af_key.c 103 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957
  1. /*
  2. * net/key/af_key.c An implementation of PF_KEYv2 sockets.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation; either version
  7. * 2 of the License, or (at your option) any later version.
  8. *
  9. * Authors: Maxim Giryaev <gem@asplinux.ru>
  10. * David S. Miller <davem@redhat.com>
  11. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  12. * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
  13. * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org>
  14. * Derek Atkins <derek@ihtfp.com>
  15. */
  16. #include <linux/capability.h>
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/socket.h>
  20. #include <linux/pfkeyv2.h>
  21. #include <linux/ipsec.h>
  22. #include <linux/skbuff.h>
  23. #include <linux/rtnetlink.h>
  24. #include <linux/in.h>
  25. #include <linux/in6.h>
  26. #include <linux/proc_fs.h>
  27. #include <linux/init.h>
  28. #include <net/net_namespace.h>
  29. #include <net/xfrm.h>
  30. #include <net/sock.h>
  31. #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x))
  32. #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x))
  33. /* List of all pfkey sockets. */
  34. static HLIST_HEAD(pfkey_table);
  35. static DECLARE_WAIT_QUEUE_HEAD(pfkey_table_wait);
  36. static DEFINE_RWLOCK(pfkey_table_lock);
  37. static atomic_t pfkey_table_users = ATOMIC_INIT(0);
  38. static atomic_t pfkey_socks_nr = ATOMIC_INIT(0);
  39. struct pfkey_sock {
  40. /* struct sock must be the first member of struct pfkey_sock */
  41. struct sock sk;
  42. int registered;
  43. int promisc;
  44. struct {
  45. uint8_t msg_version;
  46. uint32_t msg_pid;
  47. int (*dump)(struct pfkey_sock *sk);
  48. void (*done)(struct pfkey_sock *sk);
  49. union {
  50. struct xfrm_policy_walk policy;
  51. struct xfrm_state_walk state;
  52. } u;
  53. } dump;
  54. };
  55. static inline struct pfkey_sock *pfkey_sk(struct sock *sk)
  56. {
  57. return (struct pfkey_sock *)sk;
  58. }
  59. static int pfkey_can_dump(struct sock *sk)
  60. {
  61. if (3 * atomic_read(&sk->sk_rmem_alloc) <= 2 * sk->sk_rcvbuf)
  62. return 1;
  63. return 0;
  64. }
  65. static int pfkey_do_dump(struct pfkey_sock *pfk)
  66. {
  67. int rc;
  68. rc = pfk->dump.dump(pfk);
  69. if (rc == -ENOBUFS)
  70. return 0;
  71. pfk->dump.done(pfk);
  72. pfk->dump.dump = NULL;
  73. pfk->dump.done = NULL;
  74. return rc;
  75. }
  76. static void pfkey_sock_destruct(struct sock *sk)
  77. {
  78. skb_queue_purge(&sk->sk_receive_queue);
  79. if (!sock_flag(sk, SOCK_DEAD)) {
  80. printk("Attempt to release alive pfkey socket: %p\n", sk);
  81. return;
  82. }
  83. BUG_TRAP(!atomic_read(&sk->sk_rmem_alloc));
  84. BUG_TRAP(!atomic_read(&sk->sk_wmem_alloc));
  85. atomic_dec(&pfkey_socks_nr);
  86. }
  87. static void pfkey_table_grab(void)
  88. {
  89. write_lock_bh(&pfkey_table_lock);
  90. if (atomic_read(&pfkey_table_users)) {
  91. DECLARE_WAITQUEUE(wait, current);
  92. add_wait_queue_exclusive(&pfkey_table_wait, &wait);
  93. for(;;) {
  94. set_current_state(TASK_UNINTERRUPTIBLE);
  95. if (atomic_read(&pfkey_table_users) == 0)
  96. break;
  97. write_unlock_bh(&pfkey_table_lock);
  98. schedule();
  99. write_lock_bh(&pfkey_table_lock);
  100. }
  101. __set_current_state(TASK_RUNNING);
  102. remove_wait_queue(&pfkey_table_wait, &wait);
  103. }
  104. }
  105. static __inline__ void pfkey_table_ungrab(void)
  106. {
  107. write_unlock_bh(&pfkey_table_lock);
  108. wake_up(&pfkey_table_wait);
  109. }
  110. static __inline__ void pfkey_lock_table(void)
  111. {
  112. /* read_lock() synchronizes us to pfkey_table_grab */
  113. read_lock(&pfkey_table_lock);
  114. atomic_inc(&pfkey_table_users);
  115. read_unlock(&pfkey_table_lock);
  116. }
  117. static __inline__ void pfkey_unlock_table(void)
  118. {
  119. if (atomic_dec_and_test(&pfkey_table_users))
  120. wake_up(&pfkey_table_wait);
  121. }
  122. static const struct proto_ops pfkey_ops;
  123. static void pfkey_insert(struct sock *sk)
  124. {
  125. pfkey_table_grab();
  126. sk_add_node(sk, &pfkey_table);
  127. pfkey_table_ungrab();
  128. }
  129. static void pfkey_remove(struct sock *sk)
  130. {
  131. pfkey_table_grab();
  132. sk_del_node_init(sk);
  133. pfkey_table_ungrab();
  134. }
  135. static struct proto key_proto = {
  136. .name = "KEY",
  137. .owner = THIS_MODULE,
  138. .obj_size = sizeof(struct pfkey_sock),
  139. };
  140. static int pfkey_create(struct net *net, struct socket *sock, int protocol)
  141. {
  142. struct sock *sk;
  143. int err;
  144. if (net != &init_net)
  145. return -EAFNOSUPPORT;
  146. if (!capable(CAP_NET_ADMIN))
  147. return -EPERM;
  148. if (sock->type != SOCK_RAW)
  149. return -ESOCKTNOSUPPORT;
  150. if (protocol != PF_KEY_V2)
  151. return -EPROTONOSUPPORT;
  152. err = -ENOMEM;
  153. sk = sk_alloc(net, PF_KEY, GFP_KERNEL, &key_proto);
  154. if (sk == NULL)
  155. goto out;
  156. sock->ops = &pfkey_ops;
  157. sock_init_data(sock, sk);
  158. sk->sk_family = PF_KEY;
  159. sk->sk_destruct = pfkey_sock_destruct;
  160. atomic_inc(&pfkey_socks_nr);
  161. pfkey_insert(sk);
  162. return 0;
  163. out:
  164. return err;
  165. }
  166. static int pfkey_release(struct socket *sock)
  167. {
  168. struct sock *sk = sock->sk;
  169. if (!sk)
  170. return 0;
  171. pfkey_remove(sk);
  172. sock_orphan(sk);
  173. sock->sk = NULL;
  174. skb_queue_purge(&sk->sk_write_queue);
  175. sock_put(sk);
  176. return 0;
  177. }
  178. static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2,
  179. gfp_t allocation, struct sock *sk)
  180. {
  181. int err = -ENOBUFS;
  182. sock_hold(sk);
  183. if (*skb2 == NULL) {
  184. if (atomic_read(&skb->users) != 1) {
  185. *skb2 = skb_clone(skb, allocation);
  186. } else {
  187. *skb2 = skb;
  188. atomic_inc(&skb->users);
  189. }
  190. }
  191. if (*skb2 != NULL) {
  192. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
  193. skb_orphan(*skb2);
  194. skb_set_owner_r(*skb2, sk);
  195. skb_queue_tail(&sk->sk_receive_queue, *skb2);
  196. sk->sk_data_ready(sk, (*skb2)->len);
  197. *skb2 = NULL;
  198. err = 0;
  199. }
  200. }
  201. sock_put(sk);
  202. return err;
  203. }
  204. /* Send SKB to all pfkey sockets matching selected criteria. */
  205. #define BROADCAST_ALL 0
  206. #define BROADCAST_ONE 1
  207. #define BROADCAST_REGISTERED 2
  208. #define BROADCAST_PROMISC_ONLY 4
  209. static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation,
  210. int broadcast_flags, struct sock *one_sk)
  211. {
  212. struct sock *sk;
  213. struct hlist_node *node;
  214. struct sk_buff *skb2 = NULL;
  215. int err = -ESRCH;
  216. /* XXX Do we need something like netlink_overrun? I think
  217. * XXX PF_KEY socket apps will not mind current behavior.
  218. */
  219. if (!skb)
  220. return -ENOMEM;
  221. pfkey_lock_table();
  222. sk_for_each(sk, node, &pfkey_table) {
  223. struct pfkey_sock *pfk = pfkey_sk(sk);
  224. int err2;
  225. /* Yes, it means that if you are meant to receive this
  226. * pfkey message you receive it twice as promiscuous
  227. * socket.
  228. */
  229. if (pfk->promisc)
  230. pfkey_broadcast_one(skb, &skb2, allocation, sk);
  231. /* the exact target will be processed later */
  232. if (sk == one_sk)
  233. continue;
  234. if (broadcast_flags != BROADCAST_ALL) {
  235. if (broadcast_flags & BROADCAST_PROMISC_ONLY)
  236. continue;
  237. if ((broadcast_flags & BROADCAST_REGISTERED) &&
  238. !pfk->registered)
  239. continue;
  240. if (broadcast_flags & BROADCAST_ONE)
  241. continue;
  242. }
  243. err2 = pfkey_broadcast_one(skb, &skb2, allocation, sk);
  244. /* Error is cleare after succecful sending to at least one
  245. * registered KM */
  246. if ((broadcast_flags & BROADCAST_REGISTERED) && err)
  247. err = err2;
  248. }
  249. pfkey_unlock_table();
  250. if (one_sk != NULL)
  251. err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk);
  252. if (skb2)
  253. kfree_skb(skb2);
  254. kfree_skb(skb);
  255. return err;
  256. }
  257. static inline void pfkey_hdr_dup(struct sadb_msg *new, struct sadb_msg *orig)
  258. {
  259. *new = *orig;
  260. }
  261. static int pfkey_error(struct sadb_msg *orig, int err, struct sock *sk)
  262. {
  263. struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL);
  264. struct sadb_msg *hdr;
  265. if (!skb)
  266. return -ENOBUFS;
  267. /* Woe be to the platform trying to support PFKEY yet
  268. * having normal errnos outside the 1-255 range, inclusive.
  269. */
  270. err = -err;
  271. if (err == ERESTARTSYS ||
  272. err == ERESTARTNOHAND ||
  273. err == ERESTARTNOINTR)
  274. err = EINTR;
  275. if (err >= 512)
  276. err = EINVAL;
  277. BUG_ON(err <= 0 || err >= 256);
  278. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  279. pfkey_hdr_dup(hdr, orig);
  280. hdr->sadb_msg_errno = (uint8_t) err;
  281. hdr->sadb_msg_len = (sizeof(struct sadb_msg) /
  282. sizeof(uint64_t));
  283. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk);
  284. return 0;
  285. }
  286. static u8 sadb_ext_min_len[] = {
  287. [SADB_EXT_RESERVED] = (u8) 0,
  288. [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa),
  289. [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime),
  290. [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime),
  291. [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime),
  292. [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address),
  293. [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address),
  294. [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address),
  295. [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key),
  296. [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key),
  297. [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident),
  298. [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident),
  299. [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens),
  300. [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop),
  301. [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported),
  302. [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported),
  303. [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange),
  304. [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate),
  305. [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy),
  306. [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2),
  307. [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type),
  308. [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  309. [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  310. [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address),
  311. [SADB_X_EXT_SEC_CTX] = (u8) sizeof(struct sadb_x_sec_ctx),
  312. };
  313. /* Verify sadb_address_{len,prefixlen} against sa_family. */
  314. static int verify_address_len(void *p)
  315. {
  316. struct sadb_address *sp = p;
  317. struct sockaddr *addr = (struct sockaddr *)(sp + 1);
  318. struct sockaddr_in *sin;
  319. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  320. struct sockaddr_in6 *sin6;
  321. #endif
  322. int len;
  323. switch (addr->sa_family) {
  324. case AF_INET:
  325. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin), sizeof(uint64_t));
  326. if (sp->sadb_address_len != len ||
  327. sp->sadb_address_prefixlen > 32)
  328. return -EINVAL;
  329. break;
  330. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  331. case AF_INET6:
  332. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin6), sizeof(uint64_t));
  333. if (sp->sadb_address_len != len ||
  334. sp->sadb_address_prefixlen > 128)
  335. return -EINVAL;
  336. break;
  337. #endif
  338. default:
  339. /* It is user using kernel to keep track of security
  340. * associations for another protocol, such as
  341. * OSPF/RSVP/RIPV2/MIP. It is user's job to verify
  342. * lengths.
  343. *
  344. * XXX Actually, association/policy database is not yet
  345. * XXX able to cope with arbitrary sockaddr families.
  346. * XXX When it can, remove this -EINVAL. -DaveM
  347. */
  348. return -EINVAL;
  349. break;
  350. }
  351. return 0;
  352. }
  353. static inline int pfkey_sec_ctx_len(struct sadb_x_sec_ctx *sec_ctx)
  354. {
  355. return DIV_ROUND_UP(sizeof(struct sadb_x_sec_ctx) +
  356. sec_ctx->sadb_x_ctx_len,
  357. sizeof(uint64_t));
  358. }
  359. static inline int verify_sec_ctx_len(void *p)
  360. {
  361. struct sadb_x_sec_ctx *sec_ctx = (struct sadb_x_sec_ctx *)p;
  362. int len = sec_ctx->sadb_x_ctx_len;
  363. if (len > PAGE_SIZE)
  364. return -EINVAL;
  365. len = pfkey_sec_ctx_len(sec_ctx);
  366. if (sec_ctx->sadb_x_sec_len != len)
  367. return -EINVAL;
  368. return 0;
  369. }
  370. static inline struct xfrm_user_sec_ctx *pfkey_sadb2xfrm_user_sec_ctx(struct sadb_x_sec_ctx *sec_ctx)
  371. {
  372. struct xfrm_user_sec_ctx *uctx = NULL;
  373. int ctx_size = sec_ctx->sadb_x_ctx_len;
  374. uctx = kmalloc((sizeof(*uctx)+ctx_size), GFP_KERNEL);
  375. if (!uctx)
  376. return NULL;
  377. uctx->len = pfkey_sec_ctx_len(sec_ctx);
  378. uctx->exttype = sec_ctx->sadb_x_sec_exttype;
  379. uctx->ctx_doi = sec_ctx->sadb_x_ctx_doi;
  380. uctx->ctx_alg = sec_ctx->sadb_x_ctx_alg;
  381. uctx->ctx_len = sec_ctx->sadb_x_ctx_len;
  382. memcpy(uctx + 1, sec_ctx + 1,
  383. uctx->ctx_len);
  384. return uctx;
  385. }
  386. static int present_and_same_family(struct sadb_address *src,
  387. struct sadb_address *dst)
  388. {
  389. struct sockaddr *s_addr, *d_addr;
  390. if (!src || !dst)
  391. return 0;
  392. s_addr = (struct sockaddr *)(src + 1);
  393. d_addr = (struct sockaddr *)(dst + 1);
  394. if (s_addr->sa_family != d_addr->sa_family)
  395. return 0;
  396. if (s_addr->sa_family != AF_INET
  397. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  398. && s_addr->sa_family != AF_INET6
  399. #endif
  400. )
  401. return 0;
  402. return 1;
  403. }
  404. static int parse_exthdrs(struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  405. {
  406. char *p = (char *) hdr;
  407. int len = skb->len;
  408. len -= sizeof(*hdr);
  409. p += sizeof(*hdr);
  410. while (len > 0) {
  411. struct sadb_ext *ehdr = (struct sadb_ext *) p;
  412. uint16_t ext_type;
  413. int ext_len;
  414. ext_len = ehdr->sadb_ext_len;
  415. ext_len *= sizeof(uint64_t);
  416. ext_type = ehdr->sadb_ext_type;
  417. if (ext_len < sizeof(uint64_t) ||
  418. ext_len > len ||
  419. ext_type == SADB_EXT_RESERVED)
  420. return -EINVAL;
  421. if (ext_type <= SADB_EXT_MAX) {
  422. int min = (int) sadb_ext_min_len[ext_type];
  423. if (ext_len < min)
  424. return -EINVAL;
  425. if (ext_hdrs[ext_type-1] != NULL)
  426. return -EINVAL;
  427. if (ext_type == SADB_EXT_ADDRESS_SRC ||
  428. ext_type == SADB_EXT_ADDRESS_DST ||
  429. ext_type == SADB_EXT_ADDRESS_PROXY ||
  430. ext_type == SADB_X_EXT_NAT_T_OA) {
  431. if (verify_address_len(p))
  432. return -EINVAL;
  433. }
  434. if (ext_type == SADB_X_EXT_SEC_CTX) {
  435. if (verify_sec_ctx_len(p))
  436. return -EINVAL;
  437. }
  438. ext_hdrs[ext_type-1] = p;
  439. }
  440. p += ext_len;
  441. len -= ext_len;
  442. }
  443. return 0;
  444. }
  445. static uint16_t
  446. pfkey_satype2proto(uint8_t satype)
  447. {
  448. switch (satype) {
  449. case SADB_SATYPE_UNSPEC:
  450. return IPSEC_PROTO_ANY;
  451. case SADB_SATYPE_AH:
  452. return IPPROTO_AH;
  453. case SADB_SATYPE_ESP:
  454. return IPPROTO_ESP;
  455. case SADB_X_SATYPE_IPCOMP:
  456. return IPPROTO_COMP;
  457. break;
  458. default:
  459. return 0;
  460. }
  461. /* NOTREACHED */
  462. }
  463. static uint8_t
  464. pfkey_proto2satype(uint16_t proto)
  465. {
  466. switch (proto) {
  467. case IPPROTO_AH:
  468. return SADB_SATYPE_AH;
  469. case IPPROTO_ESP:
  470. return SADB_SATYPE_ESP;
  471. case IPPROTO_COMP:
  472. return SADB_X_SATYPE_IPCOMP;
  473. break;
  474. default:
  475. return 0;
  476. }
  477. /* NOTREACHED */
  478. }
  479. /* BTW, this scheme means that there is no way with PFKEY2 sockets to
  480. * say specifically 'just raw sockets' as we encode them as 255.
  481. */
  482. static uint8_t pfkey_proto_to_xfrm(uint8_t proto)
  483. {
  484. return (proto == IPSEC_PROTO_ANY ? 0 : proto);
  485. }
  486. static uint8_t pfkey_proto_from_xfrm(uint8_t proto)
  487. {
  488. return (proto ? proto : IPSEC_PROTO_ANY);
  489. }
  490. static int pfkey_sadb_addr2xfrm_addr(struct sadb_address *addr,
  491. xfrm_address_t *xaddr)
  492. {
  493. switch (((struct sockaddr*)(addr + 1))->sa_family) {
  494. case AF_INET:
  495. xaddr->a4 =
  496. ((struct sockaddr_in *)(addr + 1))->sin_addr.s_addr;
  497. return AF_INET;
  498. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  499. case AF_INET6:
  500. memcpy(xaddr->a6,
  501. &((struct sockaddr_in6 *)(addr + 1))->sin6_addr,
  502. sizeof(struct in6_addr));
  503. return AF_INET6;
  504. #endif
  505. default:
  506. return 0;
  507. }
  508. /* NOTREACHED */
  509. }
  510. static struct xfrm_state *pfkey_xfrm_state_lookup(struct sadb_msg *hdr, void **ext_hdrs)
  511. {
  512. struct sadb_sa *sa;
  513. struct sadb_address *addr;
  514. uint16_t proto;
  515. unsigned short family;
  516. xfrm_address_t *xaddr;
  517. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  518. if (sa == NULL)
  519. return NULL;
  520. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  521. if (proto == 0)
  522. return NULL;
  523. /* sadb_address_len should be checked by caller */
  524. addr = (struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  525. if (addr == NULL)
  526. return NULL;
  527. family = ((struct sockaddr *)(addr + 1))->sa_family;
  528. switch (family) {
  529. case AF_INET:
  530. xaddr = (xfrm_address_t *)&((struct sockaddr_in *)(addr + 1))->sin_addr;
  531. break;
  532. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  533. case AF_INET6:
  534. xaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(addr + 1))->sin6_addr;
  535. break;
  536. #endif
  537. default:
  538. xaddr = NULL;
  539. }
  540. if (!xaddr)
  541. return NULL;
  542. return xfrm_state_lookup(xaddr, sa->sadb_sa_spi, proto, family);
  543. }
  544. #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1)))
  545. static int
  546. pfkey_sockaddr_size(sa_family_t family)
  547. {
  548. switch (family) {
  549. case AF_INET:
  550. return PFKEY_ALIGN8(sizeof(struct sockaddr_in));
  551. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  552. case AF_INET6:
  553. return PFKEY_ALIGN8(sizeof(struct sockaddr_in6));
  554. #endif
  555. default:
  556. return 0;
  557. }
  558. /* NOTREACHED */
  559. }
  560. static inline int pfkey_mode_from_xfrm(int mode)
  561. {
  562. switch(mode) {
  563. case XFRM_MODE_TRANSPORT:
  564. return IPSEC_MODE_TRANSPORT;
  565. case XFRM_MODE_TUNNEL:
  566. return IPSEC_MODE_TUNNEL;
  567. case XFRM_MODE_BEET:
  568. return IPSEC_MODE_BEET;
  569. default:
  570. return -1;
  571. }
  572. }
  573. static inline int pfkey_mode_to_xfrm(int mode)
  574. {
  575. switch(mode) {
  576. case IPSEC_MODE_ANY: /*XXX*/
  577. case IPSEC_MODE_TRANSPORT:
  578. return XFRM_MODE_TRANSPORT;
  579. case IPSEC_MODE_TUNNEL:
  580. return XFRM_MODE_TUNNEL;
  581. case IPSEC_MODE_BEET:
  582. return XFRM_MODE_BEET;
  583. default:
  584. return -1;
  585. }
  586. }
  587. static struct sk_buff *__pfkey_xfrm_state2msg(struct xfrm_state *x,
  588. int add_keys, int hsc)
  589. {
  590. struct sk_buff *skb;
  591. struct sadb_msg *hdr;
  592. struct sadb_sa *sa;
  593. struct sadb_lifetime *lifetime;
  594. struct sadb_address *addr;
  595. struct sadb_key *key;
  596. struct sadb_x_sa2 *sa2;
  597. struct sockaddr_in *sin;
  598. struct sadb_x_sec_ctx *sec_ctx;
  599. struct xfrm_sec_ctx *xfrm_ctx;
  600. int ctx_size = 0;
  601. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  602. struct sockaddr_in6 *sin6;
  603. #endif
  604. int size;
  605. int auth_key_size = 0;
  606. int encrypt_key_size = 0;
  607. int sockaddr_size;
  608. struct xfrm_encap_tmpl *natt = NULL;
  609. int mode;
  610. /* address family check */
  611. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  612. if (!sockaddr_size)
  613. return ERR_PTR(-EINVAL);
  614. /* base, SA, (lifetime (HSC),) address(SD), (address(P),)
  615. key(AE), (identity(SD),) (sensitivity)> */
  616. size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) +
  617. sizeof(struct sadb_lifetime) +
  618. ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) +
  619. ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) +
  620. sizeof(struct sadb_address)*2 +
  621. sockaddr_size*2 +
  622. sizeof(struct sadb_x_sa2);
  623. if ((xfrm_ctx = x->security)) {
  624. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  625. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  626. }
  627. /* identity & sensitivity */
  628. if ((x->props.family == AF_INET &&
  629. x->sel.saddr.a4 != x->props.saddr.a4)
  630. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  631. || (x->props.family == AF_INET6 &&
  632. memcmp (x->sel.saddr.a6, x->props.saddr.a6, sizeof (struct in6_addr)))
  633. #endif
  634. )
  635. size += sizeof(struct sadb_address) + sockaddr_size;
  636. if (add_keys) {
  637. if (x->aalg && x->aalg->alg_key_len) {
  638. auth_key_size =
  639. PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8);
  640. size += sizeof(struct sadb_key) + auth_key_size;
  641. }
  642. if (x->ealg && x->ealg->alg_key_len) {
  643. encrypt_key_size =
  644. PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8);
  645. size += sizeof(struct sadb_key) + encrypt_key_size;
  646. }
  647. }
  648. if (x->encap)
  649. natt = x->encap;
  650. if (natt && natt->encap_type) {
  651. size += sizeof(struct sadb_x_nat_t_type);
  652. size += sizeof(struct sadb_x_nat_t_port);
  653. size += sizeof(struct sadb_x_nat_t_port);
  654. }
  655. skb = alloc_skb(size + 16, GFP_ATOMIC);
  656. if (skb == NULL)
  657. return ERR_PTR(-ENOBUFS);
  658. /* call should fill header later */
  659. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  660. memset(hdr, 0, size); /* XXX do we need this ? */
  661. hdr->sadb_msg_len = size / sizeof(uint64_t);
  662. /* sa */
  663. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  664. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  665. sa->sadb_sa_exttype = SADB_EXT_SA;
  666. sa->sadb_sa_spi = x->id.spi;
  667. sa->sadb_sa_replay = x->props.replay_window;
  668. switch (x->km.state) {
  669. case XFRM_STATE_VALID:
  670. sa->sadb_sa_state = x->km.dying ?
  671. SADB_SASTATE_DYING : SADB_SASTATE_MATURE;
  672. break;
  673. case XFRM_STATE_ACQ:
  674. sa->sadb_sa_state = SADB_SASTATE_LARVAL;
  675. break;
  676. default:
  677. sa->sadb_sa_state = SADB_SASTATE_DEAD;
  678. break;
  679. }
  680. sa->sadb_sa_auth = 0;
  681. if (x->aalg) {
  682. struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
  683. sa->sadb_sa_auth = a ? a->desc.sadb_alg_id : 0;
  684. }
  685. sa->sadb_sa_encrypt = 0;
  686. BUG_ON(x->ealg && x->calg);
  687. if (x->ealg) {
  688. struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0);
  689. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  690. }
  691. /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */
  692. if (x->calg) {
  693. struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0);
  694. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  695. }
  696. sa->sadb_sa_flags = 0;
  697. if (x->props.flags & XFRM_STATE_NOECN)
  698. sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN;
  699. if (x->props.flags & XFRM_STATE_DECAP_DSCP)
  700. sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP;
  701. if (x->props.flags & XFRM_STATE_NOPMTUDISC)
  702. sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC;
  703. /* hard time */
  704. if (hsc & 2) {
  705. lifetime = (struct sadb_lifetime *) skb_put(skb,
  706. sizeof(struct sadb_lifetime));
  707. lifetime->sadb_lifetime_len =
  708. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  709. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  710. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit);
  711. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit);
  712. lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds;
  713. lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds;
  714. }
  715. /* soft time */
  716. if (hsc & 1) {
  717. lifetime = (struct sadb_lifetime *) skb_put(skb,
  718. sizeof(struct sadb_lifetime));
  719. lifetime->sadb_lifetime_len =
  720. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  721. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  722. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit);
  723. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit);
  724. lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds;
  725. lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds;
  726. }
  727. /* current time */
  728. lifetime = (struct sadb_lifetime *) skb_put(skb,
  729. sizeof(struct sadb_lifetime));
  730. lifetime->sadb_lifetime_len =
  731. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  732. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  733. lifetime->sadb_lifetime_allocations = x->curlft.packets;
  734. lifetime->sadb_lifetime_bytes = x->curlft.bytes;
  735. lifetime->sadb_lifetime_addtime = x->curlft.add_time;
  736. lifetime->sadb_lifetime_usetime = x->curlft.use_time;
  737. /* src address */
  738. addr = (struct sadb_address*) skb_put(skb,
  739. sizeof(struct sadb_address)+sockaddr_size);
  740. addr->sadb_address_len =
  741. (sizeof(struct sadb_address)+sockaddr_size)/
  742. sizeof(uint64_t);
  743. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  744. /* "if the ports are non-zero, then the sadb_address_proto field,
  745. normally zero, MUST be filled in with the transport
  746. protocol's number." - RFC2367 */
  747. addr->sadb_address_proto = 0;
  748. addr->sadb_address_reserved = 0;
  749. if (x->props.family == AF_INET) {
  750. addr->sadb_address_prefixlen = 32;
  751. sin = (struct sockaddr_in *) (addr + 1);
  752. sin->sin_family = AF_INET;
  753. sin->sin_addr.s_addr = x->props.saddr.a4;
  754. sin->sin_port = 0;
  755. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  756. }
  757. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  758. else if (x->props.family == AF_INET6) {
  759. addr->sadb_address_prefixlen = 128;
  760. sin6 = (struct sockaddr_in6 *) (addr + 1);
  761. sin6->sin6_family = AF_INET6;
  762. sin6->sin6_port = 0;
  763. sin6->sin6_flowinfo = 0;
  764. memcpy(&sin6->sin6_addr, x->props.saddr.a6,
  765. sizeof(struct in6_addr));
  766. sin6->sin6_scope_id = 0;
  767. }
  768. #endif
  769. else
  770. BUG();
  771. /* dst address */
  772. addr = (struct sadb_address*) skb_put(skb,
  773. sizeof(struct sadb_address)+sockaddr_size);
  774. addr->sadb_address_len =
  775. (sizeof(struct sadb_address)+sockaddr_size)/
  776. sizeof(uint64_t);
  777. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  778. addr->sadb_address_proto = 0;
  779. addr->sadb_address_prefixlen = 32; /* XXX */
  780. addr->sadb_address_reserved = 0;
  781. if (x->props.family == AF_INET) {
  782. sin = (struct sockaddr_in *) (addr + 1);
  783. sin->sin_family = AF_INET;
  784. sin->sin_addr.s_addr = x->id.daddr.a4;
  785. sin->sin_port = 0;
  786. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  787. if (x->sel.saddr.a4 != x->props.saddr.a4) {
  788. addr = (struct sadb_address*) skb_put(skb,
  789. sizeof(struct sadb_address)+sockaddr_size);
  790. addr->sadb_address_len =
  791. (sizeof(struct sadb_address)+sockaddr_size)/
  792. sizeof(uint64_t);
  793. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  794. addr->sadb_address_proto =
  795. pfkey_proto_from_xfrm(x->sel.proto);
  796. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  797. addr->sadb_address_reserved = 0;
  798. sin = (struct sockaddr_in *) (addr + 1);
  799. sin->sin_family = AF_INET;
  800. sin->sin_addr.s_addr = x->sel.saddr.a4;
  801. sin->sin_port = x->sel.sport;
  802. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  803. }
  804. }
  805. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  806. else if (x->props.family == AF_INET6) {
  807. addr->sadb_address_prefixlen = 128;
  808. sin6 = (struct sockaddr_in6 *) (addr + 1);
  809. sin6->sin6_family = AF_INET6;
  810. sin6->sin6_port = 0;
  811. sin6->sin6_flowinfo = 0;
  812. memcpy(&sin6->sin6_addr, x->id.daddr.a6, sizeof(struct in6_addr));
  813. sin6->sin6_scope_id = 0;
  814. if (memcmp (x->sel.saddr.a6, x->props.saddr.a6,
  815. sizeof(struct in6_addr))) {
  816. addr = (struct sadb_address *) skb_put(skb,
  817. sizeof(struct sadb_address)+sockaddr_size);
  818. addr->sadb_address_len =
  819. (sizeof(struct sadb_address)+sockaddr_size)/
  820. sizeof(uint64_t);
  821. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  822. addr->sadb_address_proto =
  823. pfkey_proto_from_xfrm(x->sel.proto);
  824. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  825. addr->sadb_address_reserved = 0;
  826. sin6 = (struct sockaddr_in6 *) (addr + 1);
  827. sin6->sin6_family = AF_INET6;
  828. sin6->sin6_port = x->sel.sport;
  829. sin6->sin6_flowinfo = 0;
  830. memcpy(&sin6->sin6_addr, x->sel.saddr.a6,
  831. sizeof(struct in6_addr));
  832. sin6->sin6_scope_id = 0;
  833. }
  834. }
  835. #endif
  836. else
  837. BUG();
  838. /* auth key */
  839. if (add_keys && auth_key_size) {
  840. key = (struct sadb_key *) skb_put(skb,
  841. sizeof(struct sadb_key)+auth_key_size);
  842. key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) /
  843. sizeof(uint64_t);
  844. key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
  845. key->sadb_key_bits = x->aalg->alg_key_len;
  846. key->sadb_key_reserved = 0;
  847. memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8);
  848. }
  849. /* encrypt key */
  850. if (add_keys && encrypt_key_size) {
  851. key = (struct sadb_key *) skb_put(skb,
  852. sizeof(struct sadb_key)+encrypt_key_size);
  853. key->sadb_key_len = (sizeof(struct sadb_key) +
  854. encrypt_key_size) / sizeof(uint64_t);
  855. key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
  856. key->sadb_key_bits = x->ealg->alg_key_len;
  857. key->sadb_key_reserved = 0;
  858. memcpy(key + 1, x->ealg->alg_key,
  859. (x->ealg->alg_key_len+7)/8);
  860. }
  861. /* sa */
  862. sa2 = (struct sadb_x_sa2 *) skb_put(skb, sizeof(struct sadb_x_sa2));
  863. sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t);
  864. sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
  865. if ((mode = pfkey_mode_from_xfrm(x->props.mode)) < 0) {
  866. kfree_skb(skb);
  867. return ERR_PTR(-EINVAL);
  868. }
  869. sa2->sadb_x_sa2_mode = mode;
  870. sa2->sadb_x_sa2_reserved1 = 0;
  871. sa2->sadb_x_sa2_reserved2 = 0;
  872. sa2->sadb_x_sa2_sequence = 0;
  873. sa2->sadb_x_sa2_reqid = x->props.reqid;
  874. if (natt && natt->encap_type) {
  875. struct sadb_x_nat_t_type *n_type;
  876. struct sadb_x_nat_t_port *n_port;
  877. /* type */
  878. n_type = (struct sadb_x_nat_t_type*) skb_put(skb, sizeof(*n_type));
  879. n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t);
  880. n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
  881. n_type->sadb_x_nat_t_type_type = natt->encap_type;
  882. n_type->sadb_x_nat_t_type_reserved[0] = 0;
  883. n_type->sadb_x_nat_t_type_reserved[1] = 0;
  884. n_type->sadb_x_nat_t_type_reserved[2] = 0;
  885. /* source port */
  886. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  887. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  888. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  889. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  890. n_port->sadb_x_nat_t_port_reserved = 0;
  891. /* dest port */
  892. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  893. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  894. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  895. n_port->sadb_x_nat_t_port_port = natt->encap_dport;
  896. n_port->sadb_x_nat_t_port_reserved = 0;
  897. }
  898. /* security context */
  899. if (xfrm_ctx) {
  900. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  901. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  902. sec_ctx->sadb_x_sec_len =
  903. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  904. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  905. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  906. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  907. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  908. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  909. xfrm_ctx->ctx_len);
  910. }
  911. return skb;
  912. }
  913. static inline struct sk_buff *pfkey_xfrm_state2msg(struct xfrm_state *x)
  914. {
  915. struct sk_buff *skb;
  916. skb = __pfkey_xfrm_state2msg(x, 1, 3);
  917. return skb;
  918. }
  919. static inline struct sk_buff *pfkey_xfrm_state2msg_expire(struct xfrm_state *x,
  920. int hsc)
  921. {
  922. return __pfkey_xfrm_state2msg(x, 0, hsc);
  923. }
  924. static struct xfrm_state * pfkey_msg2xfrm_state(struct sadb_msg *hdr,
  925. void **ext_hdrs)
  926. {
  927. struct xfrm_state *x;
  928. struct sadb_lifetime *lifetime;
  929. struct sadb_sa *sa;
  930. struct sadb_key *key;
  931. struct sadb_x_sec_ctx *sec_ctx;
  932. uint16_t proto;
  933. int err;
  934. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  935. if (!sa ||
  936. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  937. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  938. return ERR_PTR(-EINVAL);
  939. if (hdr->sadb_msg_satype == SADB_SATYPE_ESP &&
  940. !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1])
  941. return ERR_PTR(-EINVAL);
  942. if (hdr->sadb_msg_satype == SADB_SATYPE_AH &&
  943. !ext_hdrs[SADB_EXT_KEY_AUTH-1])
  944. return ERR_PTR(-EINVAL);
  945. if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] !=
  946. !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1])
  947. return ERR_PTR(-EINVAL);
  948. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  949. if (proto == 0)
  950. return ERR_PTR(-EINVAL);
  951. /* default error is no buffer space */
  952. err = -ENOBUFS;
  953. /* RFC2367:
  954. Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
  955. SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
  956. sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
  957. Therefore, the sadb_sa_state field of all submitted SAs MUST be
  958. SADB_SASTATE_MATURE and the kernel MUST return an error if this is
  959. not true.
  960. However, KAME setkey always uses SADB_SASTATE_LARVAL.
  961. Hence, we have to _ignore_ sadb_sa_state, which is also reasonable.
  962. */
  963. if (sa->sadb_sa_auth > SADB_AALG_MAX ||
  964. (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP &&
  965. sa->sadb_sa_encrypt > SADB_X_CALG_MAX) ||
  966. sa->sadb_sa_encrypt > SADB_EALG_MAX)
  967. return ERR_PTR(-EINVAL);
  968. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  969. if (key != NULL &&
  970. sa->sadb_sa_auth != SADB_X_AALG_NULL &&
  971. ((key->sadb_key_bits+7) / 8 == 0 ||
  972. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  973. return ERR_PTR(-EINVAL);
  974. key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  975. if (key != NULL &&
  976. sa->sadb_sa_encrypt != SADB_EALG_NULL &&
  977. ((key->sadb_key_bits+7) / 8 == 0 ||
  978. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  979. return ERR_PTR(-EINVAL);
  980. x = xfrm_state_alloc();
  981. if (x == NULL)
  982. return ERR_PTR(-ENOBUFS);
  983. x->id.proto = proto;
  984. x->id.spi = sa->sadb_sa_spi;
  985. x->props.replay_window = sa->sadb_sa_replay;
  986. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN)
  987. x->props.flags |= XFRM_STATE_NOECN;
  988. if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP)
  989. x->props.flags |= XFRM_STATE_DECAP_DSCP;
  990. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC)
  991. x->props.flags |= XFRM_STATE_NOPMTUDISC;
  992. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_HARD-1];
  993. if (lifetime != NULL) {
  994. x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  995. x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  996. x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  997. x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  998. }
  999. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_SOFT-1];
  1000. if (lifetime != NULL) {
  1001. x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1002. x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1003. x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1004. x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1005. }
  1006. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1007. if (sec_ctx != NULL) {
  1008. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1009. if (!uctx)
  1010. goto out;
  1011. err = security_xfrm_state_alloc(x, uctx);
  1012. kfree(uctx);
  1013. if (err)
  1014. goto out;
  1015. }
  1016. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  1017. if (sa->sadb_sa_auth) {
  1018. int keysize = 0;
  1019. struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth);
  1020. if (!a) {
  1021. err = -ENOSYS;
  1022. goto out;
  1023. }
  1024. if (key)
  1025. keysize = (key->sadb_key_bits + 7) / 8;
  1026. x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL);
  1027. if (!x->aalg)
  1028. goto out;
  1029. strcpy(x->aalg->alg_name, a->name);
  1030. x->aalg->alg_key_len = 0;
  1031. if (key) {
  1032. x->aalg->alg_key_len = key->sadb_key_bits;
  1033. memcpy(x->aalg->alg_key, key+1, keysize);
  1034. }
  1035. x->props.aalgo = sa->sadb_sa_auth;
  1036. /* x->algo.flags = sa->sadb_sa_flags; */
  1037. }
  1038. if (sa->sadb_sa_encrypt) {
  1039. if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) {
  1040. struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt);
  1041. if (!a) {
  1042. err = -ENOSYS;
  1043. goto out;
  1044. }
  1045. x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL);
  1046. if (!x->calg)
  1047. goto out;
  1048. strcpy(x->calg->alg_name, a->name);
  1049. x->props.calgo = sa->sadb_sa_encrypt;
  1050. } else {
  1051. int keysize = 0;
  1052. struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt);
  1053. if (!a) {
  1054. err = -ENOSYS;
  1055. goto out;
  1056. }
  1057. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  1058. if (key)
  1059. keysize = (key->sadb_key_bits + 7) / 8;
  1060. x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL);
  1061. if (!x->ealg)
  1062. goto out;
  1063. strcpy(x->ealg->alg_name, a->name);
  1064. x->ealg->alg_key_len = 0;
  1065. if (key) {
  1066. x->ealg->alg_key_len = key->sadb_key_bits;
  1067. memcpy(x->ealg->alg_key, key+1, keysize);
  1068. }
  1069. x->props.ealgo = sa->sadb_sa_encrypt;
  1070. }
  1071. }
  1072. /* x->algo.flags = sa->sadb_sa_flags; */
  1073. x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1074. &x->props.saddr);
  1075. if (!x->props.family) {
  1076. err = -EAFNOSUPPORT;
  1077. goto out;
  1078. }
  1079. pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1080. &x->id.daddr);
  1081. if (ext_hdrs[SADB_X_EXT_SA2-1]) {
  1082. struct sadb_x_sa2 *sa2 = (void*)ext_hdrs[SADB_X_EXT_SA2-1];
  1083. int mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1084. if (mode < 0) {
  1085. err = -EINVAL;
  1086. goto out;
  1087. }
  1088. x->props.mode = mode;
  1089. x->props.reqid = sa2->sadb_x_sa2_reqid;
  1090. }
  1091. if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) {
  1092. struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1];
  1093. /* Nobody uses this, but we try. */
  1094. x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr);
  1095. x->sel.prefixlen_s = addr->sadb_address_prefixlen;
  1096. }
  1097. if (x->props.mode == XFRM_MODE_TRANSPORT)
  1098. x->sel.family = x->props.family;
  1099. if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) {
  1100. struct sadb_x_nat_t_type* n_type;
  1101. struct xfrm_encap_tmpl *natt;
  1102. x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL);
  1103. if (!x->encap)
  1104. goto out;
  1105. natt = x->encap;
  1106. n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1];
  1107. natt->encap_type = n_type->sadb_x_nat_t_type_type;
  1108. if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) {
  1109. struct sadb_x_nat_t_port* n_port =
  1110. ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1];
  1111. natt->encap_sport = n_port->sadb_x_nat_t_port_port;
  1112. }
  1113. if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) {
  1114. struct sadb_x_nat_t_port* n_port =
  1115. ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1];
  1116. natt->encap_dport = n_port->sadb_x_nat_t_port_port;
  1117. }
  1118. }
  1119. err = xfrm_init_state(x);
  1120. if (err)
  1121. goto out;
  1122. x->km.seq = hdr->sadb_msg_seq;
  1123. return x;
  1124. out:
  1125. x->km.state = XFRM_STATE_DEAD;
  1126. xfrm_state_put(x);
  1127. return ERR_PTR(err);
  1128. }
  1129. static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1130. {
  1131. return -EOPNOTSUPP;
  1132. }
  1133. static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1134. {
  1135. struct sk_buff *resp_skb;
  1136. struct sadb_x_sa2 *sa2;
  1137. struct sadb_address *saddr, *daddr;
  1138. struct sadb_msg *out_hdr;
  1139. struct sadb_spirange *range;
  1140. struct xfrm_state *x = NULL;
  1141. int mode;
  1142. int err;
  1143. u32 min_spi, max_spi;
  1144. u32 reqid;
  1145. u8 proto;
  1146. unsigned short family;
  1147. xfrm_address_t *xsaddr = NULL, *xdaddr = NULL;
  1148. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1149. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1150. return -EINVAL;
  1151. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1152. if (proto == 0)
  1153. return -EINVAL;
  1154. if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) {
  1155. mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1156. if (mode < 0)
  1157. return -EINVAL;
  1158. reqid = sa2->sadb_x_sa2_reqid;
  1159. } else {
  1160. mode = 0;
  1161. reqid = 0;
  1162. }
  1163. saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1164. daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1165. family = ((struct sockaddr *)(saddr + 1))->sa_family;
  1166. switch (family) {
  1167. case AF_INET:
  1168. xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr;
  1169. xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr;
  1170. break;
  1171. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1172. case AF_INET6:
  1173. xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr;
  1174. xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr;
  1175. break;
  1176. #endif
  1177. }
  1178. if (hdr->sadb_msg_seq) {
  1179. x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
  1180. if (x && xfrm_addr_cmp(&x->id.daddr, xdaddr, family)) {
  1181. xfrm_state_put(x);
  1182. x = NULL;
  1183. }
  1184. }
  1185. if (!x)
  1186. x = xfrm_find_acq(mode, reqid, proto, xdaddr, xsaddr, 1, family);
  1187. if (x == NULL)
  1188. return -ENOENT;
  1189. min_spi = 0x100;
  1190. max_spi = 0x0fffffff;
  1191. range = ext_hdrs[SADB_EXT_SPIRANGE-1];
  1192. if (range) {
  1193. min_spi = range->sadb_spirange_min;
  1194. max_spi = range->sadb_spirange_max;
  1195. }
  1196. err = xfrm_alloc_spi(x, min_spi, max_spi);
  1197. resp_skb = err ? ERR_PTR(err) : pfkey_xfrm_state2msg(x);
  1198. if (IS_ERR(resp_skb)) {
  1199. xfrm_state_put(x);
  1200. return PTR_ERR(resp_skb);
  1201. }
  1202. out_hdr = (struct sadb_msg *) resp_skb->data;
  1203. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1204. out_hdr->sadb_msg_type = SADB_GETSPI;
  1205. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1206. out_hdr->sadb_msg_errno = 0;
  1207. out_hdr->sadb_msg_reserved = 0;
  1208. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1209. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1210. xfrm_state_put(x);
  1211. pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk);
  1212. return 0;
  1213. }
  1214. static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1215. {
  1216. struct xfrm_state *x;
  1217. if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8)
  1218. return -EOPNOTSUPP;
  1219. if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0)
  1220. return 0;
  1221. x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
  1222. if (x == NULL)
  1223. return 0;
  1224. spin_lock_bh(&x->lock);
  1225. if (x->km.state == XFRM_STATE_ACQ) {
  1226. x->km.state = XFRM_STATE_ERROR;
  1227. wake_up(&km_waitq);
  1228. }
  1229. spin_unlock_bh(&x->lock);
  1230. xfrm_state_put(x);
  1231. return 0;
  1232. }
  1233. static inline int event2poltype(int event)
  1234. {
  1235. switch (event) {
  1236. case XFRM_MSG_DELPOLICY:
  1237. return SADB_X_SPDDELETE;
  1238. case XFRM_MSG_NEWPOLICY:
  1239. return SADB_X_SPDADD;
  1240. case XFRM_MSG_UPDPOLICY:
  1241. return SADB_X_SPDUPDATE;
  1242. case XFRM_MSG_POLEXPIRE:
  1243. // return SADB_X_SPDEXPIRE;
  1244. default:
  1245. printk("pfkey: Unknown policy event %d\n", event);
  1246. break;
  1247. }
  1248. return 0;
  1249. }
  1250. static inline int event2keytype(int event)
  1251. {
  1252. switch (event) {
  1253. case XFRM_MSG_DELSA:
  1254. return SADB_DELETE;
  1255. case XFRM_MSG_NEWSA:
  1256. return SADB_ADD;
  1257. case XFRM_MSG_UPDSA:
  1258. return SADB_UPDATE;
  1259. case XFRM_MSG_EXPIRE:
  1260. return SADB_EXPIRE;
  1261. default:
  1262. printk("pfkey: Unknown SA event %d\n", event);
  1263. break;
  1264. }
  1265. return 0;
  1266. }
  1267. /* ADD/UPD/DEL */
  1268. static int key_notify_sa(struct xfrm_state *x, struct km_event *c)
  1269. {
  1270. struct sk_buff *skb;
  1271. struct sadb_msg *hdr;
  1272. skb = pfkey_xfrm_state2msg(x);
  1273. if (IS_ERR(skb))
  1274. return PTR_ERR(skb);
  1275. hdr = (struct sadb_msg *) skb->data;
  1276. hdr->sadb_msg_version = PF_KEY_V2;
  1277. hdr->sadb_msg_type = event2keytype(c->event);
  1278. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1279. hdr->sadb_msg_errno = 0;
  1280. hdr->sadb_msg_reserved = 0;
  1281. hdr->sadb_msg_seq = c->seq;
  1282. hdr->sadb_msg_pid = c->pid;
  1283. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1284. return 0;
  1285. }
  1286. static int pfkey_add(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1287. {
  1288. struct xfrm_state *x;
  1289. int err;
  1290. struct km_event c;
  1291. x = pfkey_msg2xfrm_state(hdr, ext_hdrs);
  1292. if (IS_ERR(x))
  1293. return PTR_ERR(x);
  1294. xfrm_state_hold(x);
  1295. if (hdr->sadb_msg_type == SADB_ADD)
  1296. err = xfrm_state_add(x);
  1297. else
  1298. err = xfrm_state_update(x);
  1299. xfrm_audit_state_add(x, err ? 0 : 1,
  1300. audit_get_loginuid(current), 0);
  1301. if (err < 0) {
  1302. x->km.state = XFRM_STATE_DEAD;
  1303. __xfrm_state_put(x);
  1304. goto out;
  1305. }
  1306. if (hdr->sadb_msg_type == SADB_ADD)
  1307. c.event = XFRM_MSG_NEWSA;
  1308. else
  1309. c.event = XFRM_MSG_UPDSA;
  1310. c.seq = hdr->sadb_msg_seq;
  1311. c.pid = hdr->sadb_msg_pid;
  1312. km_state_notify(x, &c);
  1313. out:
  1314. xfrm_state_put(x);
  1315. return err;
  1316. }
  1317. static int pfkey_delete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1318. {
  1319. struct xfrm_state *x;
  1320. struct km_event c;
  1321. int err;
  1322. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1323. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1324. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1325. return -EINVAL;
  1326. x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
  1327. if (x == NULL)
  1328. return -ESRCH;
  1329. if ((err = security_xfrm_state_delete(x)))
  1330. goto out;
  1331. if (xfrm_state_kern(x)) {
  1332. err = -EPERM;
  1333. goto out;
  1334. }
  1335. err = xfrm_state_delete(x);
  1336. if (err < 0)
  1337. goto out;
  1338. c.seq = hdr->sadb_msg_seq;
  1339. c.pid = hdr->sadb_msg_pid;
  1340. c.event = XFRM_MSG_DELSA;
  1341. km_state_notify(x, &c);
  1342. out:
  1343. xfrm_audit_state_delete(x, err ? 0 : 1,
  1344. audit_get_loginuid(current), 0);
  1345. xfrm_state_put(x);
  1346. return err;
  1347. }
  1348. static int pfkey_get(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1349. {
  1350. __u8 proto;
  1351. struct sk_buff *out_skb;
  1352. struct sadb_msg *out_hdr;
  1353. struct xfrm_state *x;
  1354. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1355. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1356. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1357. return -EINVAL;
  1358. x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
  1359. if (x == NULL)
  1360. return -ESRCH;
  1361. out_skb = pfkey_xfrm_state2msg(x);
  1362. proto = x->id.proto;
  1363. xfrm_state_put(x);
  1364. if (IS_ERR(out_skb))
  1365. return PTR_ERR(out_skb);
  1366. out_hdr = (struct sadb_msg *) out_skb->data;
  1367. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1368. out_hdr->sadb_msg_type = SADB_GET;
  1369. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1370. out_hdr->sadb_msg_errno = 0;
  1371. out_hdr->sadb_msg_reserved = 0;
  1372. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1373. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1374. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
  1375. return 0;
  1376. }
  1377. static struct sk_buff *compose_sadb_supported(struct sadb_msg *orig,
  1378. gfp_t allocation)
  1379. {
  1380. struct sk_buff *skb;
  1381. struct sadb_msg *hdr;
  1382. int len, auth_len, enc_len, i;
  1383. auth_len = xfrm_count_auth_supported();
  1384. if (auth_len) {
  1385. auth_len *= sizeof(struct sadb_alg);
  1386. auth_len += sizeof(struct sadb_supported);
  1387. }
  1388. enc_len = xfrm_count_enc_supported();
  1389. if (enc_len) {
  1390. enc_len *= sizeof(struct sadb_alg);
  1391. enc_len += sizeof(struct sadb_supported);
  1392. }
  1393. len = enc_len + auth_len + sizeof(struct sadb_msg);
  1394. skb = alloc_skb(len + 16, allocation);
  1395. if (!skb)
  1396. goto out_put_algs;
  1397. hdr = (struct sadb_msg *) skb_put(skb, sizeof(*hdr));
  1398. pfkey_hdr_dup(hdr, orig);
  1399. hdr->sadb_msg_errno = 0;
  1400. hdr->sadb_msg_len = len / sizeof(uint64_t);
  1401. if (auth_len) {
  1402. struct sadb_supported *sp;
  1403. struct sadb_alg *ap;
  1404. sp = (struct sadb_supported *) skb_put(skb, auth_len);
  1405. ap = (struct sadb_alg *) (sp + 1);
  1406. sp->sadb_supported_len = auth_len / sizeof(uint64_t);
  1407. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
  1408. for (i = 0; ; i++) {
  1409. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  1410. if (!aalg)
  1411. break;
  1412. if (aalg->available)
  1413. *ap++ = aalg->desc;
  1414. }
  1415. }
  1416. if (enc_len) {
  1417. struct sadb_supported *sp;
  1418. struct sadb_alg *ap;
  1419. sp = (struct sadb_supported *) skb_put(skb, enc_len);
  1420. ap = (struct sadb_alg *) (sp + 1);
  1421. sp->sadb_supported_len = enc_len / sizeof(uint64_t);
  1422. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
  1423. for (i = 0; ; i++) {
  1424. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  1425. if (!ealg)
  1426. break;
  1427. if (ealg->available)
  1428. *ap++ = ealg->desc;
  1429. }
  1430. }
  1431. out_put_algs:
  1432. return skb;
  1433. }
  1434. static int pfkey_register(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1435. {
  1436. struct pfkey_sock *pfk = pfkey_sk(sk);
  1437. struct sk_buff *supp_skb;
  1438. if (hdr->sadb_msg_satype > SADB_SATYPE_MAX)
  1439. return -EINVAL;
  1440. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) {
  1441. if (pfk->registered&(1<<hdr->sadb_msg_satype))
  1442. return -EEXIST;
  1443. pfk->registered |= (1<<hdr->sadb_msg_satype);
  1444. }
  1445. xfrm_probe_algs();
  1446. supp_skb = compose_sadb_supported(hdr, GFP_KERNEL);
  1447. if (!supp_skb) {
  1448. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC)
  1449. pfk->registered &= ~(1<<hdr->sadb_msg_satype);
  1450. return -ENOBUFS;
  1451. }
  1452. pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk);
  1453. return 0;
  1454. }
  1455. static int key_notify_sa_flush(struct km_event *c)
  1456. {
  1457. struct sk_buff *skb;
  1458. struct sadb_msg *hdr;
  1459. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1460. if (!skb)
  1461. return -ENOBUFS;
  1462. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1463. hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto);
  1464. hdr->sadb_msg_type = SADB_FLUSH;
  1465. hdr->sadb_msg_seq = c->seq;
  1466. hdr->sadb_msg_pid = c->pid;
  1467. hdr->sadb_msg_version = PF_KEY_V2;
  1468. hdr->sadb_msg_errno = (uint8_t) 0;
  1469. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1470. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1471. return 0;
  1472. }
  1473. static int pfkey_flush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1474. {
  1475. unsigned proto;
  1476. struct km_event c;
  1477. struct xfrm_audit audit_info;
  1478. int err;
  1479. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1480. if (proto == 0)
  1481. return -EINVAL;
  1482. audit_info.loginuid = audit_get_loginuid(current);
  1483. audit_info.secid = 0;
  1484. err = xfrm_state_flush(proto, &audit_info);
  1485. if (err)
  1486. return err;
  1487. c.data.proto = proto;
  1488. c.seq = hdr->sadb_msg_seq;
  1489. c.pid = hdr->sadb_msg_pid;
  1490. c.event = XFRM_MSG_FLUSHSA;
  1491. km_state_notify(NULL, &c);
  1492. return 0;
  1493. }
  1494. static int dump_sa(struct xfrm_state *x, int count, void *ptr)
  1495. {
  1496. struct pfkey_sock *pfk = ptr;
  1497. struct sk_buff *out_skb;
  1498. struct sadb_msg *out_hdr;
  1499. if (!pfkey_can_dump(&pfk->sk))
  1500. return -ENOBUFS;
  1501. out_skb = pfkey_xfrm_state2msg(x);
  1502. if (IS_ERR(out_skb))
  1503. return PTR_ERR(out_skb);
  1504. out_hdr = (struct sadb_msg *) out_skb->data;
  1505. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  1506. out_hdr->sadb_msg_type = SADB_DUMP;
  1507. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1508. out_hdr->sadb_msg_errno = 0;
  1509. out_hdr->sadb_msg_reserved = 0;
  1510. out_hdr->sadb_msg_seq = count;
  1511. out_hdr->sadb_msg_pid = pfk->dump.msg_pid;
  1512. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, &pfk->sk);
  1513. return 0;
  1514. }
  1515. static int pfkey_dump_sa(struct pfkey_sock *pfk)
  1516. {
  1517. return xfrm_state_walk(&pfk->dump.u.state, dump_sa, (void *) pfk);
  1518. }
  1519. static void pfkey_dump_sa_done(struct pfkey_sock *pfk)
  1520. {
  1521. xfrm_state_walk_done(&pfk->dump.u.state);
  1522. }
  1523. static int pfkey_dump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1524. {
  1525. u8 proto;
  1526. struct pfkey_sock *pfk = pfkey_sk(sk);
  1527. if (pfk->dump.dump != NULL)
  1528. return -EBUSY;
  1529. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1530. if (proto == 0)
  1531. return -EINVAL;
  1532. pfk->dump.msg_version = hdr->sadb_msg_version;
  1533. pfk->dump.msg_pid = hdr->sadb_msg_pid;
  1534. pfk->dump.dump = pfkey_dump_sa;
  1535. pfk->dump.done = pfkey_dump_sa_done;
  1536. xfrm_state_walk_init(&pfk->dump.u.state, proto);
  1537. return pfkey_do_dump(pfk);
  1538. }
  1539. static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1540. {
  1541. struct pfkey_sock *pfk = pfkey_sk(sk);
  1542. int satype = hdr->sadb_msg_satype;
  1543. if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) {
  1544. /* XXX we mangle packet... */
  1545. hdr->sadb_msg_errno = 0;
  1546. if (satype != 0 && satype != 1)
  1547. return -EINVAL;
  1548. pfk->promisc = satype;
  1549. }
  1550. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL, BROADCAST_ALL, NULL);
  1551. return 0;
  1552. }
  1553. static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr)
  1554. {
  1555. int i;
  1556. u32 reqid = *(u32*)ptr;
  1557. for (i=0; i<xp->xfrm_nr; i++) {
  1558. if (xp->xfrm_vec[i].reqid == reqid)
  1559. return -EEXIST;
  1560. }
  1561. return 0;
  1562. }
  1563. static u32 gen_reqid(void)
  1564. {
  1565. struct xfrm_policy_walk walk;
  1566. u32 start;
  1567. int rc;
  1568. static u32 reqid = IPSEC_MANUAL_REQID_MAX;
  1569. start = reqid;
  1570. do {
  1571. ++reqid;
  1572. if (reqid == 0)
  1573. reqid = IPSEC_MANUAL_REQID_MAX+1;
  1574. xfrm_policy_walk_init(&walk, XFRM_POLICY_TYPE_MAIN);
  1575. rc = xfrm_policy_walk(&walk, check_reqid, (void*)&reqid);
  1576. xfrm_policy_walk_done(&walk);
  1577. if (rc != -EEXIST)
  1578. return reqid;
  1579. } while (reqid != start);
  1580. return 0;
  1581. }
  1582. static int
  1583. parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq)
  1584. {
  1585. struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr;
  1586. struct sockaddr_in *sin;
  1587. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1588. struct sockaddr_in6 *sin6;
  1589. #endif
  1590. int mode;
  1591. if (xp->xfrm_nr >= XFRM_MAX_DEPTH)
  1592. return -ELOOP;
  1593. if (rq->sadb_x_ipsecrequest_mode == 0)
  1594. return -EINVAL;
  1595. t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */
  1596. if ((mode = pfkey_mode_to_xfrm(rq->sadb_x_ipsecrequest_mode)) < 0)
  1597. return -EINVAL;
  1598. t->mode = mode;
  1599. if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE)
  1600. t->optional = 1;
  1601. else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) {
  1602. t->reqid = rq->sadb_x_ipsecrequest_reqid;
  1603. if (t->reqid > IPSEC_MANUAL_REQID_MAX)
  1604. t->reqid = 0;
  1605. if (!t->reqid && !(t->reqid = gen_reqid()))
  1606. return -ENOBUFS;
  1607. }
  1608. /* addresses present only in tunnel mode */
  1609. if (t->mode == XFRM_MODE_TUNNEL) {
  1610. struct sockaddr *sa;
  1611. sa = (struct sockaddr *)(rq+1);
  1612. switch(sa->sa_family) {
  1613. case AF_INET:
  1614. sin = (struct sockaddr_in*)sa;
  1615. t->saddr.a4 = sin->sin_addr.s_addr;
  1616. sin++;
  1617. if (sin->sin_family != AF_INET)
  1618. return -EINVAL;
  1619. t->id.daddr.a4 = sin->sin_addr.s_addr;
  1620. break;
  1621. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1622. case AF_INET6:
  1623. sin6 = (struct sockaddr_in6*)sa;
  1624. memcpy(t->saddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr));
  1625. sin6++;
  1626. if (sin6->sin6_family != AF_INET6)
  1627. return -EINVAL;
  1628. memcpy(t->id.daddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr));
  1629. break;
  1630. #endif
  1631. default:
  1632. return -EINVAL;
  1633. }
  1634. t->encap_family = sa->sa_family;
  1635. } else
  1636. t->encap_family = xp->family;
  1637. /* No way to set this via kame pfkey */
  1638. t->allalgs = 1;
  1639. xp->xfrm_nr++;
  1640. return 0;
  1641. }
  1642. static int
  1643. parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol)
  1644. {
  1645. int err;
  1646. int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy);
  1647. struct sadb_x_ipsecrequest *rq = (void*)(pol+1);
  1648. while (len >= sizeof(struct sadb_x_ipsecrequest)) {
  1649. if ((err = parse_ipsecrequest(xp, rq)) < 0)
  1650. return err;
  1651. len -= rq->sadb_x_ipsecrequest_len;
  1652. rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len);
  1653. }
  1654. return 0;
  1655. }
  1656. static inline int pfkey_xfrm_policy2sec_ctx_size(struct xfrm_policy *xp)
  1657. {
  1658. struct xfrm_sec_ctx *xfrm_ctx = xp->security;
  1659. if (xfrm_ctx) {
  1660. int len = sizeof(struct sadb_x_sec_ctx);
  1661. len += xfrm_ctx->ctx_len;
  1662. return PFKEY_ALIGN8(len);
  1663. }
  1664. return 0;
  1665. }
  1666. static int pfkey_xfrm_policy2msg_size(struct xfrm_policy *xp)
  1667. {
  1668. struct xfrm_tmpl *t;
  1669. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1670. int socklen = 0;
  1671. int i;
  1672. for (i=0; i<xp->xfrm_nr; i++) {
  1673. t = xp->xfrm_vec + i;
  1674. socklen += (t->encap_family == AF_INET ?
  1675. sizeof(struct sockaddr_in) :
  1676. sizeof(struct sockaddr_in6));
  1677. }
  1678. return sizeof(struct sadb_msg) +
  1679. (sizeof(struct sadb_lifetime) * 3) +
  1680. (sizeof(struct sadb_address) * 2) +
  1681. (sockaddr_size * 2) +
  1682. sizeof(struct sadb_x_policy) +
  1683. (xp->xfrm_nr * sizeof(struct sadb_x_ipsecrequest)) +
  1684. (socklen * 2) +
  1685. pfkey_xfrm_policy2sec_ctx_size(xp);
  1686. }
  1687. static struct sk_buff * pfkey_xfrm_policy2msg_prep(struct xfrm_policy *xp)
  1688. {
  1689. struct sk_buff *skb;
  1690. int size;
  1691. size = pfkey_xfrm_policy2msg_size(xp);
  1692. skb = alloc_skb(size + 16, GFP_ATOMIC);
  1693. if (skb == NULL)
  1694. return ERR_PTR(-ENOBUFS);
  1695. return skb;
  1696. }
  1697. static int pfkey_xfrm_policy2msg(struct sk_buff *skb, struct xfrm_policy *xp, int dir)
  1698. {
  1699. struct sadb_msg *hdr;
  1700. struct sadb_address *addr;
  1701. struct sadb_lifetime *lifetime;
  1702. struct sadb_x_policy *pol;
  1703. struct sockaddr_in *sin;
  1704. struct sadb_x_sec_ctx *sec_ctx;
  1705. struct xfrm_sec_ctx *xfrm_ctx;
  1706. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1707. struct sockaddr_in6 *sin6;
  1708. #endif
  1709. int i;
  1710. int size;
  1711. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1712. int socklen = (xp->family == AF_INET ?
  1713. sizeof(struct sockaddr_in) :
  1714. sizeof(struct sockaddr_in6));
  1715. size = pfkey_xfrm_policy2msg_size(xp);
  1716. /* call should fill header later */
  1717. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1718. memset(hdr, 0, size); /* XXX do we need this ? */
  1719. /* src address */
  1720. addr = (struct sadb_address*) skb_put(skb,
  1721. sizeof(struct sadb_address)+sockaddr_size);
  1722. addr->sadb_address_len =
  1723. (sizeof(struct sadb_address)+sockaddr_size)/
  1724. sizeof(uint64_t);
  1725. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  1726. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1727. addr->sadb_address_prefixlen = xp->selector.prefixlen_s;
  1728. addr->sadb_address_reserved = 0;
  1729. /* src address */
  1730. if (xp->family == AF_INET) {
  1731. sin = (struct sockaddr_in *) (addr + 1);
  1732. sin->sin_family = AF_INET;
  1733. sin->sin_addr.s_addr = xp->selector.saddr.a4;
  1734. sin->sin_port = xp->selector.sport;
  1735. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1736. }
  1737. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1738. else if (xp->family == AF_INET6) {
  1739. sin6 = (struct sockaddr_in6 *) (addr + 1);
  1740. sin6->sin6_family = AF_INET6;
  1741. sin6->sin6_port = xp->selector.sport;
  1742. sin6->sin6_flowinfo = 0;
  1743. memcpy(&sin6->sin6_addr, xp->selector.saddr.a6,
  1744. sizeof(struct in6_addr));
  1745. sin6->sin6_scope_id = 0;
  1746. }
  1747. #endif
  1748. else
  1749. BUG();
  1750. /* dst address */
  1751. addr = (struct sadb_address*) skb_put(skb,
  1752. sizeof(struct sadb_address)+sockaddr_size);
  1753. addr->sadb_address_len =
  1754. (sizeof(struct sadb_address)+sockaddr_size)/
  1755. sizeof(uint64_t);
  1756. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  1757. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1758. addr->sadb_address_prefixlen = xp->selector.prefixlen_d;
  1759. addr->sadb_address_reserved = 0;
  1760. if (xp->family == AF_INET) {
  1761. sin = (struct sockaddr_in *) (addr + 1);
  1762. sin->sin_family = AF_INET;
  1763. sin->sin_addr.s_addr = xp->selector.daddr.a4;
  1764. sin->sin_port = xp->selector.dport;
  1765. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1766. }
  1767. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1768. else if (xp->family == AF_INET6) {
  1769. sin6 = (struct sockaddr_in6 *) (addr + 1);
  1770. sin6->sin6_family = AF_INET6;
  1771. sin6->sin6_port = xp->selector.dport;
  1772. sin6->sin6_flowinfo = 0;
  1773. memcpy(&sin6->sin6_addr, xp->selector.daddr.a6,
  1774. sizeof(struct in6_addr));
  1775. sin6->sin6_scope_id = 0;
  1776. }
  1777. #endif
  1778. else
  1779. BUG();
  1780. /* hard time */
  1781. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1782. sizeof(struct sadb_lifetime));
  1783. lifetime->sadb_lifetime_len =
  1784. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1785. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  1786. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit);
  1787. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit);
  1788. lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds;
  1789. lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds;
  1790. /* soft time */
  1791. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1792. sizeof(struct sadb_lifetime));
  1793. lifetime->sadb_lifetime_len =
  1794. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1795. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  1796. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit);
  1797. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit);
  1798. lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds;
  1799. lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds;
  1800. /* current time */
  1801. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1802. sizeof(struct sadb_lifetime));
  1803. lifetime->sadb_lifetime_len =
  1804. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1805. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  1806. lifetime->sadb_lifetime_allocations = xp->curlft.packets;
  1807. lifetime->sadb_lifetime_bytes = xp->curlft.bytes;
  1808. lifetime->sadb_lifetime_addtime = xp->curlft.add_time;
  1809. lifetime->sadb_lifetime_usetime = xp->curlft.use_time;
  1810. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  1811. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  1812. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  1813. pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD;
  1814. if (xp->action == XFRM_POLICY_ALLOW) {
  1815. if (xp->xfrm_nr)
  1816. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  1817. else
  1818. pol->sadb_x_policy_type = IPSEC_POLICY_NONE;
  1819. }
  1820. pol->sadb_x_policy_dir = dir+1;
  1821. pol->sadb_x_policy_id = xp->index;
  1822. pol->sadb_x_policy_priority = xp->priority;
  1823. for (i=0; i<xp->xfrm_nr; i++) {
  1824. struct sadb_x_ipsecrequest *rq;
  1825. struct xfrm_tmpl *t = xp->xfrm_vec + i;
  1826. int req_size;
  1827. int mode;
  1828. req_size = sizeof(struct sadb_x_ipsecrequest);
  1829. if (t->mode == XFRM_MODE_TUNNEL)
  1830. req_size += ((t->encap_family == AF_INET ?
  1831. sizeof(struct sockaddr_in) :
  1832. sizeof(struct sockaddr_in6)) * 2);
  1833. else
  1834. size -= 2*socklen;
  1835. rq = (void*)skb_put(skb, req_size);
  1836. pol->sadb_x_policy_len += req_size/8;
  1837. memset(rq, 0, sizeof(*rq));
  1838. rq->sadb_x_ipsecrequest_len = req_size;
  1839. rq->sadb_x_ipsecrequest_proto = t->id.proto;
  1840. if ((mode = pfkey_mode_from_xfrm(t->mode)) < 0)
  1841. return -EINVAL;
  1842. rq->sadb_x_ipsecrequest_mode = mode;
  1843. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE;
  1844. if (t->reqid)
  1845. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
  1846. if (t->optional)
  1847. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE;
  1848. rq->sadb_x_ipsecrequest_reqid = t->reqid;
  1849. if (t->mode == XFRM_MODE_TUNNEL) {
  1850. switch (t->encap_family) {
  1851. case AF_INET:
  1852. sin = (void*)(rq+1);
  1853. sin->sin_family = AF_INET;
  1854. sin->sin_addr.s_addr = t->saddr.a4;
  1855. sin->sin_port = 0;
  1856. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1857. sin++;
  1858. sin->sin_family = AF_INET;
  1859. sin->sin_addr.s_addr = t->id.daddr.a4;
  1860. sin->sin_port = 0;
  1861. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1862. break;
  1863. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1864. case AF_INET6:
  1865. sin6 = (void*)(rq+1);
  1866. sin6->sin6_family = AF_INET6;
  1867. sin6->sin6_port = 0;
  1868. sin6->sin6_flowinfo = 0;
  1869. memcpy(&sin6->sin6_addr, t->saddr.a6,
  1870. sizeof(struct in6_addr));
  1871. sin6->sin6_scope_id = 0;
  1872. sin6++;
  1873. sin6->sin6_family = AF_INET6;
  1874. sin6->sin6_port = 0;
  1875. sin6->sin6_flowinfo = 0;
  1876. memcpy(&sin6->sin6_addr, t->id.daddr.a6,
  1877. sizeof(struct in6_addr));
  1878. sin6->sin6_scope_id = 0;
  1879. break;
  1880. #endif
  1881. default:
  1882. break;
  1883. }
  1884. }
  1885. }
  1886. /* security context */
  1887. if ((xfrm_ctx = xp->security)) {
  1888. int ctx_size = pfkey_xfrm_policy2sec_ctx_size(xp);
  1889. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb, ctx_size);
  1890. sec_ctx->sadb_x_sec_len = ctx_size / sizeof(uint64_t);
  1891. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  1892. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  1893. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  1894. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  1895. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  1896. xfrm_ctx->ctx_len);
  1897. }
  1898. hdr->sadb_msg_len = size / sizeof(uint64_t);
  1899. hdr->sadb_msg_reserved = atomic_read(&xp->refcnt);
  1900. return 0;
  1901. }
  1902. static int key_notify_policy(struct xfrm_policy *xp, int dir, struct km_event *c)
  1903. {
  1904. struct sk_buff *out_skb;
  1905. struct sadb_msg *out_hdr;
  1906. int err;
  1907. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1908. if (IS_ERR(out_skb)) {
  1909. err = PTR_ERR(out_skb);
  1910. goto out;
  1911. }
  1912. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1913. if (err < 0)
  1914. return err;
  1915. out_hdr = (struct sadb_msg *) out_skb->data;
  1916. out_hdr->sadb_msg_version = PF_KEY_V2;
  1917. if (c->data.byid && c->event == XFRM_MSG_DELPOLICY)
  1918. out_hdr->sadb_msg_type = SADB_X_SPDDELETE2;
  1919. else
  1920. out_hdr->sadb_msg_type = event2poltype(c->event);
  1921. out_hdr->sadb_msg_errno = 0;
  1922. out_hdr->sadb_msg_seq = c->seq;
  1923. out_hdr->sadb_msg_pid = c->pid;
  1924. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1925. out:
  1926. return 0;
  1927. }
  1928. static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1929. {
  1930. int err = 0;
  1931. struct sadb_lifetime *lifetime;
  1932. struct sadb_address *sa;
  1933. struct sadb_x_policy *pol;
  1934. struct xfrm_policy *xp;
  1935. struct km_event c;
  1936. struct sadb_x_sec_ctx *sec_ctx;
  1937. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1938. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1939. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1940. return -EINVAL;
  1941. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1942. if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC)
  1943. return -EINVAL;
  1944. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1945. return -EINVAL;
  1946. xp = xfrm_policy_alloc(GFP_KERNEL);
  1947. if (xp == NULL)
  1948. return -ENOBUFS;
  1949. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  1950. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  1951. xp->priority = pol->sadb_x_policy_priority;
  1952. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1953. xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr);
  1954. if (!xp->family) {
  1955. err = -EINVAL;
  1956. goto out;
  1957. }
  1958. xp->selector.family = xp->family;
  1959. xp->selector.prefixlen_s = sa->sadb_address_prefixlen;
  1960. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1961. xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1962. if (xp->selector.sport)
  1963. xp->selector.sport_mask = htons(0xffff);
  1964. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1965. pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr);
  1966. xp->selector.prefixlen_d = sa->sadb_address_prefixlen;
  1967. /* Amusing, we set this twice. KAME apps appear to set same value
  1968. * in both addresses.
  1969. */
  1970. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1971. xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1972. if (xp->selector.dport)
  1973. xp->selector.dport_mask = htons(0xffff);
  1974. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1975. if (sec_ctx != NULL) {
  1976. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1977. if (!uctx) {
  1978. err = -ENOBUFS;
  1979. goto out;
  1980. }
  1981. err = security_xfrm_policy_alloc(&xp->security, uctx);
  1982. kfree(uctx);
  1983. if (err)
  1984. goto out;
  1985. }
  1986. xp->lft.soft_byte_limit = XFRM_INF;
  1987. xp->lft.hard_byte_limit = XFRM_INF;
  1988. xp->lft.soft_packet_limit = XFRM_INF;
  1989. xp->lft.hard_packet_limit = XFRM_INF;
  1990. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) {
  1991. xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1992. xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1993. xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1994. xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1995. }
  1996. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) {
  1997. xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1998. xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1999. xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  2000. xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  2001. }
  2002. xp->xfrm_nr = 0;
  2003. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  2004. (err = parse_ipsecrequests(xp, pol)) < 0)
  2005. goto out;
  2006. err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp,
  2007. hdr->sadb_msg_type != SADB_X_SPDUPDATE);
  2008. xfrm_audit_policy_add(xp, err ? 0 : 1,
  2009. audit_get_loginuid(current), 0);
  2010. if (err)
  2011. goto out;
  2012. if (hdr->sadb_msg_type == SADB_X_SPDUPDATE)
  2013. c.event = XFRM_MSG_UPDPOLICY;
  2014. else
  2015. c.event = XFRM_MSG_NEWPOLICY;
  2016. c.seq = hdr->sadb_msg_seq;
  2017. c.pid = hdr->sadb_msg_pid;
  2018. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  2019. xfrm_pol_put(xp);
  2020. return 0;
  2021. out:
  2022. xp->dead = 1;
  2023. xfrm_policy_destroy(xp);
  2024. return err;
  2025. }
  2026. static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2027. {
  2028. int err;
  2029. struct sadb_address *sa;
  2030. struct sadb_x_policy *pol;
  2031. struct xfrm_policy *xp;
  2032. struct xfrm_selector sel;
  2033. struct km_event c;
  2034. struct sadb_x_sec_ctx *sec_ctx;
  2035. struct xfrm_sec_ctx *pol_ctx = NULL;
  2036. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  2037. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  2038. !ext_hdrs[SADB_X_EXT_POLICY-1])
  2039. return -EINVAL;
  2040. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  2041. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  2042. return -EINVAL;
  2043. memset(&sel, 0, sizeof(sel));
  2044. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  2045. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  2046. sel.prefixlen_s = sa->sadb_address_prefixlen;
  2047. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2048. sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  2049. if (sel.sport)
  2050. sel.sport_mask = htons(0xffff);
  2051. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  2052. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2053. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2054. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2055. sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  2056. if (sel.dport)
  2057. sel.dport_mask = htons(0xffff);
  2058. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  2059. if (sec_ctx != NULL) {
  2060. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  2061. if (!uctx)
  2062. return -ENOMEM;
  2063. err = security_xfrm_policy_alloc(&pol_ctx, uctx);
  2064. kfree(uctx);
  2065. if (err)
  2066. return err;
  2067. }
  2068. xp = xfrm_policy_bysel_ctx(XFRM_POLICY_TYPE_MAIN,
  2069. pol->sadb_x_policy_dir - 1, &sel, pol_ctx,
  2070. 1, &err);
  2071. security_xfrm_policy_free(pol_ctx);
  2072. if (xp == NULL)
  2073. return -ENOENT;
  2074. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  2075. audit_get_loginuid(current), 0);
  2076. if (err)
  2077. goto out;
  2078. c.seq = hdr->sadb_msg_seq;
  2079. c.pid = hdr->sadb_msg_pid;
  2080. c.event = XFRM_MSG_DELPOLICY;
  2081. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  2082. out:
  2083. xfrm_pol_put(xp);
  2084. return err;
  2085. }
  2086. static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, struct sadb_msg *hdr, int dir)
  2087. {
  2088. int err;
  2089. struct sk_buff *out_skb;
  2090. struct sadb_msg *out_hdr;
  2091. err = 0;
  2092. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2093. if (IS_ERR(out_skb)) {
  2094. err = PTR_ERR(out_skb);
  2095. goto out;
  2096. }
  2097. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2098. if (err < 0)
  2099. goto out;
  2100. out_hdr = (struct sadb_msg *) out_skb->data;
  2101. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  2102. out_hdr->sadb_msg_type = hdr->sadb_msg_type;
  2103. out_hdr->sadb_msg_satype = 0;
  2104. out_hdr->sadb_msg_errno = 0;
  2105. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  2106. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  2107. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
  2108. err = 0;
  2109. out:
  2110. return err;
  2111. }
  2112. #ifdef CONFIG_NET_KEY_MIGRATE
  2113. static int pfkey_sockaddr_pair_size(sa_family_t family)
  2114. {
  2115. switch (family) {
  2116. case AF_INET:
  2117. return PFKEY_ALIGN8(sizeof(struct sockaddr_in) * 2);
  2118. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2119. case AF_INET6:
  2120. return PFKEY_ALIGN8(sizeof(struct sockaddr_in6) * 2);
  2121. #endif
  2122. default:
  2123. return 0;
  2124. }
  2125. /* NOTREACHED */
  2126. }
  2127. static int parse_sockaddr_pair(struct sadb_x_ipsecrequest *rq,
  2128. xfrm_address_t *saddr, xfrm_address_t *daddr,
  2129. u16 *family)
  2130. {
  2131. struct sockaddr *sa = (struct sockaddr *)(rq + 1);
  2132. if (rq->sadb_x_ipsecrequest_len <
  2133. pfkey_sockaddr_pair_size(sa->sa_family))
  2134. return -EINVAL;
  2135. switch (sa->sa_family) {
  2136. case AF_INET:
  2137. {
  2138. struct sockaddr_in *sin;
  2139. sin = (struct sockaddr_in *)sa;
  2140. if ((sin+1)->sin_family != AF_INET)
  2141. return -EINVAL;
  2142. memcpy(&saddr->a4, &sin->sin_addr, sizeof(saddr->a4));
  2143. sin++;
  2144. memcpy(&daddr->a4, &sin->sin_addr, sizeof(daddr->a4));
  2145. *family = AF_INET;
  2146. break;
  2147. }
  2148. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2149. case AF_INET6:
  2150. {
  2151. struct sockaddr_in6 *sin6;
  2152. sin6 = (struct sockaddr_in6 *)sa;
  2153. if ((sin6+1)->sin6_family != AF_INET6)
  2154. return -EINVAL;
  2155. memcpy(&saddr->a6, &sin6->sin6_addr,
  2156. sizeof(saddr->a6));
  2157. sin6++;
  2158. memcpy(&daddr->a6, &sin6->sin6_addr,
  2159. sizeof(daddr->a6));
  2160. *family = AF_INET6;
  2161. break;
  2162. }
  2163. #endif
  2164. default:
  2165. return -EINVAL;
  2166. }
  2167. return 0;
  2168. }
  2169. static int ipsecrequests_to_migrate(struct sadb_x_ipsecrequest *rq1, int len,
  2170. struct xfrm_migrate *m)
  2171. {
  2172. int err;
  2173. struct sadb_x_ipsecrequest *rq2;
  2174. int mode;
  2175. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2176. len < rq1->sadb_x_ipsecrequest_len)
  2177. return -EINVAL;
  2178. /* old endoints */
  2179. err = parse_sockaddr_pair(rq1, &m->old_saddr, &m->old_daddr,
  2180. &m->old_family);
  2181. if (err)
  2182. return err;
  2183. rq2 = (struct sadb_x_ipsecrequest *)((u8 *)rq1 + rq1->sadb_x_ipsecrequest_len);
  2184. len -= rq1->sadb_x_ipsecrequest_len;
  2185. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2186. len < rq2->sadb_x_ipsecrequest_len)
  2187. return -EINVAL;
  2188. /* new endpoints */
  2189. err = parse_sockaddr_pair(rq2, &m->new_saddr, &m->new_daddr,
  2190. &m->new_family);
  2191. if (err)
  2192. return err;
  2193. if (rq1->sadb_x_ipsecrequest_proto != rq2->sadb_x_ipsecrequest_proto ||
  2194. rq1->sadb_x_ipsecrequest_mode != rq2->sadb_x_ipsecrequest_mode ||
  2195. rq1->sadb_x_ipsecrequest_reqid != rq2->sadb_x_ipsecrequest_reqid)
  2196. return -EINVAL;
  2197. m->proto = rq1->sadb_x_ipsecrequest_proto;
  2198. if ((mode = pfkey_mode_to_xfrm(rq1->sadb_x_ipsecrequest_mode)) < 0)
  2199. return -EINVAL;
  2200. m->mode = mode;
  2201. m->reqid = rq1->sadb_x_ipsecrequest_reqid;
  2202. return ((int)(rq1->sadb_x_ipsecrequest_len +
  2203. rq2->sadb_x_ipsecrequest_len));
  2204. }
  2205. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2206. struct sadb_msg *hdr, void **ext_hdrs)
  2207. {
  2208. int i, len, ret, err = -EINVAL;
  2209. u8 dir;
  2210. struct sadb_address *sa;
  2211. struct sadb_x_policy *pol;
  2212. struct sadb_x_ipsecrequest *rq;
  2213. struct xfrm_selector sel;
  2214. struct xfrm_migrate m[XFRM_MAX_DEPTH];
  2215. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC - 1],
  2216. ext_hdrs[SADB_EXT_ADDRESS_DST - 1]) ||
  2217. !ext_hdrs[SADB_X_EXT_POLICY - 1]) {
  2218. err = -EINVAL;
  2219. goto out;
  2220. }
  2221. pol = ext_hdrs[SADB_X_EXT_POLICY - 1];
  2222. if (!pol) {
  2223. err = -EINVAL;
  2224. goto out;
  2225. }
  2226. if (pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) {
  2227. err = -EINVAL;
  2228. goto out;
  2229. }
  2230. dir = pol->sadb_x_policy_dir - 1;
  2231. memset(&sel, 0, sizeof(sel));
  2232. /* set source address info of selector */
  2233. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC - 1];
  2234. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  2235. sel.prefixlen_s = sa->sadb_address_prefixlen;
  2236. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2237. sel.sport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2238. if (sel.sport)
  2239. sel.sport_mask = htons(0xffff);
  2240. /* set destination address info of selector */
  2241. sa = ext_hdrs[SADB_EXT_ADDRESS_DST - 1],
  2242. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2243. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2244. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2245. sel.dport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2246. if (sel.dport)
  2247. sel.dport_mask = htons(0xffff);
  2248. rq = (struct sadb_x_ipsecrequest *)(pol + 1);
  2249. /* extract ipsecrequests */
  2250. i = 0;
  2251. len = pol->sadb_x_policy_len * 8 - sizeof(struct sadb_x_policy);
  2252. while (len > 0 && i < XFRM_MAX_DEPTH) {
  2253. ret = ipsecrequests_to_migrate(rq, len, &m[i]);
  2254. if (ret < 0) {
  2255. err = ret;
  2256. goto out;
  2257. } else {
  2258. rq = (struct sadb_x_ipsecrequest *)((u8 *)rq + ret);
  2259. len -= ret;
  2260. i++;
  2261. }
  2262. }
  2263. if (!i || len > 0) {
  2264. err = -EINVAL;
  2265. goto out;
  2266. }
  2267. return xfrm_migrate(&sel, dir, XFRM_POLICY_TYPE_MAIN, m, i);
  2268. out:
  2269. return err;
  2270. }
  2271. #else
  2272. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2273. struct sadb_msg *hdr, void **ext_hdrs)
  2274. {
  2275. return -ENOPROTOOPT;
  2276. }
  2277. #endif
  2278. static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2279. {
  2280. unsigned int dir;
  2281. int err = 0, delete;
  2282. struct sadb_x_policy *pol;
  2283. struct xfrm_policy *xp;
  2284. struct km_event c;
  2285. if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL)
  2286. return -EINVAL;
  2287. dir = xfrm_policy_id2dir(pol->sadb_x_policy_id);
  2288. if (dir >= XFRM_POLICY_MAX)
  2289. return -EINVAL;
  2290. delete = (hdr->sadb_msg_type == SADB_X_SPDDELETE2);
  2291. xp = xfrm_policy_byid(XFRM_POLICY_TYPE_MAIN, dir, pol->sadb_x_policy_id,
  2292. delete, &err);
  2293. if (xp == NULL)
  2294. return -ENOENT;
  2295. if (delete) {
  2296. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  2297. audit_get_loginuid(current), 0);
  2298. if (err)
  2299. goto out;
  2300. c.seq = hdr->sadb_msg_seq;
  2301. c.pid = hdr->sadb_msg_pid;
  2302. c.data.byid = 1;
  2303. c.event = XFRM_MSG_DELPOLICY;
  2304. km_policy_notify(xp, dir, &c);
  2305. } else {
  2306. err = key_pol_get_resp(sk, xp, hdr, dir);
  2307. }
  2308. out:
  2309. xfrm_pol_put(xp);
  2310. return err;
  2311. }
  2312. static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr)
  2313. {
  2314. struct pfkey_sock *pfk = ptr;
  2315. struct sk_buff *out_skb;
  2316. struct sadb_msg *out_hdr;
  2317. int err;
  2318. if (!pfkey_can_dump(&pfk->sk))
  2319. return -ENOBUFS;
  2320. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2321. if (IS_ERR(out_skb))
  2322. return PTR_ERR(out_skb);
  2323. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2324. if (err < 0)
  2325. return err;
  2326. out_hdr = (struct sadb_msg *) out_skb->data;
  2327. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  2328. out_hdr->sadb_msg_type = SADB_X_SPDDUMP;
  2329. out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  2330. out_hdr->sadb_msg_errno = 0;
  2331. out_hdr->sadb_msg_seq = count;
  2332. out_hdr->sadb_msg_pid = pfk->dump.msg_pid;
  2333. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, &pfk->sk);
  2334. return 0;
  2335. }
  2336. static int pfkey_dump_sp(struct pfkey_sock *pfk)
  2337. {
  2338. return xfrm_policy_walk(&pfk->dump.u.policy, dump_sp, (void *) pfk);
  2339. }
  2340. static void pfkey_dump_sp_done(struct pfkey_sock *pfk)
  2341. {
  2342. xfrm_policy_walk_done(&pfk->dump.u.policy);
  2343. }
  2344. static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2345. {
  2346. struct pfkey_sock *pfk = pfkey_sk(sk);
  2347. if (pfk->dump.dump != NULL)
  2348. return -EBUSY;
  2349. pfk->dump.msg_version = hdr->sadb_msg_version;
  2350. pfk->dump.msg_pid = hdr->sadb_msg_pid;
  2351. pfk->dump.dump = pfkey_dump_sp;
  2352. pfk->dump.done = pfkey_dump_sp_done;
  2353. xfrm_policy_walk_init(&pfk->dump.u.policy, XFRM_POLICY_TYPE_MAIN);
  2354. return pfkey_do_dump(pfk);
  2355. }
  2356. static int key_notify_policy_flush(struct km_event *c)
  2357. {
  2358. struct sk_buff *skb_out;
  2359. struct sadb_msg *hdr;
  2360. skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  2361. if (!skb_out)
  2362. return -ENOBUFS;
  2363. hdr = (struct sadb_msg *) skb_put(skb_out, sizeof(struct sadb_msg));
  2364. hdr->sadb_msg_type = SADB_X_SPDFLUSH;
  2365. hdr->sadb_msg_seq = c->seq;
  2366. hdr->sadb_msg_pid = c->pid;
  2367. hdr->sadb_msg_version = PF_KEY_V2;
  2368. hdr->sadb_msg_errno = (uint8_t) 0;
  2369. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  2370. pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL);
  2371. return 0;
  2372. }
  2373. static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2374. {
  2375. struct km_event c;
  2376. struct xfrm_audit audit_info;
  2377. int err;
  2378. audit_info.loginuid = audit_get_loginuid(current);
  2379. audit_info.secid = 0;
  2380. err = xfrm_policy_flush(XFRM_POLICY_TYPE_MAIN, &audit_info);
  2381. if (err)
  2382. return err;
  2383. c.data.type = XFRM_POLICY_TYPE_MAIN;
  2384. c.event = XFRM_MSG_FLUSHPOLICY;
  2385. c.pid = hdr->sadb_msg_pid;
  2386. c.seq = hdr->sadb_msg_seq;
  2387. km_policy_notify(NULL, 0, &c);
  2388. return 0;
  2389. }
  2390. typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb,
  2391. struct sadb_msg *hdr, void **ext_hdrs);
  2392. static pfkey_handler pfkey_funcs[SADB_MAX + 1] = {
  2393. [SADB_RESERVED] = pfkey_reserved,
  2394. [SADB_GETSPI] = pfkey_getspi,
  2395. [SADB_UPDATE] = pfkey_add,
  2396. [SADB_ADD] = pfkey_add,
  2397. [SADB_DELETE] = pfkey_delete,
  2398. [SADB_GET] = pfkey_get,
  2399. [SADB_ACQUIRE] = pfkey_acquire,
  2400. [SADB_REGISTER] = pfkey_register,
  2401. [SADB_EXPIRE] = NULL,
  2402. [SADB_FLUSH] = pfkey_flush,
  2403. [SADB_DUMP] = pfkey_dump,
  2404. [SADB_X_PROMISC] = pfkey_promisc,
  2405. [SADB_X_PCHANGE] = NULL,
  2406. [SADB_X_SPDUPDATE] = pfkey_spdadd,
  2407. [SADB_X_SPDADD] = pfkey_spdadd,
  2408. [SADB_X_SPDDELETE] = pfkey_spddelete,
  2409. [SADB_X_SPDGET] = pfkey_spdget,
  2410. [SADB_X_SPDACQUIRE] = NULL,
  2411. [SADB_X_SPDDUMP] = pfkey_spddump,
  2412. [SADB_X_SPDFLUSH] = pfkey_spdflush,
  2413. [SADB_X_SPDSETIDX] = pfkey_spdadd,
  2414. [SADB_X_SPDDELETE2] = pfkey_spdget,
  2415. [SADB_X_MIGRATE] = pfkey_migrate,
  2416. };
  2417. static int pfkey_process(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr)
  2418. {
  2419. void *ext_hdrs[SADB_EXT_MAX];
  2420. int err;
  2421. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL,
  2422. BROADCAST_PROMISC_ONLY, NULL);
  2423. memset(ext_hdrs, 0, sizeof(ext_hdrs));
  2424. err = parse_exthdrs(skb, hdr, ext_hdrs);
  2425. if (!err) {
  2426. err = -EOPNOTSUPP;
  2427. if (pfkey_funcs[hdr->sadb_msg_type])
  2428. err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs);
  2429. }
  2430. return err;
  2431. }
  2432. static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp)
  2433. {
  2434. struct sadb_msg *hdr = NULL;
  2435. if (skb->len < sizeof(*hdr)) {
  2436. *errp = -EMSGSIZE;
  2437. } else {
  2438. hdr = (struct sadb_msg *) skb->data;
  2439. if (hdr->sadb_msg_version != PF_KEY_V2 ||
  2440. hdr->sadb_msg_reserved != 0 ||
  2441. (hdr->sadb_msg_type <= SADB_RESERVED ||
  2442. hdr->sadb_msg_type > SADB_MAX)) {
  2443. hdr = NULL;
  2444. *errp = -EINVAL;
  2445. } else if (hdr->sadb_msg_len != (skb->len /
  2446. sizeof(uint64_t)) ||
  2447. hdr->sadb_msg_len < (sizeof(struct sadb_msg) /
  2448. sizeof(uint64_t))) {
  2449. hdr = NULL;
  2450. *errp = -EMSGSIZE;
  2451. } else {
  2452. *errp = 0;
  2453. }
  2454. }
  2455. return hdr;
  2456. }
  2457. static inline int aalg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2458. {
  2459. unsigned int id = d->desc.sadb_alg_id;
  2460. if (id >= sizeof(t->aalgos) * 8)
  2461. return 0;
  2462. return (t->aalgos >> id) & 1;
  2463. }
  2464. static inline int ealg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2465. {
  2466. unsigned int id = d->desc.sadb_alg_id;
  2467. if (id >= sizeof(t->ealgos) * 8)
  2468. return 0;
  2469. return (t->ealgos >> id) & 1;
  2470. }
  2471. static int count_ah_combs(struct xfrm_tmpl *t)
  2472. {
  2473. int i, sz = 0;
  2474. for (i = 0; ; i++) {
  2475. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2476. if (!aalg)
  2477. break;
  2478. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2479. sz += sizeof(struct sadb_comb);
  2480. }
  2481. return sz + sizeof(struct sadb_prop);
  2482. }
  2483. static int count_esp_combs(struct xfrm_tmpl *t)
  2484. {
  2485. int i, k, sz = 0;
  2486. for (i = 0; ; i++) {
  2487. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2488. if (!ealg)
  2489. break;
  2490. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2491. continue;
  2492. for (k = 1; ; k++) {
  2493. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2494. if (!aalg)
  2495. break;
  2496. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2497. sz += sizeof(struct sadb_comb);
  2498. }
  2499. }
  2500. return sz + sizeof(struct sadb_prop);
  2501. }
  2502. static void dump_ah_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2503. {
  2504. struct sadb_prop *p;
  2505. int i;
  2506. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2507. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2508. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2509. p->sadb_prop_replay = 32;
  2510. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2511. for (i = 0; ; i++) {
  2512. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2513. if (!aalg)
  2514. break;
  2515. if (aalg_tmpl_set(t, aalg) && aalg->available) {
  2516. struct sadb_comb *c;
  2517. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2518. memset(c, 0, sizeof(*c));
  2519. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2520. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2521. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2522. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2523. c->sadb_comb_hard_addtime = 24*60*60;
  2524. c->sadb_comb_soft_addtime = 20*60*60;
  2525. c->sadb_comb_hard_usetime = 8*60*60;
  2526. c->sadb_comb_soft_usetime = 7*60*60;
  2527. }
  2528. }
  2529. }
  2530. static void dump_esp_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2531. {
  2532. struct sadb_prop *p;
  2533. int i, k;
  2534. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2535. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2536. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2537. p->sadb_prop_replay = 32;
  2538. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2539. for (i=0; ; i++) {
  2540. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2541. if (!ealg)
  2542. break;
  2543. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2544. continue;
  2545. for (k = 1; ; k++) {
  2546. struct sadb_comb *c;
  2547. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2548. if (!aalg)
  2549. break;
  2550. if (!(aalg_tmpl_set(t, aalg) && aalg->available))
  2551. continue;
  2552. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2553. memset(c, 0, sizeof(*c));
  2554. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2555. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2556. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2557. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2558. c->sadb_comb_encrypt = ealg->desc.sadb_alg_id;
  2559. c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits;
  2560. c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits;
  2561. c->sadb_comb_hard_addtime = 24*60*60;
  2562. c->sadb_comb_soft_addtime = 20*60*60;
  2563. c->sadb_comb_hard_usetime = 8*60*60;
  2564. c->sadb_comb_soft_usetime = 7*60*60;
  2565. }
  2566. }
  2567. }
  2568. static int key_notify_policy_expire(struct xfrm_policy *xp, struct km_event *c)
  2569. {
  2570. return 0;
  2571. }
  2572. static int key_notify_sa_expire(struct xfrm_state *x, struct km_event *c)
  2573. {
  2574. struct sk_buff *out_skb;
  2575. struct sadb_msg *out_hdr;
  2576. int hard;
  2577. int hsc;
  2578. hard = c->data.hard;
  2579. if (hard)
  2580. hsc = 2;
  2581. else
  2582. hsc = 1;
  2583. out_skb = pfkey_xfrm_state2msg_expire(x, hsc);
  2584. if (IS_ERR(out_skb))
  2585. return PTR_ERR(out_skb);
  2586. out_hdr = (struct sadb_msg *) out_skb->data;
  2587. out_hdr->sadb_msg_version = PF_KEY_V2;
  2588. out_hdr->sadb_msg_type = SADB_EXPIRE;
  2589. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2590. out_hdr->sadb_msg_errno = 0;
  2591. out_hdr->sadb_msg_reserved = 0;
  2592. out_hdr->sadb_msg_seq = 0;
  2593. out_hdr->sadb_msg_pid = 0;
  2594. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2595. return 0;
  2596. }
  2597. static int pfkey_send_notify(struct xfrm_state *x, struct km_event *c)
  2598. {
  2599. switch (c->event) {
  2600. case XFRM_MSG_EXPIRE:
  2601. return key_notify_sa_expire(x, c);
  2602. case XFRM_MSG_DELSA:
  2603. case XFRM_MSG_NEWSA:
  2604. case XFRM_MSG_UPDSA:
  2605. return key_notify_sa(x, c);
  2606. case XFRM_MSG_FLUSHSA:
  2607. return key_notify_sa_flush(c);
  2608. case XFRM_MSG_NEWAE: /* not yet supported */
  2609. break;
  2610. default:
  2611. printk("pfkey: Unknown SA event %d\n", c->event);
  2612. break;
  2613. }
  2614. return 0;
  2615. }
  2616. static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, struct km_event *c)
  2617. {
  2618. if (xp && xp->type != XFRM_POLICY_TYPE_MAIN)
  2619. return 0;
  2620. switch (c->event) {
  2621. case XFRM_MSG_POLEXPIRE:
  2622. return key_notify_policy_expire(xp, c);
  2623. case XFRM_MSG_DELPOLICY:
  2624. case XFRM_MSG_NEWPOLICY:
  2625. case XFRM_MSG_UPDPOLICY:
  2626. return key_notify_policy(xp, dir, c);
  2627. case XFRM_MSG_FLUSHPOLICY:
  2628. if (c->data.type != XFRM_POLICY_TYPE_MAIN)
  2629. break;
  2630. return key_notify_policy_flush(c);
  2631. default:
  2632. printk("pfkey: Unknown policy event %d\n", c->event);
  2633. break;
  2634. }
  2635. return 0;
  2636. }
  2637. static u32 get_acqseq(void)
  2638. {
  2639. u32 res;
  2640. static u32 acqseq;
  2641. static DEFINE_SPINLOCK(acqseq_lock);
  2642. spin_lock_bh(&acqseq_lock);
  2643. res = (++acqseq ? : ++acqseq);
  2644. spin_unlock_bh(&acqseq_lock);
  2645. return res;
  2646. }
  2647. static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp, int dir)
  2648. {
  2649. struct sk_buff *skb;
  2650. struct sadb_msg *hdr;
  2651. struct sadb_address *addr;
  2652. struct sadb_x_policy *pol;
  2653. struct sockaddr_in *sin;
  2654. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2655. struct sockaddr_in6 *sin6;
  2656. #endif
  2657. int sockaddr_size;
  2658. int size;
  2659. struct sadb_x_sec_ctx *sec_ctx;
  2660. struct xfrm_sec_ctx *xfrm_ctx;
  2661. int ctx_size = 0;
  2662. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2663. if (!sockaddr_size)
  2664. return -EINVAL;
  2665. size = sizeof(struct sadb_msg) +
  2666. (sizeof(struct sadb_address) * 2) +
  2667. (sockaddr_size * 2) +
  2668. sizeof(struct sadb_x_policy);
  2669. if (x->id.proto == IPPROTO_AH)
  2670. size += count_ah_combs(t);
  2671. else if (x->id.proto == IPPROTO_ESP)
  2672. size += count_esp_combs(t);
  2673. if ((xfrm_ctx = x->security)) {
  2674. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  2675. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  2676. }
  2677. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2678. if (skb == NULL)
  2679. return -ENOMEM;
  2680. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2681. hdr->sadb_msg_version = PF_KEY_V2;
  2682. hdr->sadb_msg_type = SADB_ACQUIRE;
  2683. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2684. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2685. hdr->sadb_msg_errno = 0;
  2686. hdr->sadb_msg_reserved = 0;
  2687. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2688. hdr->sadb_msg_pid = 0;
  2689. /* src address */
  2690. addr = (struct sadb_address*) skb_put(skb,
  2691. sizeof(struct sadb_address)+sockaddr_size);
  2692. addr->sadb_address_len =
  2693. (sizeof(struct sadb_address)+sockaddr_size)/
  2694. sizeof(uint64_t);
  2695. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2696. addr->sadb_address_proto = 0;
  2697. addr->sadb_address_reserved = 0;
  2698. if (x->props.family == AF_INET) {
  2699. addr->sadb_address_prefixlen = 32;
  2700. sin = (struct sockaddr_in *) (addr + 1);
  2701. sin->sin_family = AF_INET;
  2702. sin->sin_addr.s_addr = x->props.saddr.a4;
  2703. sin->sin_port = 0;
  2704. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2705. }
  2706. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2707. else if (x->props.family == AF_INET6) {
  2708. addr->sadb_address_prefixlen = 128;
  2709. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2710. sin6->sin6_family = AF_INET6;
  2711. sin6->sin6_port = 0;
  2712. sin6->sin6_flowinfo = 0;
  2713. memcpy(&sin6->sin6_addr,
  2714. x->props.saddr.a6, sizeof(struct in6_addr));
  2715. sin6->sin6_scope_id = 0;
  2716. }
  2717. #endif
  2718. else
  2719. BUG();
  2720. /* dst address */
  2721. addr = (struct sadb_address*) skb_put(skb,
  2722. sizeof(struct sadb_address)+sockaddr_size);
  2723. addr->sadb_address_len =
  2724. (sizeof(struct sadb_address)+sockaddr_size)/
  2725. sizeof(uint64_t);
  2726. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2727. addr->sadb_address_proto = 0;
  2728. addr->sadb_address_reserved = 0;
  2729. if (x->props.family == AF_INET) {
  2730. addr->sadb_address_prefixlen = 32;
  2731. sin = (struct sockaddr_in *) (addr + 1);
  2732. sin->sin_family = AF_INET;
  2733. sin->sin_addr.s_addr = x->id.daddr.a4;
  2734. sin->sin_port = 0;
  2735. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2736. }
  2737. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2738. else if (x->props.family == AF_INET6) {
  2739. addr->sadb_address_prefixlen = 128;
  2740. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2741. sin6->sin6_family = AF_INET6;
  2742. sin6->sin6_port = 0;
  2743. sin6->sin6_flowinfo = 0;
  2744. memcpy(&sin6->sin6_addr,
  2745. x->id.daddr.a6, sizeof(struct in6_addr));
  2746. sin6->sin6_scope_id = 0;
  2747. }
  2748. #endif
  2749. else
  2750. BUG();
  2751. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  2752. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  2753. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2754. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2755. pol->sadb_x_policy_dir = dir+1;
  2756. pol->sadb_x_policy_id = xp->index;
  2757. /* Set sadb_comb's. */
  2758. if (x->id.proto == IPPROTO_AH)
  2759. dump_ah_combs(skb, t);
  2760. else if (x->id.proto == IPPROTO_ESP)
  2761. dump_esp_combs(skb, t);
  2762. /* security context */
  2763. if (xfrm_ctx) {
  2764. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  2765. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  2766. sec_ctx->sadb_x_sec_len =
  2767. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  2768. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  2769. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  2770. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  2771. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  2772. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  2773. xfrm_ctx->ctx_len);
  2774. }
  2775. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2776. }
  2777. static struct xfrm_policy *pfkey_compile_policy(struct sock *sk, int opt,
  2778. u8 *data, int len, int *dir)
  2779. {
  2780. struct xfrm_policy *xp;
  2781. struct sadb_x_policy *pol = (struct sadb_x_policy*)data;
  2782. struct sadb_x_sec_ctx *sec_ctx;
  2783. switch (sk->sk_family) {
  2784. case AF_INET:
  2785. if (opt != IP_IPSEC_POLICY) {
  2786. *dir = -EOPNOTSUPP;
  2787. return NULL;
  2788. }
  2789. break;
  2790. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2791. case AF_INET6:
  2792. if (opt != IPV6_IPSEC_POLICY) {
  2793. *dir = -EOPNOTSUPP;
  2794. return NULL;
  2795. }
  2796. break;
  2797. #endif
  2798. default:
  2799. *dir = -EINVAL;
  2800. return NULL;
  2801. }
  2802. *dir = -EINVAL;
  2803. if (len < sizeof(struct sadb_x_policy) ||
  2804. pol->sadb_x_policy_len*8 > len ||
  2805. pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS ||
  2806. (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND))
  2807. return NULL;
  2808. xp = xfrm_policy_alloc(GFP_ATOMIC);
  2809. if (xp == NULL) {
  2810. *dir = -ENOBUFS;
  2811. return NULL;
  2812. }
  2813. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  2814. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  2815. xp->lft.soft_byte_limit = XFRM_INF;
  2816. xp->lft.hard_byte_limit = XFRM_INF;
  2817. xp->lft.soft_packet_limit = XFRM_INF;
  2818. xp->lft.hard_packet_limit = XFRM_INF;
  2819. xp->family = sk->sk_family;
  2820. xp->xfrm_nr = 0;
  2821. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  2822. (*dir = parse_ipsecrequests(xp, pol)) < 0)
  2823. goto out;
  2824. /* security context too */
  2825. if (len >= (pol->sadb_x_policy_len*8 +
  2826. sizeof(struct sadb_x_sec_ctx))) {
  2827. char *p = (char *)pol;
  2828. struct xfrm_user_sec_ctx *uctx;
  2829. p += pol->sadb_x_policy_len*8;
  2830. sec_ctx = (struct sadb_x_sec_ctx *)p;
  2831. if (len < pol->sadb_x_policy_len*8 +
  2832. sec_ctx->sadb_x_sec_len) {
  2833. *dir = -EINVAL;
  2834. goto out;
  2835. }
  2836. if ((*dir = verify_sec_ctx_len(p)))
  2837. goto out;
  2838. uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  2839. *dir = security_xfrm_policy_alloc(&xp->security, uctx);
  2840. kfree(uctx);
  2841. if (*dir)
  2842. goto out;
  2843. }
  2844. *dir = pol->sadb_x_policy_dir-1;
  2845. return xp;
  2846. out:
  2847. xfrm_policy_destroy(xp);
  2848. return NULL;
  2849. }
  2850. static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
  2851. {
  2852. struct sk_buff *skb;
  2853. struct sadb_msg *hdr;
  2854. struct sadb_sa *sa;
  2855. struct sadb_address *addr;
  2856. struct sadb_x_nat_t_port *n_port;
  2857. struct sockaddr_in *sin;
  2858. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2859. struct sockaddr_in6 *sin6;
  2860. #endif
  2861. int sockaddr_size;
  2862. int size;
  2863. __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0);
  2864. struct xfrm_encap_tmpl *natt = NULL;
  2865. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2866. if (!sockaddr_size)
  2867. return -EINVAL;
  2868. if (!satype)
  2869. return -EINVAL;
  2870. if (!x->encap)
  2871. return -EINVAL;
  2872. natt = x->encap;
  2873. /* Build an SADB_X_NAT_T_NEW_MAPPING message:
  2874. *
  2875. * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) |
  2876. * ADDRESS_DST (new addr) | NAT_T_DPORT (new port)
  2877. */
  2878. size = sizeof(struct sadb_msg) +
  2879. sizeof(struct sadb_sa) +
  2880. (sizeof(struct sadb_address) * 2) +
  2881. (sockaddr_size * 2) +
  2882. (sizeof(struct sadb_x_nat_t_port) * 2);
  2883. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2884. if (skb == NULL)
  2885. return -ENOMEM;
  2886. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2887. hdr->sadb_msg_version = PF_KEY_V2;
  2888. hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING;
  2889. hdr->sadb_msg_satype = satype;
  2890. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2891. hdr->sadb_msg_errno = 0;
  2892. hdr->sadb_msg_reserved = 0;
  2893. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2894. hdr->sadb_msg_pid = 0;
  2895. /* SA */
  2896. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  2897. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  2898. sa->sadb_sa_exttype = SADB_EXT_SA;
  2899. sa->sadb_sa_spi = x->id.spi;
  2900. sa->sadb_sa_replay = 0;
  2901. sa->sadb_sa_state = 0;
  2902. sa->sadb_sa_auth = 0;
  2903. sa->sadb_sa_encrypt = 0;
  2904. sa->sadb_sa_flags = 0;
  2905. /* ADDRESS_SRC (old addr) */
  2906. addr = (struct sadb_address*)
  2907. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2908. addr->sadb_address_len =
  2909. (sizeof(struct sadb_address)+sockaddr_size)/
  2910. sizeof(uint64_t);
  2911. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2912. addr->sadb_address_proto = 0;
  2913. addr->sadb_address_reserved = 0;
  2914. if (x->props.family == AF_INET) {
  2915. addr->sadb_address_prefixlen = 32;
  2916. sin = (struct sockaddr_in *) (addr + 1);
  2917. sin->sin_family = AF_INET;
  2918. sin->sin_addr.s_addr = x->props.saddr.a4;
  2919. sin->sin_port = 0;
  2920. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2921. }
  2922. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2923. else if (x->props.family == AF_INET6) {
  2924. addr->sadb_address_prefixlen = 128;
  2925. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2926. sin6->sin6_family = AF_INET6;
  2927. sin6->sin6_port = 0;
  2928. sin6->sin6_flowinfo = 0;
  2929. memcpy(&sin6->sin6_addr,
  2930. x->props.saddr.a6, sizeof(struct in6_addr));
  2931. sin6->sin6_scope_id = 0;
  2932. }
  2933. #endif
  2934. else
  2935. BUG();
  2936. /* NAT_T_SPORT (old port) */
  2937. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2938. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2939. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  2940. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  2941. n_port->sadb_x_nat_t_port_reserved = 0;
  2942. /* ADDRESS_DST (new addr) */
  2943. addr = (struct sadb_address*)
  2944. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2945. addr->sadb_address_len =
  2946. (sizeof(struct sadb_address)+sockaddr_size)/
  2947. sizeof(uint64_t);
  2948. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2949. addr->sadb_address_proto = 0;
  2950. addr->sadb_address_reserved = 0;
  2951. if (x->props.family == AF_INET) {
  2952. addr->sadb_address_prefixlen = 32;
  2953. sin = (struct sockaddr_in *) (addr + 1);
  2954. sin->sin_family = AF_INET;
  2955. sin->sin_addr.s_addr = ipaddr->a4;
  2956. sin->sin_port = 0;
  2957. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2958. }
  2959. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2960. else if (x->props.family == AF_INET6) {
  2961. addr->sadb_address_prefixlen = 128;
  2962. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2963. sin6->sin6_family = AF_INET6;
  2964. sin6->sin6_port = 0;
  2965. sin6->sin6_flowinfo = 0;
  2966. memcpy(&sin6->sin6_addr, &ipaddr->a6, sizeof(struct in6_addr));
  2967. sin6->sin6_scope_id = 0;
  2968. }
  2969. #endif
  2970. else
  2971. BUG();
  2972. /* NAT_T_DPORT (new port) */
  2973. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2974. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2975. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  2976. n_port->sadb_x_nat_t_port_port = sport;
  2977. n_port->sadb_x_nat_t_port_reserved = 0;
  2978. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2979. }
  2980. #ifdef CONFIG_NET_KEY_MIGRATE
  2981. static int set_sadb_address(struct sk_buff *skb, int sasize, int type,
  2982. struct xfrm_selector *sel)
  2983. {
  2984. struct sadb_address *addr;
  2985. struct sockaddr_in *sin;
  2986. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2987. struct sockaddr_in6 *sin6;
  2988. #endif
  2989. addr = (struct sadb_address *)skb_put(skb, sizeof(struct sadb_address) + sasize);
  2990. addr->sadb_address_len = (sizeof(struct sadb_address) + sasize)/8;
  2991. addr->sadb_address_exttype = type;
  2992. addr->sadb_address_proto = sel->proto;
  2993. addr->sadb_address_reserved = 0;
  2994. switch (type) {
  2995. case SADB_EXT_ADDRESS_SRC:
  2996. if (sel->family == AF_INET) {
  2997. addr->sadb_address_prefixlen = sel->prefixlen_s;
  2998. sin = (struct sockaddr_in *)(addr + 1);
  2999. sin->sin_family = AF_INET;
  3000. memcpy(&sin->sin_addr.s_addr, &sel->saddr,
  3001. sizeof(sin->sin_addr.s_addr));
  3002. sin->sin_port = 0;
  3003. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  3004. }
  3005. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  3006. else if (sel->family == AF_INET6) {
  3007. addr->sadb_address_prefixlen = sel->prefixlen_s;
  3008. sin6 = (struct sockaddr_in6 *)(addr + 1);
  3009. sin6->sin6_family = AF_INET6;
  3010. sin6->sin6_port = 0;
  3011. sin6->sin6_flowinfo = 0;
  3012. sin6->sin6_scope_id = 0;
  3013. memcpy(&sin6->sin6_addr.s6_addr, &sel->saddr,
  3014. sizeof(sin6->sin6_addr.s6_addr));
  3015. }
  3016. #endif
  3017. break;
  3018. case SADB_EXT_ADDRESS_DST:
  3019. if (sel->family == AF_INET) {
  3020. addr->sadb_address_prefixlen = sel->prefixlen_d;
  3021. sin = (struct sockaddr_in *)(addr + 1);
  3022. sin->sin_family = AF_INET;
  3023. memcpy(&sin->sin_addr.s_addr, &sel->daddr,
  3024. sizeof(sin->sin_addr.s_addr));
  3025. sin->sin_port = 0;
  3026. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  3027. }
  3028. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  3029. else if (sel->family == AF_INET6) {
  3030. addr->sadb_address_prefixlen = sel->prefixlen_d;
  3031. sin6 = (struct sockaddr_in6 *)(addr + 1);
  3032. sin6->sin6_family = AF_INET6;
  3033. sin6->sin6_port = 0;
  3034. sin6->sin6_flowinfo = 0;
  3035. sin6->sin6_scope_id = 0;
  3036. memcpy(&sin6->sin6_addr.s6_addr, &sel->daddr,
  3037. sizeof(sin6->sin6_addr.s6_addr));
  3038. }
  3039. #endif
  3040. break;
  3041. default:
  3042. return -EINVAL;
  3043. }
  3044. return 0;
  3045. }
  3046. static int set_ipsecrequest(struct sk_buff *skb,
  3047. uint8_t proto, uint8_t mode, int level,
  3048. uint32_t reqid, uint8_t family,
  3049. xfrm_address_t *src, xfrm_address_t *dst)
  3050. {
  3051. struct sadb_x_ipsecrequest *rq;
  3052. struct sockaddr_in *sin;
  3053. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  3054. struct sockaddr_in6 *sin6;
  3055. #endif
  3056. int size_req;
  3057. size_req = sizeof(struct sadb_x_ipsecrequest) +
  3058. pfkey_sockaddr_pair_size(family);
  3059. rq = (struct sadb_x_ipsecrequest *)skb_put(skb, size_req);
  3060. memset(rq, 0, size_req);
  3061. rq->sadb_x_ipsecrequest_len = size_req;
  3062. rq->sadb_x_ipsecrequest_proto = proto;
  3063. rq->sadb_x_ipsecrequest_mode = mode;
  3064. rq->sadb_x_ipsecrequest_level = level;
  3065. rq->sadb_x_ipsecrequest_reqid = reqid;
  3066. switch (family) {
  3067. case AF_INET:
  3068. sin = (struct sockaddr_in *)(rq + 1);
  3069. sin->sin_family = AF_INET;
  3070. memcpy(&sin->sin_addr.s_addr, src,
  3071. sizeof(sin->sin_addr.s_addr));
  3072. sin++;
  3073. sin->sin_family = AF_INET;
  3074. memcpy(&sin->sin_addr.s_addr, dst,
  3075. sizeof(sin->sin_addr.s_addr));
  3076. break;
  3077. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  3078. case AF_INET6:
  3079. sin6 = (struct sockaddr_in6 *)(rq + 1);
  3080. sin6->sin6_family = AF_INET6;
  3081. sin6->sin6_port = 0;
  3082. sin6->sin6_flowinfo = 0;
  3083. sin6->sin6_scope_id = 0;
  3084. memcpy(&sin6->sin6_addr.s6_addr, src,
  3085. sizeof(sin6->sin6_addr.s6_addr));
  3086. sin6++;
  3087. sin6->sin6_family = AF_INET6;
  3088. sin6->sin6_port = 0;
  3089. sin6->sin6_flowinfo = 0;
  3090. sin6->sin6_scope_id = 0;
  3091. memcpy(&sin6->sin6_addr.s6_addr, dst,
  3092. sizeof(sin6->sin6_addr.s6_addr));
  3093. break;
  3094. #endif
  3095. default:
  3096. return -EINVAL;
  3097. }
  3098. return 0;
  3099. }
  3100. #endif
  3101. #ifdef CONFIG_NET_KEY_MIGRATE
  3102. static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
  3103. struct xfrm_migrate *m, int num_bundles)
  3104. {
  3105. int i;
  3106. int sasize_sel;
  3107. int size = 0;
  3108. int size_pol = 0;
  3109. struct sk_buff *skb;
  3110. struct sadb_msg *hdr;
  3111. struct sadb_x_policy *pol;
  3112. struct xfrm_migrate *mp;
  3113. if (type != XFRM_POLICY_TYPE_MAIN)
  3114. return 0;
  3115. if (num_bundles <= 0 || num_bundles > XFRM_MAX_DEPTH)
  3116. return -EINVAL;
  3117. /* selector */
  3118. sasize_sel = pfkey_sockaddr_size(sel->family);
  3119. if (!sasize_sel)
  3120. return -EINVAL;
  3121. size += (sizeof(struct sadb_address) + sasize_sel) * 2;
  3122. /* policy info */
  3123. size_pol += sizeof(struct sadb_x_policy);
  3124. /* ipsecrequests */
  3125. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  3126. /* old locator pair */
  3127. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  3128. pfkey_sockaddr_pair_size(mp->old_family);
  3129. /* new locator pair */
  3130. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  3131. pfkey_sockaddr_pair_size(mp->new_family);
  3132. }
  3133. size += sizeof(struct sadb_msg) + size_pol;
  3134. /* alloc buffer */
  3135. skb = alloc_skb(size, GFP_ATOMIC);
  3136. if (skb == NULL)
  3137. return -ENOMEM;
  3138. hdr = (struct sadb_msg *)skb_put(skb, sizeof(struct sadb_msg));
  3139. hdr->sadb_msg_version = PF_KEY_V2;
  3140. hdr->sadb_msg_type = SADB_X_MIGRATE;
  3141. hdr->sadb_msg_satype = pfkey_proto2satype(m->proto);
  3142. hdr->sadb_msg_len = size / 8;
  3143. hdr->sadb_msg_errno = 0;
  3144. hdr->sadb_msg_reserved = 0;
  3145. hdr->sadb_msg_seq = 0;
  3146. hdr->sadb_msg_pid = 0;
  3147. /* selector src */
  3148. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_SRC, sel);
  3149. /* selector dst */
  3150. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_DST, sel);
  3151. /* policy information */
  3152. pol = (struct sadb_x_policy *)skb_put(skb, sizeof(struct sadb_x_policy));
  3153. pol->sadb_x_policy_len = size_pol / 8;
  3154. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  3155. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  3156. pol->sadb_x_policy_dir = dir + 1;
  3157. pol->sadb_x_policy_id = 0;
  3158. pol->sadb_x_policy_priority = 0;
  3159. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  3160. /* old ipsecrequest */
  3161. int mode = pfkey_mode_from_xfrm(mp->mode);
  3162. if (mode < 0)
  3163. goto err;
  3164. if (set_ipsecrequest(skb, mp->proto, mode,
  3165. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  3166. mp->reqid, mp->old_family,
  3167. &mp->old_saddr, &mp->old_daddr) < 0)
  3168. goto err;
  3169. /* new ipsecrequest */
  3170. if (set_ipsecrequest(skb, mp->proto, mode,
  3171. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  3172. mp->reqid, mp->new_family,
  3173. &mp->new_saddr, &mp->new_daddr) < 0)
  3174. goto err;
  3175. }
  3176. /* broadcast migrate message to sockets */
  3177. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  3178. return 0;
  3179. err:
  3180. kfree_skb(skb);
  3181. return -EINVAL;
  3182. }
  3183. #else
  3184. static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
  3185. struct xfrm_migrate *m, int num_bundles)
  3186. {
  3187. return -ENOPROTOOPT;
  3188. }
  3189. #endif
  3190. static int pfkey_sendmsg(struct kiocb *kiocb,
  3191. struct socket *sock, struct msghdr *msg, size_t len)
  3192. {
  3193. struct sock *sk = sock->sk;
  3194. struct sk_buff *skb = NULL;
  3195. struct sadb_msg *hdr = NULL;
  3196. int err;
  3197. err = -EOPNOTSUPP;
  3198. if (msg->msg_flags & MSG_OOB)
  3199. goto out;
  3200. err = -EMSGSIZE;
  3201. if ((unsigned)len > sk->sk_sndbuf - 32)
  3202. goto out;
  3203. err = -ENOBUFS;
  3204. skb = alloc_skb(len, GFP_KERNEL);
  3205. if (skb == NULL)
  3206. goto out;
  3207. err = -EFAULT;
  3208. if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len))
  3209. goto out;
  3210. hdr = pfkey_get_base_msg(skb, &err);
  3211. if (!hdr)
  3212. goto out;
  3213. mutex_lock(&xfrm_cfg_mutex);
  3214. err = pfkey_process(sk, skb, hdr);
  3215. mutex_unlock(&xfrm_cfg_mutex);
  3216. out:
  3217. if (err && hdr && pfkey_error(hdr, err, sk) == 0)
  3218. err = 0;
  3219. if (skb)
  3220. kfree_skb(skb);
  3221. return err ? : len;
  3222. }
  3223. static int pfkey_recvmsg(struct kiocb *kiocb,
  3224. struct socket *sock, struct msghdr *msg, size_t len,
  3225. int flags)
  3226. {
  3227. struct sock *sk = sock->sk;
  3228. struct pfkey_sock *pfk = pfkey_sk(sk);
  3229. struct sk_buff *skb;
  3230. int copied, err;
  3231. err = -EINVAL;
  3232. if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT))
  3233. goto out;
  3234. msg->msg_namelen = 0;
  3235. skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
  3236. if (skb == NULL)
  3237. goto out;
  3238. copied = skb->len;
  3239. if (copied > len) {
  3240. msg->msg_flags |= MSG_TRUNC;
  3241. copied = len;
  3242. }
  3243. skb_reset_transport_header(skb);
  3244. err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
  3245. if (err)
  3246. goto out_free;
  3247. sock_recv_timestamp(msg, sk, skb);
  3248. err = (flags & MSG_TRUNC) ? skb->len : copied;
  3249. if (pfk->dump.dump != NULL &&
  3250. 3 * atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  3251. pfkey_do_dump(pfk);
  3252. out_free:
  3253. skb_free_datagram(sk, skb);
  3254. out:
  3255. return err;
  3256. }
  3257. static const struct proto_ops pfkey_ops = {
  3258. .family = PF_KEY,
  3259. .owner = THIS_MODULE,
  3260. /* Operations that make no sense on pfkey sockets. */
  3261. .bind = sock_no_bind,
  3262. .connect = sock_no_connect,
  3263. .socketpair = sock_no_socketpair,
  3264. .accept = sock_no_accept,
  3265. .getname = sock_no_getname,
  3266. .ioctl = sock_no_ioctl,
  3267. .listen = sock_no_listen,
  3268. .shutdown = sock_no_shutdown,
  3269. .setsockopt = sock_no_setsockopt,
  3270. .getsockopt = sock_no_getsockopt,
  3271. .mmap = sock_no_mmap,
  3272. .sendpage = sock_no_sendpage,
  3273. /* Now the operations that really occur. */
  3274. .release = pfkey_release,
  3275. .poll = datagram_poll,
  3276. .sendmsg = pfkey_sendmsg,
  3277. .recvmsg = pfkey_recvmsg,
  3278. };
  3279. static struct net_proto_family pfkey_family_ops = {
  3280. .family = PF_KEY,
  3281. .create = pfkey_create,
  3282. .owner = THIS_MODULE,
  3283. };
  3284. #ifdef CONFIG_PROC_FS
  3285. static int pfkey_seq_show(struct seq_file *f, void *v)
  3286. {
  3287. struct sock *s;
  3288. s = (struct sock *)v;
  3289. if (v == SEQ_START_TOKEN)
  3290. seq_printf(f ,"sk RefCnt Rmem Wmem User Inode\n");
  3291. else
  3292. seq_printf(f ,"%p %-6d %-6u %-6u %-6u %-6lu\n",
  3293. s,
  3294. atomic_read(&s->sk_refcnt),
  3295. atomic_read(&s->sk_rmem_alloc),
  3296. atomic_read(&s->sk_wmem_alloc),
  3297. sock_i_uid(s),
  3298. sock_i_ino(s)
  3299. );
  3300. return 0;
  3301. }
  3302. static void *pfkey_seq_start(struct seq_file *f, loff_t *ppos)
  3303. {
  3304. struct sock *s;
  3305. struct hlist_node *node;
  3306. loff_t pos = *ppos;
  3307. read_lock(&pfkey_table_lock);
  3308. if (pos == 0)
  3309. return SEQ_START_TOKEN;
  3310. sk_for_each(s, node, &pfkey_table)
  3311. if (pos-- == 1)
  3312. return s;
  3313. return NULL;
  3314. }
  3315. static void *pfkey_seq_next(struct seq_file *f, void *v, loff_t *ppos)
  3316. {
  3317. ++*ppos;
  3318. return (v == SEQ_START_TOKEN) ?
  3319. sk_head(&pfkey_table) :
  3320. sk_next((struct sock *)v);
  3321. }
  3322. static void pfkey_seq_stop(struct seq_file *f, void *v)
  3323. {
  3324. read_unlock(&pfkey_table_lock);
  3325. }
  3326. static struct seq_operations pfkey_seq_ops = {
  3327. .start = pfkey_seq_start,
  3328. .next = pfkey_seq_next,
  3329. .stop = pfkey_seq_stop,
  3330. .show = pfkey_seq_show,
  3331. };
  3332. static int pfkey_seq_open(struct inode *inode, struct file *file)
  3333. {
  3334. return seq_open(file, &pfkey_seq_ops);
  3335. }
  3336. static struct file_operations pfkey_proc_ops = {
  3337. .open = pfkey_seq_open,
  3338. .read = seq_read,
  3339. .llseek = seq_lseek,
  3340. .release = seq_release,
  3341. };
  3342. static int pfkey_init_proc(void)
  3343. {
  3344. struct proc_dir_entry *e;
  3345. e = proc_net_fops_create(&init_net, "pfkey", 0, &pfkey_proc_ops);
  3346. if (e == NULL)
  3347. return -ENOMEM;
  3348. return 0;
  3349. }
  3350. static void pfkey_exit_proc(void)
  3351. {
  3352. proc_net_remove(&init_net, "pfkey");
  3353. }
  3354. #else
  3355. static inline int pfkey_init_proc(void)
  3356. {
  3357. return 0;
  3358. }
  3359. static inline void pfkey_exit_proc(void)
  3360. {
  3361. }
  3362. #endif
  3363. static struct xfrm_mgr pfkeyv2_mgr =
  3364. {
  3365. .id = "pfkeyv2",
  3366. .notify = pfkey_send_notify,
  3367. .acquire = pfkey_send_acquire,
  3368. .compile_policy = pfkey_compile_policy,
  3369. .new_mapping = pfkey_send_new_mapping,
  3370. .notify_policy = pfkey_send_policy_notify,
  3371. .migrate = pfkey_send_migrate,
  3372. };
  3373. static void __exit ipsec_pfkey_exit(void)
  3374. {
  3375. xfrm_unregister_km(&pfkeyv2_mgr);
  3376. pfkey_exit_proc();
  3377. sock_unregister(PF_KEY);
  3378. proto_unregister(&key_proto);
  3379. }
  3380. static int __init ipsec_pfkey_init(void)
  3381. {
  3382. int err = proto_register(&key_proto, 0);
  3383. if (err != 0)
  3384. goto out;
  3385. err = sock_register(&pfkey_family_ops);
  3386. if (err != 0)
  3387. goto out_unregister_key_proto;
  3388. err = pfkey_init_proc();
  3389. if (err != 0)
  3390. goto out_sock_unregister;
  3391. err = xfrm_register_km(&pfkeyv2_mgr);
  3392. if (err != 0)
  3393. goto out_remove_proc_entry;
  3394. out:
  3395. return err;
  3396. out_remove_proc_entry:
  3397. pfkey_exit_proc();
  3398. out_sock_unregister:
  3399. sock_unregister(PF_KEY);
  3400. out_unregister_key_proto:
  3401. proto_unregister(&key_proto);
  3402. goto out;
  3403. }
  3404. module_init(ipsec_pfkey_init);
  3405. module_exit(ipsec_pfkey_exit);
  3406. MODULE_LICENSE("GPL");
  3407. MODULE_ALIAS_NETPROTO(PF_KEY);