tcp_input.c 165 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes:
  22. * Pedro Roque : Fast Retransmit/Recovery.
  23. * Two receive queues.
  24. * Retransmit queue handled by TCP.
  25. * Better retransmit timer handling.
  26. * New congestion avoidance.
  27. * Header prediction.
  28. * Variable renaming.
  29. *
  30. * Eric : Fast Retransmit.
  31. * Randy Scott : MSS option defines.
  32. * Eric Schenk : Fixes to slow start algorithm.
  33. * Eric Schenk : Yet another double ACK bug.
  34. * Eric Schenk : Delayed ACK bug fixes.
  35. * Eric Schenk : Floyd style fast retrans war avoidance.
  36. * David S. Miller : Don't allow zero congestion window.
  37. * Eric Schenk : Fix retransmitter so that it sends
  38. * next packet on ack of previous packet.
  39. * Andi Kleen : Moved open_request checking here
  40. * and process RSTs for open_requests.
  41. * Andi Kleen : Better prune_queue, and other fixes.
  42. * Andrey Savochkin: Fix RTT measurements in the presence of
  43. * timestamps.
  44. * Andrey Savochkin: Check sequence numbers correctly when
  45. * removing SACKs due to in sequence incoming
  46. * data segments.
  47. * Andi Kleen: Make sure we never ack data there is not
  48. * enough room for. Also make this condition
  49. * a fatal error if it might still happen.
  50. * Andi Kleen: Add tcp_measure_rcv_mss to make
  51. * connections with MSS<min(MTU,ann. MSS)
  52. * work without delayed acks.
  53. * Andi Kleen: Process packets with PSH set in the
  54. * fast path.
  55. * J Hadi Salim: ECN support
  56. * Andrei Gurtov,
  57. * Pasi Sarolahti,
  58. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  59. * engine. Lots of bugs are found.
  60. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  61. */
  62. #define pr_fmt(fmt) "TCP: " fmt
  63. #include <linux/mm.h>
  64. #include <linux/slab.h>
  65. #include <linux/module.h>
  66. #include <linux/sysctl.h>
  67. #include <linux/kernel.h>
  68. #include <net/dst.h>
  69. #include <net/tcp.h>
  70. #include <net/inet_common.h>
  71. #include <linux/ipsec.h>
  72. #include <asm/unaligned.h>
  73. #include <net/netdma.h>
  74. int sysctl_tcp_timestamps __read_mostly = 1;
  75. int sysctl_tcp_window_scaling __read_mostly = 1;
  76. int sysctl_tcp_sack __read_mostly = 1;
  77. int sysctl_tcp_fack __read_mostly = 1;
  78. int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  79. EXPORT_SYMBOL(sysctl_tcp_reordering);
  80. int sysctl_tcp_dsack __read_mostly = 1;
  81. int sysctl_tcp_app_win __read_mostly = 31;
  82. int sysctl_tcp_adv_win_scale __read_mostly = 1;
  83. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  84. /* rfc5961 challenge ack rate limiting */
  85. int sysctl_tcp_challenge_ack_limit = 100;
  86. int sysctl_tcp_stdurg __read_mostly;
  87. int sysctl_tcp_rfc1337 __read_mostly;
  88. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  89. int sysctl_tcp_frto __read_mostly = 2;
  90. int sysctl_tcp_thin_dupack __read_mostly;
  91. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  92. int sysctl_tcp_early_retrans __read_mostly = 3;
  93. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  94. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  95. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  96. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  97. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  98. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  99. #define FLAG_ECE 0x40 /* ECE in this ACK */
  100. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  101. #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
  102. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  103. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  104. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  105. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  106. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  107. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  108. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  109. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  110. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  111. /* Adapt the MSS value used to make delayed ack decision to the
  112. * real world.
  113. */
  114. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  115. {
  116. struct inet_connection_sock *icsk = inet_csk(sk);
  117. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  118. unsigned int len;
  119. icsk->icsk_ack.last_seg_size = 0;
  120. /* skb->len may jitter because of SACKs, even if peer
  121. * sends good full-sized frames.
  122. */
  123. len = skb_shinfo(skb)->gso_size ? : skb->len;
  124. if (len >= icsk->icsk_ack.rcv_mss) {
  125. icsk->icsk_ack.rcv_mss = len;
  126. } else {
  127. /* Otherwise, we make more careful check taking into account,
  128. * that SACKs block is variable.
  129. *
  130. * "len" is invariant segment length, including TCP header.
  131. */
  132. len += skb->data - skb_transport_header(skb);
  133. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  134. /* If PSH is not set, packet should be
  135. * full sized, provided peer TCP is not badly broken.
  136. * This observation (if it is correct 8)) allows
  137. * to handle super-low mtu links fairly.
  138. */
  139. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  140. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  141. /* Subtract also invariant (if peer is RFC compliant),
  142. * tcp header plus fixed timestamp option length.
  143. * Resulting "len" is MSS free of SACK jitter.
  144. */
  145. len -= tcp_sk(sk)->tcp_header_len;
  146. icsk->icsk_ack.last_seg_size = len;
  147. if (len == lss) {
  148. icsk->icsk_ack.rcv_mss = len;
  149. return;
  150. }
  151. }
  152. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  153. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  154. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  155. }
  156. }
  157. static void tcp_incr_quickack(struct sock *sk)
  158. {
  159. struct inet_connection_sock *icsk = inet_csk(sk);
  160. unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  161. if (quickacks == 0)
  162. quickacks = 2;
  163. if (quickacks > icsk->icsk_ack.quick)
  164. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  165. }
  166. static void tcp_enter_quickack_mode(struct sock *sk)
  167. {
  168. struct inet_connection_sock *icsk = inet_csk(sk);
  169. tcp_incr_quickack(sk);
  170. icsk->icsk_ack.pingpong = 0;
  171. icsk->icsk_ack.ato = TCP_ATO_MIN;
  172. }
  173. /* Send ACKs quickly, if "quick" count is not exhausted
  174. * and the session is not interactive.
  175. */
  176. static inline bool tcp_in_quickack_mode(const struct sock *sk)
  177. {
  178. const struct inet_connection_sock *icsk = inet_csk(sk);
  179. return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
  180. }
  181. static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
  182. {
  183. if (tp->ecn_flags & TCP_ECN_OK)
  184. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  185. }
  186. static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
  187. {
  188. if (tcp_hdr(skb)->cwr)
  189. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  190. }
  191. static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
  192. {
  193. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  194. }
  195. static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  196. {
  197. if (!(tp->ecn_flags & TCP_ECN_OK))
  198. return;
  199. switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
  200. case INET_ECN_NOT_ECT:
  201. /* Funny extension: if ECT is not set on a segment,
  202. * and we already seen ECT on a previous segment,
  203. * it is probably a retransmit.
  204. */
  205. if (tp->ecn_flags & TCP_ECN_SEEN)
  206. tcp_enter_quickack_mode((struct sock *)tp);
  207. break;
  208. case INET_ECN_CE:
  209. if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
  210. /* Better not delay acks, sender can have a very low cwnd */
  211. tcp_enter_quickack_mode((struct sock *)tp);
  212. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  213. }
  214. /* fallinto */
  215. default:
  216. tp->ecn_flags |= TCP_ECN_SEEN;
  217. }
  218. }
  219. static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
  220. {
  221. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  222. tp->ecn_flags &= ~TCP_ECN_OK;
  223. }
  224. static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
  225. {
  226. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  227. tp->ecn_flags &= ~TCP_ECN_OK;
  228. }
  229. static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
  230. {
  231. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  232. return true;
  233. return false;
  234. }
  235. /* Buffer size and advertised window tuning.
  236. *
  237. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  238. */
  239. static void tcp_fixup_sndbuf(struct sock *sk)
  240. {
  241. int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
  242. sndmem *= TCP_INIT_CWND;
  243. if (sk->sk_sndbuf < sndmem)
  244. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  245. }
  246. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  247. *
  248. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  249. * forward and advertised in receiver window (tp->rcv_wnd) and
  250. * "application buffer", required to isolate scheduling/application
  251. * latencies from network.
  252. * window_clamp is maximal advertised window. It can be less than
  253. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  254. * is reserved for "application" buffer. The less window_clamp is
  255. * the smoother our behaviour from viewpoint of network, but the lower
  256. * throughput and the higher sensitivity of the connection to losses. 8)
  257. *
  258. * rcv_ssthresh is more strict window_clamp used at "slow start"
  259. * phase to predict further behaviour of this connection.
  260. * It is used for two goals:
  261. * - to enforce header prediction at sender, even when application
  262. * requires some significant "application buffer". It is check #1.
  263. * - to prevent pruning of receive queue because of misprediction
  264. * of receiver window. Check #2.
  265. *
  266. * The scheme does not work when sender sends good segments opening
  267. * window and then starts to feed us spaghetti. But it should work
  268. * in common situations. Otherwise, we have to rely on queue collapsing.
  269. */
  270. /* Slow part of check#2. */
  271. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  272. {
  273. struct tcp_sock *tp = tcp_sk(sk);
  274. /* Optimize this! */
  275. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  276. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  277. while (tp->rcv_ssthresh <= window) {
  278. if (truesize <= skb->len)
  279. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  280. truesize >>= 1;
  281. window >>= 1;
  282. }
  283. return 0;
  284. }
  285. static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
  286. {
  287. struct tcp_sock *tp = tcp_sk(sk);
  288. /* Check #1 */
  289. if (tp->rcv_ssthresh < tp->window_clamp &&
  290. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  291. !sk_under_memory_pressure(sk)) {
  292. int incr;
  293. /* Check #2. Increase window, if skb with such overhead
  294. * will fit to rcvbuf in future.
  295. */
  296. if (tcp_win_from_space(skb->truesize) <= skb->len)
  297. incr = 2 * tp->advmss;
  298. else
  299. incr = __tcp_grow_window(sk, skb);
  300. if (incr) {
  301. incr = max_t(int, incr, 2 * skb->len);
  302. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  303. tp->window_clamp);
  304. inet_csk(sk)->icsk_ack.quick |= 1;
  305. }
  306. }
  307. }
  308. /* 3. Tuning rcvbuf, when connection enters established state. */
  309. static void tcp_fixup_rcvbuf(struct sock *sk)
  310. {
  311. u32 mss = tcp_sk(sk)->advmss;
  312. u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
  313. int rcvmem;
  314. /* Limit to 10 segments if mss <= 1460,
  315. * or 14600/mss segments, with a minimum of two segments.
  316. */
  317. if (mss > 1460)
  318. icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
  319. rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
  320. while (tcp_win_from_space(rcvmem) < mss)
  321. rcvmem += 128;
  322. rcvmem *= icwnd;
  323. if (sk->sk_rcvbuf < rcvmem)
  324. sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
  325. }
  326. /* 4. Try to fixup all. It is made immediately after connection enters
  327. * established state.
  328. */
  329. void tcp_init_buffer_space(struct sock *sk)
  330. {
  331. struct tcp_sock *tp = tcp_sk(sk);
  332. int maxwin;
  333. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  334. tcp_fixup_rcvbuf(sk);
  335. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  336. tcp_fixup_sndbuf(sk);
  337. tp->rcvq_space.space = tp->rcv_wnd;
  338. maxwin = tcp_full_space(sk);
  339. if (tp->window_clamp >= maxwin) {
  340. tp->window_clamp = maxwin;
  341. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  342. tp->window_clamp = max(maxwin -
  343. (maxwin >> sysctl_tcp_app_win),
  344. 4 * tp->advmss);
  345. }
  346. /* Force reservation of one segment. */
  347. if (sysctl_tcp_app_win &&
  348. tp->window_clamp > 2 * tp->advmss &&
  349. tp->window_clamp + tp->advmss > maxwin)
  350. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  351. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  352. tp->snd_cwnd_stamp = tcp_time_stamp;
  353. }
  354. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  355. static void tcp_clamp_window(struct sock *sk)
  356. {
  357. struct tcp_sock *tp = tcp_sk(sk);
  358. struct inet_connection_sock *icsk = inet_csk(sk);
  359. icsk->icsk_ack.quick = 0;
  360. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  361. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  362. !sk_under_memory_pressure(sk) &&
  363. sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
  364. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  365. sysctl_tcp_rmem[2]);
  366. }
  367. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  368. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  369. }
  370. /* Initialize RCV_MSS value.
  371. * RCV_MSS is an our guess about MSS used by the peer.
  372. * We haven't any direct information about the MSS.
  373. * It's better to underestimate the RCV_MSS rather than overestimate.
  374. * Overestimations make us ACKing less frequently than needed.
  375. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  376. */
  377. void tcp_initialize_rcv_mss(struct sock *sk)
  378. {
  379. const struct tcp_sock *tp = tcp_sk(sk);
  380. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  381. hint = min(hint, tp->rcv_wnd / 2);
  382. hint = min(hint, TCP_MSS_DEFAULT);
  383. hint = max(hint, TCP_MIN_MSS);
  384. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  385. }
  386. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  387. /* Receiver "autotuning" code.
  388. *
  389. * The algorithm for RTT estimation w/o timestamps is based on
  390. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  391. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  392. *
  393. * More detail on this code can be found at
  394. * <http://staff.psc.edu/jheffner/>,
  395. * though this reference is out of date. A new paper
  396. * is pending.
  397. */
  398. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  399. {
  400. u32 new_sample = tp->rcv_rtt_est.rtt;
  401. long m = sample;
  402. if (m == 0)
  403. m = 1;
  404. if (new_sample != 0) {
  405. /* If we sample in larger samples in the non-timestamp
  406. * case, we could grossly overestimate the RTT especially
  407. * with chatty applications or bulk transfer apps which
  408. * are stalled on filesystem I/O.
  409. *
  410. * Also, since we are only going for a minimum in the
  411. * non-timestamp case, we do not smooth things out
  412. * else with timestamps disabled convergence takes too
  413. * long.
  414. */
  415. if (!win_dep) {
  416. m -= (new_sample >> 3);
  417. new_sample += m;
  418. } else {
  419. m <<= 3;
  420. if (m < new_sample)
  421. new_sample = m;
  422. }
  423. } else {
  424. /* No previous measure. */
  425. new_sample = m << 3;
  426. }
  427. if (tp->rcv_rtt_est.rtt != new_sample)
  428. tp->rcv_rtt_est.rtt = new_sample;
  429. }
  430. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  431. {
  432. if (tp->rcv_rtt_est.time == 0)
  433. goto new_measure;
  434. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  435. return;
  436. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
  437. new_measure:
  438. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  439. tp->rcv_rtt_est.time = tcp_time_stamp;
  440. }
  441. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  442. const struct sk_buff *skb)
  443. {
  444. struct tcp_sock *tp = tcp_sk(sk);
  445. if (tp->rx_opt.rcv_tsecr &&
  446. (TCP_SKB_CB(skb)->end_seq -
  447. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
  448. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
  449. }
  450. /*
  451. * This function should be called every time data is copied to user space.
  452. * It calculates the appropriate TCP receive buffer space.
  453. */
  454. void tcp_rcv_space_adjust(struct sock *sk)
  455. {
  456. struct tcp_sock *tp = tcp_sk(sk);
  457. int time;
  458. int space;
  459. if (tp->rcvq_space.time == 0)
  460. goto new_measure;
  461. time = tcp_time_stamp - tp->rcvq_space.time;
  462. if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
  463. return;
  464. space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
  465. space = max(tp->rcvq_space.space, space);
  466. if (tp->rcvq_space.space != space) {
  467. int rcvmem;
  468. tp->rcvq_space.space = space;
  469. if (sysctl_tcp_moderate_rcvbuf &&
  470. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  471. int new_clamp = space;
  472. /* Receive space grows, normalize in order to
  473. * take into account packet headers and sk_buff
  474. * structure overhead.
  475. */
  476. space /= tp->advmss;
  477. if (!space)
  478. space = 1;
  479. rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
  480. while (tcp_win_from_space(rcvmem) < tp->advmss)
  481. rcvmem += 128;
  482. space *= rcvmem;
  483. space = min(space, sysctl_tcp_rmem[2]);
  484. if (space > sk->sk_rcvbuf) {
  485. sk->sk_rcvbuf = space;
  486. /* Make the window clamp follow along. */
  487. tp->window_clamp = new_clamp;
  488. }
  489. }
  490. }
  491. new_measure:
  492. tp->rcvq_space.seq = tp->copied_seq;
  493. tp->rcvq_space.time = tcp_time_stamp;
  494. }
  495. /* There is something which you must keep in mind when you analyze the
  496. * behavior of the tp->ato delayed ack timeout interval. When a
  497. * connection starts up, we want to ack as quickly as possible. The
  498. * problem is that "good" TCP's do slow start at the beginning of data
  499. * transmission. The means that until we send the first few ACK's the
  500. * sender will sit on his end and only queue most of his data, because
  501. * he can only send snd_cwnd unacked packets at any given time. For
  502. * each ACK we send, he increments snd_cwnd and transmits more of his
  503. * queue. -DaveM
  504. */
  505. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  506. {
  507. struct tcp_sock *tp = tcp_sk(sk);
  508. struct inet_connection_sock *icsk = inet_csk(sk);
  509. u32 now;
  510. inet_csk_schedule_ack(sk);
  511. tcp_measure_rcv_mss(sk, skb);
  512. tcp_rcv_rtt_measure(tp);
  513. now = tcp_time_stamp;
  514. if (!icsk->icsk_ack.ato) {
  515. /* The _first_ data packet received, initialize
  516. * delayed ACK engine.
  517. */
  518. tcp_incr_quickack(sk);
  519. icsk->icsk_ack.ato = TCP_ATO_MIN;
  520. } else {
  521. int m = now - icsk->icsk_ack.lrcvtime;
  522. if (m <= TCP_ATO_MIN / 2) {
  523. /* The fastest case is the first. */
  524. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  525. } else if (m < icsk->icsk_ack.ato) {
  526. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  527. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  528. icsk->icsk_ack.ato = icsk->icsk_rto;
  529. } else if (m > icsk->icsk_rto) {
  530. /* Too long gap. Apparently sender failed to
  531. * restart window, so that we send ACKs quickly.
  532. */
  533. tcp_incr_quickack(sk);
  534. sk_mem_reclaim(sk);
  535. }
  536. }
  537. icsk->icsk_ack.lrcvtime = now;
  538. TCP_ECN_check_ce(tp, skb);
  539. if (skb->len >= 128)
  540. tcp_grow_window(sk, skb);
  541. }
  542. /* Called to compute a smoothed rtt estimate. The data fed to this
  543. * routine either comes from timestamps, or from segments that were
  544. * known _not_ to have been retransmitted [see Karn/Partridge
  545. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  546. * piece by Van Jacobson.
  547. * NOTE: the next three routines used to be one big routine.
  548. * To save cycles in the RFC 1323 implementation it was better to break
  549. * it up into three procedures. -- erics
  550. */
  551. static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
  552. {
  553. struct tcp_sock *tp = tcp_sk(sk);
  554. long m = mrtt; /* RTT */
  555. /* The following amusing code comes from Jacobson's
  556. * article in SIGCOMM '88. Note that rtt and mdev
  557. * are scaled versions of rtt and mean deviation.
  558. * This is designed to be as fast as possible
  559. * m stands for "measurement".
  560. *
  561. * On a 1990 paper the rto value is changed to:
  562. * RTO = rtt + 4 * mdev
  563. *
  564. * Funny. This algorithm seems to be very broken.
  565. * These formulae increase RTO, when it should be decreased, increase
  566. * too slowly, when it should be increased quickly, decrease too quickly
  567. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  568. * does not matter how to _calculate_ it. Seems, it was trap
  569. * that VJ failed to avoid. 8)
  570. */
  571. if (m == 0)
  572. m = 1;
  573. if (tp->srtt != 0) {
  574. m -= (tp->srtt >> 3); /* m is now error in rtt est */
  575. tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  576. if (m < 0) {
  577. m = -m; /* m is now abs(error) */
  578. m -= (tp->mdev >> 2); /* similar update on mdev */
  579. /* This is similar to one of Eifel findings.
  580. * Eifel blocks mdev updates when rtt decreases.
  581. * This solution is a bit different: we use finer gain
  582. * for mdev in this case (alpha*beta).
  583. * Like Eifel it also prevents growth of rto,
  584. * but also it limits too fast rto decreases,
  585. * happening in pure Eifel.
  586. */
  587. if (m > 0)
  588. m >>= 3;
  589. } else {
  590. m -= (tp->mdev >> 2); /* similar update on mdev */
  591. }
  592. tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
  593. if (tp->mdev > tp->mdev_max) {
  594. tp->mdev_max = tp->mdev;
  595. if (tp->mdev_max > tp->rttvar)
  596. tp->rttvar = tp->mdev_max;
  597. }
  598. if (after(tp->snd_una, tp->rtt_seq)) {
  599. if (tp->mdev_max < tp->rttvar)
  600. tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
  601. tp->rtt_seq = tp->snd_nxt;
  602. tp->mdev_max = tcp_rto_min(sk);
  603. }
  604. } else {
  605. /* no previous measure. */
  606. tp->srtt = m << 3; /* take the measured time to be rtt */
  607. tp->mdev = m << 1; /* make sure rto = 3*rtt */
  608. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  609. tp->rtt_seq = tp->snd_nxt;
  610. }
  611. }
  612. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  613. * routine referred to above.
  614. */
  615. void tcp_set_rto(struct sock *sk)
  616. {
  617. const struct tcp_sock *tp = tcp_sk(sk);
  618. /* Old crap is replaced with new one. 8)
  619. *
  620. * More seriously:
  621. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  622. * It cannot be less due to utterly erratic ACK generation made
  623. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  624. * to do with delayed acks, because at cwnd>2 true delack timeout
  625. * is invisible. Actually, Linux-2.4 also generates erratic
  626. * ACKs in some circumstances.
  627. */
  628. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  629. /* 2. Fixups made earlier cannot be right.
  630. * If we do not estimate RTO correctly without them,
  631. * all the algo is pure shit and should be replaced
  632. * with correct one. It is exactly, which we pretend to do.
  633. */
  634. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  635. * guarantees that rto is higher.
  636. */
  637. tcp_bound_rto(sk);
  638. }
  639. __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
  640. {
  641. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  642. if (!cwnd)
  643. cwnd = TCP_INIT_CWND;
  644. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  645. }
  646. /*
  647. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  648. * disables it when reordering is detected
  649. */
  650. void tcp_disable_fack(struct tcp_sock *tp)
  651. {
  652. /* RFC3517 uses different metric in lost marker => reset on change */
  653. if (tcp_is_fack(tp))
  654. tp->lost_skb_hint = NULL;
  655. tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
  656. }
  657. /* Take a notice that peer is sending D-SACKs */
  658. static void tcp_dsack_seen(struct tcp_sock *tp)
  659. {
  660. tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
  661. }
  662. static void tcp_update_reordering(struct sock *sk, const int metric,
  663. const int ts)
  664. {
  665. struct tcp_sock *tp = tcp_sk(sk);
  666. if (metric > tp->reordering) {
  667. int mib_idx;
  668. tp->reordering = min(TCP_MAX_REORDERING, metric);
  669. /* This exciting event is worth to be remembered. 8) */
  670. if (ts)
  671. mib_idx = LINUX_MIB_TCPTSREORDER;
  672. else if (tcp_is_reno(tp))
  673. mib_idx = LINUX_MIB_TCPRENOREORDER;
  674. else if (tcp_is_fack(tp))
  675. mib_idx = LINUX_MIB_TCPFACKREORDER;
  676. else
  677. mib_idx = LINUX_MIB_TCPSACKREORDER;
  678. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  679. #if FASTRETRANS_DEBUG > 1
  680. pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
  681. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  682. tp->reordering,
  683. tp->fackets_out,
  684. tp->sacked_out,
  685. tp->undo_marker ? tp->undo_retrans : 0);
  686. #endif
  687. tcp_disable_fack(tp);
  688. }
  689. if (metric > 0)
  690. tcp_disable_early_retrans(tp);
  691. }
  692. /* This must be called before lost_out is incremented */
  693. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  694. {
  695. if ((tp->retransmit_skb_hint == NULL) ||
  696. before(TCP_SKB_CB(skb)->seq,
  697. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  698. tp->retransmit_skb_hint = skb;
  699. if (!tp->lost_out ||
  700. after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
  701. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  702. }
  703. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  704. {
  705. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  706. tcp_verify_retransmit_hint(tp, skb);
  707. tp->lost_out += tcp_skb_pcount(skb);
  708. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  709. }
  710. }
  711. static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
  712. struct sk_buff *skb)
  713. {
  714. tcp_verify_retransmit_hint(tp, skb);
  715. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  716. tp->lost_out += tcp_skb_pcount(skb);
  717. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  718. }
  719. }
  720. /* This procedure tags the retransmission queue when SACKs arrive.
  721. *
  722. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  723. * Packets in queue with these bits set are counted in variables
  724. * sacked_out, retrans_out and lost_out, correspondingly.
  725. *
  726. * Valid combinations are:
  727. * Tag InFlight Description
  728. * 0 1 - orig segment is in flight.
  729. * S 0 - nothing flies, orig reached receiver.
  730. * L 0 - nothing flies, orig lost by net.
  731. * R 2 - both orig and retransmit are in flight.
  732. * L|R 1 - orig is lost, retransmit is in flight.
  733. * S|R 1 - orig reached receiver, retrans is still in flight.
  734. * (L|S|R is logically valid, it could occur when L|R is sacked,
  735. * but it is equivalent to plain S and code short-curcuits it to S.
  736. * L|S is logically invalid, it would mean -1 packet in flight 8))
  737. *
  738. * These 6 states form finite state machine, controlled by the following events:
  739. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  740. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  741. * 3. Loss detection event of two flavors:
  742. * A. Scoreboard estimator decided the packet is lost.
  743. * A'. Reno "three dupacks" marks head of queue lost.
  744. * A''. Its FACK modification, head until snd.fack is lost.
  745. * B. SACK arrives sacking SND.NXT at the moment, when the
  746. * segment was retransmitted.
  747. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  748. *
  749. * It is pleasant to note, that state diagram turns out to be commutative,
  750. * so that we are allowed not to be bothered by order of our actions,
  751. * when multiple events arrive simultaneously. (see the function below).
  752. *
  753. * Reordering detection.
  754. * --------------------
  755. * Reordering metric is maximal distance, which a packet can be displaced
  756. * in packet stream. With SACKs we can estimate it:
  757. *
  758. * 1. SACK fills old hole and the corresponding segment was not
  759. * ever retransmitted -> reordering. Alas, we cannot use it
  760. * when segment was retransmitted.
  761. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  762. * for retransmitted and already SACKed segment -> reordering..
  763. * Both of these heuristics are not used in Loss state, when we cannot
  764. * account for retransmits accurately.
  765. *
  766. * SACK block validation.
  767. * ----------------------
  768. *
  769. * SACK block range validation checks that the received SACK block fits to
  770. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  771. * Note that SND.UNA is not included to the range though being valid because
  772. * it means that the receiver is rather inconsistent with itself reporting
  773. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  774. * perfectly valid, however, in light of RFC2018 which explicitly states
  775. * that "SACK block MUST reflect the newest segment. Even if the newest
  776. * segment is going to be discarded ...", not that it looks very clever
  777. * in case of head skb. Due to potentional receiver driven attacks, we
  778. * choose to avoid immediate execution of a walk in write queue due to
  779. * reneging and defer head skb's loss recovery to standard loss recovery
  780. * procedure that will eventually trigger (nothing forbids us doing this).
  781. *
  782. * Implements also blockage to start_seq wrap-around. Problem lies in the
  783. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  784. * there's no guarantee that it will be before snd_nxt (n). The problem
  785. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  786. * wrap (s_w):
  787. *
  788. * <- outs wnd -> <- wrapzone ->
  789. * u e n u_w e_w s n_w
  790. * | | | | | | |
  791. * |<------------+------+----- TCP seqno space --------------+---------->|
  792. * ...-- <2^31 ->| |<--------...
  793. * ...---- >2^31 ------>| |<--------...
  794. *
  795. * Current code wouldn't be vulnerable but it's better still to discard such
  796. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  797. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  798. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  799. * equal to the ideal case (infinite seqno space without wrap caused issues).
  800. *
  801. * With D-SACK the lower bound is extended to cover sequence space below
  802. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  803. * again, D-SACK block must not to go across snd_una (for the same reason as
  804. * for the normal SACK blocks, explained above). But there all simplicity
  805. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  806. * fully below undo_marker they do not affect behavior in anyway and can
  807. * therefore be safely ignored. In rare cases (which are more or less
  808. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  809. * fragmentation and packet reordering past skb's retransmission. To consider
  810. * them correctly, the acceptable range must be extended even more though
  811. * the exact amount is rather hard to quantify. However, tp->max_window can
  812. * be used as an exaggerated estimate.
  813. */
  814. static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
  815. u32 start_seq, u32 end_seq)
  816. {
  817. /* Too far in future, or reversed (interpretation is ambiguous) */
  818. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  819. return false;
  820. /* Nasty start_seq wrap-around check (see comments above) */
  821. if (!before(start_seq, tp->snd_nxt))
  822. return false;
  823. /* In outstanding window? ...This is valid exit for D-SACKs too.
  824. * start_seq == snd_una is non-sensical (see comments above)
  825. */
  826. if (after(start_seq, tp->snd_una))
  827. return true;
  828. if (!is_dsack || !tp->undo_marker)
  829. return false;
  830. /* ...Then it's D-SACK, and must reside below snd_una completely */
  831. if (after(end_seq, tp->snd_una))
  832. return false;
  833. if (!before(start_seq, tp->undo_marker))
  834. return true;
  835. /* Too old */
  836. if (!after(end_seq, tp->undo_marker))
  837. return false;
  838. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  839. * start_seq < undo_marker and end_seq >= undo_marker.
  840. */
  841. return !before(start_seq, end_seq - tp->max_window);
  842. }
  843. /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
  844. * Event "B". Later note: FACK people cheated me again 8), we have to account
  845. * for reordering! Ugly, but should help.
  846. *
  847. * Search retransmitted skbs from write_queue that were sent when snd_nxt was
  848. * less than what is now known to be received by the other end (derived from
  849. * highest SACK block). Also calculate the lowest snd_nxt among the remaining
  850. * retransmitted skbs to avoid some costly processing per ACKs.
  851. */
  852. static void tcp_mark_lost_retrans(struct sock *sk)
  853. {
  854. const struct inet_connection_sock *icsk = inet_csk(sk);
  855. struct tcp_sock *tp = tcp_sk(sk);
  856. struct sk_buff *skb;
  857. int cnt = 0;
  858. u32 new_low_seq = tp->snd_nxt;
  859. u32 received_upto = tcp_highest_sack_seq(tp);
  860. if (!tcp_is_fack(tp) || !tp->retrans_out ||
  861. !after(received_upto, tp->lost_retrans_low) ||
  862. icsk->icsk_ca_state != TCP_CA_Recovery)
  863. return;
  864. tcp_for_write_queue(skb, sk) {
  865. u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
  866. if (skb == tcp_send_head(sk))
  867. break;
  868. if (cnt == tp->retrans_out)
  869. break;
  870. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  871. continue;
  872. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
  873. continue;
  874. /* TODO: We would like to get rid of tcp_is_fack(tp) only
  875. * constraint here (see above) but figuring out that at
  876. * least tp->reordering SACK blocks reside between ack_seq
  877. * and received_upto is not easy task to do cheaply with
  878. * the available datastructures.
  879. *
  880. * Whether FACK should check here for tp->reordering segs
  881. * in-between one could argue for either way (it would be
  882. * rather simple to implement as we could count fack_count
  883. * during the walk and do tp->fackets_out - fack_count).
  884. */
  885. if (after(received_upto, ack_seq)) {
  886. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  887. tp->retrans_out -= tcp_skb_pcount(skb);
  888. tcp_skb_mark_lost_uncond_verify(tp, skb);
  889. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
  890. } else {
  891. if (before(ack_seq, new_low_seq))
  892. new_low_seq = ack_seq;
  893. cnt += tcp_skb_pcount(skb);
  894. }
  895. }
  896. if (tp->retrans_out)
  897. tp->lost_retrans_low = new_low_seq;
  898. }
  899. static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
  900. struct tcp_sack_block_wire *sp, int num_sacks,
  901. u32 prior_snd_una)
  902. {
  903. struct tcp_sock *tp = tcp_sk(sk);
  904. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  905. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  906. bool dup_sack = false;
  907. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  908. dup_sack = true;
  909. tcp_dsack_seen(tp);
  910. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  911. } else if (num_sacks > 1) {
  912. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  913. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  914. if (!after(end_seq_0, end_seq_1) &&
  915. !before(start_seq_0, start_seq_1)) {
  916. dup_sack = true;
  917. tcp_dsack_seen(tp);
  918. NET_INC_STATS_BH(sock_net(sk),
  919. LINUX_MIB_TCPDSACKOFORECV);
  920. }
  921. }
  922. /* D-SACK for already forgotten data... Do dumb counting. */
  923. if (dup_sack && tp->undo_marker && tp->undo_retrans &&
  924. !after(end_seq_0, prior_snd_una) &&
  925. after(end_seq_0, tp->undo_marker))
  926. tp->undo_retrans--;
  927. return dup_sack;
  928. }
  929. struct tcp_sacktag_state {
  930. int reord;
  931. int fack_count;
  932. int flag;
  933. };
  934. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  935. * the incoming SACK may not exactly match but we can find smaller MSS
  936. * aligned portion of it that matches. Therefore we might need to fragment
  937. * which may fail and creates some hassle (caller must handle error case
  938. * returns).
  939. *
  940. * FIXME: this could be merged to shift decision code
  941. */
  942. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  943. u32 start_seq, u32 end_seq)
  944. {
  945. int err;
  946. bool in_sack;
  947. unsigned int pkt_len;
  948. unsigned int mss;
  949. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  950. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  951. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  952. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  953. mss = tcp_skb_mss(skb);
  954. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  955. if (!in_sack) {
  956. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  957. if (pkt_len < mss)
  958. pkt_len = mss;
  959. } else {
  960. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  961. if (pkt_len < mss)
  962. return -EINVAL;
  963. }
  964. /* Round if necessary so that SACKs cover only full MSSes
  965. * and/or the remaining small portion (if present)
  966. */
  967. if (pkt_len > mss) {
  968. unsigned int new_len = (pkt_len / mss) * mss;
  969. if (!in_sack && new_len < pkt_len) {
  970. new_len += mss;
  971. if (new_len > skb->len)
  972. return 0;
  973. }
  974. pkt_len = new_len;
  975. }
  976. err = tcp_fragment(sk, skb, pkt_len, mss);
  977. if (err < 0)
  978. return err;
  979. }
  980. return in_sack;
  981. }
  982. /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
  983. static u8 tcp_sacktag_one(struct sock *sk,
  984. struct tcp_sacktag_state *state, u8 sacked,
  985. u32 start_seq, u32 end_seq,
  986. bool dup_sack, int pcount)
  987. {
  988. struct tcp_sock *tp = tcp_sk(sk);
  989. int fack_count = state->fack_count;
  990. /* Account D-SACK for retransmitted packet. */
  991. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  992. if (tp->undo_marker && tp->undo_retrans &&
  993. after(end_seq, tp->undo_marker))
  994. tp->undo_retrans--;
  995. if (sacked & TCPCB_SACKED_ACKED)
  996. state->reord = min(fack_count, state->reord);
  997. }
  998. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  999. if (!after(end_seq, tp->snd_una))
  1000. return sacked;
  1001. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1002. if (sacked & TCPCB_SACKED_RETRANS) {
  1003. /* If the segment is not tagged as lost,
  1004. * we do not clear RETRANS, believing
  1005. * that retransmission is still in flight.
  1006. */
  1007. if (sacked & TCPCB_LOST) {
  1008. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1009. tp->lost_out -= pcount;
  1010. tp->retrans_out -= pcount;
  1011. }
  1012. } else {
  1013. if (!(sacked & TCPCB_RETRANS)) {
  1014. /* New sack for not retransmitted frame,
  1015. * which was in hole. It is reordering.
  1016. */
  1017. if (before(start_seq,
  1018. tcp_highest_sack_seq(tp)))
  1019. state->reord = min(fack_count,
  1020. state->reord);
  1021. if (!after(end_seq, tp->high_seq))
  1022. state->flag |= FLAG_ORIG_SACK_ACKED;
  1023. }
  1024. if (sacked & TCPCB_LOST) {
  1025. sacked &= ~TCPCB_LOST;
  1026. tp->lost_out -= pcount;
  1027. }
  1028. }
  1029. sacked |= TCPCB_SACKED_ACKED;
  1030. state->flag |= FLAG_DATA_SACKED;
  1031. tp->sacked_out += pcount;
  1032. fack_count += pcount;
  1033. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1034. if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
  1035. before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1036. tp->lost_cnt_hint += pcount;
  1037. if (fack_count > tp->fackets_out)
  1038. tp->fackets_out = fack_count;
  1039. }
  1040. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1041. * frames and clear it. undo_retrans is decreased above, L|R frames
  1042. * are accounted above as well.
  1043. */
  1044. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1045. sacked &= ~TCPCB_SACKED_RETRANS;
  1046. tp->retrans_out -= pcount;
  1047. }
  1048. return sacked;
  1049. }
  1050. /* Shift newly-SACKed bytes from this skb to the immediately previous
  1051. * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
  1052. */
  1053. static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
  1054. struct tcp_sacktag_state *state,
  1055. unsigned int pcount, int shifted, int mss,
  1056. bool dup_sack)
  1057. {
  1058. struct tcp_sock *tp = tcp_sk(sk);
  1059. struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
  1060. u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
  1061. u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
  1062. BUG_ON(!pcount);
  1063. /* Adjust counters and hints for the newly sacked sequence
  1064. * range but discard the return value since prev is already
  1065. * marked. We must tag the range first because the seq
  1066. * advancement below implicitly advances
  1067. * tcp_highest_sack_seq() when skb is highest_sack.
  1068. */
  1069. tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
  1070. start_seq, end_seq, dup_sack, pcount);
  1071. if (skb == tp->lost_skb_hint)
  1072. tp->lost_cnt_hint += pcount;
  1073. TCP_SKB_CB(prev)->end_seq += shifted;
  1074. TCP_SKB_CB(skb)->seq += shifted;
  1075. skb_shinfo(prev)->gso_segs += pcount;
  1076. BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
  1077. skb_shinfo(skb)->gso_segs -= pcount;
  1078. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1079. * in theory this shouldn't be necessary but as long as DSACK
  1080. * code can come after this skb later on it's better to keep
  1081. * setting gso_size to something.
  1082. */
  1083. if (!skb_shinfo(prev)->gso_size) {
  1084. skb_shinfo(prev)->gso_size = mss;
  1085. skb_shinfo(prev)->gso_type = sk->sk_gso_type;
  1086. }
  1087. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1088. if (skb_shinfo(skb)->gso_segs <= 1) {
  1089. skb_shinfo(skb)->gso_size = 0;
  1090. skb_shinfo(skb)->gso_type = 0;
  1091. }
  1092. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1093. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1094. if (skb->len > 0) {
  1095. BUG_ON(!tcp_skb_pcount(skb));
  1096. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1097. return false;
  1098. }
  1099. /* Whole SKB was eaten :-) */
  1100. if (skb == tp->retransmit_skb_hint)
  1101. tp->retransmit_skb_hint = prev;
  1102. if (skb == tp->scoreboard_skb_hint)
  1103. tp->scoreboard_skb_hint = prev;
  1104. if (skb == tp->lost_skb_hint) {
  1105. tp->lost_skb_hint = prev;
  1106. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1107. }
  1108. TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
  1109. if (skb == tcp_highest_sack(sk))
  1110. tcp_advance_highest_sack(sk, skb);
  1111. tcp_unlink_write_queue(skb, sk);
  1112. sk_wmem_free_skb(sk, skb);
  1113. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
  1114. return true;
  1115. }
  1116. /* I wish gso_size would have a bit more sane initialization than
  1117. * something-or-zero which complicates things
  1118. */
  1119. static int tcp_skb_seglen(const struct sk_buff *skb)
  1120. {
  1121. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1122. }
  1123. /* Shifting pages past head area doesn't work */
  1124. static int skb_can_shift(const struct sk_buff *skb)
  1125. {
  1126. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1127. }
  1128. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1129. * skb.
  1130. */
  1131. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1132. struct tcp_sacktag_state *state,
  1133. u32 start_seq, u32 end_seq,
  1134. bool dup_sack)
  1135. {
  1136. struct tcp_sock *tp = tcp_sk(sk);
  1137. struct sk_buff *prev;
  1138. int mss;
  1139. int pcount = 0;
  1140. int len;
  1141. int in_sack;
  1142. if (!sk_can_gso(sk))
  1143. goto fallback;
  1144. /* Normally R but no L won't result in plain S */
  1145. if (!dup_sack &&
  1146. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1147. goto fallback;
  1148. if (!skb_can_shift(skb))
  1149. goto fallback;
  1150. /* This frame is about to be dropped (was ACKed). */
  1151. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1152. goto fallback;
  1153. /* Can only happen with delayed DSACK + discard craziness */
  1154. if (unlikely(skb == tcp_write_queue_head(sk)))
  1155. goto fallback;
  1156. prev = tcp_write_queue_prev(sk, skb);
  1157. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1158. goto fallback;
  1159. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1160. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1161. if (in_sack) {
  1162. len = skb->len;
  1163. pcount = tcp_skb_pcount(skb);
  1164. mss = tcp_skb_seglen(skb);
  1165. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1166. * drop this restriction as unnecessary
  1167. */
  1168. if (mss != tcp_skb_seglen(prev))
  1169. goto fallback;
  1170. } else {
  1171. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1172. goto noop;
  1173. /* CHECKME: This is non-MSS split case only?, this will
  1174. * cause skipped skbs due to advancing loop btw, original
  1175. * has that feature too
  1176. */
  1177. if (tcp_skb_pcount(skb) <= 1)
  1178. goto noop;
  1179. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1180. if (!in_sack) {
  1181. /* TODO: head merge to next could be attempted here
  1182. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1183. * though it might not be worth of the additional hassle
  1184. *
  1185. * ...we can probably just fallback to what was done
  1186. * previously. We could try merging non-SACKed ones
  1187. * as well but it probably isn't going to buy off
  1188. * because later SACKs might again split them, and
  1189. * it would make skb timestamp tracking considerably
  1190. * harder problem.
  1191. */
  1192. goto fallback;
  1193. }
  1194. len = end_seq - TCP_SKB_CB(skb)->seq;
  1195. BUG_ON(len < 0);
  1196. BUG_ON(len > skb->len);
  1197. /* MSS boundaries should be honoured or else pcount will
  1198. * severely break even though it makes things bit trickier.
  1199. * Optimize common case to avoid most of the divides
  1200. */
  1201. mss = tcp_skb_mss(skb);
  1202. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1203. * drop this restriction as unnecessary
  1204. */
  1205. if (mss != tcp_skb_seglen(prev))
  1206. goto fallback;
  1207. if (len == mss) {
  1208. pcount = 1;
  1209. } else if (len < mss) {
  1210. goto noop;
  1211. } else {
  1212. pcount = len / mss;
  1213. len = pcount * mss;
  1214. }
  1215. }
  1216. /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
  1217. if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
  1218. goto fallback;
  1219. if (!skb_shift(prev, skb, len))
  1220. goto fallback;
  1221. if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
  1222. goto out;
  1223. /* Hole filled allows collapsing with the next as well, this is very
  1224. * useful when hole on every nth skb pattern happens
  1225. */
  1226. if (prev == tcp_write_queue_tail(sk))
  1227. goto out;
  1228. skb = tcp_write_queue_next(sk, prev);
  1229. if (!skb_can_shift(skb) ||
  1230. (skb == tcp_send_head(sk)) ||
  1231. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1232. (mss != tcp_skb_seglen(skb)))
  1233. goto out;
  1234. len = skb->len;
  1235. if (skb_shift(prev, skb, len)) {
  1236. pcount += tcp_skb_pcount(skb);
  1237. tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
  1238. }
  1239. out:
  1240. state->fack_count += pcount;
  1241. return prev;
  1242. noop:
  1243. return skb;
  1244. fallback:
  1245. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1246. return NULL;
  1247. }
  1248. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1249. struct tcp_sack_block *next_dup,
  1250. struct tcp_sacktag_state *state,
  1251. u32 start_seq, u32 end_seq,
  1252. bool dup_sack_in)
  1253. {
  1254. struct tcp_sock *tp = tcp_sk(sk);
  1255. struct sk_buff *tmp;
  1256. tcp_for_write_queue_from(skb, sk) {
  1257. int in_sack = 0;
  1258. bool dup_sack = dup_sack_in;
  1259. if (skb == tcp_send_head(sk))
  1260. break;
  1261. /* queue is in-order => we can short-circuit the walk early */
  1262. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1263. break;
  1264. if ((next_dup != NULL) &&
  1265. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1266. in_sack = tcp_match_skb_to_sack(sk, skb,
  1267. next_dup->start_seq,
  1268. next_dup->end_seq);
  1269. if (in_sack > 0)
  1270. dup_sack = true;
  1271. }
  1272. /* skb reference here is a bit tricky to get right, since
  1273. * shifting can eat and free both this skb and the next,
  1274. * so not even _safe variant of the loop is enough.
  1275. */
  1276. if (in_sack <= 0) {
  1277. tmp = tcp_shift_skb_data(sk, skb, state,
  1278. start_seq, end_seq, dup_sack);
  1279. if (tmp != NULL) {
  1280. if (tmp != skb) {
  1281. skb = tmp;
  1282. continue;
  1283. }
  1284. in_sack = 0;
  1285. } else {
  1286. in_sack = tcp_match_skb_to_sack(sk, skb,
  1287. start_seq,
  1288. end_seq);
  1289. }
  1290. }
  1291. if (unlikely(in_sack < 0))
  1292. break;
  1293. if (in_sack) {
  1294. TCP_SKB_CB(skb)->sacked =
  1295. tcp_sacktag_one(sk,
  1296. state,
  1297. TCP_SKB_CB(skb)->sacked,
  1298. TCP_SKB_CB(skb)->seq,
  1299. TCP_SKB_CB(skb)->end_seq,
  1300. dup_sack,
  1301. tcp_skb_pcount(skb));
  1302. if (!before(TCP_SKB_CB(skb)->seq,
  1303. tcp_highest_sack_seq(tp)))
  1304. tcp_advance_highest_sack(sk, skb);
  1305. }
  1306. state->fack_count += tcp_skb_pcount(skb);
  1307. }
  1308. return skb;
  1309. }
  1310. /* Avoid all extra work that is being done by sacktag while walking in
  1311. * a normal way
  1312. */
  1313. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1314. struct tcp_sacktag_state *state,
  1315. u32 skip_to_seq)
  1316. {
  1317. tcp_for_write_queue_from(skb, sk) {
  1318. if (skb == tcp_send_head(sk))
  1319. break;
  1320. if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1321. break;
  1322. state->fack_count += tcp_skb_pcount(skb);
  1323. }
  1324. return skb;
  1325. }
  1326. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1327. struct sock *sk,
  1328. struct tcp_sack_block *next_dup,
  1329. struct tcp_sacktag_state *state,
  1330. u32 skip_to_seq)
  1331. {
  1332. if (next_dup == NULL)
  1333. return skb;
  1334. if (before(next_dup->start_seq, skip_to_seq)) {
  1335. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1336. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1337. next_dup->start_seq, next_dup->end_seq,
  1338. 1);
  1339. }
  1340. return skb;
  1341. }
  1342. static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
  1343. {
  1344. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1345. }
  1346. static int
  1347. tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
  1348. u32 prior_snd_una)
  1349. {
  1350. struct tcp_sock *tp = tcp_sk(sk);
  1351. const unsigned char *ptr = (skb_transport_header(ack_skb) +
  1352. TCP_SKB_CB(ack_skb)->sacked);
  1353. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1354. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1355. struct tcp_sack_block *cache;
  1356. struct tcp_sacktag_state state;
  1357. struct sk_buff *skb;
  1358. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1359. int used_sacks;
  1360. bool found_dup_sack = false;
  1361. int i, j;
  1362. int first_sack_index;
  1363. state.flag = 0;
  1364. state.reord = tp->packets_out;
  1365. if (!tp->sacked_out) {
  1366. if (WARN_ON(tp->fackets_out))
  1367. tp->fackets_out = 0;
  1368. tcp_highest_sack_reset(sk);
  1369. }
  1370. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1371. num_sacks, prior_snd_una);
  1372. if (found_dup_sack)
  1373. state.flag |= FLAG_DSACKING_ACK;
  1374. /* Eliminate too old ACKs, but take into
  1375. * account more or less fresh ones, they can
  1376. * contain valid SACK info.
  1377. */
  1378. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1379. return 0;
  1380. if (!tp->packets_out)
  1381. goto out;
  1382. used_sacks = 0;
  1383. first_sack_index = 0;
  1384. for (i = 0; i < num_sacks; i++) {
  1385. bool dup_sack = !i && found_dup_sack;
  1386. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1387. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1388. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1389. sp[used_sacks].start_seq,
  1390. sp[used_sacks].end_seq)) {
  1391. int mib_idx;
  1392. if (dup_sack) {
  1393. if (!tp->undo_marker)
  1394. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1395. else
  1396. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1397. } else {
  1398. /* Don't count olds caused by ACK reordering */
  1399. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1400. !after(sp[used_sacks].end_seq, tp->snd_una))
  1401. continue;
  1402. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1403. }
  1404. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  1405. if (i == 0)
  1406. first_sack_index = -1;
  1407. continue;
  1408. }
  1409. /* Ignore very old stuff early */
  1410. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1411. continue;
  1412. used_sacks++;
  1413. }
  1414. /* order SACK blocks to allow in order walk of the retrans queue */
  1415. for (i = used_sacks - 1; i > 0; i--) {
  1416. for (j = 0; j < i; j++) {
  1417. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1418. swap(sp[j], sp[j + 1]);
  1419. /* Track where the first SACK block goes to */
  1420. if (j == first_sack_index)
  1421. first_sack_index = j + 1;
  1422. }
  1423. }
  1424. }
  1425. skb = tcp_write_queue_head(sk);
  1426. state.fack_count = 0;
  1427. i = 0;
  1428. if (!tp->sacked_out) {
  1429. /* It's already past, so skip checking against it */
  1430. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1431. } else {
  1432. cache = tp->recv_sack_cache;
  1433. /* Skip empty blocks in at head of the cache */
  1434. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1435. !cache->end_seq)
  1436. cache++;
  1437. }
  1438. while (i < used_sacks) {
  1439. u32 start_seq = sp[i].start_seq;
  1440. u32 end_seq = sp[i].end_seq;
  1441. bool dup_sack = (found_dup_sack && (i == first_sack_index));
  1442. struct tcp_sack_block *next_dup = NULL;
  1443. if (found_dup_sack && ((i + 1) == first_sack_index))
  1444. next_dup = &sp[i + 1];
  1445. /* Skip too early cached blocks */
  1446. while (tcp_sack_cache_ok(tp, cache) &&
  1447. !before(start_seq, cache->end_seq))
  1448. cache++;
  1449. /* Can skip some work by looking recv_sack_cache? */
  1450. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1451. after(end_seq, cache->start_seq)) {
  1452. /* Head todo? */
  1453. if (before(start_seq, cache->start_seq)) {
  1454. skb = tcp_sacktag_skip(skb, sk, &state,
  1455. start_seq);
  1456. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1457. &state,
  1458. start_seq,
  1459. cache->start_seq,
  1460. dup_sack);
  1461. }
  1462. /* Rest of the block already fully processed? */
  1463. if (!after(end_seq, cache->end_seq))
  1464. goto advance_sp;
  1465. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1466. &state,
  1467. cache->end_seq);
  1468. /* ...tail remains todo... */
  1469. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1470. /* ...but better entrypoint exists! */
  1471. skb = tcp_highest_sack(sk);
  1472. if (skb == NULL)
  1473. break;
  1474. state.fack_count = tp->fackets_out;
  1475. cache++;
  1476. goto walk;
  1477. }
  1478. skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
  1479. /* Check overlap against next cached too (past this one already) */
  1480. cache++;
  1481. continue;
  1482. }
  1483. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1484. skb = tcp_highest_sack(sk);
  1485. if (skb == NULL)
  1486. break;
  1487. state.fack_count = tp->fackets_out;
  1488. }
  1489. skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
  1490. walk:
  1491. skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
  1492. start_seq, end_seq, dup_sack);
  1493. advance_sp:
  1494. i++;
  1495. }
  1496. /* Clear the head of the cache sack blocks so we can skip it next time */
  1497. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1498. tp->recv_sack_cache[i].start_seq = 0;
  1499. tp->recv_sack_cache[i].end_seq = 0;
  1500. }
  1501. for (j = 0; j < used_sacks; j++)
  1502. tp->recv_sack_cache[i++] = sp[j];
  1503. tcp_mark_lost_retrans(sk);
  1504. tcp_verify_left_out(tp);
  1505. if ((state.reord < tp->fackets_out) &&
  1506. ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
  1507. tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
  1508. out:
  1509. #if FASTRETRANS_DEBUG > 0
  1510. WARN_ON((int)tp->sacked_out < 0);
  1511. WARN_ON((int)tp->lost_out < 0);
  1512. WARN_ON((int)tp->retrans_out < 0);
  1513. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1514. #endif
  1515. return state.flag;
  1516. }
  1517. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1518. * packets_out. Returns false if sacked_out adjustement wasn't necessary.
  1519. */
  1520. static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
  1521. {
  1522. u32 holes;
  1523. holes = max(tp->lost_out, 1U);
  1524. holes = min(holes, tp->packets_out);
  1525. if ((tp->sacked_out + holes) > tp->packets_out) {
  1526. tp->sacked_out = tp->packets_out - holes;
  1527. return true;
  1528. }
  1529. return false;
  1530. }
  1531. /* If we receive more dupacks than we expected counting segments
  1532. * in assumption of absent reordering, interpret this as reordering.
  1533. * The only another reason could be bug in receiver TCP.
  1534. */
  1535. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1536. {
  1537. struct tcp_sock *tp = tcp_sk(sk);
  1538. if (tcp_limit_reno_sacked(tp))
  1539. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1540. }
  1541. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1542. static void tcp_add_reno_sack(struct sock *sk)
  1543. {
  1544. struct tcp_sock *tp = tcp_sk(sk);
  1545. tp->sacked_out++;
  1546. tcp_check_reno_reordering(sk, 0);
  1547. tcp_verify_left_out(tp);
  1548. }
  1549. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1550. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1551. {
  1552. struct tcp_sock *tp = tcp_sk(sk);
  1553. if (acked > 0) {
  1554. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1555. if (acked - 1 >= tp->sacked_out)
  1556. tp->sacked_out = 0;
  1557. else
  1558. tp->sacked_out -= acked - 1;
  1559. }
  1560. tcp_check_reno_reordering(sk, acked);
  1561. tcp_verify_left_out(tp);
  1562. }
  1563. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1564. {
  1565. tp->sacked_out = 0;
  1566. }
  1567. static void tcp_clear_retrans_partial(struct tcp_sock *tp)
  1568. {
  1569. tp->retrans_out = 0;
  1570. tp->lost_out = 0;
  1571. tp->undo_marker = 0;
  1572. tp->undo_retrans = 0;
  1573. }
  1574. void tcp_clear_retrans(struct tcp_sock *tp)
  1575. {
  1576. tcp_clear_retrans_partial(tp);
  1577. tp->fackets_out = 0;
  1578. tp->sacked_out = 0;
  1579. }
  1580. /* Enter Loss state. If "how" is not zero, forget all SACK information
  1581. * and reset tags completely, otherwise preserve SACKs. If receiver
  1582. * dropped its ofo queue, we will know this due to reneging detection.
  1583. */
  1584. void tcp_enter_loss(struct sock *sk, int how)
  1585. {
  1586. const struct inet_connection_sock *icsk = inet_csk(sk);
  1587. struct tcp_sock *tp = tcp_sk(sk);
  1588. struct sk_buff *skb;
  1589. bool new_recovery = false;
  1590. /* Reduce ssthresh if it has not yet been made inside this window. */
  1591. if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
  1592. !after(tp->high_seq, tp->snd_una) ||
  1593. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1594. new_recovery = true;
  1595. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1596. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1597. tcp_ca_event(sk, CA_EVENT_LOSS);
  1598. }
  1599. tp->snd_cwnd = 1;
  1600. tp->snd_cwnd_cnt = 0;
  1601. tp->snd_cwnd_stamp = tcp_time_stamp;
  1602. tcp_clear_retrans_partial(tp);
  1603. if (tcp_is_reno(tp))
  1604. tcp_reset_reno_sack(tp);
  1605. if (!how) {
  1606. /* Push undo marker, if it was plain RTO and nothing
  1607. * was retransmitted. */
  1608. tp->undo_marker = tp->snd_una;
  1609. } else {
  1610. tp->sacked_out = 0;
  1611. tp->fackets_out = 0;
  1612. }
  1613. tcp_clear_all_retrans_hints(tp);
  1614. tcp_for_write_queue(skb, sk) {
  1615. if (skb == tcp_send_head(sk))
  1616. break;
  1617. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1618. tp->undo_marker = 0;
  1619. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1620. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
  1621. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1622. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1623. tp->lost_out += tcp_skb_pcount(skb);
  1624. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1625. }
  1626. }
  1627. tcp_verify_left_out(tp);
  1628. tp->reordering = min_t(unsigned int, tp->reordering,
  1629. sysctl_tcp_reordering);
  1630. tcp_set_ca_state(sk, TCP_CA_Loss);
  1631. tp->high_seq = tp->snd_nxt;
  1632. TCP_ECN_queue_cwr(tp);
  1633. /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
  1634. * loss recovery is underway except recurring timeout(s) on
  1635. * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
  1636. */
  1637. tp->frto = sysctl_tcp_frto &&
  1638. (new_recovery || icsk->icsk_retransmits) &&
  1639. !inet_csk(sk)->icsk_mtup.probe_size;
  1640. }
  1641. /* If ACK arrived pointing to a remembered SACK, it means that our
  1642. * remembered SACKs do not reflect real state of receiver i.e.
  1643. * receiver _host_ is heavily congested (or buggy).
  1644. *
  1645. * Do processing similar to RTO timeout.
  1646. */
  1647. static bool tcp_check_sack_reneging(struct sock *sk, int flag)
  1648. {
  1649. if (flag & FLAG_SACK_RENEGING) {
  1650. struct inet_connection_sock *icsk = inet_csk(sk);
  1651. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1652. tcp_enter_loss(sk, 1);
  1653. icsk->icsk_retransmits++;
  1654. tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
  1655. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1656. icsk->icsk_rto, TCP_RTO_MAX);
  1657. return true;
  1658. }
  1659. return false;
  1660. }
  1661. static inline int tcp_fackets_out(const struct tcp_sock *tp)
  1662. {
  1663. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  1664. }
  1665. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  1666. * counter when SACK is enabled (without SACK, sacked_out is used for
  1667. * that purpose).
  1668. *
  1669. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  1670. * segments up to the highest received SACK block so far and holes in
  1671. * between them.
  1672. *
  1673. * With reordering, holes may still be in flight, so RFC3517 recovery
  1674. * uses pure sacked_out (total number of SACKed segments) even though
  1675. * it violates the RFC that uses duplicate ACKs, often these are equal
  1676. * but when e.g. out-of-window ACKs or packet duplication occurs,
  1677. * they differ. Since neither occurs due to loss, TCP should really
  1678. * ignore them.
  1679. */
  1680. static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
  1681. {
  1682. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  1683. }
  1684. static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
  1685. {
  1686. struct tcp_sock *tp = tcp_sk(sk);
  1687. unsigned long delay;
  1688. /* Delay early retransmit and entering fast recovery for
  1689. * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
  1690. * available, or RTO is scheduled to fire first.
  1691. */
  1692. if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
  1693. (flag & FLAG_ECE) || !tp->srtt)
  1694. return false;
  1695. delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
  1696. if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
  1697. return false;
  1698. inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
  1699. TCP_RTO_MAX);
  1700. return true;
  1701. }
  1702. static inline int tcp_skb_timedout(const struct sock *sk,
  1703. const struct sk_buff *skb)
  1704. {
  1705. return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
  1706. }
  1707. static inline int tcp_head_timedout(const struct sock *sk)
  1708. {
  1709. const struct tcp_sock *tp = tcp_sk(sk);
  1710. return tp->packets_out &&
  1711. tcp_skb_timedout(sk, tcp_write_queue_head(sk));
  1712. }
  1713. /* Linux NewReno/SACK/FACK/ECN state machine.
  1714. * --------------------------------------
  1715. *
  1716. * "Open" Normal state, no dubious events, fast path.
  1717. * "Disorder" In all the respects it is "Open",
  1718. * but requires a bit more attention. It is entered when
  1719. * we see some SACKs or dupacks. It is split of "Open"
  1720. * mainly to move some processing from fast path to slow one.
  1721. * "CWR" CWND was reduced due to some Congestion Notification event.
  1722. * It can be ECN, ICMP source quench, local device congestion.
  1723. * "Recovery" CWND was reduced, we are fast-retransmitting.
  1724. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  1725. *
  1726. * tcp_fastretrans_alert() is entered:
  1727. * - each incoming ACK, if state is not "Open"
  1728. * - when arrived ACK is unusual, namely:
  1729. * * SACK
  1730. * * Duplicate ACK.
  1731. * * ECN ECE.
  1732. *
  1733. * Counting packets in flight is pretty simple.
  1734. *
  1735. * in_flight = packets_out - left_out + retrans_out
  1736. *
  1737. * packets_out is SND.NXT-SND.UNA counted in packets.
  1738. *
  1739. * retrans_out is number of retransmitted segments.
  1740. *
  1741. * left_out is number of segments left network, but not ACKed yet.
  1742. *
  1743. * left_out = sacked_out + lost_out
  1744. *
  1745. * sacked_out: Packets, which arrived to receiver out of order
  1746. * and hence not ACKed. With SACKs this number is simply
  1747. * amount of SACKed data. Even without SACKs
  1748. * it is easy to give pretty reliable estimate of this number,
  1749. * counting duplicate ACKs.
  1750. *
  1751. * lost_out: Packets lost by network. TCP has no explicit
  1752. * "loss notification" feedback from network (for now).
  1753. * It means that this number can be only _guessed_.
  1754. * Actually, it is the heuristics to predict lossage that
  1755. * distinguishes different algorithms.
  1756. *
  1757. * F.e. after RTO, when all the queue is considered as lost,
  1758. * lost_out = packets_out and in_flight = retrans_out.
  1759. *
  1760. * Essentially, we have now two algorithms counting
  1761. * lost packets.
  1762. *
  1763. * FACK: It is the simplest heuristics. As soon as we decided
  1764. * that something is lost, we decide that _all_ not SACKed
  1765. * packets until the most forward SACK are lost. I.e.
  1766. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  1767. * It is absolutely correct estimate, if network does not reorder
  1768. * packets. And it loses any connection to reality when reordering
  1769. * takes place. We use FACK by default until reordering
  1770. * is suspected on the path to this destination.
  1771. *
  1772. * NewReno: when Recovery is entered, we assume that one segment
  1773. * is lost (classic Reno). While we are in Recovery and
  1774. * a partial ACK arrives, we assume that one more packet
  1775. * is lost (NewReno). This heuristics are the same in NewReno
  1776. * and SACK.
  1777. *
  1778. * Imagine, that's all! Forget about all this shamanism about CWND inflation
  1779. * deflation etc. CWND is real congestion window, never inflated, changes
  1780. * only according to classic VJ rules.
  1781. *
  1782. * Really tricky (and requiring careful tuning) part of algorithm
  1783. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  1784. * The first determines the moment _when_ we should reduce CWND and,
  1785. * hence, slow down forward transmission. In fact, it determines the moment
  1786. * when we decide that hole is caused by loss, rather than by a reorder.
  1787. *
  1788. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  1789. * holes, caused by lost packets.
  1790. *
  1791. * And the most logically complicated part of algorithm is undo
  1792. * heuristics. We detect false retransmits due to both too early
  1793. * fast retransmit (reordering) and underestimated RTO, analyzing
  1794. * timestamps and D-SACKs. When we detect that some segments were
  1795. * retransmitted by mistake and CWND reduction was wrong, we undo
  1796. * window reduction and abort recovery phase. This logic is hidden
  1797. * inside several functions named tcp_try_undo_<something>.
  1798. */
  1799. /* This function decides, when we should leave Disordered state
  1800. * and enter Recovery phase, reducing congestion window.
  1801. *
  1802. * Main question: may we further continue forward transmission
  1803. * with the same cwnd?
  1804. */
  1805. static bool tcp_time_to_recover(struct sock *sk, int flag)
  1806. {
  1807. struct tcp_sock *tp = tcp_sk(sk);
  1808. __u32 packets_out;
  1809. /* Trick#1: The loss is proven. */
  1810. if (tp->lost_out)
  1811. return true;
  1812. /* Not-A-Trick#2 : Classic rule... */
  1813. if (tcp_dupack_heuristics(tp) > tp->reordering)
  1814. return true;
  1815. /* Trick#3 : when we use RFC2988 timer restart, fast
  1816. * retransmit can be triggered by timeout of queue head.
  1817. */
  1818. if (tcp_is_fack(tp) && tcp_head_timedout(sk))
  1819. return true;
  1820. /* Trick#4: It is still not OK... But will it be useful to delay
  1821. * recovery more?
  1822. */
  1823. packets_out = tp->packets_out;
  1824. if (packets_out <= tp->reordering &&
  1825. tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
  1826. !tcp_may_send_now(sk)) {
  1827. /* We have nothing to send. This connection is limited
  1828. * either by receiver window or by application.
  1829. */
  1830. return true;
  1831. }
  1832. /* If a thin stream is detected, retransmit after first
  1833. * received dupack. Employ only if SACK is supported in order
  1834. * to avoid possible corner-case series of spurious retransmissions
  1835. * Use only if there are no unsent data.
  1836. */
  1837. if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
  1838. tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
  1839. tcp_is_sack(tp) && !tcp_send_head(sk))
  1840. return true;
  1841. /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
  1842. * retransmissions due to small network reorderings, we implement
  1843. * Mitigation A.3 in the RFC and delay the retransmission for a short
  1844. * interval if appropriate.
  1845. */
  1846. if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
  1847. (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
  1848. !tcp_may_send_now(sk))
  1849. return !tcp_pause_early_retransmit(sk, flag);
  1850. return false;
  1851. }
  1852. /* New heuristics: it is possible only after we switched to restart timer
  1853. * each time when something is ACKed. Hence, we can detect timed out packets
  1854. * during fast retransmit without falling to slow start.
  1855. *
  1856. * Usefulness of this as is very questionable, since we should know which of
  1857. * the segments is the next to timeout which is relatively expensive to find
  1858. * in general case unless we add some data structure just for that. The
  1859. * current approach certainly won't find the right one too often and when it
  1860. * finally does find _something_ it usually marks large part of the window
  1861. * right away (because a retransmission with a larger timestamp blocks the
  1862. * loop from advancing). -ij
  1863. */
  1864. static void tcp_timeout_skbs(struct sock *sk)
  1865. {
  1866. struct tcp_sock *tp = tcp_sk(sk);
  1867. struct sk_buff *skb;
  1868. if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
  1869. return;
  1870. skb = tp->scoreboard_skb_hint;
  1871. if (tp->scoreboard_skb_hint == NULL)
  1872. skb = tcp_write_queue_head(sk);
  1873. tcp_for_write_queue_from(skb, sk) {
  1874. if (skb == tcp_send_head(sk))
  1875. break;
  1876. if (!tcp_skb_timedout(sk, skb))
  1877. break;
  1878. tcp_skb_mark_lost(tp, skb);
  1879. }
  1880. tp->scoreboard_skb_hint = skb;
  1881. tcp_verify_left_out(tp);
  1882. }
  1883. /* Detect loss in event "A" above by marking head of queue up as lost.
  1884. * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
  1885. * are considered lost. For RFC3517 SACK, a segment is considered lost if it
  1886. * has at least tp->reordering SACKed seqments above it; "packets" refers to
  1887. * the maximum SACKed segments to pass before reaching this limit.
  1888. */
  1889. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  1890. {
  1891. struct tcp_sock *tp = tcp_sk(sk);
  1892. struct sk_buff *skb;
  1893. int cnt, oldcnt;
  1894. int err;
  1895. unsigned int mss;
  1896. /* Use SACK to deduce losses of new sequences sent during recovery */
  1897. const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
  1898. WARN_ON(packets > tp->packets_out);
  1899. if (tp->lost_skb_hint) {
  1900. skb = tp->lost_skb_hint;
  1901. cnt = tp->lost_cnt_hint;
  1902. /* Head already handled? */
  1903. if (mark_head && skb != tcp_write_queue_head(sk))
  1904. return;
  1905. } else {
  1906. skb = tcp_write_queue_head(sk);
  1907. cnt = 0;
  1908. }
  1909. tcp_for_write_queue_from(skb, sk) {
  1910. if (skb == tcp_send_head(sk))
  1911. break;
  1912. /* TODO: do this better */
  1913. /* this is not the most efficient way to do this... */
  1914. tp->lost_skb_hint = skb;
  1915. tp->lost_cnt_hint = cnt;
  1916. if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
  1917. break;
  1918. oldcnt = cnt;
  1919. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  1920. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1921. cnt += tcp_skb_pcount(skb);
  1922. if (cnt > packets) {
  1923. if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
  1924. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  1925. (oldcnt >= packets))
  1926. break;
  1927. mss = skb_shinfo(skb)->gso_size;
  1928. err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
  1929. if (err < 0)
  1930. break;
  1931. cnt = packets;
  1932. }
  1933. tcp_skb_mark_lost(tp, skb);
  1934. if (mark_head)
  1935. break;
  1936. }
  1937. tcp_verify_left_out(tp);
  1938. }
  1939. /* Account newly detected lost packet(s) */
  1940. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  1941. {
  1942. struct tcp_sock *tp = tcp_sk(sk);
  1943. if (tcp_is_reno(tp)) {
  1944. tcp_mark_head_lost(sk, 1, 1);
  1945. } else if (tcp_is_fack(tp)) {
  1946. int lost = tp->fackets_out - tp->reordering;
  1947. if (lost <= 0)
  1948. lost = 1;
  1949. tcp_mark_head_lost(sk, lost, 0);
  1950. } else {
  1951. int sacked_upto = tp->sacked_out - tp->reordering;
  1952. if (sacked_upto >= 0)
  1953. tcp_mark_head_lost(sk, sacked_upto, 0);
  1954. else if (fast_rexmit)
  1955. tcp_mark_head_lost(sk, 1, 1);
  1956. }
  1957. tcp_timeout_skbs(sk);
  1958. }
  1959. /* CWND moderation, preventing bursts due to too big ACKs
  1960. * in dubious situations.
  1961. */
  1962. static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
  1963. {
  1964. tp->snd_cwnd = min(tp->snd_cwnd,
  1965. tcp_packets_in_flight(tp) + tcp_max_burst(tp));
  1966. tp->snd_cwnd_stamp = tcp_time_stamp;
  1967. }
  1968. /* Nothing was retransmitted or returned timestamp is less
  1969. * than timestamp of the first retransmission.
  1970. */
  1971. static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
  1972. {
  1973. return !tp->retrans_stamp ||
  1974. (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  1975. before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
  1976. }
  1977. /* Undo procedures. */
  1978. #if FASTRETRANS_DEBUG > 1
  1979. static void DBGUNDO(struct sock *sk, const char *msg)
  1980. {
  1981. struct tcp_sock *tp = tcp_sk(sk);
  1982. struct inet_sock *inet = inet_sk(sk);
  1983. if (sk->sk_family == AF_INET) {
  1984. pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  1985. msg,
  1986. &inet->inet_daddr, ntohs(inet->inet_dport),
  1987. tp->snd_cwnd, tcp_left_out(tp),
  1988. tp->snd_ssthresh, tp->prior_ssthresh,
  1989. tp->packets_out);
  1990. }
  1991. #if IS_ENABLED(CONFIG_IPV6)
  1992. else if (sk->sk_family == AF_INET6) {
  1993. struct ipv6_pinfo *np = inet6_sk(sk);
  1994. pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  1995. msg,
  1996. &np->daddr, ntohs(inet->inet_dport),
  1997. tp->snd_cwnd, tcp_left_out(tp),
  1998. tp->snd_ssthresh, tp->prior_ssthresh,
  1999. tp->packets_out);
  2000. }
  2001. #endif
  2002. }
  2003. #else
  2004. #define DBGUNDO(x...) do { } while (0)
  2005. #endif
  2006. static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
  2007. {
  2008. struct tcp_sock *tp = tcp_sk(sk);
  2009. if (tp->prior_ssthresh) {
  2010. const struct inet_connection_sock *icsk = inet_csk(sk);
  2011. if (icsk->icsk_ca_ops->undo_cwnd)
  2012. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2013. else
  2014. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
  2015. if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
  2016. tp->snd_ssthresh = tp->prior_ssthresh;
  2017. TCP_ECN_withdraw_cwr(tp);
  2018. }
  2019. } else {
  2020. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
  2021. }
  2022. tp->snd_cwnd_stamp = tcp_time_stamp;
  2023. }
  2024. static inline bool tcp_may_undo(const struct tcp_sock *tp)
  2025. {
  2026. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2027. }
  2028. /* People celebrate: "We love our President!" */
  2029. static bool tcp_try_undo_recovery(struct sock *sk)
  2030. {
  2031. struct tcp_sock *tp = tcp_sk(sk);
  2032. if (tcp_may_undo(tp)) {
  2033. int mib_idx;
  2034. /* Happy end! We did not retransmit anything
  2035. * or our original transmission succeeded.
  2036. */
  2037. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2038. tcp_undo_cwr(sk, true);
  2039. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2040. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2041. else
  2042. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2043. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2044. tp->undo_marker = 0;
  2045. }
  2046. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2047. /* Hold old state until something *above* high_seq
  2048. * is ACKed. For Reno it is MUST to prevent false
  2049. * fast retransmits (RFC2582). SACK TCP is safe. */
  2050. tcp_moderate_cwnd(tp);
  2051. return true;
  2052. }
  2053. tcp_set_ca_state(sk, TCP_CA_Open);
  2054. return false;
  2055. }
  2056. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2057. static void tcp_try_undo_dsack(struct sock *sk)
  2058. {
  2059. struct tcp_sock *tp = tcp_sk(sk);
  2060. if (tp->undo_marker && !tp->undo_retrans) {
  2061. DBGUNDO(sk, "D-SACK");
  2062. tcp_undo_cwr(sk, true);
  2063. tp->undo_marker = 0;
  2064. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2065. }
  2066. }
  2067. /* We can clear retrans_stamp when there are no retransmissions in the
  2068. * window. It would seem that it is trivially available for us in
  2069. * tp->retrans_out, however, that kind of assumptions doesn't consider
  2070. * what will happen if errors occur when sending retransmission for the
  2071. * second time. ...It could the that such segment has only
  2072. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  2073. * the head skb is enough except for some reneging corner cases that
  2074. * are not worth the effort.
  2075. *
  2076. * Main reason for all this complexity is the fact that connection dying
  2077. * time now depends on the validity of the retrans_stamp, in particular,
  2078. * that successive retransmissions of a segment must not advance
  2079. * retrans_stamp under any conditions.
  2080. */
  2081. static bool tcp_any_retrans_done(const struct sock *sk)
  2082. {
  2083. const struct tcp_sock *tp = tcp_sk(sk);
  2084. struct sk_buff *skb;
  2085. if (tp->retrans_out)
  2086. return true;
  2087. skb = tcp_write_queue_head(sk);
  2088. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  2089. return true;
  2090. return false;
  2091. }
  2092. /* Undo during fast recovery after partial ACK. */
  2093. static int tcp_try_undo_partial(struct sock *sk, int acked)
  2094. {
  2095. struct tcp_sock *tp = tcp_sk(sk);
  2096. /* Partial ACK arrived. Force Hoe's retransmit. */
  2097. int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
  2098. if (tcp_may_undo(tp)) {
  2099. /* Plain luck! Hole if filled with delayed
  2100. * packet, rather than with a retransmit.
  2101. */
  2102. if (!tcp_any_retrans_done(sk))
  2103. tp->retrans_stamp = 0;
  2104. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2105. DBGUNDO(sk, "Hoe");
  2106. tcp_undo_cwr(sk, false);
  2107. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2108. /* So... Do not make Hoe's retransmit yet.
  2109. * If the first packet was delayed, the rest
  2110. * ones are most probably delayed as well.
  2111. */
  2112. failed = 0;
  2113. }
  2114. return failed;
  2115. }
  2116. /* Undo during loss recovery after partial ACK or using F-RTO. */
  2117. static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
  2118. {
  2119. struct tcp_sock *tp = tcp_sk(sk);
  2120. if (frto_undo || tcp_may_undo(tp)) {
  2121. struct sk_buff *skb;
  2122. tcp_for_write_queue(skb, sk) {
  2123. if (skb == tcp_send_head(sk))
  2124. break;
  2125. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2126. }
  2127. tcp_clear_all_retrans_hints(tp);
  2128. DBGUNDO(sk, "partial loss");
  2129. tp->lost_out = 0;
  2130. tcp_undo_cwr(sk, true);
  2131. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2132. if (frto_undo)
  2133. NET_INC_STATS_BH(sock_net(sk),
  2134. LINUX_MIB_TCPSPURIOUSRTOS);
  2135. inet_csk(sk)->icsk_retransmits = 0;
  2136. tp->undo_marker = 0;
  2137. if (frto_undo || tcp_is_sack(tp))
  2138. tcp_set_ca_state(sk, TCP_CA_Open);
  2139. return true;
  2140. }
  2141. return false;
  2142. }
  2143. /* The cwnd reduction in CWR and Recovery use the PRR algorithm
  2144. * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
  2145. * It computes the number of packets to send (sndcnt) based on packets newly
  2146. * delivered:
  2147. * 1) If the packets in flight is larger than ssthresh, PRR spreads the
  2148. * cwnd reductions across a full RTT.
  2149. * 2) If packets in flight is lower than ssthresh (such as due to excess
  2150. * losses and/or application stalls), do not perform any further cwnd
  2151. * reductions, but instead slow start up to ssthresh.
  2152. */
  2153. static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
  2154. {
  2155. struct tcp_sock *tp = tcp_sk(sk);
  2156. tp->high_seq = tp->snd_nxt;
  2157. tp->tlp_high_seq = 0;
  2158. tp->snd_cwnd_cnt = 0;
  2159. tp->prior_cwnd = tp->snd_cwnd;
  2160. tp->prr_delivered = 0;
  2161. tp->prr_out = 0;
  2162. if (set_ssthresh)
  2163. tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
  2164. TCP_ECN_queue_cwr(tp);
  2165. }
  2166. static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
  2167. int fast_rexmit)
  2168. {
  2169. struct tcp_sock *tp = tcp_sk(sk);
  2170. int sndcnt = 0;
  2171. int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
  2172. tp->prr_delivered += newly_acked_sacked;
  2173. if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
  2174. u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
  2175. tp->prior_cwnd - 1;
  2176. sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
  2177. } else {
  2178. sndcnt = min_t(int, delta,
  2179. max_t(int, tp->prr_delivered - tp->prr_out,
  2180. newly_acked_sacked) + 1);
  2181. }
  2182. sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
  2183. tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
  2184. }
  2185. static inline void tcp_end_cwnd_reduction(struct sock *sk)
  2186. {
  2187. struct tcp_sock *tp = tcp_sk(sk);
  2188. /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
  2189. if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
  2190. (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
  2191. tp->snd_cwnd = tp->snd_ssthresh;
  2192. tp->snd_cwnd_stamp = tcp_time_stamp;
  2193. }
  2194. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2195. }
  2196. /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
  2197. void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
  2198. {
  2199. struct tcp_sock *tp = tcp_sk(sk);
  2200. tp->prior_ssthresh = 0;
  2201. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2202. tp->undo_marker = 0;
  2203. tcp_init_cwnd_reduction(sk, set_ssthresh);
  2204. tcp_set_ca_state(sk, TCP_CA_CWR);
  2205. }
  2206. }
  2207. static void tcp_try_keep_open(struct sock *sk)
  2208. {
  2209. struct tcp_sock *tp = tcp_sk(sk);
  2210. int state = TCP_CA_Open;
  2211. if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
  2212. state = TCP_CA_Disorder;
  2213. if (inet_csk(sk)->icsk_ca_state != state) {
  2214. tcp_set_ca_state(sk, state);
  2215. tp->high_seq = tp->snd_nxt;
  2216. }
  2217. }
  2218. static void tcp_try_to_open(struct sock *sk, int flag, int newly_acked_sacked)
  2219. {
  2220. struct tcp_sock *tp = tcp_sk(sk);
  2221. tcp_verify_left_out(tp);
  2222. if (!tcp_any_retrans_done(sk))
  2223. tp->retrans_stamp = 0;
  2224. if (flag & FLAG_ECE)
  2225. tcp_enter_cwr(sk, 1);
  2226. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2227. tcp_try_keep_open(sk);
  2228. if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
  2229. tcp_moderate_cwnd(tp);
  2230. } else {
  2231. tcp_cwnd_reduction(sk, newly_acked_sacked, 0);
  2232. }
  2233. }
  2234. static void tcp_mtup_probe_failed(struct sock *sk)
  2235. {
  2236. struct inet_connection_sock *icsk = inet_csk(sk);
  2237. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2238. icsk->icsk_mtup.probe_size = 0;
  2239. }
  2240. static void tcp_mtup_probe_success(struct sock *sk)
  2241. {
  2242. struct tcp_sock *tp = tcp_sk(sk);
  2243. struct inet_connection_sock *icsk = inet_csk(sk);
  2244. /* FIXME: breaks with very large cwnd */
  2245. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2246. tp->snd_cwnd = tp->snd_cwnd *
  2247. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2248. icsk->icsk_mtup.probe_size;
  2249. tp->snd_cwnd_cnt = 0;
  2250. tp->snd_cwnd_stamp = tcp_time_stamp;
  2251. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2252. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2253. icsk->icsk_mtup.probe_size = 0;
  2254. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2255. }
  2256. /* Do a simple retransmit without using the backoff mechanisms in
  2257. * tcp_timer. This is used for path mtu discovery.
  2258. * The socket is already locked here.
  2259. */
  2260. void tcp_simple_retransmit(struct sock *sk)
  2261. {
  2262. const struct inet_connection_sock *icsk = inet_csk(sk);
  2263. struct tcp_sock *tp = tcp_sk(sk);
  2264. struct sk_buff *skb;
  2265. unsigned int mss = tcp_current_mss(sk);
  2266. u32 prior_lost = tp->lost_out;
  2267. tcp_for_write_queue(skb, sk) {
  2268. if (skb == tcp_send_head(sk))
  2269. break;
  2270. if (tcp_skb_seglen(skb) > mss &&
  2271. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2272. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2273. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2274. tp->retrans_out -= tcp_skb_pcount(skb);
  2275. }
  2276. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2277. }
  2278. }
  2279. tcp_clear_retrans_hints_partial(tp);
  2280. if (prior_lost == tp->lost_out)
  2281. return;
  2282. if (tcp_is_reno(tp))
  2283. tcp_limit_reno_sacked(tp);
  2284. tcp_verify_left_out(tp);
  2285. /* Don't muck with the congestion window here.
  2286. * Reason is that we do not increase amount of _data_
  2287. * in network, but units changed and effective
  2288. * cwnd/ssthresh really reduced now.
  2289. */
  2290. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2291. tp->high_seq = tp->snd_nxt;
  2292. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2293. tp->prior_ssthresh = 0;
  2294. tp->undo_marker = 0;
  2295. tcp_set_ca_state(sk, TCP_CA_Loss);
  2296. }
  2297. tcp_xmit_retransmit_queue(sk);
  2298. }
  2299. EXPORT_SYMBOL(tcp_simple_retransmit);
  2300. static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
  2301. {
  2302. struct tcp_sock *tp = tcp_sk(sk);
  2303. int mib_idx;
  2304. if (tcp_is_reno(tp))
  2305. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2306. else
  2307. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2308. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2309. tp->prior_ssthresh = 0;
  2310. tp->undo_marker = tp->snd_una;
  2311. tp->undo_retrans = tp->retrans_out;
  2312. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2313. if (!ece_ack)
  2314. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2315. tcp_init_cwnd_reduction(sk, true);
  2316. }
  2317. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2318. }
  2319. /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
  2320. * recovered or spurious. Otherwise retransmits more on partial ACKs.
  2321. */
  2322. static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
  2323. {
  2324. struct inet_connection_sock *icsk = inet_csk(sk);
  2325. struct tcp_sock *tp = tcp_sk(sk);
  2326. bool recovered = !before(tp->snd_una, tp->high_seq);
  2327. if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
  2328. if (flag & FLAG_ORIG_SACK_ACKED) {
  2329. /* Step 3.b. A timeout is spurious if not all data are
  2330. * lost, i.e., never-retransmitted data are (s)acked.
  2331. */
  2332. tcp_try_undo_loss(sk, true);
  2333. return;
  2334. }
  2335. if (after(tp->snd_nxt, tp->high_seq) &&
  2336. (flag & FLAG_DATA_SACKED || is_dupack)) {
  2337. tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
  2338. } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
  2339. tp->high_seq = tp->snd_nxt;
  2340. __tcp_push_pending_frames(sk, tcp_current_mss(sk),
  2341. TCP_NAGLE_OFF);
  2342. if (after(tp->snd_nxt, tp->high_seq))
  2343. return; /* Step 2.b */
  2344. tp->frto = 0;
  2345. }
  2346. }
  2347. if (recovered) {
  2348. /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
  2349. icsk->icsk_retransmits = 0;
  2350. tcp_try_undo_recovery(sk);
  2351. return;
  2352. }
  2353. if (flag & FLAG_DATA_ACKED)
  2354. icsk->icsk_retransmits = 0;
  2355. if (tcp_is_reno(tp)) {
  2356. /* A Reno DUPACK means new data in F-RTO step 2.b above are
  2357. * delivered. Lower inflight to clock out (re)tranmissions.
  2358. */
  2359. if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
  2360. tcp_add_reno_sack(sk);
  2361. else if (flag & FLAG_SND_UNA_ADVANCED)
  2362. tcp_reset_reno_sack(tp);
  2363. }
  2364. if (tcp_try_undo_loss(sk, false))
  2365. return;
  2366. tcp_xmit_retransmit_queue(sk);
  2367. }
  2368. /* Process an event, which can update packets-in-flight not trivially.
  2369. * Main goal of this function is to calculate new estimate for left_out,
  2370. * taking into account both packets sitting in receiver's buffer and
  2371. * packets lost by network.
  2372. *
  2373. * Besides that it does CWND reduction, when packet loss is detected
  2374. * and changes state of machine.
  2375. *
  2376. * It does _not_ decide what to send, it is made in function
  2377. * tcp_xmit_retransmit_queue().
  2378. */
  2379. static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
  2380. int prior_sacked, bool is_dupack,
  2381. int flag)
  2382. {
  2383. struct inet_connection_sock *icsk = inet_csk(sk);
  2384. struct tcp_sock *tp = tcp_sk(sk);
  2385. int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2386. (tcp_fackets_out(tp) > tp->reordering));
  2387. int newly_acked_sacked = 0;
  2388. int fast_rexmit = 0;
  2389. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2390. tp->sacked_out = 0;
  2391. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2392. tp->fackets_out = 0;
  2393. /* Now state machine starts.
  2394. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2395. if (flag & FLAG_ECE)
  2396. tp->prior_ssthresh = 0;
  2397. /* B. In all the states check for reneging SACKs. */
  2398. if (tcp_check_sack_reneging(sk, flag))
  2399. return;
  2400. /* C. Check consistency of the current state. */
  2401. tcp_verify_left_out(tp);
  2402. /* D. Check state exit conditions. State can be terminated
  2403. * when high_seq is ACKed. */
  2404. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2405. WARN_ON(tp->retrans_out != 0);
  2406. tp->retrans_stamp = 0;
  2407. } else if (!before(tp->snd_una, tp->high_seq)) {
  2408. switch (icsk->icsk_ca_state) {
  2409. case TCP_CA_CWR:
  2410. /* CWR is to be held something *above* high_seq
  2411. * is ACKed for CWR bit to reach receiver. */
  2412. if (tp->snd_una != tp->high_seq) {
  2413. tcp_end_cwnd_reduction(sk);
  2414. tcp_set_ca_state(sk, TCP_CA_Open);
  2415. }
  2416. break;
  2417. case TCP_CA_Recovery:
  2418. if (tcp_is_reno(tp))
  2419. tcp_reset_reno_sack(tp);
  2420. if (tcp_try_undo_recovery(sk))
  2421. return;
  2422. tcp_end_cwnd_reduction(sk);
  2423. break;
  2424. }
  2425. }
  2426. /* E. Process state. */
  2427. switch (icsk->icsk_ca_state) {
  2428. case TCP_CA_Recovery:
  2429. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2430. if (tcp_is_reno(tp) && is_dupack)
  2431. tcp_add_reno_sack(sk);
  2432. } else
  2433. do_lost = tcp_try_undo_partial(sk, pkts_acked);
  2434. newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
  2435. break;
  2436. case TCP_CA_Loss:
  2437. tcp_process_loss(sk, flag, is_dupack);
  2438. if (icsk->icsk_ca_state != TCP_CA_Open)
  2439. return;
  2440. /* Fall through to processing in Open state. */
  2441. default:
  2442. if (tcp_is_reno(tp)) {
  2443. if (flag & FLAG_SND_UNA_ADVANCED)
  2444. tcp_reset_reno_sack(tp);
  2445. if (is_dupack)
  2446. tcp_add_reno_sack(sk);
  2447. }
  2448. newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
  2449. if (icsk->icsk_ca_state <= TCP_CA_Disorder)
  2450. tcp_try_undo_dsack(sk);
  2451. if (!tcp_time_to_recover(sk, flag)) {
  2452. tcp_try_to_open(sk, flag, newly_acked_sacked);
  2453. return;
  2454. }
  2455. /* MTU probe failure: don't reduce cwnd */
  2456. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2457. icsk->icsk_mtup.probe_size &&
  2458. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2459. tcp_mtup_probe_failed(sk);
  2460. /* Restores the reduction we did in tcp_mtup_probe() */
  2461. tp->snd_cwnd++;
  2462. tcp_simple_retransmit(sk);
  2463. return;
  2464. }
  2465. /* Otherwise enter Recovery state */
  2466. tcp_enter_recovery(sk, (flag & FLAG_ECE));
  2467. fast_rexmit = 1;
  2468. }
  2469. if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
  2470. tcp_update_scoreboard(sk, fast_rexmit);
  2471. tcp_cwnd_reduction(sk, newly_acked_sacked, fast_rexmit);
  2472. tcp_xmit_retransmit_queue(sk);
  2473. }
  2474. void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
  2475. {
  2476. tcp_rtt_estimator(sk, seq_rtt);
  2477. tcp_set_rto(sk);
  2478. inet_csk(sk)->icsk_backoff = 0;
  2479. }
  2480. EXPORT_SYMBOL(tcp_valid_rtt_meas);
  2481. /* Read draft-ietf-tcplw-high-performance before mucking
  2482. * with this code. (Supersedes RFC1323)
  2483. */
  2484. static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
  2485. {
  2486. /* RTTM Rule: A TSecr value received in a segment is used to
  2487. * update the averaged RTT measurement only if the segment
  2488. * acknowledges some new data, i.e., only if it advances the
  2489. * left edge of the send window.
  2490. *
  2491. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2492. * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
  2493. *
  2494. * Changed: reset backoff as soon as we see the first valid sample.
  2495. * If we do not, we get strongly overestimated rto. With timestamps
  2496. * samples are accepted even from very old segments: f.e., when rtt=1
  2497. * increases to 8, we retransmit 5 times and after 8 seconds delayed
  2498. * answer arrives rto becomes 120 seconds! If at least one of segments
  2499. * in window is lost... Voila. --ANK (010210)
  2500. */
  2501. struct tcp_sock *tp = tcp_sk(sk);
  2502. tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
  2503. }
  2504. static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
  2505. {
  2506. /* We don't have a timestamp. Can only use
  2507. * packets that are not retransmitted to determine
  2508. * rtt estimates. Also, we must not reset the
  2509. * backoff for rto until we get a non-retransmitted
  2510. * packet. This allows us to deal with a situation
  2511. * where the network delay has increased suddenly.
  2512. * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
  2513. */
  2514. if (flag & FLAG_RETRANS_DATA_ACKED)
  2515. return;
  2516. tcp_valid_rtt_meas(sk, seq_rtt);
  2517. }
  2518. static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
  2519. const s32 seq_rtt)
  2520. {
  2521. const struct tcp_sock *tp = tcp_sk(sk);
  2522. /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
  2523. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  2524. tcp_ack_saw_tstamp(sk, flag);
  2525. else if (seq_rtt >= 0)
  2526. tcp_ack_no_tstamp(sk, seq_rtt, flag);
  2527. }
  2528. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
  2529. {
  2530. const struct inet_connection_sock *icsk = inet_csk(sk);
  2531. icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
  2532. tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
  2533. }
  2534. /* Restart timer after forward progress on connection.
  2535. * RFC2988 recommends to restart timer to now+rto.
  2536. */
  2537. void tcp_rearm_rto(struct sock *sk)
  2538. {
  2539. const struct inet_connection_sock *icsk = inet_csk(sk);
  2540. struct tcp_sock *tp = tcp_sk(sk);
  2541. /* If the retrans timer is currently being used by Fast Open
  2542. * for SYN-ACK retrans purpose, stay put.
  2543. */
  2544. if (tp->fastopen_rsk)
  2545. return;
  2546. if (!tp->packets_out) {
  2547. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2548. } else {
  2549. u32 rto = inet_csk(sk)->icsk_rto;
  2550. /* Offset the time elapsed after installing regular RTO */
  2551. if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
  2552. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
  2553. struct sk_buff *skb = tcp_write_queue_head(sk);
  2554. const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
  2555. s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
  2556. /* delta may not be positive if the socket is locked
  2557. * when the retrans timer fires and is rescheduled.
  2558. */
  2559. if (delta > 0)
  2560. rto = delta;
  2561. }
  2562. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
  2563. TCP_RTO_MAX);
  2564. }
  2565. }
  2566. /* This function is called when the delayed ER timer fires. TCP enters
  2567. * fast recovery and performs fast-retransmit.
  2568. */
  2569. void tcp_resume_early_retransmit(struct sock *sk)
  2570. {
  2571. struct tcp_sock *tp = tcp_sk(sk);
  2572. tcp_rearm_rto(sk);
  2573. /* Stop if ER is disabled after the delayed ER timer is scheduled */
  2574. if (!tp->do_early_retrans)
  2575. return;
  2576. tcp_enter_recovery(sk, false);
  2577. tcp_update_scoreboard(sk, 1);
  2578. tcp_xmit_retransmit_queue(sk);
  2579. }
  2580. /* If we get here, the whole TSO packet has not been acked. */
  2581. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2582. {
  2583. struct tcp_sock *tp = tcp_sk(sk);
  2584. u32 packets_acked;
  2585. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2586. packets_acked = tcp_skb_pcount(skb);
  2587. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2588. return 0;
  2589. packets_acked -= tcp_skb_pcount(skb);
  2590. if (packets_acked) {
  2591. BUG_ON(tcp_skb_pcount(skb) == 0);
  2592. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2593. }
  2594. return packets_acked;
  2595. }
  2596. /* Remove acknowledged frames from the retransmission queue. If our packet
  2597. * is before the ack sequence we can discard it as it's confirmed to have
  2598. * arrived at the other end.
  2599. */
  2600. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
  2601. u32 prior_snd_una)
  2602. {
  2603. struct tcp_sock *tp = tcp_sk(sk);
  2604. const struct inet_connection_sock *icsk = inet_csk(sk);
  2605. struct sk_buff *skb;
  2606. u32 now = tcp_time_stamp;
  2607. int fully_acked = true;
  2608. int flag = 0;
  2609. u32 pkts_acked = 0;
  2610. u32 reord = tp->packets_out;
  2611. u32 prior_sacked = tp->sacked_out;
  2612. s32 seq_rtt = -1;
  2613. s32 ca_seq_rtt = -1;
  2614. ktime_t last_ackt = net_invalid_timestamp();
  2615. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2616. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2617. u32 acked_pcount;
  2618. u8 sacked = scb->sacked;
  2619. /* Determine how many packets and what bytes were acked, tso and else */
  2620. if (after(scb->end_seq, tp->snd_una)) {
  2621. if (tcp_skb_pcount(skb) == 1 ||
  2622. !after(tp->snd_una, scb->seq))
  2623. break;
  2624. acked_pcount = tcp_tso_acked(sk, skb);
  2625. if (!acked_pcount)
  2626. break;
  2627. fully_acked = false;
  2628. } else {
  2629. acked_pcount = tcp_skb_pcount(skb);
  2630. }
  2631. if (sacked & TCPCB_RETRANS) {
  2632. if (sacked & TCPCB_SACKED_RETRANS)
  2633. tp->retrans_out -= acked_pcount;
  2634. flag |= FLAG_RETRANS_DATA_ACKED;
  2635. ca_seq_rtt = -1;
  2636. seq_rtt = -1;
  2637. } else {
  2638. ca_seq_rtt = now - scb->when;
  2639. last_ackt = skb->tstamp;
  2640. if (seq_rtt < 0) {
  2641. seq_rtt = ca_seq_rtt;
  2642. }
  2643. if (!(sacked & TCPCB_SACKED_ACKED))
  2644. reord = min(pkts_acked, reord);
  2645. if (!after(scb->end_seq, tp->high_seq))
  2646. flag |= FLAG_ORIG_SACK_ACKED;
  2647. }
  2648. if (sacked & TCPCB_SACKED_ACKED)
  2649. tp->sacked_out -= acked_pcount;
  2650. if (sacked & TCPCB_LOST)
  2651. tp->lost_out -= acked_pcount;
  2652. tp->packets_out -= acked_pcount;
  2653. pkts_acked += acked_pcount;
  2654. /* Initial outgoing SYN's get put onto the write_queue
  2655. * just like anything else we transmit. It is not
  2656. * true data, and if we misinform our callers that
  2657. * this ACK acks real data, we will erroneously exit
  2658. * connection startup slow start one packet too
  2659. * quickly. This is severely frowned upon behavior.
  2660. */
  2661. if (!(scb->tcp_flags & TCPHDR_SYN)) {
  2662. flag |= FLAG_DATA_ACKED;
  2663. } else {
  2664. flag |= FLAG_SYN_ACKED;
  2665. tp->retrans_stamp = 0;
  2666. }
  2667. if (!fully_acked)
  2668. break;
  2669. tcp_unlink_write_queue(skb, sk);
  2670. sk_wmem_free_skb(sk, skb);
  2671. tp->scoreboard_skb_hint = NULL;
  2672. if (skb == tp->retransmit_skb_hint)
  2673. tp->retransmit_skb_hint = NULL;
  2674. if (skb == tp->lost_skb_hint)
  2675. tp->lost_skb_hint = NULL;
  2676. }
  2677. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  2678. tp->snd_up = tp->snd_una;
  2679. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2680. flag |= FLAG_SACK_RENEGING;
  2681. if (flag & FLAG_ACKED) {
  2682. const struct tcp_congestion_ops *ca_ops
  2683. = inet_csk(sk)->icsk_ca_ops;
  2684. if (unlikely(icsk->icsk_mtup.probe_size &&
  2685. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  2686. tcp_mtup_probe_success(sk);
  2687. }
  2688. tcp_ack_update_rtt(sk, flag, seq_rtt);
  2689. tcp_rearm_rto(sk);
  2690. if (tcp_is_reno(tp)) {
  2691. tcp_remove_reno_sacks(sk, pkts_acked);
  2692. } else {
  2693. int delta;
  2694. /* Non-retransmitted hole got filled? That's reordering */
  2695. if (reord < prior_fackets)
  2696. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2697. delta = tcp_is_fack(tp) ? pkts_acked :
  2698. prior_sacked - tp->sacked_out;
  2699. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  2700. }
  2701. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2702. if (ca_ops->pkts_acked) {
  2703. s32 rtt_us = -1;
  2704. /* Is the ACK triggering packet unambiguous? */
  2705. if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
  2706. /* High resolution needed and available? */
  2707. if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
  2708. !ktime_equal(last_ackt,
  2709. net_invalid_timestamp()))
  2710. rtt_us = ktime_us_delta(ktime_get_real(),
  2711. last_ackt);
  2712. else if (ca_seq_rtt >= 0)
  2713. rtt_us = jiffies_to_usecs(ca_seq_rtt);
  2714. }
  2715. ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
  2716. }
  2717. }
  2718. #if FASTRETRANS_DEBUG > 0
  2719. WARN_ON((int)tp->sacked_out < 0);
  2720. WARN_ON((int)tp->lost_out < 0);
  2721. WARN_ON((int)tp->retrans_out < 0);
  2722. if (!tp->packets_out && tcp_is_sack(tp)) {
  2723. icsk = inet_csk(sk);
  2724. if (tp->lost_out) {
  2725. pr_debug("Leak l=%u %d\n",
  2726. tp->lost_out, icsk->icsk_ca_state);
  2727. tp->lost_out = 0;
  2728. }
  2729. if (tp->sacked_out) {
  2730. pr_debug("Leak s=%u %d\n",
  2731. tp->sacked_out, icsk->icsk_ca_state);
  2732. tp->sacked_out = 0;
  2733. }
  2734. if (tp->retrans_out) {
  2735. pr_debug("Leak r=%u %d\n",
  2736. tp->retrans_out, icsk->icsk_ca_state);
  2737. tp->retrans_out = 0;
  2738. }
  2739. }
  2740. #endif
  2741. return flag;
  2742. }
  2743. static void tcp_ack_probe(struct sock *sk)
  2744. {
  2745. const struct tcp_sock *tp = tcp_sk(sk);
  2746. struct inet_connection_sock *icsk = inet_csk(sk);
  2747. /* Was it a usable window open? */
  2748. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  2749. icsk->icsk_backoff = 0;
  2750. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2751. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2752. * This function is not for random using!
  2753. */
  2754. } else {
  2755. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2756. min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
  2757. TCP_RTO_MAX);
  2758. }
  2759. }
  2760. static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
  2761. {
  2762. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  2763. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  2764. }
  2765. static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  2766. {
  2767. const struct tcp_sock *tp = tcp_sk(sk);
  2768. return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
  2769. !tcp_in_cwnd_reduction(sk);
  2770. }
  2771. /* Check that window update is acceptable.
  2772. * The function assumes that snd_una<=ack<=snd_next.
  2773. */
  2774. static inline bool tcp_may_update_window(const struct tcp_sock *tp,
  2775. const u32 ack, const u32 ack_seq,
  2776. const u32 nwin)
  2777. {
  2778. return after(ack, tp->snd_una) ||
  2779. after(ack_seq, tp->snd_wl1) ||
  2780. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  2781. }
  2782. /* Update our send window.
  2783. *
  2784. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  2785. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  2786. */
  2787. static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
  2788. u32 ack_seq)
  2789. {
  2790. struct tcp_sock *tp = tcp_sk(sk);
  2791. int flag = 0;
  2792. u32 nwin = ntohs(tcp_hdr(skb)->window);
  2793. if (likely(!tcp_hdr(skb)->syn))
  2794. nwin <<= tp->rx_opt.snd_wscale;
  2795. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  2796. flag |= FLAG_WIN_UPDATE;
  2797. tcp_update_wl(tp, ack_seq);
  2798. if (tp->snd_wnd != nwin) {
  2799. tp->snd_wnd = nwin;
  2800. /* Note, it is the only place, where
  2801. * fast path is recovered for sending TCP.
  2802. */
  2803. tp->pred_flags = 0;
  2804. tcp_fast_path_check(sk);
  2805. if (nwin > tp->max_window) {
  2806. tp->max_window = nwin;
  2807. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  2808. }
  2809. }
  2810. }
  2811. tp->snd_una = ack;
  2812. return flag;
  2813. }
  2814. /* RFC 5961 7 [ACK Throttling] */
  2815. static void tcp_send_challenge_ack(struct sock *sk)
  2816. {
  2817. /* unprotected vars, we dont care of overwrites */
  2818. static u32 challenge_timestamp;
  2819. static unsigned int challenge_count;
  2820. u32 now = jiffies / HZ;
  2821. if (now != challenge_timestamp) {
  2822. challenge_timestamp = now;
  2823. challenge_count = 0;
  2824. }
  2825. if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
  2826. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
  2827. tcp_send_ack(sk);
  2828. }
  2829. }
  2830. /* This routine deals with acks during a TLP episode.
  2831. * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
  2832. */
  2833. static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
  2834. {
  2835. struct tcp_sock *tp = tcp_sk(sk);
  2836. bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
  2837. !(flag & (FLAG_SND_UNA_ADVANCED |
  2838. FLAG_NOT_DUP | FLAG_DATA_SACKED));
  2839. /* Mark the end of TLP episode on receiving TLP dupack or when
  2840. * ack is after tlp_high_seq.
  2841. */
  2842. if (is_tlp_dupack) {
  2843. tp->tlp_high_seq = 0;
  2844. return;
  2845. }
  2846. if (after(ack, tp->tlp_high_seq)) {
  2847. tp->tlp_high_seq = 0;
  2848. /* Don't reduce cwnd if DSACK arrives for TLP retrans. */
  2849. if (!(flag & FLAG_DSACKING_ACK)) {
  2850. tcp_init_cwnd_reduction(sk, true);
  2851. tcp_set_ca_state(sk, TCP_CA_CWR);
  2852. tcp_end_cwnd_reduction(sk);
  2853. tcp_set_ca_state(sk, TCP_CA_Open);
  2854. NET_INC_STATS_BH(sock_net(sk),
  2855. LINUX_MIB_TCPLOSSPROBERECOVERY);
  2856. }
  2857. }
  2858. }
  2859. /* This routine deals with incoming acks, but not outgoing ones. */
  2860. static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
  2861. {
  2862. struct inet_connection_sock *icsk = inet_csk(sk);
  2863. struct tcp_sock *tp = tcp_sk(sk);
  2864. u32 prior_snd_una = tp->snd_una;
  2865. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  2866. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  2867. bool is_dupack = false;
  2868. u32 prior_in_flight;
  2869. u32 prior_fackets;
  2870. int prior_packets;
  2871. int prior_sacked = tp->sacked_out;
  2872. int pkts_acked = 0;
  2873. /* If the ack is older than previous acks
  2874. * then we can probably ignore it.
  2875. */
  2876. if (before(ack, prior_snd_una)) {
  2877. /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
  2878. if (before(ack, prior_snd_una - tp->max_window)) {
  2879. tcp_send_challenge_ack(sk);
  2880. return -1;
  2881. }
  2882. goto old_ack;
  2883. }
  2884. /* If the ack includes data we haven't sent yet, discard
  2885. * this segment (RFC793 Section 3.9).
  2886. */
  2887. if (after(ack, tp->snd_nxt))
  2888. goto invalid_ack;
  2889. if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
  2890. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
  2891. tcp_rearm_rto(sk);
  2892. if (after(ack, prior_snd_una))
  2893. flag |= FLAG_SND_UNA_ADVANCED;
  2894. prior_fackets = tp->fackets_out;
  2895. prior_in_flight = tcp_packets_in_flight(tp);
  2896. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  2897. /* Window is constant, pure forward advance.
  2898. * No more checks are required.
  2899. * Note, we use the fact that SND.UNA>=SND.WL2.
  2900. */
  2901. tcp_update_wl(tp, ack_seq);
  2902. tp->snd_una = ack;
  2903. flag |= FLAG_WIN_UPDATE;
  2904. tcp_ca_event(sk, CA_EVENT_FAST_ACK);
  2905. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
  2906. } else {
  2907. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  2908. flag |= FLAG_DATA;
  2909. else
  2910. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  2911. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  2912. if (TCP_SKB_CB(skb)->sacked)
  2913. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  2914. if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
  2915. flag |= FLAG_ECE;
  2916. tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
  2917. }
  2918. /* We passed data and got it acked, remove any soft error
  2919. * log. Something worked...
  2920. */
  2921. sk->sk_err_soft = 0;
  2922. icsk->icsk_probes_out = 0;
  2923. tp->rcv_tstamp = tcp_time_stamp;
  2924. prior_packets = tp->packets_out;
  2925. if (!prior_packets)
  2926. goto no_queue;
  2927. /* See if we can take anything off of the retransmit queue. */
  2928. flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
  2929. pkts_acked = prior_packets - tp->packets_out;
  2930. if (tcp_ack_is_dubious(sk, flag)) {
  2931. /* Advance CWND, if state allows this. */
  2932. if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
  2933. tcp_cong_avoid(sk, ack, prior_in_flight);
  2934. is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  2935. tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
  2936. is_dupack, flag);
  2937. } else {
  2938. if (flag & FLAG_DATA_ACKED)
  2939. tcp_cong_avoid(sk, ack, prior_in_flight);
  2940. }
  2941. if (tp->tlp_high_seq)
  2942. tcp_process_tlp_ack(sk, ack, flag);
  2943. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
  2944. struct dst_entry *dst = __sk_dst_get(sk);
  2945. if (dst)
  2946. dst_confirm(dst);
  2947. }
  2948. if (icsk->icsk_pending == ICSK_TIME_RETRANS)
  2949. tcp_schedule_loss_probe(sk);
  2950. return 1;
  2951. no_queue:
  2952. /* If data was DSACKed, see if we can undo a cwnd reduction. */
  2953. if (flag & FLAG_DSACKING_ACK)
  2954. tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
  2955. is_dupack, flag);
  2956. /* If this ack opens up a zero window, clear backoff. It was
  2957. * being used to time the probes, and is probably far higher than
  2958. * it needs to be for normal retransmission.
  2959. */
  2960. if (tcp_send_head(sk))
  2961. tcp_ack_probe(sk);
  2962. if (tp->tlp_high_seq)
  2963. tcp_process_tlp_ack(sk, ack, flag);
  2964. return 1;
  2965. invalid_ack:
  2966. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  2967. return -1;
  2968. old_ack:
  2969. /* If data was SACKed, tag it and see if we should send more data.
  2970. * If data was DSACKed, see if we can undo a cwnd reduction.
  2971. */
  2972. if (TCP_SKB_CB(skb)->sacked) {
  2973. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  2974. tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
  2975. is_dupack, flag);
  2976. }
  2977. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  2978. return 0;
  2979. }
  2980. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  2981. * But, this can also be called on packets in the established flow when
  2982. * the fast version below fails.
  2983. */
  2984. void tcp_parse_options(const struct sk_buff *skb,
  2985. struct tcp_options_received *opt_rx, int estab,
  2986. struct tcp_fastopen_cookie *foc)
  2987. {
  2988. const unsigned char *ptr;
  2989. const struct tcphdr *th = tcp_hdr(skb);
  2990. int length = (th->doff * 4) - sizeof(struct tcphdr);
  2991. ptr = (const unsigned char *)(th + 1);
  2992. opt_rx->saw_tstamp = 0;
  2993. while (length > 0) {
  2994. int opcode = *ptr++;
  2995. int opsize;
  2996. switch (opcode) {
  2997. case TCPOPT_EOL:
  2998. return;
  2999. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3000. length--;
  3001. continue;
  3002. default:
  3003. opsize = *ptr++;
  3004. if (opsize < 2) /* "silly options" */
  3005. return;
  3006. if (opsize > length)
  3007. return; /* don't parse partial options */
  3008. switch (opcode) {
  3009. case TCPOPT_MSS:
  3010. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3011. u16 in_mss = get_unaligned_be16(ptr);
  3012. if (in_mss) {
  3013. if (opt_rx->user_mss &&
  3014. opt_rx->user_mss < in_mss)
  3015. in_mss = opt_rx->user_mss;
  3016. opt_rx->mss_clamp = in_mss;
  3017. }
  3018. }
  3019. break;
  3020. case TCPOPT_WINDOW:
  3021. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3022. !estab && sysctl_tcp_window_scaling) {
  3023. __u8 snd_wscale = *(__u8 *)ptr;
  3024. opt_rx->wscale_ok = 1;
  3025. if (snd_wscale > 14) {
  3026. net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
  3027. __func__,
  3028. snd_wscale);
  3029. snd_wscale = 14;
  3030. }
  3031. opt_rx->snd_wscale = snd_wscale;
  3032. }
  3033. break;
  3034. case TCPOPT_TIMESTAMP:
  3035. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3036. ((estab && opt_rx->tstamp_ok) ||
  3037. (!estab && sysctl_tcp_timestamps))) {
  3038. opt_rx->saw_tstamp = 1;
  3039. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3040. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3041. }
  3042. break;
  3043. case TCPOPT_SACK_PERM:
  3044. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3045. !estab && sysctl_tcp_sack) {
  3046. opt_rx->sack_ok = TCP_SACK_SEEN;
  3047. tcp_sack_reset(opt_rx);
  3048. }
  3049. break;
  3050. case TCPOPT_SACK:
  3051. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3052. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3053. opt_rx->sack_ok) {
  3054. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3055. }
  3056. break;
  3057. #ifdef CONFIG_TCP_MD5SIG
  3058. case TCPOPT_MD5SIG:
  3059. /*
  3060. * The MD5 Hash has already been
  3061. * checked (see tcp_v{4,6}_do_rcv()).
  3062. */
  3063. break;
  3064. #endif
  3065. case TCPOPT_EXP:
  3066. /* Fast Open option shares code 254 using a
  3067. * 16 bits magic number. It's valid only in
  3068. * SYN or SYN-ACK with an even size.
  3069. */
  3070. if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
  3071. get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
  3072. foc == NULL || !th->syn || (opsize & 1))
  3073. break;
  3074. foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
  3075. if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
  3076. foc->len <= TCP_FASTOPEN_COOKIE_MAX)
  3077. memcpy(foc->val, ptr + 2, foc->len);
  3078. else if (foc->len != 0)
  3079. foc->len = -1;
  3080. break;
  3081. }
  3082. ptr += opsize-2;
  3083. length -= opsize;
  3084. }
  3085. }
  3086. }
  3087. EXPORT_SYMBOL(tcp_parse_options);
  3088. static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
  3089. {
  3090. const __be32 *ptr = (const __be32 *)(th + 1);
  3091. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3092. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3093. tp->rx_opt.saw_tstamp = 1;
  3094. ++ptr;
  3095. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3096. ++ptr;
  3097. tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
  3098. return true;
  3099. }
  3100. return false;
  3101. }
  3102. /* Fast parse options. This hopes to only see timestamps.
  3103. * If it is wrong it falls back on tcp_parse_options().
  3104. */
  3105. static bool tcp_fast_parse_options(const struct sk_buff *skb,
  3106. const struct tcphdr *th, struct tcp_sock *tp)
  3107. {
  3108. /* In the spirit of fast parsing, compare doff directly to constant
  3109. * values. Because equality is used, short doff can be ignored here.
  3110. */
  3111. if (th->doff == (sizeof(*th) / 4)) {
  3112. tp->rx_opt.saw_tstamp = 0;
  3113. return false;
  3114. } else if (tp->rx_opt.tstamp_ok &&
  3115. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3116. if (tcp_parse_aligned_timestamp(tp, th))
  3117. return true;
  3118. }
  3119. tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
  3120. if (tp->rx_opt.saw_tstamp)
  3121. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  3122. return true;
  3123. }
  3124. #ifdef CONFIG_TCP_MD5SIG
  3125. /*
  3126. * Parse MD5 Signature option
  3127. */
  3128. const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
  3129. {
  3130. int length = (th->doff << 2) - sizeof(*th);
  3131. const u8 *ptr = (const u8 *)(th + 1);
  3132. /* If the TCP option is too short, we can short cut */
  3133. if (length < TCPOLEN_MD5SIG)
  3134. return NULL;
  3135. while (length > 0) {
  3136. int opcode = *ptr++;
  3137. int opsize;
  3138. switch(opcode) {
  3139. case TCPOPT_EOL:
  3140. return NULL;
  3141. case TCPOPT_NOP:
  3142. length--;
  3143. continue;
  3144. default:
  3145. opsize = *ptr++;
  3146. if (opsize < 2 || opsize > length)
  3147. return NULL;
  3148. if (opcode == TCPOPT_MD5SIG)
  3149. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3150. }
  3151. ptr += opsize - 2;
  3152. length -= opsize;
  3153. }
  3154. return NULL;
  3155. }
  3156. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3157. #endif
  3158. static inline void tcp_store_ts_recent(struct tcp_sock *tp)
  3159. {
  3160. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  3161. tp->rx_opt.ts_recent_stamp = get_seconds();
  3162. }
  3163. static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  3164. {
  3165. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  3166. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  3167. * extra check below makes sure this can only happen
  3168. * for pure ACK frames. -DaveM
  3169. *
  3170. * Not only, also it occurs for expired timestamps.
  3171. */
  3172. if (tcp_paws_check(&tp->rx_opt, 0))
  3173. tcp_store_ts_recent(tp);
  3174. }
  3175. }
  3176. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3177. *
  3178. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3179. * it can pass through stack. So, the following predicate verifies that
  3180. * this segment is not used for anything but congestion avoidance or
  3181. * fast retransmit. Moreover, we even are able to eliminate most of such
  3182. * second order effects, if we apply some small "replay" window (~RTO)
  3183. * to timestamp space.
  3184. *
  3185. * All these measures still do not guarantee that we reject wrapped ACKs
  3186. * on networks with high bandwidth, when sequence space is recycled fastly,
  3187. * but it guarantees that such events will be very rare and do not affect
  3188. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3189. * buggy extension.
  3190. *
  3191. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3192. * states that events when retransmit arrives after original data are rare.
  3193. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3194. * the biggest problem on large power networks even with minor reordering.
  3195. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3196. * up to bandwidth of 18Gigabit/sec. 8) ]
  3197. */
  3198. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3199. {
  3200. const struct tcp_sock *tp = tcp_sk(sk);
  3201. const struct tcphdr *th = tcp_hdr(skb);
  3202. u32 seq = TCP_SKB_CB(skb)->seq;
  3203. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3204. return (/* 1. Pure ACK with correct sequence number. */
  3205. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3206. /* 2. ... and duplicate ACK. */
  3207. ack == tp->snd_una &&
  3208. /* 3. ... and does not update window. */
  3209. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3210. /* 4. ... and sits in replay window. */
  3211. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3212. }
  3213. static inline bool tcp_paws_discard(const struct sock *sk,
  3214. const struct sk_buff *skb)
  3215. {
  3216. const struct tcp_sock *tp = tcp_sk(sk);
  3217. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3218. !tcp_disordered_ack(sk, skb);
  3219. }
  3220. /* Check segment sequence number for validity.
  3221. *
  3222. * Segment controls are considered valid, if the segment
  3223. * fits to the window after truncation to the window. Acceptability
  3224. * of data (and SYN, FIN, of course) is checked separately.
  3225. * See tcp_data_queue(), for example.
  3226. *
  3227. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3228. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3229. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3230. * (borrowed from freebsd)
  3231. */
  3232. static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
  3233. {
  3234. return !before(end_seq, tp->rcv_wup) &&
  3235. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3236. }
  3237. /* When we get a reset we do this. */
  3238. void tcp_reset(struct sock *sk)
  3239. {
  3240. /* We want the right error as BSD sees it (and indeed as we do). */
  3241. switch (sk->sk_state) {
  3242. case TCP_SYN_SENT:
  3243. sk->sk_err = ECONNREFUSED;
  3244. break;
  3245. case TCP_CLOSE_WAIT:
  3246. sk->sk_err = EPIPE;
  3247. break;
  3248. case TCP_CLOSE:
  3249. return;
  3250. default:
  3251. sk->sk_err = ECONNRESET;
  3252. }
  3253. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3254. smp_wmb();
  3255. if (!sock_flag(sk, SOCK_DEAD))
  3256. sk->sk_error_report(sk);
  3257. tcp_done(sk);
  3258. }
  3259. /*
  3260. * Process the FIN bit. This now behaves as it is supposed to work
  3261. * and the FIN takes effect when it is validly part of sequence
  3262. * space. Not before when we get holes.
  3263. *
  3264. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3265. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3266. * TIME-WAIT)
  3267. *
  3268. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3269. * close and we go into CLOSING (and later onto TIME-WAIT)
  3270. *
  3271. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3272. */
  3273. static void tcp_fin(struct sock *sk)
  3274. {
  3275. struct tcp_sock *tp = tcp_sk(sk);
  3276. inet_csk_schedule_ack(sk);
  3277. sk->sk_shutdown |= RCV_SHUTDOWN;
  3278. sock_set_flag(sk, SOCK_DONE);
  3279. switch (sk->sk_state) {
  3280. case TCP_SYN_RECV:
  3281. case TCP_ESTABLISHED:
  3282. /* Move to CLOSE_WAIT */
  3283. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3284. inet_csk(sk)->icsk_ack.pingpong = 1;
  3285. break;
  3286. case TCP_CLOSE_WAIT:
  3287. case TCP_CLOSING:
  3288. /* Received a retransmission of the FIN, do
  3289. * nothing.
  3290. */
  3291. break;
  3292. case TCP_LAST_ACK:
  3293. /* RFC793: Remain in the LAST-ACK state. */
  3294. break;
  3295. case TCP_FIN_WAIT1:
  3296. /* This case occurs when a simultaneous close
  3297. * happens, we must ack the received FIN and
  3298. * enter the CLOSING state.
  3299. */
  3300. tcp_send_ack(sk);
  3301. tcp_set_state(sk, TCP_CLOSING);
  3302. break;
  3303. case TCP_FIN_WAIT2:
  3304. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3305. tcp_send_ack(sk);
  3306. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3307. break;
  3308. default:
  3309. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3310. * cases we should never reach this piece of code.
  3311. */
  3312. pr_err("%s: Impossible, sk->sk_state=%d\n",
  3313. __func__, sk->sk_state);
  3314. break;
  3315. }
  3316. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3317. * Probably, we should reset in this case. For now drop them.
  3318. */
  3319. __skb_queue_purge(&tp->out_of_order_queue);
  3320. if (tcp_is_sack(tp))
  3321. tcp_sack_reset(&tp->rx_opt);
  3322. sk_mem_reclaim(sk);
  3323. if (!sock_flag(sk, SOCK_DEAD)) {
  3324. sk->sk_state_change(sk);
  3325. /* Do not send POLL_HUP for half duplex close. */
  3326. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3327. sk->sk_state == TCP_CLOSE)
  3328. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3329. else
  3330. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3331. }
  3332. }
  3333. static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3334. u32 end_seq)
  3335. {
  3336. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3337. if (before(seq, sp->start_seq))
  3338. sp->start_seq = seq;
  3339. if (after(end_seq, sp->end_seq))
  3340. sp->end_seq = end_seq;
  3341. return true;
  3342. }
  3343. return false;
  3344. }
  3345. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3346. {
  3347. struct tcp_sock *tp = tcp_sk(sk);
  3348. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3349. int mib_idx;
  3350. if (before(seq, tp->rcv_nxt))
  3351. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3352. else
  3353. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3354. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  3355. tp->rx_opt.dsack = 1;
  3356. tp->duplicate_sack[0].start_seq = seq;
  3357. tp->duplicate_sack[0].end_seq = end_seq;
  3358. }
  3359. }
  3360. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3361. {
  3362. struct tcp_sock *tp = tcp_sk(sk);
  3363. if (!tp->rx_opt.dsack)
  3364. tcp_dsack_set(sk, seq, end_seq);
  3365. else
  3366. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3367. }
  3368. static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
  3369. {
  3370. struct tcp_sock *tp = tcp_sk(sk);
  3371. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3372. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3373. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3374. tcp_enter_quickack_mode(sk);
  3375. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3376. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3377. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3378. end_seq = tp->rcv_nxt;
  3379. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3380. }
  3381. }
  3382. tcp_send_ack(sk);
  3383. }
  3384. /* These routines update the SACK block as out-of-order packets arrive or
  3385. * in-order packets close up the sequence space.
  3386. */
  3387. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3388. {
  3389. int this_sack;
  3390. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3391. struct tcp_sack_block *swalk = sp + 1;
  3392. /* See if the recent change to the first SACK eats into
  3393. * or hits the sequence space of other SACK blocks, if so coalesce.
  3394. */
  3395. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3396. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3397. int i;
  3398. /* Zap SWALK, by moving every further SACK up by one slot.
  3399. * Decrease num_sacks.
  3400. */
  3401. tp->rx_opt.num_sacks--;
  3402. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3403. sp[i] = sp[i + 1];
  3404. continue;
  3405. }
  3406. this_sack++, swalk++;
  3407. }
  3408. }
  3409. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3410. {
  3411. struct tcp_sock *tp = tcp_sk(sk);
  3412. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3413. int cur_sacks = tp->rx_opt.num_sacks;
  3414. int this_sack;
  3415. if (!cur_sacks)
  3416. goto new_sack;
  3417. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3418. if (tcp_sack_extend(sp, seq, end_seq)) {
  3419. /* Rotate this_sack to the first one. */
  3420. for (; this_sack > 0; this_sack--, sp--)
  3421. swap(*sp, *(sp - 1));
  3422. if (cur_sacks > 1)
  3423. tcp_sack_maybe_coalesce(tp);
  3424. return;
  3425. }
  3426. }
  3427. /* Could not find an adjacent existing SACK, build a new one,
  3428. * put it at the front, and shift everyone else down. We
  3429. * always know there is at least one SACK present already here.
  3430. *
  3431. * If the sack array is full, forget about the last one.
  3432. */
  3433. if (this_sack >= TCP_NUM_SACKS) {
  3434. this_sack--;
  3435. tp->rx_opt.num_sacks--;
  3436. sp--;
  3437. }
  3438. for (; this_sack > 0; this_sack--, sp--)
  3439. *sp = *(sp - 1);
  3440. new_sack:
  3441. /* Build the new head SACK, and we're done. */
  3442. sp->start_seq = seq;
  3443. sp->end_seq = end_seq;
  3444. tp->rx_opt.num_sacks++;
  3445. }
  3446. /* RCV.NXT advances, some SACKs should be eaten. */
  3447. static void tcp_sack_remove(struct tcp_sock *tp)
  3448. {
  3449. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3450. int num_sacks = tp->rx_opt.num_sacks;
  3451. int this_sack;
  3452. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3453. if (skb_queue_empty(&tp->out_of_order_queue)) {
  3454. tp->rx_opt.num_sacks = 0;
  3455. return;
  3456. }
  3457. for (this_sack = 0; this_sack < num_sacks;) {
  3458. /* Check if the start of the sack is covered by RCV.NXT. */
  3459. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3460. int i;
  3461. /* RCV.NXT must cover all the block! */
  3462. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3463. /* Zap this SACK, by moving forward any other SACKS. */
  3464. for (i=this_sack+1; i < num_sacks; i++)
  3465. tp->selective_acks[i-1] = tp->selective_acks[i];
  3466. num_sacks--;
  3467. continue;
  3468. }
  3469. this_sack++;
  3470. sp++;
  3471. }
  3472. tp->rx_opt.num_sacks = num_sacks;
  3473. }
  3474. /* This one checks to see if we can put data from the
  3475. * out_of_order queue into the receive_queue.
  3476. */
  3477. static void tcp_ofo_queue(struct sock *sk)
  3478. {
  3479. struct tcp_sock *tp = tcp_sk(sk);
  3480. __u32 dsack_high = tp->rcv_nxt;
  3481. struct sk_buff *skb;
  3482. while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
  3483. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3484. break;
  3485. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3486. __u32 dsack = dsack_high;
  3487. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3488. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3489. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3490. }
  3491. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3492. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3493. __skb_unlink(skb, &tp->out_of_order_queue);
  3494. __kfree_skb(skb);
  3495. continue;
  3496. }
  3497. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3498. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3499. TCP_SKB_CB(skb)->end_seq);
  3500. __skb_unlink(skb, &tp->out_of_order_queue);
  3501. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3502. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3503. if (tcp_hdr(skb)->fin)
  3504. tcp_fin(sk);
  3505. }
  3506. }
  3507. static bool tcp_prune_ofo_queue(struct sock *sk);
  3508. static int tcp_prune_queue(struct sock *sk);
  3509. static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
  3510. unsigned int size)
  3511. {
  3512. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3513. !sk_rmem_schedule(sk, skb, size)) {
  3514. if (tcp_prune_queue(sk) < 0)
  3515. return -1;
  3516. if (!sk_rmem_schedule(sk, skb, size)) {
  3517. if (!tcp_prune_ofo_queue(sk))
  3518. return -1;
  3519. if (!sk_rmem_schedule(sk, skb, size))
  3520. return -1;
  3521. }
  3522. }
  3523. return 0;
  3524. }
  3525. /**
  3526. * tcp_try_coalesce - try to merge skb to prior one
  3527. * @sk: socket
  3528. * @to: prior buffer
  3529. * @from: buffer to add in queue
  3530. * @fragstolen: pointer to boolean
  3531. *
  3532. * Before queueing skb @from after @to, try to merge them
  3533. * to reduce overall memory use and queue lengths, if cost is small.
  3534. * Packets in ofo or receive queues can stay a long time.
  3535. * Better try to coalesce them right now to avoid future collapses.
  3536. * Returns true if caller should free @from instead of queueing it
  3537. */
  3538. static bool tcp_try_coalesce(struct sock *sk,
  3539. struct sk_buff *to,
  3540. struct sk_buff *from,
  3541. bool *fragstolen)
  3542. {
  3543. int delta;
  3544. *fragstolen = false;
  3545. if (tcp_hdr(from)->fin)
  3546. return false;
  3547. /* Its possible this segment overlaps with prior segment in queue */
  3548. if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
  3549. return false;
  3550. if (!skb_try_coalesce(to, from, fragstolen, &delta))
  3551. return false;
  3552. atomic_add(delta, &sk->sk_rmem_alloc);
  3553. sk_mem_charge(sk, delta);
  3554. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
  3555. TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
  3556. TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
  3557. return true;
  3558. }
  3559. static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
  3560. {
  3561. struct tcp_sock *tp = tcp_sk(sk);
  3562. struct sk_buff *skb1;
  3563. u32 seq, end_seq;
  3564. TCP_ECN_check_ce(tp, skb);
  3565. if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
  3566. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
  3567. __kfree_skb(skb);
  3568. return;
  3569. }
  3570. /* Disable header prediction. */
  3571. tp->pred_flags = 0;
  3572. inet_csk_schedule_ack(sk);
  3573. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
  3574. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3575. tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3576. skb1 = skb_peek_tail(&tp->out_of_order_queue);
  3577. if (!skb1) {
  3578. /* Initial out of order segment, build 1 SACK. */
  3579. if (tcp_is_sack(tp)) {
  3580. tp->rx_opt.num_sacks = 1;
  3581. tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
  3582. tp->selective_acks[0].end_seq =
  3583. TCP_SKB_CB(skb)->end_seq;
  3584. }
  3585. __skb_queue_head(&tp->out_of_order_queue, skb);
  3586. goto end;
  3587. }
  3588. seq = TCP_SKB_CB(skb)->seq;
  3589. end_seq = TCP_SKB_CB(skb)->end_seq;
  3590. if (seq == TCP_SKB_CB(skb1)->end_seq) {
  3591. bool fragstolen;
  3592. if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
  3593. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3594. } else {
  3595. kfree_skb_partial(skb, fragstolen);
  3596. skb = NULL;
  3597. }
  3598. if (!tp->rx_opt.num_sacks ||
  3599. tp->selective_acks[0].end_seq != seq)
  3600. goto add_sack;
  3601. /* Common case: data arrive in order after hole. */
  3602. tp->selective_acks[0].end_seq = end_seq;
  3603. goto end;
  3604. }
  3605. /* Find place to insert this segment. */
  3606. while (1) {
  3607. if (!after(TCP_SKB_CB(skb1)->seq, seq))
  3608. break;
  3609. if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
  3610. skb1 = NULL;
  3611. break;
  3612. }
  3613. skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
  3614. }
  3615. /* Do skb overlap to previous one? */
  3616. if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3617. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3618. /* All the bits are present. Drop. */
  3619. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3620. __kfree_skb(skb);
  3621. skb = NULL;
  3622. tcp_dsack_set(sk, seq, end_seq);
  3623. goto add_sack;
  3624. }
  3625. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3626. /* Partial overlap. */
  3627. tcp_dsack_set(sk, seq,
  3628. TCP_SKB_CB(skb1)->end_seq);
  3629. } else {
  3630. if (skb_queue_is_first(&tp->out_of_order_queue,
  3631. skb1))
  3632. skb1 = NULL;
  3633. else
  3634. skb1 = skb_queue_prev(
  3635. &tp->out_of_order_queue,
  3636. skb1);
  3637. }
  3638. }
  3639. if (!skb1)
  3640. __skb_queue_head(&tp->out_of_order_queue, skb);
  3641. else
  3642. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3643. /* And clean segments covered by new one as whole. */
  3644. while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
  3645. skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
  3646. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  3647. break;
  3648. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3649. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3650. end_seq);
  3651. break;
  3652. }
  3653. __skb_unlink(skb1, &tp->out_of_order_queue);
  3654. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3655. TCP_SKB_CB(skb1)->end_seq);
  3656. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3657. __kfree_skb(skb1);
  3658. }
  3659. add_sack:
  3660. if (tcp_is_sack(tp))
  3661. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3662. end:
  3663. if (skb)
  3664. skb_set_owner_r(skb, sk);
  3665. }
  3666. static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
  3667. bool *fragstolen)
  3668. {
  3669. int eaten;
  3670. struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
  3671. __skb_pull(skb, hdrlen);
  3672. eaten = (tail &&
  3673. tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
  3674. tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3675. if (!eaten) {
  3676. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3677. skb_set_owner_r(skb, sk);
  3678. }
  3679. return eaten;
  3680. }
  3681. int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
  3682. {
  3683. struct sk_buff *skb = NULL;
  3684. struct tcphdr *th;
  3685. bool fragstolen;
  3686. if (size == 0)
  3687. return 0;
  3688. skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
  3689. if (!skb)
  3690. goto err;
  3691. if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
  3692. goto err_free;
  3693. th = (struct tcphdr *)skb_put(skb, sizeof(*th));
  3694. skb_reset_transport_header(skb);
  3695. memset(th, 0, sizeof(*th));
  3696. if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
  3697. goto err_free;
  3698. TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
  3699. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
  3700. TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
  3701. if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
  3702. WARN_ON_ONCE(fragstolen); /* should not happen */
  3703. __kfree_skb(skb);
  3704. }
  3705. return size;
  3706. err_free:
  3707. kfree_skb(skb);
  3708. err:
  3709. return -ENOMEM;
  3710. }
  3711. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3712. {
  3713. const struct tcphdr *th = tcp_hdr(skb);
  3714. struct tcp_sock *tp = tcp_sk(sk);
  3715. int eaten = -1;
  3716. bool fragstolen = false;
  3717. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
  3718. goto drop;
  3719. skb_dst_drop(skb);
  3720. __skb_pull(skb, th->doff * 4);
  3721. TCP_ECN_accept_cwr(tp, skb);
  3722. tp->rx_opt.dsack = 0;
  3723. /* Queue data for delivery to the user.
  3724. * Packets in sequence go to the receive queue.
  3725. * Out of sequence packets to the out_of_order_queue.
  3726. */
  3727. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3728. if (tcp_receive_window(tp) == 0)
  3729. goto out_of_window;
  3730. /* Ok. In sequence. In window. */
  3731. if (tp->ucopy.task == current &&
  3732. tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
  3733. sock_owned_by_user(sk) && !tp->urg_data) {
  3734. int chunk = min_t(unsigned int, skb->len,
  3735. tp->ucopy.len);
  3736. __set_current_state(TASK_RUNNING);
  3737. local_bh_enable();
  3738. if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
  3739. tp->ucopy.len -= chunk;
  3740. tp->copied_seq += chunk;
  3741. eaten = (chunk == skb->len);
  3742. tcp_rcv_space_adjust(sk);
  3743. }
  3744. local_bh_disable();
  3745. }
  3746. if (eaten <= 0) {
  3747. queue_and_out:
  3748. if (eaten < 0 &&
  3749. tcp_try_rmem_schedule(sk, skb, skb->truesize))
  3750. goto drop;
  3751. eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
  3752. }
  3753. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3754. if (skb->len)
  3755. tcp_event_data_recv(sk, skb);
  3756. if (th->fin)
  3757. tcp_fin(sk);
  3758. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  3759. tcp_ofo_queue(sk);
  3760. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  3761. * gap in queue is filled.
  3762. */
  3763. if (skb_queue_empty(&tp->out_of_order_queue))
  3764. inet_csk(sk)->icsk_ack.pingpong = 0;
  3765. }
  3766. if (tp->rx_opt.num_sacks)
  3767. tcp_sack_remove(tp);
  3768. tcp_fast_path_check(sk);
  3769. if (eaten > 0)
  3770. kfree_skb_partial(skb, fragstolen);
  3771. if (!sock_flag(sk, SOCK_DEAD))
  3772. sk->sk_data_ready(sk, 0);
  3773. return;
  3774. }
  3775. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3776. /* A retransmit, 2nd most common case. Force an immediate ack. */
  3777. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3778. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3779. out_of_window:
  3780. tcp_enter_quickack_mode(sk);
  3781. inet_csk_schedule_ack(sk);
  3782. drop:
  3783. __kfree_skb(skb);
  3784. return;
  3785. }
  3786. /* Out of window. F.e. zero window probe. */
  3787. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  3788. goto out_of_window;
  3789. tcp_enter_quickack_mode(sk);
  3790. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3791. /* Partial packet, seq < rcv_next < end_seq */
  3792. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  3793. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3794. TCP_SKB_CB(skb)->end_seq);
  3795. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  3796. /* If window is closed, drop tail of packet. But after
  3797. * remembering D-SACK for its head made in previous line.
  3798. */
  3799. if (!tcp_receive_window(tp))
  3800. goto out_of_window;
  3801. goto queue_and_out;
  3802. }
  3803. tcp_data_queue_ofo(sk, skb);
  3804. }
  3805. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  3806. struct sk_buff_head *list)
  3807. {
  3808. struct sk_buff *next = NULL;
  3809. if (!skb_queue_is_last(list, skb))
  3810. next = skb_queue_next(list, skb);
  3811. __skb_unlink(skb, list);
  3812. __kfree_skb(skb);
  3813. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  3814. return next;
  3815. }
  3816. /* Collapse contiguous sequence of skbs head..tail with
  3817. * sequence numbers start..end.
  3818. *
  3819. * If tail is NULL, this means until the end of the list.
  3820. *
  3821. * Segments with FIN/SYN are not collapsed (only because this
  3822. * simplifies code)
  3823. */
  3824. static void
  3825. tcp_collapse(struct sock *sk, struct sk_buff_head *list,
  3826. struct sk_buff *head, struct sk_buff *tail,
  3827. u32 start, u32 end)
  3828. {
  3829. struct sk_buff *skb, *n;
  3830. bool end_of_skbs;
  3831. /* First, check that queue is collapsible and find
  3832. * the point where collapsing can be useful. */
  3833. skb = head;
  3834. restart:
  3835. end_of_skbs = true;
  3836. skb_queue_walk_from_safe(list, skb, n) {
  3837. if (skb == tail)
  3838. break;
  3839. /* No new bits? It is possible on ofo queue. */
  3840. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  3841. skb = tcp_collapse_one(sk, skb, list);
  3842. if (!skb)
  3843. break;
  3844. goto restart;
  3845. }
  3846. /* The first skb to collapse is:
  3847. * - not SYN/FIN and
  3848. * - bloated or contains data before "start" or
  3849. * overlaps to the next one.
  3850. */
  3851. if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
  3852. (tcp_win_from_space(skb->truesize) > skb->len ||
  3853. before(TCP_SKB_CB(skb)->seq, start))) {
  3854. end_of_skbs = false;
  3855. break;
  3856. }
  3857. if (!skb_queue_is_last(list, skb)) {
  3858. struct sk_buff *next = skb_queue_next(list, skb);
  3859. if (next != tail &&
  3860. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
  3861. end_of_skbs = false;
  3862. break;
  3863. }
  3864. }
  3865. /* Decided to skip this, advance start seq. */
  3866. start = TCP_SKB_CB(skb)->end_seq;
  3867. }
  3868. if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
  3869. return;
  3870. while (before(start, end)) {
  3871. struct sk_buff *nskb;
  3872. unsigned int header = skb_headroom(skb);
  3873. int copy = SKB_MAX_ORDER(header, 0);
  3874. /* Too big header? This can happen with IPv6. */
  3875. if (copy < 0)
  3876. return;
  3877. if (end - start < copy)
  3878. copy = end - start;
  3879. nskb = alloc_skb(copy + header, GFP_ATOMIC);
  3880. if (!nskb)
  3881. return;
  3882. skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
  3883. skb_set_network_header(nskb, (skb_network_header(skb) -
  3884. skb->head));
  3885. skb_set_transport_header(nskb, (skb_transport_header(skb) -
  3886. skb->head));
  3887. skb_reserve(nskb, header);
  3888. memcpy(nskb->head, skb->head, header);
  3889. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  3890. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  3891. __skb_queue_before(list, skb, nskb);
  3892. skb_set_owner_r(nskb, sk);
  3893. /* Copy data, releasing collapsed skbs. */
  3894. while (copy > 0) {
  3895. int offset = start - TCP_SKB_CB(skb)->seq;
  3896. int size = TCP_SKB_CB(skb)->end_seq - start;
  3897. BUG_ON(offset < 0);
  3898. if (size > 0) {
  3899. size = min(copy, size);
  3900. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  3901. BUG();
  3902. TCP_SKB_CB(nskb)->end_seq += size;
  3903. copy -= size;
  3904. start += size;
  3905. }
  3906. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  3907. skb = tcp_collapse_one(sk, skb, list);
  3908. if (!skb ||
  3909. skb == tail ||
  3910. tcp_hdr(skb)->syn ||
  3911. tcp_hdr(skb)->fin)
  3912. return;
  3913. }
  3914. }
  3915. }
  3916. }
  3917. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  3918. * and tcp_collapse() them until all the queue is collapsed.
  3919. */
  3920. static void tcp_collapse_ofo_queue(struct sock *sk)
  3921. {
  3922. struct tcp_sock *tp = tcp_sk(sk);
  3923. struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
  3924. struct sk_buff *head;
  3925. u32 start, end;
  3926. if (skb == NULL)
  3927. return;
  3928. start = TCP_SKB_CB(skb)->seq;
  3929. end = TCP_SKB_CB(skb)->end_seq;
  3930. head = skb;
  3931. for (;;) {
  3932. struct sk_buff *next = NULL;
  3933. if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
  3934. next = skb_queue_next(&tp->out_of_order_queue, skb);
  3935. skb = next;
  3936. /* Segment is terminated when we see gap or when
  3937. * we are at the end of all the queue. */
  3938. if (!skb ||
  3939. after(TCP_SKB_CB(skb)->seq, end) ||
  3940. before(TCP_SKB_CB(skb)->end_seq, start)) {
  3941. tcp_collapse(sk, &tp->out_of_order_queue,
  3942. head, skb, start, end);
  3943. head = skb;
  3944. if (!skb)
  3945. break;
  3946. /* Start new segment */
  3947. start = TCP_SKB_CB(skb)->seq;
  3948. end = TCP_SKB_CB(skb)->end_seq;
  3949. } else {
  3950. if (before(TCP_SKB_CB(skb)->seq, start))
  3951. start = TCP_SKB_CB(skb)->seq;
  3952. if (after(TCP_SKB_CB(skb)->end_seq, end))
  3953. end = TCP_SKB_CB(skb)->end_seq;
  3954. }
  3955. }
  3956. }
  3957. /*
  3958. * Purge the out-of-order queue.
  3959. * Return true if queue was pruned.
  3960. */
  3961. static bool tcp_prune_ofo_queue(struct sock *sk)
  3962. {
  3963. struct tcp_sock *tp = tcp_sk(sk);
  3964. bool res = false;
  3965. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  3966. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
  3967. __skb_queue_purge(&tp->out_of_order_queue);
  3968. /* Reset SACK state. A conforming SACK implementation will
  3969. * do the same at a timeout based retransmit. When a connection
  3970. * is in a sad state like this, we care only about integrity
  3971. * of the connection not performance.
  3972. */
  3973. if (tp->rx_opt.sack_ok)
  3974. tcp_sack_reset(&tp->rx_opt);
  3975. sk_mem_reclaim(sk);
  3976. res = true;
  3977. }
  3978. return res;
  3979. }
  3980. /* Reduce allocated memory if we can, trying to get
  3981. * the socket within its memory limits again.
  3982. *
  3983. * Return less than zero if we should start dropping frames
  3984. * until the socket owning process reads some of the data
  3985. * to stabilize the situation.
  3986. */
  3987. static int tcp_prune_queue(struct sock *sk)
  3988. {
  3989. struct tcp_sock *tp = tcp_sk(sk);
  3990. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  3991. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
  3992. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  3993. tcp_clamp_window(sk);
  3994. else if (sk_under_memory_pressure(sk))
  3995. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  3996. tcp_collapse_ofo_queue(sk);
  3997. if (!skb_queue_empty(&sk->sk_receive_queue))
  3998. tcp_collapse(sk, &sk->sk_receive_queue,
  3999. skb_peek(&sk->sk_receive_queue),
  4000. NULL,
  4001. tp->copied_seq, tp->rcv_nxt);
  4002. sk_mem_reclaim(sk);
  4003. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4004. return 0;
  4005. /* Collapsing did not help, destructive actions follow.
  4006. * This must not ever occur. */
  4007. tcp_prune_ofo_queue(sk);
  4008. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4009. return 0;
  4010. /* If we are really being abused, tell the caller to silently
  4011. * drop receive data on the floor. It will get retransmitted
  4012. * and hopefully then we'll have sufficient space.
  4013. */
  4014. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4015. /* Massive buffer overcommit. */
  4016. tp->pred_flags = 0;
  4017. return -1;
  4018. }
  4019. /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
  4020. * As additional protections, we do not touch cwnd in retransmission phases,
  4021. * and if application hit its sndbuf limit recently.
  4022. */
  4023. void tcp_cwnd_application_limited(struct sock *sk)
  4024. {
  4025. struct tcp_sock *tp = tcp_sk(sk);
  4026. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
  4027. sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  4028. /* Limited by application or receiver window. */
  4029. u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
  4030. u32 win_used = max(tp->snd_cwnd_used, init_win);
  4031. if (win_used < tp->snd_cwnd) {
  4032. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  4033. tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
  4034. }
  4035. tp->snd_cwnd_used = 0;
  4036. }
  4037. tp->snd_cwnd_stamp = tcp_time_stamp;
  4038. }
  4039. static bool tcp_should_expand_sndbuf(const struct sock *sk)
  4040. {
  4041. const struct tcp_sock *tp = tcp_sk(sk);
  4042. /* If the user specified a specific send buffer setting, do
  4043. * not modify it.
  4044. */
  4045. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4046. return false;
  4047. /* If we are under global TCP memory pressure, do not expand. */
  4048. if (sk_under_memory_pressure(sk))
  4049. return false;
  4050. /* If we are under soft global TCP memory pressure, do not expand. */
  4051. if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
  4052. return false;
  4053. /* If we filled the congestion window, do not expand. */
  4054. if (tp->packets_out >= tp->snd_cwnd)
  4055. return false;
  4056. return true;
  4057. }
  4058. /* When incoming ACK allowed to free some skb from write_queue,
  4059. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4060. * on the exit from tcp input handler.
  4061. *
  4062. * PROBLEM: sndbuf expansion does not work well with largesend.
  4063. */
  4064. static void tcp_new_space(struct sock *sk)
  4065. {
  4066. struct tcp_sock *tp = tcp_sk(sk);
  4067. if (tcp_should_expand_sndbuf(sk)) {
  4068. int sndmem = SKB_TRUESIZE(max_t(u32,
  4069. tp->rx_opt.mss_clamp,
  4070. tp->mss_cache) +
  4071. MAX_TCP_HEADER);
  4072. int demanded = max_t(unsigned int, tp->snd_cwnd,
  4073. tp->reordering + 1);
  4074. sndmem *= 2 * demanded;
  4075. if (sndmem > sk->sk_sndbuf)
  4076. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  4077. tp->snd_cwnd_stamp = tcp_time_stamp;
  4078. }
  4079. sk->sk_write_space(sk);
  4080. }
  4081. static void tcp_check_space(struct sock *sk)
  4082. {
  4083. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4084. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4085. if (sk->sk_socket &&
  4086. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4087. tcp_new_space(sk);
  4088. }
  4089. }
  4090. static inline void tcp_data_snd_check(struct sock *sk)
  4091. {
  4092. tcp_push_pending_frames(sk);
  4093. tcp_check_space(sk);
  4094. }
  4095. /*
  4096. * Check if sending an ack is needed.
  4097. */
  4098. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4099. {
  4100. struct tcp_sock *tp = tcp_sk(sk);
  4101. /* More than one full frame received... */
  4102. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
  4103. /* ... and right edge of window advances far enough.
  4104. * (tcp_recvmsg() will send ACK otherwise). Or...
  4105. */
  4106. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4107. /* We ACK each frame or... */
  4108. tcp_in_quickack_mode(sk) ||
  4109. /* We have out of order data. */
  4110. (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
  4111. /* Then ack it now */
  4112. tcp_send_ack(sk);
  4113. } else {
  4114. /* Else, send delayed ack. */
  4115. tcp_send_delayed_ack(sk);
  4116. }
  4117. }
  4118. static inline void tcp_ack_snd_check(struct sock *sk)
  4119. {
  4120. if (!inet_csk_ack_scheduled(sk)) {
  4121. /* We sent a data segment already. */
  4122. return;
  4123. }
  4124. __tcp_ack_snd_check(sk, 1);
  4125. }
  4126. /*
  4127. * This routine is only called when we have urgent data
  4128. * signaled. Its the 'slow' part of tcp_urg. It could be
  4129. * moved inline now as tcp_urg is only called from one
  4130. * place. We handle URGent data wrong. We have to - as
  4131. * BSD still doesn't use the correction from RFC961.
  4132. * For 1003.1g we should support a new option TCP_STDURG to permit
  4133. * either form (or just set the sysctl tcp_stdurg).
  4134. */
  4135. static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
  4136. {
  4137. struct tcp_sock *tp = tcp_sk(sk);
  4138. u32 ptr = ntohs(th->urg_ptr);
  4139. if (ptr && !sysctl_tcp_stdurg)
  4140. ptr--;
  4141. ptr += ntohl(th->seq);
  4142. /* Ignore urgent data that we've already seen and read. */
  4143. if (after(tp->copied_seq, ptr))
  4144. return;
  4145. /* Do not replay urg ptr.
  4146. *
  4147. * NOTE: interesting situation not covered by specs.
  4148. * Misbehaving sender may send urg ptr, pointing to segment,
  4149. * which we already have in ofo queue. We are not able to fetch
  4150. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4151. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4152. * situations. But it is worth to think about possibility of some
  4153. * DoSes using some hypothetical application level deadlock.
  4154. */
  4155. if (before(ptr, tp->rcv_nxt))
  4156. return;
  4157. /* Do we already have a newer (or duplicate) urgent pointer? */
  4158. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4159. return;
  4160. /* Tell the world about our new urgent pointer. */
  4161. sk_send_sigurg(sk);
  4162. /* We may be adding urgent data when the last byte read was
  4163. * urgent. To do this requires some care. We cannot just ignore
  4164. * tp->copied_seq since we would read the last urgent byte again
  4165. * as data, nor can we alter copied_seq until this data arrives
  4166. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4167. *
  4168. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4169. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4170. * and expect that both A and B disappear from stream. This is _wrong_.
  4171. * Though this happens in BSD with high probability, this is occasional.
  4172. * Any application relying on this is buggy. Note also, that fix "works"
  4173. * only in this artificial test. Insert some normal data between A and B and we will
  4174. * decline of BSD again. Verdict: it is better to remove to trap
  4175. * buggy users.
  4176. */
  4177. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4178. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4179. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4180. tp->copied_seq++;
  4181. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4182. __skb_unlink(skb, &sk->sk_receive_queue);
  4183. __kfree_skb(skb);
  4184. }
  4185. }
  4186. tp->urg_data = TCP_URG_NOTYET;
  4187. tp->urg_seq = ptr;
  4188. /* Disable header prediction. */
  4189. tp->pred_flags = 0;
  4190. }
  4191. /* This is the 'fast' part of urgent handling. */
  4192. static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
  4193. {
  4194. struct tcp_sock *tp = tcp_sk(sk);
  4195. /* Check if we get a new urgent pointer - normally not. */
  4196. if (th->urg)
  4197. tcp_check_urg(sk, th);
  4198. /* Do we wait for any urgent data? - normally not... */
  4199. if (tp->urg_data == TCP_URG_NOTYET) {
  4200. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4201. th->syn;
  4202. /* Is the urgent pointer pointing into this packet? */
  4203. if (ptr < skb->len) {
  4204. u8 tmp;
  4205. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4206. BUG();
  4207. tp->urg_data = TCP_URG_VALID | tmp;
  4208. if (!sock_flag(sk, SOCK_DEAD))
  4209. sk->sk_data_ready(sk, 0);
  4210. }
  4211. }
  4212. }
  4213. static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
  4214. {
  4215. struct tcp_sock *tp = tcp_sk(sk);
  4216. int chunk = skb->len - hlen;
  4217. int err;
  4218. local_bh_enable();
  4219. if (skb_csum_unnecessary(skb))
  4220. err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
  4221. else
  4222. err = skb_copy_and_csum_datagram_iovec(skb, hlen,
  4223. tp->ucopy.iov);
  4224. if (!err) {
  4225. tp->ucopy.len -= chunk;
  4226. tp->copied_seq += chunk;
  4227. tcp_rcv_space_adjust(sk);
  4228. }
  4229. local_bh_disable();
  4230. return err;
  4231. }
  4232. static __sum16 __tcp_checksum_complete_user(struct sock *sk,
  4233. struct sk_buff *skb)
  4234. {
  4235. __sum16 result;
  4236. if (sock_owned_by_user(sk)) {
  4237. local_bh_enable();
  4238. result = __tcp_checksum_complete(skb);
  4239. local_bh_disable();
  4240. } else {
  4241. result = __tcp_checksum_complete(skb);
  4242. }
  4243. return result;
  4244. }
  4245. static inline bool tcp_checksum_complete_user(struct sock *sk,
  4246. struct sk_buff *skb)
  4247. {
  4248. return !skb_csum_unnecessary(skb) &&
  4249. __tcp_checksum_complete_user(sk, skb);
  4250. }
  4251. #ifdef CONFIG_NET_DMA
  4252. static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
  4253. int hlen)
  4254. {
  4255. struct tcp_sock *tp = tcp_sk(sk);
  4256. int chunk = skb->len - hlen;
  4257. int dma_cookie;
  4258. bool copied_early = false;
  4259. if (tp->ucopy.wakeup)
  4260. return false;
  4261. if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
  4262. tp->ucopy.dma_chan = net_dma_find_channel();
  4263. if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
  4264. dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
  4265. skb, hlen,
  4266. tp->ucopy.iov, chunk,
  4267. tp->ucopy.pinned_list);
  4268. if (dma_cookie < 0)
  4269. goto out;
  4270. tp->ucopy.dma_cookie = dma_cookie;
  4271. copied_early = true;
  4272. tp->ucopy.len -= chunk;
  4273. tp->copied_seq += chunk;
  4274. tcp_rcv_space_adjust(sk);
  4275. if ((tp->ucopy.len == 0) ||
  4276. (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
  4277. (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
  4278. tp->ucopy.wakeup = 1;
  4279. sk->sk_data_ready(sk, 0);
  4280. }
  4281. } else if (chunk > 0) {
  4282. tp->ucopy.wakeup = 1;
  4283. sk->sk_data_ready(sk, 0);
  4284. }
  4285. out:
  4286. return copied_early;
  4287. }
  4288. #endif /* CONFIG_NET_DMA */
  4289. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4290. * play significant role here.
  4291. */
  4292. static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4293. const struct tcphdr *th, int syn_inerr)
  4294. {
  4295. struct tcp_sock *tp = tcp_sk(sk);
  4296. /* RFC1323: H1. Apply PAWS check first. */
  4297. if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
  4298. tcp_paws_discard(sk, skb)) {
  4299. if (!th->rst) {
  4300. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4301. tcp_send_dupack(sk, skb);
  4302. goto discard;
  4303. }
  4304. /* Reset is accepted even if it did not pass PAWS. */
  4305. }
  4306. /* Step 1: check sequence number */
  4307. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4308. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4309. * (RST) segments are validated by checking their SEQ-fields."
  4310. * And page 69: "If an incoming segment is not acceptable,
  4311. * an acknowledgment should be sent in reply (unless the RST
  4312. * bit is set, if so drop the segment and return)".
  4313. */
  4314. if (!th->rst) {
  4315. if (th->syn)
  4316. goto syn_challenge;
  4317. tcp_send_dupack(sk, skb);
  4318. }
  4319. goto discard;
  4320. }
  4321. /* Step 2: check RST bit */
  4322. if (th->rst) {
  4323. /* RFC 5961 3.2 :
  4324. * If sequence number exactly matches RCV.NXT, then
  4325. * RESET the connection
  4326. * else
  4327. * Send a challenge ACK
  4328. */
  4329. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
  4330. tcp_reset(sk);
  4331. else
  4332. tcp_send_challenge_ack(sk);
  4333. goto discard;
  4334. }
  4335. /* step 3: check security and precedence [ignored] */
  4336. /* step 4: Check for a SYN
  4337. * RFC 5691 4.2 : Send a challenge ack
  4338. */
  4339. if (th->syn) {
  4340. syn_challenge:
  4341. if (syn_inerr)
  4342. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4343. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
  4344. tcp_send_challenge_ack(sk);
  4345. goto discard;
  4346. }
  4347. return true;
  4348. discard:
  4349. __kfree_skb(skb);
  4350. return false;
  4351. }
  4352. /*
  4353. * TCP receive function for the ESTABLISHED state.
  4354. *
  4355. * It is split into a fast path and a slow path. The fast path is
  4356. * disabled when:
  4357. * - A zero window was announced from us - zero window probing
  4358. * is only handled properly in the slow path.
  4359. * - Out of order segments arrived.
  4360. * - Urgent data is expected.
  4361. * - There is no buffer space left
  4362. * - Unexpected TCP flags/window values/header lengths are received
  4363. * (detected by checking the TCP header against pred_flags)
  4364. * - Data is sent in both directions. Fast path only supports pure senders
  4365. * or pure receivers (this means either the sequence number or the ack
  4366. * value must stay constant)
  4367. * - Unexpected TCP option.
  4368. *
  4369. * When these conditions are not satisfied it drops into a standard
  4370. * receive procedure patterned after RFC793 to handle all cases.
  4371. * The first three cases are guaranteed by proper pred_flags setting,
  4372. * the rest is checked inline. Fast processing is turned on in
  4373. * tcp_data_queue when everything is OK.
  4374. */
  4375. int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4376. const struct tcphdr *th, unsigned int len)
  4377. {
  4378. struct tcp_sock *tp = tcp_sk(sk);
  4379. if (unlikely(sk->sk_rx_dst == NULL))
  4380. inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4381. /*
  4382. * Header prediction.
  4383. * The code loosely follows the one in the famous
  4384. * "30 instruction TCP receive" Van Jacobson mail.
  4385. *
  4386. * Van's trick is to deposit buffers into socket queue
  4387. * on a device interrupt, to call tcp_recv function
  4388. * on the receive process context and checksum and copy
  4389. * the buffer to user space. smart...
  4390. *
  4391. * Our current scheme is not silly either but we take the
  4392. * extra cost of the net_bh soft interrupt processing...
  4393. * We do checksum and copy also but from device to kernel.
  4394. */
  4395. tp->rx_opt.saw_tstamp = 0;
  4396. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4397. * if header_prediction is to be made
  4398. * 'S' will always be tp->tcp_header_len >> 2
  4399. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4400. * turn it off (when there are holes in the receive
  4401. * space for instance)
  4402. * PSH flag is ignored.
  4403. */
  4404. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4405. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4406. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4407. int tcp_header_len = tp->tcp_header_len;
  4408. /* Timestamp header prediction: tcp_header_len
  4409. * is automatically equal to th->doff*4 due to pred_flags
  4410. * match.
  4411. */
  4412. /* Check timestamp */
  4413. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4414. /* No? Slow path! */
  4415. if (!tcp_parse_aligned_timestamp(tp, th))
  4416. goto slow_path;
  4417. /* If PAWS failed, check it more carefully in slow path */
  4418. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4419. goto slow_path;
  4420. /* DO NOT update ts_recent here, if checksum fails
  4421. * and timestamp was corrupted part, it will result
  4422. * in a hung connection since we will drop all
  4423. * future packets due to the PAWS test.
  4424. */
  4425. }
  4426. if (len <= tcp_header_len) {
  4427. /* Bulk data transfer: sender */
  4428. if (len == tcp_header_len) {
  4429. /* Predicted packet is in window by definition.
  4430. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4431. * Hence, check seq<=rcv_wup reduces to:
  4432. */
  4433. if (tcp_header_len ==
  4434. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4435. tp->rcv_nxt == tp->rcv_wup)
  4436. tcp_store_ts_recent(tp);
  4437. /* We know that such packets are checksummed
  4438. * on entry.
  4439. */
  4440. tcp_ack(sk, skb, 0);
  4441. __kfree_skb(skb);
  4442. tcp_data_snd_check(sk);
  4443. return 0;
  4444. } else { /* Header too small */
  4445. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4446. goto discard;
  4447. }
  4448. } else {
  4449. int eaten = 0;
  4450. int copied_early = 0;
  4451. bool fragstolen = false;
  4452. if (tp->copied_seq == tp->rcv_nxt &&
  4453. len - tcp_header_len <= tp->ucopy.len) {
  4454. #ifdef CONFIG_NET_DMA
  4455. if (tp->ucopy.task == current &&
  4456. sock_owned_by_user(sk) &&
  4457. tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
  4458. copied_early = 1;
  4459. eaten = 1;
  4460. }
  4461. #endif
  4462. if (tp->ucopy.task == current &&
  4463. sock_owned_by_user(sk) && !copied_early) {
  4464. __set_current_state(TASK_RUNNING);
  4465. if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
  4466. eaten = 1;
  4467. }
  4468. if (eaten) {
  4469. /* Predicted packet is in window by definition.
  4470. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4471. * Hence, check seq<=rcv_wup reduces to:
  4472. */
  4473. if (tcp_header_len ==
  4474. (sizeof(struct tcphdr) +
  4475. TCPOLEN_TSTAMP_ALIGNED) &&
  4476. tp->rcv_nxt == tp->rcv_wup)
  4477. tcp_store_ts_recent(tp);
  4478. tcp_rcv_rtt_measure_ts(sk, skb);
  4479. __skb_pull(skb, tcp_header_len);
  4480. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4481. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
  4482. }
  4483. if (copied_early)
  4484. tcp_cleanup_rbuf(sk, skb->len);
  4485. }
  4486. if (!eaten) {
  4487. if (tcp_checksum_complete_user(sk, skb))
  4488. goto csum_error;
  4489. if ((int)skb->truesize > sk->sk_forward_alloc)
  4490. goto step5;
  4491. /* Predicted packet is in window by definition.
  4492. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4493. * Hence, check seq<=rcv_wup reduces to:
  4494. */
  4495. if (tcp_header_len ==
  4496. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4497. tp->rcv_nxt == tp->rcv_wup)
  4498. tcp_store_ts_recent(tp);
  4499. tcp_rcv_rtt_measure_ts(sk, skb);
  4500. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4501. /* Bulk data transfer: receiver */
  4502. eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
  4503. &fragstolen);
  4504. }
  4505. tcp_event_data_recv(sk, skb);
  4506. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4507. /* Well, only one small jumplet in fast path... */
  4508. tcp_ack(sk, skb, FLAG_DATA);
  4509. tcp_data_snd_check(sk);
  4510. if (!inet_csk_ack_scheduled(sk))
  4511. goto no_ack;
  4512. }
  4513. if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
  4514. __tcp_ack_snd_check(sk, 0);
  4515. no_ack:
  4516. #ifdef CONFIG_NET_DMA
  4517. if (copied_early)
  4518. __skb_queue_tail(&sk->sk_async_wait_queue, skb);
  4519. else
  4520. #endif
  4521. if (eaten)
  4522. kfree_skb_partial(skb, fragstolen);
  4523. sk->sk_data_ready(sk, 0);
  4524. return 0;
  4525. }
  4526. }
  4527. slow_path:
  4528. if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
  4529. goto csum_error;
  4530. if (!th->ack && !th->rst)
  4531. goto discard;
  4532. /*
  4533. * Standard slow path.
  4534. */
  4535. if (!tcp_validate_incoming(sk, skb, th, 1))
  4536. return 0;
  4537. step5:
  4538. if (tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
  4539. goto discard;
  4540. /* ts_recent update must be made after we are sure that the packet
  4541. * is in window.
  4542. */
  4543. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  4544. tcp_rcv_rtt_measure_ts(sk, skb);
  4545. /* Process urgent data. */
  4546. tcp_urg(sk, skb, th);
  4547. /* step 7: process the segment text */
  4548. tcp_data_queue(sk, skb);
  4549. tcp_data_snd_check(sk);
  4550. tcp_ack_snd_check(sk);
  4551. return 0;
  4552. csum_error:
  4553. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4554. discard:
  4555. __kfree_skb(skb);
  4556. return 0;
  4557. }
  4558. EXPORT_SYMBOL(tcp_rcv_established);
  4559. void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
  4560. {
  4561. struct tcp_sock *tp = tcp_sk(sk);
  4562. struct inet_connection_sock *icsk = inet_csk(sk);
  4563. tcp_set_state(sk, TCP_ESTABLISHED);
  4564. if (skb != NULL) {
  4565. icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4566. security_inet_conn_established(sk, skb);
  4567. }
  4568. /* Make sure socket is routed, for correct metrics. */
  4569. icsk->icsk_af_ops->rebuild_header(sk);
  4570. tcp_init_metrics(sk);
  4571. tcp_init_congestion_control(sk);
  4572. /* Prevent spurious tcp_cwnd_restart() on first data
  4573. * packet.
  4574. */
  4575. tp->lsndtime = tcp_time_stamp;
  4576. tcp_init_buffer_space(sk);
  4577. if (sock_flag(sk, SOCK_KEEPOPEN))
  4578. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4579. if (!tp->rx_opt.snd_wscale)
  4580. __tcp_fast_path_on(tp, tp->snd_wnd);
  4581. else
  4582. tp->pred_flags = 0;
  4583. if (!sock_flag(sk, SOCK_DEAD)) {
  4584. sk->sk_state_change(sk);
  4585. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4586. }
  4587. }
  4588. static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
  4589. struct tcp_fastopen_cookie *cookie)
  4590. {
  4591. struct tcp_sock *tp = tcp_sk(sk);
  4592. struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
  4593. u16 mss = tp->rx_opt.mss_clamp;
  4594. bool syn_drop;
  4595. if (mss == tp->rx_opt.user_mss) {
  4596. struct tcp_options_received opt;
  4597. /* Get original SYNACK MSS value if user MSS sets mss_clamp */
  4598. tcp_clear_options(&opt);
  4599. opt.user_mss = opt.mss_clamp = 0;
  4600. tcp_parse_options(synack, &opt, 0, NULL);
  4601. mss = opt.mss_clamp;
  4602. }
  4603. if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */
  4604. cookie->len = -1;
  4605. /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
  4606. * the remote receives only the retransmitted (regular) SYNs: either
  4607. * the original SYN-data or the corresponding SYN-ACK is lost.
  4608. */
  4609. syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
  4610. tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
  4611. if (data) { /* Retransmit unacked data in SYN */
  4612. tcp_for_write_queue_from(data, sk) {
  4613. if (data == tcp_send_head(sk) ||
  4614. __tcp_retransmit_skb(sk, data))
  4615. break;
  4616. }
  4617. tcp_rearm_rto(sk);
  4618. return true;
  4619. }
  4620. tp->syn_data_acked = tp->syn_data;
  4621. return false;
  4622. }
  4623. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4624. const struct tcphdr *th, unsigned int len)
  4625. {
  4626. struct inet_connection_sock *icsk = inet_csk(sk);
  4627. struct tcp_sock *tp = tcp_sk(sk);
  4628. struct tcp_fastopen_cookie foc = { .len = -1 };
  4629. int saved_clamp = tp->rx_opt.mss_clamp;
  4630. tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
  4631. if (tp->rx_opt.saw_tstamp)
  4632. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  4633. if (th->ack) {
  4634. /* rfc793:
  4635. * "If the state is SYN-SENT then
  4636. * first check the ACK bit
  4637. * If the ACK bit is set
  4638. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4639. * a reset (unless the RST bit is set, if so drop
  4640. * the segment and return)"
  4641. */
  4642. if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
  4643. after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
  4644. goto reset_and_undo;
  4645. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4646. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4647. tcp_time_stamp)) {
  4648. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
  4649. goto reset_and_undo;
  4650. }
  4651. /* Now ACK is acceptable.
  4652. *
  4653. * "If the RST bit is set
  4654. * If the ACK was acceptable then signal the user "error:
  4655. * connection reset", drop the segment, enter CLOSED state,
  4656. * delete TCB, and return."
  4657. */
  4658. if (th->rst) {
  4659. tcp_reset(sk);
  4660. goto discard;
  4661. }
  4662. /* rfc793:
  4663. * "fifth, if neither of the SYN or RST bits is set then
  4664. * drop the segment and return."
  4665. *
  4666. * See note below!
  4667. * --ANK(990513)
  4668. */
  4669. if (!th->syn)
  4670. goto discard_and_undo;
  4671. /* rfc793:
  4672. * "If the SYN bit is on ...
  4673. * are acceptable then ...
  4674. * (our SYN has been ACKed), change the connection
  4675. * state to ESTABLISHED..."
  4676. */
  4677. TCP_ECN_rcv_synack(tp, th);
  4678. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4679. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4680. /* Ok.. it's good. Set up sequence numbers and
  4681. * move to established.
  4682. */
  4683. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4684. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4685. /* RFC1323: The window in SYN & SYN/ACK segments is
  4686. * never scaled.
  4687. */
  4688. tp->snd_wnd = ntohs(th->window);
  4689. if (!tp->rx_opt.wscale_ok) {
  4690. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4691. tp->window_clamp = min(tp->window_clamp, 65535U);
  4692. }
  4693. if (tp->rx_opt.saw_tstamp) {
  4694. tp->rx_opt.tstamp_ok = 1;
  4695. tp->tcp_header_len =
  4696. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4697. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4698. tcp_store_ts_recent(tp);
  4699. } else {
  4700. tp->tcp_header_len = sizeof(struct tcphdr);
  4701. }
  4702. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  4703. tcp_enable_fack(tp);
  4704. tcp_mtup_init(sk);
  4705. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4706. tcp_initialize_rcv_mss(sk);
  4707. /* Remember, tcp_poll() does not lock socket!
  4708. * Change state from SYN-SENT only after copied_seq
  4709. * is initialized. */
  4710. tp->copied_seq = tp->rcv_nxt;
  4711. smp_mb();
  4712. tcp_finish_connect(sk, skb);
  4713. if ((tp->syn_fastopen || tp->syn_data) &&
  4714. tcp_rcv_fastopen_synack(sk, skb, &foc))
  4715. return -1;
  4716. if (sk->sk_write_pending ||
  4717. icsk->icsk_accept_queue.rskq_defer_accept ||
  4718. icsk->icsk_ack.pingpong) {
  4719. /* Save one ACK. Data will be ready after
  4720. * several ticks, if write_pending is set.
  4721. *
  4722. * It may be deleted, but with this feature tcpdumps
  4723. * look so _wonderfully_ clever, that I was not able
  4724. * to stand against the temptation 8) --ANK
  4725. */
  4726. inet_csk_schedule_ack(sk);
  4727. icsk->icsk_ack.lrcvtime = tcp_time_stamp;
  4728. tcp_enter_quickack_mode(sk);
  4729. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  4730. TCP_DELACK_MAX, TCP_RTO_MAX);
  4731. discard:
  4732. __kfree_skb(skb);
  4733. return 0;
  4734. } else {
  4735. tcp_send_ack(sk);
  4736. }
  4737. return -1;
  4738. }
  4739. /* No ACK in the segment */
  4740. if (th->rst) {
  4741. /* rfc793:
  4742. * "If the RST bit is set
  4743. *
  4744. * Otherwise (no ACK) drop the segment and return."
  4745. */
  4746. goto discard_and_undo;
  4747. }
  4748. /* PAWS check. */
  4749. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  4750. tcp_paws_reject(&tp->rx_opt, 0))
  4751. goto discard_and_undo;
  4752. if (th->syn) {
  4753. /* We see SYN without ACK. It is attempt of
  4754. * simultaneous connect with crossed SYNs.
  4755. * Particularly, it can be connect to self.
  4756. */
  4757. tcp_set_state(sk, TCP_SYN_RECV);
  4758. if (tp->rx_opt.saw_tstamp) {
  4759. tp->rx_opt.tstamp_ok = 1;
  4760. tcp_store_ts_recent(tp);
  4761. tp->tcp_header_len =
  4762. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4763. } else {
  4764. tp->tcp_header_len = sizeof(struct tcphdr);
  4765. }
  4766. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4767. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4768. /* RFC1323: The window in SYN & SYN/ACK segments is
  4769. * never scaled.
  4770. */
  4771. tp->snd_wnd = ntohs(th->window);
  4772. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4773. tp->max_window = tp->snd_wnd;
  4774. TCP_ECN_rcv_syn(tp, th);
  4775. tcp_mtup_init(sk);
  4776. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4777. tcp_initialize_rcv_mss(sk);
  4778. tcp_send_synack(sk);
  4779. #if 0
  4780. /* Note, we could accept data and URG from this segment.
  4781. * There are no obstacles to make this (except that we must
  4782. * either change tcp_recvmsg() to prevent it from returning data
  4783. * before 3WHS completes per RFC793, or employ TCP Fast Open).
  4784. *
  4785. * However, if we ignore data in ACKless segments sometimes,
  4786. * we have no reasons to accept it sometimes.
  4787. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  4788. * is not flawless. So, discard packet for sanity.
  4789. * Uncomment this return to process the data.
  4790. */
  4791. return -1;
  4792. #else
  4793. goto discard;
  4794. #endif
  4795. }
  4796. /* "fifth, if neither of the SYN or RST bits is set then
  4797. * drop the segment and return."
  4798. */
  4799. discard_and_undo:
  4800. tcp_clear_options(&tp->rx_opt);
  4801. tp->rx_opt.mss_clamp = saved_clamp;
  4802. goto discard;
  4803. reset_and_undo:
  4804. tcp_clear_options(&tp->rx_opt);
  4805. tp->rx_opt.mss_clamp = saved_clamp;
  4806. return 1;
  4807. }
  4808. /*
  4809. * This function implements the receiving procedure of RFC 793 for
  4810. * all states except ESTABLISHED and TIME_WAIT.
  4811. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  4812. * address independent.
  4813. */
  4814. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
  4815. const struct tcphdr *th, unsigned int len)
  4816. {
  4817. struct tcp_sock *tp = tcp_sk(sk);
  4818. struct inet_connection_sock *icsk = inet_csk(sk);
  4819. struct request_sock *req;
  4820. int queued = 0;
  4821. tp->rx_opt.saw_tstamp = 0;
  4822. switch (sk->sk_state) {
  4823. case TCP_CLOSE:
  4824. goto discard;
  4825. case TCP_LISTEN:
  4826. if (th->ack)
  4827. return 1;
  4828. if (th->rst)
  4829. goto discard;
  4830. if (th->syn) {
  4831. if (th->fin)
  4832. goto discard;
  4833. if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
  4834. return 1;
  4835. /* Now we have several options: In theory there is
  4836. * nothing else in the frame. KA9Q has an option to
  4837. * send data with the syn, BSD accepts data with the
  4838. * syn up to the [to be] advertised window and
  4839. * Solaris 2.1 gives you a protocol error. For now
  4840. * we just ignore it, that fits the spec precisely
  4841. * and avoids incompatibilities. It would be nice in
  4842. * future to drop through and process the data.
  4843. *
  4844. * Now that TTCP is starting to be used we ought to
  4845. * queue this data.
  4846. * But, this leaves one open to an easy denial of
  4847. * service attack, and SYN cookies can't defend
  4848. * against this problem. So, we drop the data
  4849. * in the interest of security over speed unless
  4850. * it's still in use.
  4851. */
  4852. kfree_skb(skb);
  4853. return 0;
  4854. }
  4855. goto discard;
  4856. case TCP_SYN_SENT:
  4857. queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
  4858. if (queued >= 0)
  4859. return queued;
  4860. /* Do step6 onward by hand. */
  4861. tcp_urg(sk, skb, th);
  4862. __kfree_skb(skb);
  4863. tcp_data_snd_check(sk);
  4864. return 0;
  4865. }
  4866. req = tp->fastopen_rsk;
  4867. if (req != NULL) {
  4868. WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
  4869. sk->sk_state != TCP_FIN_WAIT1);
  4870. if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
  4871. goto discard;
  4872. }
  4873. if (!th->ack && !th->rst)
  4874. goto discard;
  4875. if (!tcp_validate_incoming(sk, skb, th, 0))
  4876. return 0;
  4877. /* step 5: check the ACK field */
  4878. if (true) {
  4879. int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
  4880. switch (sk->sk_state) {
  4881. case TCP_SYN_RECV:
  4882. if (acceptable) {
  4883. /* Once we leave TCP_SYN_RECV, we no longer
  4884. * need req so release it.
  4885. */
  4886. if (req) {
  4887. tcp_synack_rtt_meas(sk, req);
  4888. tp->total_retrans = req->num_retrans;
  4889. reqsk_fastopen_remove(sk, req, false);
  4890. } else {
  4891. /* Make sure socket is routed, for
  4892. * correct metrics.
  4893. */
  4894. icsk->icsk_af_ops->rebuild_header(sk);
  4895. tcp_init_congestion_control(sk);
  4896. tcp_mtup_init(sk);
  4897. tcp_init_buffer_space(sk);
  4898. tp->copied_seq = tp->rcv_nxt;
  4899. }
  4900. smp_mb();
  4901. tcp_set_state(sk, TCP_ESTABLISHED);
  4902. sk->sk_state_change(sk);
  4903. /* Note, that this wakeup is only for marginal
  4904. * crossed SYN case. Passively open sockets
  4905. * are not waked up, because sk->sk_sleep ==
  4906. * NULL and sk->sk_socket == NULL.
  4907. */
  4908. if (sk->sk_socket)
  4909. sk_wake_async(sk,
  4910. SOCK_WAKE_IO, POLL_OUT);
  4911. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  4912. tp->snd_wnd = ntohs(th->window) <<
  4913. tp->rx_opt.snd_wscale;
  4914. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4915. if (tp->rx_opt.tstamp_ok)
  4916. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4917. if (req) {
  4918. /* Re-arm the timer because data may
  4919. * have been sent out. This is similar
  4920. * to the regular data transmission case
  4921. * when new data has just been ack'ed.
  4922. *
  4923. * (TFO) - we could try to be more
  4924. * aggressive and retranmitting any data
  4925. * sooner based on when they were sent
  4926. * out.
  4927. */
  4928. tcp_rearm_rto(sk);
  4929. } else
  4930. tcp_init_metrics(sk);
  4931. /* Prevent spurious tcp_cwnd_restart() on
  4932. * first data packet.
  4933. */
  4934. tp->lsndtime = tcp_time_stamp;
  4935. tcp_initialize_rcv_mss(sk);
  4936. tcp_fast_path_on(tp);
  4937. } else {
  4938. return 1;
  4939. }
  4940. break;
  4941. case TCP_FIN_WAIT1:
  4942. /* If we enter the TCP_FIN_WAIT1 state and we are a
  4943. * Fast Open socket and this is the first acceptable
  4944. * ACK we have received, this would have acknowledged
  4945. * our SYNACK so stop the SYNACK timer.
  4946. */
  4947. if (req != NULL) {
  4948. /* Return RST if ack_seq is invalid.
  4949. * Note that RFC793 only says to generate a
  4950. * DUPACK for it but for TCP Fast Open it seems
  4951. * better to treat this case like TCP_SYN_RECV
  4952. * above.
  4953. */
  4954. if (!acceptable)
  4955. return 1;
  4956. /* We no longer need the request sock. */
  4957. reqsk_fastopen_remove(sk, req, false);
  4958. tcp_rearm_rto(sk);
  4959. }
  4960. if (tp->snd_una == tp->write_seq) {
  4961. struct dst_entry *dst;
  4962. tcp_set_state(sk, TCP_FIN_WAIT2);
  4963. sk->sk_shutdown |= SEND_SHUTDOWN;
  4964. dst = __sk_dst_get(sk);
  4965. if (dst)
  4966. dst_confirm(dst);
  4967. if (!sock_flag(sk, SOCK_DEAD))
  4968. /* Wake up lingering close() */
  4969. sk->sk_state_change(sk);
  4970. else {
  4971. int tmo;
  4972. if (tp->linger2 < 0 ||
  4973. (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  4974. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
  4975. tcp_done(sk);
  4976. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  4977. return 1;
  4978. }
  4979. tmo = tcp_fin_time(sk);
  4980. if (tmo > TCP_TIMEWAIT_LEN) {
  4981. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  4982. } else if (th->fin || sock_owned_by_user(sk)) {
  4983. /* Bad case. We could lose such FIN otherwise.
  4984. * It is not a big problem, but it looks confusing
  4985. * and not so rare event. We still can lose it now,
  4986. * if it spins in bh_lock_sock(), but it is really
  4987. * marginal case.
  4988. */
  4989. inet_csk_reset_keepalive_timer(sk, tmo);
  4990. } else {
  4991. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  4992. goto discard;
  4993. }
  4994. }
  4995. }
  4996. break;
  4997. case TCP_CLOSING:
  4998. if (tp->snd_una == tp->write_seq) {
  4999. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  5000. goto discard;
  5001. }
  5002. break;
  5003. case TCP_LAST_ACK:
  5004. if (tp->snd_una == tp->write_seq) {
  5005. tcp_update_metrics(sk);
  5006. tcp_done(sk);
  5007. goto discard;
  5008. }
  5009. break;
  5010. }
  5011. }
  5012. /* ts_recent update must be made after we are sure that the packet
  5013. * is in window.
  5014. */
  5015. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  5016. /* step 6: check the URG bit */
  5017. tcp_urg(sk, skb, th);
  5018. /* step 7: process the segment text */
  5019. switch (sk->sk_state) {
  5020. case TCP_CLOSE_WAIT:
  5021. case TCP_CLOSING:
  5022. case TCP_LAST_ACK:
  5023. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  5024. break;
  5025. case TCP_FIN_WAIT1:
  5026. case TCP_FIN_WAIT2:
  5027. /* RFC 793 says to queue data in these states,
  5028. * RFC 1122 says we MUST send a reset.
  5029. * BSD 4.4 also does reset.
  5030. */
  5031. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5032. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5033. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5034. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5035. tcp_reset(sk);
  5036. return 1;
  5037. }
  5038. }
  5039. /* Fall through */
  5040. case TCP_ESTABLISHED:
  5041. tcp_data_queue(sk, skb);
  5042. queued = 1;
  5043. break;
  5044. }
  5045. /* tcp_data could move socket to TIME-WAIT */
  5046. if (sk->sk_state != TCP_CLOSE) {
  5047. tcp_data_snd_check(sk);
  5048. tcp_ack_snd_check(sk);
  5049. }
  5050. if (!queued) {
  5051. discard:
  5052. __kfree_skb(skb);
  5053. }
  5054. return 0;
  5055. }
  5056. EXPORT_SYMBOL(tcp_rcv_state_process);