namespace.c 47 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/slab.h>
  12. #include <linux/sched.h>
  13. #include <linux/smp_lock.h>
  14. #include <linux/init.h>
  15. #include <linux/kernel.h>
  16. #include <linux/quotaops.h>
  17. #include <linux/acct.h>
  18. #include <linux/capability.h>
  19. #include <linux/module.h>
  20. #include <linux/sysfs.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/mnt_namespace.h>
  23. #include <linux/namei.h>
  24. #include <linux/security.h>
  25. #include <linux/mount.h>
  26. #include <linux/ramfs.h>
  27. #include <linux/log2.h>
  28. #include <asm/uaccess.h>
  29. #include <asm/unistd.h>
  30. #include "pnode.h"
  31. #include "internal.h"
  32. #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
  33. #define HASH_SIZE (1UL << HASH_SHIFT)
  34. /* spinlock for vfsmount related operations, inplace of dcache_lock */
  35. __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
  36. static int event;
  37. static struct list_head *mount_hashtable __read_mostly;
  38. static struct kmem_cache *mnt_cache __read_mostly;
  39. static struct rw_semaphore namespace_sem;
  40. /* /sys/fs */
  41. struct kobject *fs_kobj;
  42. EXPORT_SYMBOL_GPL(fs_kobj);
  43. static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
  44. {
  45. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  46. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  47. tmp = tmp + (tmp >> HASH_SHIFT);
  48. return tmp & (HASH_SIZE - 1);
  49. }
  50. struct vfsmount *alloc_vfsmnt(const char *name)
  51. {
  52. struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  53. if (mnt) {
  54. atomic_set(&mnt->mnt_count, 1);
  55. INIT_LIST_HEAD(&mnt->mnt_hash);
  56. INIT_LIST_HEAD(&mnt->mnt_child);
  57. INIT_LIST_HEAD(&mnt->mnt_mounts);
  58. INIT_LIST_HEAD(&mnt->mnt_list);
  59. INIT_LIST_HEAD(&mnt->mnt_expire);
  60. INIT_LIST_HEAD(&mnt->mnt_share);
  61. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  62. INIT_LIST_HEAD(&mnt->mnt_slave);
  63. if (name) {
  64. int size = strlen(name) + 1;
  65. char *newname = kmalloc(size, GFP_KERNEL);
  66. if (newname) {
  67. memcpy(newname, name, size);
  68. mnt->mnt_devname = newname;
  69. }
  70. }
  71. }
  72. return mnt;
  73. }
  74. int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
  75. {
  76. mnt->mnt_sb = sb;
  77. mnt->mnt_root = dget(sb->s_root);
  78. return 0;
  79. }
  80. EXPORT_SYMBOL(simple_set_mnt);
  81. void free_vfsmnt(struct vfsmount *mnt)
  82. {
  83. kfree(mnt->mnt_devname);
  84. kmem_cache_free(mnt_cache, mnt);
  85. }
  86. /*
  87. * find the first or last mount at @dentry on vfsmount @mnt depending on
  88. * @dir. If @dir is set return the first mount else return the last mount.
  89. */
  90. struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
  91. int dir)
  92. {
  93. struct list_head *head = mount_hashtable + hash(mnt, dentry);
  94. struct list_head *tmp = head;
  95. struct vfsmount *p, *found = NULL;
  96. for (;;) {
  97. tmp = dir ? tmp->next : tmp->prev;
  98. p = NULL;
  99. if (tmp == head)
  100. break;
  101. p = list_entry(tmp, struct vfsmount, mnt_hash);
  102. if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
  103. found = p;
  104. break;
  105. }
  106. }
  107. return found;
  108. }
  109. /*
  110. * lookup_mnt increments the ref count before returning
  111. * the vfsmount struct.
  112. */
  113. struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
  114. {
  115. struct vfsmount *child_mnt;
  116. spin_lock(&vfsmount_lock);
  117. if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
  118. mntget(child_mnt);
  119. spin_unlock(&vfsmount_lock);
  120. return child_mnt;
  121. }
  122. static inline int check_mnt(struct vfsmount *mnt)
  123. {
  124. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  125. }
  126. static void touch_mnt_namespace(struct mnt_namespace *ns)
  127. {
  128. if (ns) {
  129. ns->event = ++event;
  130. wake_up_interruptible(&ns->poll);
  131. }
  132. }
  133. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  134. {
  135. if (ns && ns->event != event) {
  136. ns->event = event;
  137. wake_up_interruptible(&ns->poll);
  138. }
  139. }
  140. static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
  141. {
  142. old_path->dentry = mnt->mnt_mountpoint;
  143. old_path->mnt = mnt->mnt_parent;
  144. mnt->mnt_parent = mnt;
  145. mnt->mnt_mountpoint = mnt->mnt_root;
  146. list_del_init(&mnt->mnt_child);
  147. list_del_init(&mnt->mnt_hash);
  148. old_path->dentry->d_mounted--;
  149. }
  150. void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
  151. struct vfsmount *child_mnt)
  152. {
  153. child_mnt->mnt_parent = mntget(mnt);
  154. child_mnt->mnt_mountpoint = dget(dentry);
  155. dentry->d_mounted++;
  156. }
  157. static void attach_mnt(struct vfsmount *mnt, struct path *path)
  158. {
  159. mnt_set_mountpoint(path->mnt, path->dentry, mnt);
  160. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  161. hash(path->mnt, path->dentry));
  162. list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
  163. }
  164. /*
  165. * the caller must hold vfsmount_lock
  166. */
  167. static void commit_tree(struct vfsmount *mnt)
  168. {
  169. struct vfsmount *parent = mnt->mnt_parent;
  170. struct vfsmount *m;
  171. LIST_HEAD(head);
  172. struct mnt_namespace *n = parent->mnt_ns;
  173. BUG_ON(parent == mnt);
  174. list_add_tail(&head, &mnt->mnt_list);
  175. list_for_each_entry(m, &head, mnt_list)
  176. m->mnt_ns = n;
  177. list_splice(&head, n->list.prev);
  178. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  179. hash(parent, mnt->mnt_mountpoint));
  180. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  181. touch_mnt_namespace(n);
  182. }
  183. static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
  184. {
  185. struct list_head *next = p->mnt_mounts.next;
  186. if (next == &p->mnt_mounts) {
  187. while (1) {
  188. if (p == root)
  189. return NULL;
  190. next = p->mnt_child.next;
  191. if (next != &p->mnt_parent->mnt_mounts)
  192. break;
  193. p = p->mnt_parent;
  194. }
  195. }
  196. return list_entry(next, struct vfsmount, mnt_child);
  197. }
  198. static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
  199. {
  200. struct list_head *prev = p->mnt_mounts.prev;
  201. while (prev != &p->mnt_mounts) {
  202. p = list_entry(prev, struct vfsmount, mnt_child);
  203. prev = p->mnt_mounts.prev;
  204. }
  205. return p;
  206. }
  207. static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
  208. int flag)
  209. {
  210. struct super_block *sb = old->mnt_sb;
  211. struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
  212. if (mnt) {
  213. mnt->mnt_flags = old->mnt_flags;
  214. atomic_inc(&sb->s_active);
  215. mnt->mnt_sb = sb;
  216. mnt->mnt_root = dget(root);
  217. mnt->mnt_mountpoint = mnt->mnt_root;
  218. mnt->mnt_parent = mnt;
  219. if (flag & CL_SLAVE) {
  220. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  221. mnt->mnt_master = old;
  222. CLEAR_MNT_SHARED(mnt);
  223. } else if (!(flag & CL_PRIVATE)) {
  224. if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
  225. list_add(&mnt->mnt_share, &old->mnt_share);
  226. if (IS_MNT_SLAVE(old))
  227. list_add(&mnt->mnt_slave, &old->mnt_slave);
  228. mnt->mnt_master = old->mnt_master;
  229. }
  230. if (flag & CL_MAKE_SHARED)
  231. set_mnt_shared(mnt);
  232. /* stick the duplicate mount on the same expiry list
  233. * as the original if that was on one */
  234. if (flag & CL_EXPIRE) {
  235. if (!list_empty(&old->mnt_expire))
  236. list_add(&mnt->mnt_expire, &old->mnt_expire);
  237. }
  238. }
  239. return mnt;
  240. }
  241. static inline void __mntput(struct vfsmount *mnt)
  242. {
  243. struct super_block *sb = mnt->mnt_sb;
  244. dput(mnt->mnt_root);
  245. free_vfsmnt(mnt);
  246. deactivate_super(sb);
  247. }
  248. void mntput_no_expire(struct vfsmount *mnt)
  249. {
  250. repeat:
  251. if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
  252. if (likely(!mnt->mnt_pinned)) {
  253. spin_unlock(&vfsmount_lock);
  254. __mntput(mnt);
  255. return;
  256. }
  257. atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
  258. mnt->mnt_pinned = 0;
  259. spin_unlock(&vfsmount_lock);
  260. acct_auto_close_mnt(mnt);
  261. security_sb_umount_close(mnt);
  262. goto repeat;
  263. }
  264. }
  265. EXPORT_SYMBOL(mntput_no_expire);
  266. void mnt_pin(struct vfsmount *mnt)
  267. {
  268. spin_lock(&vfsmount_lock);
  269. mnt->mnt_pinned++;
  270. spin_unlock(&vfsmount_lock);
  271. }
  272. EXPORT_SYMBOL(mnt_pin);
  273. void mnt_unpin(struct vfsmount *mnt)
  274. {
  275. spin_lock(&vfsmount_lock);
  276. if (mnt->mnt_pinned) {
  277. atomic_inc(&mnt->mnt_count);
  278. mnt->mnt_pinned--;
  279. }
  280. spin_unlock(&vfsmount_lock);
  281. }
  282. EXPORT_SYMBOL(mnt_unpin);
  283. static inline void mangle(struct seq_file *m, const char *s)
  284. {
  285. seq_escape(m, s, " \t\n\\");
  286. }
  287. /*
  288. * Simple .show_options callback for filesystems which don't want to
  289. * implement more complex mount option showing.
  290. *
  291. * See also save_mount_options().
  292. */
  293. int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
  294. {
  295. const char *options = mnt->mnt_sb->s_options;
  296. if (options != NULL && options[0]) {
  297. seq_putc(m, ',');
  298. mangle(m, options);
  299. }
  300. return 0;
  301. }
  302. EXPORT_SYMBOL(generic_show_options);
  303. /*
  304. * If filesystem uses generic_show_options(), this function should be
  305. * called from the fill_super() callback.
  306. *
  307. * The .remount_fs callback usually needs to be handled in a special
  308. * way, to make sure, that previous options are not overwritten if the
  309. * remount fails.
  310. *
  311. * Also note, that if the filesystem's .remount_fs function doesn't
  312. * reset all options to their default value, but changes only newly
  313. * given options, then the displayed options will not reflect reality
  314. * any more.
  315. */
  316. void save_mount_options(struct super_block *sb, char *options)
  317. {
  318. kfree(sb->s_options);
  319. sb->s_options = kstrdup(options, GFP_KERNEL);
  320. }
  321. EXPORT_SYMBOL(save_mount_options);
  322. /* iterator */
  323. static void *m_start(struct seq_file *m, loff_t *pos)
  324. {
  325. struct mnt_namespace *n = m->private;
  326. down_read(&namespace_sem);
  327. return seq_list_start(&n->list, *pos);
  328. }
  329. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  330. {
  331. struct mnt_namespace *n = m->private;
  332. return seq_list_next(v, &n->list, pos);
  333. }
  334. static void m_stop(struct seq_file *m, void *v)
  335. {
  336. up_read(&namespace_sem);
  337. }
  338. static int show_vfsmnt(struct seq_file *m, void *v)
  339. {
  340. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  341. int err = 0;
  342. static struct proc_fs_info {
  343. int flag;
  344. char *str;
  345. } fs_info[] = {
  346. { MS_SYNCHRONOUS, ",sync" },
  347. { MS_DIRSYNC, ",dirsync" },
  348. { MS_MANDLOCK, ",mand" },
  349. { 0, NULL }
  350. };
  351. static struct proc_fs_info mnt_info[] = {
  352. { MNT_NOSUID, ",nosuid" },
  353. { MNT_NODEV, ",nodev" },
  354. { MNT_NOEXEC, ",noexec" },
  355. { MNT_NOATIME, ",noatime" },
  356. { MNT_NODIRATIME, ",nodiratime" },
  357. { MNT_RELATIME, ",relatime" },
  358. { 0, NULL }
  359. };
  360. struct proc_fs_info *fs_infop;
  361. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  362. mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
  363. seq_putc(m, ' ');
  364. seq_path(m, &mnt_path, " \t\n\\");
  365. seq_putc(m, ' ');
  366. mangle(m, mnt->mnt_sb->s_type->name);
  367. if (mnt->mnt_sb->s_subtype && mnt->mnt_sb->s_subtype[0]) {
  368. seq_putc(m, '.');
  369. mangle(m, mnt->mnt_sb->s_subtype);
  370. }
  371. seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw");
  372. for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
  373. if (mnt->mnt_sb->s_flags & fs_infop->flag)
  374. seq_puts(m, fs_infop->str);
  375. }
  376. for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
  377. if (mnt->mnt_flags & fs_infop->flag)
  378. seq_puts(m, fs_infop->str);
  379. }
  380. if (mnt->mnt_sb->s_op->show_options)
  381. err = mnt->mnt_sb->s_op->show_options(m, mnt);
  382. seq_puts(m, " 0 0\n");
  383. return err;
  384. }
  385. struct seq_operations mounts_op = {
  386. .start = m_start,
  387. .next = m_next,
  388. .stop = m_stop,
  389. .show = show_vfsmnt
  390. };
  391. static int show_vfsstat(struct seq_file *m, void *v)
  392. {
  393. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  394. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  395. int err = 0;
  396. /* device */
  397. if (mnt->mnt_devname) {
  398. seq_puts(m, "device ");
  399. mangle(m, mnt->mnt_devname);
  400. } else
  401. seq_puts(m, "no device");
  402. /* mount point */
  403. seq_puts(m, " mounted on ");
  404. seq_path(m, &mnt_path, " \t\n\\");
  405. seq_putc(m, ' ');
  406. /* file system type */
  407. seq_puts(m, "with fstype ");
  408. mangle(m, mnt->mnt_sb->s_type->name);
  409. /* optional statistics */
  410. if (mnt->mnt_sb->s_op->show_stats) {
  411. seq_putc(m, ' ');
  412. err = mnt->mnt_sb->s_op->show_stats(m, mnt);
  413. }
  414. seq_putc(m, '\n');
  415. return err;
  416. }
  417. struct seq_operations mountstats_op = {
  418. .start = m_start,
  419. .next = m_next,
  420. .stop = m_stop,
  421. .show = show_vfsstat,
  422. };
  423. /**
  424. * may_umount_tree - check if a mount tree is busy
  425. * @mnt: root of mount tree
  426. *
  427. * This is called to check if a tree of mounts has any
  428. * open files, pwds, chroots or sub mounts that are
  429. * busy.
  430. */
  431. int may_umount_tree(struct vfsmount *mnt)
  432. {
  433. int actual_refs = 0;
  434. int minimum_refs = 0;
  435. struct vfsmount *p;
  436. spin_lock(&vfsmount_lock);
  437. for (p = mnt; p; p = next_mnt(p, mnt)) {
  438. actual_refs += atomic_read(&p->mnt_count);
  439. minimum_refs += 2;
  440. }
  441. spin_unlock(&vfsmount_lock);
  442. if (actual_refs > minimum_refs)
  443. return 0;
  444. return 1;
  445. }
  446. EXPORT_SYMBOL(may_umount_tree);
  447. /**
  448. * may_umount - check if a mount point is busy
  449. * @mnt: root of mount
  450. *
  451. * This is called to check if a mount point has any
  452. * open files, pwds, chroots or sub mounts. If the
  453. * mount has sub mounts this will return busy
  454. * regardless of whether the sub mounts are busy.
  455. *
  456. * Doesn't take quota and stuff into account. IOW, in some cases it will
  457. * give false negatives. The main reason why it's here is that we need
  458. * a non-destructive way to look for easily umountable filesystems.
  459. */
  460. int may_umount(struct vfsmount *mnt)
  461. {
  462. int ret = 1;
  463. spin_lock(&vfsmount_lock);
  464. if (propagate_mount_busy(mnt, 2))
  465. ret = 0;
  466. spin_unlock(&vfsmount_lock);
  467. return ret;
  468. }
  469. EXPORT_SYMBOL(may_umount);
  470. void release_mounts(struct list_head *head)
  471. {
  472. struct vfsmount *mnt;
  473. while (!list_empty(head)) {
  474. mnt = list_first_entry(head, struct vfsmount, mnt_hash);
  475. list_del_init(&mnt->mnt_hash);
  476. if (mnt->mnt_parent != mnt) {
  477. struct dentry *dentry;
  478. struct vfsmount *m;
  479. spin_lock(&vfsmount_lock);
  480. dentry = mnt->mnt_mountpoint;
  481. m = mnt->mnt_parent;
  482. mnt->mnt_mountpoint = mnt->mnt_root;
  483. mnt->mnt_parent = mnt;
  484. m->mnt_ghosts--;
  485. spin_unlock(&vfsmount_lock);
  486. dput(dentry);
  487. mntput(m);
  488. }
  489. mntput(mnt);
  490. }
  491. }
  492. void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
  493. {
  494. struct vfsmount *p;
  495. for (p = mnt; p; p = next_mnt(p, mnt))
  496. list_move(&p->mnt_hash, kill);
  497. if (propagate)
  498. propagate_umount(kill);
  499. list_for_each_entry(p, kill, mnt_hash) {
  500. list_del_init(&p->mnt_expire);
  501. list_del_init(&p->mnt_list);
  502. __touch_mnt_namespace(p->mnt_ns);
  503. p->mnt_ns = NULL;
  504. list_del_init(&p->mnt_child);
  505. if (p->mnt_parent != p) {
  506. p->mnt_parent->mnt_ghosts++;
  507. p->mnt_mountpoint->d_mounted--;
  508. }
  509. change_mnt_propagation(p, MS_PRIVATE);
  510. }
  511. }
  512. static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
  513. static int do_umount(struct vfsmount *mnt, int flags)
  514. {
  515. struct super_block *sb = mnt->mnt_sb;
  516. int retval;
  517. LIST_HEAD(umount_list);
  518. retval = security_sb_umount(mnt, flags);
  519. if (retval)
  520. return retval;
  521. /*
  522. * Allow userspace to request a mountpoint be expired rather than
  523. * unmounting unconditionally. Unmount only happens if:
  524. * (1) the mark is already set (the mark is cleared by mntput())
  525. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  526. */
  527. if (flags & MNT_EXPIRE) {
  528. if (mnt == current->fs->root.mnt ||
  529. flags & (MNT_FORCE | MNT_DETACH))
  530. return -EINVAL;
  531. if (atomic_read(&mnt->mnt_count) != 2)
  532. return -EBUSY;
  533. if (!xchg(&mnt->mnt_expiry_mark, 1))
  534. return -EAGAIN;
  535. }
  536. /*
  537. * If we may have to abort operations to get out of this
  538. * mount, and they will themselves hold resources we must
  539. * allow the fs to do things. In the Unix tradition of
  540. * 'Gee thats tricky lets do it in userspace' the umount_begin
  541. * might fail to complete on the first run through as other tasks
  542. * must return, and the like. Thats for the mount program to worry
  543. * about for the moment.
  544. */
  545. lock_kernel();
  546. if (sb->s_op->umount_begin)
  547. sb->s_op->umount_begin(mnt, flags);
  548. unlock_kernel();
  549. /*
  550. * No sense to grab the lock for this test, but test itself looks
  551. * somewhat bogus. Suggestions for better replacement?
  552. * Ho-hum... In principle, we might treat that as umount + switch
  553. * to rootfs. GC would eventually take care of the old vfsmount.
  554. * Actually it makes sense, especially if rootfs would contain a
  555. * /reboot - static binary that would close all descriptors and
  556. * call reboot(9). Then init(8) could umount root and exec /reboot.
  557. */
  558. if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  559. /*
  560. * Special case for "unmounting" root ...
  561. * we just try to remount it readonly.
  562. */
  563. down_write(&sb->s_umount);
  564. if (!(sb->s_flags & MS_RDONLY)) {
  565. lock_kernel();
  566. DQUOT_OFF(sb);
  567. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  568. unlock_kernel();
  569. }
  570. up_write(&sb->s_umount);
  571. return retval;
  572. }
  573. down_write(&namespace_sem);
  574. spin_lock(&vfsmount_lock);
  575. event++;
  576. if (!(flags & MNT_DETACH))
  577. shrink_submounts(mnt, &umount_list);
  578. retval = -EBUSY;
  579. if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
  580. if (!list_empty(&mnt->mnt_list))
  581. umount_tree(mnt, 1, &umount_list);
  582. retval = 0;
  583. }
  584. spin_unlock(&vfsmount_lock);
  585. if (retval)
  586. security_sb_umount_busy(mnt);
  587. up_write(&namespace_sem);
  588. release_mounts(&umount_list);
  589. return retval;
  590. }
  591. /*
  592. * Now umount can handle mount points as well as block devices.
  593. * This is important for filesystems which use unnamed block devices.
  594. *
  595. * We now support a flag for forced unmount like the other 'big iron'
  596. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  597. */
  598. asmlinkage long sys_umount(char __user * name, int flags)
  599. {
  600. struct nameidata nd;
  601. int retval;
  602. retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
  603. if (retval)
  604. goto out;
  605. retval = -EINVAL;
  606. if (nd.path.dentry != nd.path.mnt->mnt_root)
  607. goto dput_and_out;
  608. if (!check_mnt(nd.path.mnt))
  609. goto dput_and_out;
  610. retval = -EPERM;
  611. if (!capable(CAP_SYS_ADMIN))
  612. goto dput_and_out;
  613. retval = do_umount(nd.path.mnt, flags);
  614. dput_and_out:
  615. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  616. dput(nd.path.dentry);
  617. mntput_no_expire(nd.path.mnt);
  618. out:
  619. return retval;
  620. }
  621. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  622. /*
  623. * The 2.0 compatible umount. No flags.
  624. */
  625. asmlinkage long sys_oldumount(char __user * name)
  626. {
  627. return sys_umount(name, 0);
  628. }
  629. #endif
  630. static int mount_is_safe(struct nameidata *nd)
  631. {
  632. if (capable(CAP_SYS_ADMIN))
  633. return 0;
  634. return -EPERM;
  635. #ifdef notyet
  636. if (S_ISLNK(nd->path.dentry->d_inode->i_mode))
  637. return -EPERM;
  638. if (nd->path.dentry->d_inode->i_mode & S_ISVTX) {
  639. if (current->uid != nd->path.dentry->d_inode->i_uid)
  640. return -EPERM;
  641. }
  642. if (vfs_permission(nd, MAY_WRITE))
  643. return -EPERM;
  644. return 0;
  645. #endif
  646. }
  647. static int lives_below_in_same_fs(struct dentry *d, struct dentry *dentry)
  648. {
  649. while (1) {
  650. if (d == dentry)
  651. return 1;
  652. if (d == NULL || d == d->d_parent)
  653. return 0;
  654. d = d->d_parent;
  655. }
  656. }
  657. struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
  658. int flag)
  659. {
  660. struct vfsmount *res, *p, *q, *r, *s;
  661. struct path path;
  662. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
  663. return NULL;
  664. res = q = clone_mnt(mnt, dentry, flag);
  665. if (!q)
  666. goto Enomem;
  667. q->mnt_mountpoint = mnt->mnt_mountpoint;
  668. p = mnt;
  669. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  670. if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry))
  671. continue;
  672. for (s = r; s; s = next_mnt(s, r)) {
  673. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
  674. s = skip_mnt_tree(s);
  675. continue;
  676. }
  677. while (p != s->mnt_parent) {
  678. p = p->mnt_parent;
  679. q = q->mnt_parent;
  680. }
  681. p = s;
  682. path.mnt = q;
  683. path.dentry = p->mnt_mountpoint;
  684. q = clone_mnt(p, p->mnt_root, flag);
  685. if (!q)
  686. goto Enomem;
  687. spin_lock(&vfsmount_lock);
  688. list_add_tail(&q->mnt_list, &res->mnt_list);
  689. attach_mnt(q, &path);
  690. spin_unlock(&vfsmount_lock);
  691. }
  692. }
  693. return res;
  694. Enomem:
  695. if (res) {
  696. LIST_HEAD(umount_list);
  697. spin_lock(&vfsmount_lock);
  698. umount_tree(res, 0, &umount_list);
  699. spin_unlock(&vfsmount_lock);
  700. release_mounts(&umount_list);
  701. }
  702. return NULL;
  703. }
  704. struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry)
  705. {
  706. struct vfsmount *tree;
  707. down_read(&namespace_sem);
  708. tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE);
  709. up_read(&namespace_sem);
  710. return tree;
  711. }
  712. void drop_collected_mounts(struct vfsmount *mnt)
  713. {
  714. LIST_HEAD(umount_list);
  715. down_read(&namespace_sem);
  716. spin_lock(&vfsmount_lock);
  717. umount_tree(mnt, 0, &umount_list);
  718. spin_unlock(&vfsmount_lock);
  719. up_read(&namespace_sem);
  720. release_mounts(&umount_list);
  721. }
  722. /*
  723. * @source_mnt : mount tree to be attached
  724. * @nd : place the mount tree @source_mnt is attached
  725. * @parent_nd : if non-null, detach the source_mnt from its parent and
  726. * store the parent mount and mountpoint dentry.
  727. * (done when source_mnt is moved)
  728. *
  729. * NOTE: in the table below explains the semantics when a source mount
  730. * of a given type is attached to a destination mount of a given type.
  731. * ---------------------------------------------------------------------------
  732. * | BIND MOUNT OPERATION |
  733. * |**************************************************************************
  734. * | source-->| shared | private | slave | unbindable |
  735. * | dest | | | | |
  736. * | | | | | | |
  737. * | v | | | | |
  738. * |**************************************************************************
  739. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  740. * | | | | | |
  741. * |non-shared| shared (+) | private | slave (*) | invalid |
  742. * ***************************************************************************
  743. * A bind operation clones the source mount and mounts the clone on the
  744. * destination mount.
  745. *
  746. * (++) the cloned mount is propagated to all the mounts in the propagation
  747. * tree of the destination mount and the cloned mount is added to
  748. * the peer group of the source mount.
  749. * (+) the cloned mount is created under the destination mount and is marked
  750. * as shared. The cloned mount is added to the peer group of the source
  751. * mount.
  752. * (+++) the mount is propagated to all the mounts in the propagation tree
  753. * of the destination mount and the cloned mount is made slave
  754. * of the same master as that of the source mount. The cloned mount
  755. * is marked as 'shared and slave'.
  756. * (*) the cloned mount is made a slave of the same master as that of the
  757. * source mount.
  758. *
  759. * ---------------------------------------------------------------------------
  760. * | MOVE MOUNT OPERATION |
  761. * |**************************************************************************
  762. * | source-->| shared | private | slave | unbindable |
  763. * | dest | | | | |
  764. * | | | | | | |
  765. * | v | | | | |
  766. * |**************************************************************************
  767. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  768. * | | | | | |
  769. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  770. * ***************************************************************************
  771. *
  772. * (+) the mount is moved to the destination. And is then propagated to
  773. * all the mounts in the propagation tree of the destination mount.
  774. * (+*) the mount is moved to the destination.
  775. * (+++) the mount is moved to the destination and is then propagated to
  776. * all the mounts belonging to the destination mount's propagation tree.
  777. * the mount is marked as 'shared and slave'.
  778. * (*) the mount continues to be a slave at the new location.
  779. *
  780. * if the source mount is a tree, the operations explained above is
  781. * applied to each mount in the tree.
  782. * Must be called without spinlocks held, since this function can sleep
  783. * in allocations.
  784. */
  785. static int attach_recursive_mnt(struct vfsmount *source_mnt,
  786. struct path *path, struct path *parent_path)
  787. {
  788. LIST_HEAD(tree_list);
  789. struct vfsmount *dest_mnt = path->mnt;
  790. struct dentry *dest_dentry = path->dentry;
  791. struct vfsmount *child, *p;
  792. if (propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list))
  793. return -EINVAL;
  794. if (IS_MNT_SHARED(dest_mnt)) {
  795. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  796. set_mnt_shared(p);
  797. }
  798. spin_lock(&vfsmount_lock);
  799. if (parent_path) {
  800. detach_mnt(source_mnt, parent_path);
  801. attach_mnt(source_mnt, path);
  802. touch_mnt_namespace(current->nsproxy->mnt_ns);
  803. } else {
  804. mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
  805. commit_tree(source_mnt);
  806. }
  807. list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
  808. list_del_init(&child->mnt_hash);
  809. commit_tree(child);
  810. }
  811. spin_unlock(&vfsmount_lock);
  812. return 0;
  813. }
  814. static int graft_tree(struct vfsmount *mnt, struct nameidata *nd)
  815. {
  816. int err;
  817. if (mnt->mnt_sb->s_flags & MS_NOUSER)
  818. return -EINVAL;
  819. if (S_ISDIR(nd->path.dentry->d_inode->i_mode) !=
  820. S_ISDIR(mnt->mnt_root->d_inode->i_mode))
  821. return -ENOTDIR;
  822. err = -ENOENT;
  823. mutex_lock(&nd->path.dentry->d_inode->i_mutex);
  824. if (IS_DEADDIR(nd->path.dentry->d_inode))
  825. goto out_unlock;
  826. err = security_sb_check_sb(mnt, nd);
  827. if (err)
  828. goto out_unlock;
  829. err = -ENOENT;
  830. if (IS_ROOT(nd->path.dentry) || !d_unhashed(nd->path.dentry))
  831. err = attach_recursive_mnt(mnt, &nd->path, NULL);
  832. out_unlock:
  833. mutex_unlock(&nd->path.dentry->d_inode->i_mutex);
  834. if (!err)
  835. security_sb_post_addmount(mnt, nd);
  836. return err;
  837. }
  838. /*
  839. * recursively change the type of the mountpoint.
  840. * noinline this do_mount helper to save do_mount stack space.
  841. */
  842. static noinline int do_change_type(struct nameidata *nd, int flag)
  843. {
  844. struct vfsmount *m, *mnt = nd->path.mnt;
  845. int recurse = flag & MS_REC;
  846. int type = flag & ~MS_REC;
  847. if (!capable(CAP_SYS_ADMIN))
  848. return -EPERM;
  849. if (nd->path.dentry != nd->path.mnt->mnt_root)
  850. return -EINVAL;
  851. down_write(&namespace_sem);
  852. spin_lock(&vfsmount_lock);
  853. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  854. change_mnt_propagation(m, type);
  855. spin_unlock(&vfsmount_lock);
  856. up_write(&namespace_sem);
  857. return 0;
  858. }
  859. /*
  860. * do loopback mount.
  861. * noinline this do_mount helper to save do_mount stack space.
  862. */
  863. static noinline int do_loopback(struct nameidata *nd, char *old_name,
  864. int recurse)
  865. {
  866. struct nameidata old_nd;
  867. struct vfsmount *mnt = NULL;
  868. int err = mount_is_safe(nd);
  869. if (err)
  870. return err;
  871. if (!old_name || !*old_name)
  872. return -EINVAL;
  873. err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
  874. if (err)
  875. return err;
  876. down_write(&namespace_sem);
  877. err = -EINVAL;
  878. if (IS_MNT_UNBINDABLE(old_nd.path.mnt))
  879. goto out;
  880. if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
  881. goto out;
  882. err = -ENOMEM;
  883. if (recurse)
  884. mnt = copy_tree(old_nd.path.mnt, old_nd.path.dentry, 0);
  885. else
  886. mnt = clone_mnt(old_nd.path.mnt, old_nd.path.dentry, 0);
  887. if (!mnt)
  888. goto out;
  889. err = graft_tree(mnt, nd);
  890. if (err) {
  891. LIST_HEAD(umount_list);
  892. spin_lock(&vfsmount_lock);
  893. umount_tree(mnt, 0, &umount_list);
  894. spin_unlock(&vfsmount_lock);
  895. release_mounts(&umount_list);
  896. }
  897. out:
  898. up_write(&namespace_sem);
  899. path_put(&old_nd.path);
  900. return err;
  901. }
  902. /*
  903. * change filesystem flags. dir should be a physical root of filesystem.
  904. * If you've mounted a non-root directory somewhere and want to do remount
  905. * on it - tough luck.
  906. * noinline this do_mount helper to save do_mount stack space.
  907. */
  908. static noinline int do_remount(struct nameidata *nd, int flags, int mnt_flags,
  909. void *data)
  910. {
  911. int err;
  912. struct super_block *sb = nd->path.mnt->mnt_sb;
  913. if (!capable(CAP_SYS_ADMIN))
  914. return -EPERM;
  915. if (!check_mnt(nd->path.mnt))
  916. return -EINVAL;
  917. if (nd->path.dentry != nd->path.mnt->mnt_root)
  918. return -EINVAL;
  919. down_write(&sb->s_umount);
  920. err = do_remount_sb(sb, flags, data, 0);
  921. if (!err)
  922. nd->path.mnt->mnt_flags = mnt_flags;
  923. up_write(&sb->s_umount);
  924. if (!err)
  925. security_sb_post_remount(nd->path.mnt, flags, data);
  926. return err;
  927. }
  928. static inline int tree_contains_unbindable(struct vfsmount *mnt)
  929. {
  930. struct vfsmount *p;
  931. for (p = mnt; p; p = next_mnt(p, mnt)) {
  932. if (IS_MNT_UNBINDABLE(p))
  933. return 1;
  934. }
  935. return 0;
  936. }
  937. /*
  938. * noinline this do_mount helper to save do_mount stack space.
  939. */
  940. static noinline int do_move_mount(struct nameidata *nd, char *old_name)
  941. {
  942. struct nameidata old_nd;
  943. struct path parent_path;
  944. struct vfsmount *p;
  945. int err = 0;
  946. if (!capable(CAP_SYS_ADMIN))
  947. return -EPERM;
  948. if (!old_name || !*old_name)
  949. return -EINVAL;
  950. err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
  951. if (err)
  952. return err;
  953. down_write(&namespace_sem);
  954. while (d_mountpoint(nd->path.dentry) &&
  955. follow_down(&nd->path.mnt, &nd->path.dentry))
  956. ;
  957. err = -EINVAL;
  958. if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
  959. goto out;
  960. err = -ENOENT;
  961. mutex_lock(&nd->path.dentry->d_inode->i_mutex);
  962. if (IS_DEADDIR(nd->path.dentry->d_inode))
  963. goto out1;
  964. if (!IS_ROOT(nd->path.dentry) && d_unhashed(nd->path.dentry))
  965. goto out1;
  966. err = -EINVAL;
  967. if (old_nd.path.dentry != old_nd.path.mnt->mnt_root)
  968. goto out1;
  969. if (old_nd.path.mnt == old_nd.path.mnt->mnt_parent)
  970. goto out1;
  971. if (S_ISDIR(nd->path.dentry->d_inode->i_mode) !=
  972. S_ISDIR(old_nd.path.dentry->d_inode->i_mode))
  973. goto out1;
  974. /*
  975. * Don't move a mount residing in a shared parent.
  976. */
  977. if (old_nd.path.mnt->mnt_parent &&
  978. IS_MNT_SHARED(old_nd.path.mnt->mnt_parent))
  979. goto out1;
  980. /*
  981. * Don't move a mount tree containing unbindable mounts to a destination
  982. * mount which is shared.
  983. */
  984. if (IS_MNT_SHARED(nd->path.mnt) &&
  985. tree_contains_unbindable(old_nd.path.mnt))
  986. goto out1;
  987. err = -ELOOP;
  988. for (p = nd->path.mnt; p->mnt_parent != p; p = p->mnt_parent)
  989. if (p == old_nd.path.mnt)
  990. goto out1;
  991. err = attach_recursive_mnt(old_nd.path.mnt, &nd->path, &parent_path);
  992. if (err)
  993. goto out1;
  994. /* if the mount is moved, it should no longer be expire
  995. * automatically */
  996. list_del_init(&old_nd.path.mnt->mnt_expire);
  997. out1:
  998. mutex_unlock(&nd->path.dentry->d_inode->i_mutex);
  999. out:
  1000. up_write(&namespace_sem);
  1001. if (!err)
  1002. path_put(&parent_path);
  1003. path_put(&old_nd.path);
  1004. return err;
  1005. }
  1006. /*
  1007. * create a new mount for userspace and request it to be added into the
  1008. * namespace's tree
  1009. * noinline this do_mount helper to save do_mount stack space.
  1010. */
  1011. static noinline int do_new_mount(struct nameidata *nd, char *type, int flags,
  1012. int mnt_flags, char *name, void *data)
  1013. {
  1014. struct vfsmount *mnt;
  1015. if (!type || !memchr(type, 0, PAGE_SIZE))
  1016. return -EINVAL;
  1017. /* we need capabilities... */
  1018. if (!capable(CAP_SYS_ADMIN))
  1019. return -EPERM;
  1020. mnt = do_kern_mount(type, flags, name, data);
  1021. if (IS_ERR(mnt))
  1022. return PTR_ERR(mnt);
  1023. return do_add_mount(mnt, nd, mnt_flags, NULL);
  1024. }
  1025. /*
  1026. * add a mount into a namespace's mount tree
  1027. * - provide the option of adding the new mount to an expiration list
  1028. */
  1029. int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
  1030. int mnt_flags, struct list_head *fslist)
  1031. {
  1032. int err;
  1033. down_write(&namespace_sem);
  1034. /* Something was mounted here while we slept */
  1035. while (d_mountpoint(nd->path.dentry) &&
  1036. follow_down(&nd->path.mnt, &nd->path.dentry))
  1037. ;
  1038. err = -EINVAL;
  1039. if (!check_mnt(nd->path.mnt))
  1040. goto unlock;
  1041. /* Refuse the same filesystem on the same mount point */
  1042. err = -EBUSY;
  1043. if (nd->path.mnt->mnt_sb == newmnt->mnt_sb &&
  1044. nd->path.mnt->mnt_root == nd->path.dentry)
  1045. goto unlock;
  1046. err = -EINVAL;
  1047. if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
  1048. goto unlock;
  1049. newmnt->mnt_flags = mnt_flags;
  1050. if ((err = graft_tree(newmnt, nd)))
  1051. goto unlock;
  1052. if (fslist) /* add to the specified expiration list */
  1053. list_add_tail(&newmnt->mnt_expire, fslist);
  1054. up_write(&namespace_sem);
  1055. return 0;
  1056. unlock:
  1057. up_write(&namespace_sem);
  1058. mntput(newmnt);
  1059. return err;
  1060. }
  1061. EXPORT_SYMBOL_GPL(do_add_mount);
  1062. /*
  1063. * process a list of expirable mountpoints with the intent of discarding any
  1064. * mountpoints that aren't in use and haven't been touched since last we came
  1065. * here
  1066. */
  1067. void mark_mounts_for_expiry(struct list_head *mounts)
  1068. {
  1069. struct vfsmount *mnt, *next;
  1070. LIST_HEAD(graveyard);
  1071. LIST_HEAD(umounts);
  1072. if (list_empty(mounts))
  1073. return;
  1074. down_write(&namespace_sem);
  1075. spin_lock(&vfsmount_lock);
  1076. /* extract from the expiration list every vfsmount that matches the
  1077. * following criteria:
  1078. * - only referenced by its parent vfsmount
  1079. * - still marked for expiry (marked on the last call here; marks are
  1080. * cleared by mntput())
  1081. */
  1082. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  1083. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  1084. propagate_mount_busy(mnt, 1))
  1085. continue;
  1086. list_move(&mnt->mnt_expire, &graveyard);
  1087. }
  1088. while (!list_empty(&graveyard)) {
  1089. mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
  1090. touch_mnt_namespace(mnt->mnt_ns);
  1091. umount_tree(mnt, 1, &umounts);
  1092. }
  1093. spin_unlock(&vfsmount_lock);
  1094. up_write(&namespace_sem);
  1095. release_mounts(&umounts);
  1096. }
  1097. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  1098. /*
  1099. * Ripoff of 'select_parent()'
  1100. *
  1101. * search the list of submounts for a given mountpoint, and move any
  1102. * shrinkable submounts to the 'graveyard' list.
  1103. */
  1104. static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
  1105. {
  1106. struct vfsmount *this_parent = parent;
  1107. struct list_head *next;
  1108. int found = 0;
  1109. repeat:
  1110. next = this_parent->mnt_mounts.next;
  1111. resume:
  1112. while (next != &this_parent->mnt_mounts) {
  1113. struct list_head *tmp = next;
  1114. struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
  1115. next = tmp->next;
  1116. if (!(mnt->mnt_flags & MNT_SHRINKABLE))
  1117. continue;
  1118. /*
  1119. * Descend a level if the d_mounts list is non-empty.
  1120. */
  1121. if (!list_empty(&mnt->mnt_mounts)) {
  1122. this_parent = mnt;
  1123. goto repeat;
  1124. }
  1125. if (!propagate_mount_busy(mnt, 1)) {
  1126. list_move_tail(&mnt->mnt_expire, graveyard);
  1127. found++;
  1128. }
  1129. }
  1130. /*
  1131. * All done at this level ... ascend and resume the search
  1132. */
  1133. if (this_parent != parent) {
  1134. next = this_parent->mnt_child.next;
  1135. this_parent = this_parent->mnt_parent;
  1136. goto resume;
  1137. }
  1138. return found;
  1139. }
  1140. /*
  1141. * process a list of expirable mountpoints with the intent of discarding any
  1142. * submounts of a specific parent mountpoint
  1143. */
  1144. static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
  1145. {
  1146. LIST_HEAD(graveyard);
  1147. struct vfsmount *m;
  1148. /* extract submounts of 'mountpoint' from the expiration list */
  1149. while (select_submounts(mnt, &graveyard)) {
  1150. while (!list_empty(&graveyard)) {
  1151. m = list_first_entry(&graveyard, struct vfsmount,
  1152. mnt_expire);
  1153. touch_mnt_namespace(mnt->mnt_ns);
  1154. umount_tree(mnt, 1, umounts);
  1155. }
  1156. }
  1157. }
  1158. /*
  1159. * Some copy_from_user() implementations do not return the exact number of
  1160. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  1161. * Note that this function differs from copy_from_user() in that it will oops
  1162. * on bad values of `to', rather than returning a short copy.
  1163. */
  1164. static long exact_copy_from_user(void *to, const void __user * from,
  1165. unsigned long n)
  1166. {
  1167. char *t = to;
  1168. const char __user *f = from;
  1169. char c;
  1170. if (!access_ok(VERIFY_READ, from, n))
  1171. return n;
  1172. while (n) {
  1173. if (__get_user(c, f)) {
  1174. memset(t, 0, n);
  1175. break;
  1176. }
  1177. *t++ = c;
  1178. f++;
  1179. n--;
  1180. }
  1181. return n;
  1182. }
  1183. int copy_mount_options(const void __user * data, unsigned long *where)
  1184. {
  1185. int i;
  1186. unsigned long page;
  1187. unsigned long size;
  1188. *where = 0;
  1189. if (!data)
  1190. return 0;
  1191. if (!(page = __get_free_page(GFP_KERNEL)))
  1192. return -ENOMEM;
  1193. /* We only care that *some* data at the address the user
  1194. * gave us is valid. Just in case, we'll zero
  1195. * the remainder of the page.
  1196. */
  1197. /* copy_from_user cannot cross TASK_SIZE ! */
  1198. size = TASK_SIZE - (unsigned long)data;
  1199. if (size > PAGE_SIZE)
  1200. size = PAGE_SIZE;
  1201. i = size - exact_copy_from_user((void *)page, data, size);
  1202. if (!i) {
  1203. free_page(page);
  1204. return -EFAULT;
  1205. }
  1206. if (i != PAGE_SIZE)
  1207. memset((char *)page + i, 0, PAGE_SIZE - i);
  1208. *where = page;
  1209. return 0;
  1210. }
  1211. /*
  1212. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  1213. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  1214. *
  1215. * data is a (void *) that can point to any structure up to
  1216. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  1217. * information (or be NULL).
  1218. *
  1219. * Pre-0.97 versions of mount() didn't have a flags word.
  1220. * When the flags word was introduced its top half was required
  1221. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  1222. * Therefore, if this magic number is present, it carries no information
  1223. * and must be discarded.
  1224. */
  1225. long do_mount(char *dev_name, char *dir_name, char *type_page,
  1226. unsigned long flags, void *data_page)
  1227. {
  1228. struct nameidata nd;
  1229. int retval = 0;
  1230. int mnt_flags = 0;
  1231. /* Discard magic */
  1232. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  1233. flags &= ~MS_MGC_MSK;
  1234. /* Basic sanity checks */
  1235. if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
  1236. return -EINVAL;
  1237. if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
  1238. return -EINVAL;
  1239. if (data_page)
  1240. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  1241. /* Separate the per-mountpoint flags */
  1242. if (flags & MS_NOSUID)
  1243. mnt_flags |= MNT_NOSUID;
  1244. if (flags & MS_NODEV)
  1245. mnt_flags |= MNT_NODEV;
  1246. if (flags & MS_NOEXEC)
  1247. mnt_flags |= MNT_NOEXEC;
  1248. if (flags & MS_NOATIME)
  1249. mnt_flags |= MNT_NOATIME;
  1250. if (flags & MS_NODIRATIME)
  1251. mnt_flags |= MNT_NODIRATIME;
  1252. if (flags & MS_RELATIME)
  1253. mnt_flags |= MNT_RELATIME;
  1254. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
  1255. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT);
  1256. /* ... and get the mountpoint */
  1257. retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
  1258. if (retval)
  1259. return retval;
  1260. retval = security_sb_mount(dev_name, &nd, type_page, flags, data_page);
  1261. if (retval)
  1262. goto dput_out;
  1263. if (flags & MS_REMOUNT)
  1264. retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
  1265. data_page);
  1266. else if (flags & MS_BIND)
  1267. retval = do_loopback(&nd, dev_name, flags & MS_REC);
  1268. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1269. retval = do_change_type(&nd, flags);
  1270. else if (flags & MS_MOVE)
  1271. retval = do_move_mount(&nd, dev_name);
  1272. else
  1273. retval = do_new_mount(&nd, type_page, flags, mnt_flags,
  1274. dev_name, data_page);
  1275. dput_out:
  1276. path_put(&nd.path);
  1277. return retval;
  1278. }
  1279. /*
  1280. * Allocate a new namespace structure and populate it with contents
  1281. * copied from the namespace of the passed in task structure.
  1282. */
  1283. static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
  1284. struct fs_struct *fs)
  1285. {
  1286. struct mnt_namespace *new_ns;
  1287. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
  1288. struct vfsmount *p, *q;
  1289. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  1290. if (!new_ns)
  1291. return ERR_PTR(-ENOMEM);
  1292. atomic_set(&new_ns->count, 1);
  1293. INIT_LIST_HEAD(&new_ns->list);
  1294. init_waitqueue_head(&new_ns->poll);
  1295. new_ns->event = 0;
  1296. down_write(&namespace_sem);
  1297. /* First pass: copy the tree topology */
  1298. new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
  1299. CL_COPY_ALL | CL_EXPIRE);
  1300. if (!new_ns->root) {
  1301. up_write(&namespace_sem);
  1302. kfree(new_ns);
  1303. return ERR_PTR(-ENOMEM);;
  1304. }
  1305. spin_lock(&vfsmount_lock);
  1306. list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
  1307. spin_unlock(&vfsmount_lock);
  1308. /*
  1309. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  1310. * as belonging to new namespace. We have already acquired a private
  1311. * fs_struct, so tsk->fs->lock is not needed.
  1312. */
  1313. p = mnt_ns->root;
  1314. q = new_ns->root;
  1315. while (p) {
  1316. q->mnt_ns = new_ns;
  1317. if (fs) {
  1318. if (p == fs->root.mnt) {
  1319. rootmnt = p;
  1320. fs->root.mnt = mntget(q);
  1321. }
  1322. if (p == fs->pwd.mnt) {
  1323. pwdmnt = p;
  1324. fs->pwd.mnt = mntget(q);
  1325. }
  1326. if (p == fs->altroot.mnt) {
  1327. altrootmnt = p;
  1328. fs->altroot.mnt = mntget(q);
  1329. }
  1330. }
  1331. p = next_mnt(p, mnt_ns->root);
  1332. q = next_mnt(q, new_ns->root);
  1333. }
  1334. up_write(&namespace_sem);
  1335. if (rootmnt)
  1336. mntput(rootmnt);
  1337. if (pwdmnt)
  1338. mntput(pwdmnt);
  1339. if (altrootmnt)
  1340. mntput(altrootmnt);
  1341. return new_ns;
  1342. }
  1343. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  1344. struct fs_struct *new_fs)
  1345. {
  1346. struct mnt_namespace *new_ns;
  1347. BUG_ON(!ns);
  1348. get_mnt_ns(ns);
  1349. if (!(flags & CLONE_NEWNS))
  1350. return ns;
  1351. new_ns = dup_mnt_ns(ns, new_fs);
  1352. put_mnt_ns(ns);
  1353. return new_ns;
  1354. }
  1355. asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
  1356. char __user * type, unsigned long flags,
  1357. void __user * data)
  1358. {
  1359. int retval;
  1360. unsigned long data_page;
  1361. unsigned long type_page;
  1362. unsigned long dev_page;
  1363. char *dir_page;
  1364. retval = copy_mount_options(type, &type_page);
  1365. if (retval < 0)
  1366. return retval;
  1367. dir_page = getname(dir_name);
  1368. retval = PTR_ERR(dir_page);
  1369. if (IS_ERR(dir_page))
  1370. goto out1;
  1371. retval = copy_mount_options(dev_name, &dev_page);
  1372. if (retval < 0)
  1373. goto out2;
  1374. retval = copy_mount_options(data, &data_page);
  1375. if (retval < 0)
  1376. goto out3;
  1377. lock_kernel();
  1378. retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
  1379. flags, (void *)data_page);
  1380. unlock_kernel();
  1381. free_page(data_page);
  1382. out3:
  1383. free_page(dev_page);
  1384. out2:
  1385. putname(dir_page);
  1386. out1:
  1387. free_page(type_page);
  1388. return retval;
  1389. }
  1390. /*
  1391. * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
  1392. * It can block. Requires the big lock held.
  1393. */
  1394. void set_fs_root(struct fs_struct *fs, struct path *path)
  1395. {
  1396. struct path old_root;
  1397. write_lock(&fs->lock);
  1398. old_root = fs->root;
  1399. fs->root = *path;
  1400. path_get(path);
  1401. write_unlock(&fs->lock);
  1402. if (old_root.dentry)
  1403. path_put(&old_root);
  1404. }
  1405. /*
  1406. * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
  1407. * It can block. Requires the big lock held.
  1408. */
  1409. void set_fs_pwd(struct fs_struct *fs, struct path *path)
  1410. {
  1411. struct path old_pwd;
  1412. write_lock(&fs->lock);
  1413. old_pwd = fs->pwd;
  1414. fs->pwd = *path;
  1415. path_get(path);
  1416. write_unlock(&fs->lock);
  1417. if (old_pwd.dentry)
  1418. path_put(&old_pwd);
  1419. }
  1420. static void chroot_fs_refs(struct path *old_root, struct path *new_root)
  1421. {
  1422. struct task_struct *g, *p;
  1423. struct fs_struct *fs;
  1424. read_lock(&tasklist_lock);
  1425. do_each_thread(g, p) {
  1426. task_lock(p);
  1427. fs = p->fs;
  1428. if (fs) {
  1429. atomic_inc(&fs->count);
  1430. task_unlock(p);
  1431. if (fs->root.dentry == old_root->dentry
  1432. && fs->root.mnt == old_root->mnt)
  1433. set_fs_root(fs, new_root);
  1434. if (fs->pwd.dentry == old_root->dentry
  1435. && fs->pwd.mnt == old_root->mnt)
  1436. set_fs_pwd(fs, new_root);
  1437. put_fs_struct(fs);
  1438. } else
  1439. task_unlock(p);
  1440. } while_each_thread(g, p);
  1441. read_unlock(&tasklist_lock);
  1442. }
  1443. /*
  1444. * pivot_root Semantics:
  1445. * Moves the root file system of the current process to the directory put_old,
  1446. * makes new_root as the new root file system of the current process, and sets
  1447. * root/cwd of all processes which had them on the current root to new_root.
  1448. *
  1449. * Restrictions:
  1450. * The new_root and put_old must be directories, and must not be on the
  1451. * same file system as the current process root. The put_old must be
  1452. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  1453. * pointed to by put_old must yield the same directory as new_root. No other
  1454. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  1455. *
  1456. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  1457. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  1458. * in this situation.
  1459. *
  1460. * Notes:
  1461. * - we don't move root/cwd if they are not at the root (reason: if something
  1462. * cared enough to change them, it's probably wrong to force them elsewhere)
  1463. * - it's okay to pick a root that isn't the root of a file system, e.g.
  1464. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  1465. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  1466. * first.
  1467. */
  1468. asmlinkage long sys_pivot_root(const char __user * new_root,
  1469. const char __user * put_old)
  1470. {
  1471. struct vfsmount *tmp;
  1472. struct nameidata new_nd, old_nd, user_nd;
  1473. struct path parent_path, root_parent;
  1474. int error;
  1475. if (!capable(CAP_SYS_ADMIN))
  1476. return -EPERM;
  1477. lock_kernel();
  1478. error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
  1479. &new_nd);
  1480. if (error)
  1481. goto out0;
  1482. error = -EINVAL;
  1483. if (!check_mnt(new_nd.path.mnt))
  1484. goto out1;
  1485. error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
  1486. if (error)
  1487. goto out1;
  1488. error = security_sb_pivotroot(&old_nd, &new_nd);
  1489. if (error) {
  1490. path_put(&old_nd.path);
  1491. goto out1;
  1492. }
  1493. read_lock(&current->fs->lock);
  1494. user_nd.path = current->fs->root;
  1495. path_get(&current->fs->root);
  1496. read_unlock(&current->fs->lock);
  1497. down_write(&namespace_sem);
  1498. mutex_lock(&old_nd.path.dentry->d_inode->i_mutex);
  1499. error = -EINVAL;
  1500. if (IS_MNT_SHARED(old_nd.path.mnt) ||
  1501. IS_MNT_SHARED(new_nd.path.mnt->mnt_parent) ||
  1502. IS_MNT_SHARED(user_nd.path.mnt->mnt_parent))
  1503. goto out2;
  1504. if (!check_mnt(user_nd.path.mnt))
  1505. goto out2;
  1506. error = -ENOENT;
  1507. if (IS_DEADDIR(new_nd.path.dentry->d_inode))
  1508. goto out2;
  1509. if (d_unhashed(new_nd.path.dentry) && !IS_ROOT(new_nd.path.dentry))
  1510. goto out2;
  1511. if (d_unhashed(old_nd.path.dentry) && !IS_ROOT(old_nd.path.dentry))
  1512. goto out2;
  1513. error = -EBUSY;
  1514. if (new_nd.path.mnt == user_nd.path.mnt ||
  1515. old_nd.path.mnt == user_nd.path.mnt)
  1516. goto out2; /* loop, on the same file system */
  1517. error = -EINVAL;
  1518. if (user_nd.path.mnt->mnt_root != user_nd.path.dentry)
  1519. goto out2; /* not a mountpoint */
  1520. if (user_nd.path.mnt->mnt_parent == user_nd.path.mnt)
  1521. goto out2; /* not attached */
  1522. if (new_nd.path.mnt->mnt_root != new_nd.path.dentry)
  1523. goto out2; /* not a mountpoint */
  1524. if (new_nd.path.mnt->mnt_parent == new_nd.path.mnt)
  1525. goto out2; /* not attached */
  1526. /* make sure we can reach put_old from new_root */
  1527. tmp = old_nd.path.mnt;
  1528. spin_lock(&vfsmount_lock);
  1529. if (tmp != new_nd.path.mnt) {
  1530. for (;;) {
  1531. if (tmp->mnt_parent == tmp)
  1532. goto out3; /* already mounted on put_old */
  1533. if (tmp->mnt_parent == new_nd.path.mnt)
  1534. break;
  1535. tmp = tmp->mnt_parent;
  1536. }
  1537. if (!is_subdir(tmp->mnt_mountpoint, new_nd.path.dentry))
  1538. goto out3;
  1539. } else if (!is_subdir(old_nd.path.dentry, new_nd.path.dentry))
  1540. goto out3;
  1541. detach_mnt(new_nd.path.mnt, &parent_path);
  1542. detach_mnt(user_nd.path.mnt, &root_parent);
  1543. /* mount old root on put_old */
  1544. attach_mnt(user_nd.path.mnt, &old_nd.path);
  1545. /* mount new_root on / */
  1546. attach_mnt(new_nd.path.mnt, &root_parent);
  1547. touch_mnt_namespace(current->nsproxy->mnt_ns);
  1548. spin_unlock(&vfsmount_lock);
  1549. chroot_fs_refs(&user_nd.path, &new_nd.path);
  1550. security_sb_post_pivotroot(&user_nd, &new_nd);
  1551. error = 0;
  1552. path_put(&root_parent);
  1553. path_put(&parent_path);
  1554. out2:
  1555. mutex_unlock(&old_nd.path.dentry->d_inode->i_mutex);
  1556. up_write(&namespace_sem);
  1557. path_put(&user_nd.path);
  1558. path_put(&old_nd.path);
  1559. out1:
  1560. path_put(&new_nd.path);
  1561. out0:
  1562. unlock_kernel();
  1563. return error;
  1564. out3:
  1565. spin_unlock(&vfsmount_lock);
  1566. goto out2;
  1567. }
  1568. static void __init init_mount_tree(void)
  1569. {
  1570. struct vfsmount *mnt;
  1571. struct mnt_namespace *ns;
  1572. struct path root;
  1573. mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
  1574. if (IS_ERR(mnt))
  1575. panic("Can't create rootfs");
  1576. ns = kmalloc(sizeof(*ns), GFP_KERNEL);
  1577. if (!ns)
  1578. panic("Can't allocate initial namespace");
  1579. atomic_set(&ns->count, 1);
  1580. INIT_LIST_HEAD(&ns->list);
  1581. init_waitqueue_head(&ns->poll);
  1582. ns->event = 0;
  1583. list_add(&mnt->mnt_list, &ns->list);
  1584. ns->root = mnt;
  1585. mnt->mnt_ns = ns;
  1586. init_task.nsproxy->mnt_ns = ns;
  1587. get_mnt_ns(ns);
  1588. root.mnt = ns->root;
  1589. root.dentry = ns->root->mnt_root;
  1590. set_fs_pwd(current->fs, &root);
  1591. set_fs_root(current->fs, &root);
  1592. }
  1593. void __init mnt_init(void)
  1594. {
  1595. unsigned u;
  1596. int err;
  1597. init_rwsem(&namespace_sem);
  1598. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
  1599. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  1600. mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
  1601. if (!mount_hashtable)
  1602. panic("Failed to allocate mount hash table\n");
  1603. printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
  1604. for (u = 0; u < HASH_SIZE; u++)
  1605. INIT_LIST_HEAD(&mount_hashtable[u]);
  1606. err = sysfs_init();
  1607. if (err)
  1608. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  1609. __FUNCTION__, err);
  1610. fs_kobj = kobject_create_and_add("fs", NULL);
  1611. if (!fs_kobj)
  1612. printk(KERN_WARNING "%s: kobj create error\n", __FUNCTION__);
  1613. init_rootfs();
  1614. init_mount_tree();
  1615. }
  1616. void __put_mnt_ns(struct mnt_namespace *ns)
  1617. {
  1618. struct vfsmount *root = ns->root;
  1619. LIST_HEAD(umount_list);
  1620. ns->root = NULL;
  1621. spin_unlock(&vfsmount_lock);
  1622. down_write(&namespace_sem);
  1623. spin_lock(&vfsmount_lock);
  1624. umount_tree(root, 0, &umount_list);
  1625. spin_unlock(&vfsmount_lock);
  1626. up_write(&namespace_sem);
  1627. release_mounts(&umount_list);
  1628. kfree(ns);
  1629. }