed by tasks
  291. */
  292. unsigned long task_weight;
  293. /*
  294. * h_load = weight * f(tg)
  295. *
  296. * Where f(tg) is the recursive weight fraction assigned to
  297. * this group.
  298. */
  299. unsigned long h_load;
  300. /*
  301. * Maintaining per-cpu shares distribution for group scheduling
  302. *
  303. * load_stamp is the last time we updated the load average
  304. * load_last is the last time we updated the load average and saw load
  305. * load_unacc_exec_time is currently unaccounted execution time
  306. */
  307. u64 load_avg;
  308. u64 load_period;
  309. u64 load_stamp, load_last, load_unacc_exec_time;
  310. unsigned long load_contribution;
  311. #endif
  312. #endif
  313. };
  314. /* Real-Time classes' related field in a runqueue: */
  315. struct rt_rq {
  316. struct rt_prio_array active;
  317. unsigned long rt_nr_running;
  318. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  319. struct {
  320. int curr; /* highest queued rt task prio */
  321. #ifdef CONFIG_SMP
  322. int next; /* next highest */
  323. #endif
  324. } highest_prio;
  325. #endif
  326. #ifdef CONFIG_SMP
  327. unsigned long rt_nr_migratory;
  328. unsigned long rt_nr_total;
  329. int overloaded;
  330. struct plist_head pushable_tasks;
  331. #endif
  332. int rt_throttled;
  333. u64 rt_time;
  334. u64 rt_runtime;
  335. /* Nests inside the rq lock: */
  336. raw_spinlock_t rt_runtime_lock;
  337. #ifdef CONFIG_RT_GROUP_SCHED
  338. unsigned long rt_nr_boosted;
  339. struct rq *rq;
  340. struct list_head leaf_rt_rq_list;
  341. struct task_group *tg;
  342. #endif
  343. };
  344. #ifdef CONFIG_SMP
  345. /*
  346. * We add the notion of a root-domain which will be used to define per-domain
  347. * variables. Each exclusive cpuset essentially defines an island domain by
  348. * fully partitioning the member cpus from any other cpuset. Whenever a new
  349. * exclusive cpuset is created, we also create and attach a new root-domain
  350. * object.
  351. *
  352. */
  353. struct root_domain {
  354. atomic_t refcount;
  355. struct rcu_head rcu;
  356. cpumask_var_t span;
  357. cpumask_var_t online;
  358. /*
  359. * The "RT overload" flag: it gets set if a CPU has more than
  360. * one runnable RT task.
  361. */
  362. cpumask_var_t rto_mask;
  363. atomic_t rto_count;
  364. struct cpupri cpupri;
  365. };
  366. /*
  367. * By default the system creates a single root-domain with all cpus as
  368. * members (mimicking the global state we have today).
  369. */
  370. static struct root_domain def_root_domain;
  371. #endif /* CONFIG_SMP */
  372. /*
  373. * This is the main, per-CPU runqueue data structure.
  374. *
  375. * Locking rule: those places that want to lock multiple runqueues
  376. * (such as the load balancing or the thread migration code), lock
  377. * acquire operations must be ordered by ascending &runqueue.
  378. */
  379. struct rq {
  380. /* runqueue lock: */
  381. raw_spinlock_t lock;
  382. /*
  383. * nr_running and cpu_load should be in the same cacheline because
  384. * remote CPUs use both these fields when doing load calculation.
  385. */
  386. unsigned long nr_running;
  387. #define CPU_LOAD_IDX_MAX 5
  388. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  389. unsigned long last_load_update_tick;
  390. #ifdef CONFIG_NO_HZ
  391. u64 nohz_stamp;
  392. unsigned char nohz_balance_kick;
  393. #endif
  394. int skip_clock_update;
  395. /* capture load from *all* tasks on this cpu: */
  396. struct load_weight load;
  397. unsigned long nr_load_updates;
  398. u64 nr_switches;
  399. struct cfs_rq cfs;
  400. struct rt_rq rt;
  401. #ifdef CONFIG_FAIR_GROUP_SCHED
  402. /* list of leaf cfs_rq on this cpu: */
  403. struct list_head leaf_cfs_rq_list;
  404. #endif
  405. #ifdef CONFIG_RT_GROUP_SCHED
  406. struct list_head leaf_rt_rq_list;
  407. #endif
  408. /*
  409. * This is part of a global counter where only the total sum
  410. * over all CPUs matters. A task can increase this counter on
  411. * one CPU and if it got migrated afterwards it may decrease
  412. * it on another CPU. Always updated under the runqueue lock:
  413. */
  414. unsigned long nr_uninterruptible;
  415. struct task_struct *curr, *idle, *stop;
  416. unsigned long next_balance;
  417. struct mm_struct *prev_mm;
  418. u64 clock;
  419. u64 clock_task;
  420. atomic_t nr_iowait;
  421. #ifdef CONFIG_SMP
  422. struct root_domain *rd;
  423. struct sched_domain *sd;
  424. unsigned long cpu_power;
  425. unsigned char idle_at_tick;
  426. /* For active balancing */
  427. int post_schedule;
  428. int active_balance;
  429. int push_cpu;
  430. struct cpu_stop_work active_balance_work;
  431. /* cpu of this runqueue: */
  432. int cpu;
  433. int online;
  434. unsigned long avg_load_per_task;
  435. u64 rt_avg;
  436. u64 age_stamp;
  437. u64 idle_stamp;
  438. u64 avg_idle;
  439. #endif
  440. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  441. u64 prev_irq_time;
  442. #endif
  443. /* calc_load related fields */
  444. unsigned long calc_load_update;
  445. long calc_load_active;
  446. #ifdef CONFIG_SCHED_HRTICK
  447. #ifdef CONFIG_SMP
  448. int hrtick_csd_pending;
  449. struct call_single_data hrtick_csd;
  450. #endif
  451. struct hrtimer hrtick_timer;
  452. #endif
  453. #ifdef CONFIG_SCHEDSTATS
  454. /* latency stats */
  455. struct sched_info rq_sched_info;
  456. unsigned long long rq_cpu_time;
  457. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  458. /* sys_sched_yield() stats */
  459. unsigned int yld_count;
  460. /* schedule() stats */
  461. unsigned int sched_switch;
  462. unsigned int sched_count;
  463. unsigned int sched_goidle;
  464. /* try_to_wake_up() stats */
  465. unsigned int ttwu_count;
  466. unsigned int ttwu_local;
  467. #endif
  468. #ifdef CONFIG_SMP
  469. struct task_struct *wake_list;
  470. #endif
  471. };
  472. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  473. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
  474. static inline int cpu_of(struct rq *rq)
  475. {
  476. #ifdef CONFIG_SMP
  477. return rq->cpu;
  478. #else
  479. return 0;
  480. #endif
  481. }
  482. #define rcu_dereference_check_sched_domain(p) \
  483. rcu_dereference_check((p), \
  484. rcu_read_lock_held() || \
  485. lockdep_is_held(&sched_domains_mutex))
  486. /*
  487. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  488. * See detach_destroy_domains: synchronize_sched for details.
  489. *
  490. * The domain tree of any CPU may only be accessed from within
  491. * preempt-disabled sections.
  492. */
  493. #define for_each_domain(cpu, __sd) \
  494. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  495. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  496. #define this_rq() (&__get_cpu_var(runqueues))
  497. #define task_rq(p) cpu_rq(task_cpu(p))
  498. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  499. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  500. #ifdef CONFIG_CGROUP_SCHED
  501. /*
  502. * Return the group to which this tasks belongs.
  503. *
  504. * We use task_subsys_state_check() and extend the RCU verification with
  505. * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
  506. * task it moves into the cgroup. Therefore by holding either of those locks,
  507. * we pin the task to the current cgroup.
  508. */
  509. static inline struct task_group *task_group(struct task_struct *p)
  510. {
  511. struct task_group *tg;
  512. struct cgroup_subsys_state *css;
  513. css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
  514. lockdep_is_held(&p->pi_lock) ||
  515. lockdep_is_held(&task_rq(p)->lock));
  516. tg = container_of(css, struct task_group, css);
  517. return autogroup_task_group(p, tg);
  518. }
  519. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  520. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  521. {
  522. #ifdef CONFIG_FAIR_GROUP_SCHED
  523. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  524. p->se.parent = task_group(p)->se[cpu];
  525. #endif
  526. #ifdef CONFIG_RT_GROUP_SCHED
  527. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  528. p->rt.parent = task_group(p)->rt_se[cpu];
  529. #endif
  530. }
  531. #else /* CONFIG_CGROUP_SCHED */
  532. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  533. static inline struct task_group *task_group(struct task_struct *p)
  534. {
  535. return NULL;
  536. }
  537. #endif /* CONFIG_CGROUP_SCHED */
  538. static void update_rq_clock_task(struct rq *rq, s64 delta);
  539. static void update_rq_clock(struct rq *rq)
  540. {
  541. s64 delta;
  542. if (rq->skip_clock_update > 0)
  543. return;
  544. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  545. rq->clock += delta;
  546. update_rq_clock_task(rq, delta);
  547. }
  548. /*
  549. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  550. */
  551. #ifdef CONFIG_SCHED_DEBUG
  552. # define const_debug __read_mostly
  553. #else
  554. # define const_debug static const
  555. #endif
  556. /**
  557. * runqueue_is_locked - Returns true if the current cpu runqueue is locked
  558. * @cpu: the processor in question.
  559. *
  560. * This interface allows printk to be called with the runqueue lock
  561. * held and know whether or not it is OK to wake up the klogd.
  562. */
  563. int runqueue_is_locked(int cpu)
  564. {
  565. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  566. }
  567. /*
  568. * Debugging: various feature bits
  569. */
  570. #define SCHED_FEAT(name, enabled) \
  571. __SCHED_FEAT_##name ,
  572. enum {
  573. #include "sched_features.h"
  574. };
  575. #undef SCHED_FEAT
  576. #define SCHED_FEAT(name, enabled) \
  577. (1UL << __SCHED_FEAT_##name) * enabled |
  578. const_debug unsigned int sysctl_sched_features =
  579. #include "sched_features.h"
  580. 0;
  581. #undef SCHED_FEAT
  582. #ifdef CONFIG_SCHED_DEBUG
  583. #define SCHED_FEAT(name, enabled) \
  584. #name ,
  585. static __read_mostly char *sched_feat_names[] = {
  586. #include "sched_features.h"
  587. NULL
  588. };
  589. #undef SCHED_FEAT
  590. static int sched_feat_show(struct seq_file *m, void *v)
  591. {
  592. int i;
  593. for (i = 0; sched_feat_names[i]; i++) {
  594. if (!(sysctl_sched_features & (1UL << i)))
  595. seq_puts(m, "NO_");
  596. seq_printf(m, "%s ", sched_feat_names[i]);
  597. }
  598. seq_puts(m, "\n");
  599. return 0;
  600. }
  601. static ssize_t
  602. sched_feat_write(struct file *filp, const char __user *ubuf,
  603. size_t cnt, loff_t *ppos)
  604. {
  605. char buf[64];
  606. char *cmp;
  607. int neg = 0;
  608. int i;
  609. if (cnt > 63)
  610. cnt = 63;
  611. if (copy_from_user(&buf, ubuf, cnt))
  612. return -EFAULT;
  613. buf[cnt] = 0;
  614. cmp = strstrip(buf);
  615. if (strncmp(cmp, "NO_", 3) == 0) {
  616. neg = 1;
  617. cmp += 3;
  618. }
  619. for (i = 0; sched_feat_names[i]; i++) {
  620. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  621. if (neg)
  622. sysctl_sched_features &= ~(1UL << i);
  623. else
  624. sysctl_sched_features |= (1UL << i);
  625. break;
  626. }
  627. }
  628. if (!sched_feat_names[i])
  629. return -EINVAL;
  630. *ppos += cnt;
  631. return cnt;
  632. }
  633. static int sched_feat_open(struct inode *inode, struct file *filp)
  634. {
  635. return single_open(filp, sched_feat_show, NULL);
  636. }
  637. static const struct file_operations sched_feat_fops = {
  638. .open = sched_feat_open,
  639. .write = sched_feat_write,
  640. .read = seq_read,
  641. .llseek = seq_lseek,
  642. .release = single_release,
  643. };
  644. static __init int sched_init_debug(void)
  645. {
  646. debugfs_create_file("sched_features", 0644, NULL, NULL,
  647. &sched_feat_fops);
  648. return 0;
  649. }
  650. late_initcall(sched_init_debug);
  651. #endif
  652. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  653. /*
  654. * Number of tasks to iterate in a single balance run.
  655. * Limited because this is done with IRQs disabled.
  656. */
  657. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  658. /*
  659. * period over which we average the RT time consumption, measured
  660. * in ms.
  661. *
  662. * default: 1s
  663. */
  664. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  665. /*
  666. * period over which we measure -rt task cpu usage in us.
  667. * default: 1s
  668. */
  669. unsigned int sysctl_sched_rt_period = 1000000;
  670. static __read_mostly int scheduler_running;
  671. /*
  672. * part of the period that we allow rt tasks to run in us.
  673. * default: 0.95s
  674. */
  675. int sysctl_sched_rt_runtime = 950000;
  676. static inline u64 global_rt_period(void)
  677. {
  678. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  679. }
  680. static inline u64 global_rt_runtime(void)
  681. {
  682. if (sysctl_sched_rt_runtime < 0)
  683. return RUNTIME_INF;
  684. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  685. }
  686. #ifndef prepare_arch_switch
  687. # define prepare_arch_switch(next) do { } while (0)
  688. #endif
  689. #ifndef finish_arch_switch
  690. # define finish_arch_switch(prev) do { } while (0)
  691. #endif
  692. static inline int task_current(struct rq *rq, struct task_struct *p)
  693. {
  694. return rq->curr == p;
  695. }
  696. static inline int task_running(struct rq *rq, struct task_struct *p)
  697. {
  698. #ifdef CONFIG_SMP
  699. return p->on_cpu;
  700. #else
  701. return task_current(rq, p);
  702. #endif
  703. }
  704. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  705. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  706. {
  707. #ifdef CONFIG_SMP
  708. /*
  709. * We can optimise this out completely for !SMP, because the
  710. * SMP rebalancing from interrupt is the only thing that cares
  711. * here.
  712. */
  713. next->on_cpu = 1;
  714. #endif
  715. }
  716. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  717. {
  718. #ifdef CONFIG_SMP
  719. /*
  720. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  721. * We must ensure this doesn't happen until the switch is completely
  722. * finished.
  723. */
  724. smp_wmb();
  725. prev->on_cpu = 0;
  726. #endif
  727. #ifdef CONFIG_DEBUG_SPINLOCK
  728. /* this is a valid case when another task releases the spinlock */
  729. rq->lock.owner = current;
  730. #endif
  731. /*
  732. * If we are tracking spinlock dependencies then we have to
  733. * fix up the runqueue lock - which gets 'carried over' from
  734. * prev into current:
  735. */
  736. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  737. raw_spin_unlock_irq(&rq->lock);
  738. }
  739. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  740. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  741. {
  742. #ifdef CONFIG_SMP
  743. /*
  744. * We can optimise this out completely for !SMP, because the
  745. * SMP rebalancing from interrupt is the only thing that cares
  746. * here.
  747. */
  748. next->on_cpu = 1;
  749. #endif
  750. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  751. raw_spin_unlock_irq(&rq->lock);
  752. #else
  753. raw_spin_unlock(&rq->lock);
  754. #endif
  755. }
  756. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  757. {
  758. #ifdef CONFIG_SMP
  759. /*
  760. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  761. * We must ensure this doesn't happen until the switch is completely
  762. * finished.
  763. */
  764. smp_wmb();
  765. prev->on_cpu = 0;
  766. #endif
  767. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  768. local_irq_enable();
  769. #endif
  770. }
  771. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  772. /*
  773. * __task_rq_lock - lock the rq @p resides on.
  774. */
  775. static inline struct rq *__task_rq_lock(struct task_struct *p)
  776. __acquires(rq->lock)
  777. {
  778. struct rq *rq;
  779. lockdep_assert_held(&p->pi_lock);
  780. for (;;) {
  781. rq = task_rq(p);
  782. raw_spin_lock(&rq->lock);
  783. if (likely(rq == task_rq(p)))
  784. return rq;
  785. raw_spin_unlock(&rq->lock);
  786. }
  787. }
  788. /*
  789. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  790. */
  791. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  792. __acquires(p->pi_lock)
  793. __acquires(rq->lock)
  794. {
  795. struct rq *rq;
  796. for (;;) {
  797. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  798. rq = task_rq(p);
  799. raw_spin_lock(&rq->lock);
  800. if (likely(rq == task_rq(p)))
  801. return rq;
  802. raw_spin_unlock(&rq->lock);
  803. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  804. }
  805. }
  806. static void __task_rq_unlock(struct rq *rq)
  807. __releases(rq->lock)
  808. {
  809. raw_spin_unlock(&rq->lock);
  810. }
  811. static inline void
  812. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  813. __releases(rq->lock)
  814. __releases(p->pi_lock)
  815. {
  816. raw_spin_unlock(&rq->lock);
  817. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  818. }
  819. /*
  820. * this_rq_lock - lock this runqueue and disable interrupts.
  821. */
  822. static struct rq *this_rq_lock(void)
  823. __acquires(rq->lock)
  824. {
  825. struct rq *rq;
  826. local_irq_disable();
  827. rq = this_rq();
  828. raw_spin_lock(&rq->lock);
  829. return rq;
  830. }
  831. #ifdef CONFIG_SCHED_HRTICK
  832. /*
  833. * Use HR-timers to deliver accurate preemption points.
  834. *
  835. * Its all a bit involved since we cannot program an hrt while holding the
  836. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  837. * reschedule event.
  838. *
  839. * When we get rescheduled we reprogram the hrtick_timer outside of the
  840. * rq->lock.
  841. */
  842. /*
  843. * Use hrtick when:
  844. * - enabled by features
  845. * - hrtimer is actually high res
  846. */
  847. static inline int hrtick_enabled(struct rq *rq)
  848. {
  849. if (!sched_feat(HRTICK))
  850. return 0;
  851. if (!cpu_active(cpu_of(rq)))
  852. return 0;
  853. return hrtimer_is_hres_active(&rq->hrtick_timer);
  854. }
  855. static void hrtick_clear(struct rq *rq)
  856. {
  857. if (hrtimer_active(&rq->hrtick_timer))
  858. hrtimer_cancel(&rq->hrtick_timer);
  859. }
  860. /*
  861. * High-resolution timer tick.
  862. * Runs from hardirq context with interrupts disabled.
  863. */
  864. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  865. {
  866. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  867. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  868. raw_spin_lock(&rq->lock);
  869. update_rq_clock(rq);
  870. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  871. raw_spin_unlock(&rq->lock);
  872. return HRTIMER_NORESTART;
  873. }
  874. #ifdef CONFIG_SMP
  875. /*
  876. * called from hardirq (IPI) context
  877. */
  878. static void __hrtick_start(void *arg)
  879. {
  880. struct rq *rq = arg;
  881. raw_spin_lock(&rq->lock);
  882. hrtimer_restart(&rq->hrtick_timer);
  883. rq->hrtick_csd_pending = 0;
  884. raw_spin_unlock(&rq->lock);
  885. }
  886. /*
  887. * Called to set the hrtick timer state.
  888. *
  889. * called with rq->lock held and irqs disabled
  890. */
  891. static void hrtick_start(struct rq *rq, u64 delay)
  892. {
  893. struct hrtimer *timer = &rq->hrtick_timer;
  894. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  895. hrtimer_set_expires(timer, time);
  896. if (rq == this_rq()) {
  897. hrtimer_restart(timer);
  898. } else if (!rq->hrtick_csd_pending) {
  899. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  900. rq->hrtick_csd_pending = 1;
  901. }
  902. }
  903. static int
  904. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  905. {
  906. int cpu = (int)(long)hcpu;
  907. switch (action) {
  908. case CPU_UP_CANCELED:
  909. case CPU_UP_CANCELED_FROZEN:
  910. case CPU_DOWN_PREPARE:
  911. case CPU_DOWN_PREPARE_FROZEN:
  912. case CPU_DEAD:
  913. case CPU_DEAD_FROZEN:
  914. hrtick_clear(cpu_rq(cpu));
  915. return NOTIFY_OK;
  916. }
  917. return NOTIFY_DONE;
  918. }
  919. static __init void init_hrtick(void)
  920. {
  921. hotcpu_notifier(hotplug_hrtick, 0);
  922. }
  923. #else
  924. /*
  925. * Called to set the hrtick timer state.
  926. *
  927. * called with rq->lock held and irqs disabled
  928. */
  929. static void hrtick_start(struct rq *rq, u64 delay)
  930. {
  931. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  932. HRTIMER_MODE_REL_PINNED, 0);
  933. }
  934. static inline void init_hrtick(void)
  935. {
  936. }
  937. #endif /* CONFIG_SMP */
  938. static void init_rq_hrtick(struct rq *rq)
  939. {
  940. #ifdef CONFIG_SMP
  941. rq->hrtick_csd_pending = 0;
  942. rq->hrtick_csd.flags = 0;
  943. rq->hrtick_csd.func = __hrtick_start;
  944. rq->hrtick_csd.info = rq;
  945. #endif
  946. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  947. rq->hrtick_timer.function = hrtick;
  948. }
  949. #else /* CONFIG_SCHED_HRTICK */
  950. static inline void hrtick_clear(struct rq *rq)
  951. {
  952. }
  953. static inline void init_rq_hrtick(struct rq *rq)
  954. {
  955. }
  956. static inline void init_hrtick(void)
  957. {
  958. }
  959. #endif /* CONFIG_SCHED_HRTICK */
  960. /*
  961. * resched_task - mark a task 'to be rescheduled now'.
  962. *
  963. * On UP this means the setting of the need_resched flag, on SMP it
  964. * might also involve a cross-CPU call to trigger the scheduler on
  965. * the target CPU.
  966. */
  967. #ifdef CONFIG_SMP
  968. #ifndef tsk_is_polling
  969. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  970. #endif
  971. static void resched_task(struct task_struct *p)
  972. {
  973. int cpu;
  974. assert_raw_spin_locked(&task_rq(p)->lock);
  975. if (test_tsk_need_resched(p))
  976. return;
  977. set_tsk_need_resched(p);
  978. cpu = task_cpu(p);
  979. if (cpu == smp_processor_id())
  980. return;
  981. /* NEED_RESCHED must be visible before we test polling */
  982. smp_mb();
  983. if (!tsk_is_polling(p))
  984. smp_send_reschedule(cpu);
  985. }
  986. static void resched_cpu(int cpu)
  987. {
  988. struct rq *rq = cpu_rq(cpu);
  989. unsigned long flags;
  990. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  991. return;
  992. resched_task(cpu_curr(cpu));
  993. raw_spin_unlock_irqrestore(&rq->lock, flags);
  994. }
  995. #ifdef CONFIG_NO_HZ
  996. /*
  997. * In the semi idle case, use the nearest busy cpu for migrating timers
  998. * from an idle cpu. This is good for power-savings.
  999. *
  1000. * We don't do similar optimization for completely idle system, as
  1001. * selecting an idle cpu will add more delays to the timers than intended
  1002. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  1003. */
  1004. int get_nohz_timer_target(void)
  1005. {
  1006. int cpu = smp_processor_id();
  1007. int i;
  1008. struct sched_domain *sd;
  1009. rcu_read_lock();
  1010. for_each_domain(cpu, sd) {
  1011. for_each_cpu(i, sched_domain_span(sd)) {
  1012. if (!idle_cpu(i)) {
  1013. cpu = i;
  1014. goto unlock;
  1015. }
  1016. }
  1017. }
  1018. unlock:
  1019. rcu_read_unlock();
  1020. return cpu;
  1021. }
  1022. /*
  1023. * When add_timer_on() enqueues a timer into the timer wheel of an
  1024. * idle CPU then this timer might expire before the next timer event
  1025. * which is scheduled to wake up that CPU. In case of a completely
  1026. * idle system the next event might even be infinite time into the
  1027. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1028. * leaves the inner idle loop so the newly added timer is taken into
  1029. * account when the CPU goes back to idle and evaluates the timer
  1030. * wheel for the next timer event.
  1031. */
  1032. void wake_up_idle_cpu(int cpu)
  1033. {
  1034. struct rq *rq = cpu_rq(cpu);
  1035. if (cpu == smp_processor_id())
  1036. return;
  1037. /*
  1038. * This is safe, as this function is called with the timer
  1039. * wheel base lock of (cpu) held. When the CPU is on the way
  1040. * to idle and has not yet set rq->curr to idle then it will
  1041. * be serialized on the timer wheel base lock and take the new
  1042. * timer into account automatically.
  1043. */
  1044. if (rq->curr != rq->idle)
  1045. return;
  1046. /*
  1047. * We can set TIF_RESCHED on the idle task of the other CPU
  1048. * lockless. The worst case is that the other CPU runs the
  1049. * idle task through an additional NOOP schedule()
  1050. */
  1051. set_tsk_need_resched(rq->idle);
  1052. /* NEED_RESCHED must be visible before we test polling */
  1053. smp_mb();
  1054. if (!tsk_is_polling(rq->idle))
  1055. smp_send_reschedule(cpu);
  1056. }
  1057. #endif /* CONFIG_NO_HZ */
  1058. static u64 sched_avg_period(void)
  1059. {
  1060. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1061. }
  1062. static void sched_avg_update(struct rq *rq)
  1063. {
  1064. s64 period = sched_avg_period();
  1065. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1066. /*
  1067. * Inline assembly required to prevent the compiler
  1068. * optimising this loop into a divmod call.
  1069. * See __iter_div_u64_rem() for another example of this.
  1070. */
  1071. asm("" : "+rm" (rq->age_stamp));
  1072. rq->age_stamp += period;
  1073. rq->rt_avg /= 2;
  1074. }
  1075. }
  1076. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1077. {
  1078. rq->rt_avg += rt_delta;
  1079. sched_avg_update(rq);
  1080. }
  1081. #else /* !CONFIG_SMP */
  1082. static void resched_task(struct task_struct *p)
  1083. {
  1084. assert_raw_spin_locked(&task_rq(p)->lock);
  1085. set_tsk_need_resched(p);
  1086. }
  1087. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1088. {
  1089. }
  1090. static void sched_avg_update(struct rq *rq)
  1091. {
  1092. }
  1093. #endif /* CONFIG_SMP */
  1094. #if BITS_PER_LONG == 32
  1095. # define WMULT_CONST (~0UL)
  1096. #else
  1097. # define WMULT_CONST (1UL << 32)
  1098. #endif
  1099. #define WMULT_SHIFT 32
  1100. /*
  1101. * Shift right and round:
  1102. */
  1103. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1104. /*
  1105. * delta *= weight / lw
  1106. */
  1107. static unsigned long
  1108. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1109. struct load_weight *lw)
  1110. {
  1111. u64 tmp;
  1112. /*
  1113. * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
  1114. * entities since MIN_SHARES = 2. Treat weight as 1 if less than
  1115. * 2^SCHED_LOAD_RESOLUTION.
  1116. */
  1117. if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
  1118. tmp = (u64)delta_exec * scale_load_down(weight);
  1119. else
  1120. tmp = (u64)delta_exec;
  1121. if (!lw->inv_weight) {
  1122. unsigned long w = scale_load_down(lw->weight);
  1123. if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
  1124. lw->inv_weight = 1;
  1125. else if (unlikely(!w))
  1126. lw->inv_weight = WMULT_CONST;
  1127. else
  1128. lw->inv_weight = WMULT_CONST / w;
  1129. }
  1130. /*
  1131. * Check whether we'd overflow the 64-bit multiplication:
  1132. */
  1133. if (unlikely(tmp > WMULT_CONST))
  1134. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1135. WMULT_SHIFT/2);
  1136. else
  1137. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1138. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1139. }
  1140. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1141. {
  1142. lw->weight += inc;
  1143. lw->inv_weight = 0;
  1144. }
  1145. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1146. {
  1147. lw->weight -= dec;
  1148. lw->inv_weight = 0;
  1149. }
  1150. static inline void update_load_set(struct load_weight *lw, unsigned long w)
  1151. {
  1152. lw->weight = w;
  1153. lw->inv_weight = 0;
  1154. }
  1155. /*
  1156. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1157. * of tasks with abnormal "nice" values across CPUs the contribution that
  1158. * each task makes to its run queue's load is weighted according to its
  1159. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1160. * scaled version of the new time slice allocation that they receive on time
  1161. * slice expiry etc.
  1162. */
  1163. #define WEIGHT_IDLEPRIO 3
  1164. #define WMULT_IDLEPRIO 1431655765
  1165. /*
  1166. * Nice levels are multiplicative, with a gentle 10% change for every
  1167. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1168. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1169. * that remained on nice 0.
  1170. *
  1171. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1172. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1173. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1174. * If a task goes up by ~10% and another task goes down by ~10% then
  1175. * the relative distance between them is ~25%.)
  1176. */
  1177. static const int prio_to_weight[40] = {
  1178. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1179. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1180. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1181. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1182. /* 0 */ 1024, 820, 655, 526, 423,
  1183. /* 5 */ 335, 272, 215, 172, 137,
  1184. /* 10 */ 110, 87, 70, 56, 45,
  1185. /* 15 */ 36, 29, 23, 18, 15,
  1186. };
  1187. /*
  1188. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1189. *
  1190. * In cases where the weight does not change often, we can use the
  1191. * precalculated inverse to speed up arithmetics by turning divisions
  1192. * into multiplications:
  1193. */
  1194. static const u32 prio_to_wmult[40] = {
  1195. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1196. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1197. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1198. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1199. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1200. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1201. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1202. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1203. };
  1204. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1205. enum cpuacct_stat_index {
  1206. CPUACCT_STAT_USER, /* ... user mode */
  1207. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1208. CPUACCT_STAT_NSTATS,
  1209. };
  1210. #ifdef CONFIG_CGROUP_CPUACCT
  1211. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1212. static void cpuacct_update_stats(struct task_struct *tsk,
  1213. enum cpuacct_stat_index idx, cputime_t val);
  1214. #else
  1215. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1216. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1217. enum cpuacct_stat_index idx, cputime_t val) {}
  1218. #endif
  1219. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1220. {
  1221. update_load_add(&rq->load, load);
  1222. }
  1223. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1224. {
  1225. update_load_sub(&rq->load, load);
  1226. }
  1227. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1228. typedef int (*tg_visitor)(struct task_group *, void *);
  1229. /*
  1230. * Iterate the full tree, calling @down when first entering a node and @up when
  1231. * leaving it for the final time.
  1232. */
  1233. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1234. {
  1235. struct task_group *parent, *child;
  1236. int ret;
  1237. rcu_read_lock();
  1238. parent = &root_task_group;
  1239. down:
  1240. ret = (*down)(parent, data);
  1241. if (ret)
  1242. goto out_unlock;
  1243. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1244. parent = child;
  1245. goto down;
  1246. up:
  1247. continue;
  1248. }
  1249. ret = (*up)(parent, data);
  1250. if (ret)
  1251. goto out_unlock;
  1252. child = parent;
  1253. parent = parent->parent;
  1254. if (parent)
  1255. goto up;
  1256. out_unlock:
  1257. rcu_read_unlock();
  1258. return ret;
  1259. }
  1260. static int tg_nop(struct task_group *tg, void *data)
  1261. {
  1262. return 0;
  1263. }
  1264. #endif
  1265. #ifdef CONFIG_SMP
  1266. /* Used instead of source_load when we know the type == 0 */
  1267. static unsigned long weighted_cpuload(const int cpu)
  1268. {
  1269. return cpu_rq(cpu)->load.weight;
  1270. }
  1271. /*
  1272. * Return a low guess at the load of a migration-source cpu weighted
  1273. * according to the scheduling class and "nice" value.
  1274. *
  1275. * We want to under-estimate the load of migration sources, to
  1276. * balance conservatively.
  1277. */
  1278. static unsigned long source_load(int cpu, int type)
  1279. {
  1280. struct rq *rq = cpu_rq(cpu);
  1281. unsigned long total = weighted_cpuload(cpu);
  1282. if (type == 0 || !sched_feat(LB_BIAS))
  1283. return total;
  1284. return min(rq->cpu_load[type-1], total);
  1285. }
  1286. /*
  1287. * Return a high guess at the load of a migration-target cpu weighted
  1288. * according to the scheduling class and "nice" value.
  1289. */
  1290. static unsigned long target_load(int cpu, int type)
  1291. {
  1292. struct rq *rq = cpu_rq(cpu);
  1293. unsigned long total = weighted_cpuload(cpu);
  1294. if (type == 0 || !sched_feat(LB_BIAS))
  1295. return total;
  1296. return max(rq->cpu_load[type-1], total);
  1297. }
  1298. static unsigned long power_of(int cpu)
  1299. {
  1300. return cpu_rq(cpu)->cpu_power;
  1301. }
  1302. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1303. static unsigned long cpu_avg_load_per_task(int cpu)
  1304. {
  1305. struct rq *rq = cpu_rq(cpu);
  1306. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1307. if (nr_running)
  1308. rq->avg_load_per_task = rq->load.weight / nr_running;
  1309. else
  1310. rq->avg_load_per_task = 0;
  1311. return rq->avg_load_per_task;
  1312. }
  1313. #ifdef CONFIG_FAIR_GROUP_SCHED
  1314. /*
  1315. * Compute the cpu's hierarchical load factor for each task group.
  1316. * This needs to be done in a top-down fashion because the load of a child
  1317. * group is a fraction of its parents load.
  1318. */
  1319. static int tg_load_down(struct task_group *tg, void *data)
  1320. {
  1321. unsigned long load;
  1322. long cpu = (long)data;
  1323. if (!tg->parent) {
  1324. load = cpu_rq(cpu)->load.weight;
  1325. } else {
  1326. load = tg->parent->cfs_rq[cpu]->h_load;
  1327. load *= tg->se[cpu]->load.weight;
  1328. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1329. }
  1330. tg->cfs_rq[cpu]->h_load = load;
  1331. return 0;
  1332. }
  1333. static void update_h_load(long cpu)
  1334. {
  1335. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1336. }
  1337. #endif
  1338. #ifdef CONFIG_PREEMPT
  1339. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1340. /*
  1341. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1342. * way at the expense of forcing extra atomic operations in all
  1343. * invocations. This assures that the double_lock is acquired using the
  1344. * same underlying policy as the spinlock_t on this architecture, which
  1345. * reduces latency compared to the unfair variant below. However, it
  1346. * also adds more overhead and therefore may reduce throughput.
  1347. */
  1348. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1349. __releases(this_rq->lock)
  1350. __acquires(busiest->lock)
  1351. __acquires(this_rq->lock)
  1352. {
  1353. raw_spin_unlock(&this_rq->lock);
  1354. double_rq_lock(this_rq, busiest);
  1355. return 1;
  1356. }
  1357. #else
  1358. /*
  1359. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1360. * latency by eliminating extra atomic operations when the locks are
  1361. * already in proper order on entry. This favors lower cpu-ids and will
  1362. * grant the double lock to lower cpus over higher ids under contention,
  1363. * regardless of entry order into the function.
  1364. */
  1365. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1366. __releases(this_rq->lock)
  1367. __acquires(busiest->lock)
  1368. __acquires(this_rq->lock)
  1369. {
  1370. int ret = 0;
  1371. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1372. if (busiest < this_rq) {
  1373. raw_spin_unlock(&this_rq->lock);
  1374. raw_spin_lock(&busiest->lock);
  1375. raw_spin_lock_nested(&this_rq->lock,
  1376. SINGLE_DEPTH_NESTING);
  1377. ret = 1;
  1378. } else
  1379. raw_spin_lock_nested(&busiest->lock,
  1380. SINGLE_DEPTH_NESTING);
  1381. }
  1382. return ret;
  1383. }
  1384. #endif /* CONFIG_PREEMPT */
  1385. /*
  1386. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1387. */
  1388. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1389. {
  1390. if (unlikely(!irqs_disabled())) {
  1391. /* printk() doesn't work good under rq->lock */
  1392. raw_spin_unlock(&this_rq->lock);
  1393. BUG_ON(1);
  1394. }
  1395. return _double_lock_balance(this_rq, busiest);
  1396. }
  1397. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1398. __releases(busiest->lock)
  1399. {
  1400. raw_spin_unlock(&busiest->lock);
  1401. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1402. }
  1403. /*
  1404. * double_rq_lock - safely lock two runqueues
  1405. *
  1406. * Note this does not disable interrupts like task_rq_lock,
  1407. * you need to do so manually before calling.
  1408. */
  1409. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1410. __acquires(rq1->lock)
  1411. __acquires(rq2->lock)
  1412. {
  1413. BUG_ON(!irqs_disabled());
  1414. if (rq1 == rq2) {
  1415. raw_spin_lock(&rq1->lock);
  1416. __acquire(rq2->lock); /* Fake it out ;) */
  1417. } else {
  1418. if (rq1 < rq2) {
  1419. raw_spin_lock(&rq1->lock);
  1420. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1421. } else {
  1422. raw_spin_lock(&rq2->lock);
  1423. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1424. }
  1425. }
  1426. }
  1427. /*
  1428. * double_rq_unlock - safely unlock two runqueues
  1429. *
  1430. * Note this does not restore interrupts like task_rq_unlock,
  1431. * you need to do so manually after calling.
  1432. */
  1433. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1434. __releases(rq1->lock)
  1435. __releases(rq2->lock)
  1436. {
  1437. raw_spin_unlock(&rq1->lock);
  1438. if (rq1 != rq2)
  1439. raw_spin_unlock(&rq2->lock);
  1440. else
  1441. __release(rq2->lock);
  1442. }
  1443. #else /* CONFIG_SMP */
  1444. /*
  1445. * double_rq_lock - safely lock two runqueues
  1446. *
  1447. * Note this does not disable interrupts like task_rq_lock,
  1448. * you need to do so manually before calling.
  1449. */
  1450. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1451. __acquires(rq1->lock)
  1452. __acquires(rq2->lock)
  1453. {
  1454. BUG_ON(!irqs_disabled());
  1455. BUG_ON(rq1 != rq2);
  1456. raw_spin_lock(&rq1->lock);
  1457. __acquire(rq2->lock); /* Fake it out ;) */
  1458. }
  1459. /*
  1460. * double_rq_unlock - safely unlock two runqueues
  1461. *
  1462. * Note this does not restore interrupts like task_rq_unlock,
  1463. * you need to do so manually after calling.
  1464. */
  1465. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1466. __releases(rq1->lock)
  1467. __releases(rq2->lock)
  1468. {
  1469. BUG_ON(rq1 != rq2);
  1470. raw_spin_unlock(&rq1->lock);
  1471. __release(rq2->lock);
  1472. }
  1473. #endif
  1474. static void calc_load_account_idle(struct rq *this_rq);
  1475. static void update_sysctl(void);
  1476. static int get_update_sysctl_factor(void);
  1477. static void update_cpu_load(struct rq *this_rq);
  1478. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1479. {
  1480. set_task_rq(p, cpu);
  1481. #ifdef CONFIG_SMP
  1482. /*
  1483. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1484. * successfuly executed on another CPU. We must ensure that updates of
  1485. * per-task data have been completed by this moment.
  1486. */
  1487. smp_wmb();
  1488. task_thread_info(p)->cpu = cpu;
  1489. #endif
  1490. }
  1491. static const struct sched_class rt_sched_class;
  1492. #define sched_class_highest (&stop_sched_class)
  1493. #define for_each_class(class) \
  1494. for (class = sched_class_highest; class; class = class->next)
  1495. #include "sched_stats.h"
  1496. static void inc_nr_running(struct rq *rq)
  1497. {
  1498. rq->nr_running++;
  1499. }
  1500. static void dec_nr_running(struct rq *rq)
  1501. {
  1502. rq->nr_running--;
  1503. }
  1504. static void set_load_weight(struct task_struct *p)
  1505. {
  1506. int prio = p->static_prio - MAX_RT_PRIO;
  1507. struct load_weight *load = &p->se.load;
  1508. /*
  1509. * SCHED_IDLE tasks get minimal weight:
  1510. */
  1511. if (p->policy == SCHED_IDLE) {
  1512. load->weight = scale_load(WEIGHT_IDLEPRIO);
  1513. load->inv_weight = WMULT_IDLEPRIO;
  1514. return;
  1515. }
  1516. load->weight = scale_load(prio_to_weight[prio]);
  1517. load->inv_weight = prio_to_wmult[prio];
  1518. }
  1519. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1520. {
  1521. update_rq_clock(rq);
  1522. sched_info_queued(p);
  1523. p->sched_class->enqueue_task(rq, p, flags);
  1524. }
  1525. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1526. {
  1527. update_rq_clock(rq);
  1528. sched_info_dequeued(p);
  1529. p->sched_class->dequeue_task(rq, p, flags);
  1530. }
  1531. /*
  1532. * activate_task - move a task to the runqueue.
  1533. */
  1534. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1535. {
  1536. if (task_contributes_to_load(p))
  1537. rq->nr_uninterruptible--;
  1538. enqueue_task(rq, p, flags);
  1539. inc_nr_running(rq);
  1540. }
  1541. /*
  1542. * deactivate_task - remove a task from the runqueue.
  1543. */
  1544. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1545. {
  1546. if (task_contributes_to_load(p))
  1547. rq->nr_uninterruptible++;
  1548. dequeue_task(rq, p, flags);
  1549. dec_nr_running(rq);
  1550. }
  1551. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1552. /*
  1553. * There are no locks covering percpu hardirq/softirq time.
  1554. * They are only modified in account_system_vtime, on corresponding CPU
  1555. * with interrupts disabled. So, writes are safe.
  1556. * They are read and saved off onto struct rq in update_rq_clock().
  1557. * This may result in other CPU reading this CPU's irq time and can
  1558. * race with irq/account_system_vtime on this CPU. We would either get old
  1559. * or new value with a side effect of accounting a slice of irq time to wrong
  1560. * task when irq is in progress while we read rq->clock. That is a worthy
  1561. * compromise in place of having locks on each irq in account_system_time.
  1562. */
  1563. static DEFINE_PER_CPU(u64, cpu_hardirq_time);
  1564. static DEFINE_PER_CPU(u64, cpu_softirq_time);
  1565. static DEFINE_PER_CPU(u64, irq_start_time);
  1566. static int sched_clock_irqtime;
  1567. void enable_sched_clock_irqtime(void)
  1568. {
  1569. sched_clock_irqtime = 1;
  1570. }
  1571. void disable_sched_clock_irqtime(void)
  1572. {
  1573. sched_clock_irqtime = 0;
  1574. }
  1575. #ifndef CONFIG_64BIT
  1576. static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
  1577. static inline void irq_time_write_begin(void)
  1578. {
  1579. __this_cpu_inc(irq_time_seq.sequence);
  1580. smp_wmb();
  1581. }
  1582. static inline void irq_time_write_end(void)
  1583. {
  1584. smp_wmb();
  1585. __this_cpu_inc(irq_time_seq.sequence);
  1586. }
  1587. static inline u64 irq_time_read(int cpu)
  1588. {
  1589. u64 irq_time;
  1590. unsigned seq;
  1591. do {
  1592. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  1593. irq_time = per_cpu(cpu_softirq_time, cpu) +
  1594. per_cpu(cpu_hardirq_time, cpu);
  1595. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  1596. return irq_time;
  1597. }
  1598. #else /* CONFIG_64BIT */
  1599. static inline void irq_time_write_begin(void)
  1600. {
  1601. }
  1602. static inline void irq_time_write_end(void)
  1603. {
  1604. }
  1605. static inline u64 irq_time_read(int cpu)
  1606. {
  1607. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  1608. }
  1609. #endif /* CONFIG_64BIT */
  1610. /*
  1611. * Called before incrementing preempt_count on {soft,}irq_enter
  1612. * and before decrementing preempt_count on {soft,}irq_exit.
  1613. */
  1614. void account_system_vtime(struct task_struct *curr)
  1615. {
  1616. unsigned long flags;
  1617. s64 delta;
  1618. int cpu;
  1619. if (!sched_clock_irqtime)
  1620. return;
  1621. local_irq_save(flags);
  1622. cpu = smp_processor_id();
  1623. delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
  1624. __this_cpu_add(irq_start_time, delta);
  1625. irq_time_write_begin();
  1626. /*
  1627. * We do not account for softirq time from ksoftirqd here.
  1628. * We want to continue accounting softirq time to ksoftirqd thread
  1629. * in that case, so as not to confuse scheduler with a special task
  1630. * that do not consume any time, but still wants to run.
  1631. */
  1632. if (hardirq_count())
  1633. __this_cpu_add(cpu_hardirq_time, delta);
  1634. else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
  1635. __this_cpu_add(cpu_softirq_time, delta);
  1636. irq_time_write_end();
  1637. local_irq_restore(flags);
  1638. }
  1639. EXPORT_SYMBOL_GPL(account_system_vtime);
  1640. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1641. {
  1642. s64 irq_delta;
  1643. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  1644. /*
  1645. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  1646. * this case when a previous update_rq_clock() happened inside a
  1647. * {soft,}irq region.
  1648. *
  1649. * When this happens, we stop ->clock_task and only update the
  1650. * prev_irq_time stamp to account for the part that fit, so that a next
  1651. * update will consume the rest. This ensures ->clock_task is
  1652. * monotonic.
  1653. *
  1654. * It does however cause some slight miss-attribution of {soft,}irq
  1655. * time, a more accurate solution would be to update the irq_time using
  1656. * the current rq->clock timestamp, except that would require using
  1657. * atomic ops.
  1658. */
  1659. if (irq_delta > delta)
  1660. irq_delta = delta;
  1661. rq->prev_irq_time += irq_delta;
  1662. delta -= irq_delta;
  1663. rq->clock_task += delta;
  1664. if (irq_delta && sched_feat(NONIRQ_POWER))
  1665. sched_rt_avg_update(rq, irq_delta);
  1666. }
  1667. static int irqtime_account_hi_update(void)
  1668. {
  1669. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1670. unsigned long flags;
  1671. u64 latest_ns;
  1672. int ret = 0;
  1673. local_irq_save(flags);
  1674. latest_ns = this_cpu_read(cpu_hardirq_time);
  1675. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
  1676. ret = 1;
  1677. local_irq_restore(flags);
  1678. return ret;
  1679. }
  1680. static int irqtime_account_si_update(void)
  1681. {
  1682. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1683. unsigned long flags;
  1684. u64 latest_ns;
  1685. int ret = 0;
  1686. local_irq_save(flags);
  1687. latest_ns = this_cpu_read(cpu_softirq_time);
  1688. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
  1689. ret = 1;
  1690. local_irq_restore(flags);
  1691. return ret;
  1692. }
  1693. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  1694. #define sched_clock_irqtime (0)
  1695. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1696. {
  1697. rq->clock_task += delta;
  1698. }
  1699. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  1700. #include "sched_idletask.c"
  1701. #include "sched_fair.c"
  1702. #include "sched_rt.c"
  1703. #include "sched_autogroup.c"
  1704. #include "sched_stoptask.c"
  1705. #ifdef CONFIG_SCHED_DEBUG
  1706. # include "sched_debug.c"
  1707. #endif
  1708. void sched_set_stop_task(int cpu, struct task_struct *stop)
  1709. {
  1710. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  1711. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  1712. if (stop) {
  1713. /*
  1714. * Make it appear like a SCHED_FIFO task, its something
  1715. * userspace knows about and won't get confused about.
  1716. *
  1717. * Also, it will make PI more or less work without too
  1718. * much confusion -- but then, stop work should not
  1719. * rely on PI working anyway.
  1720. */
  1721. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  1722. stop->sched_class = &stop_sched_class;
  1723. }
  1724. cpu_rq(cpu)->stop = stop;
  1725. if (old_stop) {
  1726. /*
  1727. * Reset it back to a normal scheduling class so that
  1728. * it can die in pieces.
  1729. */
  1730. old_stop->sched_class = &rt_sched_class;
  1731. }
  1732. }
  1733. /*
  1734. * __normal_prio - return the priority that is based on the static prio
  1735. */
  1736. static inline int __normal_prio(struct task_struct *p)
  1737. {
  1738. return p->static_prio;
  1739. }
  1740. /*
  1741. * Calculate the expected normal priority: i.e. priority
  1742. * without taking RT-inheritance into account. Might be
  1743. * boosted by interactivity modifiers. Changes upon fork,
  1744. * setprio syscalls, and whenever the interactivity
  1745. * estimator recalculates.
  1746. */
  1747. static inline int normal_prio(struct task_struct *p)
  1748. {
  1749. int prio;
  1750. if (task_has_rt_policy(p))
  1751. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1752. else
  1753. prio = __normal_prio(p);
  1754. return prio;
  1755. }
  1756. /*
  1757. * Calculate the current priority, i.e. the priority
  1758. * taken into account by the scheduler. This value might
  1759. * be boosted by RT tasks, or might be boosted by
  1760. * interactivity modifiers. Will be RT if the task got
  1761. * RT-boosted. If not then it returns p->normal_prio.
  1762. */
  1763. static int effective_prio(struct task_struct *p)
  1764. {
  1765. p->normal_prio = normal_prio(p);
  1766. /*
  1767. * If we are RT tasks or we were boosted to RT priority,
  1768. * keep the priority unchanged. Otherwise, update priority
  1769. * to the normal priority:
  1770. */
  1771. if (!rt_prio(p->prio))
  1772. return p->normal_prio;
  1773. return p->prio;
  1774. }
  1775. /**
  1776. * task_curr - is this task currently executing on a CPU?
  1777. * @p: the task in question.
  1778. */
  1779. inline int task_curr(const struct task_struct *p)
  1780. {
  1781. return cpu_curr(task_cpu(p)) == p;
  1782. }
  1783. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1784. const struct sched_class *prev_class,
  1785. int oldprio)
  1786. {
  1787. if (prev_class != p->sched_class) {
  1788. if (prev_class->switched_from)
  1789. prev_class->switched_from(rq, p);
  1790. p->sched_class->switched_to(rq, p);
  1791. } else if (oldprio != p->prio)
  1792. p->sched_class->prio_changed(rq, p, oldprio);
  1793. }
  1794. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  1795. {
  1796. const struct sched_class *class;
  1797. if (p->sched_class == rq->curr->sched_class) {
  1798. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  1799. } else {
  1800. for_each_class(class) {
  1801. if (class == rq->curr->sched_class)
  1802. break;
  1803. if (class == p->sched_class) {
  1804. resched_task(rq->curr);
  1805. break;
  1806. }
  1807. }
  1808. }
  1809. /*
  1810. * A queue event has occurred, and we're going to schedule. In
  1811. * this case, we can save a useless back to back clock update.
  1812. */
  1813. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  1814. rq->skip_clock_update = 1;
  1815. }
  1816. #ifdef CONFIG_SMP
  1817. /*
  1818. * Is this task likely cache-hot:
  1819. */
  1820. static int
  1821. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1822. {
  1823. s64 delta;
  1824. if (p->sched_class != &fair_sched_class)
  1825. return 0;
  1826. if (unlikely(p->policy == SCHED_IDLE))
  1827. return 0;
  1828. /*
  1829. * Buddy candidates are cache hot:
  1830. */
  1831. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1832. (&p->se == cfs_rq_of(&p->se)->next ||
  1833. &p->se == cfs_rq_of(&p->se)->last))
  1834. return 1;
  1835. if (sysctl_sched_migration_cost == -1)
  1836. return 1;
  1837. if (sysctl_sched_migration_cost == 0)
  1838. return 0;
  1839. delta = now - p->se.exec_start;
  1840. return delta < (s64)sysctl_sched_migration_cost;
  1841. }
  1842. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1843. {
  1844. #ifdef CONFIG_SCHED_DEBUG
  1845. /*
  1846. * We should never call set_task_cpu() on a blocked task,
  1847. * ttwu() will sort out the placement.
  1848. */
  1849. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1850. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1851. #ifdef CONFIG_LOCKDEP
  1852. /*
  1853. * The caller should hold either p->pi_lock or rq->lock, when changing
  1854. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  1855. *
  1856. * sched_move_task() holds both and thus holding either pins the cgroup,
  1857. * see set_task_rq().
  1858. *
  1859. * Furthermore, all task_rq users should acquire both locks, see
  1860. * task_rq_lock().
  1861. */
  1862. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  1863. lockdep_is_held(&task_rq(p)->lock)));
  1864. #endif
  1865. #endif
  1866. trace_sched_migrate_task(p, new_cpu);
  1867. if (task_cpu(p) != new_cpu) {
  1868. p->se.nr_migrations++;
  1869. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1870. }
  1871. __set_task_cpu(p, new_cpu);
  1872. }
  1873. struct migration_arg {
  1874. struct task_struct *task;
  1875. int dest_cpu;
  1876. };
  1877. static int migration_cpu_stop(void *data);
  1878. /*
  1879. * wait_task_inactive - wait for a thread to unschedule.
  1880. *
  1881. * If @match_state is nonzero, it's the @p->state value just checked and
  1882. * not expected to change. If it changes, i.e. @p might have woken up,
  1883. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1884. * we return a positive number (its total switch count). If a second call
  1885. * a short while later returns the same number, the caller can be sure that
  1886. * @p has remained unscheduled the whole time.
  1887. *
  1888. * The caller must ensure that the task *will* unschedule sometime soon,
  1889. * else this function might spin for a *long* time. This function can't
  1890. * be called with interrupts off, or it may introduce deadlock with
  1891. * smp_call_function() if an IPI is sent by the same process we are
  1892. * waiting to become inactive.
  1893. */
  1894. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1895. {
  1896. unsigned long flags;
  1897. int running, on_rq;
  1898. unsigned long ncsw;
  1899. struct rq *rq;
  1900. for (;;) {
  1901. /*
  1902. * We do the initial early heuristics without holding
  1903. * any task-queue locks at all. We'll only try to get
  1904. * the runqueue lock when things look like they will
  1905. * work out!
  1906. */
  1907. rq = task_rq(p);
  1908. /*
  1909. * If the task is actively running on another CPU
  1910. * still, just relax and busy-wait without holding
  1911. * any locks.
  1912. *
  1913. * NOTE! Since we don't hold any locks, it's not
  1914. * even sure that "rq" stays as the right runqueue!
  1915. * But we don't care, since "task_running()" will
  1916. * return false if the runqueue has changed and p
  1917. * is actually now running somewhere else!
  1918. */
  1919. while (task_running(rq, p)) {
  1920. if (match_state && unlikely(p->state != match_state))
  1921. return 0;
  1922. cpu_relax();
  1923. }
  1924. /*
  1925. * Ok, time to look more closely! We need the rq
  1926. * lock now, to be *sure*. If we're wrong, we'll
  1927. * just go back and repeat.
  1928. */
  1929. rq = task_rq_lock(p, &flags);
  1930. trace_sched_wait_task(p);
  1931. running = task_running(rq, p);
  1932. on_rq = p->on_rq;
  1933. ncsw = 0;
  1934. if (!match_state || p->state == match_state)
  1935. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1936. task_rq_unlock(rq, p, &flags);
  1937. /*
  1938. * If it changed from the expected state, bail out now.
  1939. */
  1940. if (unlikely(!ncsw))
  1941. break;
  1942. /*
  1943. * Was it really running after all now that we
  1944. * checked with the proper locks actually held?
  1945. *
  1946. * Oops. Go back and try again..
  1947. */
  1948. if (unlikely(running)) {
  1949. cpu_relax();
  1950. continue;
  1951. }
  1952. /*
  1953. * It's not enough that it's not actively running,
  1954. * it must be off the runqueue _entirely_, and not
  1955. * preempted!
  1956. *
  1957. * So if it was still runnable (but just not actively
  1958. * running right now), it's preempted, and we should
  1959. * yield - it could be a while.
  1960. */
  1961. if (unlikely(on_rq)) {
  1962. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1963. set_current_state(TASK_UNINTERRUPTIBLE);
  1964. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1965. continue;
  1966. }
  1967. /*
  1968. * Ahh, all good. It wasn't running, and it wasn't
  1969. * runnable, which means that it will never become
  1970. * running in the future either. We're all done!
  1971. */
  1972. break;
  1973. }
  1974. return ncsw;
  1975. }
  1976. /***
  1977. * kick_process - kick a running thread to enter/exit the kernel
  1978. * @p: the to-be-kicked thread
  1979. *
  1980. * Cause a process which is running on another CPU to enter
  1981. * kernel-mode, without any delay. (to get signals handled.)
  1982. *
  1983. * NOTE: this function doesn't have to take the runqueue lock,
  1984. * because all it wants to ensure is that the remote task enters
  1985. * the kernel. If the IPI races and the task has been migrated
  1986. * to another CPU then no harm is done and the purpose has been
  1987. * achieved as well.
  1988. */
  1989. void kick_process(struct task_struct *p)
  1990. {
  1991. int cpu;
  1992. preempt_disable();
  1993. cpu = task_cpu(p);
  1994. if ((cpu != smp_processor_id()) && task_curr(p))
  1995. smp_send_reschedule(cpu);
  1996. preempt_enable();
  1997. }
  1998. EXPORT_SYMBOL_GPL(kick_process);
  1999. #endif /* CONFIG_SMP */
  2000. #ifdef CONFIG_SMP
  2001. /*
  2002. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  2003. */
  2004. static int select_fallback_rq(int cpu, struct task_struct *p)
  2005. {
  2006. int dest_cpu;
  2007. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  2008. /* Look for allowed, online CPU in same node. */
  2009. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  2010. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  2011. return dest_cpu;
  2012. /* Any allowed, online CPU? */
  2013. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  2014. if (dest_cpu < nr_cpu_ids)
  2015. return dest_cpu;
  2016. /* No more Mr. Nice Guy. */
  2017. dest_cpu = cpuset_cpus_allowed_fallback(p);
  2018. /*
  2019. * Don't tell them about moving exiting tasks or
  2020. * kernel threads (both mm NULL), since they never
  2021. * leave kernel.
  2022. */
  2023. if (p->mm && printk_ratelimit()) {
  2024. printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
  2025. task_pid_nr(p), p->comm, cpu);
  2026. }
  2027. return dest_cpu;
  2028. }
  2029. /*
  2030. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  2031. */
  2032. static inline
  2033. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  2034. {
  2035. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  2036. /*
  2037. * In order not to call set_task_cpu() on a blocking task we need
  2038. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  2039. * cpu.
  2040. *
  2041. * Since this is common to all placement strategies, this lives here.
  2042. *
  2043. * [ this allows ->select_task() to simply return task_cpu(p) and
  2044. * not worry about this generic constraint ]
  2045. */
  2046. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  2047. !cpu_online(cpu)))
  2048. cpu = select_fallback_rq(task_cpu(p), p);
  2049. return cpu;
  2050. }
  2051. static void update_avg(u64 *avg, u64 sample)
  2052. {
  2053. s64 diff = sample - *avg;
  2054. *avg += diff >> 3;
  2055. }
  2056. #endif
  2057. static void
  2058. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  2059. {
  2060. #ifdef CONFIG_SCHEDSTATS
  2061. struct rq *rq = this_rq();
  2062. #ifdef CONFIG_SMP
  2063. int this_cpu = smp_processor_id();
  2064. if (cpu == this_cpu) {
  2065. schedstat_inc(rq, ttwu_local);
  2066. schedstat_inc(p, se.statistics.nr_wakeups_local);
  2067. } else {
  2068. struct sched_domain *sd;
  2069. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  2070. rcu_read_lock();
  2071. for_each_domain(this_cpu, sd) {
  2072. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2073. schedstat_inc(sd, ttwu_wake_remote);
  2074. break;
  2075. }
  2076. }
  2077. rcu_read_unlock();
  2078. }
  2079. if (wake_flags & WF_MIGRATED)
  2080. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  2081. #endif /* CONFIG_SMP */
  2082. schedstat_inc(rq, ttwu_count);
  2083. schedstat_inc(p, se.statistics.nr_wakeups);
  2084. if (wake_flags & WF_SYNC)
  2085. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  2086. #endif /* CONFIG_SCHEDSTATS */
  2087. }
  2088. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  2089. {
  2090. activate_task(rq, p, en_flags);
  2091. p->on_rq = 1;
  2092. /* if a worker is waking up, notify workqueue */
  2093. if (p->flags & PF_WQ_WORKER)
  2094. wq_worker_waking_up(p, cpu_of(rq));
  2095. }
  2096. /*
  2097. * Mark the task runnable and perform wakeup-preemption.
  2098. */
  2099. static void
  2100. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  2101. {
  2102. trace_sched_wakeup(p, true);
  2103. check_preempt_curr(rq, p, wake_flags);
  2104. p->state = TASK_RUNNING;
  2105. #ifdef CONFIG_SMP
  2106. if (p->sched_class->task_woken)
  2107. p->sched_class->task_woken(rq, p);
  2108. if (unlikely(rq->idle_stamp)) {
  2109. u64 delta = rq->clock - rq->idle_stamp;
  2110. u64 max = 2*sysctl_sched_migration_cost;
  2111. if (delta > max)
  2112. rq->avg_idle = max;
  2113. else
  2114. update_avg(&rq->avg_idle, delta);
  2115. rq->idle_stamp = 0;
  2116. }
  2117. #endif
  2118. }
  2119. static void
  2120. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  2121. {
  2122. #ifdef CONFIG_SMP
  2123. if (p->sched_contributes_to_load)
  2124. rq->nr_uninterruptible--;
  2125. #endif
  2126. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  2127. ttwu_do_wakeup(rq, p, wake_flags);
  2128. }
  2129. /*
  2130. * Called in case the task @p isn't fully descheduled from its runqueue,
  2131. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  2132. * since all we need to do is flip p->state to TASK_RUNNING, since
  2133. * the task is still ->on_rq.
  2134. */
  2135. static int ttwu_remote(struct task_struct *p, int wake_flags)
  2136. {
  2137. struct rq *rq;
  2138. int ret = 0;
  2139. rq = __task_rq_lock(p);
  2140. if (p->on_rq) {
  2141. ttwu_do_wakeup(rq, p, wake_flags);
  2142. ret = 1;
  2143. }
  2144. __task_rq_unlock(rq);
  2145. return ret;
  2146. }
  2147. #ifdef CONFIG_SMP
  2148. static void sched_ttwu_pending(void)
  2149. {
  2150. struct rq *rq = this_rq();
  2151. struct task_struct *list = xchg(&rq->wake_list, NULL);
  2152. if (!list)
  2153. return;
  2154. raw_spin_lock(&rq->lock);
  2155. while (list) {
  2156. struct task_struct *p = list;
  2157. list = list->wake_entry;
  2158. ttwu_do_activate(rq, p, 0);
  2159. }
  2160. raw_spin_unlock(&rq->lock);
  2161. }
  2162. void scheduler_ipi(void)
  2163. {
  2164. sched_ttwu_pending();
  2165. }
  2166. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  2167. {
  2168. struct rq *rq = cpu_rq(cpu);
  2169. struct task_struct *next = rq->wake_list;
  2170. for (;;) {
  2171. struct task_struct *old = next;
  2172. p->wake_entry = next;
  2173. next = cmpxchg(&rq->wake_list, old, p);
  2174. if (next == old)
  2175. break;
  2176. }
  2177. if (!next)
  2178. smp_send_reschedule(cpu);
  2179. }
  2180. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2181. static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
  2182. {
  2183. struct rq *rq;
  2184. int ret = 0;
  2185. rq = __task_rq_lock(p);
  2186. if (p->on_cpu) {
  2187. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  2188. ttwu_do_wakeup(rq, p, wake_flags);
  2189. ret = 1;
  2190. }
  2191. __task_rq_unlock(rq);
  2192. return ret;
  2193. }
  2194. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2195. #endif /* CONFIG_SMP */
  2196. static void ttwu_queue(struct task_struct *p, int cpu)
  2197. {
  2198. struct rq *rq = cpu_rq(cpu);
  2199. #if defined(CONFIG_SMP)
  2200. if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
  2201. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  2202. ttwu_queue_remote(p, cpu);
  2203. return;
  2204. }
  2205. #endif
  2206. raw_spin_lock(&rq->lock);
  2207. ttwu_do_activate(rq, p, 0);
  2208. raw_spin_unlock(&rq->lock);
  2209. }
  2210. /**
  2211. * try_to_wake_up - wake up a thread
  2212. * @p: the thread to be awakened
  2213. * @state: the mask of task states that can be woken
  2214. * @wake_flags: wake modifier flags (WF_*)
  2215. *
  2216. * Put it on the run-queue if it's not already there. The "current"
  2217. * thread is always on the run-queue (except when the actual
  2218. * re-schedule is in progress), and as such you're allowed to do
  2219. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2220. * runnable without the overhead of this.
  2221. *
  2222. * Returns %true if @p was woken up, %false if it was already running
  2223. * or @state didn't match @p's state.
  2224. */
  2225. static int
  2226. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  2227. {
  2228. unsigned long flags;
  2229. int cpu, success = 0;
  2230. smp_wmb();
  2231. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2232. if (!(p->state & state))
  2233. goto out;
  2234. success = 1; /* we're going to change ->state */
  2235. cpu = task_cpu(p);
  2236. if (p->on_rq && ttwu_remote(p, wake_flags))
  2237. goto stat;
  2238. #ifdef CONFIG_SMP
  2239. /*
  2240. * If the owning (remote) cpu is still in the middle of schedule() with
  2241. * this task as prev, wait until its done referencing the task.
  2242. */
  2243. while (p->on_cpu) {
  2244. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2245. /*
  2246. * In case the architecture enables interrupts in
  2247. * context_switch(), we cannot busy wait, since that
  2248. * would lead to deadlocks when an interrupt hits and
  2249. * tries to wake up @prev. So bail and do a complete
  2250. * remote wakeup.
  2251. */
  2252. if (ttwu_activate_remote(p, wake_flags))
  2253. goto stat;
  2254. #else
  2255. cpu_relax();
  2256. #endif
  2257. }
  2258. /*
  2259. * Pairs with the smp_wmb() in finish_lock_switch().
  2260. */
  2261. smp_rmb();
  2262. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  2263. p->state = TASK_WAKING;
  2264. if (p->sched_class->task_waking)
  2265. p->sched_class->task_waking(p);
  2266. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  2267. if (task_cpu(p) != cpu) {
  2268. wake_flags |= WF_MIGRATED;
  2269. set_task_cpu(p, cpu);
  2270. }
  2271. #endif /* CONFIG_SMP */
  2272. ttwu_queue(p, cpu);
  2273. stat:
  2274. ttwu_stat(p, cpu, wake_flags);
  2275. out:
  2276. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2277. return success;
  2278. }
  2279. /**
  2280. * try_to_wake_up_local - try to wake up a local task with rq lock held
  2281. * @p: the thread to be awakened
  2282. *
  2283. * Put @p on the run-queue if it's not already there. The caller must
  2284. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  2285. * the current task.
  2286. */
  2287. static void try_to_wake_up_local(struct task_struct *p)
  2288. {
  2289. struct rq *rq = task_rq(p);
  2290. BUG_ON(rq != this_rq());
  2291. BUG_ON(p == current);
  2292. lockdep_assert_held(&rq->lock);
  2293. if (!raw_spin_trylock(&p->pi_lock)) {
  2294. raw_spin_unlock(&rq->lock);
  2295. raw_spin_lock(&p->pi_lock);
  2296. raw_spin_lock(&rq->lock);
  2297. }
  2298. if (!(p->state & TASK_NORMAL))
  2299. goto out;
  2300. if (!p->on_rq)
  2301. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  2302. ttwu_do_wakeup(rq, p, 0);
  2303. ttwu_stat(p, smp_processor_id(), 0);
  2304. out:
  2305. raw_spin_unlock(&p->pi_lock);
  2306. }
  2307. /**
  2308. * wake_up_process - Wake up a specific process
  2309. * @p: The process to be woken up.
  2310. *
  2311. * Attempt to wake up the nominated process and move it to the set of runnable
  2312. * processes. Returns 1 if the process was woken up, 0 if it was already
  2313. * running.
  2314. *
  2315. * It may be assumed that this function implies a write memory barrier before
  2316. * changing the task state if and only if any tasks are woken up.
  2317. */
  2318. int wake_up_process(struct task_struct *p)
  2319. {
  2320. return try_to_wake_up(p, TASK_ALL, 0);
  2321. }
  2322. EXPORT_SYMBOL(wake_up_process);
  2323. int wake_up_state(struct task_struct *p, unsigned int state)
  2324. {
  2325. return try_to_wake_up(p, state, 0);
  2326. }
  2327. /*
  2328. * Perform scheduler related setup for a newly forked process p.
  2329. * p is forked by current.
  2330. *
  2331. * __sched_fork() is basic setup used by init_idle() too:
  2332. */
  2333. static void __sched_fork(struct task_struct *p)
  2334. {
  2335. p->on_rq = 0;
  2336. p->se.on_rq = 0;
  2337. p->se.exec_start = 0;
  2338. p->se.sum_exec_runtime = 0;
  2339. p->se.prev_sum_exec_runtime = 0;
  2340. p->se.nr_migrations = 0;
  2341. p->se.vruntime = 0;
  2342. INIT_LIST_HEAD(&p->se.group_node);
  2343. #ifdef CONFIG_SCHEDSTATS
  2344. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2345. #endif
  2346. INIT_LIST_HEAD(&p->rt.run_list);
  2347. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2348. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2349. #endif
  2350. }
  2351. /*
  2352. * fork()/clone()-time setup:
  2353. */
  2354. void sched_fork(struct task_struct *p)
  2355. {
  2356. unsigned long flags;
  2357. int cpu = get_cpu();
  2358. __sched_fork(p);
  2359. /*
  2360. * We mark the process as running here. This guarantees that
  2361. * nobody will actually run it, and a signal or other external
  2362. * event cannot wake it up and insert it on the runqueue either.
  2363. */
  2364. p->state = TASK_RUNNING;
  2365. /*
  2366. * Revert to default priority/policy on fork if requested.
  2367. */
  2368. if (unlikely(p->sched_reset_on_fork)) {
  2369. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2370. p->policy = SCHED_NORMAL;
  2371. p->normal_prio = p->static_prio;
  2372. }
  2373. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2374. p->static_prio = NICE_TO_PRIO(0);
  2375. p->normal_prio = p->static_prio;
  2376. set_load_weight(p);
  2377. }
  2378. /*
  2379. * We don't need the reset flag anymore after the fork. It has
  2380. * fulfilled its duty:
  2381. */
  2382. p->sched_reset_on_fork = 0;
  2383. }
  2384. /*
  2385. * Make sure we do not leak PI boosting priority to the child.
  2386. */
  2387. p->prio = current->normal_prio;
  2388. if (!rt_prio(p->prio))
  2389. p->sched_class = &fair_sched_class;
  2390. if (p->sched_class->task_fork)
  2391. p->sched_class->task_fork(p);
  2392. /*
  2393. * The child is not yet in the pid-hash so no cgroup attach races,
  2394. * and the cgroup is pinned to this child due to cgroup_fork()
  2395. * is ran before sched_fork().
  2396. *
  2397. * Silence PROVE_RCU.
  2398. */
  2399. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2400. set_task_cpu(p, cpu);
  2401. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2402. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2403. if (likely(sched_info_on()))
  2404. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2405. #endif
  2406. #if defined(CONFIG_SMP)
  2407. p->on_cpu = 0;
  2408. #endif
  2409. #ifdef CONFIG_PREEMPT
  2410. /* Want to start with kernel preemption disabled. */
  2411. task_thread_info(p)->preempt_count = 1;
  2412. #endif
  2413. #ifdef CONFIG_SMP
  2414. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2415. #endif
  2416. put_cpu();
  2417. }
  2418. /*
  2419. * wake_up_new_task - wake up a newly created task for the first time.
  2420. *
  2421. * This function will do some initial scheduler statistics housekeeping
  2422. * that must be done for every newly created context, then puts the task
  2423. * on the runqueue and wakes it.
  2424. */
  2425. void wake_up_new_task(struct task_struct *p)
  2426. {
  2427. unsigned long flags;
  2428. struct rq *rq;
  2429. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2430. #ifdef CONFIG_SMP
  2431. /*
  2432. * Fork balancing, do it here and not earlier because:
  2433. * - cpus_allowed can change in the fork path
  2434. * - any previously selected cpu might disappear through hotplug
  2435. */
  2436. set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
  2437. #endif
  2438. rq = __task_rq_lock(p);
  2439. activate_task(rq, p, 0);
  2440. p->on_rq = 1;
  2441. trace_sched_wakeup_new(p, true);
  2442. check_preempt_curr(rq, p, WF_FORK);
  2443. #ifdef CONFIG_SMP
  2444. if (p->sched_class->task_woken)
  2445. p->sched_class->task_woken(rq, p);
  2446. #endif
  2447. task_rq_unlock(rq, p, &flags);
  2448. }
  2449. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2450. /**
  2451. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2452. * @notifier: notifier struct to register
  2453. */
  2454. void preempt_notifier_register(struct preempt_notifier *notifier)
  2455. {
  2456. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2457. }
  2458. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2459. /**
  2460. * preempt_notifier_unregister - no longer interested in preemption notifications
  2461. * @notifier: notifier struct to unregister
  2462. *
  2463. * This is safe to call from within a preemption notifier.
  2464. */
  2465. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2466. {
  2467. hlist_del(&notifier->link);
  2468. }
  2469. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2470. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2471. {
  2472. struct preempt_notifier *notifier;
  2473. struct hlist_node *node;
  2474. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2475. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2476. }
  2477. static void
  2478. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2479. struct task_struct *next)
  2480. {
  2481. struct preempt_notifier *notifier;
  2482. struct hlist_node *node;
  2483. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2484. notifier->ops->sched_out(notifier, next);
  2485. }
  2486. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2487. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2488. {
  2489. }
  2490. static void
  2491. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2492. struct task_struct *next)
  2493. {
  2494. }
  2495. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2496. /**
  2497. * prepare_task_switch - prepare to switch tasks
  2498. * @rq: the runqueue preparing to switch
  2499. * @prev: the current task that is being switched out
  2500. * @next: the task we are going to switch to.
  2501. *
  2502. * This is called with the rq lock held and interrupts off. It must
  2503. * be paired with a subsequent finish_task_switch after the context
  2504. * switch.
  2505. *
  2506. * prepare_task_switch sets up locking and calls architecture specific
  2507. * hooks.
  2508. */
  2509. static inline void
  2510. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2511. struct task_struct *next)
  2512. {
  2513. sched_info_switch(prev, next);
  2514. perf_event_task_sched_out(prev, next);
  2515. fire_sched_out_preempt_notifiers(prev, next);
  2516. prepare_lock_switch(rq, next);
  2517. prepare_arch_switch(next);
  2518. trace_sched_switch(prev, next);
  2519. }
  2520. /**
  2521. * finish_task_switch - clean up after a task-switch
  2522. * @rq: runqueue associated with task-switch
  2523. * @prev: the thread we just switched away from.
  2524. *
  2525. * finish_task_switch must be called after the context switch, paired
  2526. * with a prepare_task_switch call before the context switch.
  2527. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2528. * and do any other architecture-specific cleanup actions.
  2529. *
  2530. * Note that we may have delayed dropping an mm in context_switch(). If
  2531. * so, we finish that here outside of the runqueue lock. (Doing it
  2532. * with the lock held can cause deadlocks; see schedule() for
  2533. * details.)
  2534. */
  2535. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2536. __releases(rq->lock)
  2537. {
  2538. struct mm_struct *mm = rq->prev_mm;
  2539. long prev_state;
  2540. rq->prev_mm = NULL;
  2541. /*
  2542. * A task struct has one reference for the use as "current".
  2543. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2544. * schedule one last time. The schedule call will never return, and
  2545. * the scheduled task must drop that reference.
  2546. * The test for TASK_DEAD must occur while the runqueue locks are
  2547. * still held, otherwise prev could be scheduled on another cpu, die
  2548. * there before we look at prev->state, and then the reference would
  2549. * be dropped twice.
  2550. * Manfred Spraul <manfred@colorfullife.com>
  2551. */
  2552. prev_state = prev->state;
  2553. finish_arch_switch(prev);
  2554. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2555. local_irq_disable();
  2556. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2557. perf_event_task_sched_in(current);
  2558. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2559. local_irq_enable();
  2560. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2561. finish_lock_switch(rq, prev);
  2562. fire_sched_in_preempt_notifiers(current);
  2563. if (mm)
  2564. mmdrop(mm);
  2565. if (unlikely(prev_state == TASK_DEAD)) {
  2566. /*
  2567. * Remove function-return probe instances associated with this
  2568. * task and put them back on the free list.
  2569. */
  2570. kprobe_flush_task(prev);
  2571. put_task_struct(prev);
  2572. }
  2573. }
  2574. #ifdef CONFIG_SMP
  2575. /* assumes rq->lock is held */
  2576. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2577. {
  2578. if (prev->sched_class->pre_schedule)
  2579. prev->sched_class->pre_schedule(rq, prev);
  2580. }
  2581. /* rq->lock is NOT held, but preemption is disabled */
  2582. static inline void post_schedule(struct rq *rq)
  2583. {
  2584. if (rq->post_schedule) {
  2585. unsigned long flags;
  2586. raw_spin_lock_irqsave(&rq->lock, flags);
  2587. if (rq->curr->sched_class->post_schedule)
  2588. rq->curr->sched_class->post_schedule(rq);
  2589. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2590. rq->post_schedule = 0;
  2591. }
  2592. }
  2593. #else
  2594. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2595. {
  2596. }
  2597. static inline void post_schedule(struct rq *rq)
  2598. {
  2599. }
  2600. #endif
  2601. /**
  2602. * schedule_tail - first thing a freshly forked thread must call.
  2603. * @prev: the thread we just switched away from.
  2604. */
  2605. asmlinkage void schedule_tail(struct task_struct *prev)
  2606. __releases(rq->lock)
  2607. {
  2608. struct rq *rq = this_rq();
  2609. finish_task_switch(rq, prev);
  2610. /*
  2611. * FIXME: do we need to worry about rq being invalidated by the
  2612. * task_switch?
  2613. */
  2614. post_schedule(rq);
  2615. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2616. /* In this case, finish_task_switch does not reenable preemption */
  2617. preempt_enable();
  2618. #endif
  2619. if (current->set_child_tid)
  2620. put_user(task_pid_vnr(current), current->set_child_tid);
  2621. }
  2622. /*
  2623. * context_switch - switch to the new MM and the new
  2624. * thread's register state.
  2625. */
  2626. static inline void
  2627. context_switch(struct rq *rq, struct task_struct *prev,
  2628. struct task_struct *next)
  2629. {
  2630. struct mm_struct *mm, *oldmm;
  2631. prepare_task_switch(rq, prev, next);
  2632. mm = next->mm;
  2633. oldmm = prev->active_mm;
  2634. /*
  2635. * For paravirt, this is coupled with an exit in switch_to to
  2636. * combine the page table reload and the switch backend into
  2637. * one hypercall.
  2638. */
  2639. arch_start_context_switch(prev);
  2640. if (!mm) {
  2641. next->active_mm = oldmm;
  2642. atomic_inc(&oldmm->mm_count);
  2643. enter_lazy_tlb(oldmm, next);
  2644. } else
  2645. switch_mm(oldmm, mm, next);
  2646. if (!prev->mm) {
  2647. prev->active_mm = NULL;
  2648. rq->prev_mm = oldmm;
  2649. }
  2650. /*
  2651. * Since the runqueue lock will be released by the next
  2652. * task (which is an invalid locking op but in the case
  2653. * of the scheduler it's an obvious special-case), so we
  2654. * do an early lockdep release here:
  2655. */
  2656. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2657. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2658. #endif
  2659. /* Here we just switch the register state and the stack. */
  2660. switch_to(prev, next, prev);
  2661. barrier();
  2662. /*
  2663. * this_rq must be evaluated again because prev may have moved
  2664. * CPUs since it called schedule(), thus the 'rq' on its stack
  2665. * frame will be invalid.
  2666. */
  2667. finish_task_switch(this_rq(), prev);
  2668. }
  2669. /*
  2670. * nr_running, nr_uninterruptible and nr_context_switches:
  2671. *
  2672. * externally visible scheduler statistics: current number of runnable
  2673. * threads, current number of uninterruptible-sleeping threads, total
  2674. * number of context switches performed since bootup.
  2675. */
  2676. unsigned long nr_running(void)
  2677. {
  2678. unsigned long i, sum = 0;
  2679. for_each_online_cpu(i)
  2680. sum += cpu_rq(i)->nr_running;
  2681. return sum;
  2682. }
  2683. unsigned long nr_uninterruptible(void)
  2684. {
  2685. unsigned long i, sum = 0;
  2686. for_each_possible_cpu(i)
  2687. sum += cpu_rq(i)->nr_uninterruptible;
  2688. /*
  2689. * Since we read the counters lockless, it might be slightly
  2690. * inaccurate. Do not allow it to go below zero though:
  2691. */
  2692. if (unlikely((long)sum < 0))
  2693. sum = 0;
  2694. return sum;
  2695. }
  2696. unsigned long long nr_context_switches(void)
  2697. {
  2698. int i;
  2699. unsigned long long sum = 0;
  2700. for_each_possible_cpu(i)
  2701. sum += cpu_rq(i)->nr_switches;
  2702. return sum;
  2703. }
  2704. unsigned long nr_iowait(void)
  2705. {
  2706. unsigned long i, sum = 0;
  2707. for_each_possible_cpu(i)
  2708. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2709. return sum;
  2710. }
  2711. unsigned long nr_iowait_cpu(int cpu)
  2712. {
  2713. struct rq *this = cpu_rq(cpu);
  2714. return atomic_read(&this->nr_iowait);
  2715. }
  2716. unsigned long this_cpu_load(void)
  2717. {
  2718. struct rq *this = this_rq();
  2719. return this->cpu_load[0];
  2720. }
  2721. /* Variables and functions for calc_load */
  2722. static atomic_long_t calc_load_tasks;
  2723. static unsigned long calc_load_update;
  2724. unsigned long avenrun[3];
  2725. EXPORT_SYMBOL(avenrun);
  2726. static long calc_load_fold_active(struct rq *this_rq)
  2727. {
  2728. long nr_active, delta = 0;
  2729. nr_active = this_rq->nr_running;
  2730. nr_active += (long) this_rq->nr_uninterruptible;
  2731. if (nr_active != this_rq->calc_load_active) {
  2732. delta = nr_active - this_rq->calc_load_active;
  2733. this_rq->calc_load_active = nr_active;
  2734. }
  2735. return delta;
  2736. }
  2737. static unsigned long
  2738. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2739. {
  2740. load *= exp;
  2741. load += active * (FIXED_1 - exp);
  2742. load += 1UL << (FSHIFT - 1);
  2743. return load >> FSHIFT;
  2744. }
  2745. #ifdef CONFIG_NO_HZ
  2746. /*
  2747. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2748. *
  2749. * When making the ILB scale, we should try to pull this in as well.
  2750. */
  2751. static atomic_long_t calc_load_tasks_idle;
  2752. static void calc_load_account_idle(struct rq *this_rq)
  2753. {
  2754. long delta;
  2755. delta = calc_load_fold_active(this_rq);
  2756. if (delta)
  2757. atomic_long_add(delta, &calc_load_tasks_idle);
  2758. }
  2759. static long calc_load_fold_idle(void)
  2760. {
  2761. long delta = 0;
  2762. /*
  2763. * Its got a race, we don't care...
  2764. */
  2765. if (atomic_long_read(&calc_load_tasks_idle))
  2766. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2767. return delta;
  2768. }
  2769. /**
  2770. * fixed_power_int - compute: x^n, in O(log n) time
  2771. *
  2772. * @x: base of the power
  2773. * @frac_bits: fractional bits of @x
  2774. * @n: power to raise @x to.
  2775. *
  2776. * By exploiting the relation between the definition of the natural power
  2777. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  2778. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  2779. * (where: n_i \elem {0, 1}, the binary vector representing n),
  2780. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  2781. * of course trivially computable in O(log_2 n), the length of our binary
  2782. * vector.
  2783. */
  2784. static unsigned long
  2785. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  2786. {
  2787. unsigned long result = 1UL << frac_bits;
  2788. if (n) for (;;) {
  2789. if (n & 1) {
  2790. result *= x;
  2791. result += 1UL << (frac_bits - 1);
  2792. result >>= frac_bits;
  2793. }
  2794. n >>= 1;
  2795. if (!n)
  2796. break;
  2797. x *= x;
  2798. x += 1UL << (frac_bits - 1);
  2799. x >>= frac_bits;
  2800. }
  2801. return result;
  2802. }
  2803. /*
  2804. * a1 = a0 * e + a * (1 - e)
  2805. *
  2806. * a2 = a1 * e + a * (1 - e)
  2807. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  2808. * = a0 * e^2 + a * (1 - e) * (1 + e)
  2809. *
  2810. * a3 = a2 * e + a * (1 - e)
  2811. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  2812. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  2813. *
  2814. * ...
  2815. *
  2816. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  2817. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  2818. * = a0 * e^n + a * (1 - e^n)
  2819. *
  2820. * [1] application of the geometric series:
  2821. *
  2822. * n 1 - x^(n+1)
  2823. * S_n := \Sum x^i = -------------
  2824. * i=0 1 - x
  2825. */
  2826. static unsigned long
  2827. calc_load_n(unsigned long load, unsigned long exp,
  2828. unsigned long active, unsigned int n)
  2829. {
  2830. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  2831. }
  2832. /*
  2833. * NO_HZ can leave us missing all per-cpu ticks calling
  2834. * calc_load_account_active(), but since an idle CPU folds its delta into
  2835. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  2836. * in the pending idle delta if our idle period crossed a load cycle boundary.
  2837. *
  2838. * Once we've updated the global active value, we need to apply the exponential
  2839. * weights adjusted to the number of cycles missed.
  2840. */
  2841. static void calc_global_nohz(unsigned long ticks)
  2842. {
  2843. long delta, active, n;
  2844. if (time_before(jiffies, calc_load_update))
  2845. return;
  2846. /*
  2847. * If we crossed a calc_load_update boundary, make sure to fold
  2848. * any pending idle changes, the respective CPUs might have
  2849. * missed the tick driven calc_load_account_active() update
  2850. * due to NO_HZ.
  2851. */
  2852. delta = calc_load_fold_idle();
  2853. if (delta)
  2854. atomic_long_add(delta, &calc_load_tasks);
  2855. /*
  2856. * If we were idle for multiple load cycles, apply them.
  2857. */
  2858. if (ticks >= LOAD_FREQ) {
  2859. n = ticks / LOAD_FREQ;
  2860. active = atomic_long_read(&calc_load_tasks);
  2861. active = active > 0 ? active * FIXED_1 : 0;
  2862. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  2863. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  2864. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  2865. calc_load_update += n * LOAD_FREQ;
  2866. }
  2867. /*
  2868. * Its possible the remainder of the above division also crosses
  2869. * a LOAD_FREQ period, the regular check in calc_global_load()
  2870. * which comes after this will take care of that.
  2871. *
  2872. * Consider us being 11 ticks before a cycle completion, and us
  2873. * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
  2874. * age us 4 cycles, and the test in calc_global_load() will
  2875. * pick up the final one.
  2876. */
  2877. }
  2878. #else
  2879. static void calc_load_account_idle(struct rq *this_rq)
  2880. {
  2881. }
  2882. static inline long calc_load_fold_idle(void)
  2883. {
  2884. return 0;
  2885. }
  2886. static void calc_global_nohz(unsigned long ticks)
  2887. {
  2888. }
  2889. #endif
  2890. /**
  2891. * get_avenrun - get the load average array
  2892. * @loads: pointer to dest load array
  2893. * @offset: offset to add
  2894. * @shift: shift count to shift the result left
  2895. *
  2896. * These values are estimates at best, so no need for locking.
  2897. */
  2898. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2899. {
  2900. loads[0] = (avenrun[0] + offset) << shift;
  2901. loads[1] = (avenrun[1] + offset) << shift;
  2902. loads[2] = (avenrun[2] + offset) << shift;
  2903. }
  2904. /*
  2905. * calc_load - update the avenrun load estimates 10 ticks after the
  2906. * CPUs have updated calc_load_tasks.
  2907. */
  2908. void calc_global_load(unsigned long ticks)
  2909. {
  2910. long active;
  2911. calc_global_nohz(ticks);
  2912. if (time_before(jiffies, calc_load_update + 10))
  2913. return;
  2914. active = atomic_long_read(&calc_load_tasks);
  2915. active = active > 0 ? active * FIXED_1 : 0;
  2916. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2917. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2918. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2919. calc_load_update += LOAD_FREQ;
  2920. }
  2921. /*
  2922. * Called from update_cpu_load() to periodically update this CPU's
  2923. * active count.
  2924. */
  2925. static void calc_load_account_active(struct rq *this_rq)
  2926. {
  2927. long delta;
  2928. if (time_before(jiffies, this_rq->calc_load_update))
  2929. return;
  2930. delta = calc_load_fold_active(this_rq);
  2931. delta += calc_load_fold_idle();
  2932. if (delta)
  2933. atomic_long_add(delta, &calc_load_tasks);
  2934. this_rq->calc_load_update += LOAD_FREQ;
  2935. }
  2936. /*
  2937. * The exact cpuload at various idx values, calculated at every tick would be
  2938. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2939. *
  2940. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2941. * on nth tick when cpu may be busy, then we have:
  2942. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2943. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2944. *
  2945. * decay_load_missed() below does efficient calculation of
  2946. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2947. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2948. *
  2949. * The calculation is approximated on a 128 point scale.
  2950. * degrade_zero_ticks is the number of ticks after which load at any
  2951. * particular idx is approximated to be zero.
  2952. * degrade_factor is a precomputed table, a row for each load idx.
  2953. * Each column corresponds to degradation factor for a power of two ticks,
  2954. * based on 128 point scale.
  2955. * Example:
  2956. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2957. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2958. *
  2959. * With this power of 2 load factors, we can degrade the load n times
  2960. * by looking at 1 bits in n and doing as many mult/shift instead of
  2961. * n mult/shifts needed by the exact degradation.
  2962. */
  2963. #define DEGRADE_SHIFT 7
  2964. static const unsigned char
  2965. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2966. static const unsigned char
  2967. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2968. {0, 0, 0, 0, 0, 0, 0, 0},
  2969. {64, 32, 8, 0, 0, 0, 0, 0},
  2970. {96, 72, 40, 12, 1, 0, 0},
  2971. {112, 98, 75, 43, 15, 1, 0},
  2972. {120, 112, 98, 76, 45, 16, 2} };
  2973. /*
  2974. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2975. * would be when CPU is idle and so we just decay the old load without
  2976. * adding any new load.
  2977. */
  2978. static unsigned long
  2979. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2980. {
  2981. int j = 0;
  2982. if (!missed_updates)
  2983. return load;
  2984. if (missed_updates >= degrade_zero_ticks[idx])
  2985. return 0;
  2986. if (idx == 1)
  2987. return load >> missed_updates;
  2988. while (missed_updates) {
  2989. if (missed_updates % 2)
  2990. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2991. missed_updates >>= 1;
  2992. j++;
  2993. }
  2994. return load;
  2995. }
  2996. /*
  2997. * Update rq->cpu_load[] statistics. This function is usually called every
  2998. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2999. * every tick. We fix it up based on jiffies.
  3000. */
  3001. static void update_cpu_load(struct rq *this_rq)
  3002. {
  3003. unsigned long this_load = this_rq->load.weight;
  3004. unsigned long curr_jiffies = jiffies;
  3005. unsigned long pending_updates;
  3006. int i, scale;
  3007. this_rq->nr_load_updates++;
  3008. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  3009. if (curr_jiffies == this_rq->last_load_update_tick)
  3010. return;
  3011. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  3012. this_rq->last_load_update_tick = curr_jiffies;
  3013. /* Update our load: */
  3014. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  3015. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  3016. unsigned long old_load, new_load;
  3017. /* scale is effectively 1 << i now, and >> i divides by scale */
  3018. old_load = this_rq->cpu_load[i];
  3019. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  3020. new_load = this_load;
  3021. /*
  3022. * Round up the averaging division if load is increasing. This
  3023. * prevents us from getting stuck on 9 if the load is 10, for
  3024. * example.
  3025. */
  3026. if (new_load > old_load)
  3027. new_load += scale - 1;
  3028. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  3029. }
  3030. sched_avg_update(this_rq);
  3031. }
  3032. static void update_cpu_load_active(struct rq *this_rq)
  3033. {
  3034. update_cpu_load(this_rq);
  3035. calc_load_account_active(this_rq);
  3036. }
  3037. #ifdef CONFIG_SMP
  3038. /*
  3039. * sched_exec - execve() is a valuable balancing opportunity, because at
  3040. * this point the task has the smallest effective memory and cache footprint.
  3041. */
  3042. void sched_exec(void)
  3043. {
  3044. struct task_struct *p = current;
  3045. unsigned long flags;
  3046. int dest_cpu;
  3047. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3048. dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
  3049. if (dest_cpu == smp_processor_id())
  3050. goto unlock;
  3051. if (likely(cpu_active(dest_cpu))) {
  3052. struct migration_arg arg = { p, dest_cpu };
  3053. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3054. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  3055. return;
  3056. }
  3057. unlock:
  3058. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3059. }
  3060. #endif
  3061. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3062. EXPORT_PER_CPU_SYMBOL(kstat);
  3063. /*
  3064. * Return any ns on the sched_clock that have not yet been accounted in
  3065. * @p in case that task is currently running.
  3066. *
  3067. * Called with task_rq_lock() held on @rq.
  3068. */
  3069. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  3070. {
  3071. u64 ns = 0;
  3072. if (task_current(rq, p)) {
  3073. update_rq_clock(rq);
  3074. ns = rq->clock_task - p->se.exec_start;
  3075. if ((s64)ns < 0)
  3076. ns = 0;
  3077. }
  3078. return ns;
  3079. }
  3080. unsigned long long task_delta_exec(struct task_struct *p)
  3081. {
  3082. unsigned long flags;
  3083. struct rq *rq;
  3084. u64 ns = 0;
  3085. rq = task_rq_lock(p, &flags);
  3086. ns = do_task_delta_exec(p, rq);
  3087. task_rq_unlock(rq, p, &flags);
  3088. return ns;
  3089. }
  3090. /*
  3091. * Return accounted runtime for the task.
  3092. * In case the task is currently running, return the runtime plus current's
  3093. * pending runtime that have not been accounted yet.
  3094. */
  3095. unsigned long long task_sched_runtime(struct task_struct *p)
  3096. {
  3097. unsigned long flags;
  3098. struct rq *rq;
  3099. u64 ns = 0;
  3100. rq = task_rq_lock(p, &flags);
  3101. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  3102. task_rq_unlock(rq, p, &flags);
  3103. return ns;
  3104. }
  3105. /*
  3106. * Return sum_exec_runtime for the thread group.
  3107. * In case the task is currently running, return the sum plus current's
  3108. * pending runtime that have not been accounted yet.
  3109. *
  3110. * Note that the thread group might have other running tasks as well,
  3111. * so the return value not includes other pending runtime that other
  3112. * running tasks might have.
  3113. */
  3114. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  3115. {
  3116. struct task_cputime totals;
  3117. unsigned long flags;
  3118. struct rq *rq;
  3119. u64 ns;
  3120. rq = task_rq_lock(p, &flags);
  3121. thread_group_cputime(p, &totals);
  3122. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  3123. task_rq_unlock(rq, p, &flags);
  3124. return ns;
  3125. }
  3126. /*
  3127. * Account user cpu time to a process.
  3128. * @p: the process that the cpu time gets accounted to
  3129. * @cputime: the cpu time spent in user space since the last update
  3130. * @cputime_scaled: cputime scaled by cpu frequency
  3131. */
  3132. void account_user_time(struct task_struct *p, cputime_t cputime,
  3133. cputime_t cputime_scaled)
  3134. {
  3135. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3136. cputime64_t tmp;
  3137. /* Add user time to process. */
  3138. p->utime = cputime_add(p->utime, cputime);
  3139. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3140. account_group_user_time(p, cputime);
  3141. /* Add user time to cpustat. */
  3142. tmp = cputime_to_cputime64(cputime);
  3143. if (TASK_NICE(p) > 0)
  3144. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3145. else
  3146. cpustat->user = cputime64_add(cpustat->user, tmp);
  3147. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  3148. /* Account for user time used */
  3149. acct_update_integrals(p);
  3150. }
  3151. /*
  3152. * Account guest cpu time to a process.
  3153. * @p: the process that the cpu time gets accounted to
  3154. * @cputime: the cpu time spent in virtual machine since the last update
  3155. * @cputime_scaled: cputime scaled by cpu frequency
  3156. */
  3157. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  3158. cputime_t cputime_scaled)
  3159. {
  3160. cputime64_t tmp;
  3161. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3162. tmp = cputime_to_cputime64(cputime);
  3163. /* Add guest time to process. */
  3164. p->utime = cputime_add(p->utime, cputime);
  3165. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3166. account_group_user_time(p, cputime);
  3167. p->gtime = cputime_add(p->gtime, cputime);
  3168. /* Add guest time to cpustat. */
  3169. if (TASK_NICE(p) > 0) {
  3170. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3171. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  3172. } else {
  3173. cpustat->user = cputime64_add(cpustat->user, tmp);
  3174. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3175. }
  3176. }
  3177. /*
  3178. * Account system cpu time to a process and desired cpustat field
  3179. * @p: the process that the cpu time gets accounted to
  3180. * @cputime: the cpu time spent in kernel space since the last update
  3181. * @cputime_scaled: cputime scaled by cpu frequency
  3182. * @target_cputime64: pointer to cpustat field that has to be updated
  3183. */
  3184. static inline
  3185. void __account_system_time(struct task_struct *p, cputime_t cputime,
  3186. cputime_t cputime_scaled, cputime64_t *target_cputime64)
  3187. {
  3188. cputime64_t tmp = cputime_to_cputime64(cputime);
  3189. /* Add system time to process. */
  3190. p->stime = cputime_add(p->stime, cputime);
  3191. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  3192. account_group_system_time(p, cputime);
  3193. /* Add system time to cpustat. */
  3194. *target_cputime64 = cputime64_add(*target_cputime64, tmp);
  3195. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  3196. /* Account for system time used */
  3197. acct_update_integrals(p);
  3198. }
  3199. /*
  3200. * Account system cpu time to a process.
  3201. * @p: the process that the cpu time gets accounted to
  3202. * @hardirq_offset: the offset to subtract from hardirq_count()
  3203. * @cputime: the cpu time spent in kernel space since the last update
  3204. * @cputime_scaled: cputime scaled by cpu frequency
  3205. */
  3206. void account_system_time(struct task_struct *p, int hardirq_offset,
  3207. cputime_t cputime, cputime_t cputime_scaled)
  3208. {
  3209. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3210. cputime64_t *target_cputime64;
  3211. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3212. account_guest_time(p, cputime, cputime_scaled);
  3213. return;
  3214. }
  3215. if (hardirq_count() - hardirq_offset)
  3216. target_cputime64 = &cpustat->irq;
  3217. else if (in_serving_softirq())
  3218. target_cputime64 = &cpustat->softirq;
  3219. else
  3220. target_cputime64 = &cpustat->system;
  3221. __account_system_time(p, cputime, cputime_scaled, target_cputime64);
  3222. }
  3223. /*
  3224. * Account for involuntary wait time.
  3225. * @cputime: the cpu time spent in involuntary wait
  3226. */
  3227. void account_steal_time(cputime_t cputime)
  3228. {
  3229. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3230. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3231. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  3232. }
  3233. /*
  3234. * Account for idle time.
  3235. * @cputime: the cpu time spent in idle wait
  3236. */
  3237. void account_idle_time(cputime_t cputime)
  3238. {
  3239. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3240. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3241. struct rq *rq = this_rq();
  3242. if (atomic_read(&rq->nr_iowait) > 0)
  3243. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  3244. else
  3245. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  3246. }
  3247. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  3248. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  3249. /*
  3250. * Account a tick to a process and cpustat
  3251. * @p: the process that the cpu time gets accounted to
  3252. * @user_tick: is the tick from userspace
  3253. * @rq: the pointer to rq
  3254. *
  3255. * Tick demultiplexing follows the order
  3256. * - pending hardirq update
  3257. * - pending softirq update
  3258. * - user_time
  3259. * - idle_time
  3260. * - system time
  3261. * - check for guest_time
  3262. * - else account as system_time
  3263. *
  3264. * Check for hardirq is done both for system and user time as there is
  3265. * no timer going off while we are on hardirq and hence we may never get an
  3266. * opportunity to update it solely in system time.
  3267. * p->stime and friends are only updated on system time and not on irq
  3268. * softirq as those do not count in task exec_runtime any more.
  3269. */
  3270. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3271. struct rq *rq)
  3272. {
  3273. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3274. cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
  3275. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3276. if (irqtime_account_hi_update()) {
  3277. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3278. } else if (irqtime_account_si_update()) {
  3279. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3280. } else if (this_cpu_ksoftirqd() == p) {
  3281. /*
  3282. * ksoftirqd time do not get accounted in cpu_softirq_time.
  3283. * So, we have to handle it separately here.
  3284. * Also, p->stime needs to be updated for ksoftirqd.
  3285. */
  3286. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3287. &cpustat->softirq);
  3288. } else if (user_tick) {
  3289. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3290. } else if (p == rq->idle) {
  3291. account_idle_time(cputime_one_jiffy);
  3292. } else if (p->flags & PF_VCPU) { /* System time or guest time */
  3293. account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3294. } else {
  3295. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3296. &cpustat->system);
  3297. }
  3298. }
  3299. static void irqtime_account_idle_ticks(int ticks)
  3300. {
  3301. int i;
  3302. struct rq *rq = this_rq();
  3303. for (i = 0; i < ticks; i++)
  3304. irqtime_account_process_tick(current, 0, rq);
  3305. }
  3306. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  3307. static void irqtime_account_idle_ticks(int ticks) {}
  3308. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3309. struct rq *rq) {}
  3310. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  3311. /*
  3312. * Account a single tick of cpu time.
  3313. * @p: the process that the cpu time gets accounted to
  3314. * @user_tick: indicates if the tick is a user or a system tick
  3315. */
  3316. void account_process_tick(struct task_struct *p, int user_tick)
  3317. {
  3318. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3319. struct rq *rq = this_rq();
  3320. if (sched_clock_irqtime) {
  3321. irqtime_account_process_tick(p, user_tick, rq);
  3322. return;
  3323. }
  3324. if (user_tick)
  3325. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3326. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  3327. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  3328. one_jiffy_scaled);
  3329. else
  3330. account_idle_time(cputime_one_jiffy);
  3331. }
  3332. /*
  3333. * Account multiple ticks of steal time.
  3334. * @p: the process from which the cpu time has been stolen
  3335. * @ticks: number of stolen ticks
  3336. */
  3337. void account_steal_ticks(unsigned long ticks)
  3338. {
  3339. account_steal_time(jiffies_to_cputime(ticks));
  3340. }
  3341. /*
  3342. * Account multiple ticks of idle time.
  3343. * @ticks: number of stolen ticks
  3344. */
  3345. void account_idle_ticks(unsigned long ticks)
  3346. {
  3347. if (sched_clock_irqtime) {
  3348. irqtime_account_idle_ticks(ticks);
  3349. return;
  3350. }
  3351. account_idle_time(jiffies_to_cputime(ticks));
  3352. }
  3353. #endif
  3354. /*
  3355. * Use precise platform statistics if available:
  3356. */
  3357. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3358. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3359. {
  3360. *ut = p->utime;
  3361. *st = p->stime;
  3362. }
  3363. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3364. {
  3365. struct task_cputime cputime;
  3366. thread_group_cputime(p, &cputime);
  3367. *ut = cputime.utime;
  3368. *st = cputime.stime;
  3369. }
  3370. #else
  3371. #ifndef nsecs_to_cputime
  3372. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  3373. #endif
  3374. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3375. {
  3376. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  3377. /*
  3378. * Use CFS's precise accounting:
  3379. */
  3380. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  3381. if (total) {
  3382. u64 temp = rtime;
  3383. temp *= utime;
  3384. do_div(temp, total);
  3385. utime = (cputime_t)temp;
  3386. } else
  3387. utime = rtime;
  3388. /*
  3389. * Compare with previous values, to keep monotonicity:
  3390. */
  3391. p->prev_utime = max(p->prev_utime, utime);
  3392. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  3393. *ut = p->prev_utime;
  3394. *st = p->prev_stime;
  3395. }
  3396. /*
  3397. * Must be called with siglock held.
  3398. */
  3399. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3400. {
  3401. struct signal_struct *sig = p->signal;
  3402. struct task_cputime cputime;
  3403. cputime_t rtime, utime, total;
  3404. thread_group_cputime(p, &cputime);
  3405. total = cputime_add(cputime.utime, cputime.stime);
  3406. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  3407. if (total) {
  3408. u64 temp = rtime;
  3409. temp *= cputime.utime;
  3410. do_div(temp, total);
  3411. utime = (cputime_t)temp;
  3412. } else
  3413. utime = rtime;
  3414. sig->prev_utime = max(sig->prev_utime, utime);
  3415. sig->prev_stime = max(sig->prev_stime,
  3416. cputime_sub(rtime, sig->prev_utime));
  3417. *ut = sig->prev_utime;
  3418. *st = sig->prev_stime;
  3419. }
  3420. #endif
  3421. /*
  3422. * This function gets called by the timer code, with HZ frequency.
  3423. * We call it with interrupts disabled.
  3424. */
  3425. void scheduler_tick(void)
  3426. {
  3427. int cpu = smp_processor_id();
  3428. struct rq *rq = cpu_rq(cpu);
  3429. struct task_struct *curr = rq->curr;
  3430. sched_clock_tick();
  3431. raw_spin_lock(&rq->lock);
  3432. update_rq_clock(rq);
  3433. update_cpu_load_active(rq);
  3434. curr->sched_class->task_tick(rq, curr, 0);
  3435. raw_spin_unlock(&rq->lock);
  3436. perf_event_task_tick();
  3437. #ifdef CONFIG_SMP
  3438. rq->idle_at_tick = idle_cpu(cpu);
  3439. trigger_load_balance(rq, cpu);
  3440. #endif
  3441. }
  3442. notrace unsigned long get_parent_ip(unsigned long addr)
  3443. {
  3444. if (in_lock_functions(addr)) {
  3445. addr = CALLER_ADDR2;
  3446. if (in_lock_functions(addr))
  3447. addr = CALLER_ADDR3;
  3448. }
  3449. return addr;
  3450. }
  3451. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3452. defined(CONFIG_PREEMPT_TRACER))
  3453. void __kprobes add_preempt_count(int val)
  3454. {
  3455. #ifdef CONFIG_DEBUG_PREEMPT
  3456. /*
  3457. * Underflow?
  3458. */
  3459. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3460. return;
  3461. #endif
  3462. preempt_count() += val;
  3463. #ifdef CONFIG_DEBUG_PREEMPT
  3464. /*
  3465. * Spinlock count overflowing soon?
  3466. */
  3467. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3468. PREEMPT_MASK - 10);
  3469. #endif
  3470. if (preempt_count() == val)
  3471. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3472. }
  3473. EXPORT_SYMBOL(add_preempt_count);
  3474. void __kprobes sub_preempt_count(int val)
  3475. {
  3476. #ifdef CONFIG_DEBUG_PREEMPT
  3477. /*
  3478. * Underflow?
  3479. */
  3480. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3481. return;
  3482. /*
  3483. * Is the spinlock portion underflowing?
  3484. */
  3485. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3486. !(preempt_count() & PREEMPT_MASK)))
  3487. return;
  3488. #endif
  3489. if (preempt_count() == val)
  3490. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3491. preempt_count() -= val;
  3492. }
  3493. EXPORT_SYMBOL(sub_preempt_count);
  3494. #endif
  3495. /*
  3496. * Print scheduling while atomic bug:
  3497. */
  3498. static noinline void __schedule_bug(struct task_struct *prev)
  3499. {
  3500. struct pt_regs *regs = get_irq_regs();
  3501. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3502. prev->comm, prev->pid, preempt_count());
  3503. debug_show_held_locks(prev);
  3504. print_modules();
  3505. if (irqs_disabled())
  3506. print_irqtrace_events(prev);
  3507. if (regs)
  3508. show_regs(regs);
  3509. else
  3510. dump_stack();
  3511. }
  3512. /*
  3513. * Various schedule()-time debugging checks and statistics:
  3514. */
  3515. static inline void schedule_debug(struct task_struct *prev)
  3516. {
  3517. /*
  3518. * Test if we are atomic. Since do_exit() needs to call into
  3519. * schedule() atomically, we ignore that path for now.
  3520. * Otherwise, whine if we are scheduling when we should not be.
  3521. */
  3522. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3523. __schedule_bug(prev);
  3524. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3525. schedstat_inc(this_rq(), sched_count);
  3526. }
  3527. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3528. {
  3529. if (prev->on_rq || rq->skip_clock_update < 0)
  3530. update_rq_clock(rq);
  3531. prev->sched_class->put_prev_task(rq, prev);
  3532. }
  3533. /*
  3534. * Pick up the highest-prio task:
  3535. */
  3536. static inline struct task_struct *
  3537. pick_next_task(struct rq *rq)
  3538. {
  3539. const struct sched_class *class;
  3540. struct task_struct *p;
  3541. /*
  3542. * Optimization: we know that if all tasks are in
  3543. * the fair class we can call that function directly:
  3544. */
  3545. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3546. p = fair_sched_class.pick_next_task(rq);
  3547. if (likely(p))
  3548. return p;
  3549. }
  3550. for_each_class(class) {
  3551. p = class->pick_next_task(rq);
  3552. if (p)
  3553. return p;
  3554. }
  3555. BUG(); /* the idle class will always have a runnable task */
  3556. }
  3557. /*
  3558. * schedule() is the main scheduler function.
  3559. */
  3560. asmlinkage void __sched schedule(void)
  3561. {
  3562. struct task_struct *prev, *next;
  3563. unsigned long *switch_count;
  3564. struct rq *rq;
  3565. int cpu;
  3566. need_resched:
  3567. preempt_disable();
  3568. cpu = smp_processor_id();
  3569. rq = cpu_rq(cpu);
  3570. rcu_note_context_switch(cpu);
  3571. prev = rq->curr;
  3572. schedule_debug(prev);
  3573. if (sched_feat(HRTICK))
  3574. hrtick_clear(rq);
  3575. raw_spin_lock_irq(&rq->lock);
  3576. switch_count = &prev->nivcsw;
  3577. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3578. if (unlikely(signal_pending_state(prev->state, prev))) {
  3579. prev->state = TASK_RUNNING;
  3580. } else {
  3581. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3582. prev->on_rq = 0;
  3583. /*
  3584. * If a worker went to sleep, notify and ask workqueue
  3585. * whether it wants to wake up a task to maintain
  3586. * concurrency.
  3587. */
  3588. if (prev->flags & PF_WQ_WORKER) {
  3589. struct task_struct *to_wakeup;
  3590. to_wakeup = wq_worker_sleeping(prev, cpu);
  3591. if (to_wakeup)
  3592. try_to_wake_up_local(to_wakeup);
  3593. }
  3594. /*
  3595. * If we are going to sleep and we have plugged IO
  3596. * queued, make sure to submit it to avoid deadlocks.
  3597. */
  3598. if (blk_needs_flush_plug(prev)) {
  3599. raw_spin_unlock(&rq->lock);
  3600. blk_schedule_flush_plug(prev);
  3601. raw_spin_lock(&rq->lock);
  3602. }
  3603. }
  3604. switch_count = &prev->nvcsw;
  3605. }
  3606. pre_schedule(rq, prev);
  3607. if (unlikely(!rq->nr_running))
  3608. idle_balance(cpu, rq);
  3609. put_prev_task(rq, prev);
  3610. next = pick_next_task(rq);
  3611. clear_tsk_need_resched(prev);
  3612. rq->skip_clock_update = 0;
  3613. if (likely(prev != next)) {
  3614. rq->nr_switches++;
  3615. rq->curr = next;
  3616. ++*switch_count;
  3617. context_switch(rq, prev, next); /* unlocks the rq */
  3618. /*
  3619. * The context switch have flipped the stack from under us
  3620. * and restored the local variables which were saved when
  3621. * this task called schedule() in the past. prev == current
  3622. * is still correct, but it can be moved to another cpu/rq.
  3623. */
  3624. cpu = smp_processor_id();
  3625. rq = cpu_rq(cpu);
  3626. } else
  3627. raw_spin_unlock_irq(&rq->lock);
  3628. post_schedule(rq);
  3629. preempt_enable_no_resched();
  3630. if (need_resched())
  3631. goto need_resched;
  3632. }
  3633. EXPORT_SYMBOL(schedule);
  3634. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3635. static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
  3636. {
  3637. bool ret = false;
  3638. rcu_read_lock();
  3639. if (lock->owner != owner)
  3640. goto fail;
  3641. /*
  3642. * Ensure we emit the owner->on_cpu, dereference _after_ checking
  3643. * lock->owner still matches owner, if that fails, owner might
  3644. * point to free()d memory, if it still matches, the rcu_read_lock()
  3645. * ensures the memory stays valid.
  3646. */
  3647. barrier();
  3648. ret = owner->on_cpu;
  3649. fail:
  3650. rcu_read_unlock();
  3651. return ret;
  3652. }
  3653. /*
  3654. * Look out! "owner" is an entirely speculative pointer
  3655. * access and not reliable.
  3656. */
  3657. int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  3658. {
  3659. if (!sched_feat(OWNER_SPIN))
  3660. return 0;
  3661. while (owner_running(lock, owner)) {
  3662. if (need_resched())
  3663. return 0;
  3664. arch_mutex_cpu_relax();
  3665. }
  3666. /*
  3667. * If the owner changed to another task there is likely
  3668. * heavy contention, stop spinning.
  3669. */
  3670. if (lock->owner)
  3671. return 0;
  3672. return 1;
  3673. }
  3674. #endif
  3675. #ifdef CONFIG_PREEMPT
  3676. /*
  3677. * this is the entry point to schedule() from in-kernel preemption
  3678. * off of preempt_enable. Kernel preemptions off return from interrupt
  3679. * occur there and call schedule directly.
  3680. */
  3681. asmlinkage void __sched notrace preempt_schedule(void)
  3682. {
  3683. struct thread_info *ti = current_thread_info();
  3684. /*
  3685. * If there is a non-zero preempt_count or interrupts are disabled,
  3686. * we do not want to preempt the current task. Just return..
  3687. */
  3688. if (likely(ti->preempt_count || irqs_disabled()))
  3689. return;
  3690. do {
  3691. add_preempt_count_notrace(PREEMPT_ACTIVE);
  3692. schedule();
  3693. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  3694. /*
  3695. * Check again in case we missed a preemption opportunity
  3696. * between schedule and now.
  3697. */
  3698. barrier();
  3699. } while (need_resched());
  3700. }
  3701. EXPORT_SYMBOL(preempt_schedule);
  3702. /*
  3703. * this is the entry point to schedule() from kernel preemption
  3704. * off of irq context.
  3705. * Note, that this is called and return with irqs disabled. This will
  3706. * protect us against recursive calling from irq.
  3707. */
  3708. asmlinkage void __sched preempt_schedule_irq(void)
  3709. {
  3710. struct thread_info *ti = current_thread_info();
  3711. /* Catch callers which need to be fixed */
  3712. BUG_ON(ti->preempt_count || !irqs_disabled());
  3713. do {
  3714. add_preempt_count(PREEMPT_ACTIVE);
  3715. local_irq_enable();
  3716. schedule();
  3717. local_irq_disable();
  3718. sub_preempt_count(PREEMPT_ACTIVE);
  3719. /*
  3720. * Check again in case we missed a preemption opportunity
  3721. * between schedule and now.
  3722. */
  3723. barrier();
  3724. } while (need_resched());
  3725. }
  3726. #endif /* CONFIG_PREEMPT */
  3727. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3728. void *key)
  3729. {
  3730. return try_to_wake_up(curr->private, mode, wake_flags);
  3731. }
  3732. EXPORT_SYMBOL(default_wake_function);
  3733. /*
  3734. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3735. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3736. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3737. *
  3738. * There are circumstances in which we can try to wake a task which has already
  3739. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3740. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3741. */
  3742. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3743. int nr_exclusive, int wake_flags, void *key)
  3744. {
  3745. wait_queue_t *curr, *next;
  3746. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3747. unsigned flags = curr->flags;
  3748. if (curr->func(curr, mode, wake_flags, key) &&
  3749. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3750. break;
  3751. }
  3752. }
  3753. /**
  3754. * __wake_up - wake up threads blocked on a waitqueue.
  3755. * @q: the waitqueue
  3756. * @mode: which threads
  3757. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3758. * @key: is directly passed to the wakeup function
  3759. *
  3760. * It may be assumed that this function implies a write memory barrier before
  3761. * changing the task state if and only if any tasks are woken up.
  3762. */
  3763. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3764. int nr_exclusive, void *key)
  3765. {
  3766. unsigned long flags;
  3767. spin_lock_irqsave(&q->lock, flags);
  3768. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3769. spin_unlock_irqrestore(&q->lock, flags);
  3770. }
  3771. EXPORT_SYMBOL(__wake_up);
  3772. /*
  3773. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3774. */
  3775. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3776. {
  3777. __wake_up_common(q, mode, 1, 0, NULL);
  3778. }
  3779. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3780. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3781. {
  3782. __wake_up_common(q, mode, 1, 0, key);
  3783. }
  3784. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  3785. /**
  3786. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3787. * @q: the waitqueue
  3788. * @mode: which threads
  3789. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3790. * @key: opaque value to be passed to wakeup targets
  3791. *
  3792. * The sync wakeup differs that the waker knows that it will schedule
  3793. * away soon, so while the target thread will be woken up, it will not
  3794. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3795. * with each other. This can prevent needless bouncing between CPUs.
  3796. *
  3797. * On UP it can prevent extra preemption.
  3798. *
  3799. * It may be assumed that this function implies a write memory barrier before
  3800. * changing the task state if and only if any tasks are woken up.
  3801. */
  3802. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3803. int nr_exclusive, void *key)
  3804. {
  3805. unsigned long flags;
  3806. int wake_flags = WF_SYNC;
  3807. if (unlikely(!q))
  3808. return;
  3809. if (unlikely(!nr_exclusive))
  3810. wake_flags = 0;
  3811. spin_lock_irqsave(&q->lock, flags);
  3812. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3813. spin_unlock_irqrestore(&q->lock, flags);
  3814. }
  3815. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3816. /*
  3817. * __wake_up_sync - see __wake_up_sync_key()
  3818. */
  3819. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3820. {
  3821. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3822. }
  3823. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3824. /**
  3825. * complete: - signals a single thread waiting on this completion
  3826. * @x: holds the state of this particular completion
  3827. *
  3828. * This will wake up a single thread waiting on this completion. Threads will be
  3829. * awakened in the same order in which they were queued.
  3830. *
  3831. * See also complete_all(), wait_for_completion() and related routines.
  3832. *
  3833. * It may be assumed that this function implies a write memory barrier before
  3834. * changing the task state if and only if any tasks are woken up.
  3835. */
  3836. void complete(struct completion *x)
  3837. {
  3838. unsigned long flags;
  3839. spin_lock_irqsave(&x->wait.lock, flags);
  3840. x->done++;
  3841. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3842. spin_unlock_irqrestore(&x->wait.lock, flags);
  3843. }
  3844. EXPORT_SYMBOL(complete);
  3845. /**
  3846. * complete_all: - signals all threads waiting on this completion
  3847. * @x: holds the state of this particular completion
  3848. *
  3849. * This will wake up all threads waiting on this particular completion event.
  3850. *
  3851. * It may be assumed that this function implies a write memory barrier before
  3852. * changing the task state if and only if any tasks are woken up.
  3853. */
  3854. void complete_all(struct completion *x)
  3855. {
  3856. unsigned long flags;
  3857. spin_lock_irqsave(&x->wait.lock, flags);
  3858. x->done += UINT_MAX/2;
  3859. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3860. spin_unlock_irqrestore(&x->wait.lock, flags);
  3861. }
  3862. EXPORT_SYMBOL(complete_all);
  3863. static inline long __sched
  3864. do_wait_for_common(struct completion *x, long timeout, int state)
  3865. {
  3866. if (!x->done) {
  3867. DECLARE_WAITQUEUE(wait, current);
  3868. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3869. do {
  3870. if (signal_pending_state(state, current)) {
  3871. timeout = -ERESTARTSYS;
  3872. break;
  3873. }
  3874. __set_current_state(state);
  3875. spin_unlock_irq(&x->wait.lock);
  3876. timeout = schedule_timeout(timeout);
  3877. spin_lock_irq(&x->wait.lock);
  3878. } while (!x->done && timeout);
  3879. __remove_wait_queue(&x->wait, &wait);
  3880. if (!x->done)
  3881. return timeout;
  3882. }
  3883. x->done--;
  3884. return timeout ?: 1;
  3885. }
  3886. static long __sched
  3887. wait_for_common(struct completion *x, long timeout, int state)
  3888. {
  3889. might_sleep();
  3890. spin_lock_irq(&x->wait.lock);
  3891. timeout = do_wait_for_common(x, timeout, state);
  3892. spin_unlock_irq(&x->wait.lock);
  3893. return timeout;
  3894. }
  3895. /**
  3896. * wait_for_completion: - waits for completion of a task
  3897. * @x: holds the state of this particular completion
  3898. *
  3899. * This waits to be signaled for completion of a specific task. It is NOT
  3900. * interruptible and there is no timeout.
  3901. *
  3902. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3903. * and interrupt capability. Also see complete().
  3904. */
  3905. void __sched wait_for_completion(struct completion *x)
  3906. {
  3907. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3908. }
  3909. EXPORT_SYMBOL(wait_for_completion);
  3910. /**
  3911. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3912. * @x: holds the state of this particular completion
  3913. * @timeout: timeout value in jiffies
  3914. *
  3915. * This waits for either a completion of a specific task to be signaled or for a
  3916. * specified timeout to expire. The timeout is in jiffies. It is not
  3917. * interruptible.
  3918. */
  3919. unsigned long __sched
  3920. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3921. {
  3922. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3923. }
  3924. EXPORT_SYMBOL(wait_for_completion_timeout);
  3925. /**
  3926. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3927. * @x: holds the state of this particular completion
  3928. *
  3929. * This waits for completion of a specific task to be signaled. It is
  3930. * interruptible.
  3931. */
  3932. int __sched wait_for_completion_interruptible(struct completion *x)
  3933. {
  3934. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3935. if (t == -ERESTARTSYS)
  3936. return t;
  3937. return 0;
  3938. }
  3939. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3940. /**
  3941. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3942. * @x: holds the state of this particular completion
  3943. * @timeout: timeout value in jiffies
  3944. *
  3945. * This waits for either a completion of a specific task to be signaled or for a
  3946. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3947. */
  3948. long __sched
  3949. wait_for_completion_interruptible_timeout(struct completion *x,
  3950. unsigned long timeout)
  3951. {
  3952. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3953. }
  3954. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3955. /**
  3956. * wait_for_completion_killable: - waits for completion of a task (killable)
  3957. * @x: holds the state of this particular completion
  3958. *
  3959. * This waits to be signaled for completion of a specific task. It can be
  3960. * interrupted by a kill signal.
  3961. */
  3962. int __sched wait_for_completion_killable(struct completion *x)
  3963. {
  3964. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3965. if (t == -ERESTARTSYS)
  3966. return t;
  3967. return 0;
  3968. }
  3969. EXPORT_SYMBOL(wait_for_completion_killable);
  3970. /**
  3971. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3972. * @x: holds the state of this particular completion
  3973. * @timeout: timeout value in jiffies
  3974. *
  3975. * This waits for either a completion of a specific task to be
  3976. * signaled or for a specified timeout to expire. It can be
  3977. * interrupted by a kill signal. The timeout is in jiffies.
  3978. */
  3979. long __sched
  3980. wait_for_completion_killable_timeout(struct completion *x,
  3981. unsigned long timeout)
  3982. {
  3983. return wait_for_common(x, timeout, TASK_KILLABLE);
  3984. }
  3985. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3986. /**
  3987. * try_wait_for_completion - try to decrement a completion without blocking
  3988. * @x: completion structure
  3989. *
  3990. * Returns: 0 if a decrement cannot be done without blocking
  3991. * 1 if a decrement succeeded.
  3992. *
  3993. * If a completion is being used as a counting completion,
  3994. * attempt to decrement the counter without blocking. This
  3995. * enables us to avoid waiting if the resource the completion
  3996. * is protecting is not available.
  3997. */
  3998. bool try_wait_for_completion(struct completion *x)
  3999. {
  4000. unsigned long flags;
  4001. int ret = 1;
  4002. spin_lock_irqsave(&x->wait.lock, flags);
  4003. if (!x->done)
  4004. ret = 0;
  4005. else
  4006. x->done--;
  4007. spin_unlock_irqrestore(&x->wait.lock, flags);
  4008. return ret;
  4009. }
  4010. EXPORT_SYMBOL(try_wait_for_completion);
  4011. /**
  4012. * completion_done - Test to see if a completion has any waiters
  4013. * @x: completion structure
  4014. *
  4015. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4016. * 1 if there are no waiters.
  4017. *
  4018. */
  4019. bool completion_done(struct completion *x)
  4020. {
  4021. unsigned long flags;
  4022. int ret = 1;
  4023. spin_lock_irqsave(&x->wait.lock, flags);
  4024. if (!x->done)
  4025. ret = 0;
  4026. spin_unlock_irqrestore(&x->wait.lock, flags);
  4027. return ret;
  4028. }
  4029. EXPORT_SYMBOL(completion_done);
  4030. static long __sched
  4031. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4032. {
  4033. unsigned long flags;
  4034. wait_queue_t wait;
  4035. init_waitqueue_entry(&wait, current);
  4036. __set_current_state(state);
  4037. spin_lock_irqsave(&q->lock, flags);
  4038. __add_wait_queue(q, &wait);
  4039. spin_unlock(&q->lock);
  4040. timeout = schedule_timeout(timeout);
  4041. spin_lock_irq(&q->lock);
  4042. __remove_wait_queue(q, &wait);
  4043. spin_unlock_irqrestore(&q->lock, flags);
  4044. return timeout;
  4045. }
  4046. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4047. {
  4048. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4049. }
  4050. EXPORT_SYMBOL(interruptible_sleep_on);
  4051. long __sched
  4052. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4053. {
  4054. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4055. }
  4056. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4057. void __sched sleep_on(wait_queue_head_t *q)
  4058. {
  4059. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4060. }
  4061. EXPORT_SYMBOL(sleep_on);
  4062. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4063. {
  4064. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4065. }
  4066. EXPORT_SYMBOL(sleep_on_timeout);
  4067. #ifdef CONFIG_RT_MUTEXES
  4068. /*
  4069. * rt_mutex_setprio - set the current priority of a task
  4070. * @p: task
  4071. * @prio: prio value (kernel-internal form)
  4072. *
  4073. * This function changes the 'effective' priority of a task. It does
  4074. * not touch ->normal_prio like __setscheduler().
  4075. *
  4076. * Used by the rt_mutex code to implement priority inheritance logic.
  4077. */
  4078. void rt_mutex_setprio(struct task_struct *p, int prio)
  4079. {
  4080. int oldprio, on_rq, running;
  4081. struct rq *rq;
  4082. const struct sched_class *prev_class;
  4083. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4084. rq = __task_rq_lock(p);
  4085. trace_sched_pi_setprio(p, prio);
  4086. oldprio = p->prio;
  4087. prev_class = p->sched_class;
  4088. on_rq = p->on_rq;
  4089. running = task_current(rq, p);
  4090. if (on_rq)
  4091. dequeue_task(rq, p, 0);
  4092. if (running)
  4093. p->sched_class->put_prev_task(rq, p);
  4094. if (rt_prio(prio))
  4095. p->sched_class = &rt_sched_class;
  4096. else
  4097. p->sched_class = &fair_sched_class;
  4098. p->prio = prio;
  4099. if (running)
  4100. p->sched_class->set_curr_task(rq);
  4101. if (on_rq)
  4102. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  4103. check_class_changed(rq, p, prev_class, oldprio);
  4104. __task_rq_unlock(rq);
  4105. }
  4106. #endif
  4107. void set_user_nice(struct task_struct *p, long nice)
  4108. {
  4109. int old_prio, delta, on_rq;
  4110. unsigned long flags;
  4111. struct rq *rq;
  4112. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4113. return;
  4114. /*
  4115. * We have to be careful, if called from sys_setpriority(),
  4116. * the task might be in the middle of scheduling on another CPU.
  4117. */
  4118. rq = task_rq_lock(p, &flags);
  4119. /*
  4120. * The RT priorities are set via sched_setscheduler(), but we still
  4121. * allow the 'normal' nice value to be set - but as expected
  4122. * it wont have any effect on scheduling until the task is
  4123. * SCHED_FIFO/SCHED_RR:
  4124. */
  4125. if (task_has_rt_policy(p)) {
  4126. p->static_prio = NICE_TO_PRIO(nice);
  4127. goto out_unlock;
  4128. }
  4129. on_rq = p->on_rq;
  4130. if (on_rq)
  4131. dequeue_task(rq, p, 0);
  4132. p->static_prio = NICE_TO_PRIO(nice);
  4133. set_load_weight(p);
  4134. old_prio = p->prio;
  4135. p->prio = effective_prio(p);
  4136. delta = p->prio - old_prio;
  4137. if (on_rq) {
  4138. enqueue_task(rq, p, 0);
  4139. /*
  4140. * If the task increased its priority or is running and
  4141. * lowered its priority, then reschedule its CPU:
  4142. */
  4143. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4144. resched_task(rq->curr);
  4145. }
  4146. out_unlock:
  4147. task_rq_unlock(rq, p, &flags);
  4148. }
  4149. EXPORT_SYMBOL(set_user_nice);
  4150. /*
  4151. * can_nice - check if a task can reduce its nice value
  4152. * @p: task
  4153. * @nice: nice value
  4154. */
  4155. int can_nice(const struct task_struct *p, const int nice)
  4156. {
  4157. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4158. int nice_rlim = 20 - nice;
  4159. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  4160. capable(CAP_SYS_NICE));
  4161. }
  4162. #ifdef __ARCH_WANT_SYS_NICE
  4163. /*
  4164. * sys_nice - change the priority of the current process.
  4165. * @increment: priority increment
  4166. *
  4167. * sys_setpriority is a more generic, but much slower function that
  4168. * does similar things.
  4169. */
  4170. SYSCALL_DEFINE1(nice, int, increment)
  4171. {
  4172. long nice, retval;
  4173. /*
  4174. * Setpriority might change our priority at the same moment.
  4175. * We don't have to worry. Conceptually one call occurs first
  4176. * and we have a single winner.
  4177. */
  4178. if (increment < -40)
  4179. increment = -40;
  4180. if (increment > 40)
  4181. increment = 40;
  4182. nice = TASK_NICE(current) + increment;
  4183. if (nice < -20)
  4184. nice = -20;
  4185. if (nice > 19)
  4186. nice = 19;
  4187. if (increment < 0 && !can_nice(current, nice))
  4188. return -EPERM;
  4189. retval = security_task_setnice(current, nice);
  4190. if (retval)
  4191. return retval;
  4192. set_user_nice(current, nice);
  4193. return 0;
  4194. }
  4195. #endif
  4196. /**
  4197. * task_prio - return the priority value of a given task.
  4198. * @p: the task in question.
  4199. *
  4200. * This is the priority value as seen by users in /proc.
  4201. * RT tasks are offset by -200. Normal tasks are centered
  4202. * around 0, value goes from -16 to +15.
  4203. */
  4204. int task_prio(const struct task_struct *p)
  4205. {
  4206. return p->prio - MAX_RT_PRIO;
  4207. }
  4208. /**
  4209. * task_nice - return the nice value of a given task.
  4210. * @p: the task in question.
  4211. */
  4212. int task_nice(const struct task_struct *p)
  4213. {
  4214. return TASK_NICE(p);
  4215. }
  4216. EXPORT_SYMBOL(task_nice);
  4217. /**
  4218. * idle_cpu - is a given cpu idle currently?
  4219. * @cpu: the processor in question.
  4220. */
  4221. int idle_cpu(int cpu)
  4222. {
  4223. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4224. }
  4225. /**
  4226. * idle_task - return the idle task for a given cpu.
  4227. * @cpu: the processor in question.
  4228. */
  4229. struct task_struct *idle_task(int cpu)
  4230. {
  4231. return cpu_rq(cpu)->idle;
  4232. }
  4233. /**
  4234. * find_process_by_pid - find a process with a matching PID value.
  4235. * @pid: the pid in question.
  4236. */
  4237. static struct task_struct *find_process_by_pid(pid_t pid)
  4238. {
  4239. return pid ? find_task_by_vpid(pid) : current;
  4240. }
  4241. /* Actually do priority change: must hold rq lock. */
  4242. static void
  4243. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4244. {
  4245. p->policy = policy;
  4246. p->rt_priority = prio;
  4247. p->normal_prio = normal_prio(p);
  4248. /* we are holding p->pi_lock already */
  4249. p->prio = rt_mutex_getprio(p);
  4250. if (rt_prio(p->prio))
  4251. p->sched_class = &rt_sched_class;
  4252. else
  4253. p->sched_class = &fair_sched_class;
  4254. set_load_weight(p);
  4255. }
  4256. /*
  4257. * check the target process has a UID that matches the current process's
  4258. */
  4259. static bool check_same_owner(struct task_struct *p)
  4260. {
  4261. const struct cred *cred = current_cred(), *pcred;
  4262. bool match;
  4263. rcu_read_lock();
  4264. pcred = __task_cred(p);
  4265. if (cred->user->user_ns == pcred->user->user_ns)
  4266. match = (cred->euid == pcred->euid ||
  4267. cred->euid == pcred->uid);
  4268. else
  4269. match = false;
  4270. rcu_read_unlock();
  4271. return match;
  4272. }
  4273. static int __sched_setscheduler(struct task_struct *p, int policy,
  4274. const struct sched_param *param, bool user)
  4275. {
  4276. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4277. unsigned long flags;
  4278. const struct sched_class *prev_class;
  4279. struct rq *rq;
  4280. int reset_on_fork;
  4281. /* may grab non-irq protected spin_locks */
  4282. BUG_ON(in_interrupt());
  4283. recheck:
  4284. /* double check policy once rq lock held */
  4285. if (policy < 0) {
  4286. reset_on_fork = p->sched_reset_on_fork;
  4287. policy = oldpolicy = p->policy;
  4288. } else {
  4289. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  4290. policy &= ~SCHED_RESET_ON_FORK;
  4291. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4292. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4293. policy != SCHED_IDLE)
  4294. return -EINVAL;
  4295. }
  4296. /*
  4297. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4298. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4299. * SCHED_BATCH and SCHED_IDLE is 0.
  4300. */
  4301. if (param->sched_priority < 0 ||
  4302. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4303. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4304. return -EINVAL;
  4305. if (rt_policy(policy) != (param->sched_priority != 0))
  4306. return -EINVAL;
  4307. /*
  4308. * Allow unprivileged RT tasks to decrease priority:
  4309. */
  4310. if (user && !capable(CAP_SYS_NICE)) {
  4311. if (rt_policy(policy)) {
  4312. unsigned long rlim_rtprio =
  4313. task_rlimit(p, RLIMIT_RTPRIO);
  4314. /* can't set/change the rt policy */
  4315. if (policy != p->policy && !rlim_rtprio)
  4316. return -EPERM;
  4317. /* can't increase priority */
  4318. if (param->sched_priority > p->rt_priority &&
  4319. param->sched_priority > rlim_rtprio)
  4320. return -EPERM;
  4321. }
  4322. /*
  4323. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  4324. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  4325. */
  4326. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  4327. if (!can_nice(p, TASK_NICE(p)))
  4328. return -EPERM;
  4329. }
  4330. /* can't change other user's priorities */
  4331. if (!check_same_owner(p))
  4332. return -EPERM;
  4333. /* Normal users shall not reset the sched_reset_on_fork flag */
  4334. if (p->sched_reset_on_fork && !reset_on_fork)
  4335. return -EPERM;
  4336. }
  4337. if (user) {
  4338. retval = security_task_setscheduler(p);
  4339. if (retval)
  4340. return retval;
  4341. }
  4342. /*
  4343. * make sure no PI-waiters arrive (or leave) while we are
  4344. * changing the priority of the task:
  4345. *
  4346. * To be able to change p->policy safely, the appropriate
  4347. * runqueue lock must be held.
  4348. */
  4349. rq = task_rq_lock(p, &flags);
  4350. /*
  4351. * Changing the policy of the stop threads its a very bad idea
  4352. */
  4353. if (p == rq->stop) {
  4354. task_rq_unlock(rq, p, &flags);
  4355. return -EINVAL;
  4356. }
  4357. /*
  4358. * If not changing anything there's no need to proceed further:
  4359. */
  4360. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  4361. param->sched_priority == p->rt_priority))) {
  4362. __task_rq_unlock(rq);
  4363. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4364. return 0;
  4365. }
  4366. #ifdef CONFIG_RT_GROUP_SCHED
  4367. if (user) {
  4368. /*
  4369. * Do not allow realtime tasks into groups that have no runtime
  4370. * assigned.
  4371. */
  4372. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4373. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  4374. !task_group_is_autogroup(task_group(p))) {
  4375. task_rq_unlock(rq, p, &flags);
  4376. return -EPERM;
  4377. }
  4378. }
  4379. #endif
  4380. /* recheck policy now with rq lock held */
  4381. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4382. policy = oldpolicy = -1;
  4383. task_rq_unlock(rq, p, &flags);
  4384. goto recheck;
  4385. }
  4386. on_rq = p->on_rq;
  4387. running = task_current(rq, p);
  4388. if (on_rq)
  4389. deactivate_task(rq, p, 0);
  4390. if (running)
  4391. p->sched_class->put_prev_task(rq, p);
  4392. p->sched_reset_on_fork = reset_on_fork;
  4393. oldprio = p->prio;
  4394. prev_class = p->sched_class;
  4395. __setscheduler(rq, p, policy, param->sched_priority);
  4396. if (running)
  4397. p->sched_class->set_curr_task(rq);
  4398. if (on_rq)
  4399. activate_task(rq, p, 0);
  4400. check_class_changed(rq, p, prev_class, oldprio);
  4401. task_rq_unlock(rq, p, &flags);
  4402. rt_mutex_adjust_pi(p);
  4403. return 0;
  4404. }
  4405. /**
  4406. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4407. * @p: the task in question.
  4408. * @policy: new policy.
  4409. * @param: structure containing the new RT priority.
  4410. *
  4411. * NOTE that the task may be already dead.
  4412. */
  4413. int sched_setscheduler(struct task_struct *p, int policy,
  4414. const struct sched_param *param)
  4415. {
  4416. return __sched_setscheduler(p, policy, param, true);
  4417. }
  4418. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4419. /**
  4420. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4421. * @p: the task in question.
  4422. * @policy: new policy.
  4423. * @param: structure containing the new RT priority.
  4424. *
  4425. * Just like sched_setscheduler, only don't bother checking if the
  4426. * current context has permission. For example, this is needed in
  4427. * stop_machine(): we create temporary high priority worker threads,
  4428. * but our caller might not have that capability.
  4429. */
  4430. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4431. const struct sched_param *param)
  4432. {
  4433. return __sched_setscheduler(p, policy, param, false);
  4434. }
  4435. static int
  4436. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4437. {
  4438. struct sched_param lparam;
  4439. struct task_struct *p;
  4440. int retval;
  4441. if (!param || pid < 0)
  4442. return -EINVAL;
  4443. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4444. return -EFAULT;
  4445. rcu_read_lock();
  4446. retval = -ESRCH;
  4447. p = find_process_by_pid(pid);
  4448. if (p != NULL)
  4449. retval = sched_setscheduler(p, policy, &lparam);
  4450. rcu_read_unlock();
  4451. return retval;
  4452. }
  4453. /**
  4454. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4455. * @pid: the pid in question.
  4456. * @policy: new policy.
  4457. * @param: structure containing the new RT priority.
  4458. */
  4459. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4460. struct sched_param __user *, param)
  4461. {
  4462. /* negative values for policy are not valid */
  4463. if (policy < 0)
  4464. return -EINVAL;
  4465. return do_sched_setscheduler(pid, policy, param);
  4466. }
  4467. /**
  4468. * sys_sched_setparam - set/change the RT priority of a thread
  4469. * @pid: the pid in question.
  4470. * @param: structure containing the new RT priority.
  4471. */
  4472. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4473. {
  4474. return do_sched_setscheduler(pid, -1, param);
  4475. }
  4476. /**
  4477. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4478. * @pid: the pid in question.
  4479. */
  4480. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4481. {
  4482. struct task_struct *p;
  4483. int retval;
  4484. if (pid < 0)
  4485. return -EINVAL;
  4486. retval = -ESRCH;
  4487. rcu_read_lock();
  4488. p = find_process_by_pid(pid);
  4489. if (p) {
  4490. retval = security_task_getscheduler(p);
  4491. if (!retval)
  4492. retval = p->policy
  4493. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  4494. }
  4495. rcu_read_unlock();
  4496. return retval;
  4497. }
  4498. /**
  4499. * sys_sched_getparam - get the RT priority of a thread
  4500. * @pid: the pid in question.
  4501. * @param: structure containing the RT priority.
  4502. */
  4503. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4504. {
  4505. struct sched_param lp;
  4506. struct task_struct *p;
  4507. int retval;
  4508. if (!param || pid < 0)
  4509. return -EINVAL;
  4510. rcu_read_lock();
  4511. p = find_process_by_pid(pid);
  4512. retval = -ESRCH;
  4513. if (!p)
  4514. goto out_unlock;
  4515. retval = security_task_getscheduler(p);
  4516. if (retval)
  4517. goto out_unlock;
  4518. lp.sched_priority = p->rt_priority;
  4519. rcu_read_unlock();
  4520. /*
  4521. * This one might sleep, we cannot do it with a spinlock held ...
  4522. */
  4523. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4524. return retval;
  4525. out_unlock:
  4526. rcu_read_unlock();
  4527. return retval;
  4528. }
  4529. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4530. {
  4531. cpumask_var_t cpus_allowed, new_mask;
  4532. struct task_struct *p;
  4533. int retval;
  4534. get_online_cpus();
  4535. rcu_read_lock();
  4536. p = find_process_by_pid(pid);
  4537. if (!p) {
  4538. rcu_read_unlock();
  4539. put_online_cpus();
  4540. return -ESRCH;
  4541. }
  4542. /* Prevent p going away */
  4543. get_task_struct(p);
  4544. rcu_read_unlock();
  4545. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4546. retval = -ENOMEM;
  4547. goto out_put_task;
  4548. }
  4549. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4550. retval = -ENOMEM;
  4551. goto out_free_cpus_allowed;
  4552. }
  4553. retval = -EPERM;
  4554. if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
  4555. goto out_unlock;
  4556. retval = security_task_setscheduler(p);
  4557. if (retval)
  4558. goto out_unlock;
  4559. cpuset_cpus_allowed(p, cpus_allowed);
  4560. cpumask_and(new_mask, in_mask, cpus_allowed);
  4561. again:
  4562. retval = set_cpus_allowed_ptr(p, new_mask);
  4563. if (!retval) {
  4564. cpuset_cpus_allowed(p, cpus_allowed);
  4565. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4566. /*
  4567. * We must have raced with a concurrent cpuset
  4568. * update. Just reset the cpus_allowed to the
  4569. * cpuset's cpus_allowed
  4570. */
  4571. cpumask_copy(new_mask, cpus_allowed);
  4572. goto again;
  4573. }
  4574. }
  4575. out_unlock:
  4576. free_cpumask_var(new_mask);
  4577. out_free_cpus_allowed:
  4578. free_cpumask_var(cpus_allowed);
  4579. out_put_task:
  4580. put_task_struct(p);
  4581. put_online_cpus();
  4582. return retval;
  4583. }
  4584. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4585. struct cpumask *new_mask)
  4586. {
  4587. if (len < cpumask_size())
  4588. cpumask_clear(new_mask);
  4589. else if (len > cpumask_size())
  4590. len = cpumask_size();
  4591. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4592. }
  4593. /**
  4594. * sys_sched_setaffinity - set the cpu affinity of a process
  4595. * @pid: pid of the process
  4596. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4597. * @user_mask_ptr: user-space pointer to the new cpu mask
  4598. */
  4599. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4600. unsigned long __user *, user_mask_ptr)
  4601. {
  4602. cpumask_var_t new_mask;
  4603. int retval;
  4604. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4605. return -ENOMEM;
  4606. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4607. if (retval == 0)
  4608. retval = sched_setaffinity(pid, new_mask);
  4609. free_cpumask_var(new_mask);
  4610. return retval;
  4611. }
  4612. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4613. {
  4614. struct task_struct *p;
  4615. unsigned long flags;
  4616. int retval;
  4617. get_online_cpus();
  4618. rcu_read_lock();
  4619. retval = -ESRCH;
  4620. p = find_process_by_pid(pid);
  4621. if (!p)
  4622. goto out_unlock;
  4623. retval = security_task_getscheduler(p);
  4624. if (retval)
  4625. goto out_unlock;
  4626. raw_spin_lock_irqsave(&p->pi_lock, flags);
  4627. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4628. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4629. out_unlock:
  4630. rcu_read_unlock();
  4631. put_online_cpus();
  4632. return retval;
  4633. }
  4634. /**
  4635. * sys_sched_getaffinity - get the cpu affinity of a process
  4636. * @pid: pid of the process
  4637. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4638. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4639. */
  4640. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4641. unsigned long __user *, user_mask_ptr)
  4642. {
  4643. int ret;
  4644. cpumask_var_t mask;
  4645. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4646. return -EINVAL;
  4647. if (len & (sizeof(unsigned long)-1))
  4648. return -EINVAL;
  4649. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4650. return -ENOMEM;
  4651. ret = sched_getaffinity(pid, mask);
  4652. if (ret == 0) {
  4653. size_t retlen = min_t(size_t, len, cpumask_size());
  4654. if (copy_to_user(user_mask_ptr, mask, retlen))
  4655. ret = -EFAULT;
  4656. else
  4657. ret = retlen;
  4658. }
  4659. free_cpumask_var(mask);
  4660. return ret;
  4661. }
  4662. /**
  4663. * sys_sched_yield - yield the current processor to other threads.
  4664. *
  4665. * This function yields the current CPU to other tasks. If there are no
  4666. * other threads running on this CPU then this function will return.
  4667. */
  4668. SYSCALL_DEFINE0(sched_yield)
  4669. {
  4670. struct rq *rq = this_rq_lock();
  4671. schedstat_inc(rq, yld_count);
  4672. current->sched_class->yield_task(rq);
  4673. /*
  4674. * Since we are going to call schedule() anyway, there's
  4675. * no need to preempt or enable interrupts:
  4676. */
  4677. __release(rq->lock);
  4678. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4679. do_raw_spin_unlock(&rq->lock);
  4680. preempt_enable_no_resched();
  4681. schedule();
  4682. return 0;
  4683. }
  4684. static inline int should_resched(void)
  4685. {
  4686. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4687. }
  4688. static void __cond_resched(void)
  4689. {
  4690. add_preempt_count(PREEMPT_ACTIVE);
  4691. schedule();
  4692. sub_preempt_count(PREEMPT_ACTIVE);
  4693. }
  4694. int __sched _cond_resched(void)
  4695. {
  4696. if (should_resched()) {
  4697. __cond_resched();
  4698. return 1;
  4699. }
  4700. return 0;
  4701. }
  4702. EXPORT_SYMBOL(_cond_resched);
  4703. /*
  4704. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4705. * call schedule, and on return reacquire the lock.
  4706. *
  4707. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4708. * operations here to prevent schedule() from being called twice (once via
  4709. * spin_unlock(), once by hand).
  4710. */
  4711. int __cond_resched_lock(spinlock_t *lock)
  4712. {
  4713. int resched = should_resched();
  4714. int ret = 0;
  4715. lockdep_assert_held(lock);
  4716. if (spin_needbreak(lock) || resched) {
  4717. spin_unlock(lock);
  4718. if (resched)
  4719. __cond_resched();
  4720. else
  4721. cpu_relax();
  4722. ret = 1;
  4723. spin_lock(lock);
  4724. }
  4725. return ret;
  4726. }
  4727. EXPORT_SYMBOL(__cond_resched_lock);
  4728. int __sched __cond_resched_softirq(void)
  4729. {
  4730. BUG_ON(!in_softirq());
  4731. if (should_resched()) {
  4732. local_bh_enable();
  4733. __cond_resched();
  4734. local_bh_disable();
  4735. return 1;
  4736. }
  4737. return 0;
  4738. }
  4739. EXPORT_SYMBOL(__cond_resched_softirq);
  4740. /**
  4741. * yield - yield the current processor to other threads.
  4742. *
  4743. * This is a shortcut for kernel-space yielding - it marks the
  4744. * thread runnable and calls sys_sched_yield().
  4745. */
  4746. void __sched yield(void)
  4747. {
  4748. set_current_state(TASK_RUNNING);
  4749. sys_sched_yield();
  4750. }
  4751. EXPORT_SYMBOL(yield);
  4752. /**
  4753. * yield_to - yield the current processor to another thread in
  4754. * your thread group, or accelerate that thread toward the
  4755. * processor it's on.
  4756. * @p: target task
  4757. * @preempt: whether task preemption is allowed or not
  4758. *
  4759. * It's the caller's job to ensure that the target task struct
  4760. * can't go away on us before we can do any checks.
  4761. *
  4762. * Returns true if we indeed boosted the target task.
  4763. */
  4764. bool __sched yield_to(struct task_struct *p, bool preempt)
  4765. {
  4766. struct task_struct *curr = current;
  4767. struct rq *rq, *p_rq;
  4768. unsigned long flags;
  4769. bool yielded = 0;
  4770. local_irq_save(flags);
  4771. rq = this_rq();
  4772. again:
  4773. p_rq = task_rq(p);
  4774. double_rq_lock(rq, p_rq);
  4775. while (task_rq(p) != p_rq) {
  4776. double_rq_unlock(rq, p_rq);
  4777. goto again;
  4778. }
  4779. if (!curr->sched_class->yield_to_task)
  4780. goto out;
  4781. if (curr->sched_class != p->sched_class)
  4782. goto out;
  4783. if (task_running(p_rq, p) || p->state)
  4784. goto out;
  4785. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  4786. if (yielded) {
  4787. schedstat_inc(rq, yld_count);
  4788. /*
  4789. * Make p's CPU reschedule; pick_next_entity takes care of
  4790. * fairness.
  4791. */
  4792. if (preempt && rq != p_rq)
  4793. resched_task(p_rq->curr);
  4794. }
  4795. out:
  4796. double_rq_unlock(rq, p_rq);
  4797. local_irq_restore(flags);
  4798. if (yielded)
  4799. schedule();
  4800. return yielded;
  4801. }
  4802. EXPORT_SYMBOL_GPL(yield_to);
  4803. /*
  4804. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4805. * that process accounting knows that this is a task in IO wait state.
  4806. */
  4807. void __sched io_schedule(void)
  4808. {
  4809. struct rq *rq = raw_rq();
  4810. delayacct_blkio_start();
  4811. atomic_inc(&rq->nr_iowait);
  4812. blk_flush_plug(current);
  4813. current->in_iowait = 1;
  4814. schedule();
  4815. current->in_iowait = 0;
  4816. atomic_dec(&rq->nr_iowait);
  4817. delayacct_blkio_end();
  4818. }
  4819. EXPORT_SYMBOL(io_schedule);
  4820. long __sched io_schedule_timeout(long timeout)
  4821. {
  4822. struct rq *rq = raw_rq();
  4823. long ret;
  4824. delayacct_blkio_start();
  4825. atomic_inc(&rq->nr_iowait);
  4826. blk_flush_plug(current);
  4827. current->in_iowait = 1;
  4828. ret = schedule_timeout(timeout);
  4829. current->in_iowait = 0;
  4830. atomic_dec(&rq->nr_iowait);
  4831. delayacct_blkio_end();
  4832. return ret;
  4833. }
  4834. /**
  4835. * sys_sched_get_priority_max - return maximum RT priority.
  4836. * @policy: scheduling class.
  4837. *
  4838. * this syscall returns the maximum rt_priority that can be used
  4839. * by a given scheduling class.
  4840. */
  4841. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4842. {
  4843. int ret = -EINVAL;
  4844. switch (policy) {
  4845. case SCHED_FIFO:
  4846. case SCHED_RR:
  4847. ret = MAX_USER_RT_PRIO-1;
  4848. break;
  4849. case SCHED_NORMAL:
  4850. case SCHED_BATCH:
  4851. case SCHED_IDLE:
  4852. ret = 0;
  4853. break;
  4854. }
  4855. return ret;
  4856. }
  4857. /**
  4858. * sys_sched_get_priority_min - return minimum RT priority.
  4859. * @policy: scheduling class.
  4860. *
  4861. * this syscall returns the minimum rt_priority that can be used
  4862. * by a given scheduling class.
  4863. */
  4864. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4865. {
  4866. int ret = -EINVAL;
  4867. switch (policy) {
  4868. case SCHED_FIFO:
  4869. case SCHED_RR:
  4870. ret = 1;
  4871. break;
  4872. case SCHED_NORMAL:
  4873. case SCHED_BATCH:
  4874. case SCHED_IDLE:
  4875. ret = 0;
  4876. }
  4877. return ret;
  4878. }
  4879. /**
  4880. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4881. * @pid: pid of the process.
  4882. * @interval: userspace pointer to the timeslice value.
  4883. *
  4884. * this syscall writes the default timeslice value of a given process
  4885. * into the user-space timespec buffer. A value of '0' means infinity.
  4886. */
  4887. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4888. struct timespec __user *, interval)
  4889. {
  4890. struct task_struct *p;
  4891. unsigned int time_slice;
  4892. unsigned long flags;
  4893. struct rq *rq;
  4894. int retval;
  4895. struct timespec t;
  4896. if (pid < 0)
  4897. return -EINVAL;
  4898. retval = -ESRCH;
  4899. rcu_read_lock();
  4900. p = find_process_by_pid(pid);
  4901. if (!p)
  4902. goto out_unlock;
  4903. retval = security_task_getscheduler(p);
  4904. if (retval)
  4905. goto out_unlock;
  4906. rq = task_rq_lock(p, &flags);
  4907. time_slice = p->sched_class->get_rr_interval(rq, p);
  4908. task_rq_unlock(rq, p, &flags);
  4909. rcu_read_unlock();
  4910. jiffies_to_timespec(time_slice, &t);
  4911. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4912. return retval;
  4913. out_unlock:
  4914. rcu_read_unlock();
  4915. return retval;
  4916. }
  4917. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4918. void sched_show_task(struct task_struct *p)
  4919. {
  4920. unsigned long free = 0;
  4921. unsigned state;
  4922. state = p->state ? __ffs(p->state) + 1 : 0;
  4923. printk(KERN_INFO "%-15.15s %c", p->comm,
  4924. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4925. #if BITS_PER_LONG == 32
  4926. if (state == TASK_RUNNING)
  4927. printk(KERN_CONT " running ");
  4928. else
  4929. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4930. #else
  4931. if (state == TASK_RUNNING)
  4932. printk(KERN_CONT " running task ");
  4933. else
  4934. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4935. #endif
  4936. #ifdef CONFIG_DEBUG_STACK_USAGE
  4937. free = stack_not_used(p);
  4938. #endif
  4939. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4940. task_pid_nr(p), task_pid_nr(p->real_parent),
  4941. (unsigned long)task_thread_info(p)->flags);
  4942. show_stack(p, NULL);
  4943. }
  4944. void show_state_filter(unsigned long state_filter)
  4945. {
  4946. struct task_struct *g, *p;
  4947. #if BITS_PER_LONG == 32
  4948. printk(KERN_INFO
  4949. " task PC stack pid father\n");
  4950. #else
  4951. printk(KERN_INFO
  4952. " task PC stack pid father\n");
  4953. #endif
  4954. read_lock(&tasklist_lock);
  4955. do_each_thread(g, p) {
  4956. /*
  4957. * reset the NMI-timeout, listing all files on a slow
  4958. * console might take a lot of time:
  4959. */
  4960. touch_nmi_watchdog();
  4961. if (!state_filter || (p->state & state_filter))
  4962. sched_show_task(p);
  4963. } while_each_thread(g, p);
  4964. touch_all_softlockup_watchdogs();
  4965. #ifdef CONFIG_SCHED_DEBUG
  4966. sysrq_sched_debug_show();
  4967. #endif
  4968. read_unlock(&tasklist_lock);
  4969. /*
  4970. * Only show locks if all tasks are dumped:
  4971. */
  4972. if (!state_filter)
  4973. debug_show_all_locks();
  4974. }
  4975. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4976. {
  4977. idle->sched_class = &idle_sched_class;
  4978. }
  4979. /**
  4980. * init_idle - set up an idle thread for a given CPU
  4981. * @idle: task in question
  4982. * @cpu: cpu the idle task belongs to
  4983. *
  4984. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4985. * flag, to make booting more robust.
  4986. */
  4987. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4988. {
  4989. struct rq *rq = cpu_rq(cpu);
  4990. unsigned long flags;
  4991. raw_spin_lock_irqsave(&rq->lock, flags);
  4992. __sched_fork(idle);
  4993. idle->state = TASK_RUNNING;
  4994. idle->se.exec_start = sched_clock();
  4995. do_set_cpus_allowed(idle, cpumask_of(cpu));
  4996. /*
  4997. * We're having a chicken and egg problem, even though we are
  4998. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4999. * lockdep check in task_group() will fail.
  5000. *
  5001. * Similar case to sched_fork(). / Alternatively we could
  5002. * use task_rq_lock() here and obtain the other rq->lock.
  5003. *
  5004. * Silence PROVE_RCU
  5005. */
  5006. rcu_read_lock();
  5007. __set_task_cpu(idle, cpu);
  5008. rcu_read_unlock();
  5009. rq->curr = rq->idle = idle;
  5010. #if defined(CONFIG_SMP)
  5011. idle->on_cpu = 1;
  5012. #endif
  5013. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5014. /* Set the preempt count _outside_ the spinlocks! */
  5015. task_thread_info(idle)->preempt_count = 0;
  5016. /*
  5017. * The idle tasks have their own, simple scheduling class:
  5018. */
  5019. idle->sched_class = &idle_sched_class;
  5020. ftrace_graph_init_idle_task(idle, cpu);
  5021. }
  5022. /*
  5023. * In a system that switches off the HZ timer nohz_cpu_mask
  5024. * indicates which cpus entered this state. This is used
  5025. * in the rcu update to wait only for active cpus. For system
  5026. * which do not switch off the HZ timer nohz_cpu_mask should
  5027. * always be CPU_BITS_NONE.
  5028. */
  5029. cpumask_var_t nohz_cpu_mask;
  5030. /*
  5031. * Increase the granularity value when there are more CPUs,
  5032. * because with more CPUs the 'effective latency' as visible
  5033. * to users decreases. But the relationship is not linear,
  5034. * so pick a second-best guess by going with the log2 of the
  5035. * number of CPUs.
  5036. *
  5037. * This idea comes from the SD scheduler of Con Kolivas:
  5038. */
  5039. static int get_update_sysctl_factor(void)
  5040. {
  5041. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  5042. unsigned int factor;
  5043. switch (sysctl_sched_tunable_scaling) {
  5044. case SCHED_TUNABLESCALING_NONE:
  5045. factor = 1;
  5046. break;
  5047. case SCHED_TUNABLESCALING_LINEAR:
  5048. factor = cpus;
  5049. break;
  5050. case SCHED_TUNABLESCALING_LOG:
  5051. default:
  5052. factor = 1 + ilog2(cpus);
  5053. break;
  5054. }
  5055. return factor;
  5056. }
  5057. static void update_sysctl(void)
  5058. {
  5059. unsigned int factor = get_update_sysctl_factor();
  5060. #define SET_SYSCTL(name) \
  5061. (sysctl_##name = (factor) * normalized_sysctl_##name)
  5062. SET_SYSCTL(sched_min_granularity);
  5063. SET_SYSCTL(sched_latency);
  5064. SET_SYSCTL(sched_wakeup_granularity);
  5065. #undef SET_SYSCTL
  5066. }
  5067. static inline void sched_init_granularity(void)
  5068. {
  5069. update_sysctl();
  5070. }
  5071. #ifdef CONFIG_SMP
  5072. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  5073. {
  5074. if (p->sched_class && p->sched_class->set_cpus_allowed)
  5075. p->sched_class->set_cpus_allowed(p, new_mask);
  5076. else {
  5077. cpumask_copy(&p->cpus_allowed, new_mask);
  5078. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5079. }
  5080. }
  5081. /*
  5082. * This is how migration works:
  5083. *
  5084. * 1) we invoke migration_cpu_stop() on the target CPU using
  5085. * stop_one_cpu().
  5086. * 2) stopper starts to run (implicitly forcing the migrated thread
  5087. * off the CPU)
  5088. * 3) it checks whether the migrated task is still in the wrong runqueue.
  5089. * 4) if it's in the wrong runqueue then the migration thread removes
  5090. * it and puts it into the right queue.
  5091. * 5) stopper completes and stop_one_cpu() returns and the migration
  5092. * is done.
  5093. */
  5094. /*
  5095. * Change a given task's CPU affinity. Migrate the thread to a
  5096. * proper CPU and schedule it away if the CPU it's executing on
  5097. * is removed from the allowed bitmask.
  5098. *
  5099. * NOTE: the caller must have a valid reference to the task, the
  5100. * task must not exit() & deallocate itself prematurely. The
  5101. * call is not atomic; no spinlocks may be held.
  5102. */
  5103. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5104. {
  5105. unsigned long flags;
  5106. struct rq *rq;
  5107. unsigned int dest_cpu;
  5108. int ret = 0;
  5109. rq = task_rq_lock(p, &flags);
  5110. if (cpumask_equal(&p->cpus_allowed, new_mask))
  5111. goto out;
  5112. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  5113. ret = -EINVAL;
  5114. goto out;
  5115. }
  5116. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
  5117. ret = -EINVAL;
  5118. goto out;
  5119. }
  5120. do_set_cpus_allowed(p, new_mask);
  5121. /* Can the task run on the task's current CPU? If so, we're done */
  5122. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5123. goto out;
  5124. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  5125. if (p->on_rq) {
  5126. struct migration_arg arg = { p, dest_cpu };
  5127. /* Need help from migration thread: drop lock and wait. */
  5128. task_rq_unlock(rq, p, &flags);
  5129. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  5130. tlb_migrate_finish(p->mm);
  5131. return 0;
  5132. }
  5133. out:
  5134. task_rq_unlock(rq, p, &flags);
  5135. return ret;
  5136. }
  5137. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5138. /*
  5139. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5140. * this because either it can't run here any more (set_cpus_allowed()
  5141. * away from this CPU, or CPU going down), or because we're
  5142. * attempting to rebalance this task on exec (sched_exec).
  5143. *
  5144. * So we race with normal scheduler movements, but that's OK, as long
  5145. * as the task is no longer on this CPU.
  5146. *
  5147. * Returns non-zero if task was successfully migrated.
  5148. */
  5149. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5150. {
  5151. struct rq *rq_dest, *rq_src;
  5152. int ret = 0;
  5153. if (unlikely(!cpu_active(dest_cpu)))
  5154. return ret;
  5155. rq_src = cpu_rq(src_cpu);
  5156. rq_dest = cpu_rq(dest_cpu);
  5157. raw_spin_lock(&p->pi_lock);
  5158. double_rq_lock(rq_src, rq_dest);
  5159. /* Already moved. */
  5160. if (task_cpu(p) != src_cpu)
  5161. goto done;
  5162. /* Affinity changed (again). */
  5163. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5164. goto fail;
  5165. /*
  5166. * If we're not on a rq, the next wake-up will ensure we're
  5167. * placed properly.
  5168. */
  5169. if (p->on_rq) {
  5170. deactivate_task(rq_src, p, 0);
  5171. set_task_cpu(p, dest_cpu);
  5172. activate_task(rq_dest, p, 0);
  5173. check_preempt_curr(rq_dest, p, 0);
  5174. }
  5175. done:
  5176. ret = 1;
  5177. fail:
  5178. double_rq_unlock(rq_src, rq_dest);
  5179. raw_spin_unlock(&p->pi_lock);
  5180. return ret;
  5181. }
  5182. /*
  5183. * migration_cpu_stop - this will be executed by a highprio stopper thread
  5184. * and performs thread migration by bumping thread off CPU then
  5185. * 'pushing' onto another runqueue.
  5186. */
  5187. static int migration_cpu_stop(void *data)
  5188. {
  5189. struct migration_arg *arg = data;
  5190. /*
  5191. * The original target cpu might have gone down and we might
  5192. * be on another cpu but it doesn't matter.
  5193. */
  5194. local_irq_disable();
  5195. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  5196. local_irq_enable();
  5197. return 0;
  5198. }
  5199. #ifdef CONFIG_HOTPLUG_CPU
  5200. /*
  5201. * Ensures that the idle task is using init_mm right before its cpu goes
  5202. * offline.
  5203. */
  5204. void idle_task_exit(void)
  5205. {
  5206. struct mm_struct *mm = current->active_mm;
  5207. BUG_ON(cpu_online(smp_processor_id()));
  5208. if (mm != &init_mm)
  5209. switch_mm(mm, &init_mm, current);
  5210. mmdrop(mm);
  5211. }
  5212. /*
  5213. * While a dead CPU has no uninterruptible tasks queued at this point,
  5214. * it might still have a nonzero ->nr_uninterruptible counter, because
  5215. * for performance reasons the counter is not stricly tracking tasks to
  5216. * their home CPUs. So we just add the counter to another CPU's counter,
  5217. * to keep the global sum constant after CPU-down:
  5218. */
  5219. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5220. {
  5221. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  5222. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5223. rq_src->nr_uninterruptible = 0;
  5224. }
  5225. /*
  5226. * remove the tasks which were accounted by rq from calc_load_tasks.
  5227. */
  5228. static void calc_global_load_remove(struct rq *rq)
  5229. {
  5230. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  5231. rq->calc_load_active = 0;
  5232. }
  5233. /*
  5234. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  5235. * try_to_wake_up()->select_task_rq().
  5236. *
  5237. * Called with rq->lock held even though we'er in stop_machine() and
  5238. * there's no concurrency possible, we hold the required locks anyway
  5239. * because of lock validation efforts.
  5240. */
  5241. static void migrate_tasks(unsigned int dead_cpu)
  5242. {
  5243. struct rq *rq = cpu_rq(dead_cpu);
  5244. struct task_struct *next, *stop = rq->stop;
  5245. int dest_cpu;
  5246. /*
  5247. * Fudge the rq selection such that the below task selection loop
  5248. * doesn't get stuck on the currently eligible stop task.
  5249. *
  5250. * We're currently inside stop_machine() and the rq is either stuck
  5251. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  5252. * either way we should never end up calling schedule() until we're
  5253. * done here.
  5254. */
  5255. rq->stop = NULL;
  5256. for ( ; ; ) {
  5257. /*
  5258. * There's this thread running, bail when that's the only
  5259. * remaining thread.
  5260. */
  5261. if (rq->nr_running == 1)
  5262. break;
  5263. next = pick_next_task(rq);
  5264. BUG_ON(!next);
  5265. next->sched_class->put_prev_task(rq, next);
  5266. /* Find suitable destination for @next, with force if needed. */
  5267. dest_cpu = select_fallback_rq(dead_cpu, next);
  5268. raw_spin_unlock(&rq->lock);
  5269. __migrate_task(next, dead_cpu, dest_cpu);
  5270. raw_spin_lock(&rq->lock);
  5271. }
  5272. rq->stop = stop;
  5273. }
  5274. #endif /* CONFIG_HOTPLUG_CPU */
  5275. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5276. static struct ctl_table sd_ctl_dir[] = {
  5277. {
  5278. .procname = "sched_domain",
  5279. .mode = 0555,
  5280. },
  5281. {}
  5282. };
  5283. static struct ctl_table sd_ctl_root[] = {
  5284. {
  5285. .procname = "kernel",
  5286. .mode = 0555,
  5287. .child = sd_ctl_dir,
  5288. },
  5289. {}
  5290. };
  5291. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5292. {
  5293. struct ctl_table *entry =
  5294. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5295. return entry;
  5296. }
  5297. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5298. {
  5299. struct ctl_table *entry;
  5300. /*
  5301. * In the intermediate directories, both the child directory and
  5302. * procname are dynamically allocated and could fail but the mode
  5303. * will always be set. In the lowest directory the names are
  5304. * static strings and all have proc handlers.
  5305. */
  5306. for (entry = *tablep; entry->mode; entry++) {
  5307. if (entry->child)
  5308. sd_free_ctl_entry(&entry->child);
  5309. if (entry->proc_handler == NULL)
  5310. kfree(entry->procname);
  5311. }
  5312. kfree(*tablep);
  5313. *tablep = NULL;
  5314. }
  5315. static void
  5316. set_table_entry(struct ctl_table *entry,
  5317. const char *procname, void *data, int maxlen,
  5318. mode_t mode, proc_handler *proc_handler)
  5319. {
  5320. entry->procname = procname;
  5321. entry->data = data;
  5322. entry->maxlen = maxlen;
  5323. entry->mode = mode;
  5324. entry->proc_handler = proc_handler;
  5325. }
  5326. static struct ctl_table *
  5327. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5328. {
  5329. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5330. if (table == NULL)
  5331. return NULL;
  5332. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5333. sizeof(long), 0644, proc_doulongvec_minmax);
  5334. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5335. sizeof(long), 0644, proc_doulongvec_minmax);
  5336. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5337. sizeof(int), 0644, proc_dointvec_minmax);
  5338. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5339. sizeof(int), 0644, proc_dointvec_minmax);
  5340. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5341. sizeof(int), 0644, proc_dointvec_minmax);
  5342. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5343. sizeof(int), 0644, proc_dointvec_minmax);
  5344. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5345. sizeof(int), 0644, proc_dointvec_minmax);
  5346. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5347. sizeof(int), 0644, proc_dointvec_minmax);
  5348. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5349. sizeof(int), 0644, proc_dointvec_minmax);
  5350. set_table_entry(&table[9], "cache_nice_tries",
  5351. &sd->cache_nice_tries,
  5352. sizeof(int), 0644, proc_dointvec_minmax);
  5353. set_table_entry(&table[10], "flags", &sd->flags,
  5354. sizeof(int), 0644, proc_dointvec_minmax);
  5355. set_table_entry(&table[11], "name", sd->name,
  5356. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5357. /* &table[12] is terminator */
  5358. return table;
  5359. }
  5360. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5361. {
  5362. struct ctl_table *entry, *table;
  5363. struct sched_domain *sd;
  5364. int domain_num = 0, i;
  5365. char buf[32];
  5366. for_each_domain(cpu, sd)
  5367. domain_num++;
  5368. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5369. if (table == NULL)
  5370. return NULL;
  5371. i = 0;
  5372. for_each_domain(cpu, sd) {
  5373. snprintf(buf, 32, "domain%d", i);
  5374. entry->procname = kstrdup(buf, GFP_KERNEL);
  5375. entry->mode = 0555;
  5376. entry->child = sd_alloc_ctl_domain_table(sd);
  5377. entry++;
  5378. i++;
  5379. }
  5380. return table;
  5381. }
  5382. static struct ctl_table_header *sd_sysctl_header;
  5383. static void register_sched_domain_sysctl(void)
  5384. {
  5385. int i, cpu_num = num_possible_cpus();
  5386. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5387. char buf[32];
  5388. WARN_ON(sd_ctl_dir[0].child);
  5389. sd_ctl_dir[0].child = entry;
  5390. if (entry == NULL)
  5391. return;
  5392. for_each_possible_cpu(i) {
  5393. snprintf(buf, 32, "cpu%d", i);
  5394. entry->procname = kstrdup(buf, GFP_KERNEL);
  5395. entry->mode = 0555;
  5396. entry->child = sd_alloc_ctl_cpu_table(i);
  5397. entry++;
  5398. }
  5399. WARN_ON(sd_sysctl_header);
  5400. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5401. }
  5402. /* may be called multiple times per register */
  5403. static void unregister_sched_domain_sysctl(void)
  5404. {
  5405. if (sd_sysctl_header)
  5406. unregister_sysctl_table(sd_sysctl_header);
  5407. sd_sysctl_header = NULL;
  5408. if (sd_ctl_dir[0].child)
  5409. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5410. }
  5411. #else
  5412. static void register_sched_domain_sysctl(void)
  5413. {
  5414. }
  5415. static void unregister_sched_domain_sysctl(void)
  5416. {
  5417. }
  5418. #endif
  5419. static void set_rq_online(struct rq *rq)
  5420. {
  5421. if (!rq->online) {
  5422. const struct sched_class *class;
  5423. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5424. rq->online = 1;
  5425. for_each_class(class) {
  5426. if (class->rq_online)
  5427. class->rq_online(rq);
  5428. }
  5429. }
  5430. }
  5431. static void set_rq_offline(struct rq *rq)
  5432. {
  5433. if (rq->online) {
  5434. const struct sched_class *class;
  5435. for_each_class(class) {
  5436. if (class->rq_offline)
  5437. class->rq_offline(rq);
  5438. }
  5439. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5440. rq->online = 0;
  5441. }
  5442. }
  5443. /*
  5444. * migration_call - callback that gets triggered when a CPU is added.
  5445. * Here we can start up the necessary migration thread for the new CPU.
  5446. */
  5447. static int __cpuinit
  5448. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5449. {
  5450. int cpu = (long)hcpu;
  5451. unsigned long flags;
  5452. struct rq *rq = cpu_rq(cpu);
  5453. switch (action & ~CPU_TASKS_FROZEN) {
  5454. case CPU_UP_PREPARE:
  5455. rq->calc_load_update = calc_load_update;
  5456. break;
  5457. case CPU_ONLINE:
  5458. /* Update our root-domain */
  5459. raw_spin_lock_irqsave(&rq->lock, flags);
  5460. if (rq->rd) {
  5461. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5462. set_rq_online(rq);
  5463. }
  5464. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5465. break;
  5466. #ifdef CONFIG_HOTPLUG_CPU
  5467. case CPU_DYING:
  5468. sched_ttwu_pending();
  5469. /* Update our root-domain */
  5470. raw_spin_lock_irqsave(&rq->lock, flags);
  5471. if (rq->rd) {
  5472. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5473. set_rq_offline(rq);
  5474. }
  5475. migrate_tasks(cpu);
  5476. BUG_ON(rq->nr_running != 1); /* the migration thread */
  5477. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5478. migrate_nr_uninterruptible(rq);
  5479. calc_global_load_remove(rq);
  5480. break;
  5481. #endif
  5482. }
  5483. update_max_interval();
  5484. return NOTIFY_OK;
  5485. }
  5486. /*
  5487. * Register at high priority so that task migration (migrate_all_tasks)
  5488. * happens before everything else. This has to be lower priority than
  5489. * the notifier in the perf_event subsystem, though.
  5490. */
  5491. static struct notifier_block __cpuinitdata migration_notifier = {
  5492. .notifier_call = migration_call,
  5493. .priority = CPU_PRI_MIGRATION,
  5494. };
  5495. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  5496. unsigned long action, void *hcpu)
  5497. {
  5498. switch (action & ~CPU_TASKS_FROZEN) {
  5499. case CPU_ONLINE:
  5500. case CPU_DOWN_FAILED:
  5501. set_cpu_active((long)hcpu, true);
  5502. return NOTIFY_OK;
  5503. default:
  5504. return NOTIFY_DONE;
  5505. }
  5506. }
  5507. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  5508. unsigned long action, void *hcpu)
  5509. {
  5510. switch (action & ~CPU_TASKS_FROZEN) {
  5511. case CPU_DOWN_PREPARE:
  5512. set_cpu_active((long)hcpu, false);
  5513. return NOTIFY_OK;
  5514. default:
  5515. return NOTIFY_DONE;
  5516. }
  5517. }
  5518. static int __init migration_init(void)
  5519. {
  5520. void *cpu = (void *)(long)smp_processor_id();
  5521. int err;
  5522. /* Initialize migration for the boot CPU */
  5523. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5524. BUG_ON(err == NOTIFY_BAD);
  5525. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5526. register_cpu_notifier(&migration_notifier);
  5527. /* Register cpu active notifiers */
  5528. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  5529. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  5530. return 0;
  5531. }
  5532. early_initcall(migration_init);
  5533. #endif
  5534. #ifdef CONFIG_SMP
  5535. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  5536. #ifdef CONFIG_SCHED_DEBUG
  5537. static __read_mostly int sched_domain_debug_enabled;
  5538. static int __init sched_domain_debug_setup(char *str)
  5539. {
  5540. sched_domain_debug_enabled = 1;
  5541. return 0;
  5542. }
  5543. early_param("sched_debug", sched_domain_debug_setup);
  5544. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5545. struct cpumask *groupmask)
  5546. {
  5547. struct sched_group *group = sd->groups;
  5548. char str[256];
  5549. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5550. cpumask_clear(groupmask);
  5551. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5552. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5553. printk("does not load-balance\n");
  5554. if (sd->parent)
  5555. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5556. " has parent");
  5557. return -1;
  5558. }
  5559. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5560. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5561. printk(KERN_ERR "ERROR: domain->span does not contain "
  5562. "CPU%d\n", cpu);
  5563. }
  5564. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5565. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5566. " CPU%d\n", cpu);
  5567. }
  5568. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5569. do {
  5570. if (!group) {
  5571. printk("\n");
  5572. printk(KERN_ERR "ERROR: group is NULL\n");
  5573. break;
  5574. }
  5575. if (!group->sgp->power) {
  5576. printk(KERN_CONT "\n");
  5577. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5578. "set\n");
  5579. break;
  5580. }
  5581. if (!cpumask_weight(sched_group_cpus(group))) {
  5582. printk(KERN_CONT "\n");
  5583. printk(KERN_ERR "ERROR: empty group\n");
  5584. break;
  5585. }
  5586. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5587. printk(KERN_CONT "\n");
  5588. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5589. break;
  5590. }
  5591. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5592. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5593. printk(KERN_CONT " %s", str);
  5594. if (group->sgp->power != SCHED_POWER_SCALE) {
  5595. printk(KERN_CONT " (cpu_power = %d)",
  5596. group->sgp->power);
  5597. }
  5598. group = group->next;
  5599. } while (group != sd->groups);
  5600. printk(KERN_CONT "\n");
  5601. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5602. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5603. if (sd->parent &&
  5604. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5605. printk(KERN_ERR "ERROR: parent span is not a superset "
  5606. "of domain->span\n");
  5607. return 0;
  5608. }
  5609. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5610. {
  5611. int level = 0;
  5612. if (!sched_domain_debug_enabled)
  5613. return;
  5614. if (!sd) {
  5615. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5616. return;
  5617. }
  5618. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5619. for (;;) {
  5620. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  5621. break;
  5622. level++;
  5623. sd = sd->parent;
  5624. if (!sd)
  5625. break;
  5626. }
  5627. }
  5628. #else /* !CONFIG_SCHED_DEBUG */
  5629. # define sched_domain_debug(sd, cpu) do { } while (0)
  5630. #endif /* CONFIG_SCHED_DEBUG */
  5631. static int sd_degenerate(struct sched_domain *sd)
  5632. {
  5633. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5634. return 1;
  5635. /* Following flags need at least 2 groups */
  5636. if (sd->flags & (SD_LOAD_BALANCE |
  5637. SD_BALANCE_NEWIDLE |
  5638. SD_BALANCE_FORK |
  5639. SD_BALANCE_EXEC |
  5640. SD_SHARE_CPUPOWER |
  5641. SD_SHARE_PKG_RESOURCES)) {
  5642. if (sd->groups != sd->groups->next)
  5643. return 0;
  5644. }
  5645. /* Following flags don't use groups */
  5646. if (sd->flags & (SD_WAKE_AFFINE))
  5647. return 0;
  5648. return 1;
  5649. }
  5650. static int
  5651. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5652. {
  5653. unsigned long cflags = sd->flags, pflags = parent->flags;
  5654. if (sd_degenerate(parent))
  5655. return 1;
  5656. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5657. return 0;
  5658. /* Flags needing groups don't count if only 1 group in parent */
  5659. if (parent->groups == parent->groups->next) {
  5660. pflags &= ~(SD_LOAD_BALANCE |
  5661. SD_BALANCE_NEWIDLE |
  5662. SD_BALANCE_FORK |
  5663. SD_BALANCE_EXEC |
  5664. SD_SHARE_CPUPOWER |
  5665. SD_SHARE_PKG_RESOURCES);
  5666. if (nr_node_ids == 1)
  5667. pflags &= ~SD_SERIALIZE;
  5668. }
  5669. if (~cflags & pflags)
  5670. return 0;
  5671. return 1;
  5672. }
  5673. static void free_rootdomain(struct rcu_head *rcu)
  5674. {
  5675. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  5676. cpupri_cleanup(&rd->cpupri);
  5677. free_cpumask_var(rd->rto_mask);
  5678. free_cpumask_var(rd->online);
  5679. free_cpumask_var(rd->span);
  5680. kfree(rd);
  5681. }
  5682. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5683. {
  5684. struct root_domain *old_rd = NULL;
  5685. unsigned long flags;
  5686. raw_spin_lock_irqsave(&rq->lock, flags);
  5687. if (rq->rd) {
  5688. old_rd = rq->rd;
  5689. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5690. set_rq_offline(rq);
  5691. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5692. /*
  5693. * If we dont want to free the old_rt yet then
  5694. * set old_rd to NULL to skip the freeing later
  5695. * in this function:
  5696. */
  5697. if (!atomic_dec_and_test(&old_rd->refcount))
  5698. old_rd = NULL;
  5699. }
  5700. atomic_inc(&rd->refcount);
  5701. rq->rd = rd;
  5702. cpumask_set_cpu(rq->cpu, rd->span);
  5703. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5704. set_rq_online(rq);
  5705. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5706. if (old_rd)
  5707. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  5708. }
  5709. static int init_rootdomain(struct root_domain *rd)
  5710. {
  5711. memset(rd, 0, sizeof(*rd));
  5712. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5713. goto out;
  5714. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5715. goto free_span;
  5716. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5717. goto free_online;
  5718. if (cpupri_init(&rd->cpupri) != 0)
  5719. goto free_rto_mask;
  5720. return 0;
  5721. free_rto_mask:
  5722. free_cpumask_var(rd->rto_mask);
  5723. free_online:
  5724. free_cpumask_var(rd->online);
  5725. free_span:
  5726. free_cpumask_var(rd->span);
  5727. out:
  5728. return -ENOMEM;
  5729. }
  5730. static void init_defrootdomain(void)
  5731. {
  5732. init_rootdomain(&def_root_domain);
  5733. atomic_set(&def_root_domain.refcount, 1);
  5734. }
  5735. static struct root_domain *alloc_rootdomain(void)
  5736. {
  5737. struct root_domain *rd;
  5738. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5739. if (!rd)
  5740. return NULL;
  5741. if (init_rootdomain(rd) != 0) {
  5742. kfree(rd);
  5743. return NULL;
  5744. }
  5745. return rd;
  5746. }
  5747. static void free_sched_groups(struct sched_group *sg, int free_sgp)
  5748. {
  5749. struct sched_group *tmp, *first;
  5750. if (!sg)
  5751. return;
  5752. first = sg;
  5753. do {
  5754. tmp = sg->next;
  5755. if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
  5756. kfree(sg->sgp);
  5757. kfree(sg);
  5758. sg = tmp;
  5759. } while (sg != first);
  5760. }
  5761. static void free_sched_domain(struct rcu_head *rcu)
  5762. {
  5763. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  5764. /*
  5765. * If its an overlapping domain it has private groups, iterate and
  5766. * nuke them all.
  5767. */
  5768. if (sd->flags & SD_OVERLAP) {
  5769. free_sched_groups(sd->groups, 1);
  5770. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  5771. kfree(sd->groups->sgp);
  5772. kfree(sd->groups);
  5773. }
  5774. kfree(sd);
  5775. }
  5776. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  5777. {
  5778. call_rcu(&sd->rcu, free_sched_domain);
  5779. }
  5780. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  5781. {
  5782. for (; sd; sd = sd->parent)
  5783. destroy_sched_domain(sd, cpu);
  5784. }
  5785. /*
  5786. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5787. * hold the hotplug lock.
  5788. */
  5789. static void
  5790. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5791. {
  5792. struct rq *rq = cpu_rq(cpu);
  5793. struct sched_domain *tmp;
  5794. /* Remove the sched domains which do not contribute to scheduling. */
  5795. for (tmp = sd; tmp; ) {
  5796. struct sched_domain *parent = tmp->parent;
  5797. if (!parent)
  5798. break;
  5799. if (sd_parent_degenerate(tmp, parent)) {
  5800. tmp->parent = parent->parent;
  5801. if (parent->parent)
  5802. parent->parent->child = tmp;
  5803. destroy_sched_domain(parent, cpu);
  5804. } else
  5805. tmp = tmp->parent;
  5806. }
  5807. if (sd && sd_degenerate(sd)) {
  5808. tmp = sd;
  5809. sd = sd->parent;
  5810. destroy_sched_domain(tmp, cpu);
  5811. if (sd)
  5812. sd->child = NULL;
  5813. }
  5814. sched_domain_debug(sd, cpu);
  5815. rq_attach_root(rq, rd);
  5816. tmp = rq->sd;
  5817. rcu_assign_pointer(rq->sd, sd);
  5818. destroy_sched_domains(tmp, cpu);
  5819. }
  5820. /* cpus with isolated domains */
  5821. static cpumask_var_t cpu_isolated_map;
  5822. /* Setup the mask of cpus configured for isolated domains */
  5823. static int __init isolated_cpu_setup(char *str)
  5824. {
  5825. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5826. cpulist_parse(str, cpu_isolated_map);
  5827. return 1;
  5828. }
  5829. __setup("isolcpus=", isolated_cpu_setup);
  5830. #define SD_NODES_PER_DOMAIN 16
  5831. #ifdef CONFIG_NUMA
  5832. /**
  5833. * find_next_best_node - find the next node to include in a sched_domain
  5834. * @node: node whose sched_domain we're building
  5835. * @used_nodes: nodes already in the sched_domain
  5836. *
  5837. * Find the next node to include in a given scheduling domain. Simply
  5838. * finds the closest node not already in the @used_nodes map.
  5839. *
  5840. * Should use nodemask_t.
  5841. */
  5842. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5843. {
  5844. int i, n, val, min_val, best_node = -1;
  5845. min_val = INT_MAX;
  5846. for (i = 0; i < nr_node_ids; i++) {
  5847. /* Start at @node */
  5848. n = (node + i) % nr_node_ids;
  5849. if (!nr_cpus_node(n))
  5850. continue;
  5851. /* Skip already used nodes */
  5852. if (node_isset(n, *used_nodes))
  5853. continue;
  5854. /* Simple min distance search */
  5855. val = node_distance(node, n);
  5856. if (val < min_val) {
  5857. min_val = val;
  5858. best_node = n;
  5859. }
  5860. }
  5861. if (best_node != -1)
  5862. node_set(best_node, *used_nodes);
  5863. return best_node;
  5864. }
  5865. /**
  5866. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5867. * @node: node whose cpumask we're constructing
  5868. * @span: resulting cpumask
  5869. *
  5870. * Given a node, construct a good cpumask for its sched_domain to span. It
  5871. * should be one that prevents unnecessary balancing, but also spreads tasks
  5872. * out optimally.
  5873. */
  5874. static void sched_domain_node_span(int node, struct cpumask *span)
  5875. {
  5876. nodemask_t used_nodes;
  5877. int i;
  5878. cpumask_clear(span);
  5879. nodes_clear(used_nodes);
  5880. cpumask_or(span, span, cpumask_of_node(node));
  5881. node_set(node, used_nodes);
  5882. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5883. int next_node = find_next_best_node(node, &used_nodes);
  5884. if (next_node < 0)
  5885. break;
  5886. cpumask_or(span, span, cpumask_of_node(next_node));
  5887. }
  5888. }
  5889. static const struct cpumask *cpu_node_mask(int cpu)
  5890. {
  5891. lockdep_assert_held(&sched_domains_mutex);
  5892. sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
  5893. return sched_domains_tmpmask;
  5894. }
  5895. static const struct cpumask *cpu_allnodes_mask(int cpu)
  5896. {
  5897. return cpu_possible_mask;
  5898. }
  5899. #endif /* CONFIG_NUMA */
  5900. static const struct cpumask *cpu_cpu_mask(int cpu)
  5901. {
  5902. return cpumask_of_node(cpu_to_node(cpu));
  5903. }
  5904. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5905. struct sd_data {
  5906. struct sched_domain **__percpu sd;
  5907. struct sched_group **__percpu sg;
  5908. struct sched_group_power **__percpu sgp;
  5909. };
  5910. struct s_data {
  5911. struct sched_domain ** __percpu sd;
  5912. struct root_domain *rd;
  5913. };
  5914. enum s_alloc {
  5915. sa_rootdomain,
  5916. sa_sd,
  5917. sa_sd_storage,
  5918. sa_none,
  5919. };
  5920. struct sched_domain_topology_level;
  5921. typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
  5922. typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
  5923. #define SDTL_OVERLAP 0x01
  5924. struct sched_domain_topology_level {
  5925. sched_domain_init_f init;
  5926. sched_domain_mask_f mask;
  5927. int flags;
  5928. struct sd_data data;
  5929. };
  5930. static int
  5931. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  5932. {
  5933. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  5934. const struct cpumask *span = sched_domain_span(sd);
  5935. struct cpumask *covered = sched_domains_tmpmask;
  5936. struct sd_data *sdd = sd->private;
  5937. struct sched_domain *child;
  5938. int i;
  5939. cpumask_clear(covered);
  5940. for_each_cpu(i, span) {
  5941. struct cpumask *sg_span;
  5942. if (cpumask_test_cpu(i, covered))
  5943. continue;
  5944. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5945. GFP_KERNEL, cpu_to_node(i));
  5946. if (!sg)
  5947. goto fail;
  5948. sg_span = sched_group_cpus(sg);
  5949. child = *per_cpu_ptr(sdd->sd, i);
  5950. if (child->child) {
  5951. child = child->child;
  5952. cpumask_copy(sg_span, sched_domain_span(child));
  5953. } else
  5954. cpumask_set_cpu(i, sg_span);
  5955. cpumask_or(covered, covered, sg_span);
  5956. sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
  5957. atomic_inc(&sg->sgp->ref);
  5958. if (cpumask_test_cpu(cpu, sg_span))
  5959. groups = sg;
  5960. if (!first)
  5961. first = sg;
  5962. if (last)
  5963. last->next = sg;
  5964. last = sg;
  5965. last->next = first;
  5966. }
  5967. sd->groups = groups;
  5968. return 0;
  5969. fail:
  5970. free_sched_groups(first, 0);
  5971. return -ENOMEM;
  5972. }
  5973. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  5974. {
  5975. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  5976. struct sched_domain *child = sd->child;
  5977. if (child)
  5978. cpu = cpumask_first(sched_domain_span(child));
  5979. if (sg) {
  5980. *sg = *per_cpu_ptr(sdd->sg, cpu);
  5981. (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
  5982. atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
  5983. }
  5984. return cpu;
  5985. }
  5986. /*
  5987. * build_sched_groups will build a circular linked list of the groups
  5988. * covered by the given span, and will set each group's ->cpumask correctly,
  5989. * and ->cpu_power to 0.
  5990. *
  5991. * Assumes the sched_domain tree is fully constructed
  5992. */
  5993. static int
  5994. build_sched_groups(struct sched_domain *sd, int cpu)
  5995. {
  5996. struct sched_group *first = NULL, *last = NULL;
  5997. struct sd_data *sdd = sd->private;
  5998. const struct cpumask *span = sched_domain_span(sd);
  5999. struct cpumask *covered;
  6000. int i;
  6001. get_group(cpu, sdd, &sd->groups);
  6002. atomic_inc(&sd->groups->ref);
  6003. if (cpu != cpumask_first(sched_domain_span(sd)))
  6004. return 0;
  6005. lockdep_assert_held(&sched_domains_mutex);
  6006. covered = sched_domains_tmpmask;
  6007. cpumask_clear(covered);
  6008. for_each_cpu(i, span) {
  6009. struct sched_group *sg;
  6010. int group = get_group(i, sdd, &sg);
  6011. int j;
  6012. if (cpumask_test_cpu(i, covered))
  6013. continue;
  6014. cpumask_clear(sched_group_cpus(sg));
  6015. sg->sgp->power = 0;
  6016. for_each_cpu(j, span) {
  6017. if (get_group(j, sdd, NULL) != group)
  6018. continue;
  6019. cpumask_set_cpu(j, covered);
  6020. cpumask_set_cpu(j, sched_group_cpus(sg));
  6021. }
  6022. if (!first)
  6023. first = sg;
  6024. if (last)
  6025. last->next = sg;
  6026. last = sg;
  6027. }
  6028. last->next = first;
  6029. return 0;
  6030. }
  6031. /*
  6032. * Initialize sched groups cpu_power.
  6033. *
  6034. * cpu_power indicates the capacity of sched group, which is used while
  6035. * distributing the load between different sched groups in a sched domain.
  6036. * Typically cpu_power for all the groups in a sched domain will be same unless
  6037. * there are asymmetries in the topology. If there are asymmetries, group
  6038. * having more cpu_power will pickup more load compared to the group having
  6039. * less cpu_power.
  6040. */
  6041. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6042. {
  6043. struct sched_group *sg = sd->groups;
  6044. WARN_ON(!sd || !sg);
  6045. do {
  6046. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  6047. sg = sg->next;
  6048. } while (sg != sd->groups);
  6049. if (cpu != group_first_cpu(sg))
  6050. return;
  6051. update_group_power(sd, cpu);
  6052. }
  6053. /*
  6054. * Initializers for schedule domains
  6055. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6056. */
  6057. #ifdef CONFIG_SCHED_DEBUG
  6058. # define SD_INIT_NAME(sd, type) sd->name = #type
  6059. #else
  6060. # define SD_INIT_NAME(sd, type) do { } while (0)
  6061. #endif
  6062. #define SD_INIT_FUNC(type) \
  6063. static noinline struct sched_domain * \
  6064. sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
  6065. { \
  6066. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
  6067. *sd = SD_##type##_INIT; \
  6068. SD_INIT_NAME(sd, type); \
  6069. sd->private = &tl->data; \
  6070. return sd; \
  6071. }
  6072. SD_INIT_FUNC(CPU)
  6073. #ifdef CONFIG_NUMA
  6074. SD_INIT_FUNC(ALLNODES)
  6075. SD_INIT_FUNC(NODE)
  6076. #endif
  6077. #ifdef CONFIG_SCHED_SMT
  6078. SD_INIT_FUNC(SIBLING)
  6079. #endif
  6080. #ifdef CONFIG_SCHED_MC
  6081. SD_INIT_FUNC(MC)
  6082. #endif
  6083. #ifdef CONFIG_SCHED_BOOK
  6084. SD_INIT_FUNC(BOOK)
  6085. #endif
  6086. static int default_relax_domain_level = -1;
  6087. int sched_domain_level_max;
  6088. static int __init setup_relax_domain_level(char *str)
  6089. {
  6090. unsigned long val;
  6091. val = simple_strtoul(str, NULL, 0);
  6092. if (val < sched_domain_level_max)
  6093. default_relax_domain_level = val;
  6094. return 1;
  6095. }
  6096. __setup("relax_domain_level=", setup_relax_domain_level);
  6097. static void set_domain_attribute(struct sched_domain *sd,
  6098. struct sched_domain_attr *attr)
  6099. {
  6100. int request;
  6101. if (!attr || attr->relax_domain_level < 0) {
  6102. if (default_relax_domain_level < 0)
  6103. return;
  6104. else
  6105. request = default_relax_domain_level;
  6106. } else
  6107. request = attr->relax_domain_level;
  6108. if (request < sd->level) {
  6109. /* turn off idle balance on this domain */
  6110. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6111. } else {
  6112. /* turn on idle balance on this domain */
  6113. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6114. }
  6115. }
  6116. static void __sdt_free(const struct cpumask *cpu_map);
  6117. static int __sdt_alloc(const struct cpumask *cpu_map);
  6118. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  6119. const struct cpumask *cpu_map)
  6120. {
  6121. switch (what) {
  6122. case sa_rootdomain:
  6123. if (!atomic_read(&d->rd->refcount))
  6124. free_rootdomain(&d->rd->rcu); /* fall through */
  6125. case sa_sd:
  6126. free_percpu(d->sd); /* fall through */
  6127. case sa_sd_storage:
  6128. __sdt_free(cpu_map); /* fall through */
  6129. case sa_none:
  6130. break;
  6131. }
  6132. }
  6133. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  6134. const struct cpumask *cpu_map)
  6135. {
  6136. memset(d, 0, sizeof(*d));
  6137. if (__sdt_alloc(cpu_map))
  6138. return sa_sd_storage;
  6139. d->sd = alloc_percpu(struct sched_domain *);
  6140. if (!d->sd)
  6141. return sa_sd_storage;
  6142. d->rd = alloc_rootdomain();
  6143. if (!d->rd)
  6144. return sa_sd;
  6145. return sa_rootdomain;
  6146. }
  6147. /*
  6148. * NULL the sd_data elements we've used to build the sched_domain and
  6149. * sched_group structure so that the subsequent __free_domain_allocs()
  6150. * will not free the data we're using.
  6151. */
  6152. static void claim_allocations(int cpu, struct sched_domain *sd)
  6153. {
  6154. struct sd_data *sdd = sd->private;
  6155. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  6156. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  6157. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  6158. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  6159. if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
  6160. *per_cpu_ptr(sdd->sgp, cpu) = NULL;
  6161. }
  6162. #ifdef CONFIG_SCHED_SMT
  6163. static const struct cpumask *cpu_smt_mask(int cpu)
  6164. {
  6165. return topology_thread_cpumask(cpu);
  6166. }
  6167. #endif
  6168. /*
  6169. * Topology list, bottom-up.
  6170. */
  6171. static struct sched_domain_topology_level default_topology[] = {
  6172. #ifdef CONFIG_SCHED_SMT
  6173. { sd_init_SIBLING, cpu_smt_mask, },
  6174. #endif
  6175. #ifdef CONFIG_SCHED_MC
  6176. { sd_init_MC, cpu_coregroup_mask, },
  6177. #endif
  6178. #ifdef CONFIG_SCHED_BOOK
  6179. { sd_init_BOOK, cpu_book_mask, },
  6180. #endif
  6181. { sd_init_CPU, cpu_cpu_mask, },
  6182. #ifdef CONFIG_NUMA
  6183. { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
  6184. { sd_init_ALLNODES, cpu_allnodes_mask, },
  6185. #endif
  6186. { NULL, },
  6187. };
  6188. static struct sched_domain_topology_level *sched_domain_topology = default_topology;
  6189. static int __sdt_alloc(const struct cpumask *cpu_map)
  6190. {
  6191. struct sched_domain_topology_level *tl;
  6192. int j;
  6193. for (tl = sched_domain_topology; tl->init; tl++) {
  6194. struct sd_data *sdd = &tl->data;
  6195. sdd->sd = alloc_percpu(struct sched_domain *);
  6196. if (!sdd->sd)
  6197. return -ENOMEM;
  6198. sdd->sg = alloc_percpu(struct sched_group *);
  6199. if (!sdd->sg)
  6200. return -ENOMEM;
  6201. sdd->sgp = alloc_percpu(struct sched_group_power *);
  6202. if (!sdd->sgp)
  6203. return -ENOMEM;
  6204. for_each_cpu(j, cpu_map) {
  6205. struct sched_domain *sd;
  6206. struct sched_group *sg;
  6207. struct sched_group_power *sgp;
  6208. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  6209. GFP_KERNEL, cpu_to_node(j));
  6210. if (!sd)
  6211. return -ENOMEM;
  6212. *per_cpu_ptr(sdd->sd, j) = sd;
  6213. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6214. GFP_KERNEL, cpu_to_node(j));
  6215. if (!sg)
  6216. return -ENOMEM;
  6217. *per_cpu_ptr(sdd->sg, j) = sg;
  6218. sgp = kzalloc_node(sizeof(struct sched_group_power),
  6219. GFP_KERNEL, cpu_to_node(j));
  6220. if (!sgp)
  6221. return -ENOMEM;
  6222. *per_cpu_ptr(sdd->sgp, j) = sgp;
  6223. }
  6224. }
  6225. return 0;
  6226. }
  6227. static void __sdt_free(const struct cpumask *cpu_map)
  6228. {
  6229. struct sched_domain_topology_level *tl;
  6230. int j;
  6231. for (tl = sched_domain_topology; tl->init; tl++) {
  6232. struct sd_data *sdd = &tl->data;
  6233. for_each_cpu(j, cpu_map) {
  6234. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
  6235. if (sd && (sd->flags & SD_OVERLAP))
  6236. free_sched_groups(sd->groups, 0);
  6237. kfree(*per_cpu_ptr(sdd->sg, j));
  6238. kfree(*per_cpu_ptr(sdd->sgp, j));
  6239. }
  6240. free_percpu(sdd->sd);
  6241. free_percpu(sdd->sg);
  6242. free_percpu(sdd->sgp);
  6243. }
  6244. }
  6245. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  6246. struct s_data *d, const struct cpumask *cpu_map,
  6247. struct sched_domain_attr *attr, struct sched_domain *child,
  6248. int cpu)
  6249. {
  6250. struct sched_domain *sd = tl->init(tl, cpu);
  6251. if (!sd)
  6252. return child;
  6253. set_domain_attribute(sd, attr);
  6254. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  6255. if (child) {
  6256. sd->level = child->level + 1;
  6257. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  6258. child->parent = sd;
  6259. }
  6260. sd->child = child;
  6261. return sd;
  6262. }
  6263. /*
  6264. * Build sched domains for a given set of cpus and attach the sched domains
  6265. * to the individual cpus
  6266. */
  6267. static int build_sched_domains(const struct cpumask *cpu_map,
  6268. struct sched_domain_attr *attr)
  6269. {
  6270. enum s_alloc alloc_state = sa_none;
  6271. struct sched_domain *sd;
  6272. struct s_data d;
  6273. int i, ret = -ENOMEM;
  6274. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  6275. if (alloc_state != sa_rootdomain)
  6276. goto error;
  6277. /* Set up domains for cpus specified by the cpu_map. */
  6278. for_each_cpu(i, cpu_map) {
  6279. struct sched_domain_topology_level *tl;
  6280. sd = NULL;
  6281. for (tl = sched_domain_topology; tl->init; tl++) {
  6282. sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
  6283. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  6284. sd->flags |= SD_OVERLAP;
  6285. }
  6286. while (sd->child)
  6287. sd = sd->child;
  6288. *per_cpu_ptr(d.sd, i) = sd;
  6289. }
  6290. /* Build the groups for the domains */
  6291. for_each_cpu(i, cpu_map) {
  6292. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  6293. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  6294. if (sd->flags & SD_OVERLAP) {
  6295. if (build_overlap_sched_groups(sd, i))
  6296. goto error;
  6297. } else {
  6298. if (build_sched_groups(sd, i))
  6299. goto error;
  6300. }
  6301. }
  6302. }
  6303. /* Calculate CPU power for physical packages and nodes */
  6304. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  6305. if (!cpumask_test_cpu(i, cpu_map))
  6306. continue;
  6307. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  6308. claim_allocations(i, sd);
  6309. init_sched_groups_power(i, sd);
  6310. }
  6311. }
  6312. /* Attach the domains */
  6313. rcu_read_lock();
  6314. for_each_cpu(i, cpu_map) {
  6315. sd = *per_cpu_ptr(d.sd, i);
  6316. cpu_attach_domain(sd, d.rd, i);
  6317. }
  6318. rcu_read_unlock();
  6319. ret = 0;
  6320. error:
  6321. __free_domain_allocs(&d, alloc_state, cpu_map);
  6322. return ret;
  6323. }
  6324. static cpumask_var_t *doms_cur; /* current sched domains */
  6325. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6326. static struct sched_domain_attr *dattr_cur;
  6327. /* attribues of custom domains in 'doms_cur' */
  6328. /*
  6329. * Special case: If a kmalloc of a doms_cur partition (array of
  6330. * cpumask) fails, then fallback to a single sched domain,
  6331. * as determined by the single cpumask fallback_doms.
  6332. */
  6333. static cpumask_var_t fallback_doms;
  6334. /*
  6335. * arch_update_cpu_topology lets virtualized architectures update the
  6336. * cpu core maps. It is supposed to return 1 if the topology changed
  6337. * or 0 if it stayed the same.
  6338. */
  6339. int __attribute__((weak)) arch_update_cpu_topology(void)
  6340. {
  6341. return 0;
  6342. }
  6343. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6344. {
  6345. int i;
  6346. cpumask_var_t *doms;
  6347. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6348. if (!doms)
  6349. return NULL;
  6350. for (i = 0; i < ndoms; i++) {
  6351. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6352. free_sched_domains(doms, i);
  6353. return NULL;
  6354. }
  6355. }
  6356. return doms;
  6357. }
  6358. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6359. {
  6360. unsigned int i;
  6361. for (i = 0; i < ndoms; i++)
  6362. free_cpumask_var(doms[i]);
  6363. kfree(doms);
  6364. }
  6365. /*
  6366. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6367. * For now this just excludes isolated cpus, but could be used to
  6368. * exclude other special cases in the future.
  6369. */
  6370. static int init_sched_domains(const struct cpumask *cpu_map)
  6371. {
  6372. int err;
  6373. arch_update_cpu_topology();
  6374. ndoms_cur = 1;
  6375. doms_cur = alloc_sched_domains(ndoms_cur);
  6376. if (!doms_cur)
  6377. doms_cur = &fallback_doms;
  6378. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6379. dattr_cur = NULL;
  6380. err = build_sched_domains(doms_cur[0], NULL);
  6381. register_sched_domain_sysctl();
  6382. return err;
  6383. }
  6384. /*
  6385. * Detach sched domains from a group of cpus specified in cpu_map
  6386. * These cpus will now be attached to the NULL domain
  6387. */
  6388. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6389. {
  6390. int i;
  6391. rcu_read_lock();
  6392. for_each_cpu(i, cpu_map)
  6393. cpu_attach_domain(NULL, &def_root_domain, i);
  6394. rcu_read_unlock();
  6395. }
  6396. /* handle null as "default" */
  6397. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6398. struct sched_domain_attr *new, int idx_new)
  6399. {
  6400. struct sched_domain_attr tmp;
  6401. /* fast path */
  6402. if (!new && !cur)
  6403. return 1;
  6404. tmp = SD_ATTR_INIT;
  6405. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6406. new ? (new + idx_new) : &tmp,
  6407. sizeof(struct sched_domain_attr));
  6408. }
  6409. /*
  6410. * Partition sched domains as specified by the 'ndoms_new'
  6411. * cpumasks in the array doms_new[] of cpumasks. This compares
  6412. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6413. * It destroys each deleted domain and builds each new domain.
  6414. *
  6415. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6416. * The masks don't intersect (don't overlap.) We should setup one
  6417. * sched domain for each mask. CPUs not in any of the cpumasks will
  6418. * not be load balanced. If the same cpumask appears both in the
  6419. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6420. * it as it is.
  6421. *
  6422. * The passed in 'doms_new' should be allocated using
  6423. * alloc_sched_domains. This routine takes ownership of it and will
  6424. * free_sched_domains it when done with it. If the caller failed the
  6425. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6426. * and partition_sched_domains() will fallback to the single partition
  6427. * 'fallback_doms', it also forces the domains to be rebuilt.
  6428. *
  6429. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6430. * ndoms_new == 0 is a special case for destroying existing domains,
  6431. * and it will not create the default domain.
  6432. *
  6433. * Call with hotplug lock held
  6434. */
  6435. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6436. struct sched_domain_attr *dattr_new)
  6437. {
  6438. int i, j, n;
  6439. int new_topology;
  6440. mutex_lock(&sched_domains_mutex);
  6441. /* always unregister in case we don't destroy any domains */
  6442. unregister_sched_domain_sysctl();
  6443. /* Let architecture update cpu core mappings. */
  6444. new_topology = arch_update_cpu_topology();
  6445. n = doms_new ? ndoms_new : 0;
  6446. /* Destroy deleted domains */
  6447. for (i = 0; i < ndoms_cur; i++) {
  6448. for (j = 0; j < n && !new_topology; j++) {
  6449. if (cpumask_equal(doms_cur[i], doms_new[j])
  6450. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6451. goto match1;
  6452. }
  6453. /* no match - a current sched domain not in new doms_new[] */
  6454. detach_destroy_domains(doms_cur[i]);
  6455. match1:
  6456. ;
  6457. }
  6458. if (doms_new == NULL) {
  6459. ndoms_cur = 0;
  6460. doms_new = &fallback_doms;
  6461. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6462. WARN_ON_ONCE(dattr_new);
  6463. }
  6464. /* Build new domains */
  6465. for (i = 0; i < ndoms_new; i++) {
  6466. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6467. if (cpumask_equal(doms_new[i], doms_cur[j])
  6468. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6469. goto match2;
  6470. }
  6471. /* no match - add a new doms_new */
  6472. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  6473. match2:
  6474. ;
  6475. }
  6476. /* Remember the new sched domains */
  6477. if (doms_cur != &fallback_doms)
  6478. free_sched_domains(doms_cur, ndoms_cur);
  6479. kfree(dattr_cur); /* kfree(NULL) is safe */
  6480. doms_cur = doms_new;
  6481. dattr_cur = dattr_new;
  6482. ndoms_cur = ndoms_new;
  6483. register_sched_domain_sysctl();
  6484. mutex_unlock(&sched_domains_mutex);
  6485. }
  6486. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6487. static void reinit_sched_domains(void)
  6488. {
  6489. get_online_cpus();
  6490. /* Destroy domains first to force the rebuild */
  6491. partition_sched_domains(0, NULL, NULL);
  6492. rebuild_sched_domains();
  6493. put_online_cpus();
  6494. }
  6495. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6496. {
  6497. unsigned int level = 0;
  6498. if (sscanf(buf, "%u", &level) != 1)
  6499. return -EINVAL;
  6500. /*
  6501. * level is always be positive so don't check for
  6502. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6503. * What happens on 0 or 1 byte write,
  6504. * need to check for count as well?
  6505. */
  6506. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6507. return -EINVAL;
  6508. if (smt)
  6509. sched_smt_power_savings = level;
  6510. else
  6511. sched_mc_power_savings = level;
  6512. reinit_sched_domains();
  6513. return count;
  6514. }
  6515. #ifdef CONFIG_SCHED_MC
  6516. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6517. struct sysdev_class_attribute *attr,
  6518. char *page)
  6519. {
  6520. return sprintf(page, "%u\n", sched_mc_power_savings);
  6521. }
  6522. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6523. struct sysdev_class_attribute *attr,
  6524. const char *buf, size_t count)
  6525. {
  6526. return sched_power_savings_store(buf, count, 0);
  6527. }
  6528. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6529. sched_mc_power_savings_show,
  6530. sched_mc_power_savings_store);
  6531. #endif
  6532. #ifdef CONFIG_SCHED_SMT
  6533. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6534. struct sysdev_class_attribute *attr,
  6535. char *page)
  6536. {
  6537. return sprintf(page, "%u\n", sched_smt_power_savings);
  6538. }
  6539. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6540. struct sysdev_class_attribute *attr,
  6541. const char *buf, size_t count)
  6542. {
  6543. return sched_power_savings_store(buf, count, 1);
  6544. }
  6545. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6546. sched_smt_power_savings_show,
  6547. sched_smt_power_savings_store);
  6548. #endif
  6549. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6550. {
  6551. int err = 0;
  6552. #ifdef CONFIG_SCHED_SMT
  6553. if (smt_capable())
  6554. err = sysfs_create_file(&cls->kset.kobj,
  6555. &attr_sched_smt_power_savings.attr);
  6556. #endif
  6557. #ifdef CONFIG_SCHED_MC
  6558. if (!err && mc_capable())
  6559. err = sysfs_create_file(&cls->kset.kobj,
  6560. &attr_sched_mc_power_savings.attr);
  6561. #endif
  6562. return err;
  6563. }
  6564. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6565. /*
  6566. * Update cpusets according to cpu_active mask. If cpusets are
  6567. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6568. * around partition_sched_domains().
  6569. */
  6570. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6571. void *hcpu)
  6572. {
  6573. switch (action & ~CPU_TASKS_FROZEN) {
  6574. case CPU_ONLINE:
  6575. case CPU_DOWN_FAILED:
  6576. cpuset_update_active_cpus();
  6577. return NOTIFY_OK;
  6578. default:
  6579. return NOTIFY_DONE;
  6580. }
  6581. }
  6582. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6583. void *hcpu)
  6584. {
  6585. switch (action & ~CPU_TASKS_FROZEN) {
  6586. case CPU_DOWN_PREPARE:
  6587. cpuset_update_active_cpus();
  6588. return NOTIFY_OK;
  6589. default:
  6590. return NOTIFY_DONE;
  6591. }
  6592. }
  6593. static int update_runtime(struct notifier_block *nfb,
  6594. unsigned long action, void *hcpu)
  6595. {
  6596. int cpu = (int)(long)hcpu;
  6597. switch (action) {
  6598. case CPU_DOWN_PREPARE:
  6599. case CPU_DOWN_PREPARE_FROZEN:
  6600. disable_runtime(cpu_rq(cpu));
  6601. return NOTIFY_OK;
  6602. case CPU_DOWN_FAILED:
  6603. case CPU_DOWN_FAILED_FROZEN:
  6604. case CPU_ONLINE:
  6605. case CPU_ONLINE_FROZEN:
  6606. enable_runtime(cpu_rq(cpu));
  6607. return NOTIFY_OK;
  6608. default:
  6609. return NOTIFY_DONE;
  6610. }
  6611. }
  6612. void __init sched_init_smp(void)
  6613. {
  6614. cpumask_var_t non_isolated_cpus;
  6615. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6616. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6617. get_online_cpus();
  6618. mutex_lock(&sched_domains_mutex);
  6619. init_sched_domains(cpu_active_mask);
  6620. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6621. if (cpumask_empty(non_isolated_cpus))
  6622. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6623. mutex_unlock(&sched_domains_mutex);
  6624. put_online_cpus();
  6625. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6626. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6627. /* RT runtime code needs to handle some hotplug events */
  6628. hotcpu_notifier(update_runtime, 0);
  6629. init_hrtick();
  6630. /* Move init over to a non-isolated CPU */
  6631. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6632. BUG();
  6633. sched_init_granularity();
  6634. free_cpumask_var(non_isolated_cpus);
  6635. init_sched_rt_class();
  6636. }
  6637. #else
  6638. void __init sched_init_smp(void)
  6639. {
  6640. sched_init_granularity();
  6641. }
  6642. #endif /* CONFIG_SMP */
  6643. const_debug unsigned int sysctl_timer_migration = 1;
  6644. int in_sched_functions(unsigned long addr)
  6645. {
  6646. return in_lock_functions(addr) ||
  6647. (addr >= (unsigned long)__sched_text_start
  6648. && addr < (unsigned long)__sched_text_end);
  6649. }
  6650. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6651. {
  6652. cfs_rq->tasks_timeline = RB_ROOT;
  6653. INIT_LIST_HEAD(&cfs_rq->tasks);
  6654. #ifdef CONFIG_FAIR_GROUP_SCHED
  6655. cfs_rq->rq = rq;
  6656. /* allow initial update_cfs_load() to truncate */
  6657. #ifdef CONFIG_SMP
  6658. cfs_rq->load_stamp = 1;
  6659. #endif
  6660. #endif
  6661. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6662. #ifndef CONFIG_64BIT
  6663. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  6664. #endif
  6665. }
  6666. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6667. {
  6668. struct rt_prio_array *array;
  6669. int i;
  6670. array = &rt_rq->active;
  6671. for (i = 0; i < MAX_RT_PRIO; i++) {
  6672. INIT_LIST_HEAD(array->queue + i);
  6673. __clear_bit(i, array->bitmap);
  6674. }
  6675. /* delimiter for bitsearch: */
  6676. __set_bit(MAX_RT_PRIO, array->bitmap);
  6677. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6678. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6679. #ifdef CONFIG_SMP
  6680. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6681. #endif
  6682. #endif
  6683. #ifdef CONFIG_SMP
  6684. rt_rq->rt_nr_migratory = 0;
  6685. rt_rq->overloaded = 0;
  6686. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  6687. #endif
  6688. rt_rq->rt_time = 0;
  6689. rt_rq->rt_throttled = 0;
  6690. rt_rq->rt_runtime = 0;
  6691. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6692. #ifdef CONFIG_RT_GROUP_SCHED
  6693. rt_rq->rt_nr_boosted = 0;
  6694. rt_rq->rq = rq;
  6695. #endif
  6696. }
  6697. #ifdef CONFIG_FAIR_GROUP_SCHED
  6698. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6699. struct sched_entity *se, int cpu,
  6700. struct sched_entity *parent)
  6701. {
  6702. struct rq *rq = cpu_rq(cpu);
  6703. tg->cfs_rq[cpu] = cfs_rq;
  6704. init_cfs_rq(cfs_rq, rq);
  6705. cfs_rq->tg = tg;
  6706. tg->se[cpu] = se;
  6707. /* se could be NULL for root_task_group */
  6708. if (!se)
  6709. return;
  6710. if (!parent)
  6711. se->cfs_rq = &rq->cfs;
  6712. else
  6713. se->cfs_rq = parent->my_q;
  6714. se->my_q = cfs_rq;
  6715. update_load_set(&se->load, 0);
  6716. se->parent = parent;
  6717. }
  6718. #endif
  6719. #ifdef CONFIG_RT_GROUP_SCHED
  6720. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6721. struct sched_rt_entity *rt_se, int cpu,
  6722. struct sched_rt_entity *parent)
  6723. {
  6724. struct rq *rq = cpu_rq(cpu);
  6725. tg->rt_rq[cpu] = rt_rq;
  6726. init_rt_rq(rt_rq, rq);
  6727. rt_rq->tg = tg;
  6728. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6729. tg->rt_se[cpu] = rt_se;
  6730. if (!rt_se)
  6731. return;
  6732. if (!parent)
  6733. rt_se->rt_rq = &rq->rt;
  6734. else
  6735. rt_se->rt_rq = parent->my_q;
  6736. rt_se->my_q = rt_rq;
  6737. rt_se->parent = parent;
  6738. INIT_LIST_HEAD(&rt_se->run_list);
  6739. }
  6740. #endif
  6741. void __init sched_init(void)
  6742. {
  6743. int i, j;
  6744. unsigned long alloc_size = 0, ptr;
  6745. #ifdef CONFIG_FAIR_GROUP_SCHED
  6746. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6747. #endif
  6748. #ifdef CONFIG_RT_GROUP_SCHED
  6749. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6750. #endif
  6751. #ifdef CONFIG_CPUMASK_OFFSTACK
  6752. alloc_size += num_possible_cpus() * cpumask_size();
  6753. #endif
  6754. if (alloc_size) {
  6755. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6756. #ifdef CONFIG_FAIR_GROUP_SCHED
  6757. root_task_group.se = (struct sched_entity **)ptr;
  6758. ptr += nr_cpu_ids * sizeof(void **);
  6759. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6760. ptr += nr_cpu_ids * sizeof(void **);
  6761. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6762. #ifdef CONFIG_RT_GROUP_SCHED
  6763. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6764. ptr += nr_cpu_ids * sizeof(void **);
  6765. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6766. ptr += nr_cpu_ids * sizeof(void **);
  6767. #endif /* CONFIG_RT_GROUP_SCHED */
  6768. #ifdef CONFIG_CPUMASK_OFFSTACK
  6769. for_each_possible_cpu(i) {
  6770. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6771. ptr += cpumask_size();
  6772. }
  6773. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6774. }
  6775. #ifdef CONFIG_SMP
  6776. init_defrootdomain();
  6777. #endif
  6778. init_rt_bandwidth(&def_rt_bandwidth,
  6779. global_rt_period(), global_rt_runtime());
  6780. #ifdef CONFIG_RT_GROUP_SCHED
  6781. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6782. global_rt_period(), global_rt_runtime());
  6783. #endif /* CONFIG_RT_GROUP_SCHED */
  6784. #ifdef CONFIG_CGROUP_SCHED
  6785. list_add(&root_task_group.list, &task_groups);
  6786. INIT_LIST_HEAD(&root_task_group.children);
  6787. autogroup_init(&init_task);
  6788. #endif /* CONFIG_CGROUP_SCHED */
  6789. for_each_possible_cpu(i) {
  6790. struct rq *rq;
  6791. rq = cpu_rq(i);
  6792. raw_spin_lock_init(&rq->lock);
  6793. rq->nr_running = 0;
  6794. rq->calc_load_active = 0;
  6795. rq->calc_load_update = jiffies + LOAD_FREQ;
  6796. init_cfs_rq(&rq->cfs, rq);
  6797. init_rt_rq(&rq->rt, rq);
  6798. #ifdef CONFIG_FAIR_GROUP_SCHED
  6799. root_task_group.shares = root_task_group_load;
  6800. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6801. /*
  6802. * How much cpu bandwidth does root_task_group get?
  6803. *
  6804. * In case of task-groups formed thr' the cgroup filesystem, it
  6805. * gets 100% of the cpu resources in the system. This overall
  6806. * system cpu resource is divided among the tasks of
  6807. * root_task_group and its child task-groups in a fair manner,
  6808. * based on each entity's (task or task-group's) weight
  6809. * (se->load.weight).
  6810. *
  6811. * In other words, if root_task_group has 10 tasks of weight
  6812. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6813. * then A0's share of the cpu resource is:
  6814. *
  6815. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6816. *
  6817. * We achieve this by letting root_task_group's tasks sit
  6818. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  6819. */
  6820. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  6821. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6822. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6823. #ifdef CONFIG_RT_GROUP_SCHED
  6824. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6825. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  6826. #endif
  6827. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6828. rq->cpu_load[j] = 0;
  6829. rq->last_load_update_tick = jiffies;
  6830. #ifdef CONFIG_SMP
  6831. rq->sd = NULL;
  6832. rq->rd = NULL;
  6833. rq->cpu_power = SCHED_POWER_SCALE;
  6834. rq->post_schedule = 0;
  6835. rq->active_balance = 0;
  6836. rq->next_balance = jiffies;
  6837. rq->push_cpu = 0;
  6838. rq->cpu = i;
  6839. rq->online = 0;
  6840. rq->idle_stamp = 0;
  6841. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6842. rq_attach_root(rq, &def_root_domain);
  6843. #ifdef CONFIG_NO_HZ
  6844. rq->nohz_balance_kick = 0;
  6845. init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
  6846. #endif
  6847. #endif
  6848. init_rq_hrtick(rq);
  6849. atomic_set(&rq->nr_iowait, 0);
  6850. }
  6851. set_load_weight(&init_task);
  6852. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6853. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6854. #endif
  6855. #ifdef CONFIG_SMP
  6856. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6857. #endif
  6858. #ifdef CONFIG_RT_MUTEXES
  6859. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  6860. #endif
  6861. /*
  6862. * The boot idle thread does lazy MMU switching as well:
  6863. */
  6864. atomic_inc(&init_mm.mm_count);
  6865. enter_lazy_tlb(&init_mm, current);
  6866. /*
  6867. * Make us the idle thread. Technically, schedule() should not be
  6868. * called from this thread, however somewhere below it might be,
  6869. * but because we are the idle thread, we just pick up running again
  6870. * when this runqueue becomes "idle".
  6871. */
  6872. init_idle(current, smp_processor_id());
  6873. calc_load_update = jiffies + LOAD_FREQ;
  6874. /*
  6875. * During early bootup we pretend to be a normal task:
  6876. */
  6877. current->sched_class = &fair_sched_class;
  6878. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  6879. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  6880. #ifdef CONFIG_SMP
  6881. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  6882. #ifdef CONFIG_NO_HZ
  6883. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  6884. alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
  6885. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  6886. atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
  6887. atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
  6888. #endif
  6889. /* May be allocated at isolcpus cmdline parse time */
  6890. if (cpu_isolated_map == NULL)
  6891. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6892. #endif /* SMP */
  6893. scheduler_running = 1;
  6894. }
  6895. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6896. static inline int preempt_count_equals(int preempt_offset)
  6897. {
  6898. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6899. return (nested == preempt_offset);
  6900. }
  6901. void __might_sleep(const char *file, int line, int preempt_offset)
  6902. {
  6903. #ifdef in_atomic
  6904. static unsigned long prev_jiffy; /* ratelimiting */
  6905. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  6906. system_state != SYSTEM_RUNNING || oops_in_progress)
  6907. return;
  6908. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6909. return;
  6910. prev_jiffy = jiffies;
  6911. printk(KERN_ERR
  6912. "BUG: sleeping function called from invalid context at %s:%d\n",
  6913. file, line);
  6914. printk(KERN_ERR
  6915. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6916. in_atomic(), irqs_disabled(),
  6917. current->pid, current->comm);
  6918. debug_show_held_locks(current);
  6919. if (irqs_disabled())
  6920. print_irqtrace_events(current);
  6921. dump_stack();
  6922. #endif
  6923. }
  6924. EXPORT_SYMBOL(__might_sleep);
  6925. #endif
  6926. #ifdef CONFIG_MAGIC_SYSRQ
  6927. static void normalize_task(struct rq *rq, struct task_struct *p)
  6928. {
  6929. const struct sched_class *prev_class = p->sched_class;
  6930. int old_prio = p->prio;
  6931. int on_rq;
  6932. on_rq = p->on_rq;
  6933. if (on_rq)
  6934. deactivate_task(rq, p, 0);
  6935. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6936. if (on_rq) {
  6937. activate_task(rq, p, 0);
  6938. resched_task(rq->curr);
  6939. }
  6940. check_class_changed(rq, p, prev_class, old_prio);
  6941. }
  6942. void normalize_rt_tasks(void)
  6943. {
  6944. struct task_struct *g, *p;
  6945. unsigned long flags;
  6946. struct rq *rq;
  6947. read_lock_irqsave(&tasklist_lock, flags);
  6948. do_each_thread(g, p) {
  6949. /*
  6950. * Only normalize user tasks:
  6951. */
  6952. if (!p->mm)
  6953. continue;
  6954. p->se.exec_start = 0;
  6955. #ifdef CONFIG_SCHEDSTATS
  6956. p->se.statistics.wait_start = 0;
  6957. p->se.statistics.sleep_start = 0;
  6958. p->se.statistics.block_start = 0;
  6959. #endif
  6960. if (!rt_task(p)) {
  6961. /*
  6962. * Renice negative nice level userspace
  6963. * tasks back to 0:
  6964. */
  6965. if (TASK_NICE(p) < 0 && p->mm)
  6966. set_user_nice(p, 0);
  6967. continue;
  6968. }
  6969. raw_spin_lock(&p->pi_lock);
  6970. rq = __task_rq_lock(p);
  6971. normalize_task(rq, p);
  6972. __task_rq_unlock(rq);
  6973. raw_spin_unlock(&p->pi_lock);
  6974. } while_each_thread(g, p);
  6975. read_unlock_irqrestore(&tasklist_lock, flags);
  6976. }
  6977. #endif /* CONFIG_MAGIC_SYSRQ */
  6978. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6979. /*
  6980. * These functions are only useful for the IA64 MCA handling, or kdb.
  6981. *
  6982. * They can only be called when the whole system has been
  6983. * stopped - every CPU needs to be quiescent, and no scheduling
  6984. * activity can take place. Using them for anything else would
  6985. * be a serious bug, and as a result, they aren't even visible
  6986. * under any other configuration.
  6987. */
  6988. /**
  6989. * curr_task - return the current task for a given cpu.
  6990. * @cpu: the processor in question.
  6991. *
  6992. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6993. */
  6994. struct task_struct *curr_task(int cpu)
  6995. {
  6996. return cpu_curr(cpu);
  6997. }
  6998. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6999. #ifdef CONFIG_IA64
  7000. /**
  7001. * set_curr_task - set the current task for a given cpu.
  7002. * @cpu: the processor in question.
  7003. * @p: the task pointer to set.
  7004. *
  7005. * Description: This function must only be used when non-maskable interrupts
  7006. * are serviced on a separate stack. It allows the architecture to switch the
  7007. * notion of the current task on a cpu in a non-blocking manner. This function
  7008. * must be called with all CPU's synchronized, and interrupts disabled, the
  7009. * and caller must save the original value of the current task (see
  7010. * curr_task() above) and restore that value before reenabling interrupts and
  7011. * re-starting the system.
  7012. *
  7013. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7014. */
  7015. void set_curr_task(int cpu, struct task_struct *p)
  7016. {
  7017. cpu_curr(cpu) = p;
  7018. }
  7019. #endif
  7020. #ifdef CONFIG_FAIR_GROUP_SCHED
  7021. static void free_fair_sched_group(struct task_group *tg)
  7022. {
  7023. int i;
  7024. for_each_possible_cpu(i) {
  7025. if (tg->cfs_rq)
  7026. kfree(tg->cfs_rq[i]);
  7027. if (tg->se)
  7028. kfree(tg->se[i]);
  7029. }
  7030. kfree(tg->cfs_rq);
  7031. kfree(tg->se);
  7032. }
  7033. static
  7034. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7035. {
  7036. struct cfs_rq *cfs_rq;
  7037. struct sched_entity *se;
  7038. int i;
  7039. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7040. if (!tg->cfs_rq)
  7041. goto err;
  7042. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7043. if (!tg->se)
  7044. goto err;
  7045. tg->shares = NICE_0_LOAD;
  7046. for_each_possible_cpu(i) {
  7047. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7048. GFP_KERNEL, cpu_to_node(i));
  7049. if (!cfs_rq)
  7050. goto err;
  7051. se = kzalloc_node(sizeof(struct sched_entity),
  7052. GFP_KERNEL, cpu_to_node(i));
  7053. if (!se)
  7054. goto err_free_rq;
  7055. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  7056. }
  7057. return 1;
  7058. err_free_rq:
  7059. kfree(cfs_rq);
  7060. err:
  7061. return 0;
  7062. }
  7063. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7064. {
  7065. struct rq *rq = cpu_rq(cpu);
  7066. unsigned long flags;
  7067. /*
  7068. * Only empty task groups can be destroyed; so we can speculatively
  7069. * check on_list without danger of it being re-added.
  7070. */
  7071. if (!tg->cfs_rq[cpu]->on_list)
  7072. return;
  7073. raw_spin_lock_irqsave(&rq->lock, flags);
  7074. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  7075. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7076. }
  7077. #else /* !CONFG_FAIR_GROUP_SCHED */
  7078. static inline void free_fair_sched_group(struct task_group *tg)
  7079. {
  7080. }
  7081. static inline
  7082. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7083. {
  7084. return 1;
  7085. }
  7086. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7087. {
  7088. }
  7089. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7090. #ifdef CONFIG_RT_GROUP_SCHED
  7091. static void free_rt_sched_group(struct task_group *tg)
  7092. {
  7093. int i;
  7094. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7095. for_each_possible_cpu(i) {
  7096. if (tg->rt_rq)
  7097. kfree(tg->rt_rq[i]);
  7098. if (tg->rt_se)
  7099. kfree(tg->rt_se[i]);
  7100. }
  7101. kfree(tg->rt_rq);
  7102. kfree(tg->rt_se);
  7103. }
  7104. static
  7105. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7106. {
  7107. struct rt_rq *rt_rq;
  7108. struct sched_rt_entity *rt_se;
  7109. int i;
  7110. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7111. if (!tg->rt_rq)
  7112. goto err;
  7113. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7114. if (!tg->rt_se)
  7115. goto err;
  7116. init_rt_bandwidth(&tg->rt_bandwidth,
  7117. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7118. for_each_possible_cpu(i) {
  7119. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7120. GFP_KERNEL, cpu_to_node(i));
  7121. if (!rt_rq)
  7122. goto err;
  7123. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7124. GFP_KERNEL, cpu_to_node(i));
  7125. if (!rt_se)
  7126. goto err_free_rq;
  7127. init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
  7128. }
  7129. return 1;
  7130. err_free_rq:
  7131. kfree(rt_rq);
  7132. err:
  7133. return 0;
  7134. }
  7135. #else /* !CONFIG_RT_GROUP_SCHED */
  7136. static inline void free_rt_sched_group(struct task_group *tg)
  7137. {
  7138. }
  7139. static inline
  7140. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7141. {
  7142. return 1;
  7143. }
  7144. #endif /* CONFIG_RT_GROUP_SCHED */
  7145. #ifdef CONFIG_CGROUP_SCHED
  7146. static void free_sched_group(struct task_group *tg)
  7147. {
  7148. free_fair_sched_group(tg);
  7149. free_rt_sched_group(tg);
  7150. autogroup_free(tg);
  7151. kfree(tg);
  7152. }
  7153. /* allocate runqueue etc for a new task group */
  7154. struct task_group *sched_create_group(struct task_group *parent)
  7155. {
  7156. struct task_group *tg;
  7157. unsigned long flags;
  7158. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7159. if (!tg)
  7160. return ERR_PTR(-ENOMEM);
  7161. if (!alloc_fair_sched_group(tg, parent))
  7162. goto err;
  7163. if (!alloc_rt_sched_group(tg, parent))
  7164. goto err;
  7165. spin_lock_irqsave(&task_group_lock, flags);
  7166. list_add_rcu(&tg->list, &task_groups);
  7167. WARN_ON(!parent); /* root should already exist */
  7168. tg->parent = parent;
  7169. INIT_LIST_HEAD(&tg->children);
  7170. list_add_rcu(&tg->siblings, &parent->children);
  7171. spin_unlock_irqrestore(&task_group_lock, flags);
  7172. return tg;
  7173. err:
  7174. free_sched_group(tg);
  7175. return ERR_PTR(-ENOMEM);
  7176. }
  7177. /* rcu callback to free various structures associated with a task group */
  7178. static void free_sched_group_rcu(struct rcu_head *rhp)
  7179. {
  7180. /* now it should be safe to free those cfs_rqs */
  7181. free_sched_group(container_of(rhp, struct task_group, rcu));
  7182. }
  7183. /* Destroy runqueue etc associated with a task group */
  7184. void sched_destroy_group(struct task_group *tg)
  7185. {
  7186. unsigned long flags;
  7187. int i;
  7188. /* end participation in shares distribution */
  7189. for_each_possible_cpu(i)
  7190. unregister_fair_sched_group(tg, i);
  7191. spin_lock_irqsave(&task_group_lock, flags);
  7192. list_del_rcu(&tg->list);
  7193. list_del_rcu(&tg->siblings);
  7194. spin_unlock_irqrestore(&task_group_lock, flags);
  7195. /* wait for possible concurrent references to cfs_rqs complete */
  7196. call_rcu(&tg->rcu, free_sched_group_rcu);
  7197. }
  7198. /* change task's runqueue when it moves between groups.
  7199. * The caller of this function should have put the task in its new group
  7200. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7201. * reflect its new group.
  7202. */
  7203. void sched_move_task(struct task_struct *tsk)
  7204. {
  7205. int on_rq, running;
  7206. unsigned long flags;
  7207. struct rq *rq;
  7208. rq = task_rq_lock(tsk, &flags);
  7209. running = task_current(rq, tsk);
  7210. on_rq = tsk->on_rq;
  7211. if (on_rq)
  7212. dequeue_task(rq, tsk, 0);
  7213. if (unlikely(running))
  7214. tsk->sched_class->put_prev_task(rq, tsk);
  7215. #ifdef CONFIG_FAIR_GROUP_SCHED
  7216. if (tsk->sched_class->task_move_group)
  7217. tsk->sched_class->task_move_group(tsk, on_rq);
  7218. else
  7219. #endif
  7220. set_task_rq(tsk, task_cpu(tsk));
  7221. if (unlikely(running))
  7222. tsk->sched_class->set_curr_task(rq);
  7223. if (on_rq)
  7224. enqueue_task(rq, tsk, 0);
  7225. task_rq_unlock(rq, tsk, &flags);
  7226. }
  7227. #endif /* CONFIG_CGROUP_SCHED */
  7228. #ifdef CONFIG_FAIR_GROUP_SCHED
  7229. static DEFINE_MUTEX(shares_mutex);
  7230. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7231. {
  7232. int i;
  7233. unsigned long flags;
  7234. /*
  7235. * We can't change the weight of the root cgroup.
  7236. */
  7237. if (!tg->se[0])
  7238. return -EINVAL;
  7239. shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
  7240. mutex_lock(&shares_mutex);
  7241. if (tg->shares == shares)
  7242. goto done;
  7243. tg->shares = shares;
  7244. for_each_possible_cpu(i) {
  7245. struct rq *rq = cpu_rq(i);
  7246. struct sched_entity *se;
  7247. se = tg->se[i];
  7248. /* Propagate contribution to hierarchy */
  7249. raw_spin_lock_irqsave(&rq->lock, flags);
  7250. for_each_sched_entity(se)
  7251. update_cfs_shares(group_cfs_rq(se));
  7252. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7253. }
  7254. done:
  7255. mutex_unlock(&shares_mutex);
  7256. return 0;
  7257. }
  7258. unsigned long sched_group_shares(struct task_group *tg)
  7259. {
  7260. return tg->shares;
  7261. }
  7262. #endif
  7263. #ifdef CONFIG_RT_GROUP_SCHED
  7264. /*
  7265. * Ensure that the real time constraints are schedulable.
  7266. */
  7267. static DEFINE_MUTEX(rt_constraints_mutex);
  7268. static unsigned long to_ratio(u64 period, u64 runtime)
  7269. {
  7270. if (runtime == RUNTIME_INF)
  7271. return 1ULL << 20;
  7272. return div64_u64(runtime << 20, period);
  7273. }
  7274. /* Must be called with tasklist_lock held */
  7275. static inline int tg_has_rt_tasks(struct task_group *tg)
  7276. {
  7277. struct task_struct *g, *p;
  7278. do_each_thread(g, p) {
  7279. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7280. return 1;
  7281. } while_each_thread(g, p);
  7282. return 0;
  7283. }
  7284. struct rt_schedulable_data {
  7285. struct task_group *tg;
  7286. u64 rt_period;
  7287. u64 rt_runtime;
  7288. };
  7289. static int tg_schedulable(struct task_group *tg, void *data)
  7290. {
  7291. struct rt_schedulable_data *d = data;
  7292. struct task_group *child;
  7293. unsigned long total, sum = 0;
  7294. u64 period, runtime;
  7295. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7296. runtime = tg->rt_bandwidth.rt_runtime;
  7297. if (tg == d->tg) {
  7298. period = d->rt_period;
  7299. runtime = d->rt_runtime;
  7300. }
  7301. /*
  7302. * Cannot have more runtime than the period.
  7303. */
  7304. if (runtime > period && runtime != RUNTIME_INF)
  7305. return -EINVAL;
  7306. /*
  7307. * Ensure we don't starve existing RT tasks.
  7308. */
  7309. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7310. return -EBUSY;
  7311. total = to_ratio(period, runtime);
  7312. /*
  7313. * Nobody can have more than the global setting allows.
  7314. */
  7315. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7316. return -EINVAL;
  7317. /*
  7318. * The sum of our children's runtime should not exceed our own.
  7319. */
  7320. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7321. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7322. runtime = child->rt_bandwidth.rt_runtime;
  7323. if (child == d->tg) {
  7324. period = d->rt_period;
  7325. runtime = d->rt_runtime;
  7326. }
  7327. sum += to_ratio(period, runtime);
  7328. }
  7329. if (sum > total)
  7330. return -EINVAL;
  7331. return 0;
  7332. }
  7333. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7334. {
  7335. struct rt_schedulable_data data = {
  7336. .tg = tg,
  7337. .rt_period = period,
  7338. .rt_runtime = runtime,
  7339. };
  7340. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7341. }
  7342. static int tg_set_bandwidth(struct task_group *tg,
  7343. u64 rt_period, u64 rt_runtime)
  7344. {
  7345. int i, err = 0;
  7346. mutex_lock(&rt_constraints_mutex);
  7347. read_lock(&tasklist_lock);
  7348. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7349. if (err)
  7350. goto unlock;
  7351. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7352. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7353. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7354. for_each_possible_cpu(i) {
  7355. struct rt_rq *rt_rq = tg->rt_rq[i];
  7356. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7357. rt_rq->rt_runtime = rt_runtime;
  7358. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7359. }
  7360. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7361. unlock:
  7362. read_unlock(&tasklist_lock);
  7363. mutex_unlock(&rt_constraints_mutex);
  7364. return err;
  7365. }
  7366. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7367. {
  7368. u64 rt_runtime, rt_period;
  7369. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7370. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7371. if (rt_runtime_us < 0)
  7372. rt_runtime = RUNTIME_INF;
  7373. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7374. }
  7375. long sched_group_rt_runtime(struct task_group *tg)
  7376. {
  7377. u64 rt_runtime_us;
  7378. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7379. return -1;
  7380. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7381. do_div(rt_runtime_us, NSEC_PER_USEC);
  7382. return rt_runtime_us;
  7383. }
  7384. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7385. {
  7386. u64 rt_runtime, rt_period;
  7387. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7388. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7389. if (rt_period == 0)
  7390. return -EINVAL;
  7391. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7392. }
  7393. long sched_group_rt_period(struct task_group *tg)
  7394. {
  7395. u64 rt_period_us;
  7396. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7397. do_div(rt_period_us, NSEC_PER_USEC);
  7398. return rt_period_us;
  7399. }
  7400. static int sched_rt_global_constraints(void)
  7401. {
  7402. u64 runtime, period;
  7403. int ret = 0;
  7404. if (sysctl_sched_rt_period <= 0)
  7405. return -EINVAL;
  7406. runtime = global_rt_runtime();
  7407. period = global_rt_period();
  7408. /*
  7409. * Sanity check on the sysctl variables.
  7410. */
  7411. if (runtime > period && runtime != RUNTIME_INF)
  7412. return -EINVAL;
  7413. mutex_lock(&rt_constraints_mutex);
  7414. read_lock(&tasklist_lock);
  7415. ret = __rt_schedulable(NULL, 0, 0);
  7416. read_unlock(&tasklist_lock);
  7417. mutex_unlock(&rt_constraints_mutex);
  7418. return ret;
  7419. }
  7420. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7421. {
  7422. /* Don't accept realtime tasks when there is no way for them to run */
  7423. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7424. return 0;
  7425. return 1;
  7426. }
  7427. #else /* !CONFIG_RT_GROUP_SCHED */
  7428. static int sched_rt_global_constraints(void)
  7429. {
  7430. unsigned long flags;
  7431. int i;
  7432. if (sysctl_sched_rt_period <= 0)
  7433. return -EINVAL;
  7434. /*
  7435. * There's always some RT tasks in the root group
  7436. * -- migration, kstopmachine etc..
  7437. */
  7438. if (sysctl_sched_rt_runtime == 0)
  7439. return -EBUSY;
  7440. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7441. for_each_possible_cpu(i) {
  7442. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7443. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7444. rt_rq->rt_runtime = global_rt_runtime();
  7445. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7446. }
  7447. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7448. return 0;
  7449. }
  7450. #endif /* CONFIG_RT_GROUP_SCHED */
  7451. int sched_rt_handler(struct ctl_table *table, int write,
  7452. void __user *buffer, size_t *lenp,
  7453. loff_t *ppos)
  7454. {
  7455. int ret;
  7456. int old_period, old_runtime;
  7457. static DEFINE_MUTEX(mutex);
  7458. mutex_lock(&mutex);
  7459. old_period = sysctl_sched_rt_period;
  7460. old_runtime = sysctl_sched_rt_runtime;
  7461. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7462. if (!ret && write) {
  7463. ret = sched_rt_global_constraints();
  7464. if (ret) {
  7465. sysctl_sched_rt_period = old_period;
  7466. sysctl_sched_rt_runtime = old_runtime;
  7467. } else {
  7468. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7469. def_rt_bandwidth.rt_period =
  7470. ns_to_ktime(global_rt_period());
  7471. }
  7472. }
  7473. mutex_unlock(&mutex);
  7474. return ret;
  7475. }
  7476. #ifdef CONFIG_CGROUP_SCHED
  7477. /* return corresponding task_group object of a cgroup */
  7478. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7479. {
  7480. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7481. struct task_group, css);
  7482. }
  7483. static struct cgroup_subsys_state *
  7484. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7485. {
  7486. struct task_group *tg, *parent;
  7487. if (!cgrp->parent) {
  7488. /* This is early initialization for the top cgroup */
  7489. return &root_task_group.css;
  7490. }
  7491. parent = cgroup_tg(cgrp->parent);
  7492. tg = sched_create_group(parent);
  7493. if (IS_ERR(tg))
  7494. return ERR_PTR(-ENOMEM);
  7495. return &tg->css;
  7496. }
  7497. static void
  7498. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7499. {
  7500. struct task_group *tg = cgroup_tg(cgrp);
  7501. sched_destroy_group(tg);
  7502. }
  7503. static int
  7504. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7505. {
  7506. #ifdef CONFIG_RT_GROUP_SCHED
  7507. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7508. return -EINVAL;
  7509. #else
  7510. /* We don't support RT-tasks being in separate groups */
  7511. if (tsk->sched_class != &fair_sched_class)
  7512. return -EINVAL;
  7513. #endif
  7514. return 0;
  7515. }
  7516. static void
  7517. cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7518. {
  7519. sched_move_task(tsk);
  7520. }
  7521. static void
  7522. cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7523. struct cgroup *old_cgrp, struct task_struct *task)
  7524. {
  7525. /*
  7526. * cgroup_exit() is called in the copy_process() failure path.
  7527. * Ignore this case since the task hasn't ran yet, this avoids
  7528. * trying to poke a half freed task state from generic code.
  7529. */
  7530. if (!(task->flags & PF_EXITING))
  7531. return;
  7532. sched_move_task(task);
  7533. }
  7534. #ifdef CONFIG_FAIR_GROUP_SCHED
  7535. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7536. u64 shareval)
  7537. {
  7538. return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
  7539. }
  7540. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7541. {
  7542. struct task_group *tg = cgroup_tg(cgrp);
  7543. return (u64) scale_load_down(tg->shares);
  7544. }
  7545. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7546. #ifdef CONFIG_RT_GROUP_SCHED
  7547. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7548. s64 val)
  7549. {
  7550. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7551. }
  7552. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7553. {
  7554. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7555. }
  7556. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7557. u64 rt_period_us)
  7558. {
  7559. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7560. }
  7561. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7562. {
  7563. return sched_group_rt_period(cgroup_tg(cgrp));
  7564. }
  7565. #endif /* CONFIG_RT_GROUP_SCHED */
  7566. static struct cftype cpu_files[] = {
  7567. #ifdef CONFIG_FAIR_GROUP_SCHED
  7568. {
  7569. .name = "shares",
  7570. .read_u64 = cpu_shares_read_u64,
  7571. .write_u64 = cpu_shares_write_u64,
  7572. },
  7573. #endif
  7574. #ifdef CONFIG_RT_GROUP_SCHED
  7575. {
  7576. .name = "rt_runtime_us",
  7577. .read_s64 = cpu_rt_runtime_read,
  7578. .write_s64 = cpu_rt_runtime_write,
  7579. },
  7580. {
  7581. .name = "rt_period_us",
  7582. .read_u64 = cpu_rt_period_read_uint,
  7583. .write_u64 = cpu_rt_period_write_uint,
  7584. },
  7585. #endif
  7586. };
  7587. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7588. {
  7589. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7590. }
  7591. struct cgroup_subsys cpu_cgroup_subsys = {
  7592. .name = "cpu",
  7593. .create = cpu_cgroup_create,
  7594. .destroy = cpu_cgroup_destroy,
  7595. .can_attach_task = cpu_cgroup_can_attach_task,
  7596. .attach_task = cpu_cgroup_attach_task,
  7597. .exit = cpu_cgroup_exit,
  7598. .populate = cpu_cgroup_populate,
  7599. .subsys_id = cpu_cgroup_subsys_id,
  7600. .early_init = 1,
  7601. };
  7602. #endif /* CONFIG_CGROUP_SCHED */
  7603. #ifdef CONFIG_CGROUP_CPUACCT
  7604. /*
  7605. * CPU accounting code for task groups.
  7606. *
  7607. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7608. * (balbir@in.ibm.com).
  7609. */
  7610. /* track cpu usage of a group of tasks and its child groups */
  7611. struct cpuacct {
  7612. struct cgroup_subsys_state css;
  7613. /* cpuusage holds pointer to a u64-type object on every cpu */
  7614. u64 __percpu *cpuusage;
  7615. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7616. struct cpuacct *parent;
  7617. };
  7618. struct cgroup_subsys cpuacct_subsys;
  7619. /* return cpu accounting group corresponding to this container */
  7620. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7621. {
  7622. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7623. struct cpuacct, css);
  7624. }
  7625. /* return cpu accounting group to which this task belongs */
  7626. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7627. {
  7628. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7629. struct cpuacct, css);
  7630. }
  7631. /* create a new cpu accounting group */
  7632. static struct cgroup_subsys_state *cpuacct_create(
  7633. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7634. {
  7635. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7636. int i;
  7637. if (!ca)
  7638. goto out;
  7639. ca->cpuusage = alloc_percpu(u64);
  7640. if (!ca->cpuusage)
  7641. goto out_free_ca;
  7642. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7643. if (percpu_counter_init(&ca->cpustat[i], 0))
  7644. goto out_free_counters;
  7645. if (cgrp->parent)
  7646. ca->parent = cgroup_ca(cgrp->parent);
  7647. return &ca->css;
  7648. out_free_counters:
  7649. while (--i >= 0)
  7650. percpu_counter_destroy(&ca->cpustat[i]);
  7651. free_percpu(ca->cpuusage);
  7652. out_free_ca:
  7653. kfree(ca);
  7654. out:
  7655. return ERR_PTR(-ENOMEM);
  7656. }
  7657. /* destroy an existing cpu accounting group */
  7658. static void
  7659. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7660. {
  7661. struct cpuacct *ca = cgroup_ca(cgrp);
  7662. int i;
  7663. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7664. percpu_counter_destroy(&ca->cpustat[i]);
  7665. free_percpu(ca->cpuusage);
  7666. kfree(ca);
  7667. }
  7668. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7669. {
  7670. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7671. u64 data;
  7672. #ifndef CONFIG_64BIT
  7673. /*
  7674. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7675. */
  7676. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7677. data = *cpuusage;
  7678. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7679. #else
  7680. data = *cpuusage;
  7681. #endif
  7682. return data;
  7683. }
  7684. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7685. {
  7686. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7687. #ifndef CONFIG_64BIT
  7688. /*
  7689. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7690. */
  7691. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7692. *cpuusage = val;
  7693. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7694. #else
  7695. *cpuusage = val;
  7696. #endif
  7697. }
  7698. /* return total cpu usage (in nanoseconds) of a group */
  7699. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7700. {
  7701. struct cpuacct *ca = cgroup_ca(cgrp);
  7702. u64 totalcpuusage = 0;
  7703. int i;
  7704. for_each_present_cpu(i)
  7705. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7706. return totalcpuusage;
  7707. }
  7708. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7709. u64 reset)
  7710. {
  7711. struct cpuacct *ca = cgroup_ca(cgrp);
  7712. int err = 0;
  7713. int i;
  7714. if (reset) {
  7715. err = -EINVAL;
  7716. goto out;
  7717. }
  7718. for_each_present_cpu(i)
  7719. cpuacct_cpuusage_write(ca, i, 0);
  7720. out:
  7721. return err;
  7722. }
  7723. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7724. struct seq_file *m)
  7725. {
  7726. struct cpuacct *ca = cgroup_ca(cgroup);
  7727. u64 percpu;
  7728. int i;
  7729. for_each_present_cpu(i) {
  7730. percpu = cpuacct_cpuusage_read(ca, i);
  7731. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7732. }
  7733. seq_printf(m, "\n");
  7734. return 0;
  7735. }
  7736. static const char *cpuacct_stat_desc[] = {
  7737. [CPUACCT_STAT_USER] = "user",
  7738. [CPUACCT_STAT_SYSTEM] = "system",
  7739. };
  7740. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7741. struct cgroup_map_cb *cb)
  7742. {
  7743. struct cpuacct *ca = cgroup_ca(cgrp);
  7744. int i;
  7745. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7746. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7747. val = cputime64_to_clock_t(val);
  7748. cb->fill(cb, cpuacct_stat_desc[i], val);
  7749. }
  7750. return 0;
  7751. }
  7752. static struct cftype files[] = {
  7753. {
  7754. .name = "usage",
  7755. .read_u64 = cpuusage_read,
  7756. .write_u64 = cpuusage_write,
  7757. },
  7758. {
  7759. .name = "usage_percpu",
  7760. .read_seq_string = cpuacct_percpu_seq_read,
  7761. },
  7762. {
  7763. .name = "stat",
  7764. .read_map = cpuacct_stats_show,
  7765. },
  7766. };
  7767. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7768. {
  7769. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7770. }
  7771. /*
  7772. * charge this task's execution time to its accounting group.
  7773. *
  7774. * called with rq->lock held.
  7775. */
  7776. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7777. {
  7778. struct cpuacct *ca;
  7779. int cpu;
  7780. if (unlikely(!cpuacct_subsys.active))
  7781. return;
  7782. cpu = task_cpu(tsk);
  7783. rcu_read_lock();
  7784. ca = task_ca(tsk);
  7785. for (; ca; ca = ca->parent) {
  7786. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7787. *cpuusage += cputime;
  7788. }
  7789. rcu_read_unlock();
  7790. }
  7791. /*
  7792. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  7793. * in cputime_t units. As a result, cpuacct_update_stats calls
  7794. * percpu_counter_add with values large enough to always overflow the
  7795. * per cpu batch limit causing bad SMP scalability.
  7796. *
  7797. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  7798. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  7799. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  7800. */
  7801. #ifdef CONFIG_SMP
  7802. #define CPUACCT_BATCH \
  7803. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  7804. #else
  7805. #define CPUACCT_BATCH 0
  7806. #endif
  7807. /*
  7808. * Charge the system/user time to the task's accounting group.
  7809. */
  7810. static void cpuacct_update_stats(struct task_struct *tsk,
  7811. enum cpuacct_stat_index idx, cputime_t val)
  7812. {
  7813. struct cpuacct *ca;
  7814. int batch = CPUACCT_BATCH;
  7815. if (unlikely(!cpuacct_subsys.active))
  7816. return;
  7817. rcu_read_lock();
  7818. ca = task_ca(tsk);
  7819. do {
  7820. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  7821. ca = ca->parent;
  7822. } while (ca);
  7823. rcu_read_unlock();
  7824. }
  7825. struct cgroup_subsys cpuacct_subsys = {
  7826. .name = "cpuacct",
  7827. .create = cpuacct_create,
  7828. .destroy = cpuacct_destroy,
  7829. .populate = cpuacct_populate,
  7830. .subsys_id = cpuacct_subsys_id,
  7831. };
  7832. #endif /* CONFIG_CGROUP_CPUACCT */