sched.c 219 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_event.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/stop_machine.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <linux/slab.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include "sched_cpupri.h"
  77. #include "workqueue_sched.h"
  78. #define CREATE_TRACE_POINTS
  79. #include <trace/events/sched.h>
  80. /*
  81. * Convert user-nice values [ -20 ... 0 ... 19 ]
  82. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  83. * and back.
  84. */
  85. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  86. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  87. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  88. /*
  89. * 'User priority' is the nice value converted to something we
  90. * can work with better when scaling various scheduler parameters,
  91. * it's a [ 0 ... 39 ] range.
  92. */
  93. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  94. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  95. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  96. /*
  97. * Helpers for converting nanosecond timing to jiffy resolution
  98. */
  99. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  100. #define NICE_0_LOAD SCHED_LOAD_SCALE
  101. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  102. /*
  103. * These are the 'tuning knobs' of the scheduler:
  104. *
  105. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  106. * Timeslices get refilled after they expire.
  107. */
  108. #define DEF_TIMESLICE (100 * HZ / 1000)
  109. /*
  110. * single value that denotes runtime == period, ie unlimited time.
  111. */
  112. #define RUNTIME_INF ((u64)~0ULL)
  113. static inline int rt_policy(int policy)
  114. {
  115. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  116. return 1;
  117. return 0;
  118. }
  119. static inline int task_has_rt_policy(struct task_struct *p)
  120. {
  121. return rt_policy(p->policy);
  122. }
  123. /*
  124. * This is the priority-queue data structure of the RT scheduling class:
  125. */
  126. struct rt_prio_array {
  127. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  128. struct list_head queue[MAX_RT_PRIO];
  129. };
  130. struct rt_bandwidth {
  131. /* nests inside the rq lock: */
  132. raw_spinlock_t rt_runtime_lock;
  133. ktime_t rt_period;
  134. u64 rt_runtime;
  135. struct hrtimer rt_period_timer;
  136. };
  137. static struct rt_bandwidth def_rt_bandwidth;
  138. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  139. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  140. {
  141. struct rt_bandwidth *rt_b =
  142. container_of(timer, struct rt_bandwidth, rt_period_timer);
  143. ktime_t now;
  144. int overrun;
  145. int idle = 0;
  146. for (;;) {
  147. now = hrtimer_cb_get_time(timer);
  148. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  149. if (!overrun)
  150. break;
  151. idle = do_sched_rt_period_timer(rt_b, overrun);
  152. }
  153. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  154. }
  155. static
  156. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  157. {
  158. rt_b->rt_period = ns_to_ktime(period);
  159. rt_b->rt_runtime = runtime;
  160. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  161. hrtimer_init(&rt_b->rt_period_timer,
  162. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  163. rt_b->rt_period_timer.function = sched_rt_period_timer;
  164. }
  165. static inline int rt_bandwidth_enabled(void)
  166. {
  167. return sysctl_sched_rt_runtime >= 0;
  168. }
  169. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  170. {
  171. ktime_t now;
  172. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  173. return;
  174. if (hrtimer_active(&rt_b->rt_period_timer))
  175. return;
  176. raw_spin_lock(&rt_b->rt_runtime_lock);
  177. for (;;) {
  178. unsigned long delta;
  179. ktime_t soft, hard;
  180. if (hrtimer_active(&rt_b->rt_period_timer))
  181. break;
  182. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  183. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  184. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  185. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  186. delta = ktime_to_ns(ktime_sub(hard, soft));
  187. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  188. HRTIMER_MODE_ABS_PINNED, 0);
  189. }
  190. raw_spin_unlock(&rt_b->rt_runtime_lock);
  191. }
  192. #ifdef CONFIG_RT_GROUP_SCHED
  193. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  194. {
  195. hrtimer_cancel(&rt_b->rt_period_timer);
  196. }
  197. #endif
  198. /*
  199. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  200. * detach_destroy_domains and partition_sched_domains.
  201. */
  202. static DEFINE_MUTEX(sched_domains_mutex);
  203. #ifdef CONFIG_CGROUP_SCHED
  204. #include <linux/cgroup.h>
  205. struct cfs_rq;
  206. static LIST_HEAD(task_groups);
  207. /* task group related information */
  208. struct task_group {
  209. struct cgroup_subsys_state css;
  210. #ifdef CONFIG_FAIR_GROUP_SCHED
  211. /* schedulable entities of this group on each cpu */
  212. struct sched_entity **se;
  213. /* runqueue "owned" by this group on each cpu */
  214. struct cfs_rq **cfs_rq;
  215. unsigned long shares;
  216. atomic_t load_weight;
  217. #endif
  218. #ifdef CONFIG_RT_GROUP_SCHED
  219. struct sched_rt_entity **rt_se;
  220. struct rt_rq **rt_rq;
  221. struct rt_bandwidth rt_bandwidth;
  222. #endif
  223. struct rcu_head rcu;
  224. struct list_head list;
  225. struct task_group *parent;
  226. struct list_head siblings;
  227. struct list_head children;
  228. };
  229. #define root_task_group init_task_group
  230. /* task_group_lock serializes the addition/removal of task groups */
  231. static DEFINE_SPINLOCK(task_group_lock);
  232. #ifdef CONFIG_FAIR_GROUP_SCHED
  233. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  234. /*
  235. * A weight of 0 or 1 can cause arithmetics problems.
  236. * A weight of a cfs_rq is the sum of weights of which entities
  237. * are queued on this cfs_rq, so a weight of a entity should not be
  238. * too large, so as the shares value of a task group.
  239. * (The default weight is 1024 - so there's no practical
  240. * limitation from this.)
  241. */
  242. #define MIN_SHARES 2
  243. #define MAX_SHARES (1UL << 18)
  244. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  245. #endif
  246. /* Default task group.
  247. * Every task in system belong to this group at bootup.
  248. */
  249. struct task_group init_task_group;
  250. #endif /* CONFIG_CGROUP_SCHED */
  251. /* CFS-related fields in a runqueue */
  252. struct cfs_rq {
  253. struct load_weight load;
  254. unsigned long nr_running;
  255. u64 exec_clock;
  256. u64 min_vruntime;
  257. struct rb_root tasks_timeline;
  258. struct rb_node *rb_leftmost;
  259. struct list_head tasks;
  260. struct list_head *balance_iterator;
  261. /*
  262. * 'curr' points to currently running entity on this cfs_rq.
  263. * It is set to NULL otherwise (i.e when none are currently running).
  264. */
  265. struct sched_entity *curr, *next, *last;
  266. unsigned int nr_spread_over;
  267. #ifdef CONFIG_FAIR_GROUP_SCHED
  268. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  269. /*
  270. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  271. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  272. * (like users, containers etc.)
  273. *
  274. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  275. * list is used during load balance.
  276. */
  277. int on_list;
  278. struct list_head leaf_cfs_rq_list;
  279. struct task_group *tg; /* group that "owns" this runqueue */
  280. #ifdef CONFIG_SMP
  281. /*
  282. * the part of load.weight contributed by tasks
  283. */
  284. unsigned long task_weight;
  285. /*
  286. * h_load = weight * f(tg)
  287. *
  288. * Where f(tg) is the recursive weight fraction assigned to
  289. * this group.
  290. */
  291. unsigned long h_load;
  292. u64 load_avg;
  293. u64 load_period;
  294. u64 load_stamp, load_last;
  295. unsigned long load_contribution;
  296. #endif
  297. #endif
  298. };
  299. /* Real-Time classes' related field in a runqueue: */
  300. struct rt_rq {
  301. struct rt_prio_array active;
  302. unsigned long rt_nr_running;
  303. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  304. struct {
  305. int curr; /* highest queued rt task prio */
  306. #ifdef CONFIG_SMP
  307. int next; /* next highest */
  308. #endif
  309. } highest_prio;
  310. #endif
  311. #ifdef CONFIG_SMP
  312. unsigned long rt_nr_migratory;
  313. unsigned long rt_nr_total;
  314. int overloaded;
  315. struct plist_head pushable_tasks;
  316. #endif
  317. int rt_throttled;
  318. u64 rt_time;
  319. u64 rt_runtime;
  320. /* Nests inside the rq lock: */
  321. raw_spinlock_t rt_runtime_lock;
  322. #ifdef CONFIG_RT_GROUP_SCHED
  323. unsigned long rt_nr_boosted;
  324. struct rq *rq;
  325. struct list_head leaf_rt_rq_list;
  326. struct task_group *tg;
  327. #endif
  328. };
  329. #ifdef CONFIG_SMP
  330. /*
  331. * We add the notion of a root-domain which will be used to define per-domain
  332. * variables. Each exclusive cpuset essentially defines an island domain by
  333. * fully partitioning the member cpus from any other cpuset. Whenever a new
  334. * exclusive cpuset is created, we also create and attach a new root-domain
  335. * object.
  336. *
  337. */
  338. struct root_domain {
  339. atomic_t refcount;
  340. cpumask_var_t span;
  341. cpumask_var_t online;
  342. /*
  343. * The "RT overload" flag: it gets set if a CPU has more than
  344. * one runnable RT task.
  345. */
  346. cpumask_var_t rto_mask;
  347. atomic_t rto_count;
  348. struct cpupri cpupri;
  349. };
  350. /*
  351. * By default the system creates a single root-domain with all cpus as
  352. * members (mimicking the global state we have today).
  353. */
  354. static struct root_domain def_root_domain;
  355. #endif /* CONFIG_SMP */
  356. /*
  357. * This is the main, per-CPU runqueue data structure.
  358. *
  359. * Locking rule: those places that want to lock multiple runqueues
  360. * (such as the load balancing or the thread migration code), lock
  361. * acquire operations must be ordered by ascending &runqueue.
  362. */
  363. struct rq {
  364. /* runqueue lock: */
  365. raw_spinlock_t lock;
  366. /*
  367. * nr_running and cpu_load should be in the same cacheline because
  368. * remote CPUs use both these fields when doing load calculation.
  369. */
  370. unsigned long nr_running;
  371. #define CPU_LOAD_IDX_MAX 5
  372. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  373. unsigned long last_load_update_tick;
  374. #ifdef CONFIG_NO_HZ
  375. u64 nohz_stamp;
  376. unsigned char nohz_balance_kick;
  377. #endif
  378. unsigned int skip_clock_update;
  379. /* capture load from *all* tasks on this cpu: */
  380. struct load_weight load;
  381. unsigned long nr_load_updates;
  382. u64 nr_switches;
  383. struct cfs_rq cfs;
  384. struct rt_rq rt;
  385. #ifdef CONFIG_FAIR_GROUP_SCHED
  386. /* list of leaf cfs_rq on this cpu: */
  387. struct list_head leaf_cfs_rq_list;
  388. #endif
  389. #ifdef CONFIG_RT_GROUP_SCHED
  390. struct list_head leaf_rt_rq_list;
  391. #endif
  392. /*
  393. * This is part of a global counter where only the total sum
  394. * over all CPUs matters. A task can increase this counter on
  395. * one CPU and if it got migrated afterwards it may decrease
  396. * it on another CPU. Always updated under the runqueue lock:
  397. */
  398. unsigned long nr_uninterruptible;
  399. struct task_struct *curr, *idle, *stop;
  400. unsigned long next_balance;
  401. struct mm_struct *prev_mm;
  402. u64 clock;
  403. u64 clock_task;
  404. atomic_t nr_iowait;
  405. #ifdef CONFIG_SMP
  406. struct root_domain *rd;
  407. struct sched_domain *sd;
  408. unsigned long cpu_power;
  409. unsigned char idle_at_tick;
  410. /* For active balancing */
  411. int post_schedule;
  412. int active_balance;
  413. int push_cpu;
  414. struct cpu_stop_work active_balance_work;
  415. /* cpu of this runqueue: */
  416. int cpu;
  417. int online;
  418. unsigned long avg_load_per_task;
  419. u64 rt_avg;
  420. u64 age_stamp;
  421. u64 idle_stamp;
  422. u64 avg_idle;
  423. #endif
  424. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  425. u64 prev_irq_time;
  426. #endif
  427. /* calc_load related fields */
  428. unsigned long calc_load_update;
  429. long calc_load_active;
  430. #ifdef CONFIG_SCHED_HRTICK
  431. #ifdef CONFIG_SMP
  432. int hrtick_csd_pending;
  433. struct call_single_data hrtick_csd;
  434. #endif
  435. struct hrtimer hrtick_timer;
  436. #endif
  437. #ifdef CONFIG_SCHEDSTATS
  438. /* latency stats */
  439. struct sched_info rq_sched_info;
  440. unsigned long long rq_cpu_time;
  441. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  442. /* sys_sched_yield() stats */
  443. unsigned int yld_count;
  444. /* schedule() stats */
  445. unsigned int sched_switch;
  446. unsigned int sched_count;
  447. unsigned int sched_goidle;
  448. /* try_to_wake_up() stats */
  449. unsigned int ttwu_count;
  450. unsigned int ttwu_local;
  451. /* BKL stats */
  452. unsigned int bkl_count;
  453. #endif
  454. };
  455. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  456. static inline
  457. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  458. {
  459. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  460. /*
  461. * A queue event has occurred, and we're going to schedule. In
  462. * this case, we can save a useless back to back clock update.
  463. */
  464. if (test_tsk_need_resched(p))
  465. rq->skip_clock_update = 1;
  466. }
  467. static inline int cpu_of(struct rq *rq)
  468. {
  469. #ifdef CONFIG_SMP
  470. return rq->cpu;
  471. #else
  472. return 0;
  473. #endif
  474. }
  475. #define rcu_dereference_check_sched_domain(p) \
  476. rcu_dereference_check((p), \
  477. rcu_read_lock_sched_held() || \
  478. lockdep_is_held(&sched_domains_mutex))
  479. /*
  480. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  481. * See detach_destroy_domains: synchronize_sched for details.
  482. *
  483. * The domain tree of any CPU may only be accessed from within
  484. * preempt-disabled sections.
  485. */
  486. #define for_each_domain(cpu, __sd) \
  487. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  488. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  489. #define this_rq() (&__get_cpu_var(runqueues))
  490. #define task_rq(p) cpu_rq(task_cpu(p))
  491. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  492. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  493. #ifdef CONFIG_CGROUP_SCHED
  494. /*
  495. * Return the group to which this tasks belongs.
  496. *
  497. * We use task_subsys_state_check() and extend the RCU verification
  498. * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
  499. * holds that lock for each task it moves into the cgroup. Therefore
  500. * by holding that lock, we pin the task to the current cgroup.
  501. */
  502. static inline struct task_group *task_group(struct task_struct *p)
  503. {
  504. struct cgroup_subsys_state *css;
  505. css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
  506. lockdep_is_held(&task_rq(p)->lock));
  507. return container_of(css, struct task_group, css);
  508. }
  509. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  510. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  511. {
  512. #ifdef CONFIG_FAIR_GROUP_SCHED
  513. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  514. p->se.parent = task_group(p)->se[cpu];
  515. #endif
  516. #ifdef CONFIG_RT_GROUP_SCHED
  517. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  518. p->rt.parent = task_group(p)->rt_se[cpu];
  519. #endif
  520. }
  521. #else /* CONFIG_CGROUP_SCHED */
  522. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  523. static inline struct task_group *task_group(struct task_struct *p)
  524. {
  525. return NULL;
  526. }
  527. #endif /* CONFIG_CGROUP_SCHED */
  528. static u64 irq_time_cpu(int cpu);
  529. static void sched_irq_time_avg_update(struct rq *rq, u64 irq_time);
  530. inline void update_rq_clock(struct rq *rq)
  531. {
  532. if (!rq->skip_clock_update) {
  533. int cpu = cpu_of(rq);
  534. u64 irq_time;
  535. rq->clock = sched_clock_cpu(cpu);
  536. irq_time = irq_time_cpu(cpu);
  537. if (rq->clock - irq_time > rq->clock_task)
  538. rq->clock_task = rq->clock - irq_time;
  539. sched_irq_time_avg_update(rq, irq_time);
  540. }
  541. }
  542. /*
  543. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  544. */
  545. #ifdef CONFIG_SCHED_DEBUG
  546. # define const_debug __read_mostly
  547. #else
  548. # define const_debug static const
  549. #endif
  550. /**
  551. * runqueue_is_locked
  552. * @cpu: the processor in question.
  553. *
  554. * Returns true if the current cpu runqueue is locked.
  555. * This interface allows printk to be called with the runqueue lock
  556. * held and know whether or not it is OK to wake up the klogd.
  557. */
  558. int runqueue_is_locked(int cpu)
  559. {
  560. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  561. }
  562. /*
  563. * Debugging: various feature bits
  564. */
  565. #define SCHED_FEAT(name, enabled) \
  566. __SCHED_FEAT_##name ,
  567. enum {
  568. #include "sched_features.h"
  569. };
  570. #undef SCHED_FEAT
  571. #define SCHED_FEAT(name, enabled) \
  572. (1UL << __SCHED_FEAT_##name) * enabled |
  573. const_debug unsigned int sysctl_sched_features =
  574. #include "sched_features.h"
  575. 0;
  576. #undef SCHED_FEAT
  577. #ifdef CONFIG_SCHED_DEBUG
  578. #define SCHED_FEAT(name, enabled) \
  579. #name ,
  580. static __read_mostly char *sched_feat_names[] = {
  581. #include "sched_features.h"
  582. NULL
  583. };
  584. #undef SCHED_FEAT
  585. static int sched_feat_show(struct seq_file *m, void *v)
  586. {
  587. int i;
  588. for (i = 0; sched_feat_names[i]; i++) {
  589. if (!(sysctl_sched_features & (1UL << i)))
  590. seq_puts(m, "NO_");
  591. seq_printf(m, "%s ", sched_feat_names[i]);
  592. }
  593. seq_puts(m, "\n");
  594. return 0;
  595. }
  596. static ssize_t
  597. sched_feat_write(struct file *filp, const char __user *ubuf,
  598. size_t cnt, loff_t *ppos)
  599. {
  600. char buf[64];
  601. char *cmp;
  602. int neg = 0;
  603. int i;
  604. if (cnt > 63)
  605. cnt = 63;
  606. if (copy_from_user(&buf, ubuf, cnt))
  607. return -EFAULT;
  608. buf[cnt] = 0;
  609. cmp = strstrip(buf);
  610. if (strncmp(buf, "NO_", 3) == 0) {
  611. neg = 1;
  612. cmp += 3;
  613. }
  614. for (i = 0; sched_feat_names[i]; i++) {
  615. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  616. if (neg)
  617. sysctl_sched_features &= ~(1UL << i);
  618. else
  619. sysctl_sched_features |= (1UL << i);
  620. break;
  621. }
  622. }
  623. if (!sched_feat_names[i])
  624. return -EINVAL;
  625. *ppos += cnt;
  626. return cnt;
  627. }
  628. static int sched_feat_open(struct inode *inode, struct file *filp)
  629. {
  630. return single_open(filp, sched_feat_show, NULL);
  631. }
  632. static const struct file_operations sched_feat_fops = {
  633. .open = sched_feat_open,
  634. .write = sched_feat_write,
  635. .read = seq_read,
  636. .llseek = seq_lseek,
  637. .release = single_release,
  638. };
  639. static __init int sched_init_debug(void)
  640. {
  641. debugfs_create_file("sched_features", 0644, NULL, NULL,
  642. &sched_feat_fops);
  643. return 0;
  644. }
  645. late_initcall(sched_init_debug);
  646. #endif
  647. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  648. /*
  649. * Number of tasks to iterate in a single balance run.
  650. * Limited because this is done with IRQs disabled.
  651. */
  652. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  653. /*
  654. * period over which we average the RT time consumption, measured
  655. * in ms.
  656. *
  657. * default: 1s
  658. */
  659. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  660. /*
  661. * period over which we measure -rt task cpu usage in us.
  662. * default: 1s
  663. */
  664. unsigned int sysctl_sched_rt_period = 1000000;
  665. static __read_mostly int scheduler_running;
  666. /*
  667. * part of the period that we allow rt tasks to run in us.
  668. * default: 0.95s
  669. */
  670. int sysctl_sched_rt_runtime = 950000;
  671. static inline u64 global_rt_period(void)
  672. {
  673. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  674. }
  675. static inline u64 global_rt_runtime(void)
  676. {
  677. if (sysctl_sched_rt_runtime < 0)
  678. return RUNTIME_INF;
  679. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  680. }
  681. #ifndef prepare_arch_switch
  682. # define prepare_arch_switch(next) do { } while (0)
  683. #endif
  684. #ifndef finish_arch_switch
  685. # define finish_arch_switch(prev) do { } while (0)
  686. #endif
  687. static inline int task_current(struct rq *rq, struct task_struct *p)
  688. {
  689. return rq->curr == p;
  690. }
  691. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  692. static inline int task_running(struct rq *rq, struct task_struct *p)
  693. {
  694. return task_current(rq, p);
  695. }
  696. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  697. {
  698. }
  699. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  700. {
  701. #ifdef CONFIG_DEBUG_SPINLOCK
  702. /* this is a valid case when another task releases the spinlock */
  703. rq->lock.owner = current;
  704. #endif
  705. /*
  706. * If we are tracking spinlock dependencies then we have to
  707. * fix up the runqueue lock - which gets 'carried over' from
  708. * prev into current:
  709. */
  710. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  711. raw_spin_unlock_irq(&rq->lock);
  712. }
  713. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  714. static inline int task_running(struct rq *rq, struct task_struct *p)
  715. {
  716. #ifdef CONFIG_SMP
  717. return p->oncpu;
  718. #else
  719. return task_current(rq, p);
  720. #endif
  721. }
  722. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  723. {
  724. #ifdef CONFIG_SMP
  725. /*
  726. * We can optimise this out completely for !SMP, because the
  727. * SMP rebalancing from interrupt is the only thing that cares
  728. * here.
  729. */
  730. next->oncpu = 1;
  731. #endif
  732. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  733. raw_spin_unlock_irq(&rq->lock);
  734. #else
  735. raw_spin_unlock(&rq->lock);
  736. #endif
  737. }
  738. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  739. {
  740. #ifdef CONFIG_SMP
  741. /*
  742. * After ->oncpu is cleared, the task can be moved to a different CPU.
  743. * We must ensure this doesn't happen until the switch is completely
  744. * finished.
  745. */
  746. smp_wmb();
  747. prev->oncpu = 0;
  748. #endif
  749. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  750. local_irq_enable();
  751. #endif
  752. }
  753. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  754. /*
  755. * Check whether the task is waking, we use this to synchronize ->cpus_allowed
  756. * against ttwu().
  757. */
  758. static inline int task_is_waking(struct task_struct *p)
  759. {
  760. return unlikely(p->state == TASK_WAKING);
  761. }
  762. /*
  763. * __task_rq_lock - lock the runqueue a given task resides on.
  764. * Must be called interrupts disabled.
  765. */
  766. static inline struct rq *__task_rq_lock(struct task_struct *p)
  767. __acquires(rq->lock)
  768. {
  769. struct rq *rq;
  770. for (;;) {
  771. rq = task_rq(p);
  772. raw_spin_lock(&rq->lock);
  773. if (likely(rq == task_rq(p)))
  774. return rq;
  775. raw_spin_unlock(&rq->lock);
  776. }
  777. }
  778. /*
  779. * task_rq_lock - lock the runqueue a given task resides on and disable
  780. * interrupts. Note the ordering: we can safely lookup the task_rq without
  781. * explicitly disabling preemption.
  782. */
  783. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  784. __acquires(rq->lock)
  785. {
  786. struct rq *rq;
  787. for (;;) {
  788. local_irq_save(*flags);
  789. rq = task_rq(p);
  790. raw_spin_lock(&rq->lock);
  791. if (likely(rq == task_rq(p)))
  792. return rq;
  793. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  794. }
  795. }
  796. static void __task_rq_unlock(struct rq *rq)
  797. __releases(rq->lock)
  798. {
  799. raw_spin_unlock(&rq->lock);
  800. }
  801. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  802. __releases(rq->lock)
  803. {
  804. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  805. }
  806. /*
  807. * this_rq_lock - lock this runqueue and disable interrupts.
  808. */
  809. static struct rq *this_rq_lock(void)
  810. __acquires(rq->lock)
  811. {
  812. struct rq *rq;
  813. local_irq_disable();
  814. rq = this_rq();
  815. raw_spin_lock(&rq->lock);
  816. return rq;
  817. }
  818. #ifdef CONFIG_SCHED_HRTICK
  819. /*
  820. * Use HR-timers to deliver accurate preemption points.
  821. *
  822. * Its all a bit involved since we cannot program an hrt while holding the
  823. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  824. * reschedule event.
  825. *
  826. * When we get rescheduled we reprogram the hrtick_timer outside of the
  827. * rq->lock.
  828. */
  829. /*
  830. * Use hrtick when:
  831. * - enabled by features
  832. * - hrtimer is actually high res
  833. */
  834. static inline int hrtick_enabled(struct rq *rq)
  835. {
  836. if (!sched_feat(HRTICK))
  837. return 0;
  838. if (!cpu_active(cpu_of(rq)))
  839. return 0;
  840. return hrtimer_is_hres_active(&rq->hrtick_timer);
  841. }
  842. static void hrtick_clear(struct rq *rq)
  843. {
  844. if (hrtimer_active(&rq->hrtick_timer))
  845. hrtimer_cancel(&rq->hrtick_timer);
  846. }
  847. /*
  848. * High-resolution timer tick.
  849. * Runs from hardirq context with interrupts disabled.
  850. */
  851. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  852. {
  853. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  854. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  855. raw_spin_lock(&rq->lock);
  856. update_rq_clock(rq);
  857. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  858. raw_spin_unlock(&rq->lock);
  859. return HRTIMER_NORESTART;
  860. }
  861. #ifdef CONFIG_SMP
  862. /*
  863. * called from hardirq (IPI) context
  864. */
  865. static void __hrtick_start(void *arg)
  866. {
  867. struct rq *rq = arg;
  868. raw_spin_lock(&rq->lock);
  869. hrtimer_restart(&rq->hrtick_timer);
  870. rq->hrtick_csd_pending = 0;
  871. raw_spin_unlock(&rq->lock);
  872. }
  873. /*
  874. * Called to set the hrtick timer state.
  875. *
  876. * called with rq->lock held and irqs disabled
  877. */
  878. static void hrtick_start(struct rq *rq, u64 delay)
  879. {
  880. struct hrtimer *timer = &rq->hrtick_timer;
  881. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  882. hrtimer_set_expires(timer, time);
  883. if (rq == this_rq()) {
  884. hrtimer_restart(timer);
  885. } else if (!rq->hrtick_csd_pending) {
  886. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  887. rq->hrtick_csd_pending = 1;
  888. }
  889. }
  890. static int
  891. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  892. {
  893. int cpu = (int)(long)hcpu;
  894. switch (action) {
  895. case CPU_UP_CANCELED:
  896. case CPU_UP_CANCELED_FROZEN:
  897. case CPU_DOWN_PREPARE:
  898. case CPU_DOWN_PREPARE_FROZEN:
  899. case CPU_DEAD:
  900. case CPU_DEAD_FROZEN:
  901. hrtick_clear(cpu_rq(cpu));
  902. return NOTIFY_OK;
  903. }
  904. return NOTIFY_DONE;
  905. }
  906. static __init void init_hrtick(void)
  907. {
  908. hotcpu_notifier(hotplug_hrtick, 0);
  909. }
  910. #else
  911. /*
  912. * Called to set the hrtick timer state.
  913. *
  914. * called with rq->lock held and irqs disabled
  915. */
  916. static void hrtick_start(struct rq *rq, u64 delay)
  917. {
  918. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  919. HRTIMER_MODE_REL_PINNED, 0);
  920. }
  921. static inline void init_hrtick(void)
  922. {
  923. }
  924. #endif /* CONFIG_SMP */
  925. static void init_rq_hrtick(struct rq *rq)
  926. {
  927. #ifdef CONFIG_SMP
  928. rq->hrtick_csd_pending = 0;
  929. rq->hrtick_csd.flags = 0;
  930. rq->hrtick_csd.func = __hrtick_start;
  931. rq->hrtick_csd.info = rq;
  932. #endif
  933. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  934. rq->hrtick_timer.function = hrtick;
  935. }
  936. #else /* CONFIG_SCHED_HRTICK */
  937. static inline void hrtick_clear(struct rq *rq)
  938. {
  939. }
  940. static inline void init_rq_hrtick(struct rq *rq)
  941. {
  942. }
  943. static inline void init_hrtick(void)
  944. {
  945. }
  946. #endif /* CONFIG_SCHED_HRTICK */
  947. /*
  948. * resched_task - mark a task 'to be rescheduled now'.
  949. *
  950. * On UP this means the setting of the need_resched flag, on SMP it
  951. * might also involve a cross-CPU call to trigger the scheduler on
  952. * the target CPU.
  953. */
  954. #ifdef CONFIG_SMP
  955. #ifndef tsk_is_polling
  956. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  957. #endif
  958. static void resched_task(struct task_struct *p)
  959. {
  960. int cpu;
  961. assert_raw_spin_locked(&task_rq(p)->lock);
  962. if (test_tsk_need_resched(p))
  963. return;
  964. set_tsk_need_resched(p);
  965. cpu = task_cpu(p);
  966. if (cpu == smp_processor_id())
  967. return;
  968. /* NEED_RESCHED must be visible before we test polling */
  969. smp_mb();
  970. if (!tsk_is_polling(p))
  971. smp_send_reschedule(cpu);
  972. }
  973. static void resched_cpu(int cpu)
  974. {
  975. struct rq *rq = cpu_rq(cpu);
  976. unsigned long flags;
  977. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  978. return;
  979. resched_task(cpu_curr(cpu));
  980. raw_spin_unlock_irqrestore(&rq->lock, flags);
  981. }
  982. #ifdef CONFIG_NO_HZ
  983. /*
  984. * In the semi idle case, use the nearest busy cpu for migrating timers
  985. * from an idle cpu. This is good for power-savings.
  986. *
  987. * We don't do similar optimization for completely idle system, as
  988. * selecting an idle cpu will add more delays to the timers than intended
  989. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  990. */
  991. int get_nohz_timer_target(void)
  992. {
  993. int cpu = smp_processor_id();
  994. int i;
  995. struct sched_domain *sd;
  996. for_each_domain(cpu, sd) {
  997. for_each_cpu(i, sched_domain_span(sd))
  998. if (!idle_cpu(i))
  999. return i;
  1000. }
  1001. return cpu;
  1002. }
  1003. /*
  1004. * When add_timer_on() enqueues a timer into the timer wheel of an
  1005. * idle CPU then this timer might expire before the next timer event
  1006. * which is scheduled to wake up that CPU. In case of a completely
  1007. * idle system the next event might even be infinite time into the
  1008. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1009. * leaves the inner idle loop so the newly added timer is taken into
  1010. * account when the CPU goes back to idle and evaluates the timer
  1011. * wheel for the next timer event.
  1012. */
  1013. void wake_up_idle_cpu(int cpu)
  1014. {
  1015. struct rq *rq = cpu_rq(cpu);
  1016. if (cpu == smp_processor_id())
  1017. return;
  1018. /*
  1019. * This is safe, as this function is called with the timer
  1020. * wheel base lock of (cpu) held. When the CPU is on the way
  1021. * to idle and has not yet set rq->curr to idle then it will
  1022. * be serialized on the timer wheel base lock and take the new
  1023. * timer into account automatically.
  1024. */
  1025. if (rq->curr != rq->idle)
  1026. return;
  1027. /*
  1028. * We can set TIF_RESCHED on the idle task of the other CPU
  1029. * lockless. The worst case is that the other CPU runs the
  1030. * idle task through an additional NOOP schedule()
  1031. */
  1032. set_tsk_need_resched(rq->idle);
  1033. /* NEED_RESCHED must be visible before we test polling */
  1034. smp_mb();
  1035. if (!tsk_is_polling(rq->idle))
  1036. smp_send_reschedule(cpu);
  1037. }
  1038. #endif /* CONFIG_NO_HZ */
  1039. static u64 sched_avg_period(void)
  1040. {
  1041. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1042. }
  1043. static void sched_avg_update(struct rq *rq)
  1044. {
  1045. s64 period = sched_avg_period();
  1046. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1047. /*
  1048. * Inline assembly required to prevent the compiler
  1049. * optimising this loop into a divmod call.
  1050. * See __iter_div_u64_rem() for another example of this.
  1051. */
  1052. asm("" : "+rm" (rq->age_stamp));
  1053. rq->age_stamp += period;
  1054. rq->rt_avg /= 2;
  1055. }
  1056. }
  1057. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1058. {
  1059. rq->rt_avg += rt_delta;
  1060. sched_avg_update(rq);
  1061. }
  1062. #else /* !CONFIG_SMP */
  1063. static void resched_task(struct task_struct *p)
  1064. {
  1065. assert_raw_spin_locked(&task_rq(p)->lock);
  1066. set_tsk_need_resched(p);
  1067. }
  1068. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1069. {
  1070. }
  1071. static void sched_avg_update(struct rq *rq)
  1072. {
  1073. }
  1074. #endif /* CONFIG_SMP */
  1075. #if BITS_PER_LONG == 32
  1076. # define WMULT_CONST (~0UL)
  1077. #else
  1078. # define WMULT_CONST (1UL << 32)
  1079. #endif
  1080. #define WMULT_SHIFT 32
  1081. /*
  1082. * Shift right and round:
  1083. */
  1084. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1085. /*
  1086. * delta *= weight / lw
  1087. */
  1088. static unsigned long
  1089. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1090. struct load_weight *lw)
  1091. {
  1092. u64 tmp;
  1093. if (!lw->inv_weight) {
  1094. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1095. lw->inv_weight = 1;
  1096. else
  1097. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1098. / (lw->weight+1);
  1099. }
  1100. tmp = (u64)delta_exec * weight;
  1101. /*
  1102. * Check whether we'd overflow the 64-bit multiplication:
  1103. */
  1104. if (unlikely(tmp > WMULT_CONST))
  1105. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1106. WMULT_SHIFT/2);
  1107. else
  1108. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1109. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1110. }
  1111. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1112. {
  1113. lw->weight += inc;
  1114. lw->inv_weight = 0;
  1115. }
  1116. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1117. {
  1118. lw->weight -= dec;
  1119. lw->inv_weight = 0;
  1120. }
  1121. static inline void update_load_set(struct load_weight *lw, unsigned long w)
  1122. {
  1123. lw->weight = w;
  1124. lw->inv_weight = 0;
  1125. }
  1126. /*
  1127. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1128. * of tasks with abnormal "nice" values across CPUs the contribution that
  1129. * each task makes to its run queue's load is weighted according to its
  1130. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1131. * scaled version of the new time slice allocation that they receive on time
  1132. * slice expiry etc.
  1133. */
  1134. #define WEIGHT_IDLEPRIO 3
  1135. #define WMULT_IDLEPRIO 1431655765
  1136. /*
  1137. * Nice levels are multiplicative, with a gentle 10% change for every
  1138. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1139. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1140. * that remained on nice 0.
  1141. *
  1142. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1143. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1144. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1145. * If a task goes up by ~10% and another task goes down by ~10% then
  1146. * the relative distance between them is ~25%.)
  1147. */
  1148. static const int prio_to_weight[40] = {
  1149. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1150. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1151. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1152. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1153. /* 0 */ 1024, 820, 655, 526, 423,
  1154. /* 5 */ 335, 272, 215, 172, 137,
  1155. /* 10 */ 110, 87, 70, 56, 45,
  1156. /* 15 */ 36, 29, 23, 18, 15,
  1157. };
  1158. /*
  1159. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1160. *
  1161. * In cases where the weight does not change often, we can use the
  1162. * precalculated inverse to speed up arithmetics by turning divisions
  1163. * into multiplications:
  1164. */
  1165. static const u32 prio_to_wmult[40] = {
  1166. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1167. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1168. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1169. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1170. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1171. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1172. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1173. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1174. };
  1175. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1176. enum cpuacct_stat_index {
  1177. CPUACCT_STAT_USER, /* ... user mode */
  1178. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1179. CPUACCT_STAT_NSTATS,
  1180. };
  1181. #ifdef CONFIG_CGROUP_CPUACCT
  1182. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1183. static void cpuacct_update_stats(struct task_struct *tsk,
  1184. enum cpuacct_stat_index idx, cputime_t val);
  1185. #else
  1186. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1187. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1188. enum cpuacct_stat_index idx, cputime_t val) {}
  1189. #endif
  1190. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1191. {
  1192. update_load_add(&rq->load, load);
  1193. }
  1194. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1195. {
  1196. update_load_sub(&rq->load, load);
  1197. }
  1198. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1199. typedef int (*tg_visitor)(struct task_group *, void *);
  1200. /*
  1201. * Iterate the full tree, calling @down when first entering a node and @up when
  1202. * leaving it for the final time.
  1203. */
  1204. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1205. {
  1206. struct task_group *parent, *child;
  1207. int ret;
  1208. rcu_read_lock();
  1209. parent = &root_task_group;
  1210. down:
  1211. ret = (*down)(parent, data);
  1212. if (ret)
  1213. goto out_unlock;
  1214. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1215. parent = child;
  1216. goto down;
  1217. up:
  1218. continue;
  1219. }
  1220. ret = (*up)(parent, data);
  1221. if (ret)
  1222. goto out_unlock;
  1223. child = parent;
  1224. parent = parent->parent;
  1225. if (parent)
  1226. goto up;
  1227. out_unlock:
  1228. rcu_read_unlock();
  1229. return ret;
  1230. }
  1231. static int tg_nop(struct task_group *tg, void *data)
  1232. {
  1233. return 0;
  1234. }
  1235. #endif
  1236. #ifdef CONFIG_SMP
  1237. /* Used instead of source_load when we know the type == 0 */
  1238. static unsigned long weighted_cpuload(const int cpu)
  1239. {
  1240. return cpu_rq(cpu)->load.weight;
  1241. }
  1242. /*
  1243. * Return a low guess at the load of a migration-source cpu weighted
  1244. * according to the scheduling class and "nice" value.
  1245. *
  1246. * We want to under-estimate the load of migration sources, to
  1247. * balance conservatively.
  1248. */
  1249. static unsigned long source_load(int cpu, int type)
  1250. {
  1251. struct rq *rq = cpu_rq(cpu);
  1252. unsigned long total = weighted_cpuload(cpu);
  1253. if (type == 0 || !sched_feat(LB_BIAS))
  1254. return total;
  1255. return min(rq->cpu_load[type-1], total);
  1256. }
  1257. /*
  1258. * Return a high guess at the load of a migration-target cpu weighted
  1259. * according to the scheduling class and "nice" value.
  1260. */
  1261. static unsigned long target_load(int cpu, int type)
  1262. {
  1263. struct rq *rq = cpu_rq(cpu);
  1264. unsigned long total = weighted_cpuload(cpu);
  1265. if (type == 0 || !sched_feat(LB_BIAS))
  1266. return total;
  1267. return max(rq->cpu_load[type-1], total);
  1268. }
  1269. static unsigned long power_of(int cpu)
  1270. {
  1271. return cpu_rq(cpu)->cpu_power;
  1272. }
  1273. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1274. static unsigned long cpu_avg_load_per_task(int cpu)
  1275. {
  1276. struct rq *rq = cpu_rq(cpu);
  1277. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1278. if (nr_running)
  1279. rq->avg_load_per_task = rq->load.weight / nr_running;
  1280. else
  1281. rq->avg_load_per_task = 0;
  1282. return rq->avg_load_per_task;
  1283. }
  1284. #ifdef CONFIG_FAIR_GROUP_SCHED
  1285. /*
  1286. * Compute the cpu's hierarchical load factor for each task group.
  1287. * This needs to be done in a top-down fashion because the load of a child
  1288. * group is a fraction of its parents load.
  1289. */
  1290. static int tg_load_down(struct task_group *tg, void *data)
  1291. {
  1292. unsigned long load;
  1293. long cpu = (long)data;
  1294. if (!tg->parent) {
  1295. load = cpu_rq(cpu)->load.weight;
  1296. } else {
  1297. load = tg->parent->cfs_rq[cpu]->h_load;
  1298. load *= tg->se[cpu]->load.weight;
  1299. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1300. }
  1301. tg->cfs_rq[cpu]->h_load = load;
  1302. return 0;
  1303. }
  1304. static void update_h_load(long cpu)
  1305. {
  1306. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1307. }
  1308. #endif
  1309. #ifdef CONFIG_PREEMPT
  1310. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1311. /*
  1312. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1313. * way at the expense of forcing extra atomic operations in all
  1314. * invocations. This assures that the double_lock is acquired using the
  1315. * same underlying policy as the spinlock_t on this architecture, which
  1316. * reduces latency compared to the unfair variant below. However, it
  1317. * also adds more overhead and therefore may reduce throughput.
  1318. */
  1319. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1320. __releases(this_rq->lock)
  1321. __acquires(busiest->lock)
  1322. __acquires(this_rq->lock)
  1323. {
  1324. raw_spin_unlock(&this_rq->lock);
  1325. double_rq_lock(this_rq, busiest);
  1326. return 1;
  1327. }
  1328. #else
  1329. /*
  1330. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1331. * latency by eliminating extra atomic operations when the locks are
  1332. * already in proper order on entry. This favors lower cpu-ids and will
  1333. * grant the double lock to lower cpus over higher ids under contention,
  1334. * regardless of entry order into the function.
  1335. */
  1336. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1337. __releases(this_rq->lock)
  1338. __acquires(busiest->lock)
  1339. __acquires(this_rq->lock)
  1340. {
  1341. int ret = 0;
  1342. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1343. if (busiest < this_rq) {
  1344. raw_spin_unlock(&this_rq->lock);
  1345. raw_spin_lock(&busiest->lock);
  1346. raw_spin_lock_nested(&this_rq->lock,
  1347. SINGLE_DEPTH_NESTING);
  1348. ret = 1;
  1349. } else
  1350. raw_spin_lock_nested(&busiest->lock,
  1351. SINGLE_DEPTH_NESTING);
  1352. }
  1353. return ret;
  1354. }
  1355. #endif /* CONFIG_PREEMPT */
  1356. /*
  1357. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1358. */
  1359. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1360. {
  1361. if (unlikely(!irqs_disabled())) {
  1362. /* printk() doesn't work good under rq->lock */
  1363. raw_spin_unlock(&this_rq->lock);
  1364. BUG_ON(1);
  1365. }
  1366. return _double_lock_balance(this_rq, busiest);
  1367. }
  1368. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1369. __releases(busiest->lock)
  1370. {
  1371. raw_spin_unlock(&busiest->lock);
  1372. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1373. }
  1374. /*
  1375. * double_rq_lock - safely lock two runqueues
  1376. *
  1377. * Note this does not disable interrupts like task_rq_lock,
  1378. * you need to do so manually before calling.
  1379. */
  1380. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1381. __acquires(rq1->lock)
  1382. __acquires(rq2->lock)
  1383. {
  1384. BUG_ON(!irqs_disabled());
  1385. if (rq1 == rq2) {
  1386. raw_spin_lock(&rq1->lock);
  1387. __acquire(rq2->lock); /* Fake it out ;) */
  1388. } else {
  1389. if (rq1 < rq2) {
  1390. raw_spin_lock(&rq1->lock);
  1391. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1392. } else {
  1393. raw_spin_lock(&rq2->lock);
  1394. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1395. }
  1396. }
  1397. }
  1398. /*
  1399. * double_rq_unlock - safely unlock two runqueues
  1400. *
  1401. * Note this does not restore interrupts like task_rq_unlock,
  1402. * you need to do so manually after calling.
  1403. */
  1404. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1405. __releases(rq1->lock)
  1406. __releases(rq2->lock)
  1407. {
  1408. raw_spin_unlock(&rq1->lock);
  1409. if (rq1 != rq2)
  1410. raw_spin_unlock(&rq2->lock);
  1411. else
  1412. __release(rq2->lock);
  1413. }
  1414. #endif
  1415. static void calc_load_account_idle(struct rq *this_rq);
  1416. static void update_sysctl(void);
  1417. static int get_update_sysctl_factor(void);
  1418. static void update_cpu_load(struct rq *this_rq);
  1419. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1420. {
  1421. set_task_rq(p, cpu);
  1422. #ifdef CONFIG_SMP
  1423. /*
  1424. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1425. * successfuly executed on another CPU. We must ensure that updates of
  1426. * per-task data have been completed by this moment.
  1427. */
  1428. smp_wmb();
  1429. task_thread_info(p)->cpu = cpu;
  1430. #endif
  1431. }
  1432. static const struct sched_class rt_sched_class;
  1433. #define sched_class_highest (&stop_sched_class)
  1434. #define for_each_class(class) \
  1435. for (class = sched_class_highest; class; class = class->next)
  1436. #include "sched_stats.h"
  1437. static void inc_nr_running(struct rq *rq)
  1438. {
  1439. rq->nr_running++;
  1440. }
  1441. static void dec_nr_running(struct rq *rq)
  1442. {
  1443. rq->nr_running--;
  1444. }
  1445. static void set_load_weight(struct task_struct *p)
  1446. {
  1447. /*
  1448. * SCHED_IDLE tasks get minimal weight:
  1449. */
  1450. if (p->policy == SCHED_IDLE) {
  1451. p->se.load.weight = WEIGHT_IDLEPRIO;
  1452. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1453. return;
  1454. }
  1455. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1456. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1457. }
  1458. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1459. {
  1460. update_rq_clock(rq);
  1461. sched_info_queued(p);
  1462. p->sched_class->enqueue_task(rq, p, flags);
  1463. p->se.on_rq = 1;
  1464. }
  1465. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1466. {
  1467. update_rq_clock(rq);
  1468. sched_info_dequeued(p);
  1469. p->sched_class->dequeue_task(rq, p, flags);
  1470. p->se.on_rq = 0;
  1471. }
  1472. /*
  1473. * activate_task - move a task to the runqueue.
  1474. */
  1475. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1476. {
  1477. if (task_contributes_to_load(p))
  1478. rq->nr_uninterruptible--;
  1479. enqueue_task(rq, p, flags);
  1480. inc_nr_running(rq);
  1481. }
  1482. /*
  1483. * deactivate_task - remove a task from the runqueue.
  1484. */
  1485. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1486. {
  1487. if (task_contributes_to_load(p))
  1488. rq->nr_uninterruptible++;
  1489. dequeue_task(rq, p, flags);
  1490. dec_nr_running(rq);
  1491. }
  1492. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1493. /*
  1494. * There are no locks covering percpu hardirq/softirq time.
  1495. * They are only modified in account_system_vtime, on corresponding CPU
  1496. * with interrupts disabled. So, writes are safe.
  1497. * They are read and saved off onto struct rq in update_rq_clock().
  1498. * This may result in other CPU reading this CPU's irq time and can
  1499. * race with irq/account_system_vtime on this CPU. We would either get old
  1500. * or new value (or semi updated value on 32 bit) with a side effect of
  1501. * accounting a slice of irq time to wrong task when irq is in progress
  1502. * while we read rq->clock. That is a worthy compromise in place of having
  1503. * locks on each irq in account_system_time.
  1504. */
  1505. static DEFINE_PER_CPU(u64, cpu_hardirq_time);
  1506. static DEFINE_PER_CPU(u64, cpu_softirq_time);
  1507. static DEFINE_PER_CPU(u64, irq_start_time);
  1508. static int sched_clock_irqtime;
  1509. void enable_sched_clock_irqtime(void)
  1510. {
  1511. sched_clock_irqtime = 1;
  1512. }
  1513. void disable_sched_clock_irqtime(void)
  1514. {
  1515. sched_clock_irqtime = 0;
  1516. }
  1517. static u64 irq_time_cpu(int cpu)
  1518. {
  1519. if (!sched_clock_irqtime)
  1520. return 0;
  1521. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  1522. }
  1523. void account_system_vtime(struct task_struct *curr)
  1524. {
  1525. unsigned long flags;
  1526. int cpu;
  1527. u64 now, delta;
  1528. if (!sched_clock_irqtime)
  1529. return;
  1530. local_irq_save(flags);
  1531. cpu = smp_processor_id();
  1532. now = sched_clock_cpu(cpu);
  1533. delta = now - per_cpu(irq_start_time, cpu);
  1534. per_cpu(irq_start_time, cpu) = now;
  1535. /*
  1536. * We do not account for softirq time from ksoftirqd here.
  1537. * We want to continue accounting softirq time to ksoftirqd thread
  1538. * in that case, so as not to confuse scheduler with a special task
  1539. * that do not consume any time, but still wants to run.
  1540. */
  1541. if (hardirq_count())
  1542. per_cpu(cpu_hardirq_time, cpu) += delta;
  1543. else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD))
  1544. per_cpu(cpu_softirq_time, cpu) += delta;
  1545. local_irq_restore(flags);
  1546. }
  1547. EXPORT_SYMBOL_GPL(account_system_vtime);
  1548. static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time)
  1549. {
  1550. if (sched_clock_irqtime && sched_feat(NONIRQ_POWER)) {
  1551. u64 delta_irq = curr_irq_time - rq->prev_irq_time;
  1552. rq->prev_irq_time = curr_irq_time;
  1553. sched_rt_avg_update(rq, delta_irq);
  1554. }
  1555. }
  1556. #else
  1557. static u64 irq_time_cpu(int cpu)
  1558. {
  1559. return 0;
  1560. }
  1561. static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time) { }
  1562. #endif
  1563. #include "sched_idletask.c"
  1564. #include "sched_fair.c"
  1565. #include "sched_rt.c"
  1566. #include "sched_stoptask.c"
  1567. #ifdef CONFIG_SCHED_DEBUG
  1568. # include "sched_debug.c"
  1569. #endif
  1570. void sched_set_stop_task(int cpu, struct task_struct *stop)
  1571. {
  1572. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  1573. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  1574. if (stop) {
  1575. /*
  1576. * Make it appear like a SCHED_FIFO task, its something
  1577. * userspace knows about and won't get confused about.
  1578. *
  1579. * Also, it will make PI more or less work without too
  1580. * much confusion -- but then, stop work should not
  1581. * rely on PI working anyway.
  1582. */
  1583. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  1584. stop->sched_class = &stop_sched_class;
  1585. }
  1586. cpu_rq(cpu)->stop = stop;
  1587. if (old_stop) {
  1588. /*
  1589. * Reset it back to a normal scheduling class so that
  1590. * it can die in pieces.
  1591. */
  1592. old_stop->sched_class = &rt_sched_class;
  1593. }
  1594. }
  1595. /*
  1596. * __normal_prio - return the priority that is based on the static prio
  1597. */
  1598. static inline int __normal_prio(struct task_struct *p)
  1599. {
  1600. return p->static_prio;
  1601. }
  1602. /*
  1603. * Calculate the expected normal priority: i.e. priority
  1604. * without taking RT-inheritance into account. Might be
  1605. * boosted by interactivity modifiers. Changes upon fork,
  1606. * setprio syscalls, and whenever the interactivity
  1607. * estimator recalculates.
  1608. */
  1609. static inline int normal_prio(struct task_struct *p)
  1610. {
  1611. int prio;
  1612. if (task_has_rt_policy(p))
  1613. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1614. else
  1615. prio = __normal_prio(p);
  1616. return prio;
  1617. }
  1618. /*
  1619. * Calculate the current priority, i.e. the priority
  1620. * taken into account by the scheduler. This value might
  1621. * be boosted by RT tasks, or might be boosted by
  1622. * interactivity modifiers. Will be RT if the task got
  1623. * RT-boosted. If not then it returns p->normal_prio.
  1624. */
  1625. static int effective_prio(struct task_struct *p)
  1626. {
  1627. p->normal_prio = normal_prio(p);
  1628. /*
  1629. * If we are RT tasks or we were boosted to RT priority,
  1630. * keep the priority unchanged. Otherwise, update priority
  1631. * to the normal priority:
  1632. */
  1633. if (!rt_prio(p->prio))
  1634. return p->normal_prio;
  1635. return p->prio;
  1636. }
  1637. /**
  1638. * task_curr - is this task currently executing on a CPU?
  1639. * @p: the task in question.
  1640. */
  1641. inline int task_curr(const struct task_struct *p)
  1642. {
  1643. return cpu_curr(task_cpu(p)) == p;
  1644. }
  1645. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1646. const struct sched_class *prev_class,
  1647. int oldprio, int running)
  1648. {
  1649. if (prev_class != p->sched_class) {
  1650. if (prev_class->switched_from)
  1651. prev_class->switched_from(rq, p, running);
  1652. p->sched_class->switched_to(rq, p, running);
  1653. } else
  1654. p->sched_class->prio_changed(rq, p, oldprio, running);
  1655. }
  1656. #ifdef CONFIG_SMP
  1657. /*
  1658. * Is this task likely cache-hot:
  1659. */
  1660. static int
  1661. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1662. {
  1663. s64 delta;
  1664. if (p->sched_class != &fair_sched_class)
  1665. return 0;
  1666. if (unlikely(p->policy == SCHED_IDLE))
  1667. return 0;
  1668. /*
  1669. * Buddy candidates are cache hot:
  1670. */
  1671. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1672. (&p->se == cfs_rq_of(&p->se)->next ||
  1673. &p->se == cfs_rq_of(&p->se)->last))
  1674. return 1;
  1675. if (sysctl_sched_migration_cost == -1)
  1676. return 1;
  1677. if (sysctl_sched_migration_cost == 0)
  1678. return 0;
  1679. delta = now - p->se.exec_start;
  1680. return delta < (s64)sysctl_sched_migration_cost;
  1681. }
  1682. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1683. {
  1684. #ifdef CONFIG_SCHED_DEBUG
  1685. /*
  1686. * We should never call set_task_cpu() on a blocked task,
  1687. * ttwu() will sort out the placement.
  1688. */
  1689. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1690. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1691. #endif
  1692. trace_sched_migrate_task(p, new_cpu);
  1693. if (task_cpu(p) != new_cpu) {
  1694. p->se.nr_migrations++;
  1695. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1696. }
  1697. __set_task_cpu(p, new_cpu);
  1698. }
  1699. struct migration_arg {
  1700. struct task_struct *task;
  1701. int dest_cpu;
  1702. };
  1703. static int migration_cpu_stop(void *data);
  1704. /*
  1705. * The task's runqueue lock must be held.
  1706. * Returns true if you have to wait for migration thread.
  1707. */
  1708. static bool migrate_task(struct task_struct *p, int dest_cpu)
  1709. {
  1710. struct rq *rq = task_rq(p);
  1711. /*
  1712. * If the task is not on a runqueue (and not running), then
  1713. * the next wake-up will properly place the task.
  1714. */
  1715. return p->se.on_rq || task_running(rq, p);
  1716. }
  1717. /*
  1718. * wait_task_inactive - wait for a thread to unschedule.
  1719. *
  1720. * If @match_state is nonzero, it's the @p->state value just checked and
  1721. * not expected to change. If it changes, i.e. @p might have woken up,
  1722. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1723. * we return a positive number (its total switch count). If a second call
  1724. * a short while later returns the same number, the caller can be sure that
  1725. * @p has remained unscheduled the whole time.
  1726. *
  1727. * The caller must ensure that the task *will* unschedule sometime soon,
  1728. * else this function might spin for a *long* time. This function can't
  1729. * be called with interrupts off, or it may introduce deadlock with
  1730. * smp_call_function() if an IPI is sent by the same process we are
  1731. * waiting to become inactive.
  1732. */
  1733. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1734. {
  1735. unsigned long flags;
  1736. int running, on_rq;
  1737. unsigned long ncsw;
  1738. struct rq *rq;
  1739. for (;;) {
  1740. /*
  1741. * We do the initial early heuristics without holding
  1742. * any task-queue locks at all. We'll only try to get
  1743. * the runqueue lock when things look like they will
  1744. * work out!
  1745. */
  1746. rq = task_rq(p);
  1747. /*
  1748. * If the task is actively running on another CPU
  1749. * still, just relax and busy-wait without holding
  1750. * any locks.
  1751. *
  1752. * NOTE! Since we don't hold any locks, it's not
  1753. * even sure that "rq" stays as the right runqueue!
  1754. * But we don't care, since "task_running()" will
  1755. * return false if the runqueue has changed and p
  1756. * is actually now running somewhere else!
  1757. */
  1758. while (task_running(rq, p)) {
  1759. if (match_state && unlikely(p->state != match_state))
  1760. return 0;
  1761. cpu_relax();
  1762. }
  1763. /*
  1764. * Ok, time to look more closely! We need the rq
  1765. * lock now, to be *sure*. If we're wrong, we'll
  1766. * just go back and repeat.
  1767. */
  1768. rq = task_rq_lock(p, &flags);
  1769. trace_sched_wait_task(p);
  1770. running = task_running(rq, p);
  1771. on_rq = p->se.on_rq;
  1772. ncsw = 0;
  1773. if (!match_state || p->state == match_state)
  1774. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1775. task_rq_unlock(rq, &flags);
  1776. /*
  1777. * If it changed from the expected state, bail out now.
  1778. */
  1779. if (unlikely(!ncsw))
  1780. break;
  1781. /*
  1782. * Was it really running after all now that we
  1783. * checked with the proper locks actually held?
  1784. *
  1785. * Oops. Go back and try again..
  1786. */
  1787. if (unlikely(running)) {
  1788. cpu_relax();
  1789. continue;
  1790. }
  1791. /*
  1792. * It's not enough that it's not actively running,
  1793. * it must be off the runqueue _entirely_, and not
  1794. * preempted!
  1795. *
  1796. * So if it was still runnable (but just not actively
  1797. * running right now), it's preempted, and we should
  1798. * yield - it could be a while.
  1799. */
  1800. if (unlikely(on_rq)) {
  1801. schedule_timeout_uninterruptible(1);
  1802. continue;
  1803. }
  1804. /*
  1805. * Ahh, all good. It wasn't running, and it wasn't
  1806. * runnable, which means that it will never become
  1807. * running in the future either. We're all done!
  1808. */
  1809. break;
  1810. }
  1811. return ncsw;
  1812. }
  1813. /***
  1814. * kick_process - kick a running thread to enter/exit the kernel
  1815. * @p: the to-be-kicked thread
  1816. *
  1817. * Cause a process which is running on another CPU to enter
  1818. * kernel-mode, without any delay. (to get signals handled.)
  1819. *
  1820. * NOTE: this function doesnt have to take the runqueue lock,
  1821. * because all it wants to ensure is that the remote task enters
  1822. * the kernel. If the IPI races and the task has been migrated
  1823. * to another CPU then no harm is done and the purpose has been
  1824. * achieved as well.
  1825. */
  1826. void kick_process(struct task_struct *p)
  1827. {
  1828. int cpu;
  1829. preempt_disable();
  1830. cpu = task_cpu(p);
  1831. if ((cpu != smp_processor_id()) && task_curr(p))
  1832. smp_send_reschedule(cpu);
  1833. preempt_enable();
  1834. }
  1835. EXPORT_SYMBOL_GPL(kick_process);
  1836. #endif /* CONFIG_SMP */
  1837. /**
  1838. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1839. * @p: the task to evaluate
  1840. * @func: the function to be called
  1841. * @info: the function call argument
  1842. *
  1843. * Calls the function @func when the task is currently running. This might
  1844. * be on the current CPU, which just calls the function directly
  1845. */
  1846. void task_oncpu_function_call(struct task_struct *p,
  1847. void (*func) (void *info), void *info)
  1848. {
  1849. int cpu;
  1850. preempt_disable();
  1851. cpu = task_cpu(p);
  1852. if (task_curr(p))
  1853. smp_call_function_single(cpu, func, info, 1);
  1854. preempt_enable();
  1855. }
  1856. #ifdef CONFIG_SMP
  1857. /*
  1858. * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
  1859. */
  1860. static int select_fallback_rq(int cpu, struct task_struct *p)
  1861. {
  1862. int dest_cpu;
  1863. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1864. /* Look for allowed, online CPU in same node. */
  1865. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1866. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1867. return dest_cpu;
  1868. /* Any allowed, online CPU? */
  1869. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1870. if (dest_cpu < nr_cpu_ids)
  1871. return dest_cpu;
  1872. /* No more Mr. Nice Guy. */
  1873. dest_cpu = cpuset_cpus_allowed_fallback(p);
  1874. /*
  1875. * Don't tell them about moving exiting tasks or
  1876. * kernel threads (both mm NULL), since they never
  1877. * leave kernel.
  1878. */
  1879. if (p->mm && printk_ratelimit()) {
  1880. printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
  1881. task_pid_nr(p), p->comm, cpu);
  1882. }
  1883. return dest_cpu;
  1884. }
  1885. /*
  1886. * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
  1887. */
  1888. static inline
  1889. int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
  1890. {
  1891. int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
  1892. /*
  1893. * In order not to call set_task_cpu() on a blocking task we need
  1894. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1895. * cpu.
  1896. *
  1897. * Since this is common to all placement strategies, this lives here.
  1898. *
  1899. * [ this allows ->select_task() to simply return task_cpu(p) and
  1900. * not worry about this generic constraint ]
  1901. */
  1902. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  1903. !cpu_online(cpu)))
  1904. cpu = select_fallback_rq(task_cpu(p), p);
  1905. return cpu;
  1906. }
  1907. static void update_avg(u64 *avg, u64 sample)
  1908. {
  1909. s64 diff = sample - *avg;
  1910. *avg += diff >> 3;
  1911. }
  1912. #endif
  1913. static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
  1914. bool is_sync, bool is_migrate, bool is_local,
  1915. unsigned long en_flags)
  1916. {
  1917. schedstat_inc(p, se.statistics.nr_wakeups);
  1918. if (is_sync)
  1919. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1920. if (is_migrate)
  1921. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1922. if (is_local)
  1923. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1924. else
  1925. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1926. activate_task(rq, p, en_flags);
  1927. }
  1928. static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
  1929. int wake_flags, bool success)
  1930. {
  1931. trace_sched_wakeup(p, success);
  1932. check_preempt_curr(rq, p, wake_flags);
  1933. p->state = TASK_RUNNING;
  1934. #ifdef CONFIG_SMP
  1935. if (p->sched_class->task_woken)
  1936. p->sched_class->task_woken(rq, p);
  1937. if (unlikely(rq->idle_stamp)) {
  1938. u64 delta = rq->clock - rq->idle_stamp;
  1939. u64 max = 2*sysctl_sched_migration_cost;
  1940. if (delta > max)
  1941. rq->avg_idle = max;
  1942. else
  1943. update_avg(&rq->avg_idle, delta);
  1944. rq->idle_stamp = 0;
  1945. }
  1946. #endif
  1947. /* if a worker is waking up, notify workqueue */
  1948. if ((p->flags & PF_WQ_WORKER) && success)
  1949. wq_worker_waking_up(p, cpu_of(rq));
  1950. }
  1951. /**
  1952. * try_to_wake_up - wake up a thread
  1953. * @p: the thread to be awakened
  1954. * @state: the mask of task states that can be woken
  1955. * @wake_flags: wake modifier flags (WF_*)
  1956. *
  1957. * Put it on the run-queue if it's not already there. The "current"
  1958. * thread is always on the run-queue (except when the actual
  1959. * re-schedule is in progress), and as such you're allowed to do
  1960. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1961. * runnable without the overhead of this.
  1962. *
  1963. * Returns %true if @p was woken up, %false if it was already running
  1964. * or @state didn't match @p's state.
  1965. */
  1966. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  1967. int wake_flags)
  1968. {
  1969. int cpu, orig_cpu, this_cpu, success = 0;
  1970. unsigned long flags;
  1971. unsigned long en_flags = ENQUEUE_WAKEUP;
  1972. struct rq *rq;
  1973. this_cpu = get_cpu();
  1974. smp_wmb();
  1975. rq = task_rq_lock(p, &flags);
  1976. if (!(p->state & state))
  1977. goto out;
  1978. if (p->se.on_rq)
  1979. goto out_running;
  1980. cpu = task_cpu(p);
  1981. orig_cpu = cpu;
  1982. #ifdef CONFIG_SMP
  1983. if (unlikely(task_running(rq, p)))
  1984. goto out_activate;
  1985. /*
  1986. * In order to handle concurrent wakeups and release the rq->lock
  1987. * we put the task in TASK_WAKING state.
  1988. *
  1989. * First fix up the nr_uninterruptible count:
  1990. */
  1991. if (task_contributes_to_load(p)) {
  1992. if (likely(cpu_online(orig_cpu)))
  1993. rq->nr_uninterruptible--;
  1994. else
  1995. this_rq()->nr_uninterruptible--;
  1996. }
  1997. p->state = TASK_WAKING;
  1998. if (p->sched_class->task_waking) {
  1999. p->sched_class->task_waking(rq, p);
  2000. en_flags |= ENQUEUE_WAKING;
  2001. }
  2002. cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
  2003. if (cpu != orig_cpu)
  2004. set_task_cpu(p, cpu);
  2005. __task_rq_unlock(rq);
  2006. rq = cpu_rq(cpu);
  2007. raw_spin_lock(&rq->lock);
  2008. /*
  2009. * We migrated the task without holding either rq->lock, however
  2010. * since the task is not on the task list itself, nobody else
  2011. * will try and migrate the task, hence the rq should match the
  2012. * cpu we just moved it to.
  2013. */
  2014. WARN_ON(task_cpu(p) != cpu);
  2015. WARN_ON(p->state != TASK_WAKING);
  2016. #ifdef CONFIG_SCHEDSTATS
  2017. schedstat_inc(rq, ttwu_count);
  2018. if (cpu == this_cpu)
  2019. schedstat_inc(rq, ttwu_local);
  2020. else {
  2021. struct sched_domain *sd;
  2022. for_each_domain(this_cpu, sd) {
  2023. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2024. schedstat_inc(sd, ttwu_wake_remote);
  2025. break;
  2026. }
  2027. }
  2028. }
  2029. #endif /* CONFIG_SCHEDSTATS */
  2030. out_activate:
  2031. #endif /* CONFIG_SMP */
  2032. ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
  2033. cpu == this_cpu, en_flags);
  2034. success = 1;
  2035. out_running:
  2036. ttwu_post_activation(p, rq, wake_flags, success);
  2037. out:
  2038. task_rq_unlock(rq, &flags);
  2039. put_cpu();
  2040. return success;
  2041. }
  2042. /**
  2043. * try_to_wake_up_local - try to wake up a local task with rq lock held
  2044. * @p: the thread to be awakened
  2045. *
  2046. * Put @p on the run-queue if it's not alredy there. The caller must
  2047. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  2048. * the current task. this_rq() stays locked over invocation.
  2049. */
  2050. static void try_to_wake_up_local(struct task_struct *p)
  2051. {
  2052. struct rq *rq = task_rq(p);
  2053. bool success = false;
  2054. BUG_ON(rq != this_rq());
  2055. BUG_ON(p == current);
  2056. lockdep_assert_held(&rq->lock);
  2057. if (!(p->state & TASK_NORMAL))
  2058. return;
  2059. if (!p->se.on_rq) {
  2060. if (likely(!task_running(rq, p))) {
  2061. schedstat_inc(rq, ttwu_count);
  2062. schedstat_inc(rq, ttwu_local);
  2063. }
  2064. ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
  2065. success = true;
  2066. }
  2067. ttwu_post_activation(p, rq, 0, success);
  2068. }
  2069. /**
  2070. * wake_up_process - Wake up a specific process
  2071. * @p: The process to be woken up.
  2072. *
  2073. * Attempt to wake up the nominated process and move it to the set of runnable
  2074. * processes. Returns 1 if the process was woken up, 0 if it was already
  2075. * running.
  2076. *
  2077. * It may be assumed that this function implies a write memory barrier before
  2078. * changing the task state if and only if any tasks are woken up.
  2079. */
  2080. int wake_up_process(struct task_struct *p)
  2081. {
  2082. return try_to_wake_up(p, TASK_ALL, 0);
  2083. }
  2084. EXPORT_SYMBOL(wake_up_process);
  2085. int wake_up_state(struct task_struct *p, unsigned int state)
  2086. {
  2087. return try_to_wake_up(p, state, 0);
  2088. }
  2089. /*
  2090. * Perform scheduler related setup for a newly forked process p.
  2091. * p is forked by current.
  2092. *
  2093. * __sched_fork() is basic setup used by init_idle() too:
  2094. */
  2095. static void __sched_fork(struct task_struct *p)
  2096. {
  2097. p->se.exec_start = 0;
  2098. p->se.sum_exec_runtime = 0;
  2099. p->se.prev_sum_exec_runtime = 0;
  2100. p->se.nr_migrations = 0;
  2101. #ifdef CONFIG_SCHEDSTATS
  2102. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2103. #endif
  2104. INIT_LIST_HEAD(&p->rt.run_list);
  2105. p->se.on_rq = 0;
  2106. INIT_LIST_HEAD(&p->se.group_node);
  2107. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2108. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2109. #endif
  2110. }
  2111. /*
  2112. * fork()/clone()-time setup:
  2113. */
  2114. void sched_fork(struct task_struct *p, int clone_flags)
  2115. {
  2116. int cpu = get_cpu();
  2117. __sched_fork(p);
  2118. /*
  2119. * We mark the process as running here. This guarantees that
  2120. * nobody will actually run it, and a signal or other external
  2121. * event cannot wake it up and insert it on the runqueue either.
  2122. */
  2123. p->state = TASK_RUNNING;
  2124. /*
  2125. * Revert to default priority/policy on fork if requested.
  2126. */
  2127. if (unlikely(p->sched_reset_on_fork)) {
  2128. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2129. p->policy = SCHED_NORMAL;
  2130. p->normal_prio = p->static_prio;
  2131. }
  2132. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2133. p->static_prio = NICE_TO_PRIO(0);
  2134. p->normal_prio = p->static_prio;
  2135. set_load_weight(p);
  2136. }
  2137. /*
  2138. * We don't need the reset flag anymore after the fork. It has
  2139. * fulfilled its duty:
  2140. */
  2141. p->sched_reset_on_fork = 0;
  2142. }
  2143. /*
  2144. * Make sure we do not leak PI boosting priority to the child.
  2145. */
  2146. p->prio = current->normal_prio;
  2147. if (!rt_prio(p->prio))
  2148. p->sched_class = &fair_sched_class;
  2149. if (p->sched_class->task_fork)
  2150. p->sched_class->task_fork(p);
  2151. /*
  2152. * The child is not yet in the pid-hash so no cgroup attach races,
  2153. * and the cgroup is pinned to this child due to cgroup_fork()
  2154. * is ran before sched_fork().
  2155. *
  2156. * Silence PROVE_RCU.
  2157. */
  2158. rcu_read_lock();
  2159. set_task_cpu(p, cpu);
  2160. rcu_read_unlock();
  2161. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2162. if (likely(sched_info_on()))
  2163. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2164. #endif
  2165. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2166. p->oncpu = 0;
  2167. #endif
  2168. #ifdef CONFIG_PREEMPT
  2169. /* Want to start with kernel preemption disabled. */
  2170. task_thread_info(p)->preempt_count = 1;
  2171. #endif
  2172. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2173. put_cpu();
  2174. }
  2175. /*
  2176. * wake_up_new_task - wake up a newly created task for the first time.
  2177. *
  2178. * This function will do some initial scheduler statistics housekeeping
  2179. * that must be done for every newly created context, then puts the task
  2180. * on the runqueue and wakes it.
  2181. */
  2182. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2183. {
  2184. unsigned long flags;
  2185. struct rq *rq;
  2186. int cpu __maybe_unused = get_cpu();
  2187. #ifdef CONFIG_SMP
  2188. rq = task_rq_lock(p, &flags);
  2189. p->state = TASK_WAKING;
  2190. /*
  2191. * Fork balancing, do it here and not earlier because:
  2192. * - cpus_allowed can change in the fork path
  2193. * - any previously selected cpu might disappear through hotplug
  2194. *
  2195. * We set TASK_WAKING so that select_task_rq() can drop rq->lock
  2196. * without people poking at ->cpus_allowed.
  2197. */
  2198. cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
  2199. set_task_cpu(p, cpu);
  2200. p->state = TASK_RUNNING;
  2201. task_rq_unlock(rq, &flags);
  2202. #endif
  2203. rq = task_rq_lock(p, &flags);
  2204. activate_task(rq, p, 0);
  2205. trace_sched_wakeup_new(p, 1);
  2206. check_preempt_curr(rq, p, WF_FORK);
  2207. #ifdef CONFIG_SMP
  2208. if (p->sched_class->task_woken)
  2209. p->sched_class->task_woken(rq, p);
  2210. #endif
  2211. task_rq_unlock(rq, &flags);
  2212. put_cpu();
  2213. }
  2214. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2215. /**
  2216. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2217. * @notifier: notifier struct to register
  2218. */
  2219. void preempt_notifier_register(struct preempt_notifier *notifier)
  2220. {
  2221. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2222. }
  2223. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2224. /**
  2225. * preempt_notifier_unregister - no longer interested in preemption notifications
  2226. * @notifier: notifier struct to unregister
  2227. *
  2228. * This is safe to call from within a preemption notifier.
  2229. */
  2230. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2231. {
  2232. hlist_del(&notifier->link);
  2233. }
  2234. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2235. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2236. {
  2237. struct preempt_notifier *notifier;
  2238. struct hlist_node *node;
  2239. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2240. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2241. }
  2242. static void
  2243. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2244. struct task_struct *next)
  2245. {
  2246. struct preempt_notifier *notifier;
  2247. struct hlist_node *node;
  2248. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2249. notifier->ops->sched_out(notifier, next);
  2250. }
  2251. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2252. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2253. {
  2254. }
  2255. static void
  2256. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2257. struct task_struct *next)
  2258. {
  2259. }
  2260. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2261. /**
  2262. * prepare_task_switch - prepare to switch tasks
  2263. * @rq: the runqueue preparing to switch
  2264. * @prev: the current task that is being switched out
  2265. * @next: the task we are going to switch to.
  2266. *
  2267. * This is called with the rq lock held and interrupts off. It must
  2268. * be paired with a subsequent finish_task_switch after the context
  2269. * switch.
  2270. *
  2271. * prepare_task_switch sets up locking and calls architecture specific
  2272. * hooks.
  2273. */
  2274. static inline void
  2275. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2276. struct task_struct *next)
  2277. {
  2278. fire_sched_out_preempt_notifiers(prev, next);
  2279. prepare_lock_switch(rq, next);
  2280. prepare_arch_switch(next);
  2281. }
  2282. /**
  2283. * finish_task_switch - clean up after a task-switch
  2284. * @rq: runqueue associated with task-switch
  2285. * @prev: the thread we just switched away from.
  2286. *
  2287. * finish_task_switch must be called after the context switch, paired
  2288. * with a prepare_task_switch call before the context switch.
  2289. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2290. * and do any other architecture-specific cleanup actions.
  2291. *
  2292. * Note that we may have delayed dropping an mm in context_switch(). If
  2293. * so, we finish that here outside of the runqueue lock. (Doing it
  2294. * with the lock held can cause deadlocks; see schedule() for
  2295. * details.)
  2296. */
  2297. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2298. __releases(rq->lock)
  2299. {
  2300. struct mm_struct *mm = rq->prev_mm;
  2301. long prev_state;
  2302. rq->prev_mm = NULL;
  2303. /*
  2304. * A task struct has one reference for the use as "current".
  2305. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2306. * schedule one last time. The schedule call will never return, and
  2307. * the scheduled task must drop that reference.
  2308. * The test for TASK_DEAD must occur while the runqueue locks are
  2309. * still held, otherwise prev could be scheduled on another cpu, die
  2310. * there before we look at prev->state, and then the reference would
  2311. * be dropped twice.
  2312. * Manfred Spraul <manfred@colorfullife.com>
  2313. */
  2314. prev_state = prev->state;
  2315. finish_arch_switch(prev);
  2316. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2317. local_irq_disable();
  2318. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2319. perf_event_task_sched_in(current);
  2320. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2321. local_irq_enable();
  2322. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2323. finish_lock_switch(rq, prev);
  2324. fire_sched_in_preempt_notifiers(current);
  2325. if (mm)
  2326. mmdrop(mm);
  2327. if (unlikely(prev_state == TASK_DEAD)) {
  2328. /*
  2329. * Remove function-return probe instances associated with this
  2330. * task and put them back on the free list.
  2331. */
  2332. kprobe_flush_task(prev);
  2333. put_task_struct(prev);
  2334. }
  2335. }
  2336. #ifdef CONFIG_SMP
  2337. /* assumes rq->lock is held */
  2338. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2339. {
  2340. if (prev->sched_class->pre_schedule)
  2341. prev->sched_class->pre_schedule(rq, prev);
  2342. }
  2343. /* rq->lock is NOT held, but preemption is disabled */
  2344. static inline void post_schedule(struct rq *rq)
  2345. {
  2346. if (rq->post_schedule) {
  2347. unsigned long flags;
  2348. raw_spin_lock_irqsave(&rq->lock, flags);
  2349. if (rq->curr->sched_class->post_schedule)
  2350. rq->curr->sched_class->post_schedule(rq);
  2351. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2352. rq->post_schedule = 0;
  2353. }
  2354. }
  2355. #else
  2356. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2357. {
  2358. }
  2359. static inline void post_schedule(struct rq *rq)
  2360. {
  2361. }
  2362. #endif
  2363. /**
  2364. * schedule_tail - first thing a freshly forked thread must call.
  2365. * @prev: the thread we just switched away from.
  2366. */
  2367. asmlinkage void schedule_tail(struct task_struct *prev)
  2368. __releases(rq->lock)
  2369. {
  2370. struct rq *rq = this_rq();
  2371. finish_task_switch(rq, prev);
  2372. /*
  2373. * FIXME: do we need to worry about rq being invalidated by the
  2374. * task_switch?
  2375. */
  2376. post_schedule(rq);
  2377. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2378. /* In this case, finish_task_switch does not reenable preemption */
  2379. preempt_enable();
  2380. #endif
  2381. if (current->set_child_tid)
  2382. put_user(task_pid_vnr(current), current->set_child_tid);
  2383. }
  2384. /*
  2385. * context_switch - switch to the new MM and the new
  2386. * thread's register state.
  2387. */
  2388. static inline void
  2389. context_switch(struct rq *rq, struct task_struct *prev,
  2390. struct task_struct *next)
  2391. {
  2392. struct mm_struct *mm, *oldmm;
  2393. prepare_task_switch(rq, prev, next);
  2394. trace_sched_switch(prev, next);
  2395. mm = next->mm;
  2396. oldmm = prev->active_mm;
  2397. /*
  2398. * For paravirt, this is coupled with an exit in switch_to to
  2399. * combine the page table reload and the switch backend into
  2400. * one hypercall.
  2401. */
  2402. arch_start_context_switch(prev);
  2403. if (!mm) {
  2404. next->active_mm = oldmm;
  2405. atomic_inc(&oldmm->mm_count);
  2406. enter_lazy_tlb(oldmm, next);
  2407. } else
  2408. switch_mm(oldmm, mm, next);
  2409. if (!prev->mm) {
  2410. prev->active_mm = NULL;
  2411. rq->prev_mm = oldmm;
  2412. }
  2413. /*
  2414. * Since the runqueue lock will be released by the next
  2415. * task (which is an invalid locking op but in the case
  2416. * of the scheduler it's an obvious special-case), so we
  2417. * do an early lockdep release here:
  2418. */
  2419. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2420. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2421. #endif
  2422. /* Here we just switch the register state and the stack. */
  2423. switch_to(prev, next, prev);
  2424. barrier();
  2425. /*
  2426. * this_rq must be evaluated again because prev may have moved
  2427. * CPUs since it called schedule(), thus the 'rq' on its stack
  2428. * frame will be invalid.
  2429. */
  2430. finish_task_switch(this_rq(), prev);
  2431. }
  2432. /*
  2433. * nr_running, nr_uninterruptible and nr_context_switches:
  2434. *
  2435. * externally visible scheduler statistics: current number of runnable
  2436. * threads, current number of uninterruptible-sleeping threads, total
  2437. * number of context switches performed since bootup.
  2438. */
  2439. unsigned long nr_running(void)
  2440. {
  2441. unsigned long i, sum = 0;
  2442. for_each_online_cpu(i)
  2443. sum += cpu_rq(i)->nr_running;
  2444. return sum;
  2445. }
  2446. unsigned long nr_uninterruptible(void)
  2447. {
  2448. unsigned long i, sum = 0;
  2449. for_each_possible_cpu(i)
  2450. sum += cpu_rq(i)->nr_uninterruptible;
  2451. /*
  2452. * Since we read the counters lockless, it might be slightly
  2453. * inaccurate. Do not allow it to go below zero though:
  2454. */
  2455. if (unlikely((long)sum < 0))
  2456. sum = 0;
  2457. return sum;
  2458. }
  2459. unsigned long long nr_context_switches(void)
  2460. {
  2461. int i;
  2462. unsigned long long sum = 0;
  2463. for_each_possible_cpu(i)
  2464. sum += cpu_rq(i)->nr_switches;
  2465. return sum;
  2466. }
  2467. unsigned long nr_iowait(void)
  2468. {
  2469. unsigned long i, sum = 0;
  2470. for_each_possible_cpu(i)
  2471. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2472. return sum;
  2473. }
  2474. unsigned long nr_iowait_cpu(int cpu)
  2475. {
  2476. struct rq *this = cpu_rq(cpu);
  2477. return atomic_read(&this->nr_iowait);
  2478. }
  2479. unsigned long this_cpu_load(void)
  2480. {
  2481. struct rq *this = this_rq();
  2482. return this->cpu_load[0];
  2483. }
  2484. /* Variables and functions for calc_load */
  2485. static atomic_long_t calc_load_tasks;
  2486. static unsigned long calc_load_update;
  2487. unsigned long avenrun[3];
  2488. EXPORT_SYMBOL(avenrun);
  2489. static long calc_load_fold_active(struct rq *this_rq)
  2490. {
  2491. long nr_active, delta = 0;
  2492. nr_active = this_rq->nr_running;
  2493. nr_active += (long) this_rq->nr_uninterruptible;
  2494. if (nr_active != this_rq->calc_load_active) {
  2495. delta = nr_active - this_rq->calc_load_active;
  2496. this_rq->calc_load_active = nr_active;
  2497. }
  2498. return delta;
  2499. }
  2500. #ifdef CONFIG_NO_HZ
  2501. /*
  2502. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2503. *
  2504. * When making the ILB scale, we should try to pull this in as well.
  2505. */
  2506. static atomic_long_t calc_load_tasks_idle;
  2507. static void calc_load_account_idle(struct rq *this_rq)
  2508. {
  2509. long delta;
  2510. delta = calc_load_fold_active(this_rq);
  2511. if (delta)
  2512. atomic_long_add(delta, &calc_load_tasks_idle);
  2513. }
  2514. static long calc_load_fold_idle(void)
  2515. {
  2516. long delta = 0;
  2517. /*
  2518. * Its got a race, we don't care...
  2519. */
  2520. if (atomic_long_read(&calc_load_tasks_idle))
  2521. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2522. return delta;
  2523. }
  2524. #else
  2525. static void calc_load_account_idle(struct rq *this_rq)
  2526. {
  2527. }
  2528. static inline long calc_load_fold_idle(void)
  2529. {
  2530. return 0;
  2531. }
  2532. #endif
  2533. /**
  2534. * get_avenrun - get the load average array
  2535. * @loads: pointer to dest load array
  2536. * @offset: offset to add
  2537. * @shift: shift count to shift the result left
  2538. *
  2539. * These values are estimates at best, so no need for locking.
  2540. */
  2541. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2542. {
  2543. loads[0] = (avenrun[0] + offset) << shift;
  2544. loads[1] = (avenrun[1] + offset) << shift;
  2545. loads[2] = (avenrun[2] + offset) << shift;
  2546. }
  2547. static unsigned long
  2548. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2549. {
  2550. load *= exp;
  2551. load += active * (FIXED_1 - exp);
  2552. return load >> FSHIFT;
  2553. }
  2554. /*
  2555. * calc_load - update the avenrun load estimates 10 ticks after the
  2556. * CPUs have updated calc_load_tasks.
  2557. */
  2558. void calc_global_load(void)
  2559. {
  2560. unsigned long upd = calc_load_update + 10;
  2561. long active;
  2562. if (time_before(jiffies, upd))
  2563. return;
  2564. active = atomic_long_read(&calc_load_tasks);
  2565. active = active > 0 ? active * FIXED_1 : 0;
  2566. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2567. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2568. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2569. calc_load_update += LOAD_FREQ;
  2570. }
  2571. /*
  2572. * Called from update_cpu_load() to periodically update this CPU's
  2573. * active count.
  2574. */
  2575. static void calc_load_account_active(struct rq *this_rq)
  2576. {
  2577. long delta;
  2578. if (time_before(jiffies, this_rq->calc_load_update))
  2579. return;
  2580. delta = calc_load_fold_active(this_rq);
  2581. delta += calc_load_fold_idle();
  2582. if (delta)
  2583. atomic_long_add(delta, &calc_load_tasks);
  2584. this_rq->calc_load_update += LOAD_FREQ;
  2585. }
  2586. /*
  2587. * The exact cpuload at various idx values, calculated at every tick would be
  2588. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2589. *
  2590. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2591. * on nth tick when cpu may be busy, then we have:
  2592. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2593. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2594. *
  2595. * decay_load_missed() below does efficient calculation of
  2596. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2597. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2598. *
  2599. * The calculation is approximated on a 128 point scale.
  2600. * degrade_zero_ticks is the number of ticks after which load at any
  2601. * particular idx is approximated to be zero.
  2602. * degrade_factor is a precomputed table, a row for each load idx.
  2603. * Each column corresponds to degradation factor for a power of two ticks,
  2604. * based on 128 point scale.
  2605. * Example:
  2606. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2607. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2608. *
  2609. * With this power of 2 load factors, we can degrade the load n times
  2610. * by looking at 1 bits in n and doing as many mult/shift instead of
  2611. * n mult/shifts needed by the exact degradation.
  2612. */
  2613. #define DEGRADE_SHIFT 7
  2614. static const unsigned char
  2615. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2616. static const unsigned char
  2617. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2618. {0, 0, 0, 0, 0, 0, 0, 0},
  2619. {64, 32, 8, 0, 0, 0, 0, 0},
  2620. {96, 72, 40, 12, 1, 0, 0},
  2621. {112, 98, 75, 43, 15, 1, 0},
  2622. {120, 112, 98, 76, 45, 16, 2} };
  2623. /*
  2624. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2625. * would be when CPU is idle and so we just decay the old load without
  2626. * adding any new load.
  2627. */
  2628. static unsigned long
  2629. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2630. {
  2631. int j = 0;
  2632. if (!missed_updates)
  2633. return load;
  2634. if (missed_updates >= degrade_zero_ticks[idx])
  2635. return 0;
  2636. if (idx == 1)
  2637. return load >> missed_updates;
  2638. while (missed_updates) {
  2639. if (missed_updates % 2)
  2640. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2641. missed_updates >>= 1;
  2642. j++;
  2643. }
  2644. return load;
  2645. }
  2646. /*
  2647. * Update rq->cpu_load[] statistics. This function is usually called every
  2648. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2649. * every tick. We fix it up based on jiffies.
  2650. */
  2651. static void update_cpu_load(struct rq *this_rq)
  2652. {
  2653. unsigned long this_load = this_rq->load.weight;
  2654. unsigned long curr_jiffies = jiffies;
  2655. unsigned long pending_updates;
  2656. int i, scale;
  2657. this_rq->nr_load_updates++;
  2658. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  2659. if (curr_jiffies == this_rq->last_load_update_tick)
  2660. return;
  2661. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2662. this_rq->last_load_update_tick = curr_jiffies;
  2663. /* Update our load: */
  2664. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2665. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2666. unsigned long old_load, new_load;
  2667. /* scale is effectively 1 << i now, and >> i divides by scale */
  2668. old_load = this_rq->cpu_load[i];
  2669. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2670. new_load = this_load;
  2671. /*
  2672. * Round up the averaging division if load is increasing. This
  2673. * prevents us from getting stuck on 9 if the load is 10, for
  2674. * example.
  2675. */
  2676. if (new_load > old_load)
  2677. new_load += scale - 1;
  2678. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2679. }
  2680. sched_avg_update(this_rq);
  2681. }
  2682. static void update_cpu_load_active(struct rq *this_rq)
  2683. {
  2684. update_cpu_load(this_rq);
  2685. calc_load_account_active(this_rq);
  2686. }
  2687. #ifdef CONFIG_SMP
  2688. /*
  2689. * sched_exec - execve() is a valuable balancing opportunity, because at
  2690. * this point the task has the smallest effective memory and cache footprint.
  2691. */
  2692. void sched_exec(void)
  2693. {
  2694. struct task_struct *p = current;
  2695. unsigned long flags;
  2696. struct rq *rq;
  2697. int dest_cpu;
  2698. rq = task_rq_lock(p, &flags);
  2699. dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
  2700. if (dest_cpu == smp_processor_id())
  2701. goto unlock;
  2702. /*
  2703. * select_task_rq() can race against ->cpus_allowed
  2704. */
  2705. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
  2706. likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
  2707. struct migration_arg arg = { p, dest_cpu };
  2708. task_rq_unlock(rq, &flags);
  2709. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  2710. return;
  2711. }
  2712. unlock:
  2713. task_rq_unlock(rq, &flags);
  2714. }
  2715. #endif
  2716. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2717. EXPORT_PER_CPU_SYMBOL(kstat);
  2718. /*
  2719. * Return any ns on the sched_clock that have not yet been accounted in
  2720. * @p in case that task is currently running.
  2721. *
  2722. * Called with task_rq_lock() held on @rq.
  2723. */
  2724. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2725. {
  2726. u64 ns = 0;
  2727. if (task_current(rq, p)) {
  2728. update_rq_clock(rq);
  2729. ns = rq->clock_task - p->se.exec_start;
  2730. if ((s64)ns < 0)
  2731. ns = 0;
  2732. }
  2733. return ns;
  2734. }
  2735. unsigned long long task_delta_exec(struct task_struct *p)
  2736. {
  2737. unsigned long flags;
  2738. struct rq *rq;
  2739. u64 ns = 0;
  2740. rq = task_rq_lock(p, &flags);
  2741. ns = do_task_delta_exec(p, rq);
  2742. task_rq_unlock(rq, &flags);
  2743. return ns;
  2744. }
  2745. /*
  2746. * Return accounted runtime for the task.
  2747. * In case the task is currently running, return the runtime plus current's
  2748. * pending runtime that have not been accounted yet.
  2749. */
  2750. unsigned long long task_sched_runtime(struct task_struct *p)
  2751. {
  2752. unsigned long flags;
  2753. struct rq *rq;
  2754. u64 ns = 0;
  2755. rq = task_rq_lock(p, &flags);
  2756. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2757. task_rq_unlock(rq, &flags);
  2758. return ns;
  2759. }
  2760. /*
  2761. * Return sum_exec_runtime for the thread group.
  2762. * In case the task is currently running, return the sum plus current's
  2763. * pending runtime that have not been accounted yet.
  2764. *
  2765. * Note that the thread group might have other running tasks as well,
  2766. * so the return value not includes other pending runtime that other
  2767. * running tasks might have.
  2768. */
  2769. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  2770. {
  2771. struct task_cputime totals;
  2772. unsigned long flags;
  2773. struct rq *rq;
  2774. u64 ns;
  2775. rq = task_rq_lock(p, &flags);
  2776. thread_group_cputime(p, &totals);
  2777. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  2778. task_rq_unlock(rq, &flags);
  2779. return ns;
  2780. }
  2781. /*
  2782. * Account user cpu time to a process.
  2783. * @p: the process that the cpu time gets accounted to
  2784. * @cputime: the cpu time spent in user space since the last update
  2785. * @cputime_scaled: cputime scaled by cpu frequency
  2786. */
  2787. void account_user_time(struct task_struct *p, cputime_t cputime,
  2788. cputime_t cputime_scaled)
  2789. {
  2790. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2791. cputime64_t tmp;
  2792. /* Add user time to process. */
  2793. p->utime = cputime_add(p->utime, cputime);
  2794. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2795. account_group_user_time(p, cputime);
  2796. /* Add user time to cpustat. */
  2797. tmp = cputime_to_cputime64(cputime);
  2798. if (TASK_NICE(p) > 0)
  2799. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2800. else
  2801. cpustat->user = cputime64_add(cpustat->user, tmp);
  2802. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  2803. /* Account for user time used */
  2804. acct_update_integrals(p);
  2805. }
  2806. /*
  2807. * Account guest cpu time to a process.
  2808. * @p: the process that the cpu time gets accounted to
  2809. * @cputime: the cpu time spent in virtual machine since the last update
  2810. * @cputime_scaled: cputime scaled by cpu frequency
  2811. */
  2812. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  2813. cputime_t cputime_scaled)
  2814. {
  2815. cputime64_t tmp;
  2816. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2817. tmp = cputime_to_cputime64(cputime);
  2818. /* Add guest time to process. */
  2819. p->utime = cputime_add(p->utime, cputime);
  2820. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2821. account_group_user_time(p, cputime);
  2822. p->gtime = cputime_add(p->gtime, cputime);
  2823. /* Add guest time to cpustat. */
  2824. if (TASK_NICE(p) > 0) {
  2825. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2826. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  2827. } else {
  2828. cpustat->user = cputime64_add(cpustat->user, tmp);
  2829. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  2830. }
  2831. }
  2832. /*
  2833. * Account system cpu time to a process.
  2834. * @p: the process that the cpu time gets accounted to
  2835. * @hardirq_offset: the offset to subtract from hardirq_count()
  2836. * @cputime: the cpu time spent in kernel space since the last update
  2837. * @cputime_scaled: cputime scaled by cpu frequency
  2838. */
  2839. void account_system_time(struct task_struct *p, int hardirq_offset,
  2840. cputime_t cputime, cputime_t cputime_scaled)
  2841. {
  2842. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2843. cputime64_t tmp;
  2844. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  2845. account_guest_time(p, cputime, cputime_scaled);
  2846. return;
  2847. }
  2848. /* Add system time to process. */
  2849. p->stime = cputime_add(p->stime, cputime);
  2850. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  2851. account_group_system_time(p, cputime);
  2852. /* Add system time to cpustat. */
  2853. tmp = cputime_to_cputime64(cputime);
  2854. if (hardirq_count() - hardirq_offset)
  2855. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2856. else if (in_serving_softirq())
  2857. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2858. else
  2859. cpustat->system = cputime64_add(cpustat->system, tmp);
  2860. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  2861. /* Account for system time used */
  2862. acct_update_integrals(p);
  2863. }
  2864. /*
  2865. * Account for involuntary wait time.
  2866. * @steal: the cpu time spent in involuntary wait
  2867. */
  2868. void account_steal_time(cputime_t cputime)
  2869. {
  2870. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2871. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2872. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  2873. }
  2874. /*
  2875. * Account for idle time.
  2876. * @cputime: the cpu time spent in idle wait
  2877. */
  2878. void account_idle_time(cputime_t cputime)
  2879. {
  2880. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2881. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2882. struct rq *rq = this_rq();
  2883. if (atomic_read(&rq->nr_iowait) > 0)
  2884. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  2885. else
  2886. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  2887. }
  2888. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  2889. /*
  2890. * Account a single tick of cpu time.
  2891. * @p: the process that the cpu time gets accounted to
  2892. * @user_tick: indicates if the tick is a user or a system tick
  2893. */
  2894. void account_process_tick(struct task_struct *p, int user_tick)
  2895. {
  2896. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  2897. struct rq *rq = this_rq();
  2898. if (user_tick)
  2899. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2900. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  2901. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  2902. one_jiffy_scaled);
  2903. else
  2904. account_idle_time(cputime_one_jiffy);
  2905. }
  2906. /*
  2907. * Account multiple ticks of steal time.
  2908. * @p: the process from which the cpu time has been stolen
  2909. * @ticks: number of stolen ticks
  2910. */
  2911. void account_steal_ticks(unsigned long ticks)
  2912. {
  2913. account_steal_time(jiffies_to_cputime(ticks));
  2914. }
  2915. /*
  2916. * Account multiple ticks of idle time.
  2917. * @ticks: number of stolen ticks
  2918. */
  2919. void account_idle_ticks(unsigned long ticks)
  2920. {
  2921. account_idle_time(jiffies_to_cputime(ticks));
  2922. }
  2923. #endif
  2924. /*
  2925. * Use precise platform statistics if available:
  2926. */
  2927. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  2928. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2929. {
  2930. *ut = p->utime;
  2931. *st = p->stime;
  2932. }
  2933. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2934. {
  2935. struct task_cputime cputime;
  2936. thread_group_cputime(p, &cputime);
  2937. *ut = cputime.utime;
  2938. *st = cputime.stime;
  2939. }
  2940. #else
  2941. #ifndef nsecs_to_cputime
  2942. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  2943. #endif
  2944. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2945. {
  2946. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  2947. /*
  2948. * Use CFS's precise accounting:
  2949. */
  2950. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  2951. if (total) {
  2952. u64 temp = rtime;
  2953. temp *= utime;
  2954. do_div(temp, total);
  2955. utime = (cputime_t)temp;
  2956. } else
  2957. utime = rtime;
  2958. /*
  2959. * Compare with previous values, to keep monotonicity:
  2960. */
  2961. p->prev_utime = max(p->prev_utime, utime);
  2962. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  2963. *ut = p->prev_utime;
  2964. *st = p->prev_stime;
  2965. }
  2966. /*
  2967. * Must be called with siglock held.
  2968. */
  2969. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2970. {
  2971. struct signal_struct *sig = p->signal;
  2972. struct task_cputime cputime;
  2973. cputime_t rtime, utime, total;
  2974. thread_group_cputime(p, &cputime);
  2975. total = cputime_add(cputime.utime, cputime.stime);
  2976. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  2977. if (total) {
  2978. u64 temp = rtime;
  2979. temp *= cputime.utime;
  2980. do_div(temp, total);
  2981. utime = (cputime_t)temp;
  2982. } else
  2983. utime = rtime;
  2984. sig->prev_utime = max(sig->prev_utime, utime);
  2985. sig->prev_stime = max(sig->prev_stime,
  2986. cputime_sub(rtime, sig->prev_utime));
  2987. *ut = sig->prev_utime;
  2988. *st = sig->prev_stime;
  2989. }
  2990. #endif
  2991. /*
  2992. * This function gets called by the timer code, with HZ frequency.
  2993. * We call it with interrupts disabled.
  2994. *
  2995. * It also gets called by the fork code, when changing the parent's
  2996. * timeslices.
  2997. */
  2998. void scheduler_tick(void)
  2999. {
  3000. int cpu = smp_processor_id();
  3001. struct rq *rq = cpu_rq(cpu);
  3002. struct task_struct *curr = rq->curr;
  3003. sched_clock_tick();
  3004. raw_spin_lock(&rq->lock);
  3005. update_rq_clock(rq);
  3006. update_cpu_load_active(rq);
  3007. curr->sched_class->task_tick(rq, curr, 0);
  3008. raw_spin_unlock(&rq->lock);
  3009. perf_event_task_tick();
  3010. #ifdef CONFIG_SMP
  3011. rq->idle_at_tick = idle_cpu(cpu);
  3012. trigger_load_balance(rq, cpu);
  3013. #endif
  3014. }
  3015. notrace unsigned long get_parent_ip(unsigned long addr)
  3016. {
  3017. if (in_lock_functions(addr)) {
  3018. addr = CALLER_ADDR2;
  3019. if (in_lock_functions(addr))
  3020. addr = CALLER_ADDR3;
  3021. }
  3022. return addr;
  3023. }
  3024. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3025. defined(CONFIG_PREEMPT_TRACER))
  3026. void __kprobes add_preempt_count(int val)
  3027. {
  3028. #ifdef CONFIG_DEBUG_PREEMPT
  3029. /*
  3030. * Underflow?
  3031. */
  3032. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3033. return;
  3034. #endif
  3035. preempt_count() += val;
  3036. #ifdef CONFIG_DEBUG_PREEMPT
  3037. /*
  3038. * Spinlock count overflowing soon?
  3039. */
  3040. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3041. PREEMPT_MASK - 10);
  3042. #endif
  3043. if (preempt_count() == val)
  3044. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3045. }
  3046. EXPORT_SYMBOL(add_preempt_count);
  3047. void __kprobes sub_preempt_count(int val)
  3048. {
  3049. #ifdef CONFIG_DEBUG_PREEMPT
  3050. /*
  3051. * Underflow?
  3052. */
  3053. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3054. return;
  3055. /*
  3056. * Is the spinlock portion underflowing?
  3057. */
  3058. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3059. !(preempt_count() & PREEMPT_MASK)))
  3060. return;
  3061. #endif
  3062. if (preempt_count() == val)
  3063. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3064. preempt_count() -= val;
  3065. }
  3066. EXPORT_SYMBOL(sub_preempt_count);
  3067. #endif
  3068. /*
  3069. * Print scheduling while atomic bug:
  3070. */
  3071. static noinline void __schedule_bug(struct task_struct *prev)
  3072. {
  3073. struct pt_regs *regs = get_irq_regs();
  3074. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3075. prev->comm, prev->pid, preempt_count());
  3076. debug_show_held_locks(prev);
  3077. print_modules();
  3078. if (irqs_disabled())
  3079. print_irqtrace_events(prev);
  3080. if (regs)
  3081. show_regs(regs);
  3082. else
  3083. dump_stack();
  3084. }
  3085. /*
  3086. * Various schedule()-time debugging checks and statistics:
  3087. */
  3088. static inline void schedule_debug(struct task_struct *prev)
  3089. {
  3090. /*
  3091. * Test if we are atomic. Since do_exit() needs to call into
  3092. * schedule() atomically, we ignore that path for now.
  3093. * Otherwise, whine if we are scheduling when we should not be.
  3094. */
  3095. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3096. __schedule_bug(prev);
  3097. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3098. schedstat_inc(this_rq(), sched_count);
  3099. #ifdef CONFIG_SCHEDSTATS
  3100. if (unlikely(prev->lock_depth >= 0)) {
  3101. schedstat_inc(this_rq(), bkl_count);
  3102. schedstat_inc(prev, sched_info.bkl_count);
  3103. }
  3104. #endif
  3105. }
  3106. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3107. {
  3108. if (prev->se.on_rq)
  3109. update_rq_clock(rq);
  3110. rq->skip_clock_update = 0;
  3111. prev->sched_class->put_prev_task(rq, prev);
  3112. }
  3113. /*
  3114. * Pick up the highest-prio task:
  3115. */
  3116. static inline struct task_struct *
  3117. pick_next_task(struct rq *rq)
  3118. {
  3119. const struct sched_class *class;
  3120. struct task_struct *p;
  3121. /*
  3122. * Optimization: we know that if all tasks are in
  3123. * the fair class we can call that function directly:
  3124. */
  3125. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3126. p = fair_sched_class.pick_next_task(rq);
  3127. if (likely(p))
  3128. return p;
  3129. }
  3130. for_each_class(class) {
  3131. p = class->pick_next_task(rq);
  3132. if (p)
  3133. return p;
  3134. }
  3135. BUG(); /* the idle class will always have a runnable task */
  3136. }
  3137. /*
  3138. * schedule() is the main scheduler function.
  3139. */
  3140. asmlinkage void __sched schedule(void)
  3141. {
  3142. struct task_struct *prev, *next;
  3143. unsigned long *switch_count;
  3144. struct rq *rq;
  3145. int cpu;
  3146. need_resched:
  3147. preempt_disable();
  3148. cpu = smp_processor_id();
  3149. rq = cpu_rq(cpu);
  3150. rcu_note_context_switch(cpu);
  3151. prev = rq->curr;
  3152. release_kernel_lock(prev);
  3153. need_resched_nonpreemptible:
  3154. schedule_debug(prev);
  3155. if (sched_feat(HRTICK))
  3156. hrtick_clear(rq);
  3157. raw_spin_lock_irq(&rq->lock);
  3158. clear_tsk_need_resched(prev);
  3159. switch_count = &prev->nivcsw;
  3160. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3161. if (unlikely(signal_pending_state(prev->state, prev))) {
  3162. prev->state = TASK_RUNNING;
  3163. } else {
  3164. /*
  3165. * If a worker is going to sleep, notify and
  3166. * ask workqueue whether it wants to wake up a
  3167. * task to maintain concurrency. If so, wake
  3168. * up the task.
  3169. */
  3170. if (prev->flags & PF_WQ_WORKER) {
  3171. struct task_struct *to_wakeup;
  3172. to_wakeup = wq_worker_sleeping(prev, cpu);
  3173. if (to_wakeup)
  3174. try_to_wake_up_local(to_wakeup);
  3175. }
  3176. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3177. }
  3178. switch_count = &prev->nvcsw;
  3179. }
  3180. pre_schedule(rq, prev);
  3181. if (unlikely(!rq->nr_running))
  3182. idle_balance(cpu, rq);
  3183. put_prev_task(rq, prev);
  3184. next = pick_next_task(rq);
  3185. if (likely(prev != next)) {
  3186. sched_info_switch(prev, next);
  3187. perf_event_task_sched_out(prev, next);
  3188. rq->nr_switches++;
  3189. rq->curr = next;
  3190. ++*switch_count;
  3191. context_switch(rq, prev, next); /* unlocks the rq */
  3192. /*
  3193. * The context switch have flipped the stack from under us
  3194. * and restored the local variables which were saved when
  3195. * this task called schedule() in the past. prev == current
  3196. * is still correct, but it can be moved to another cpu/rq.
  3197. */
  3198. cpu = smp_processor_id();
  3199. rq = cpu_rq(cpu);
  3200. } else
  3201. raw_spin_unlock_irq(&rq->lock);
  3202. post_schedule(rq);
  3203. if (unlikely(reacquire_kernel_lock(prev)))
  3204. goto need_resched_nonpreemptible;
  3205. preempt_enable_no_resched();
  3206. if (need_resched())
  3207. goto need_resched;
  3208. }
  3209. EXPORT_SYMBOL(schedule);
  3210. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3211. /*
  3212. * Look out! "owner" is an entirely speculative pointer
  3213. * access and not reliable.
  3214. */
  3215. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  3216. {
  3217. unsigned int cpu;
  3218. struct rq *rq;
  3219. if (!sched_feat(OWNER_SPIN))
  3220. return 0;
  3221. #ifdef CONFIG_DEBUG_PAGEALLOC
  3222. /*
  3223. * Need to access the cpu field knowing that
  3224. * DEBUG_PAGEALLOC could have unmapped it if
  3225. * the mutex owner just released it and exited.
  3226. */
  3227. if (probe_kernel_address(&owner->cpu, cpu))
  3228. return 0;
  3229. #else
  3230. cpu = owner->cpu;
  3231. #endif
  3232. /*
  3233. * Even if the access succeeded (likely case),
  3234. * the cpu field may no longer be valid.
  3235. */
  3236. if (cpu >= nr_cpumask_bits)
  3237. return 0;
  3238. /*
  3239. * We need to validate that we can do a
  3240. * get_cpu() and that we have the percpu area.
  3241. */
  3242. if (!cpu_online(cpu))
  3243. return 0;
  3244. rq = cpu_rq(cpu);
  3245. for (;;) {
  3246. /*
  3247. * Owner changed, break to re-assess state.
  3248. */
  3249. if (lock->owner != owner) {
  3250. /*
  3251. * If the lock has switched to a different owner,
  3252. * we likely have heavy contention. Return 0 to quit
  3253. * optimistic spinning and not contend further:
  3254. */
  3255. if (lock->owner)
  3256. return 0;
  3257. break;
  3258. }
  3259. /*
  3260. * Is that owner really running on that cpu?
  3261. */
  3262. if (task_thread_info(rq->curr) != owner || need_resched())
  3263. return 0;
  3264. cpu_relax();
  3265. }
  3266. return 1;
  3267. }
  3268. #endif
  3269. #ifdef CONFIG_PREEMPT
  3270. /*
  3271. * this is the entry point to schedule() from in-kernel preemption
  3272. * off of preempt_enable. Kernel preemptions off return from interrupt
  3273. * occur there and call schedule directly.
  3274. */
  3275. asmlinkage void __sched notrace preempt_schedule(void)
  3276. {
  3277. struct thread_info *ti = current_thread_info();
  3278. /*
  3279. * If there is a non-zero preempt_count or interrupts are disabled,
  3280. * we do not want to preempt the current task. Just return..
  3281. */
  3282. if (likely(ti->preempt_count || irqs_disabled()))
  3283. return;
  3284. do {
  3285. add_preempt_count_notrace(PREEMPT_ACTIVE);
  3286. schedule();
  3287. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  3288. /*
  3289. * Check again in case we missed a preemption opportunity
  3290. * between schedule and now.
  3291. */
  3292. barrier();
  3293. } while (need_resched());
  3294. }
  3295. EXPORT_SYMBOL(preempt_schedule);
  3296. /*
  3297. * this is the entry point to schedule() from kernel preemption
  3298. * off of irq context.
  3299. * Note, that this is called and return with irqs disabled. This will
  3300. * protect us against recursive calling from irq.
  3301. */
  3302. asmlinkage void __sched preempt_schedule_irq(void)
  3303. {
  3304. struct thread_info *ti = current_thread_info();
  3305. /* Catch callers which need to be fixed */
  3306. BUG_ON(ti->preempt_count || !irqs_disabled());
  3307. do {
  3308. add_preempt_count(PREEMPT_ACTIVE);
  3309. local_irq_enable();
  3310. schedule();
  3311. local_irq_disable();
  3312. sub_preempt_count(PREEMPT_ACTIVE);
  3313. /*
  3314. * Check again in case we missed a preemption opportunity
  3315. * between schedule and now.
  3316. */
  3317. barrier();
  3318. } while (need_resched());
  3319. }
  3320. #endif /* CONFIG_PREEMPT */
  3321. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3322. void *key)
  3323. {
  3324. return try_to_wake_up(curr->private, mode, wake_flags);
  3325. }
  3326. EXPORT_SYMBOL(default_wake_function);
  3327. /*
  3328. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3329. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3330. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3331. *
  3332. * There are circumstances in which we can try to wake a task which has already
  3333. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3334. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3335. */
  3336. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3337. int nr_exclusive, int wake_flags, void *key)
  3338. {
  3339. wait_queue_t *curr, *next;
  3340. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3341. unsigned flags = curr->flags;
  3342. if (curr->func(curr, mode, wake_flags, key) &&
  3343. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3344. break;
  3345. }
  3346. }
  3347. /**
  3348. * __wake_up - wake up threads blocked on a waitqueue.
  3349. * @q: the waitqueue
  3350. * @mode: which threads
  3351. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3352. * @key: is directly passed to the wakeup function
  3353. *
  3354. * It may be assumed that this function implies a write memory barrier before
  3355. * changing the task state if and only if any tasks are woken up.
  3356. */
  3357. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3358. int nr_exclusive, void *key)
  3359. {
  3360. unsigned long flags;
  3361. spin_lock_irqsave(&q->lock, flags);
  3362. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3363. spin_unlock_irqrestore(&q->lock, flags);
  3364. }
  3365. EXPORT_SYMBOL(__wake_up);
  3366. /*
  3367. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3368. */
  3369. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3370. {
  3371. __wake_up_common(q, mode, 1, 0, NULL);
  3372. }
  3373. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3374. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3375. {
  3376. __wake_up_common(q, mode, 1, 0, key);
  3377. }
  3378. /**
  3379. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3380. * @q: the waitqueue
  3381. * @mode: which threads
  3382. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3383. * @key: opaque value to be passed to wakeup targets
  3384. *
  3385. * The sync wakeup differs that the waker knows that it will schedule
  3386. * away soon, so while the target thread will be woken up, it will not
  3387. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3388. * with each other. This can prevent needless bouncing between CPUs.
  3389. *
  3390. * On UP it can prevent extra preemption.
  3391. *
  3392. * It may be assumed that this function implies a write memory barrier before
  3393. * changing the task state if and only if any tasks are woken up.
  3394. */
  3395. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3396. int nr_exclusive, void *key)
  3397. {
  3398. unsigned long flags;
  3399. int wake_flags = WF_SYNC;
  3400. if (unlikely(!q))
  3401. return;
  3402. if (unlikely(!nr_exclusive))
  3403. wake_flags = 0;
  3404. spin_lock_irqsave(&q->lock, flags);
  3405. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3406. spin_unlock_irqrestore(&q->lock, flags);
  3407. }
  3408. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3409. /*
  3410. * __wake_up_sync - see __wake_up_sync_key()
  3411. */
  3412. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3413. {
  3414. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3415. }
  3416. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3417. /**
  3418. * complete: - signals a single thread waiting on this completion
  3419. * @x: holds the state of this particular completion
  3420. *
  3421. * This will wake up a single thread waiting on this completion. Threads will be
  3422. * awakened in the same order in which they were queued.
  3423. *
  3424. * See also complete_all(), wait_for_completion() and related routines.
  3425. *
  3426. * It may be assumed that this function implies a write memory barrier before
  3427. * changing the task state if and only if any tasks are woken up.
  3428. */
  3429. void complete(struct completion *x)
  3430. {
  3431. unsigned long flags;
  3432. spin_lock_irqsave(&x->wait.lock, flags);
  3433. x->done++;
  3434. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3435. spin_unlock_irqrestore(&x->wait.lock, flags);
  3436. }
  3437. EXPORT_SYMBOL(complete);
  3438. /**
  3439. * complete_all: - signals all threads waiting on this completion
  3440. * @x: holds the state of this particular completion
  3441. *
  3442. * This will wake up all threads waiting on this particular completion event.
  3443. *
  3444. * It may be assumed that this function implies a write memory barrier before
  3445. * changing the task state if and only if any tasks are woken up.
  3446. */
  3447. void complete_all(struct completion *x)
  3448. {
  3449. unsigned long flags;
  3450. spin_lock_irqsave(&x->wait.lock, flags);
  3451. x->done += UINT_MAX/2;
  3452. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3453. spin_unlock_irqrestore(&x->wait.lock, flags);
  3454. }
  3455. EXPORT_SYMBOL(complete_all);
  3456. static inline long __sched
  3457. do_wait_for_common(struct completion *x, long timeout, int state)
  3458. {
  3459. if (!x->done) {
  3460. DECLARE_WAITQUEUE(wait, current);
  3461. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3462. do {
  3463. if (signal_pending_state(state, current)) {
  3464. timeout = -ERESTARTSYS;
  3465. break;
  3466. }
  3467. __set_current_state(state);
  3468. spin_unlock_irq(&x->wait.lock);
  3469. timeout = schedule_timeout(timeout);
  3470. spin_lock_irq(&x->wait.lock);
  3471. } while (!x->done && timeout);
  3472. __remove_wait_queue(&x->wait, &wait);
  3473. if (!x->done)
  3474. return timeout;
  3475. }
  3476. x->done--;
  3477. return timeout ?: 1;
  3478. }
  3479. static long __sched
  3480. wait_for_common(struct completion *x, long timeout, int state)
  3481. {
  3482. might_sleep();
  3483. spin_lock_irq(&x->wait.lock);
  3484. timeout = do_wait_for_common(x, timeout, state);
  3485. spin_unlock_irq(&x->wait.lock);
  3486. return timeout;
  3487. }
  3488. /**
  3489. * wait_for_completion: - waits for completion of a task
  3490. * @x: holds the state of this particular completion
  3491. *
  3492. * This waits to be signaled for completion of a specific task. It is NOT
  3493. * interruptible and there is no timeout.
  3494. *
  3495. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3496. * and interrupt capability. Also see complete().
  3497. */
  3498. void __sched wait_for_completion(struct completion *x)
  3499. {
  3500. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3501. }
  3502. EXPORT_SYMBOL(wait_for_completion);
  3503. /**
  3504. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3505. * @x: holds the state of this particular completion
  3506. * @timeout: timeout value in jiffies
  3507. *
  3508. * This waits for either a completion of a specific task to be signaled or for a
  3509. * specified timeout to expire. The timeout is in jiffies. It is not
  3510. * interruptible.
  3511. */
  3512. unsigned long __sched
  3513. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3514. {
  3515. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3516. }
  3517. EXPORT_SYMBOL(wait_for_completion_timeout);
  3518. /**
  3519. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3520. * @x: holds the state of this particular completion
  3521. *
  3522. * This waits for completion of a specific task to be signaled. It is
  3523. * interruptible.
  3524. */
  3525. int __sched wait_for_completion_interruptible(struct completion *x)
  3526. {
  3527. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3528. if (t == -ERESTARTSYS)
  3529. return t;
  3530. return 0;
  3531. }
  3532. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3533. /**
  3534. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3535. * @x: holds the state of this particular completion
  3536. * @timeout: timeout value in jiffies
  3537. *
  3538. * This waits for either a completion of a specific task to be signaled or for a
  3539. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3540. */
  3541. unsigned long __sched
  3542. wait_for_completion_interruptible_timeout(struct completion *x,
  3543. unsigned long timeout)
  3544. {
  3545. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3546. }
  3547. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3548. /**
  3549. * wait_for_completion_killable: - waits for completion of a task (killable)
  3550. * @x: holds the state of this particular completion
  3551. *
  3552. * This waits to be signaled for completion of a specific task. It can be
  3553. * interrupted by a kill signal.
  3554. */
  3555. int __sched wait_for_completion_killable(struct completion *x)
  3556. {
  3557. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3558. if (t == -ERESTARTSYS)
  3559. return t;
  3560. return 0;
  3561. }
  3562. EXPORT_SYMBOL(wait_for_completion_killable);
  3563. /**
  3564. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3565. * @x: holds the state of this particular completion
  3566. * @timeout: timeout value in jiffies
  3567. *
  3568. * This waits for either a completion of a specific task to be
  3569. * signaled or for a specified timeout to expire. It can be
  3570. * interrupted by a kill signal. The timeout is in jiffies.
  3571. */
  3572. unsigned long __sched
  3573. wait_for_completion_killable_timeout(struct completion *x,
  3574. unsigned long timeout)
  3575. {
  3576. return wait_for_common(x, timeout, TASK_KILLABLE);
  3577. }
  3578. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3579. /**
  3580. * try_wait_for_completion - try to decrement a completion without blocking
  3581. * @x: completion structure
  3582. *
  3583. * Returns: 0 if a decrement cannot be done without blocking
  3584. * 1 if a decrement succeeded.
  3585. *
  3586. * If a completion is being used as a counting completion,
  3587. * attempt to decrement the counter without blocking. This
  3588. * enables us to avoid waiting if the resource the completion
  3589. * is protecting is not available.
  3590. */
  3591. bool try_wait_for_completion(struct completion *x)
  3592. {
  3593. unsigned long flags;
  3594. int ret = 1;
  3595. spin_lock_irqsave(&x->wait.lock, flags);
  3596. if (!x->done)
  3597. ret = 0;
  3598. else
  3599. x->done--;
  3600. spin_unlock_irqrestore(&x->wait.lock, flags);
  3601. return ret;
  3602. }
  3603. EXPORT_SYMBOL(try_wait_for_completion);
  3604. /**
  3605. * completion_done - Test to see if a completion has any waiters
  3606. * @x: completion structure
  3607. *
  3608. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3609. * 1 if there are no waiters.
  3610. *
  3611. */
  3612. bool completion_done(struct completion *x)
  3613. {
  3614. unsigned long flags;
  3615. int ret = 1;
  3616. spin_lock_irqsave(&x->wait.lock, flags);
  3617. if (!x->done)
  3618. ret = 0;
  3619. spin_unlock_irqrestore(&x->wait.lock, flags);
  3620. return ret;
  3621. }
  3622. EXPORT_SYMBOL(completion_done);
  3623. static long __sched
  3624. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3625. {
  3626. unsigned long flags;
  3627. wait_queue_t wait;
  3628. init_waitqueue_entry(&wait, current);
  3629. __set_current_state(state);
  3630. spin_lock_irqsave(&q->lock, flags);
  3631. __add_wait_queue(q, &wait);
  3632. spin_unlock(&q->lock);
  3633. timeout = schedule_timeout(timeout);
  3634. spin_lock_irq(&q->lock);
  3635. __remove_wait_queue(q, &wait);
  3636. spin_unlock_irqrestore(&q->lock, flags);
  3637. return timeout;
  3638. }
  3639. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3640. {
  3641. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3642. }
  3643. EXPORT_SYMBOL(interruptible_sleep_on);
  3644. long __sched
  3645. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3646. {
  3647. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3648. }
  3649. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3650. void __sched sleep_on(wait_queue_head_t *q)
  3651. {
  3652. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3653. }
  3654. EXPORT_SYMBOL(sleep_on);
  3655. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3656. {
  3657. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3658. }
  3659. EXPORT_SYMBOL(sleep_on_timeout);
  3660. #ifdef CONFIG_RT_MUTEXES
  3661. /*
  3662. * rt_mutex_setprio - set the current priority of a task
  3663. * @p: task
  3664. * @prio: prio value (kernel-internal form)
  3665. *
  3666. * This function changes the 'effective' priority of a task. It does
  3667. * not touch ->normal_prio like __setscheduler().
  3668. *
  3669. * Used by the rt_mutex code to implement priority inheritance logic.
  3670. */
  3671. void rt_mutex_setprio(struct task_struct *p, int prio)
  3672. {
  3673. unsigned long flags;
  3674. int oldprio, on_rq, running;
  3675. struct rq *rq;
  3676. const struct sched_class *prev_class;
  3677. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3678. rq = task_rq_lock(p, &flags);
  3679. trace_sched_pi_setprio(p, prio);
  3680. oldprio = p->prio;
  3681. prev_class = p->sched_class;
  3682. on_rq = p->se.on_rq;
  3683. running = task_current(rq, p);
  3684. if (on_rq)
  3685. dequeue_task(rq, p, 0);
  3686. if (running)
  3687. p->sched_class->put_prev_task(rq, p);
  3688. if (rt_prio(prio))
  3689. p->sched_class = &rt_sched_class;
  3690. else
  3691. p->sched_class = &fair_sched_class;
  3692. p->prio = prio;
  3693. if (running)
  3694. p->sched_class->set_curr_task(rq);
  3695. if (on_rq) {
  3696. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  3697. check_class_changed(rq, p, prev_class, oldprio, running);
  3698. }
  3699. task_rq_unlock(rq, &flags);
  3700. }
  3701. #endif
  3702. void set_user_nice(struct task_struct *p, long nice)
  3703. {
  3704. int old_prio, delta, on_rq;
  3705. unsigned long flags;
  3706. struct rq *rq;
  3707. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3708. return;
  3709. /*
  3710. * We have to be careful, if called from sys_setpriority(),
  3711. * the task might be in the middle of scheduling on another CPU.
  3712. */
  3713. rq = task_rq_lock(p, &flags);
  3714. /*
  3715. * The RT priorities are set via sched_setscheduler(), but we still
  3716. * allow the 'normal' nice value to be set - but as expected
  3717. * it wont have any effect on scheduling until the task is
  3718. * SCHED_FIFO/SCHED_RR:
  3719. */
  3720. if (task_has_rt_policy(p)) {
  3721. p->static_prio = NICE_TO_PRIO(nice);
  3722. goto out_unlock;
  3723. }
  3724. on_rq = p->se.on_rq;
  3725. if (on_rq)
  3726. dequeue_task(rq, p, 0);
  3727. p->static_prio = NICE_TO_PRIO(nice);
  3728. set_load_weight(p);
  3729. old_prio = p->prio;
  3730. p->prio = effective_prio(p);
  3731. delta = p->prio - old_prio;
  3732. if (on_rq) {
  3733. enqueue_task(rq, p, 0);
  3734. /*
  3735. * If the task increased its priority or is running and
  3736. * lowered its priority, then reschedule its CPU:
  3737. */
  3738. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3739. resched_task(rq->curr);
  3740. }
  3741. out_unlock:
  3742. task_rq_unlock(rq, &flags);
  3743. }
  3744. EXPORT_SYMBOL(set_user_nice);
  3745. /*
  3746. * can_nice - check if a task can reduce its nice value
  3747. * @p: task
  3748. * @nice: nice value
  3749. */
  3750. int can_nice(const struct task_struct *p, const int nice)
  3751. {
  3752. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3753. int nice_rlim = 20 - nice;
  3754. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3755. capable(CAP_SYS_NICE));
  3756. }
  3757. #ifdef __ARCH_WANT_SYS_NICE
  3758. /*
  3759. * sys_nice - change the priority of the current process.
  3760. * @increment: priority increment
  3761. *
  3762. * sys_setpriority is a more generic, but much slower function that
  3763. * does similar things.
  3764. */
  3765. SYSCALL_DEFINE1(nice, int, increment)
  3766. {
  3767. long nice, retval;
  3768. /*
  3769. * Setpriority might change our priority at the same moment.
  3770. * We don't have to worry. Conceptually one call occurs first
  3771. * and we have a single winner.
  3772. */
  3773. if (increment < -40)
  3774. increment = -40;
  3775. if (increment > 40)
  3776. increment = 40;
  3777. nice = TASK_NICE(current) + increment;
  3778. if (nice < -20)
  3779. nice = -20;
  3780. if (nice > 19)
  3781. nice = 19;
  3782. if (increment < 0 && !can_nice(current, nice))
  3783. return -EPERM;
  3784. retval = security_task_setnice(current, nice);
  3785. if (retval)
  3786. return retval;
  3787. set_user_nice(current, nice);
  3788. return 0;
  3789. }
  3790. #endif
  3791. /**
  3792. * task_prio - return the priority value of a given task.
  3793. * @p: the task in question.
  3794. *
  3795. * This is the priority value as seen by users in /proc.
  3796. * RT tasks are offset by -200. Normal tasks are centered
  3797. * around 0, value goes from -16 to +15.
  3798. */
  3799. int task_prio(const struct task_struct *p)
  3800. {
  3801. return p->prio - MAX_RT_PRIO;
  3802. }
  3803. /**
  3804. * task_nice - return the nice value of a given task.
  3805. * @p: the task in question.
  3806. */
  3807. int task_nice(const struct task_struct *p)
  3808. {
  3809. return TASK_NICE(p);
  3810. }
  3811. EXPORT_SYMBOL(task_nice);
  3812. /**
  3813. * idle_cpu - is a given cpu idle currently?
  3814. * @cpu: the processor in question.
  3815. */
  3816. int idle_cpu(int cpu)
  3817. {
  3818. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3819. }
  3820. /**
  3821. * idle_task - return the idle task for a given cpu.
  3822. * @cpu: the processor in question.
  3823. */
  3824. struct task_struct *idle_task(int cpu)
  3825. {
  3826. return cpu_rq(cpu)->idle;
  3827. }
  3828. /**
  3829. * find_process_by_pid - find a process with a matching PID value.
  3830. * @pid: the pid in question.
  3831. */
  3832. static struct task_struct *find_process_by_pid(pid_t pid)
  3833. {
  3834. return pid ? find_task_by_vpid(pid) : current;
  3835. }
  3836. /* Actually do priority change: must hold rq lock. */
  3837. static void
  3838. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3839. {
  3840. BUG_ON(p->se.on_rq);
  3841. p->policy = policy;
  3842. p->rt_priority = prio;
  3843. p->normal_prio = normal_prio(p);
  3844. /* we are holding p->pi_lock already */
  3845. p->prio = rt_mutex_getprio(p);
  3846. if (rt_prio(p->prio))
  3847. p->sched_class = &rt_sched_class;
  3848. else
  3849. p->sched_class = &fair_sched_class;
  3850. set_load_weight(p);
  3851. }
  3852. /*
  3853. * check the target process has a UID that matches the current process's
  3854. */
  3855. static bool check_same_owner(struct task_struct *p)
  3856. {
  3857. const struct cred *cred = current_cred(), *pcred;
  3858. bool match;
  3859. rcu_read_lock();
  3860. pcred = __task_cred(p);
  3861. match = (cred->euid == pcred->euid ||
  3862. cred->euid == pcred->uid);
  3863. rcu_read_unlock();
  3864. return match;
  3865. }
  3866. static int __sched_setscheduler(struct task_struct *p, int policy,
  3867. const struct sched_param *param, bool user)
  3868. {
  3869. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3870. unsigned long flags;
  3871. const struct sched_class *prev_class;
  3872. struct rq *rq;
  3873. int reset_on_fork;
  3874. /* may grab non-irq protected spin_locks */
  3875. BUG_ON(in_interrupt());
  3876. recheck:
  3877. /* double check policy once rq lock held */
  3878. if (policy < 0) {
  3879. reset_on_fork = p->sched_reset_on_fork;
  3880. policy = oldpolicy = p->policy;
  3881. } else {
  3882. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  3883. policy &= ~SCHED_RESET_ON_FORK;
  3884. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3885. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3886. policy != SCHED_IDLE)
  3887. return -EINVAL;
  3888. }
  3889. /*
  3890. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3891. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3892. * SCHED_BATCH and SCHED_IDLE is 0.
  3893. */
  3894. if (param->sched_priority < 0 ||
  3895. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3896. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3897. return -EINVAL;
  3898. if (rt_policy(policy) != (param->sched_priority != 0))
  3899. return -EINVAL;
  3900. /*
  3901. * Allow unprivileged RT tasks to decrease priority:
  3902. */
  3903. if (user && !capable(CAP_SYS_NICE)) {
  3904. if (rt_policy(policy)) {
  3905. unsigned long rlim_rtprio =
  3906. task_rlimit(p, RLIMIT_RTPRIO);
  3907. /* can't set/change the rt policy */
  3908. if (policy != p->policy && !rlim_rtprio)
  3909. return -EPERM;
  3910. /* can't increase priority */
  3911. if (param->sched_priority > p->rt_priority &&
  3912. param->sched_priority > rlim_rtprio)
  3913. return -EPERM;
  3914. }
  3915. /*
  3916. * Like positive nice levels, dont allow tasks to
  3917. * move out of SCHED_IDLE either:
  3918. */
  3919. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3920. return -EPERM;
  3921. /* can't change other user's priorities */
  3922. if (!check_same_owner(p))
  3923. return -EPERM;
  3924. /* Normal users shall not reset the sched_reset_on_fork flag */
  3925. if (p->sched_reset_on_fork && !reset_on_fork)
  3926. return -EPERM;
  3927. }
  3928. if (user) {
  3929. retval = security_task_setscheduler(p);
  3930. if (retval)
  3931. return retval;
  3932. }
  3933. /*
  3934. * make sure no PI-waiters arrive (or leave) while we are
  3935. * changing the priority of the task:
  3936. */
  3937. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3938. /*
  3939. * To be able to change p->policy safely, the apropriate
  3940. * runqueue lock must be held.
  3941. */
  3942. rq = __task_rq_lock(p);
  3943. /*
  3944. * Changing the policy of the stop threads its a very bad idea
  3945. */
  3946. if (p == rq->stop) {
  3947. __task_rq_unlock(rq);
  3948. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3949. return -EINVAL;
  3950. }
  3951. #ifdef CONFIG_RT_GROUP_SCHED
  3952. if (user) {
  3953. /*
  3954. * Do not allow realtime tasks into groups that have no runtime
  3955. * assigned.
  3956. */
  3957. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3958. task_group(p)->rt_bandwidth.rt_runtime == 0) {
  3959. __task_rq_unlock(rq);
  3960. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3961. return -EPERM;
  3962. }
  3963. }
  3964. #endif
  3965. /* recheck policy now with rq lock held */
  3966. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3967. policy = oldpolicy = -1;
  3968. __task_rq_unlock(rq);
  3969. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3970. goto recheck;
  3971. }
  3972. on_rq = p->se.on_rq;
  3973. running = task_current(rq, p);
  3974. if (on_rq)
  3975. deactivate_task(rq, p, 0);
  3976. if (running)
  3977. p->sched_class->put_prev_task(rq, p);
  3978. p->sched_reset_on_fork = reset_on_fork;
  3979. oldprio = p->prio;
  3980. prev_class = p->sched_class;
  3981. __setscheduler(rq, p, policy, param->sched_priority);
  3982. if (running)
  3983. p->sched_class->set_curr_task(rq);
  3984. if (on_rq) {
  3985. activate_task(rq, p, 0);
  3986. check_class_changed(rq, p, prev_class, oldprio, running);
  3987. }
  3988. __task_rq_unlock(rq);
  3989. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3990. rt_mutex_adjust_pi(p);
  3991. return 0;
  3992. }
  3993. /**
  3994. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3995. * @p: the task in question.
  3996. * @policy: new policy.
  3997. * @param: structure containing the new RT priority.
  3998. *
  3999. * NOTE that the task may be already dead.
  4000. */
  4001. int sched_setscheduler(struct task_struct *p, int policy,
  4002. const struct sched_param *param)
  4003. {
  4004. return __sched_setscheduler(p, policy, param, true);
  4005. }
  4006. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4007. /**
  4008. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4009. * @p: the task in question.
  4010. * @policy: new policy.
  4011. * @param: structure containing the new RT priority.
  4012. *
  4013. * Just like sched_setscheduler, only don't bother checking if the
  4014. * current context has permission. For example, this is needed in
  4015. * stop_machine(): we create temporary high priority worker threads,
  4016. * but our caller might not have that capability.
  4017. */
  4018. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4019. const struct sched_param *param)
  4020. {
  4021. return __sched_setscheduler(p, policy, param, false);
  4022. }
  4023. static int
  4024. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4025. {
  4026. struct sched_param lparam;
  4027. struct task_struct *p;
  4028. int retval;
  4029. if (!param || pid < 0)
  4030. return -EINVAL;
  4031. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4032. return -EFAULT;
  4033. rcu_read_lock();
  4034. retval = -ESRCH;
  4035. p = find_process_by_pid(pid);
  4036. if (p != NULL)
  4037. retval = sched_setscheduler(p, policy, &lparam);
  4038. rcu_read_unlock();
  4039. return retval;
  4040. }
  4041. /**
  4042. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4043. * @pid: the pid in question.
  4044. * @policy: new policy.
  4045. * @param: structure containing the new RT priority.
  4046. */
  4047. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4048. struct sched_param __user *, param)
  4049. {
  4050. /* negative values for policy are not valid */
  4051. if (policy < 0)
  4052. return -EINVAL;
  4053. return do_sched_setscheduler(pid, policy, param);
  4054. }
  4055. /**
  4056. * sys_sched_setparam - set/change the RT priority of a thread
  4057. * @pid: the pid in question.
  4058. * @param: structure containing the new RT priority.
  4059. */
  4060. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4061. {
  4062. return do_sched_setscheduler(pid, -1, param);
  4063. }
  4064. /**
  4065. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4066. * @pid: the pid in question.
  4067. */
  4068. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4069. {
  4070. struct task_struct *p;
  4071. int retval;
  4072. if (pid < 0)
  4073. return -EINVAL;
  4074. retval = -ESRCH;
  4075. rcu_read_lock();
  4076. p = find_process_by_pid(pid);
  4077. if (p) {
  4078. retval = security_task_getscheduler(p);
  4079. if (!retval)
  4080. retval = p->policy
  4081. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  4082. }
  4083. rcu_read_unlock();
  4084. return retval;
  4085. }
  4086. /**
  4087. * sys_sched_getparam - get the RT priority of a thread
  4088. * @pid: the pid in question.
  4089. * @param: structure containing the RT priority.
  4090. */
  4091. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4092. {
  4093. struct sched_param lp;
  4094. struct task_struct *p;
  4095. int retval;
  4096. if (!param || pid < 0)
  4097. return -EINVAL;
  4098. rcu_read_lock();
  4099. p = find_process_by_pid(pid);
  4100. retval = -ESRCH;
  4101. if (!p)
  4102. goto out_unlock;
  4103. retval = security_task_getscheduler(p);
  4104. if (retval)
  4105. goto out_unlock;
  4106. lp.sched_priority = p->rt_priority;
  4107. rcu_read_unlock();
  4108. /*
  4109. * This one might sleep, we cannot do it with a spinlock held ...
  4110. */
  4111. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4112. return retval;
  4113. out_unlock:
  4114. rcu_read_unlock();
  4115. return retval;
  4116. }
  4117. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4118. {
  4119. cpumask_var_t cpus_allowed, new_mask;
  4120. struct task_struct *p;
  4121. int retval;
  4122. get_online_cpus();
  4123. rcu_read_lock();
  4124. p = find_process_by_pid(pid);
  4125. if (!p) {
  4126. rcu_read_unlock();
  4127. put_online_cpus();
  4128. return -ESRCH;
  4129. }
  4130. /* Prevent p going away */
  4131. get_task_struct(p);
  4132. rcu_read_unlock();
  4133. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4134. retval = -ENOMEM;
  4135. goto out_put_task;
  4136. }
  4137. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4138. retval = -ENOMEM;
  4139. goto out_free_cpus_allowed;
  4140. }
  4141. retval = -EPERM;
  4142. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  4143. goto out_unlock;
  4144. retval = security_task_setscheduler(p);
  4145. if (retval)
  4146. goto out_unlock;
  4147. cpuset_cpus_allowed(p, cpus_allowed);
  4148. cpumask_and(new_mask, in_mask, cpus_allowed);
  4149. again:
  4150. retval = set_cpus_allowed_ptr(p, new_mask);
  4151. if (!retval) {
  4152. cpuset_cpus_allowed(p, cpus_allowed);
  4153. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4154. /*
  4155. * We must have raced with a concurrent cpuset
  4156. * update. Just reset the cpus_allowed to the
  4157. * cpuset's cpus_allowed
  4158. */
  4159. cpumask_copy(new_mask, cpus_allowed);
  4160. goto again;
  4161. }
  4162. }
  4163. out_unlock:
  4164. free_cpumask_var(new_mask);
  4165. out_free_cpus_allowed:
  4166. free_cpumask_var(cpus_allowed);
  4167. out_put_task:
  4168. put_task_struct(p);
  4169. put_online_cpus();
  4170. return retval;
  4171. }
  4172. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4173. struct cpumask *new_mask)
  4174. {
  4175. if (len < cpumask_size())
  4176. cpumask_clear(new_mask);
  4177. else if (len > cpumask_size())
  4178. len = cpumask_size();
  4179. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4180. }
  4181. /**
  4182. * sys_sched_setaffinity - set the cpu affinity of a process
  4183. * @pid: pid of the process
  4184. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4185. * @user_mask_ptr: user-space pointer to the new cpu mask
  4186. */
  4187. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4188. unsigned long __user *, user_mask_ptr)
  4189. {
  4190. cpumask_var_t new_mask;
  4191. int retval;
  4192. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4193. return -ENOMEM;
  4194. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4195. if (retval == 0)
  4196. retval = sched_setaffinity(pid, new_mask);
  4197. free_cpumask_var(new_mask);
  4198. return retval;
  4199. }
  4200. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4201. {
  4202. struct task_struct *p;
  4203. unsigned long flags;
  4204. struct rq *rq;
  4205. int retval;
  4206. get_online_cpus();
  4207. rcu_read_lock();
  4208. retval = -ESRCH;
  4209. p = find_process_by_pid(pid);
  4210. if (!p)
  4211. goto out_unlock;
  4212. retval = security_task_getscheduler(p);
  4213. if (retval)
  4214. goto out_unlock;
  4215. rq = task_rq_lock(p, &flags);
  4216. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4217. task_rq_unlock(rq, &flags);
  4218. out_unlock:
  4219. rcu_read_unlock();
  4220. put_online_cpus();
  4221. return retval;
  4222. }
  4223. /**
  4224. * sys_sched_getaffinity - get the cpu affinity of a process
  4225. * @pid: pid of the process
  4226. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4227. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4228. */
  4229. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4230. unsigned long __user *, user_mask_ptr)
  4231. {
  4232. int ret;
  4233. cpumask_var_t mask;
  4234. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4235. return -EINVAL;
  4236. if (len & (sizeof(unsigned long)-1))
  4237. return -EINVAL;
  4238. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4239. return -ENOMEM;
  4240. ret = sched_getaffinity(pid, mask);
  4241. if (ret == 0) {
  4242. size_t retlen = min_t(size_t, len, cpumask_size());
  4243. if (copy_to_user(user_mask_ptr, mask, retlen))
  4244. ret = -EFAULT;
  4245. else
  4246. ret = retlen;
  4247. }
  4248. free_cpumask_var(mask);
  4249. return ret;
  4250. }
  4251. /**
  4252. * sys_sched_yield - yield the current processor to other threads.
  4253. *
  4254. * This function yields the current CPU to other tasks. If there are no
  4255. * other threads running on this CPU then this function will return.
  4256. */
  4257. SYSCALL_DEFINE0(sched_yield)
  4258. {
  4259. struct rq *rq = this_rq_lock();
  4260. schedstat_inc(rq, yld_count);
  4261. current->sched_class->yield_task(rq);
  4262. /*
  4263. * Since we are going to call schedule() anyway, there's
  4264. * no need to preempt or enable interrupts:
  4265. */
  4266. __release(rq->lock);
  4267. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4268. do_raw_spin_unlock(&rq->lock);
  4269. preempt_enable_no_resched();
  4270. schedule();
  4271. return 0;
  4272. }
  4273. static inline int should_resched(void)
  4274. {
  4275. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4276. }
  4277. static void __cond_resched(void)
  4278. {
  4279. add_preempt_count(PREEMPT_ACTIVE);
  4280. schedule();
  4281. sub_preempt_count(PREEMPT_ACTIVE);
  4282. }
  4283. int __sched _cond_resched(void)
  4284. {
  4285. if (should_resched()) {
  4286. __cond_resched();
  4287. return 1;
  4288. }
  4289. return 0;
  4290. }
  4291. EXPORT_SYMBOL(_cond_resched);
  4292. /*
  4293. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4294. * call schedule, and on return reacquire the lock.
  4295. *
  4296. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4297. * operations here to prevent schedule() from being called twice (once via
  4298. * spin_unlock(), once by hand).
  4299. */
  4300. int __cond_resched_lock(spinlock_t *lock)
  4301. {
  4302. int resched = should_resched();
  4303. int ret = 0;
  4304. lockdep_assert_held(lock);
  4305. if (spin_needbreak(lock) || resched) {
  4306. spin_unlock(lock);
  4307. if (resched)
  4308. __cond_resched();
  4309. else
  4310. cpu_relax();
  4311. ret = 1;
  4312. spin_lock(lock);
  4313. }
  4314. return ret;
  4315. }
  4316. EXPORT_SYMBOL(__cond_resched_lock);
  4317. int __sched __cond_resched_softirq(void)
  4318. {
  4319. BUG_ON(!in_softirq());
  4320. if (should_resched()) {
  4321. local_bh_enable();
  4322. __cond_resched();
  4323. local_bh_disable();
  4324. return 1;
  4325. }
  4326. return 0;
  4327. }
  4328. EXPORT_SYMBOL(__cond_resched_softirq);
  4329. /**
  4330. * yield - yield the current processor to other threads.
  4331. *
  4332. * This is a shortcut for kernel-space yielding - it marks the
  4333. * thread runnable and calls sys_sched_yield().
  4334. */
  4335. void __sched yield(void)
  4336. {
  4337. set_current_state(TASK_RUNNING);
  4338. sys_sched_yield();
  4339. }
  4340. EXPORT_SYMBOL(yield);
  4341. /*
  4342. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4343. * that process accounting knows that this is a task in IO wait state.
  4344. */
  4345. void __sched io_schedule(void)
  4346. {
  4347. struct rq *rq = raw_rq();
  4348. delayacct_blkio_start();
  4349. atomic_inc(&rq->nr_iowait);
  4350. current->in_iowait = 1;
  4351. schedule();
  4352. current->in_iowait = 0;
  4353. atomic_dec(&rq->nr_iowait);
  4354. delayacct_blkio_end();
  4355. }
  4356. EXPORT_SYMBOL(io_schedule);
  4357. long __sched io_schedule_timeout(long timeout)
  4358. {
  4359. struct rq *rq = raw_rq();
  4360. long ret;
  4361. delayacct_blkio_start();
  4362. atomic_inc(&rq->nr_iowait);
  4363. current->in_iowait = 1;
  4364. ret = schedule_timeout(timeout);
  4365. current->in_iowait = 0;
  4366. atomic_dec(&rq->nr_iowait);
  4367. delayacct_blkio_end();
  4368. return ret;
  4369. }
  4370. /**
  4371. * sys_sched_get_priority_max - return maximum RT priority.
  4372. * @policy: scheduling class.
  4373. *
  4374. * this syscall returns the maximum rt_priority that can be used
  4375. * by a given scheduling class.
  4376. */
  4377. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4378. {
  4379. int ret = -EINVAL;
  4380. switch (policy) {
  4381. case SCHED_FIFO:
  4382. case SCHED_RR:
  4383. ret = MAX_USER_RT_PRIO-1;
  4384. break;
  4385. case SCHED_NORMAL:
  4386. case SCHED_BATCH:
  4387. case SCHED_IDLE:
  4388. ret = 0;
  4389. break;
  4390. }
  4391. return ret;
  4392. }
  4393. /**
  4394. * sys_sched_get_priority_min - return minimum RT priority.
  4395. * @policy: scheduling class.
  4396. *
  4397. * this syscall returns the minimum rt_priority that can be used
  4398. * by a given scheduling class.
  4399. */
  4400. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4401. {
  4402. int ret = -EINVAL;
  4403. switch (policy) {
  4404. case SCHED_FIFO:
  4405. case SCHED_RR:
  4406. ret = 1;
  4407. break;
  4408. case SCHED_NORMAL:
  4409. case SCHED_BATCH:
  4410. case SCHED_IDLE:
  4411. ret = 0;
  4412. }
  4413. return ret;
  4414. }
  4415. /**
  4416. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4417. * @pid: pid of the process.
  4418. * @interval: userspace pointer to the timeslice value.
  4419. *
  4420. * this syscall writes the default timeslice value of a given process
  4421. * into the user-space timespec buffer. A value of '0' means infinity.
  4422. */
  4423. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4424. struct timespec __user *, interval)
  4425. {
  4426. struct task_struct *p;
  4427. unsigned int time_slice;
  4428. unsigned long flags;
  4429. struct rq *rq;
  4430. int retval;
  4431. struct timespec t;
  4432. if (pid < 0)
  4433. return -EINVAL;
  4434. retval = -ESRCH;
  4435. rcu_read_lock();
  4436. p = find_process_by_pid(pid);
  4437. if (!p)
  4438. goto out_unlock;
  4439. retval = security_task_getscheduler(p);
  4440. if (retval)
  4441. goto out_unlock;
  4442. rq = task_rq_lock(p, &flags);
  4443. time_slice = p->sched_class->get_rr_interval(rq, p);
  4444. task_rq_unlock(rq, &flags);
  4445. rcu_read_unlock();
  4446. jiffies_to_timespec(time_slice, &t);
  4447. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4448. return retval;
  4449. out_unlock:
  4450. rcu_read_unlock();
  4451. return retval;
  4452. }
  4453. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4454. void sched_show_task(struct task_struct *p)
  4455. {
  4456. unsigned long free = 0;
  4457. unsigned state;
  4458. state = p->state ? __ffs(p->state) + 1 : 0;
  4459. printk(KERN_INFO "%-13.13s %c", p->comm,
  4460. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4461. #if BITS_PER_LONG == 32
  4462. if (state == TASK_RUNNING)
  4463. printk(KERN_CONT " running ");
  4464. else
  4465. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4466. #else
  4467. if (state == TASK_RUNNING)
  4468. printk(KERN_CONT " running task ");
  4469. else
  4470. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4471. #endif
  4472. #ifdef CONFIG_DEBUG_STACK_USAGE
  4473. free = stack_not_used(p);
  4474. #endif
  4475. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4476. task_pid_nr(p), task_pid_nr(p->real_parent),
  4477. (unsigned long)task_thread_info(p)->flags);
  4478. show_stack(p, NULL);
  4479. }
  4480. void show_state_filter(unsigned long state_filter)
  4481. {
  4482. struct task_struct *g, *p;
  4483. #if BITS_PER_LONG == 32
  4484. printk(KERN_INFO
  4485. " task PC stack pid father\n");
  4486. #else
  4487. printk(KERN_INFO
  4488. " task PC stack pid father\n");
  4489. #endif
  4490. read_lock(&tasklist_lock);
  4491. do_each_thread(g, p) {
  4492. /*
  4493. * reset the NMI-timeout, listing all files on a slow
  4494. * console might take alot of time:
  4495. */
  4496. touch_nmi_watchdog();
  4497. if (!state_filter || (p->state & state_filter))
  4498. sched_show_task(p);
  4499. } while_each_thread(g, p);
  4500. touch_all_softlockup_watchdogs();
  4501. #ifdef CONFIG_SCHED_DEBUG
  4502. sysrq_sched_debug_show();
  4503. #endif
  4504. read_unlock(&tasklist_lock);
  4505. /*
  4506. * Only show locks if all tasks are dumped:
  4507. */
  4508. if (!state_filter)
  4509. debug_show_all_locks();
  4510. }
  4511. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4512. {
  4513. idle->sched_class = &idle_sched_class;
  4514. }
  4515. /**
  4516. * init_idle - set up an idle thread for a given CPU
  4517. * @idle: task in question
  4518. * @cpu: cpu the idle task belongs to
  4519. *
  4520. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4521. * flag, to make booting more robust.
  4522. */
  4523. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4524. {
  4525. struct rq *rq = cpu_rq(cpu);
  4526. unsigned long flags;
  4527. raw_spin_lock_irqsave(&rq->lock, flags);
  4528. __sched_fork(idle);
  4529. idle->state = TASK_RUNNING;
  4530. idle->se.exec_start = sched_clock();
  4531. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  4532. /*
  4533. * We're having a chicken and egg problem, even though we are
  4534. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4535. * lockdep check in task_group() will fail.
  4536. *
  4537. * Similar case to sched_fork(). / Alternatively we could
  4538. * use task_rq_lock() here and obtain the other rq->lock.
  4539. *
  4540. * Silence PROVE_RCU
  4541. */
  4542. rcu_read_lock();
  4543. __set_task_cpu(idle, cpu);
  4544. rcu_read_unlock();
  4545. rq->curr = rq->idle = idle;
  4546. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4547. idle->oncpu = 1;
  4548. #endif
  4549. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4550. /* Set the preempt count _outside_ the spinlocks! */
  4551. #if defined(CONFIG_PREEMPT)
  4552. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4553. #else
  4554. task_thread_info(idle)->preempt_count = 0;
  4555. #endif
  4556. /*
  4557. * The idle tasks have their own, simple scheduling class:
  4558. */
  4559. idle->sched_class = &idle_sched_class;
  4560. ftrace_graph_init_task(idle);
  4561. }
  4562. /*
  4563. * In a system that switches off the HZ timer nohz_cpu_mask
  4564. * indicates which cpus entered this state. This is used
  4565. * in the rcu update to wait only for active cpus. For system
  4566. * which do not switch off the HZ timer nohz_cpu_mask should
  4567. * always be CPU_BITS_NONE.
  4568. */
  4569. cpumask_var_t nohz_cpu_mask;
  4570. /*
  4571. * Increase the granularity value when there are more CPUs,
  4572. * because with more CPUs the 'effective latency' as visible
  4573. * to users decreases. But the relationship is not linear,
  4574. * so pick a second-best guess by going with the log2 of the
  4575. * number of CPUs.
  4576. *
  4577. * This idea comes from the SD scheduler of Con Kolivas:
  4578. */
  4579. static int get_update_sysctl_factor(void)
  4580. {
  4581. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  4582. unsigned int factor;
  4583. switch (sysctl_sched_tunable_scaling) {
  4584. case SCHED_TUNABLESCALING_NONE:
  4585. factor = 1;
  4586. break;
  4587. case SCHED_TUNABLESCALING_LINEAR:
  4588. factor = cpus;
  4589. break;
  4590. case SCHED_TUNABLESCALING_LOG:
  4591. default:
  4592. factor = 1 + ilog2(cpus);
  4593. break;
  4594. }
  4595. return factor;
  4596. }
  4597. static void update_sysctl(void)
  4598. {
  4599. unsigned int factor = get_update_sysctl_factor();
  4600. #define SET_SYSCTL(name) \
  4601. (sysctl_##name = (factor) * normalized_sysctl_##name)
  4602. SET_SYSCTL(sched_min_granularity);
  4603. SET_SYSCTL(sched_latency);
  4604. SET_SYSCTL(sched_wakeup_granularity);
  4605. #undef SET_SYSCTL
  4606. }
  4607. static inline void sched_init_granularity(void)
  4608. {
  4609. update_sysctl();
  4610. }
  4611. #ifdef CONFIG_SMP
  4612. /*
  4613. * This is how migration works:
  4614. *
  4615. * 1) we invoke migration_cpu_stop() on the target CPU using
  4616. * stop_one_cpu().
  4617. * 2) stopper starts to run (implicitly forcing the migrated thread
  4618. * off the CPU)
  4619. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4620. * 4) if it's in the wrong runqueue then the migration thread removes
  4621. * it and puts it into the right queue.
  4622. * 5) stopper completes and stop_one_cpu() returns and the migration
  4623. * is done.
  4624. */
  4625. /*
  4626. * Change a given task's CPU affinity. Migrate the thread to a
  4627. * proper CPU and schedule it away if the CPU it's executing on
  4628. * is removed from the allowed bitmask.
  4629. *
  4630. * NOTE: the caller must have a valid reference to the task, the
  4631. * task must not exit() & deallocate itself prematurely. The
  4632. * call is not atomic; no spinlocks may be held.
  4633. */
  4634. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4635. {
  4636. unsigned long flags;
  4637. struct rq *rq;
  4638. unsigned int dest_cpu;
  4639. int ret = 0;
  4640. /*
  4641. * Serialize against TASK_WAKING so that ttwu() and wunt() can
  4642. * drop the rq->lock and still rely on ->cpus_allowed.
  4643. */
  4644. again:
  4645. while (task_is_waking(p))
  4646. cpu_relax();
  4647. rq = task_rq_lock(p, &flags);
  4648. if (task_is_waking(p)) {
  4649. task_rq_unlock(rq, &flags);
  4650. goto again;
  4651. }
  4652. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4653. ret = -EINVAL;
  4654. goto out;
  4655. }
  4656. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  4657. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  4658. ret = -EINVAL;
  4659. goto out;
  4660. }
  4661. if (p->sched_class->set_cpus_allowed)
  4662. p->sched_class->set_cpus_allowed(p, new_mask);
  4663. else {
  4664. cpumask_copy(&p->cpus_allowed, new_mask);
  4665. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  4666. }
  4667. /* Can the task run on the task's current CPU? If so, we're done */
  4668. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4669. goto out;
  4670. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4671. if (migrate_task(p, dest_cpu)) {
  4672. struct migration_arg arg = { p, dest_cpu };
  4673. /* Need help from migration thread: drop lock and wait. */
  4674. task_rq_unlock(rq, &flags);
  4675. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4676. tlb_migrate_finish(p->mm);
  4677. return 0;
  4678. }
  4679. out:
  4680. task_rq_unlock(rq, &flags);
  4681. return ret;
  4682. }
  4683. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4684. /*
  4685. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4686. * this because either it can't run here any more (set_cpus_allowed()
  4687. * away from this CPU, or CPU going down), or because we're
  4688. * attempting to rebalance this task on exec (sched_exec).
  4689. *
  4690. * So we race with normal scheduler movements, but that's OK, as long
  4691. * as the task is no longer on this CPU.
  4692. *
  4693. * Returns non-zero if task was successfully migrated.
  4694. */
  4695. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4696. {
  4697. struct rq *rq_dest, *rq_src;
  4698. int ret = 0;
  4699. if (unlikely(!cpu_active(dest_cpu)))
  4700. return ret;
  4701. rq_src = cpu_rq(src_cpu);
  4702. rq_dest = cpu_rq(dest_cpu);
  4703. double_rq_lock(rq_src, rq_dest);
  4704. /* Already moved. */
  4705. if (task_cpu(p) != src_cpu)
  4706. goto done;
  4707. /* Affinity changed (again). */
  4708. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  4709. goto fail;
  4710. /*
  4711. * If we're not on a rq, the next wake-up will ensure we're
  4712. * placed properly.
  4713. */
  4714. if (p->se.on_rq) {
  4715. deactivate_task(rq_src, p, 0);
  4716. set_task_cpu(p, dest_cpu);
  4717. activate_task(rq_dest, p, 0);
  4718. check_preempt_curr(rq_dest, p, 0);
  4719. }
  4720. done:
  4721. ret = 1;
  4722. fail:
  4723. double_rq_unlock(rq_src, rq_dest);
  4724. return ret;
  4725. }
  4726. /*
  4727. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4728. * and performs thread migration by bumping thread off CPU then
  4729. * 'pushing' onto another runqueue.
  4730. */
  4731. static int migration_cpu_stop(void *data)
  4732. {
  4733. struct migration_arg *arg = data;
  4734. /*
  4735. * The original target cpu might have gone down and we might
  4736. * be on another cpu but it doesn't matter.
  4737. */
  4738. local_irq_disable();
  4739. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4740. local_irq_enable();
  4741. return 0;
  4742. }
  4743. #ifdef CONFIG_HOTPLUG_CPU
  4744. /*
  4745. * Ensures that the idle task is using init_mm right before its cpu goes
  4746. * offline.
  4747. */
  4748. void idle_task_exit(void)
  4749. {
  4750. struct mm_struct *mm = current->active_mm;
  4751. BUG_ON(cpu_online(smp_processor_id()));
  4752. if (mm != &init_mm)
  4753. switch_mm(mm, &init_mm, current);
  4754. mmdrop(mm);
  4755. }
  4756. /*
  4757. * While a dead CPU has no uninterruptible tasks queued at this point,
  4758. * it might still have a nonzero ->nr_uninterruptible counter, because
  4759. * for performance reasons the counter is not stricly tracking tasks to
  4760. * their home CPUs. So we just add the counter to another CPU's counter,
  4761. * to keep the global sum constant after CPU-down:
  4762. */
  4763. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4764. {
  4765. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  4766. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4767. rq_src->nr_uninterruptible = 0;
  4768. }
  4769. /*
  4770. * remove the tasks which were accounted by rq from calc_load_tasks.
  4771. */
  4772. static void calc_global_load_remove(struct rq *rq)
  4773. {
  4774. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  4775. rq->calc_load_active = 0;
  4776. }
  4777. /*
  4778. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4779. * try_to_wake_up()->select_task_rq().
  4780. *
  4781. * Called with rq->lock held even though we'er in stop_machine() and
  4782. * there's no concurrency possible, we hold the required locks anyway
  4783. * because of lock validation efforts.
  4784. */
  4785. static void migrate_tasks(unsigned int dead_cpu)
  4786. {
  4787. struct rq *rq = cpu_rq(dead_cpu);
  4788. struct task_struct *next, *stop = rq->stop;
  4789. int dest_cpu;
  4790. /*
  4791. * Fudge the rq selection such that the below task selection loop
  4792. * doesn't get stuck on the currently eligible stop task.
  4793. *
  4794. * We're currently inside stop_machine() and the rq is either stuck
  4795. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4796. * either way we should never end up calling schedule() until we're
  4797. * done here.
  4798. */
  4799. rq->stop = NULL;
  4800. for ( ; ; ) {
  4801. /*
  4802. * There's this thread running, bail when that's the only
  4803. * remaining thread.
  4804. */
  4805. if (rq->nr_running == 1)
  4806. break;
  4807. next = pick_next_task(rq);
  4808. BUG_ON(!next);
  4809. next->sched_class->put_prev_task(rq, next);
  4810. /* Find suitable destination for @next, with force if needed. */
  4811. dest_cpu = select_fallback_rq(dead_cpu, next);
  4812. raw_spin_unlock(&rq->lock);
  4813. __migrate_task(next, dead_cpu, dest_cpu);
  4814. raw_spin_lock(&rq->lock);
  4815. }
  4816. rq->stop = stop;
  4817. }
  4818. #endif /* CONFIG_HOTPLUG_CPU */
  4819. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4820. static struct ctl_table sd_ctl_dir[] = {
  4821. {
  4822. .procname = "sched_domain",
  4823. .mode = 0555,
  4824. },
  4825. {}
  4826. };
  4827. static struct ctl_table sd_ctl_root[] = {
  4828. {
  4829. .procname = "kernel",
  4830. .mode = 0555,
  4831. .child = sd_ctl_dir,
  4832. },
  4833. {}
  4834. };
  4835. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4836. {
  4837. struct ctl_table *entry =
  4838. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4839. return entry;
  4840. }
  4841. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4842. {
  4843. struct ctl_table *entry;
  4844. /*
  4845. * In the intermediate directories, both the child directory and
  4846. * procname are dynamically allocated and could fail but the mode
  4847. * will always be set. In the lowest directory the names are
  4848. * static strings and all have proc handlers.
  4849. */
  4850. for (entry = *tablep; entry->mode; entry++) {
  4851. if (entry->child)
  4852. sd_free_ctl_entry(&entry->child);
  4853. if (entry->proc_handler == NULL)
  4854. kfree(entry->procname);
  4855. }
  4856. kfree(*tablep);
  4857. *tablep = NULL;
  4858. }
  4859. static void
  4860. set_table_entry(struct ctl_table *entry,
  4861. const char *procname, void *data, int maxlen,
  4862. mode_t mode, proc_handler *proc_handler)
  4863. {
  4864. entry->procname = procname;
  4865. entry->data = data;
  4866. entry->maxlen = maxlen;
  4867. entry->mode = mode;
  4868. entry->proc_handler = proc_handler;
  4869. }
  4870. static struct ctl_table *
  4871. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4872. {
  4873. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4874. if (table == NULL)
  4875. return NULL;
  4876. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4877. sizeof(long), 0644, proc_doulongvec_minmax);
  4878. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4879. sizeof(long), 0644, proc_doulongvec_minmax);
  4880. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4881. sizeof(int), 0644, proc_dointvec_minmax);
  4882. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4883. sizeof(int), 0644, proc_dointvec_minmax);
  4884. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4885. sizeof(int), 0644, proc_dointvec_minmax);
  4886. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4887. sizeof(int), 0644, proc_dointvec_minmax);
  4888. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4889. sizeof(int), 0644, proc_dointvec_minmax);
  4890. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4891. sizeof(int), 0644, proc_dointvec_minmax);
  4892. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4893. sizeof(int), 0644, proc_dointvec_minmax);
  4894. set_table_entry(&table[9], "cache_nice_tries",
  4895. &sd->cache_nice_tries,
  4896. sizeof(int), 0644, proc_dointvec_minmax);
  4897. set_table_entry(&table[10], "flags", &sd->flags,
  4898. sizeof(int), 0644, proc_dointvec_minmax);
  4899. set_table_entry(&table[11], "name", sd->name,
  4900. CORENAME_MAX_SIZE, 0444, proc_dostring);
  4901. /* &table[12] is terminator */
  4902. return table;
  4903. }
  4904. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4905. {
  4906. struct ctl_table *entry, *table;
  4907. struct sched_domain *sd;
  4908. int domain_num = 0, i;
  4909. char buf[32];
  4910. for_each_domain(cpu, sd)
  4911. domain_num++;
  4912. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4913. if (table == NULL)
  4914. return NULL;
  4915. i = 0;
  4916. for_each_domain(cpu, sd) {
  4917. snprintf(buf, 32, "domain%d", i);
  4918. entry->procname = kstrdup(buf, GFP_KERNEL);
  4919. entry->mode = 0555;
  4920. entry->child = sd_alloc_ctl_domain_table(sd);
  4921. entry++;
  4922. i++;
  4923. }
  4924. return table;
  4925. }
  4926. static struct ctl_table_header *sd_sysctl_header;
  4927. static void register_sched_domain_sysctl(void)
  4928. {
  4929. int i, cpu_num = num_possible_cpus();
  4930. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4931. char buf[32];
  4932. WARN_ON(sd_ctl_dir[0].child);
  4933. sd_ctl_dir[0].child = entry;
  4934. if (entry == NULL)
  4935. return;
  4936. for_each_possible_cpu(i) {
  4937. snprintf(buf, 32, "cpu%d", i);
  4938. entry->procname = kstrdup(buf, GFP_KERNEL);
  4939. entry->mode = 0555;
  4940. entry->child = sd_alloc_ctl_cpu_table(i);
  4941. entry++;
  4942. }
  4943. WARN_ON(sd_sysctl_header);
  4944. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4945. }
  4946. /* may be called multiple times per register */
  4947. static void unregister_sched_domain_sysctl(void)
  4948. {
  4949. if (sd_sysctl_header)
  4950. unregister_sysctl_table(sd_sysctl_header);
  4951. sd_sysctl_header = NULL;
  4952. if (sd_ctl_dir[0].child)
  4953. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4954. }
  4955. #else
  4956. static void register_sched_domain_sysctl(void)
  4957. {
  4958. }
  4959. static void unregister_sched_domain_sysctl(void)
  4960. {
  4961. }
  4962. #endif
  4963. static void set_rq_online(struct rq *rq)
  4964. {
  4965. if (!rq->online) {
  4966. const struct sched_class *class;
  4967. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4968. rq->online = 1;
  4969. for_each_class(class) {
  4970. if (class->rq_online)
  4971. class->rq_online(rq);
  4972. }
  4973. }
  4974. }
  4975. static void set_rq_offline(struct rq *rq)
  4976. {
  4977. if (rq->online) {
  4978. const struct sched_class *class;
  4979. for_each_class(class) {
  4980. if (class->rq_offline)
  4981. class->rq_offline(rq);
  4982. }
  4983. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4984. rq->online = 0;
  4985. }
  4986. }
  4987. /*
  4988. * migration_call - callback that gets triggered when a CPU is added.
  4989. * Here we can start up the necessary migration thread for the new CPU.
  4990. */
  4991. static int __cpuinit
  4992. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4993. {
  4994. int cpu = (long)hcpu;
  4995. unsigned long flags;
  4996. struct rq *rq = cpu_rq(cpu);
  4997. switch (action & ~CPU_TASKS_FROZEN) {
  4998. case CPU_UP_PREPARE:
  4999. rq->calc_load_update = calc_load_update;
  5000. break;
  5001. case CPU_ONLINE:
  5002. /* Update our root-domain */
  5003. raw_spin_lock_irqsave(&rq->lock, flags);
  5004. if (rq->rd) {
  5005. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5006. set_rq_online(rq);
  5007. }
  5008. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5009. break;
  5010. #ifdef CONFIG_HOTPLUG_CPU
  5011. case CPU_DYING:
  5012. /* Update our root-domain */
  5013. raw_spin_lock_irqsave(&rq->lock, flags);
  5014. if (rq->rd) {
  5015. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5016. set_rq_offline(rq);
  5017. }
  5018. migrate_tasks(cpu);
  5019. BUG_ON(rq->nr_running != 1); /* the migration thread */
  5020. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5021. migrate_nr_uninterruptible(rq);
  5022. calc_global_load_remove(rq);
  5023. break;
  5024. #endif
  5025. }
  5026. return NOTIFY_OK;
  5027. }
  5028. /*
  5029. * Register at high priority so that task migration (migrate_all_tasks)
  5030. * happens before everything else. This has to be lower priority than
  5031. * the notifier in the perf_event subsystem, though.
  5032. */
  5033. static struct notifier_block __cpuinitdata migration_notifier = {
  5034. .notifier_call = migration_call,
  5035. .priority = CPU_PRI_MIGRATION,
  5036. };
  5037. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  5038. unsigned long action, void *hcpu)
  5039. {
  5040. switch (action & ~CPU_TASKS_FROZEN) {
  5041. case CPU_ONLINE:
  5042. case CPU_DOWN_FAILED:
  5043. set_cpu_active((long)hcpu, true);
  5044. return NOTIFY_OK;
  5045. default:
  5046. return NOTIFY_DONE;
  5047. }
  5048. }
  5049. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  5050. unsigned long action, void *hcpu)
  5051. {
  5052. switch (action & ~CPU_TASKS_FROZEN) {
  5053. case CPU_DOWN_PREPARE:
  5054. set_cpu_active((long)hcpu, false);
  5055. return NOTIFY_OK;
  5056. default:
  5057. return NOTIFY_DONE;
  5058. }
  5059. }
  5060. static int __init migration_init(void)
  5061. {
  5062. void *cpu = (void *)(long)smp_processor_id();
  5063. int err;
  5064. /* Initialize migration for the boot CPU */
  5065. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5066. BUG_ON(err == NOTIFY_BAD);
  5067. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5068. register_cpu_notifier(&migration_notifier);
  5069. /* Register cpu active notifiers */
  5070. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  5071. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  5072. return 0;
  5073. }
  5074. early_initcall(migration_init);
  5075. #endif
  5076. #ifdef CONFIG_SMP
  5077. #ifdef CONFIG_SCHED_DEBUG
  5078. static __read_mostly int sched_domain_debug_enabled;
  5079. static int __init sched_domain_debug_setup(char *str)
  5080. {
  5081. sched_domain_debug_enabled = 1;
  5082. return 0;
  5083. }
  5084. early_param("sched_debug", sched_domain_debug_setup);
  5085. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5086. struct cpumask *groupmask)
  5087. {
  5088. struct sched_group *group = sd->groups;
  5089. char str[256];
  5090. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5091. cpumask_clear(groupmask);
  5092. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5093. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5094. printk("does not load-balance\n");
  5095. if (sd->parent)
  5096. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5097. " has parent");
  5098. return -1;
  5099. }
  5100. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5101. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5102. printk(KERN_ERR "ERROR: domain->span does not contain "
  5103. "CPU%d\n", cpu);
  5104. }
  5105. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5106. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5107. " CPU%d\n", cpu);
  5108. }
  5109. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5110. do {
  5111. if (!group) {
  5112. printk("\n");
  5113. printk(KERN_ERR "ERROR: group is NULL\n");
  5114. break;
  5115. }
  5116. if (!group->cpu_power) {
  5117. printk(KERN_CONT "\n");
  5118. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5119. "set\n");
  5120. break;
  5121. }
  5122. if (!cpumask_weight(sched_group_cpus(group))) {
  5123. printk(KERN_CONT "\n");
  5124. printk(KERN_ERR "ERROR: empty group\n");
  5125. break;
  5126. }
  5127. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5128. printk(KERN_CONT "\n");
  5129. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5130. break;
  5131. }
  5132. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5133. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5134. printk(KERN_CONT " %s", str);
  5135. if (group->cpu_power != SCHED_LOAD_SCALE) {
  5136. printk(KERN_CONT " (cpu_power = %d)",
  5137. group->cpu_power);
  5138. }
  5139. group = group->next;
  5140. } while (group != sd->groups);
  5141. printk(KERN_CONT "\n");
  5142. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5143. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5144. if (sd->parent &&
  5145. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5146. printk(KERN_ERR "ERROR: parent span is not a superset "
  5147. "of domain->span\n");
  5148. return 0;
  5149. }
  5150. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5151. {
  5152. cpumask_var_t groupmask;
  5153. int level = 0;
  5154. if (!sched_domain_debug_enabled)
  5155. return;
  5156. if (!sd) {
  5157. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5158. return;
  5159. }
  5160. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5161. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5162. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5163. return;
  5164. }
  5165. for (;;) {
  5166. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5167. break;
  5168. level++;
  5169. sd = sd->parent;
  5170. if (!sd)
  5171. break;
  5172. }
  5173. free_cpumask_var(groupmask);
  5174. }
  5175. #else /* !CONFIG_SCHED_DEBUG */
  5176. # define sched_domain_debug(sd, cpu) do { } while (0)
  5177. #endif /* CONFIG_SCHED_DEBUG */
  5178. static int sd_degenerate(struct sched_domain *sd)
  5179. {
  5180. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5181. return 1;
  5182. /* Following flags need at least 2 groups */
  5183. if (sd->flags & (SD_LOAD_BALANCE |
  5184. SD_BALANCE_NEWIDLE |
  5185. SD_BALANCE_FORK |
  5186. SD_BALANCE_EXEC |
  5187. SD_SHARE_CPUPOWER |
  5188. SD_SHARE_PKG_RESOURCES)) {
  5189. if (sd->groups != sd->groups->next)
  5190. return 0;
  5191. }
  5192. /* Following flags don't use groups */
  5193. if (sd->flags & (SD_WAKE_AFFINE))
  5194. return 0;
  5195. return 1;
  5196. }
  5197. static int
  5198. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5199. {
  5200. unsigned long cflags = sd->flags, pflags = parent->flags;
  5201. if (sd_degenerate(parent))
  5202. return 1;
  5203. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5204. return 0;
  5205. /* Flags needing groups don't count if only 1 group in parent */
  5206. if (parent->groups == parent->groups->next) {
  5207. pflags &= ~(SD_LOAD_BALANCE |
  5208. SD_BALANCE_NEWIDLE |
  5209. SD_BALANCE_FORK |
  5210. SD_BALANCE_EXEC |
  5211. SD_SHARE_CPUPOWER |
  5212. SD_SHARE_PKG_RESOURCES);
  5213. if (nr_node_ids == 1)
  5214. pflags &= ~SD_SERIALIZE;
  5215. }
  5216. if (~cflags & pflags)
  5217. return 0;
  5218. return 1;
  5219. }
  5220. static void free_rootdomain(struct root_domain *rd)
  5221. {
  5222. synchronize_sched();
  5223. cpupri_cleanup(&rd->cpupri);
  5224. free_cpumask_var(rd->rto_mask);
  5225. free_cpumask_var(rd->online);
  5226. free_cpumask_var(rd->span);
  5227. kfree(rd);
  5228. }
  5229. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5230. {
  5231. struct root_domain *old_rd = NULL;
  5232. unsigned long flags;
  5233. raw_spin_lock_irqsave(&rq->lock, flags);
  5234. if (rq->rd) {
  5235. old_rd = rq->rd;
  5236. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5237. set_rq_offline(rq);
  5238. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5239. /*
  5240. * If we dont want to free the old_rt yet then
  5241. * set old_rd to NULL to skip the freeing later
  5242. * in this function:
  5243. */
  5244. if (!atomic_dec_and_test(&old_rd->refcount))
  5245. old_rd = NULL;
  5246. }
  5247. atomic_inc(&rd->refcount);
  5248. rq->rd = rd;
  5249. cpumask_set_cpu(rq->cpu, rd->span);
  5250. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5251. set_rq_online(rq);
  5252. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5253. if (old_rd)
  5254. free_rootdomain(old_rd);
  5255. }
  5256. static int init_rootdomain(struct root_domain *rd)
  5257. {
  5258. memset(rd, 0, sizeof(*rd));
  5259. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5260. goto out;
  5261. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5262. goto free_span;
  5263. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5264. goto free_online;
  5265. if (cpupri_init(&rd->cpupri) != 0)
  5266. goto free_rto_mask;
  5267. return 0;
  5268. free_rto_mask:
  5269. free_cpumask_var(rd->rto_mask);
  5270. free_online:
  5271. free_cpumask_var(rd->online);
  5272. free_span:
  5273. free_cpumask_var(rd->span);
  5274. out:
  5275. return -ENOMEM;
  5276. }
  5277. static void init_defrootdomain(void)
  5278. {
  5279. init_rootdomain(&def_root_domain);
  5280. atomic_set(&def_root_domain.refcount, 1);
  5281. }
  5282. static struct root_domain *alloc_rootdomain(void)
  5283. {
  5284. struct root_domain *rd;
  5285. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5286. if (!rd)
  5287. return NULL;
  5288. if (init_rootdomain(rd) != 0) {
  5289. kfree(rd);
  5290. return NULL;
  5291. }
  5292. return rd;
  5293. }
  5294. /*
  5295. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5296. * hold the hotplug lock.
  5297. */
  5298. static void
  5299. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5300. {
  5301. struct rq *rq = cpu_rq(cpu);
  5302. struct sched_domain *tmp;
  5303. for (tmp = sd; tmp; tmp = tmp->parent)
  5304. tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
  5305. /* Remove the sched domains which do not contribute to scheduling. */
  5306. for (tmp = sd; tmp; ) {
  5307. struct sched_domain *parent = tmp->parent;
  5308. if (!parent)
  5309. break;
  5310. if (sd_parent_degenerate(tmp, parent)) {
  5311. tmp->parent = parent->parent;
  5312. if (parent->parent)
  5313. parent->parent->child = tmp;
  5314. } else
  5315. tmp = tmp->parent;
  5316. }
  5317. if (sd && sd_degenerate(sd)) {
  5318. sd = sd->parent;
  5319. if (sd)
  5320. sd->child = NULL;
  5321. }
  5322. sched_domain_debug(sd, cpu);
  5323. rq_attach_root(rq, rd);
  5324. rcu_assign_pointer(rq->sd, sd);
  5325. }
  5326. /* cpus with isolated domains */
  5327. static cpumask_var_t cpu_isolated_map;
  5328. /* Setup the mask of cpus configured for isolated domains */
  5329. static int __init isolated_cpu_setup(char *str)
  5330. {
  5331. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5332. cpulist_parse(str, cpu_isolated_map);
  5333. return 1;
  5334. }
  5335. __setup("isolcpus=", isolated_cpu_setup);
  5336. /*
  5337. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5338. * to a function which identifies what group(along with sched group) a CPU
  5339. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  5340. * (due to the fact that we keep track of groups covered with a struct cpumask).
  5341. *
  5342. * init_sched_build_groups will build a circular linked list of the groups
  5343. * covered by the given span, and will set each group's ->cpumask correctly,
  5344. * and ->cpu_power to 0.
  5345. */
  5346. static void
  5347. init_sched_build_groups(const struct cpumask *span,
  5348. const struct cpumask *cpu_map,
  5349. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  5350. struct sched_group **sg,
  5351. struct cpumask *tmpmask),
  5352. struct cpumask *covered, struct cpumask *tmpmask)
  5353. {
  5354. struct sched_group *first = NULL, *last = NULL;
  5355. int i;
  5356. cpumask_clear(covered);
  5357. for_each_cpu(i, span) {
  5358. struct sched_group *sg;
  5359. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5360. int j;
  5361. if (cpumask_test_cpu(i, covered))
  5362. continue;
  5363. cpumask_clear(sched_group_cpus(sg));
  5364. sg->cpu_power = 0;
  5365. for_each_cpu(j, span) {
  5366. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5367. continue;
  5368. cpumask_set_cpu(j, covered);
  5369. cpumask_set_cpu(j, sched_group_cpus(sg));
  5370. }
  5371. if (!first)
  5372. first = sg;
  5373. if (last)
  5374. last->next = sg;
  5375. last = sg;
  5376. }
  5377. last->next = first;
  5378. }
  5379. #define SD_NODES_PER_DOMAIN 16
  5380. #ifdef CONFIG_NUMA
  5381. /**
  5382. * find_next_best_node - find the next node to include in a sched_domain
  5383. * @node: node whose sched_domain we're building
  5384. * @used_nodes: nodes already in the sched_domain
  5385. *
  5386. * Find the next node to include in a given scheduling domain. Simply
  5387. * finds the closest node not already in the @used_nodes map.
  5388. *
  5389. * Should use nodemask_t.
  5390. */
  5391. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5392. {
  5393. int i, n, val, min_val, best_node = 0;
  5394. min_val = INT_MAX;
  5395. for (i = 0; i < nr_node_ids; i++) {
  5396. /* Start at @node */
  5397. n = (node + i) % nr_node_ids;
  5398. if (!nr_cpus_node(n))
  5399. continue;
  5400. /* Skip already used nodes */
  5401. if (node_isset(n, *used_nodes))
  5402. continue;
  5403. /* Simple min distance search */
  5404. val = node_distance(node, n);
  5405. if (val < min_val) {
  5406. min_val = val;
  5407. best_node = n;
  5408. }
  5409. }
  5410. node_set(best_node, *used_nodes);
  5411. return best_node;
  5412. }
  5413. /**
  5414. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5415. * @node: node whose cpumask we're constructing
  5416. * @span: resulting cpumask
  5417. *
  5418. * Given a node, construct a good cpumask for its sched_domain to span. It
  5419. * should be one that prevents unnecessary balancing, but also spreads tasks
  5420. * out optimally.
  5421. */
  5422. static void sched_domain_node_span(int node, struct cpumask *span)
  5423. {
  5424. nodemask_t used_nodes;
  5425. int i;
  5426. cpumask_clear(span);
  5427. nodes_clear(used_nodes);
  5428. cpumask_or(span, span, cpumask_of_node(node));
  5429. node_set(node, used_nodes);
  5430. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5431. int next_node = find_next_best_node(node, &used_nodes);
  5432. cpumask_or(span, span, cpumask_of_node(next_node));
  5433. }
  5434. }
  5435. #endif /* CONFIG_NUMA */
  5436. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5437. /*
  5438. * The cpus mask in sched_group and sched_domain hangs off the end.
  5439. *
  5440. * ( See the the comments in include/linux/sched.h:struct sched_group
  5441. * and struct sched_domain. )
  5442. */
  5443. struct static_sched_group {
  5444. struct sched_group sg;
  5445. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  5446. };
  5447. struct static_sched_domain {
  5448. struct sched_domain sd;
  5449. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  5450. };
  5451. struct s_data {
  5452. #ifdef CONFIG_NUMA
  5453. int sd_allnodes;
  5454. cpumask_var_t domainspan;
  5455. cpumask_var_t covered;
  5456. cpumask_var_t notcovered;
  5457. #endif
  5458. cpumask_var_t nodemask;
  5459. cpumask_var_t this_sibling_map;
  5460. cpumask_var_t this_core_map;
  5461. cpumask_var_t this_book_map;
  5462. cpumask_var_t send_covered;
  5463. cpumask_var_t tmpmask;
  5464. struct sched_group **sched_group_nodes;
  5465. struct root_domain *rd;
  5466. };
  5467. enum s_alloc {
  5468. sa_sched_groups = 0,
  5469. sa_rootdomain,
  5470. sa_tmpmask,
  5471. sa_send_covered,
  5472. sa_this_book_map,
  5473. sa_this_core_map,
  5474. sa_this_sibling_map,
  5475. sa_nodemask,
  5476. sa_sched_group_nodes,
  5477. #ifdef CONFIG_NUMA
  5478. sa_notcovered,
  5479. sa_covered,
  5480. sa_domainspan,
  5481. #endif
  5482. sa_none,
  5483. };
  5484. /*
  5485. * SMT sched-domains:
  5486. */
  5487. #ifdef CONFIG_SCHED_SMT
  5488. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  5489. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  5490. static int
  5491. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  5492. struct sched_group **sg, struct cpumask *unused)
  5493. {
  5494. if (sg)
  5495. *sg = &per_cpu(sched_groups, cpu).sg;
  5496. return cpu;
  5497. }
  5498. #endif /* CONFIG_SCHED_SMT */
  5499. /*
  5500. * multi-core sched-domains:
  5501. */
  5502. #ifdef CONFIG_SCHED_MC
  5503. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  5504. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  5505. static int
  5506. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5507. struct sched_group **sg, struct cpumask *mask)
  5508. {
  5509. int group;
  5510. #ifdef CONFIG_SCHED_SMT
  5511. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5512. group = cpumask_first(mask);
  5513. #else
  5514. group = cpu;
  5515. #endif
  5516. if (sg)
  5517. *sg = &per_cpu(sched_group_core, group).sg;
  5518. return group;
  5519. }
  5520. #endif /* CONFIG_SCHED_MC */
  5521. /*
  5522. * book sched-domains:
  5523. */
  5524. #ifdef CONFIG_SCHED_BOOK
  5525. static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
  5526. static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
  5527. static int
  5528. cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
  5529. struct sched_group **sg, struct cpumask *mask)
  5530. {
  5531. int group = cpu;
  5532. #ifdef CONFIG_SCHED_MC
  5533. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5534. group = cpumask_first(mask);
  5535. #elif defined(CONFIG_SCHED_SMT)
  5536. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5537. group = cpumask_first(mask);
  5538. #endif
  5539. if (sg)
  5540. *sg = &per_cpu(sched_group_book, group).sg;
  5541. return group;
  5542. }
  5543. #endif /* CONFIG_SCHED_BOOK */
  5544. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  5545. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  5546. static int
  5547. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  5548. struct sched_group **sg, struct cpumask *mask)
  5549. {
  5550. int group;
  5551. #ifdef CONFIG_SCHED_BOOK
  5552. cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
  5553. group = cpumask_first(mask);
  5554. #elif defined(CONFIG_SCHED_MC)
  5555. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5556. group = cpumask_first(mask);
  5557. #elif defined(CONFIG_SCHED_SMT)
  5558. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5559. group = cpumask_first(mask);
  5560. #else
  5561. group = cpu;
  5562. #endif
  5563. if (sg)
  5564. *sg = &per_cpu(sched_group_phys, group).sg;
  5565. return group;
  5566. }
  5567. #ifdef CONFIG_NUMA
  5568. /*
  5569. * The init_sched_build_groups can't handle what we want to do with node
  5570. * groups, so roll our own. Now each node has its own list of groups which
  5571. * gets dynamically allocated.
  5572. */
  5573. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  5574. static struct sched_group ***sched_group_nodes_bycpu;
  5575. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  5576. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  5577. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  5578. struct sched_group **sg,
  5579. struct cpumask *nodemask)
  5580. {
  5581. int group;
  5582. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  5583. group = cpumask_first(nodemask);
  5584. if (sg)
  5585. *sg = &per_cpu(sched_group_allnodes, group).sg;
  5586. return group;
  5587. }
  5588. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5589. {
  5590. struct sched_group *sg = group_head;
  5591. int j;
  5592. if (!sg)
  5593. return;
  5594. do {
  5595. for_each_cpu(j, sched_group_cpus(sg)) {
  5596. struct sched_domain *sd;
  5597. sd = &per_cpu(phys_domains, j).sd;
  5598. if (j != group_first_cpu(sd->groups)) {
  5599. /*
  5600. * Only add "power" once for each
  5601. * physical package.
  5602. */
  5603. continue;
  5604. }
  5605. sg->cpu_power += sd->groups->cpu_power;
  5606. }
  5607. sg = sg->next;
  5608. } while (sg != group_head);
  5609. }
  5610. static int build_numa_sched_groups(struct s_data *d,
  5611. const struct cpumask *cpu_map, int num)
  5612. {
  5613. struct sched_domain *sd;
  5614. struct sched_group *sg, *prev;
  5615. int n, j;
  5616. cpumask_clear(d->covered);
  5617. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  5618. if (cpumask_empty(d->nodemask)) {
  5619. d->sched_group_nodes[num] = NULL;
  5620. goto out;
  5621. }
  5622. sched_domain_node_span(num, d->domainspan);
  5623. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  5624. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5625. GFP_KERNEL, num);
  5626. if (!sg) {
  5627. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  5628. num);
  5629. return -ENOMEM;
  5630. }
  5631. d->sched_group_nodes[num] = sg;
  5632. for_each_cpu(j, d->nodemask) {
  5633. sd = &per_cpu(node_domains, j).sd;
  5634. sd->groups = sg;
  5635. }
  5636. sg->cpu_power = 0;
  5637. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  5638. sg->next = sg;
  5639. cpumask_or(d->covered, d->covered, d->nodemask);
  5640. prev = sg;
  5641. for (j = 0; j < nr_node_ids; j++) {
  5642. n = (num + j) % nr_node_ids;
  5643. cpumask_complement(d->notcovered, d->covered);
  5644. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  5645. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  5646. if (cpumask_empty(d->tmpmask))
  5647. break;
  5648. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  5649. if (cpumask_empty(d->tmpmask))
  5650. continue;
  5651. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5652. GFP_KERNEL, num);
  5653. if (!sg) {
  5654. printk(KERN_WARNING
  5655. "Can not alloc domain group for node %d\n", j);
  5656. return -ENOMEM;
  5657. }
  5658. sg->cpu_power = 0;
  5659. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  5660. sg->next = prev->next;
  5661. cpumask_or(d->covered, d->covered, d->tmpmask);
  5662. prev->next = sg;
  5663. prev = sg;
  5664. }
  5665. out:
  5666. return 0;
  5667. }
  5668. #endif /* CONFIG_NUMA */
  5669. #ifdef CONFIG_NUMA
  5670. /* Free memory allocated for various sched_group structures */
  5671. static void free_sched_groups(const struct cpumask *cpu_map,
  5672. struct cpumask *nodemask)
  5673. {
  5674. int cpu, i;
  5675. for_each_cpu(cpu, cpu_map) {
  5676. struct sched_group **sched_group_nodes
  5677. = sched_group_nodes_bycpu[cpu];
  5678. if (!sched_group_nodes)
  5679. continue;
  5680. for (i = 0; i < nr_node_ids; i++) {
  5681. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5682. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  5683. if (cpumask_empty(nodemask))
  5684. continue;
  5685. if (sg == NULL)
  5686. continue;
  5687. sg = sg->next;
  5688. next_sg:
  5689. oldsg = sg;
  5690. sg = sg->next;
  5691. kfree(oldsg);
  5692. if (oldsg != sched_group_nodes[i])
  5693. goto next_sg;
  5694. }
  5695. kfree(sched_group_nodes);
  5696. sched_group_nodes_bycpu[cpu] = NULL;
  5697. }
  5698. }
  5699. #else /* !CONFIG_NUMA */
  5700. static void free_sched_groups(const struct cpumask *cpu_map,
  5701. struct cpumask *nodemask)
  5702. {
  5703. }
  5704. #endif /* CONFIG_NUMA */
  5705. /*
  5706. * Initialize sched groups cpu_power.
  5707. *
  5708. * cpu_power indicates the capacity of sched group, which is used while
  5709. * distributing the load between different sched groups in a sched domain.
  5710. * Typically cpu_power for all the groups in a sched domain will be same unless
  5711. * there are asymmetries in the topology. If there are asymmetries, group
  5712. * having more cpu_power will pickup more load compared to the group having
  5713. * less cpu_power.
  5714. */
  5715. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5716. {
  5717. struct sched_domain *child;
  5718. struct sched_group *group;
  5719. long power;
  5720. int weight;
  5721. WARN_ON(!sd || !sd->groups);
  5722. if (cpu != group_first_cpu(sd->groups))
  5723. return;
  5724. child = sd->child;
  5725. sd->groups->cpu_power = 0;
  5726. if (!child) {
  5727. power = SCHED_LOAD_SCALE;
  5728. weight = cpumask_weight(sched_domain_span(sd));
  5729. /*
  5730. * SMT siblings share the power of a single core.
  5731. * Usually multiple threads get a better yield out of
  5732. * that one core than a single thread would have,
  5733. * reflect that in sd->smt_gain.
  5734. */
  5735. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  5736. power *= sd->smt_gain;
  5737. power /= weight;
  5738. power >>= SCHED_LOAD_SHIFT;
  5739. }
  5740. sd->groups->cpu_power += power;
  5741. return;
  5742. }
  5743. /*
  5744. * Add cpu_power of each child group to this groups cpu_power.
  5745. */
  5746. group = child->groups;
  5747. do {
  5748. sd->groups->cpu_power += group->cpu_power;
  5749. group = group->next;
  5750. } while (group != child->groups);
  5751. }
  5752. /*
  5753. * Initializers for schedule domains
  5754. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5755. */
  5756. #ifdef CONFIG_SCHED_DEBUG
  5757. # define SD_INIT_NAME(sd, type) sd->name = #type
  5758. #else
  5759. # define SD_INIT_NAME(sd, type) do { } while (0)
  5760. #endif
  5761. #define SD_INIT(sd, type) sd_init_##type(sd)
  5762. #define SD_INIT_FUNC(type) \
  5763. static noinline void sd_init_##type(struct sched_domain *sd) \
  5764. { \
  5765. memset(sd, 0, sizeof(*sd)); \
  5766. *sd = SD_##type##_INIT; \
  5767. sd->level = SD_LV_##type; \
  5768. SD_INIT_NAME(sd, type); \
  5769. }
  5770. SD_INIT_FUNC(CPU)
  5771. #ifdef CONFIG_NUMA
  5772. SD_INIT_FUNC(ALLNODES)
  5773. SD_INIT_FUNC(NODE)
  5774. #endif
  5775. #ifdef CONFIG_SCHED_SMT
  5776. SD_INIT_FUNC(SIBLING)
  5777. #endif
  5778. #ifdef CONFIG_SCHED_MC
  5779. SD_INIT_FUNC(MC)
  5780. #endif
  5781. #ifdef CONFIG_SCHED_BOOK
  5782. SD_INIT_FUNC(BOOK)
  5783. #endif
  5784. static int default_relax_domain_level = -1;
  5785. static int __init setup_relax_domain_level(char *str)
  5786. {
  5787. unsigned long val;
  5788. val = simple_strtoul(str, NULL, 0);
  5789. if (val < SD_LV_MAX)
  5790. default_relax_domain_level = val;
  5791. return 1;
  5792. }
  5793. __setup("relax_domain_level=", setup_relax_domain_level);
  5794. static void set_domain_attribute(struct sched_domain *sd,
  5795. struct sched_domain_attr *attr)
  5796. {
  5797. int request;
  5798. if (!attr || attr->relax_domain_level < 0) {
  5799. if (default_relax_domain_level < 0)
  5800. return;
  5801. else
  5802. request = default_relax_domain_level;
  5803. } else
  5804. request = attr->relax_domain_level;
  5805. if (request < sd->level) {
  5806. /* turn off idle balance on this domain */
  5807. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5808. } else {
  5809. /* turn on idle balance on this domain */
  5810. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5811. }
  5812. }
  5813. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5814. const struct cpumask *cpu_map)
  5815. {
  5816. switch (what) {
  5817. case sa_sched_groups:
  5818. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  5819. d->sched_group_nodes = NULL;
  5820. case sa_rootdomain:
  5821. free_rootdomain(d->rd); /* fall through */
  5822. case sa_tmpmask:
  5823. free_cpumask_var(d->tmpmask); /* fall through */
  5824. case sa_send_covered:
  5825. free_cpumask_var(d->send_covered); /* fall through */
  5826. case sa_this_book_map:
  5827. free_cpumask_var(d->this_book_map); /* fall through */
  5828. case sa_this_core_map:
  5829. free_cpumask_var(d->this_core_map); /* fall through */
  5830. case sa_this_sibling_map:
  5831. free_cpumask_var(d->this_sibling_map); /* fall through */
  5832. case sa_nodemask:
  5833. free_cpumask_var(d->nodemask); /* fall through */
  5834. case sa_sched_group_nodes:
  5835. #ifdef CONFIG_NUMA
  5836. kfree(d->sched_group_nodes); /* fall through */
  5837. case sa_notcovered:
  5838. free_cpumask_var(d->notcovered); /* fall through */
  5839. case sa_covered:
  5840. free_cpumask_var(d->covered); /* fall through */
  5841. case sa_domainspan:
  5842. free_cpumask_var(d->domainspan); /* fall through */
  5843. #endif
  5844. case sa_none:
  5845. break;
  5846. }
  5847. }
  5848. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5849. const struct cpumask *cpu_map)
  5850. {
  5851. #ifdef CONFIG_NUMA
  5852. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  5853. return sa_none;
  5854. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  5855. return sa_domainspan;
  5856. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  5857. return sa_covered;
  5858. /* Allocate the per-node list of sched groups */
  5859. d->sched_group_nodes = kcalloc(nr_node_ids,
  5860. sizeof(struct sched_group *), GFP_KERNEL);
  5861. if (!d->sched_group_nodes) {
  5862. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5863. return sa_notcovered;
  5864. }
  5865. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  5866. #endif
  5867. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  5868. return sa_sched_group_nodes;
  5869. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  5870. return sa_nodemask;
  5871. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  5872. return sa_this_sibling_map;
  5873. if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
  5874. return sa_this_core_map;
  5875. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  5876. return sa_this_book_map;
  5877. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  5878. return sa_send_covered;
  5879. d->rd = alloc_rootdomain();
  5880. if (!d->rd) {
  5881. printk(KERN_WARNING "Cannot alloc root domain\n");
  5882. return sa_tmpmask;
  5883. }
  5884. return sa_rootdomain;
  5885. }
  5886. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  5887. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  5888. {
  5889. struct sched_domain *sd = NULL;
  5890. #ifdef CONFIG_NUMA
  5891. struct sched_domain *parent;
  5892. d->sd_allnodes = 0;
  5893. if (cpumask_weight(cpu_map) >
  5894. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  5895. sd = &per_cpu(allnodes_domains, i).sd;
  5896. SD_INIT(sd, ALLNODES);
  5897. set_domain_attribute(sd, attr);
  5898. cpumask_copy(sched_domain_span(sd), cpu_map);
  5899. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  5900. d->sd_allnodes = 1;
  5901. }
  5902. parent = sd;
  5903. sd = &per_cpu(node_domains, i).sd;
  5904. SD_INIT(sd, NODE);
  5905. set_domain_attribute(sd, attr);
  5906. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  5907. sd->parent = parent;
  5908. if (parent)
  5909. parent->child = sd;
  5910. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  5911. #endif
  5912. return sd;
  5913. }
  5914. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  5915. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5916. struct sched_domain *parent, int i)
  5917. {
  5918. struct sched_domain *sd;
  5919. sd = &per_cpu(phys_domains, i).sd;
  5920. SD_INIT(sd, CPU);
  5921. set_domain_attribute(sd, attr);
  5922. cpumask_copy(sched_domain_span(sd), d->nodemask);
  5923. sd->parent = parent;
  5924. if (parent)
  5925. parent->child = sd;
  5926. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  5927. return sd;
  5928. }
  5929. static struct sched_domain *__build_book_sched_domain(struct s_data *d,
  5930. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5931. struct sched_domain *parent, int i)
  5932. {
  5933. struct sched_domain *sd = parent;
  5934. #ifdef CONFIG_SCHED_BOOK
  5935. sd = &per_cpu(book_domains, i).sd;
  5936. SD_INIT(sd, BOOK);
  5937. set_domain_attribute(sd, attr);
  5938. cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
  5939. sd->parent = parent;
  5940. parent->child = sd;
  5941. cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
  5942. #endif
  5943. return sd;
  5944. }
  5945. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  5946. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5947. struct sched_domain *parent, int i)
  5948. {
  5949. struct sched_domain *sd = parent;
  5950. #ifdef CONFIG_SCHED_MC
  5951. sd = &per_cpu(core_domains, i).sd;
  5952. SD_INIT(sd, MC);
  5953. set_domain_attribute(sd, attr);
  5954. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  5955. sd->parent = parent;
  5956. parent->child = sd;
  5957. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  5958. #endif
  5959. return sd;
  5960. }
  5961. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  5962. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5963. struct sched_domain *parent, int i)
  5964. {
  5965. struct sched_domain *sd = parent;
  5966. #ifdef CONFIG_SCHED_SMT
  5967. sd = &per_cpu(cpu_domains, i).sd;
  5968. SD_INIT(sd, SIBLING);
  5969. set_domain_attribute(sd, attr);
  5970. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  5971. sd->parent = parent;
  5972. parent->child = sd;
  5973. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  5974. #endif
  5975. return sd;
  5976. }
  5977. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  5978. const struct cpumask *cpu_map, int cpu)
  5979. {
  5980. switch (l) {
  5981. #ifdef CONFIG_SCHED_SMT
  5982. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  5983. cpumask_and(d->this_sibling_map, cpu_map,
  5984. topology_thread_cpumask(cpu));
  5985. if (cpu == cpumask_first(d->this_sibling_map))
  5986. init_sched_build_groups(d->this_sibling_map, cpu_map,
  5987. &cpu_to_cpu_group,
  5988. d->send_covered, d->tmpmask);
  5989. break;
  5990. #endif
  5991. #ifdef CONFIG_SCHED_MC
  5992. case SD_LV_MC: /* set up multi-core groups */
  5993. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  5994. if (cpu == cpumask_first(d->this_core_map))
  5995. init_sched_build_groups(d->this_core_map, cpu_map,
  5996. &cpu_to_core_group,
  5997. d->send_covered, d->tmpmask);
  5998. break;
  5999. #endif
  6000. #ifdef CONFIG_SCHED_BOOK
  6001. case SD_LV_BOOK: /* set up book groups */
  6002. cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
  6003. if (cpu == cpumask_first(d->this_book_map))
  6004. init_sched_build_groups(d->this_book_map, cpu_map,
  6005. &cpu_to_book_group,
  6006. d->send_covered, d->tmpmask);
  6007. break;
  6008. #endif
  6009. case SD_LV_CPU: /* set up physical groups */
  6010. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  6011. if (!cpumask_empty(d->nodemask))
  6012. init_sched_build_groups(d->nodemask, cpu_map,
  6013. &cpu_to_phys_group,
  6014. d->send_covered, d->tmpmask);
  6015. break;
  6016. #ifdef CONFIG_NUMA
  6017. case SD_LV_ALLNODES:
  6018. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  6019. d->send_covered, d->tmpmask);
  6020. break;
  6021. #endif
  6022. default:
  6023. break;
  6024. }
  6025. }
  6026. /*
  6027. * Build sched domains for a given set of cpus and attach the sched domains
  6028. * to the individual cpus
  6029. */
  6030. static int __build_sched_domains(const struct cpumask *cpu_map,
  6031. struct sched_domain_attr *attr)
  6032. {
  6033. enum s_alloc alloc_state = sa_none;
  6034. struct s_data d;
  6035. struct sched_domain *sd;
  6036. int i;
  6037. #ifdef CONFIG_NUMA
  6038. d.sd_allnodes = 0;
  6039. #endif
  6040. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  6041. if (alloc_state != sa_rootdomain)
  6042. goto error;
  6043. alloc_state = sa_sched_groups;
  6044. /*
  6045. * Set up domains for cpus specified by the cpu_map.
  6046. */
  6047. for_each_cpu(i, cpu_map) {
  6048. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  6049. cpu_map);
  6050. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  6051. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  6052. sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
  6053. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  6054. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  6055. }
  6056. for_each_cpu(i, cpu_map) {
  6057. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  6058. build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
  6059. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  6060. }
  6061. /* Set up physical groups */
  6062. for (i = 0; i < nr_node_ids; i++)
  6063. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  6064. #ifdef CONFIG_NUMA
  6065. /* Set up node groups */
  6066. if (d.sd_allnodes)
  6067. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  6068. for (i = 0; i < nr_node_ids; i++)
  6069. if (build_numa_sched_groups(&d, cpu_map, i))
  6070. goto error;
  6071. #endif
  6072. /* Calculate CPU power for physical packages and nodes */
  6073. #ifdef CONFIG_SCHED_SMT
  6074. for_each_cpu(i, cpu_map) {
  6075. sd = &per_cpu(cpu_domains, i).sd;
  6076. init_sched_groups_power(i, sd);
  6077. }
  6078. #endif
  6079. #ifdef CONFIG_SCHED_MC
  6080. for_each_cpu(i, cpu_map) {
  6081. sd = &per_cpu(core_domains, i).sd;
  6082. init_sched_groups_power(i, sd);
  6083. }
  6084. #endif
  6085. #ifdef CONFIG_SCHED_BOOK
  6086. for_each_cpu(i, cpu_map) {
  6087. sd = &per_cpu(book_domains, i).sd;
  6088. init_sched_groups_power(i, sd);
  6089. }
  6090. #endif
  6091. for_each_cpu(i, cpu_map) {
  6092. sd = &per_cpu(phys_domains, i).sd;
  6093. init_sched_groups_power(i, sd);
  6094. }
  6095. #ifdef CONFIG_NUMA
  6096. for (i = 0; i < nr_node_ids; i++)
  6097. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  6098. if (d.sd_allnodes) {
  6099. struct sched_group *sg;
  6100. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  6101. d.tmpmask);
  6102. init_numa_sched_groups_power(sg);
  6103. }
  6104. #endif
  6105. /* Attach the domains */
  6106. for_each_cpu(i, cpu_map) {
  6107. #ifdef CONFIG_SCHED_SMT
  6108. sd = &per_cpu(cpu_domains, i).sd;
  6109. #elif defined(CONFIG_SCHED_MC)
  6110. sd = &per_cpu(core_domains, i).sd;
  6111. #elif defined(CONFIG_SCHED_BOOK)
  6112. sd = &per_cpu(book_domains, i).sd;
  6113. #else
  6114. sd = &per_cpu(phys_domains, i).sd;
  6115. #endif
  6116. cpu_attach_domain(sd, d.rd, i);
  6117. }
  6118. d.sched_group_nodes = NULL; /* don't free this we still need it */
  6119. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  6120. return 0;
  6121. error:
  6122. __free_domain_allocs(&d, alloc_state, cpu_map);
  6123. return -ENOMEM;
  6124. }
  6125. static int build_sched_domains(const struct cpumask *cpu_map)
  6126. {
  6127. return __build_sched_domains(cpu_map, NULL);
  6128. }
  6129. static cpumask_var_t *doms_cur; /* current sched domains */
  6130. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6131. static struct sched_domain_attr *dattr_cur;
  6132. /* attribues of custom domains in 'doms_cur' */
  6133. /*
  6134. * Special case: If a kmalloc of a doms_cur partition (array of
  6135. * cpumask) fails, then fallback to a single sched domain,
  6136. * as determined by the single cpumask fallback_doms.
  6137. */
  6138. static cpumask_var_t fallback_doms;
  6139. /*
  6140. * arch_update_cpu_topology lets virtualized architectures update the
  6141. * cpu core maps. It is supposed to return 1 if the topology changed
  6142. * or 0 if it stayed the same.
  6143. */
  6144. int __attribute__((weak)) arch_update_cpu_topology(void)
  6145. {
  6146. return 0;
  6147. }
  6148. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6149. {
  6150. int i;
  6151. cpumask_var_t *doms;
  6152. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6153. if (!doms)
  6154. return NULL;
  6155. for (i = 0; i < ndoms; i++) {
  6156. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6157. free_sched_domains(doms, i);
  6158. return NULL;
  6159. }
  6160. }
  6161. return doms;
  6162. }
  6163. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6164. {
  6165. unsigned int i;
  6166. for (i = 0; i < ndoms; i++)
  6167. free_cpumask_var(doms[i]);
  6168. kfree(doms);
  6169. }
  6170. /*
  6171. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6172. * For now this just excludes isolated cpus, but could be used to
  6173. * exclude other special cases in the future.
  6174. */
  6175. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  6176. {
  6177. int err;
  6178. arch_update_cpu_topology();
  6179. ndoms_cur = 1;
  6180. doms_cur = alloc_sched_domains(ndoms_cur);
  6181. if (!doms_cur)
  6182. doms_cur = &fallback_doms;
  6183. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6184. dattr_cur = NULL;
  6185. err = build_sched_domains(doms_cur[0]);
  6186. register_sched_domain_sysctl();
  6187. return err;
  6188. }
  6189. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  6190. struct cpumask *tmpmask)
  6191. {
  6192. free_sched_groups(cpu_map, tmpmask);
  6193. }
  6194. /*
  6195. * Detach sched domains from a group of cpus specified in cpu_map
  6196. * These cpus will now be attached to the NULL domain
  6197. */
  6198. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6199. {
  6200. /* Save because hotplug lock held. */
  6201. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6202. int i;
  6203. for_each_cpu(i, cpu_map)
  6204. cpu_attach_domain(NULL, &def_root_domain, i);
  6205. synchronize_sched();
  6206. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6207. }
  6208. /* handle null as "default" */
  6209. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6210. struct sched_domain_attr *new, int idx_new)
  6211. {
  6212. struct sched_domain_attr tmp;
  6213. /* fast path */
  6214. if (!new && !cur)
  6215. return 1;
  6216. tmp = SD_ATTR_INIT;
  6217. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6218. new ? (new + idx_new) : &tmp,
  6219. sizeof(struct sched_domain_attr));
  6220. }
  6221. /*
  6222. * Partition sched domains as specified by the 'ndoms_new'
  6223. * cpumasks in the array doms_new[] of cpumasks. This compares
  6224. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6225. * It destroys each deleted domain and builds each new domain.
  6226. *
  6227. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6228. * The masks don't intersect (don't overlap.) We should setup one
  6229. * sched domain for each mask. CPUs not in any of the cpumasks will
  6230. * not be load balanced. If the same cpumask appears both in the
  6231. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6232. * it as it is.
  6233. *
  6234. * The passed in 'doms_new' should be allocated using
  6235. * alloc_sched_domains. This routine takes ownership of it and will
  6236. * free_sched_domains it when done with it. If the caller failed the
  6237. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6238. * and partition_sched_domains() will fallback to the single partition
  6239. * 'fallback_doms', it also forces the domains to be rebuilt.
  6240. *
  6241. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6242. * ndoms_new == 0 is a special case for destroying existing domains,
  6243. * and it will not create the default domain.
  6244. *
  6245. * Call with hotplug lock held
  6246. */
  6247. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6248. struct sched_domain_attr *dattr_new)
  6249. {
  6250. int i, j, n;
  6251. int new_topology;
  6252. mutex_lock(&sched_domains_mutex);
  6253. /* always unregister in case we don't destroy any domains */
  6254. unregister_sched_domain_sysctl();
  6255. /* Let architecture update cpu core mappings. */
  6256. new_topology = arch_update_cpu_topology();
  6257. n = doms_new ? ndoms_new : 0;
  6258. /* Destroy deleted domains */
  6259. for (i = 0; i < ndoms_cur; i++) {
  6260. for (j = 0; j < n && !new_topology; j++) {
  6261. if (cpumask_equal(doms_cur[i], doms_new[j])
  6262. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6263. goto match1;
  6264. }
  6265. /* no match - a current sched domain not in new doms_new[] */
  6266. detach_destroy_domains(doms_cur[i]);
  6267. match1:
  6268. ;
  6269. }
  6270. if (doms_new == NULL) {
  6271. ndoms_cur = 0;
  6272. doms_new = &fallback_doms;
  6273. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6274. WARN_ON_ONCE(dattr_new);
  6275. }
  6276. /* Build new domains */
  6277. for (i = 0; i < ndoms_new; i++) {
  6278. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6279. if (cpumask_equal(doms_new[i], doms_cur[j])
  6280. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6281. goto match2;
  6282. }
  6283. /* no match - add a new doms_new */
  6284. __build_sched_domains(doms_new[i],
  6285. dattr_new ? dattr_new + i : NULL);
  6286. match2:
  6287. ;
  6288. }
  6289. /* Remember the new sched domains */
  6290. if (doms_cur != &fallback_doms)
  6291. free_sched_domains(doms_cur, ndoms_cur);
  6292. kfree(dattr_cur); /* kfree(NULL) is safe */
  6293. doms_cur = doms_new;
  6294. dattr_cur = dattr_new;
  6295. ndoms_cur = ndoms_new;
  6296. register_sched_domain_sysctl();
  6297. mutex_unlock(&sched_domains_mutex);
  6298. }
  6299. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6300. static void arch_reinit_sched_domains(void)
  6301. {
  6302. get_online_cpus();
  6303. /* Destroy domains first to force the rebuild */
  6304. partition_sched_domains(0, NULL, NULL);
  6305. rebuild_sched_domains();
  6306. put_online_cpus();
  6307. }
  6308. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6309. {
  6310. unsigned int level = 0;
  6311. if (sscanf(buf, "%u", &level) != 1)
  6312. return -EINVAL;
  6313. /*
  6314. * level is always be positive so don't check for
  6315. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6316. * What happens on 0 or 1 byte write,
  6317. * need to check for count as well?
  6318. */
  6319. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6320. return -EINVAL;
  6321. if (smt)
  6322. sched_smt_power_savings = level;
  6323. else
  6324. sched_mc_power_savings = level;
  6325. arch_reinit_sched_domains();
  6326. return count;
  6327. }
  6328. #ifdef CONFIG_SCHED_MC
  6329. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6330. struct sysdev_class_attribute *attr,
  6331. char *page)
  6332. {
  6333. return sprintf(page, "%u\n", sched_mc_power_savings);
  6334. }
  6335. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6336. struct sysdev_class_attribute *attr,
  6337. const char *buf, size_t count)
  6338. {
  6339. return sched_power_savings_store(buf, count, 0);
  6340. }
  6341. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6342. sched_mc_power_savings_show,
  6343. sched_mc_power_savings_store);
  6344. #endif
  6345. #ifdef CONFIG_SCHED_SMT
  6346. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6347. struct sysdev_class_attribute *attr,
  6348. char *page)
  6349. {
  6350. return sprintf(page, "%u\n", sched_smt_power_savings);
  6351. }
  6352. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6353. struct sysdev_class_attribute *attr,
  6354. const char *buf, size_t count)
  6355. {
  6356. return sched_power_savings_store(buf, count, 1);
  6357. }
  6358. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6359. sched_smt_power_savings_show,
  6360. sched_smt_power_savings_store);
  6361. #endif
  6362. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6363. {
  6364. int err = 0;
  6365. #ifdef CONFIG_SCHED_SMT
  6366. if (smt_capable())
  6367. err = sysfs_create_file(&cls->kset.kobj,
  6368. &attr_sched_smt_power_savings.attr);
  6369. #endif
  6370. #ifdef CONFIG_SCHED_MC
  6371. if (!err && mc_capable())
  6372. err = sysfs_create_file(&cls->kset.kobj,
  6373. &attr_sched_mc_power_savings.attr);
  6374. #endif
  6375. return err;
  6376. }
  6377. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6378. /*
  6379. * Update cpusets according to cpu_active mask. If cpusets are
  6380. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6381. * around partition_sched_domains().
  6382. */
  6383. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6384. void *hcpu)
  6385. {
  6386. switch (action & ~CPU_TASKS_FROZEN) {
  6387. case CPU_ONLINE:
  6388. case CPU_DOWN_FAILED:
  6389. cpuset_update_active_cpus();
  6390. return NOTIFY_OK;
  6391. default:
  6392. return NOTIFY_DONE;
  6393. }
  6394. }
  6395. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6396. void *hcpu)
  6397. {
  6398. switch (action & ~CPU_TASKS_FROZEN) {
  6399. case CPU_DOWN_PREPARE:
  6400. cpuset_update_active_cpus();
  6401. return NOTIFY_OK;
  6402. default:
  6403. return NOTIFY_DONE;
  6404. }
  6405. }
  6406. static int update_runtime(struct notifier_block *nfb,
  6407. unsigned long action, void *hcpu)
  6408. {
  6409. int cpu = (int)(long)hcpu;
  6410. switch (action) {
  6411. case CPU_DOWN_PREPARE:
  6412. case CPU_DOWN_PREPARE_FROZEN:
  6413. disable_runtime(cpu_rq(cpu));
  6414. return NOTIFY_OK;
  6415. case CPU_DOWN_FAILED:
  6416. case CPU_DOWN_FAILED_FROZEN:
  6417. case CPU_ONLINE:
  6418. case CPU_ONLINE_FROZEN:
  6419. enable_runtime(cpu_rq(cpu));
  6420. return NOTIFY_OK;
  6421. default:
  6422. return NOTIFY_DONE;
  6423. }
  6424. }
  6425. void __init sched_init_smp(void)
  6426. {
  6427. cpumask_var_t non_isolated_cpus;
  6428. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6429. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6430. #if defined(CONFIG_NUMA)
  6431. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6432. GFP_KERNEL);
  6433. BUG_ON(sched_group_nodes_bycpu == NULL);
  6434. #endif
  6435. get_online_cpus();
  6436. mutex_lock(&sched_domains_mutex);
  6437. arch_init_sched_domains(cpu_active_mask);
  6438. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6439. if (cpumask_empty(non_isolated_cpus))
  6440. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6441. mutex_unlock(&sched_domains_mutex);
  6442. put_online_cpus();
  6443. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6444. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6445. /* RT runtime code needs to handle some hotplug events */
  6446. hotcpu_notifier(update_runtime, 0);
  6447. init_hrtick();
  6448. /* Move init over to a non-isolated CPU */
  6449. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6450. BUG();
  6451. sched_init_granularity();
  6452. free_cpumask_var(non_isolated_cpus);
  6453. init_sched_rt_class();
  6454. }
  6455. #else
  6456. void __init sched_init_smp(void)
  6457. {
  6458. sched_init_granularity();
  6459. }
  6460. #endif /* CONFIG_SMP */
  6461. const_debug unsigned int sysctl_timer_migration = 1;
  6462. int in_sched_functions(unsigned long addr)
  6463. {
  6464. return in_lock_functions(addr) ||
  6465. (addr >= (unsigned long)__sched_text_start
  6466. && addr < (unsigned long)__sched_text_end);
  6467. }
  6468. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6469. {
  6470. cfs_rq->tasks_timeline = RB_ROOT;
  6471. INIT_LIST_HEAD(&cfs_rq->tasks);
  6472. #ifdef CONFIG_FAIR_GROUP_SCHED
  6473. cfs_rq->rq = rq;
  6474. #endif
  6475. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6476. }
  6477. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6478. {
  6479. struct rt_prio_array *array;
  6480. int i;
  6481. array = &rt_rq->active;
  6482. for (i = 0; i < MAX_RT_PRIO; i++) {
  6483. INIT_LIST_HEAD(array->queue + i);
  6484. __clear_bit(i, array->bitmap);
  6485. }
  6486. /* delimiter for bitsearch: */
  6487. __set_bit(MAX_RT_PRIO, array->bitmap);
  6488. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6489. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6490. #ifdef CONFIG_SMP
  6491. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6492. #endif
  6493. #endif
  6494. #ifdef CONFIG_SMP
  6495. rt_rq->rt_nr_migratory = 0;
  6496. rt_rq->overloaded = 0;
  6497. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  6498. #endif
  6499. rt_rq->rt_time = 0;
  6500. rt_rq->rt_throttled = 0;
  6501. rt_rq->rt_runtime = 0;
  6502. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6503. #ifdef CONFIG_RT_GROUP_SCHED
  6504. rt_rq->rt_nr_boosted = 0;
  6505. rt_rq->rq = rq;
  6506. #endif
  6507. }
  6508. #ifdef CONFIG_FAIR_GROUP_SCHED
  6509. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6510. struct sched_entity *se, int cpu,
  6511. struct sched_entity *parent)
  6512. {
  6513. struct rq *rq = cpu_rq(cpu);
  6514. tg->cfs_rq[cpu] = cfs_rq;
  6515. init_cfs_rq(cfs_rq, rq);
  6516. cfs_rq->tg = tg;
  6517. tg->se[cpu] = se;
  6518. /* se could be NULL for init_task_group */
  6519. if (!se)
  6520. return;
  6521. if (!parent)
  6522. se->cfs_rq = &rq->cfs;
  6523. else
  6524. se->cfs_rq = parent->my_q;
  6525. se->my_q = cfs_rq;
  6526. update_load_set(&se->load, tg->shares);
  6527. se->parent = parent;
  6528. }
  6529. #endif
  6530. #ifdef CONFIG_RT_GROUP_SCHED
  6531. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6532. struct sched_rt_entity *rt_se, int cpu,
  6533. struct sched_rt_entity *parent)
  6534. {
  6535. struct rq *rq = cpu_rq(cpu);
  6536. tg->rt_rq[cpu] = rt_rq;
  6537. init_rt_rq(rt_rq, rq);
  6538. rt_rq->tg = tg;
  6539. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6540. tg->rt_se[cpu] = rt_se;
  6541. if (!rt_se)
  6542. return;
  6543. if (!parent)
  6544. rt_se->rt_rq = &rq->rt;
  6545. else
  6546. rt_se->rt_rq = parent->my_q;
  6547. rt_se->my_q = rt_rq;
  6548. rt_se->parent = parent;
  6549. INIT_LIST_HEAD(&rt_se->run_list);
  6550. }
  6551. #endif
  6552. void __init sched_init(void)
  6553. {
  6554. int i, j;
  6555. unsigned long alloc_size = 0, ptr;
  6556. #ifdef CONFIG_FAIR_GROUP_SCHED
  6557. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6558. #endif
  6559. #ifdef CONFIG_RT_GROUP_SCHED
  6560. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6561. #endif
  6562. #ifdef CONFIG_CPUMASK_OFFSTACK
  6563. alloc_size += num_possible_cpus() * cpumask_size();
  6564. #endif
  6565. if (alloc_size) {
  6566. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6567. #ifdef CONFIG_FAIR_GROUP_SCHED
  6568. init_task_group.se = (struct sched_entity **)ptr;
  6569. ptr += nr_cpu_ids * sizeof(void **);
  6570. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6571. ptr += nr_cpu_ids * sizeof(void **);
  6572. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6573. #ifdef CONFIG_RT_GROUP_SCHED
  6574. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6575. ptr += nr_cpu_ids * sizeof(void **);
  6576. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6577. ptr += nr_cpu_ids * sizeof(void **);
  6578. #endif /* CONFIG_RT_GROUP_SCHED */
  6579. #ifdef CONFIG_CPUMASK_OFFSTACK
  6580. for_each_possible_cpu(i) {
  6581. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6582. ptr += cpumask_size();
  6583. }
  6584. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6585. }
  6586. #ifdef CONFIG_SMP
  6587. init_defrootdomain();
  6588. #endif
  6589. init_rt_bandwidth(&def_rt_bandwidth,
  6590. global_rt_period(), global_rt_runtime());
  6591. #ifdef CONFIG_RT_GROUP_SCHED
  6592. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6593. global_rt_period(), global_rt_runtime());
  6594. #endif /* CONFIG_RT_GROUP_SCHED */
  6595. #ifdef CONFIG_CGROUP_SCHED
  6596. list_add(&init_task_group.list, &task_groups);
  6597. INIT_LIST_HEAD(&init_task_group.children);
  6598. #endif /* CONFIG_CGROUP_SCHED */
  6599. for_each_possible_cpu(i) {
  6600. struct rq *rq;
  6601. rq = cpu_rq(i);
  6602. raw_spin_lock_init(&rq->lock);
  6603. rq->nr_running = 0;
  6604. rq->calc_load_active = 0;
  6605. rq->calc_load_update = jiffies + LOAD_FREQ;
  6606. init_cfs_rq(&rq->cfs, rq);
  6607. init_rt_rq(&rq->rt, rq);
  6608. #ifdef CONFIG_FAIR_GROUP_SCHED
  6609. init_task_group.shares = init_task_group_load;
  6610. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6611. #ifdef CONFIG_CGROUP_SCHED
  6612. /*
  6613. * How much cpu bandwidth does init_task_group get?
  6614. *
  6615. * In case of task-groups formed thr' the cgroup filesystem, it
  6616. * gets 100% of the cpu resources in the system. This overall
  6617. * system cpu resource is divided among the tasks of
  6618. * init_task_group and its child task-groups in a fair manner,
  6619. * based on each entity's (task or task-group's) weight
  6620. * (se->load.weight).
  6621. *
  6622. * In other words, if init_task_group has 10 tasks of weight
  6623. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6624. * then A0's share of the cpu resource is:
  6625. *
  6626. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6627. *
  6628. * We achieve this by letting init_task_group's tasks sit
  6629. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6630. */
  6631. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, NULL);
  6632. #endif
  6633. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6634. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6635. #ifdef CONFIG_RT_GROUP_SCHED
  6636. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6637. #ifdef CONFIG_CGROUP_SCHED
  6638. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, NULL);
  6639. #endif
  6640. #endif
  6641. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6642. rq->cpu_load[j] = 0;
  6643. rq->last_load_update_tick = jiffies;
  6644. #ifdef CONFIG_SMP
  6645. rq->sd = NULL;
  6646. rq->rd = NULL;
  6647. rq->cpu_power = SCHED_LOAD_SCALE;
  6648. rq->post_schedule = 0;
  6649. rq->active_balance = 0;
  6650. rq->next_balance = jiffies;
  6651. rq->push_cpu = 0;
  6652. rq->cpu = i;
  6653. rq->online = 0;
  6654. rq->idle_stamp = 0;
  6655. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6656. rq_attach_root(rq, &def_root_domain);
  6657. #ifdef CONFIG_NO_HZ
  6658. rq->nohz_balance_kick = 0;
  6659. init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
  6660. #endif
  6661. #endif
  6662. init_rq_hrtick(rq);
  6663. atomic_set(&rq->nr_iowait, 0);
  6664. }
  6665. set_load_weight(&init_task);
  6666. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6667. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6668. #endif
  6669. #ifdef CONFIG_SMP
  6670. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6671. #endif
  6672. #ifdef CONFIG_RT_MUTEXES
  6673. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  6674. #endif
  6675. /*
  6676. * The boot idle thread does lazy MMU switching as well:
  6677. */
  6678. atomic_inc(&init_mm.mm_count);
  6679. enter_lazy_tlb(&init_mm, current);
  6680. /*
  6681. * Make us the idle thread. Technically, schedule() should not be
  6682. * called from this thread, however somewhere below it might be,
  6683. * but because we are the idle thread, we just pick up running again
  6684. * when this runqueue becomes "idle".
  6685. */
  6686. init_idle(current, smp_processor_id());
  6687. calc_load_update = jiffies + LOAD_FREQ;
  6688. /*
  6689. * During early bootup we pretend to be a normal task:
  6690. */
  6691. current->sched_class = &fair_sched_class;
  6692. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  6693. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  6694. #ifdef CONFIG_SMP
  6695. #ifdef CONFIG_NO_HZ
  6696. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  6697. alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
  6698. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  6699. atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
  6700. atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
  6701. #endif
  6702. /* May be allocated at isolcpus cmdline parse time */
  6703. if (cpu_isolated_map == NULL)
  6704. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6705. #endif /* SMP */
  6706. perf_event_init();
  6707. scheduler_running = 1;
  6708. }
  6709. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6710. static inline int preempt_count_equals(int preempt_offset)
  6711. {
  6712. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6713. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  6714. }
  6715. void __might_sleep(const char *file, int line, int preempt_offset)
  6716. {
  6717. #ifdef in_atomic
  6718. static unsigned long prev_jiffy; /* ratelimiting */
  6719. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  6720. system_state != SYSTEM_RUNNING || oops_in_progress)
  6721. return;
  6722. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6723. return;
  6724. prev_jiffy = jiffies;
  6725. printk(KERN_ERR
  6726. "BUG: sleeping function called from invalid context at %s:%d\n",
  6727. file, line);
  6728. printk(KERN_ERR
  6729. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6730. in_atomic(), irqs_disabled(),
  6731. current->pid, current->comm);
  6732. debug_show_held_locks(current);
  6733. if (irqs_disabled())
  6734. print_irqtrace_events(current);
  6735. dump_stack();
  6736. #endif
  6737. }
  6738. EXPORT_SYMBOL(__might_sleep);
  6739. #endif
  6740. #ifdef CONFIG_MAGIC_SYSRQ
  6741. static void normalize_task(struct rq *rq, struct task_struct *p)
  6742. {
  6743. int on_rq;
  6744. on_rq = p->se.on_rq;
  6745. if (on_rq)
  6746. deactivate_task(rq, p, 0);
  6747. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6748. if (on_rq) {
  6749. activate_task(rq, p, 0);
  6750. resched_task(rq->curr);
  6751. }
  6752. }
  6753. void normalize_rt_tasks(void)
  6754. {
  6755. struct task_struct *g, *p;
  6756. unsigned long flags;
  6757. struct rq *rq;
  6758. read_lock_irqsave(&tasklist_lock, flags);
  6759. do_each_thread(g, p) {
  6760. /*
  6761. * Only normalize user tasks:
  6762. */
  6763. if (!p->mm)
  6764. continue;
  6765. p->se.exec_start = 0;
  6766. #ifdef CONFIG_SCHEDSTATS
  6767. p->se.statistics.wait_start = 0;
  6768. p->se.statistics.sleep_start = 0;
  6769. p->se.statistics.block_start = 0;
  6770. #endif
  6771. if (!rt_task(p)) {
  6772. /*
  6773. * Renice negative nice level userspace
  6774. * tasks back to 0:
  6775. */
  6776. if (TASK_NICE(p) < 0 && p->mm)
  6777. set_user_nice(p, 0);
  6778. continue;
  6779. }
  6780. raw_spin_lock(&p->pi_lock);
  6781. rq = __task_rq_lock(p);
  6782. normalize_task(rq, p);
  6783. __task_rq_unlock(rq);
  6784. raw_spin_unlock(&p->pi_lock);
  6785. } while_each_thread(g, p);
  6786. read_unlock_irqrestore(&tasklist_lock, flags);
  6787. }
  6788. #endif /* CONFIG_MAGIC_SYSRQ */
  6789. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6790. /*
  6791. * These functions are only useful for the IA64 MCA handling, or kdb.
  6792. *
  6793. * They can only be called when the whole system has been
  6794. * stopped - every CPU needs to be quiescent, and no scheduling
  6795. * activity can take place. Using them for anything else would
  6796. * be a serious bug, and as a result, they aren't even visible
  6797. * under any other configuration.
  6798. */
  6799. /**
  6800. * curr_task - return the current task for a given cpu.
  6801. * @cpu: the processor in question.
  6802. *
  6803. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6804. */
  6805. struct task_struct *curr_task(int cpu)
  6806. {
  6807. return cpu_curr(cpu);
  6808. }
  6809. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6810. #ifdef CONFIG_IA64
  6811. /**
  6812. * set_curr_task - set the current task for a given cpu.
  6813. * @cpu: the processor in question.
  6814. * @p: the task pointer to set.
  6815. *
  6816. * Description: This function must only be used when non-maskable interrupts
  6817. * are serviced on a separate stack. It allows the architecture to switch the
  6818. * notion of the current task on a cpu in a non-blocking manner. This function
  6819. * must be called with all CPU's synchronized, and interrupts disabled, the
  6820. * and caller must save the original value of the current task (see
  6821. * curr_task() above) and restore that value before reenabling interrupts and
  6822. * re-starting the system.
  6823. *
  6824. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6825. */
  6826. void set_curr_task(int cpu, struct task_struct *p)
  6827. {
  6828. cpu_curr(cpu) = p;
  6829. }
  6830. #endif
  6831. #ifdef CONFIG_FAIR_GROUP_SCHED
  6832. static void free_fair_sched_group(struct task_group *tg)
  6833. {
  6834. int i;
  6835. for_each_possible_cpu(i) {
  6836. if (tg->cfs_rq)
  6837. kfree(tg->cfs_rq[i]);
  6838. if (tg->se)
  6839. kfree(tg->se[i]);
  6840. }
  6841. kfree(tg->cfs_rq);
  6842. kfree(tg->se);
  6843. }
  6844. static
  6845. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6846. {
  6847. struct cfs_rq *cfs_rq;
  6848. struct sched_entity *se;
  6849. struct rq *rq;
  6850. int i;
  6851. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  6852. if (!tg->cfs_rq)
  6853. goto err;
  6854. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  6855. if (!tg->se)
  6856. goto err;
  6857. tg->shares = NICE_0_LOAD;
  6858. for_each_possible_cpu(i) {
  6859. rq = cpu_rq(i);
  6860. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  6861. GFP_KERNEL, cpu_to_node(i));
  6862. if (!cfs_rq)
  6863. goto err;
  6864. se = kzalloc_node(sizeof(struct sched_entity),
  6865. GFP_KERNEL, cpu_to_node(i));
  6866. if (!se)
  6867. goto err_free_rq;
  6868. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  6869. }
  6870. return 1;
  6871. err_free_rq:
  6872. kfree(cfs_rq);
  6873. err:
  6874. return 0;
  6875. }
  6876. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6877. {
  6878. struct rq *rq = cpu_rq(cpu);
  6879. unsigned long flags;
  6880. int i;
  6881. /*
  6882. * Only empty task groups can be destroyed; so we can speculatively
  6883. * check on_list without danger of it being re-added.
  6884. */
  6885. if (!tg->cfs_rq[cpu]->on_list)
  6886. return;
  6887. raw_spin_lock_irqsave(&rq->lock, flags);
  6888. list_del_leaf_cfs_rq(tg->cfs_rq[i]);
  6889. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6890. }
  6891. #else /* !CONFG_FAIR_GROUP_SCHED */
  6892. static inline void free_fair_sched_group(struct task_group *tg)
  6893. {
  6894. }
  6895. static inline
  6896. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6897. {
  6898. return 1;
  6899. }
  6900. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6901. {
  6902. }
  6903. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6904. #ifdef CONFIG_RT_GROUP_SCHED
  6905. static void free_rt_sched_group(struct task_group *tg)
  6906. {
  6907. int i;
  6908. destroy_rt_bandwidth(&tg->rt_bandwidth);
  6909. for_each_possible_cpu(i) {
  6910. if (tg->rt_rq)
  6911. kfree(tg->rt_rq[i]);
  6912. if (tg->rt_se)
  6913. kfree(tg->rt_se[i]);
  6914. }
  6915. kfree(tg->rt_rq);
  6916. kfree(tg->rt_se);
  6917. }
  6918. static
  6919. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6920. {
  6921. struct rt_rq *rt_rq;
  6922. struct sched_rt_entity *rt_se;
  6923. struct rq *rq;
  6924. int i;
  6925. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  6926. if (!tg->rt_rq)
  6927. goto err;
  6928. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  6929. if (!tg->rt_se)
  6930. goto err;
  6931. init_rt_bandwidth(&tg->rt_bandwidth,
  6932. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  6933. for_each_possible_cpu(i) {
  6934. rq = cpu_rq(i);
  6935. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  6936. GFP_KERNEL, cpu_to_node(i));
  6937. if (!rt_rq)
  6938. goto err;
  6939. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  6940. GFP_KERNEL, cpu_to_node(i));
  6941. if (!rt_se)
  6942. goto err_free_rq;
  6943. init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
  6944. }
  6945. return 1;
  6946. err_free_rq:
  6947. kfree(rt_rq);
  6948. err:
  6949. return 0;
  6950. }
  6951. #else /* !CONFIG_RT_GROUP_SCHED */
  6952. static inline void free_rt_sched_group(struct task_group *tg)
  6953. {
  6954. }
  6955. static inline
  6956. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6957. {
  6958. return 1;
  6959. }
  6960. #endif /* CONFIG_RT_GROUP_SCHED */
  6961. #ifdef CONFIG_CGROUP_SCHED
  6962. static void free_sched_group(struct task_group *tg)
  6963. {
  6964. free_fair_sched_group(tg);
  6965. free_rt_sched_group(tg);
  6966. kfree(tg);
  6967. }
  6968. /* allocate runqueue etc for a new task group */
  6969. struct task_group *sched_create_group(struct task_group *parent)
  6970. {
  6971. struct task_group *tg;
  6972. unsigned long flags;
  6973. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6974. if (!tg)
  6975. return ERR_PTR(-ENOMEM);
  6976. if (!alloc_fair_sched_group(tg, parent))
  6977. goto err;
  6978. if (!alloc_rt_sched_group(tg, parent))
  6979. goto err;
  6980. spin_lock_irqsave(&task_group_lock, flags);
  6981. list_add_rcu(&tg->list, &task_groups);
  6982. WARN_ON(!parent); /* root should already exist */
  6983. tg->parent = parent;
  6984. INIT_LIST_HEAD(&tg->children);
  6985. list_add_rcu(&tg->siblings, &parent->children);
  6986. spin_unlock_irqrestore(&task_group_lock, flags);
  6987. return tg;
  6988. err:
  6989. free_sched_group(tg);
  6990. return ERR_PTR(-ENOMEM);
  6991. }
  6992. /* rcu callback to free various structures associated with a task group */
  6993. static void free_sched_group_rcu(struct rcu_head *rhp)
  6994. {
  6995. /* now it should be safe to free those cfs_rqs */
  6996. free_sched_group(container_of(rhp, struct task_group, rcu));
  6997. }
  6998. /* Destroy runqueue etc associated with a task group */
  6999. void sched_destroy_group(struct task_group *tg)
  7000. {
  7001. unsigned long flags;
  7002. int i;
  7003. /* end participation in shares distribution */
  7004. for_each_possible_cpu(i)
  7005. unregister_fair_sched_group(tg, i);
  7006. spin_lock_irqsave(&task_group_lock, flags);
  7007. list_del_rcu(&tg->list);
  7008. list_del_rcu(&tg->siblings);
  7009. spin_unlock_irqrestore(&task_group_lock, flags);
  7010. /* wait for possible concurrent references to cfs_rqs complete */
  7011. call_rcu(&tg->rcu, free_sched_group_rcu);
  7012. }
  7013. /* change task's runqueue when it moves between groups.
  7014. * The caller of this function should have put the task in its new group
  7015. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7016. * reflect its new group.
  7017. */
  7018. void sched_move_task(struct task_struct *tsk)
  7019. {
  7020. int on_rq, running;
  7021. unsigned long flags;
  7022. struct rq *rq;
  7023. rq = task_rq_lock(tsk, &flags);
  7024. running = task_current(rq, tsk);
  7025. on_rq = tsk->se.on_rq;
  7026. if (on_rq)
  7027. dequeue_task(rq, tsk, 0);
  7028. if (unlikely(running))
  7029. tsk->sched_class->put_prev_task(rq, tsk);
  7030. #ifdef CONFIG_FAIR_GROUP_SCHED
  7031. if (tsk->sched_class->task_move_group)
  7032. tsk->sched_class->task_move_group(tsk, on_rq);
  7033. else
  7034. #endif
  7035. set_task_rq(tsk, task_cpu(tsk));
  7036. if (unlikely(running))
  7037. tsk->sched_class->set_curr_task(rq);
  7038. if (on_rq)
  7039. enqueue_task(rq, tsk, 0);
  7040. task_rq_unlock(rq, &flags);
  7041. }
  7042. #endif /* CONFIG_CGROUP_SCHED */
  7043. #ifdef CONFIG_FAIR_GROUP_SCHED
  7044. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7045. {
  7046. struct cfs_rq *cfs_rq = se->cfs_rq;
  7047. int on_rq;
  7048. on_rq = se->on_rq;
  7049. if (on_rq)
  7050. dequeue_entity(cfs_rq, se, 0);
  7051. update_load_set(&se->load, shares);
  7052. if (on_rq)
  7053. enqueue_entity(cfs_rq, se, 0);
  7054. }
  7055. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7056. {
  7057. struct cfs_rq *cfs_rq = se->cfs_rq;
  7058. struct rq *rq = cfs_rq->rq;
  7059. unsigned long flags;
  7060. raw_spin_lock_irqsave(&rq->lock, flags);
  7061. __set_se_shares(se, shares);
  7062. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7063. }
  7064. static DEFINE_MUTEX(shares_mutex);
  7065. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7066. {
  7067. int i;
  7068. /*
  7069. * We can't change the weight of the root cgroup.
  7070. */
  7071. if (!tg->se[0])
  7072. return -EINVAL;
  7073. if (shares < MIN_SHARES)
  7074. shares = MIN_SHARES;
  7075. else if (shares > MAX_SHARES)
  7076. shares = MAX_SHARES;
  7077. mutex_lock(&shares_mutex);
  7078. if (tg->shares == shares)
  7079. goto done;
  7080. tg->shares = shares;
  7081. for_each_possible_cpu(i) {
  7082. /*
  7083. * force a rebalance
  7084. */
  7085. set_se_shares(tg->se[i], shares);
  7086. }
  7087. done:
  7088. mutex_unlock(&shares_mutex);
  7089. return 0;
  7090. }
  7091. unsigned long sched_group_shares(struct task_group *tg)
  7092. {
  7093. return tg->shares;
  7094. }
  7095. #endif
  7096. #ifdef CONFIG_RT_GROUP_SCHED
  7097. /*
  7098. * Ensure that the real time constraints are schedulable.
  7099. */
  7100. static DEFINE_MUTEX(rt_constraints_mutex);
  7101. static unsigned long to_ratio(u64 period, u64 runtime)
  7102. {
  7103. if (runtime == RUNTIME_INF)
  7104. return 1ULL << 20;
  7105. return div64_u64(runtime << 20, period);
  7106. }
  7107. /* Must be called with tasklist_lock held */
  7108. static inline int tg_has_rt_tasks(struct task_group *tg)
  7109. {
  7110. struct task_struct *g, *p;
  7111. do_each_thread(g, p) {
  7112. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7113. return 1;
  7114. } while_each_thread(g, p);
  7115. return 0;
  7116. }
  7117. struct rt_schedulable_data {
  7118. struct task_group *tg;
  7119. u64 rt_period;
  7120. u64 rt_runtime;
  7121. };
  7122. static int tg_schedulable(struct task_group *tg, void *data)
  7123. {
  7124. struct rt_schedulable_data *d = data;
  7125. struct task_group *child;
  7126. unsigned long total, sum = 0;
  7127. u64 period, runtime;
  7128. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7129. runtime = tg->rt_bandwidth.rt_runtime;
  7130. if (tg == d->tg) {
  7131. period = d->rt_period;
  7132. runtime = d->rt_runtime;
  7133. }
  7134. /*
  7135. * Cannot have more runtime than the period.
  7136. */
  7137. if (runtime > period && runtime != RUNTIME_INF)
  7138. return -EINVAL;
  7139. /*
  7140. * Ensure we don't starve existing RT tasks.
  7141. */
  7142. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7143. return -EBUSY;
  7144. total = to_ratio(period, runtime);
  7145. /*
  7146. * Nobody can have more than the global setting allows.
  7147. */
  7148. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7149. return -EINVAL;
  7150. /*
  7151. * The sum of our children's runtime should not exceed our own.
  7152. */
  7153. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7154. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7155. runtime = child->rt_bandwidth.rt_runtime;
  7156. if (child == d->tg) {
  7157. period = d->rt_period;
  7158. runtime = d->rt_runtime;
  7159. }
  7160. sum += to_ratio(period, runtime);
  7161. }
  7162. if (sum > total)
  7163. return -EINVAL;
  7164. return 0;
  7165. }
  7166. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7167. {
  7168. struct rt_schedulable_data data = {
  7169. .tg = tg,
  7170. .rt_period = period,
  7171. .rt_runtime = runtime,
  7172. };
  7173. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7174. }
  7175. static int tg_set_bandwidth(struct task_group *tg,
  7176. u64 rt_period, u64 rt_runtime)
  7177. {
  7178. int i, err = 0;
  7179. mutex_lock(&rt_constraints_mutex);
  7180. read_lock(&tasklist_lock);
  7181. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7182. if (err)
  7183. goto unlock;
  7184. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7185. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7186. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7187. for_each_possible_cpu(i) {
  7188. struct rt_rq *rt_rq = tg->rt_rq[i];
  7189. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7190. rt_rq->rt_runtime = rt_runtime;
  7191. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7192. }
  7193. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7194. unlock:
  7195. read_unlock(&tasklist_lock);
  7196. mutex_unlock(&rt_constraints_mutex);
  7197. return err;
  7198. }
  7199. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7200. {
  7201. u64 rt_runtime, rt_period;
  7202. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7203. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7204. if (rt_runtime_us < 0)
  7205. rt_runtime = RUNTIME_INF;
  7206. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7207. }
  7208. long sched_group_rt_runtime(struct task_group *tg)
  7209. {
  7210. u64 rt_runtime_us;
  7211. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7212. return -1;
  7213. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7214. do_div(rt_runtime_us, NSEC_PER_USEC);
  7215. return rt_runtime_us;
  7216. }
  7217. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7218. {
  7219. u64 rt_runtime, rt_period;
  7220. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7221. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7222. if (rt_period == 0)
  7223. return -EINVAL;
  7224. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7225. }
  7226. long sched_group_rt_period(struct task_group *tg)
  7227. {
  7228. u64 rt_period_us;
  7229. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7230. do_div(rt_period_us, NSEC_PER_USEC);
  7231. return rt_period_us;
  7232. }
  7233. static int sched_rt_global_constraints(void)
  7234. {
  7235. u64 runtime, period;
  7236. int ret = 0;
  7237. if (sysctl_sched_rt_period <= 0)
  7238. return -EINVAL;
  7239. runtime = global_rt_runtime();
  7240. period = global_rt_period();
  7241. /*
  7242. * Sanity check on the sysctl variables.
  7243. */
  7244. if (runtime > period && runtime != RUNTIME_INF)
  7245. return -EINVAL;
  7246. mutex_lock(&rt_constraints_mutex);
  7247. read_lock(&tasklist_lock);
  7248. ret = __rt_schedulable(NULL, 0, 0);
  7249. read_unlock(&tasklist_lock);
  7250. mutex_unlock(&rt_constraints_mutex);
  7251. return ret;
  7252. }
  7253. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7254. {
  7255. /* Don't accept realtime tasks when there is no way for them to run */
  7256. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7257. return 0;
  7258. return 1;
  7259. }
  7260. #else /* !CONFIG_RT_GROUP_SCHED */
  7261. static int sched_rt_global_constraints(void)
  7262. {
  7263. unsigned long flags;
  7264. int i;
  7265. if (sysctl_sched_rt_period <= 0)
  7266. return -EINVAL;
  7267. /*
  7268. * There's always some RT tasks in the root group
  7269. * -- migration, kstopmachine etc..
  7270. */
  7271. if (sysctl_sched_rt_runtime == 0)
  7272. return -EBUSY;
  7273. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7274. for_each_possible_cpu(i) {
  7275. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7276. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7277. rt_rq->rt_runtime = global_rt_runtime();
  7278. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7279. }
  7280. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7281. return 0;
  7282. }
  7283. #endif /* CONFIG_RT_GROUP_SCHED */
  7284. int sched_rt_handler(struct ctl_table *table, int write,
  7285. void __user *buffer, size_t *lenp,
  7286. loff_t *ppos)
  7287. {
  7288. int ret;
  7289. int old_period, old_runtime;
  7290. static DEFINE_MUTEX(mutex);
  7291. mutex_lock(&mutex);
  7292. old_period = sysctl_sched_rt_period;
  7293. old_runtime = sysctl_sched_rt_runtime;
  7294. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7295. if (!ret && write) {
  7296. ret = sched_rt_global_constraints();
  7297. if (ret) {
  7298. sysctl_sched_rt_period = old_period;
  7299. sysctl_sched_rt_runtime = old_runtime;
  7300. } else {
  7301. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7302. def_rt_bandwidth.rt_period =
  7303. ns_to_ktime(global_rt_period());
  7304. }
  7305. }
  7306. mutex_unlock(&mutex);
  7307. return ret;
  7308. }
  7309. #ifdef CONFIG_CGROUP_SCHED
  7310. /* return corresponding task_group object of a cgroup */
  7311. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7312. {
  7313. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7314. struct task_group, css);
  7315. }
  7316. static struct cgroup_subsys_state *
  7317. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7318. {
  7319. struct task_group *tg, *parent;
  7320. if (!cgrp->parent) {
  7321. /* This is early initialization for the top cgroup */
  7322. return &init_task_group.css;
  7323. }
  7324. parent = cgroup_tg(cgrp->parent);
  7325. tg = sched_create_group(parent);
  7326. if (IS_ERR(tg))
  7327. return ERR_PTR(-ENOMEM);
  7328. return &tg->css;
  7329. }
  7330. static void
  7331. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7332. {
  7333. struct task_group *tg = cgroup_tg(cgrp);
  7334. sched_destroy_group(tg);
  7335. }
  7336. static int
  7337. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7338. {
  7339. #ifdef CONFIG_RT_GROUP_SCHED
  7340. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7341. return -EINVAL;
  7342. #else
  7343. /* We don't support RT-tasks being in separate groups */
  7344. if (tsk->sched_class != &fair_sched_class)
  7345. return -EINVAL;
  7346. #endif
  7347. return 0;
  7348. }
  7349. static int
  7350. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7351. struct task_struct *tsk, bool threadgroup)
  7352. {
  7353. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  7354. if (retval)
  7355. return retval;
  7356. if (threadgroup) {
  7357. struct task_struct *c;
  7358. rcu_read_lock();
  7359. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7360. retval = cpu_cgroup_can_attach_task(cgrp, c);
  7361. if (retval) {
  7362. rcu_read_unlock();
  7363. return retval;
  7364. }
  7365. }
  7366. rcu_read_unlock();
  7367. }
  7368. return 0;
  7369. }
  7370. static void
  7371. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7372. struct cgroup *old_cont, struct task_struct *tsk,
  7373. bool threadgroup)
  7374. {
  7375. sched_move_task(tsk);
  7376. if (threadgroup) {
  7377. struct task_struct *c;
  7378. rcu_read_lock();
  7379. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7380. sched_move_task(c);
  7381. }
  7382. rcu_read_unlock();
  7383. }
  7384. }
  7385. #ifdef CONFIG_FAIR_GROUP_SCHED
  7386. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7387. u64 shareval)
  7388. {
  7389. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7390. }
  7391. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7392. {
  7393. struct task_group *tg = cgroup_tg(cgrp);
  7394. return (u64) tg->shares;
  7395. }
  7396. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7397. #ifdef CONFIG_RT_GROUP_SCHED
  7398. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7399. s64 val)
  7400. {
  7401. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7402. }
  7403. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7404. {
  7405. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7406. }
  7407. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7408. u64 rt_period_us)
  7409. {
  7410. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7411. }
  7412. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7413. {
  7414. return sched_group_rt_period(cgroup_tg(cgrp));
  7415. }
  7416. #endif /* CONFIG_RT_GROUP_SCHED */
  7417. static struct cftype cpu_files[] = {
  7418. #ifdef CONFIG_FAIR_GROUP_SCHED
  7419. {
  7420. .name = "shares",
  7421. .read_u64 = cpu_shares_read_u64,
  7422. .write_u64 = cpu_shares_write_u64,
  7423. },
  7424. #endif
  7425. #ifdef CONFIG_RT_GROUP_SCHED
  7426. {
  7427. .name = "rt_runtime_us",
  7428. .read_s64 = cpu_rt_runtime_read,
  7429. .write_s64 = cpu_rt_runtime_write,
  7430. },
  7431. {
  7432. .name = "rt_period_us",
  7433. .read_u64 = cpu_rt_period_read_uint,
  7434. .write_u64 = cpu_rt_period_write_uint,
  7435. },
  7436. #endif
  7437. };
  7438. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7439. {
  7440. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7441. }
  7442. struct cgroup_subsys cpu_cgroup_subsys = {
  7443. .name = "cpu",
  7444. .create = cpu_cgroup_create,
  7445. .destroy = cpu_cgroup_destroy,
  7446. .can_attach = cpu_cgroup_can_attach,
  7447. .attach = cpu_cgroup_attach,
  7448. .populate = cpu_cgroup_populate,
  7449. .subsys_id = cpu_cgroup_subsys_id,
  7450. .early_init = 1,
  7451. };
  7452. #endif /* CONFIG_CGROUP_SCHED */
  7453. #ifdef CONFIG_CGROUP_CPUACCT
  7454. /*
  7455. * CPU accounting code for task groups.
  7456. *
  7457. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7458. * (balbir@in.ibm.com).
  7459. */
  7460. /* track cpu usage of a group of tasks and its child groups */
  7461. struct cpuacct {
  7462. struct cgroup_subsys_state css;
  7463. /* cpuusage holds pointer to a u64-type object on every cpu */
  7464. u64 __percpu *cpuusage;
  7465. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7466. struct cpuacct *parent;
  7467. };
  7468. struct cgroup_subsys cpuacct_subsys;
  7469. /* return cpu accounting group corresponding to this container */
  7470. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7471. {
  7472. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7473. struct cpuacct, css);
  7474. }
  7475. /* return cpu accounting group to which this task belongs */
  7476. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7477. {
  7478. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7479. struct cpuacct, css);
  7480. }
  7481. /* create a new cpu accounting group */
  7482. static struct cgroup_subsys_state *cpuacct_create(
  7483. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7484. {
  7485. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7486. int i;
  7487. if (!ca)
  7488. goto out;
  7489. ca->cpuusage = alloc_percpu(u64);
  7490. if (!ca->cpuusage)
  7491. goto out_free_ca;
  7492. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7493. if (percpu_counter_init(&ca->cpustat[i], 0))
  7494. goto out_free_counters;
  7495. if (cgrp->parent)
  7496. ca->parent = cgroup_ca(cgrp->parent);
  7497. return &ca->css;
  7498. out_free_counters:
  7499. while (--i >= 0)
  7500. percpu_counter_destroy(&ca->cpustat[i]);
  7501. free_percpu(ca->cpuusage);
  7502. out_free_ca:
  7503. kfree(ca);
  7504. out:
  7505. return ERR_PTR(-ENOMEM);
  7506. }
  7507. /* destroy an existing cpu accounting group */
  7508. static void
  7509. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7510. {
  7511. struct cpuacct *ca = cgroup_ca(cgrp);
  7512. int i;
  7513. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7514. percpu_counter_destroy(&ca->cpustat[i]);
  7515. free_percpu(ca->cpuusage);
  7516. kfree(ca);
  7517. }
  7518. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7519. {
  7520. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7521. u64 data;
  7522. #ifndef CONFIG_64BIT
  7523. /*
  7524. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7525. */
  7526. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7527. data = *cpuusage;
  7528. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7529. #else
  7530. data = *cpuusage;
  7531. #endif
  7532. return data;
  7533. }
  7534. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7535. {
  7536. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7537. #ifndef CONFIG_64BIT
  7538. /*
  7539. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7540. */
  7541. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7542. *cpuusage = val;
  7543. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7544. #else
  7545. *cpuusage = val;
  7546. #endif
  7547. }
  7548. /* return total cpu usage (in nanoseconds) of a group */
  7549. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7550. {
  7551. struct cpuacct *ca = cgroup_ca(cgrp);
  7552. u64 totalcpuusage = 0;
  7553. int i;
  7554. for_each_present_cpu(i)
  7555. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7556. return totalcpuusage;
  7557. }
  7558. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7559. u64 reset)
  7560. {
  7561. struct cpuacct *ca = cgroup_ca(cgrp);
  7562. int err = 0;
  7563. int i;
  7564. if (reset) {
  7565. err = -EINVAL;
  7566. goto out;
  7567. }
  7568. for_each_present_cpu(i)
  7569. cpuacct_cpuusage_write(ca, i, 0);
  7570. out:
  7571. return err;
  7572. }
  7573. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7574. struct seq_file *m)
  7575. {
  7576. struct cpuacct *ca = cgroup_ca(cgroup);
  7577. u64 percpu;
  7578. int i;
  7579. for_each_present_cpu(i) {
  7580. percpu = cpuacct_cpuusage_read(ca, i);
  7581. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7582. }
  7583. seq_printf(m, "\n");
  7584. return 0;
  7585. }
  7586. static const char *cpuacct_stat_desc[] = {
  7587. [CPUACCT_STAT_USER] = "user",
  7588. [CPUACCT_STAT_SYSTEM] = "system",
  7589. };
  7590. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7591. struct cgroup_map_cb *cb)
  7592. {
  7593. struct cpuacct *ca = cgroup_ca(cgrp);
  7594. int i;
  7595. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7596. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7597. val = cputime64_to_clock_t(val);
  7598. cb->fill(cb, cpuacct_stat_desc[i], val);
  7599. }
  7600. return 0;
  7601. }
  7602. static struct cftype files[] = {
  7603. {
  7604. .name = "usage",
  7605. .read_u64 = cpuusage_read,
  7606. .write_u64 = cpuusage_write,
  7607. },
  7608. {
  7609. .name = "usage_percpu",
  7610. .read_seq_string = cpuacct_percpu_seq_read,
  7611. },
  7612. {
  7613. .name = "stat",
  7614. .read_map = cpuacct_stats_show,
  7615. },
  7616. };
  7617. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7618. {
  7619. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7620. }
  7621. /*
  7622. * charge this task's execution time to its accounting group.
  7623. *
  7624. * called with rq->lock held.
  7625. */
  7626. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7627. {
  7628. struct cpuacct *ca;
  7629. int cpu;
  7630. if (unlikely(!cpuacct_subsys.active))
  7631. return;
  7632. cpu = task_cpu(tsk);
  7633. rcu_read_lock();
  7634. ca = task_ca(tsk);
  7635. for (; ca; ca = ca->parent) {
  7636. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7637. *cpuusage += cputime;
  7638. }
  7639. rcu_read_unlock();
  7640. }
  7641. /*
  7642. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  7643. * in cputime_t units. As a result, cpuacct_update_stats calls
  7644. * percpu_counter_add with values large enough to always overflow the
  7645. * per cpu batch limit causing bad SMP scalability.
  7646. *
  7647. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  7648. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  7649. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  7650. */
  7651. #ifdef CONFIG_SMP
  7652. #define CPUACCT_BATCH \
  7653. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  7654. #else
  7655. #define CPUACCT_BATCH 0
  7656. #endif
  7657. /*
  7658. * Charge the system/user time to the task's accounting group.
  7659. */
  7660. static void cpuacct_update_stats(struct task_struct *tsk,
  7661. enum cpuacct_stat_index idx, cputime_t val)
  7662. {
  7663. struct cpuacct *ca;
  7664. int batch = CPUACCT_BATCH;
  7665. if (unlikely(!cpuacct_subsys.active))
  7666. return;
  7667. rcu_read_lock();
  7668. ca = task_ca(tsk);
  7669. do {
  7670. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  7671. ca = ca->parent;
  7672. } while (ca);
  7673. rcu_read_unlock();
  7674. }
  7675. struct cgroup_subsys cpuacct_subsys = {
  7676. .name = "cpuacct",
  7677. .create = cpuacct_create,
  7678. .destroy = cpuacct_destroy,
  7679. .populate = cpuacct_populate,
  7680. .subsys_id = cpuacct_subsys_id,
  7681. };
  7682. #endif /* CONFIG_CGROUP_CPUACCT */
  7683. #ifndef CONFIG_SMP
  7684. void synchronize_sched_expedited(void)
  7685. {
  7686. barrier();
  7687. }
  7688. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7689. #else /* #ifndef CONFIG_SMP */
  7690. static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
  7691. static int synchronize_sched_expedited_cpu_stop(void *data)
  7692. {
  7693. /*
  7694. * There must be a full memory barrier on each affected CPU
  7695. * between the time that try_stop_cpus() is called and the
  7696. * time that it returns.
  7697. *
  7698. * In the current initial implementation of cpu_stop, the
  7699. * above condition is already met when the control reaches
  7700. * this point and the following smp_mb() is not strictly
  7701. * necessary. Do smp_mb() anyway for documentation and
  7702. * robustness against future implementation changes.
  7703. */
  7704. smp_mb(); /* See above comment block. */
  7705. return 0;
  7706. }
  7707. /*
  7708. * Wait for an rcu-sched grace period to elapse, but use "big hammer"
  7709. * approach to force grace period to end quickly. This consumes
  7710. * significant time on all CPUs, and is thus not recommended for
  7711. * any sort of common-case code.
  7712. *
  7713. * Note that it is illegal to call this function while holding any
  7714. * lock that is acquired by a CPU-hotplug notifier. Failing to
  7715. * observe this restriction will result in deadlock.
  7716. */
  7717. void synchronize_sched_expedited(void)
  7718. {
  7719. int snap, trycount = 0;
  7720. smp_mb(); /* ensure prior mod happens before capturing snap. */
  7721. snap = atomic_read(&synchronize_sched_expedited_count) + 1;
  7722. get_online_cpus();
  7723. while (try_stop_cpus(cpu_online_mask,
  7724. synchronize_sched_expedited_cpu_stop,
  7725. NULL) == -EAGAIN) {
  7726. put_online_cpus();
  7727. if (trycount++ < 10)
  7728. udelay(trycount * num_online_cpus());
  7729. else {
  7730. synchronize_sched();
  7731. return;
  7732. }
  7733. if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
  7734. smp_mb(); /* ensure test happens before caller kfree */
  7735. return;
  7736. }
  7737. get_online_cpus();
  7738. }
  7739. atomic_inc(&synchronize_sched_expedited_count);
  7740. smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
  7741. put_online_cpus();
  7742. }
  7743. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7744. #endif /* #else #ifndef CONFIG_SMP */