korina.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230
  1. /*
  2. * Driver for the IDT RC32434 (Korina) on-chip ethernet controller.
  3. *
  4. * Copyright 2004 IDT Inc. (rischelp@idt.com)
  5. * Copyright 2006 Felix Fietkau <nbd@openwrt.org>
  6. * Copyright 2008 Florian Fainelli <florian@openwrt.org>
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms of the GNU General Public License as published by the
  10. * Free Software Foundation; either version 2 of the License, or (at your
  11. * option) any later version.
  12. *
  13. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  14. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
  15. * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
  16. * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  17. * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  18. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
  19. * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
  20. * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  21. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  22. * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  23. *
  24. * You should have received a copy of the GNU General Public License along
  25. * with this program; if not, write to the Free Software Foundation, Inc.,
  26. * 675 Mass Ave, Cambridge, MA 02139, USA.
  27. *
  28. * Writing to a DMA status register:
  29. *
  30. * When writing to the status register, you should mask the bit you have
  31. * been testing the status register with. Both Tx and Rx DMA registers
  32. * should stick to this procedure.
  33. */
  34. #include <linux/module.h>
  35. #include <linux/kernel.h>
  36. #include <linux/moduleparam.h>
  37. #include <linux/sched.h>
  38. #include <linux/ctype.h>
  39. #include <linux/types.h>
  40. #include <linux/interrupt.h>
  41. #include <linux/init.h>
  42. #include <linux/ioport.h>
  43. #include <linux/in.h>
  44. #include <linux/slab.h>
  45. #include <linux/string.h>
  46. #include <linux/delay.h>
  47. #include <linux/netdevice.h>
  48. #include <linux/etherdevice.h>
  49. #include <linux/skbuff.h>
  50. #include <linux/errno.h>
  51. #include <linux/platform_device.h>
  52. #include <linux/mii.h>
  53. #include <linux/ethtool.h>
  54. #include <linux/crc32.h>
  55. #include <asm/bootinfo.h>
  56. #include <asm/system.h>
  57. #include <asm/bitops.h>
  58. #include <asm/pgtable.h>
  59. #include <asm/segment.h>
  60. #include <asm/io.h>
  61. #include <asm/dma.h>
  62. #include <asm/mach-rc32434/rb.h>
  63. #include <asm/mach-rc32434/rc32434.h>
  64. #include <asm/mach-rc32434/eth.h>
  65. #include <asm/mach-rc32434/dma_v.h>
  66. #define DRV_NAME "korina"
  67. #define DRV_VERSION "0.10"
  68. #define DRV_RELDATE "04Mar2008"
  69. #define STATION_ADDRESS_HIGH(dev) (((dev)->dev_addr[0] << 8) | \
  70. ((dev)->dev_addr[1]))
  71. #define STATION_ADDRESS_LOW(dev) (((dev)->dev_addr[2] << 24) | \
  72. ((dev)->dev_addr[3] << 16) | \
  73. ((dev)->dev_addr[4] << 8) | \
  74. ((dev)->dev_addr[5]))
  75. #define MII_CLOCK 1250000 /* no more than 2.5MHz */
  76. /* the following must be powers of two */
  77. #define KORINA_NUM_RDS 64 /* number of receive descriptors */
  78. #define KORINA_NUM_TDS 64 /* number of transmit descriptors */
  79. #define KORINA_RBSIZE 536 /* size of one resource buffer = Ether MTU */
  80. #define KORINA_RDS_MASK (KORINA_NUM_RDS - 1)
  81. #define KORINA_TDS_MASK (KORINA_NUM_TDS - 1)
  82. #define RD_RING_SIZE (KORINA_NUM_RDS * sizeof(struct dma_desc))
  83. #define TD_RING_SIZE (KORINA_NUM_TDS * sizeof(struct dma_desc))
  84. #define TX_TIMEOUT (6000 * HZ / 1000)
  85. enum chain_status { desc_filled, desc_empty };
  86. #define IS_DMA_FINISHED(X) (((X) & (DMA_DESC_FINI)) != 0)
  87. #define IS_DMA_DONE(X) (((X) & (DMA_DESC_DONE)) != 0)
  88. #define RCVPKT_LENGTH(X) (((X) & ETH_RX_LEN) >> ETH_RX_LEN_BIT)
  89. /* Information that need to be kept for each board. */
  90. struct korina_private {
  91. struct eth_regs *eth_regs;
  92. struct dma_reg *rx_dma_regs;
  93. struct dma_reg *tx_dma_regs;
  94. struct dma_desc *td_ring; /* transmit descriptor ring */
  95. struct dma_desc *rd_ring; /* receive descriptor ring */
  96. struct sk_buff *tx_skb[KORINA_NUM_TDS];
  97. struct sk_buff *rx_skb[KORINA_NUM_RDS];
  98. int rx_next_done;
  99. int rx_chain_head;
  100. int rx_chain_tail;
  101. enum chain_status rx_chain_status;
  102. int tx_next_done;
  103. int tx_chain_head;
  104. int tx_chain_tail;
  105. enum chain_status tx_chain_status;
  106. int tx_count;
  107. int tx_full;
  108. int rx_irq;
  109. int tx_irq;
  110. int ovr_irq;
  111. int und_irq;
  112. spinlock_t lock; /* NIC xmit lock */
  113. int dma_halt_cnt;
  114. int dma_run_cnt;
  115. struct napi_struct napi;
  116. struct mii_if_info mii_if;
  117. struct net_device *dev;
  118. int phy_addr;
  119. };
  120. extern unsigned int idt_cpu_freq;
  121. static inline void korina_start_dma(struct dma_reg *ch, u32 dma_addr)
  122. {
  123. writel(0, &ch->dmandptr);
  124. writel(dma_addr, &ch->dmadptr);
  125. }
  126. static inline void korina_abort_dma(struct net_device *dev,
  127. struct dma_reg *ch)
  128. {
  129. if (readl(&ch->dmac) & DMA_CHAN_RUN_BIT) {
  130. writel(0x10, &ch->dmac);
  131. while (!(readl(&ch->dmas) & DMA_STAT_HALT))
  132. dev->trans_start = jiffies;
  133. writel(0, &ch->dmas);
  134. }
  135. writel(0, &ch->dmadptr);
  136. writel(0, &ch->dmandptr);
  137. }
  138. static inline void korina_chain_dma(struct dma_reg *ch, u32 dma_addr)
  139. {
  140. writel(dma_addr, &ch->dmandptr);
  141. }
  142. static void korina_abort_tx(struct net_device *dev)
  143. {
  144. struct korina_private *lp = netdev_priv(dev);
  145. korina_abort_dma(dev, lp->tx_dma_regs);
  146. }
  147. static void korina_abort_rx(struct net_device *dev)
  148. {
  149. struct korina_private *lp = netdev_priv(dev);
  150. korina_abort_dma(dev, lp->rx_dma_regs);
  151. }
  152. static void korina_start_rx(struct korina_private *lp,
  153. struct dma_desc *rd)
  154. {
  155. korina_start_dma(lp->rx_dma_regs, CPHYSADDR(rd));
  156. }
  157. static void korina_chain_rx(struct korina_private *lp,
  158. struct dma_desc *rd)
  159. {
  160. korina_chain_dma(lp->rx_dma_regs, CPHYSADDR(rd));
  161. }
  162. /* transmit packet */
  163. static int korina_send_packet(struct sk_buff *skb, struct net_device *dev)
  164. {
  165. struct korina_private *lp = netdev_priv(dev);
  166. unsigned long flags;
  167. u32 length;
  168. u32 chain_index;
  169. struct dma_desc *td;
  170. spin_lock_irqsave(&lp->lock, flags);
  171. td = &lp->td_ring[lp->tx_chain_tail];
  172. /* stop queue when full, drop pkts if queue already full */
  173. if (lp->tx_count >= (KORINA_NUM_TDS - 2)) {
  174. lp->tx_full = 1;
  175. if (lp->tx_count == (KORINA_NUM_TDS - 2))
  176. netif_stop_queue(dev);
  177. else {
  178. dev->stats.tx_dropped++;
  179. dev_kfree_skb_any(skb);
  180. spin_unlock_irqrestore(&lp->lock, flags);
  181. return NETDEV_TX_BUSY;
  182. }
  183. }
  184. lp->tx_count++;
  185. lp->tx_skb[lp->tx_chain_tail] = skb;
  186. length = skb->len;
  187. dma_cache_wback((u32)skb->data, skb->len);
  188. /* Setup the transmit descriptor. */
  189. dma_cache_inv((u32) td, sizeof(*td));
  190. td->ca = CPHYSADDR(skb->data);
  191. chain_index = (lp->tx_chain_tail - 1) &
  192. KORINA_TDS_MASK;
  193. if (readl(&(lp->tx_dma_regs->dmandptr)) == 0) {
  194. if (lp->tx_chain_status == desc_empty) {
  195. /* Update tail */
  196. td->control = DMA_COUNT(length) |
  197. DMA_DESC_COF | DMA_DESC_IOF;
  198. /* Move tail */
  199. lp->tx_chain_tail = chain_index;
  200. /* Write to NDPTR */
  201. writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
  202. &lp->tx_dma_regs->dmandptr);
  203. /* Move head to tail */
  204. lp->tx_chain_head = lp->tx_chain_tail;
  205. } else {
  206. /* Update tail */
  207. td->control = DMA_COUNT(length) |
  208. DMA_DESC_COF | DMA_DESC_IOF;
  209. /* Link to prev */
  210. lp->td_ring[chain_index].control &=
  211. ~DMA_DESC_COF;
  212. /* Link to prev */
  213. lp->td_ring[chain_index].link = CPHYSADDR(td);
  214. /* Move tail */
  215. lp->tx_chain_tail = chain_index;
  216. /* Write to NDPTR */
  217. writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
  218. &(lp->tx_dma_regs->dmandptr));
  219. /* Move head to tail */
  220. lp->tx_chain_head = lp->tx_chain_tail;
  221. lp->tx_chain_status = desc_empty;
  222. }
  223. } else {
  224. if (lp->tx_chain_status == desc_empty) {
  225. /* Update tail */
  226. td->control = DMA_COUNT(length) |
  227. DMA_DESC_COF | DMA_DESC_IOF;
  228. /* Move tail */
  229. lp->tx_chain_tail = chain_index;
  230. lp->tx_chain_status = desc_filled;
  231. netif_stop_queue(dev);
  232. } else {
  233. /* Update tail */
  234. td->control = DMA_COUNT(length) |
  235. DMA_DESC_COF | DMA_DESC_IOF;
  236. lp->td_ring[chain_index].control &=
  237. ~DMA_DESC_COF;
  238. lp->td_ring[chain_index].link = CPHYSADDR(td);
  239. lp->tx_chain_tail = chain_index;
  240. }
  241. }
  242. dma_cache_wback((u32) td, sizeof(*td));
  243. dev->trans_start = jiffies;
  244. spin_unlock_irqrestore(&lp->lock, flags);
  245. return NETDEV_TX_OK;
  246. }
  247. static int mdio_read(struct net_device *dev, int mii_id, int reg)
  248. {
  249. struct korina_private *lp = netdev_priv(dev);
  250. int ret;
  251. mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
  252. writel(0, &lp->eth_regs->miimcfg);
  253. writel(0, &lp->eth_regs->miimcmd);
  254. writel(mii_id | reg, &lp->eth_regs->miimaddr);
  255. writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
  256. ret = (int)(readl(&lp->eth_regs->miimrdd));
  257. return ret;
  258. }
  259. static void mdio_write(struct net_device *dev, int mii_id, int reg, int val)
  260. {
  261. struct korina_private *lp = netdev_priv(dev);
  262. mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
  263. writel(0, &lp->eth_regs->miimcfg);
  264. writel(1, &lp->eth_regs->miimcmd);
  265. writel(mii_id | reg, &lp->eth_regs->miimaddr);
  266. writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
  267. writel(val, &lp->eth_regs->miimwtd);
  268. }
  269. /* Ethernet Rx DMA interrupt */
  270. static irqreturn_t korina_rx_dma_interrupt(int irq, void *dev_id)
  271. {
  272. struct net_device *dev = dev_id;
  273. struct korina_private *lp = netdev_priv(dev);
  274. u32 dmas, dmasm;
  275. irqreturn_t retval;
  276. dmas = readl(&lp->rx_dma_regs->dmas);
  277. if (dmas & (DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR)) {
  278. netif_rx_schedule_prep(dev, &lp->napi);
  279. dmasm = readl(&lp->rx_dma_regs->dmasm);
  280. writel(dmasm | (DMA_STAT_DONE |
  281. DMA_STAT_HALT | DMA_STAT_ERR),
  282. &lp->rx_dma_regs->dmasm);
  283. if (dmas & DMA_STAT_ERR)
  284. printk(KERN_ERR DRV_NAME "%s: DMA error\n", dev->name);
  285. retval = IRQ_HANDLED;
  286. } else
  287. retval = IRQ_NONE;
  288. return retval;
  289. }
  290. static int korina_rx(struct net_device *dev, int limit)
  291. {
  292. struct korina_private *lp = netdev_priv(dev);
  293. struct dma_desc *rd = &lp->rd_ring[lp->rx_next_done];
  294. struct sk_buff *skb, *skb_new;
  295. u8 *pkt_buf;
  296. u32 devcs, pkt_len, dmas, rx_free_desc;
  297. int count;
  298. dma_cache_inv((u32)rd, sizeof(*rd));
  299. for (count = 0; count < limit; count++) {
  300. devcs = rd->devcs;
  301. /* Update statistics counters */
  302. if (devcs & ETH_RX_CRC)
  303. dev->stats.rx_crc_errors++;
  304. if (devcs & ETH_RX_LOR)
  305. dev->stats.rx_length_errors++;
  306. if (devcs & ETH_RX_LE)
  307. dev->stats.rx_length_errors++;
  308. if (devcs & ETH_RX_OVR)
  309. dev->stats.rx_over_errors++;
  310. if (devcs & ETH_RX_CV)
  311. dev->stats.rx_frame_errors++;
  312. if (devcs & ETH_RX_CES)
  313. dev->stats.rx_length_errors++;
  314. if (devcs & ETH_RX_MP)
  315. dev->stats.multicast++;
  316. if ((devcs & ETH_RX_LD) != ETH_RX_LD) {
  317. /* check that this is a whole packet
  318. * WARNING: DMA_FD bit incorrectly set
  319. * in Rc32434 (errata ref #077) */
  320. dev->stats.rx_errors++;
  321. dev->stats.rx_dropped++;
  322. }
  323. while ((rx_free_desc = KORINA_RBSIZE - (u32)DMA_COUNT(rd->control)) != 0) {
  324. /* init the var. used for the later
  325. * operations within the while loop */
  326. skb_new = NULL;
  327. pkt_len = RCVPKT_LENGTH(devcs);
  328. skb = lp->rx_skb[lp->rx_next_done];
  329. if ((devcs & ETH_RX_ROK)) {
  330. /* must be the (first and) last
  331. * descriptor then */
  332. pkt_buf = (u8 *)lp->rx_skb[lp->rx_next_done]->data;
  333. /* invalidate the cache */
  334. dma_cache_inv((unsigned long)pkt_buf, pkt_len - 4);
  335. /* Malloc up new buffer. */
  336. skb_new = netdev_alloc_skb(dev, KORINA_RBSIZE + 2);
  337. if (!skb_new)
  338. break;
  339. /* Do not count the CRC */
  340. skb_put(skb, pkt_len - 4);
  341. skb->protocol = eth_type_trans(skb, dev);
  342. /* Pass the packet to upper layers */
  343. netif_receive_skb(skb);
  344. dev->last_rx = jiffies;
  345. dev->stats.rx_packets++;
  346. dev->stats.rx_bytes += pkt_len;
  347. /* Update the mcast stats */
  348. if (devcs & ETH_RX_MP)
  349. dev->stats.multicast++;
  350. lp->rx_skb[lp->rx_next_done] = skb_new;
  351. }
  352. rd->devcs = 0;
  353. /* Restore descriptor's curr_addr */
  354. if (skb_new)
  355. rd->ca = CPHYSADDR(skb_new->data);
  356. else
  357. rd->ca = CPHYSADDR(skb->data);
  358. rd->control = DMA_COUNT(KORINA_RBSIZE) |
  359. DMA_DESC_COD | DMA_DESC_IOD;
  360. lp->rd_ring[(lp->rx_next_done - 1) &
  361. KORINA_RDS_MASK].control &=
  362. ~DMA_DESC_COD;
  363. lp->rx_next_done = (lp->rx_next_done + 1) & KORINA_RDS_MASK;
  364. dma_cache_wback((u32)rd, sizeof(*rd));
  365. rd = &lp->rd_ring[lp->rx_next_done];
  366. writel(~DMA_STAT_DONE, &lp->rx_dma_regs->dmas);
  367. }
  368. }
  369. dmas = readl(&lp->rx_dma_regs->dmas);
  370. if (dmas & DMA_STAT_HALT) {
  371. writel(~(DMA_STAT_HALT | DMA_STAT_ERR),
  372. &lp->rx_dma_regs->dmas);
  373. lp->dma_halt_cnt++;
  374. rd->devcs = 0;
  375. skb = lp->rx_skb[lp->rx_next_done];
  376. rd->ca = CPHYSADDR(skb->data);
  377. dma_cache_wback((u32)rd, sizeof(*rd));
  378. korina_chain_rx(lp, rd);
  379. }
  380. return count;
  381. }
  382. static int korina_poll(struct napi_struct *napi, int budget)
  383. {
  384. struct korina_private *lp =
  385. container_of(napi, struct korina_private, napi);
  386. struct net_device *dev = lp->dev;
  387. int work_done;
  388. work_done = korina_rx(dev, budget);
  389. if (work_done < budget) {
  390. netif_rx_complete(dev, napi);
  391. writel(readl(&lp->rx_dma_regs->dmasm) &
  392. ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
  393. &lp->rx_dma_regs->dmasm);
  394. }
  395. return work_done;
  396. }
  397. /*
  398. * Set or clear the multicast filter for this adaptor.
  399. */
  400. static void korina_multicast_list(struct net_device *dev)
  401. {
  402. struct korina_private *lp = netdev_priv(dev);
  403. unsigned long flags;
  404. struct dev_mc_list *dmi = dev->mc_list;
  405. u32 recognise = ETH_ARC_AB; /* always accept broadcasts */
  406. int i;
  407. /* Set promiscuous mode */
  408. if (dev->flags & IFF_PROMISC)
  409. recognise |= ETH_ARC_PRO;
  410. else if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 4))
  411. /* All multicast and broadcast */
  412. recognise |= ETH_ARC_AM;
  413. /* Build the hash table */
  414. if (dev->mc_count > 4) {
  415. u16 hash_table[4];
  416. u32 crc;
  417. for (i = 0; i < 4; i++)
  418. hash_table[i] = 0;
  419. for (i = 0; i < dev->mc_count; i++) {
  420. char *addrs = dmi->dmi_addr;
  421. dmi = dmi->next;
  422. if (!(*addrs & 1))
  423. continue;
  424. crc = ether_crc_le(6, addrs);
  425. crc >>= 26;
  426. hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
  427. }
  428. /* Accept filtered multicast */
  429. recognise |= ETH_ARC_AFM;
  430. /* Fill the MAC hash tables with their values */
  431. writel((u32)(hash_table[1] << 16 | hash_table[0]),
  432. &lp->eth_regs->ethhash0);
  433. writel((u32)(hash_table[3] << 16 | hash_table[2]),
  434. &lp->eth_regs->ethhash1);
  435. }
  436. spin_lock_irqsave(&lp->lock, flags);
  437. writel(recognise, &lp->eth_regs->etharc);
  438. spin_unlock_irqrestore(&lp->lock, flags);
  439. }
  440. static void korina_tx(struct net_device *dev)
  441. {
  442. struct korina_private *lp = netdev_priv(dev);
  443. struct dma_desc *td = &lp->td_ring[lp->tx_next_done];
  444. u32 devcs;
  445. u32 dmas;
  446. spin_lock(&lp->lock);
  447. /* Process all desc that are done */
  448. while (IS_DMA_FINISHED(td->control)) {
  449. if (lp->tx_full == 1) {
  450. netif_wake_queue(dev);
  451. lp->tx_full = 0;
  452. }
  453. devcs = lp->td_ring[lp->tx_next_done].devcs;
  454. if ((devcs & (ETH_TX_FD | ETH_TX_LD)) !=
  455. (ETH_TX_FD | ETH_TX_LD)) {
  456. dev->stats.tx_errors++;
  457. dev->stats.tx_dropped++;
  458. /* Should never happen */
  459. printk(KERN_ERR DRV_NAME "%s: split tx ignored\n",
  460. dev->name);
  461. } else if (devcs & ETH_TX_TOK) {
  462. dev->stats.tx_packets++;
  463. dev->stats.tx_bytes +=
  464. lp->tx_skb[lp->tx_next_done]->len;
  465. } else {
  466. dev->stats.tx_errors++;
  467. dev->stats.tx_dropped++;
  468. /* Underflow */
  469. if (devcs & ETH_TX_UND)
  470. dev->stats.tx_fifo_errors++;
  471. /* Oversized frame */
  472. if (devcs & ETH_TX_OF)
  473. dev->stats.tx_aborted_errors++;
  474. /* Excessive deferrals */
  475. if (devcs & ETH_TX_ED)
  476. dev->stats.tx_carrier_errors++;
  477. /* Collisions: medium busy */
  478. if (devcs & ETH_TX_EC)
  479. dev->stats.collisions++;
  480. /* Late collision */
  481. if (devcs & ETH_TX_LC)
  482. dev->stats.tx_window_errors++;
  483. }
  484. /* We must always free the original skb */
  485. if (lp->tx_skb[lp->tx_next_done]) {
  486. dev_kfree_skb_any(lp->tx_skb[lp->tx_next_done]);
  487. lp->tx_skb[lp->tx_next_done] = NULL;
  488. }
  489. lp->td_ring[lp->tx_next_done].control = DMA_DESC_IOF;
  490. lp->td_ring[lp->tx_next_done].devcs = ETH_TX_FD | ETH_TX_LD;
  491. lp->td_ring[lp->tx_next_done].link = 0;
  492. lp->td_ring[lp->tx_next_done].ca = 0;
  493. lp->tx_count--;
  494. /* Go on to next transmission */
  495. lp->tx_next_done = (lp->tx_next_done + 1) & KORINA_TDS_MASK;
  496. td = &lp->td_ring[lp->tx_next_done];
  497. }
  498. /* Clear the DMA status register */
  499. dmas = readl(&lp->tx_dma_regs->dmas);
  500. writel(~dmas, &lp->tx_dma_regs->dmas);
  501. writel(readl(&lp->tx_dma_regs->dmasm) &
  502. ~(DMA_STAT_FINI | DMA_STAT_ERR),
  503. &lp->tx_dma_regs->dmasm);
  504. spin_unlock(&lp->lock);
  505. }
  506. static irqreturn_t
  507. korina_tx_dma_interrupt(int irq, void *dev_id)
  508. {
  509. struct net_device *dev = dev_id;
  510. struct korina_private *lp = netdev_priv(dev);
  511. u32 dmas, dmasm;
  512. irqreturn_t retval;
  513. dmas = readl(&lp->tx_dma_regs->dmas);
  514. if (dmas & (DMA_STAT_FINI | DMA_STAT_ERR)) {
  515. korina_tx(dev);
  516. dmasm = readl(&lp->tx_dma_regs->dmasm);
  517. writel(dmasm | (DMA_STAT_FINI | DMA_STAT_ERR),
  518. &lp->tx_dma_regs->dmasm);
  519. if (lp->tx_chain_status == desc_filled &&
  520. (readl(&(lp->tx_dma_regs->dmandptr)) == 0)) {
  521. writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
  522. &(lp->tx_dma_regs->dmandptr));
  523. lp->tx_chain_status = desc_empty;
  524. lp->tx_chain_head = lp->tx_chain_tail;
  525. dev->trans_start = jiffies;
  526. }
  527. if (dmas & DMA_STAT_ERR)
  528. printk(KERN_ERR DRV_NAME "%s: DMA error\n", dev->name);
  529. retval = IRQ_HANDLED;
  530. } else
  531. retval = IRQ_NONE;
  532. return retval;
  533. }
  534. static void korina_check_media(struct net_device *dev, unsigned int init_media)
  535. {
  536. struct korina_private *lp = netdev_priv(dev);
  537. mii_check_media(&lp->mii_if, 0, init_media);
  538. if (lp->mii_if.full_duplex)
  539. writel(readl(&lp->eth_regs->ethmac2) | ETH_MAC2_FD,
  540. &lp->eth_regs->ethmac2);
  541. else
  542. writel(readl(&lp->eth_regs->ethmac2) & ~ETH_MAC2_FD,
  543. &lp->eth_regs->ethmac2);
  544. }
  545. static void korina_set_carrier(struct mii_if_info *mii)
  546. {
  547. if (mii->force_media) {
  548. /* autoneg is off: Link is always assumed to be up */
  549. if (!netif_carrier_ok(mii->dev))
  550. netif_carrier_on(mii->dev);
  551. } else /* Let MMI library update carrier status */
  552. korina_check_media(mii->dev, 0);
  553. }
  554. static int korina_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  555. {
  556. struct korina_private *lp = netdev_priv(dev);
  557. struct mii_ioctl_data *data = if_mii(rq);
  558. int rc;
  559. if (!netif_running(dev))
  560. return -EINVAL;
  561. spin_lock_irq(&lp->lock);
  562. rc = generic_mii_ioctl(&lp->mii_if, data, cmd, NULL);
  563. spin_unlock_irq(&lp->lock);
  564. korina_set_carrier(&lp->mii_if);
  565. return rc;
  566. }
  567. /* ethtool helpers */
  568. static void netdev_get_drvinfo(struct net_device *dev,
  569. struct ethtool_drvinfo *info)
  570. {
  571. struct korina_private *lp = netdev_priv(dev);
  572. strcpy(info->driver, DRV_NAME);
  573. strcpy(info->version, DRV_VERSION);
  574. strcpy(info->bus_info, lp->dev->name);
  575. }
  576. static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  577. {
  578. struct korina_private *lp = netdev_priv(dev);
  579. int rc;
  580. spin_lock_irq(&lp->lock);
  581. rc = mii_ethtool_gset(&lp->mii_if, cmd);
  582. spin_unlock_irq(&lp->lock);
  583. return rc;
  584. }
  585. static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  586. {
  587. struct korina_private *lp = netdev_priv(dev);
  588. int rc;
  589. spin_lock_irq(&lp->lock);
  590. rc = mii_ethtool_sset(&lp->mii_if, cmd);
  591. spin_unlock_irq(&lp->lock);
  592. korina_set_carrier(&lp->mii_if);
  593. return rc;
  594. }
  595. static u32 netdev_get_link(struct net_device *dev)
  596. {
  597. struct korina_private *lp = netdev_priv(dev);
  598. return mii_link_ok(&lp->mii_if);
  599. }
  600. static struct ethtool_ops netdev_ethtool_ops = {
  601. .get_drvinfo = netdev_get_drvinfo,
  602. .get_settings = netdev_get_settings,
  603. .set_settings = netdev_set_settings,
  604. .get_link = netdev_get_link,
  605. };
  606. static void korina_alloc_ring(struct net_device *dev)
  607. {
  608. struct korina_private *lp = netdev_priv(dev);
  609. int i;
  610. /* Initialize the transmit descriptors */
  611. for (i = 0; i < KORINA_NUM_TDS; i++) {
  612. lp->td_ring[i].control = DMA_DESC_IOF;
  613. lp->td_ring[i].devcs = ETH_TX_FD | ETH_TX_LD;
  614. lp->td_ring[i].ca = 0;
  615. lp->td_ring[i].link = 0;
  616. }
  617. lp->tx_next_done = lp->tx_chain_head = lp->tx_chain_tail =
  618. lp->tx_full = lp->tx_count = 0;
  619. lp->tx_chain_status = desc_empty;
  620. /* Initialize the receive descriptors */
  621. for (i = 0; i < KORINA_NUM_RDS; i++) {
  622. struct sk_buff *skb = lp->rx_skb[i];
  623. skb = dev_alloc_skb(KORINA_RBSIZE + 2);
  624. if (!skb)
  625. break;
  626. skb_reserve(skb, 2);
  627. lp->rx_skb[i] = skb;
  628. lp->rd_ring[i].control = DMA_DESC_IOD |
  629. DMA_COUNT(KORINA_RBSIZE);
  630. lp->rd_ring[i].devcs = 0;
  631. lp->rd_ring[i].ca = CPHYSADDR(skb->data);
  632. lp->rd_ring[i].link = CPHYSADDR(&lp->rd_ring[i+1]);
  633. }
  634. /* loop back */
  635. lp->rd_ring[i].link = CPHYSADDR(&lp->rd_ring[0]);
  636. lp->rx_next_done = 0;
  637. lp->rd_ring[i].control |= DMA_DESC_COD;
  638. lp->rx_chain_head = 0;
  639. lp->rx_chain_tail = 0;
  640. lp->rx_chain_status = desc_empty;
  641. }
  642. static void korina_free_ring(struct net_device *dev)
  643. {
  644. struct korina_private *lp = netdev_priv(dev);
  645. int i;
  646. for (i = 0; i < KORINA_NUM_RDS; i++) {
  647. lp->rd_ring[i].control = 0;
  648. if (lp->rx_skb[i])
  649. dev_kfree_skb_any(lp->rx_skb[i]);
  650. lp->rx_skb[i] = NULL;
  651. }
  652. for (i = 0; i < KORINA_NUM_TDS; i++) {
  653. lp->td_ring[i].control = 0;
  654. if (lp->tx_skb[i])
  655. dev_kfree_skb_any(lp->tx_skb[i]);
  656. lp->tx_skb[i] = NULL;
  657. }
  658. }
  659. /*
  660. * Initialize the RC32434 ethernet controller.
  661. */
  662. static int korina_init(struct net_device *dev)
  663. {
  664. struct korina_private *lp = netdev_priv(dev);
  665. /* Disable DMA */
  666. korina_abort_tx(dev);
  667. korina_abort_rx(dev);
  668. /* reset ethernet logic */
  669. writel(0, &lp->eth_regs->ethintfc);
  670. while ((readl(&lp->eth_regs->ethintfc) & ETH_INT_FC_RIP))
  671. dev->trans_start = jiffies;
  672. /* Enable Ethernet Interface */
  673. writel(ETH_INT_FC_EN, &lp->eth_regs->ethintfc);
  674. /* Allocate rings */
  675. korina_alloc_ring(dev);
  676. writel(0, &lp->rx_dma_regs->dmas);
  677. /* Start Rx DMA */
  678. korina_start_rx(lp, &lp->rd_ring[0]);
  679. writel(readl(&lp->tx_dma_regs->dmasm) &
  680. ~(DMA_STAT_FINI | DMA_STAT_ERR),
  681. &lp->tx_dma_regs->dmasm);
  682. writel(readl(&lp->rx_dma_regs->dmasm) &
  683. ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
  684. &lp->rx_dma_regs->dmasm);
  685. /* Accept only packets destined for this Ethernet device address */
  686. writel(ETH_ARC_AB, &lp->eth_regs->etharc);
  687. /* Set all Ether station address registers to their initial values */
  688. writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal0);
  689. writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah0);
  690. writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal1);
  691. writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah1);
  692. writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal2);
  693. writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah2);
  694. writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal3);
  695. writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah3);
  696. /* Frame Length Checking, Pad Enable, CRC Enable, Full Duplex set */
  697. writel(ETH_MAC2_PE | ETH_MAC2_CEN | ETH_MAC2_FD,
  698. &lp->eth_regs->ethmac2);
  699. /* Back to back inter-packet-gap */
  700. writel(0x15, &lp->eth_regs->ethipgt);
  701. /* Non - Back to back inter-packet-gap */
  702. writel(0x12, &lp->eth_regs->ethipgr);
  703. /* Management Clock Prescaler Divisor
  704. * Clock independent setting */
  705. writel(((idt_cpu_freq) / MII_CLOCK + 1) & ~1,
  706. &lp->eth_regs->ethmcp);
  707. /* don't transmit until fifo contains 48b */
  708. writel(48, &lp->eth_regs->ethfifott);
  709. writel(ETH_MAC1_RE, &lp->eth_regs->ethmac1);
  710. napi_enable(&lp->napi);
  711. netif_start_queue(dev);
  712. return 0;
  713. }
  714. /*
  715. * Restart the RC32434 ethernet controller.
  716. * FIXME: check the return status where we call it
  717. */
  718. static int korina_restart(struct net_device *dev)
  719. {
  720. struct korina_private *lp = netdev_priv(dev);
  721. int ret;
  722. /*
  723. * Disable interrupts
  724. */
  725. disable_irq(lp->rx_irq);
  726. disable_irq(lp->tx_irq);
  727. disable_irq(lp->ovr_irq);
  728. disable_irq(lp->und_irq);
  729. writel(readl(&lp->tx_dma_regs->dmasm) |
  730. DMA_STAT_FINI | DMA_STAT_ERR,
  731. &lp->tx_dma_regs->dmasm);
  732. writel(readl(&lp->rx_dma_regs->dmasm) |
  733. DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR,
  734. &lp->rx_dma_regs->dmasm);
  735. korina_free_ring(dev);
  736. ret = korina_init(dev);
  737. if (ret < 0) {
  738. printk(KERN_ERR DRV_NAME "%s: cannot restart device\n",
  739. dev->name);
  740. return ret;
  741. }
  742. korina_multicast_list(dev);
  743. enable_irq(lp->und_irq);
  744. enable_irq(lp->ovr_irq);
  745. enable_irq(lp->tx_irq);
  746. enable_irq(lp->rx_irq);
  747. return ret;
  748. }
  749. static void korina_clear_and_restart(struct net_device *dev, u32 value)
  750. {
  751. struct korina_private *lp = netdev_priv(dev);
  752. netif_stop_queue(dev);
  753. writel(value, &lp->eth_regs->ethintfc);
  754. korina_restart(dev);
  755. }
  756. /* Ethernet Tx Underflow interrupt */
  757. static irqreturn_t korina_und_interrupt(int irq, void *dev_id)
  758. {
  759. struct net_device *dev = dev_id;
  760. struct korina_private *lp = netdev_priv(dev);
  761. unsigned int und;
  762. spin_lock(&lp->lock);
  763. und = readl(&lp->eth_regs->ethintfc);
  764. if (und & ETH_INT_FC_UND)
  765. korina_clear_and_restart(dev, und & ~ETH_INT_FC_UND);
  766. spin_unlock(&lp->lock);
  767. return IRQ_HANDLED;
  768. }
  769. static void korina_tx_timeout(struct net_device *dev)
  770. {
  771. struct korina_private *lp = netdev_priv(dev);
  772. unsigned long flags;
  773. spin_lock_irqsave(&lp->lock, flags);
  774. korina_restart(dev);
  775. spin_unlock_irqrestore(&lp->lock, flags);
  776. }
  777. /* Ethernet Rx Overflow interrupt */
  778. static irqreturn_t
  779. korina_ovr_interrupt(int irq, void *dev_id)
  780. {
  781. struct net_device *dev = dev_id;
  782. struct korina_private *lp = netdev_priv(dev);
  783. unsigned int ovr;
  784. spin_lock(&lp->lock);
  785. ovr = readl(&lp->eth_regs->ethintfc);
  786. if (ovr & ETH_INT_FC_OVR)
  787. korina_clear_and_restart(dev, ovr & ~ETH_INT_FC_OVR);
  788. spin_unlock(&lp->lock);
  789. return IRQ_HANDLED;
  790. }
  791. #ifdef CONFIG_NET_POLL_CONTROLLER
  792. static void korina_poll_controller(struct net_device *dev)
  793. {
  794. disable_irq(dev->irq);
  795. korina_tx_dma_interrupt(dev->irq, dev);
  796. enable_irq(dev->irq);
  797. }
  798. #endif
  799. static int korina_open(struct net_device *dev)
  800. {
  801. struct korina_private *lp = netdev_priv(dev);
  802. int ret;
  803. /* Initialize */
  804. ret = korina_init(dev);
  805. if (ret < 0) {
  806. printk(KERN_ERR DRV_NAME "%s: cannot open device\n", dev->name);
  807. goto out;
  808. }
  809. /* Install the interrupt handler
  810. * that handles the Done Finished
  811. * Ovr and Und Events */
  812. ret = request_irq(lp->rx_irq, &korina_rx_dma_interrupt,
  813. IRQF_SHARED | IRQF_DISABLED, "Korina ethernet Rx", dev);
  814. if (ret < 0) {
  815. printk(KERN_ERR DRV_NAME "%s: unable to get Rx DMA IRQ %d\n",
  816. dev->name, lp->rx_irq);
  817. goto err_release;
  818. }
  819. ret = request_irq(lp->tx_irq, &korina_tx_dma_interrupt,
  820. IRQF_SHARED | IRQF_DISABLED, "Korina ethernet Tx", dev);
  821. if (ret < 0) {
  822. printk(KERN_ERR DRV_NAME "%s: unable to get Tx DMA IRQ %d\n",
  823. dev->name, lp->tx_irq);
  824. goto err_free_rx_irq;
  825. }
  826. /* Install handler for overrun error. */
  827. ret = request_irq(lp->ovr_irq, &korina_ovr_interrupt,
  828. IRQF_SHARED | IRQF_DISABLED, "Ethernet Overflow", dev);
  829. if (ret < 0) {
  830. printk(KERN_ERR DRV_NAME"%s: unable to get OVR IRQ %d\n",
  831. dev->name, lp->ovr_irq);
  832. goto err_free_tx_irq;
  833. }
  834. /* Install handler for underflow error. */
  835. ret = request_irq(lp->und_irq, &korina_und_interrupt,
  836. IRQF_SHARED | IRQF_DISABLED, "Ethernet Underflow", dev);
  837. if (ret < 0) {
  838. printk(KERN_ERR DRV_NAME "%s: unable to get UND IRQ %d\n",
  839. dev->name, lp->und_irq);
  840. goto err_free_ovr_irq;
  841. }
  842. out:
  843. return ret;
  844. err_free_ovr_irq:
  845. free_irq(lp->ovr_irq, dev);
  846. err_free_tx_irq:
  847. free_irq(lp->tx_irq, dev);
  848. err_free_rx_irq:
  849. free_irq(lp->rx_irq, dev);
  850. err_release:
  851. korina_free_ring(dev);
  852. goto out;
  853. }
  854. static int korina_close(struct net_device *dev)
  855. {
  856. struct korina_private *lp = netdev_priv(dev);
  857. u32 tmp;
  858. /* Disable interrupts */
  859. disable_irq(lp->rx_irq);
  860. disable_irq(lp->tx_irq);
  861. disable_irq(lp->ovr_irq);
  862. disable_irq(lp->und_irq);
  863. korina_abort_tx(dev);
  864. tmp = readl(&lp->tx_dma_regs->dmasm);
  865. tmp = tmp | DMA_STAT_FINI | DMA_STAT_ERR;
  866. writel(tmp, &lp->tx_dma_regs->dmasm);
  867. korina_abort_rx(dev);
  868. tmp = readl(&lp->rx_dma_regs->dmasm);
  869. tmp = tmp | DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR;
  870. writel(tmp, &lp->rx_dma_regs->dmasm);
  871. korina_free_ring(dev);
  872. free_irq(lp->rx_irq, dev);
  873. free_irq(lp->tx_irq, dev);
  874. free_irq(lp->ovr_irq, dev);
  875. free_irq(lp->und_irq, dev);
  876. return 0;
  877. }
  878. static int korina_probe(struct platform_device *pdev)
  879. {
  880. struct korina_device *bif = platform_get_drvdata(pdev);
  881. struct korina_private *lp;
  882. struct net_device *dev;
  883. struct resource *r;
  884. int rc;
  885. dev = alloc_etherdev(sizeof(struct korina_private));
  886. if (!dev) {
  887. printk(KERN_ERR DRV_NAME ": alloc_etherdev failed\n");
  888. return -ENOMEM;
  889. }
  890. SET_NETDEV_DEV(dev, &pdev->dev);
  891. platform_set_drvdata(pdev, dev);
  892. lp = netdev_priv(dev);
  893. bif->dev = dev;
  894. memcpy(dev->dev_addr, bif->mac, 6);
  895. lp->rx_irq = platform_get_irq_byname(pdev, "korina_rx");
  896. lp->tx_irq = platform_get_irq_byname(pdev, "korina_tx");
  897. lp->ovr_irq = platform_get_irq_byname(pdev, "korina_ovr");
  898. lp->und_irq = platform_get_irq_byname(pdev, "korina_und");
  899. r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_regs");
  900. dev->base_addr = r->start;
  901. lp->eth_regs = ioremap_nocache(r->start, r->end - r->start);
  902. if (!lp->eth_regs) {
  903. printk(KERN_ERR DRV_NAME "cannot remap registers\n");
  904. rc = -ENXIO;
  905. goto probe_err_out;
  906. }
  907. r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_rx");
  908. lp->rx_dma_regs = ioremap_nocache(r->start, r->end - r->start);
  909. if (!lp->rx_dma_regs) {
  910. printk(KERN_ERR DRV_NAME "cannot remap Rx DMA registers\n");
  911. rc = -ENXIO;
  912. goto probe_err_dma_rx;
  913. }
  914. r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_tx");
  915. lp->tx_dma_regs = ioremap_nocache(r->start, r->end - r->start);
  916. if (!lp->tx_dma_regs) {
  917. printk(KERN_ERR DRV_NAME "cannot remap Tx DMA registers\n");
  918. rc = -ENXIO;
  919. goto probe_err_dma_tx;
  920. }
  921. lp->td_ring = kmalloc(TD_RING_SIZE + RD_RING_SIZE, GFP_KERNEL);
  922. if (!lp->td_ring) {
  923. printk(KERN_ERR DRV_NAME "cannot allocate descriptors\n");
  924. rc = -ENXIO;
  925. goto probe_err_td_ring;
  926. }
  927. dma_cache_inv((unsigned long)(lp->td_ring),
  928. TD_RING_SIZE + RD_RING_SIZE);
  929. /* now convert TD_RING pointer to KSEG1 */
  930. lp->td_ring = (struct dma_desc *)KSEG1ADDR(lp->td_ring);
  931. lp->rd_ring = &lp->td_ring[KORINA_NUM_TDS];
  932. spin_lock_init(&lp->lock);
  933. /* just use the rx dma irq */
  934. dev->irq = lp->rx_irq;
  935. lp->dev = dev;
  936. dev->open = korina_open;
  937. dev->stop = korina_close;
  938. dev->hard_start_xmit = korina_send_packet;
  939. dev->set_multicast_list = &korina_multicast_list;
  940. dev->ethtool_ops = &netdev_ethtool_ops;
  941. dev->tx_timeout = korina_tx_timeout;
  942. dev->watchdog_timeo = TX_TIMEOUT;
  943. dev->do_ioctl = &korina_ioctl;
  944. #ifdef CONFIG_NET_POLL_CONTROLLER
  945. dev->poll_controller = korina_poll_controller;
  946. #endif
  947. netif_napi_add(dev, &lp->napi, korina_poll, 64);
  948. lp->phy_addr = (((lp->rx_irq == 0x2c? 1:0) << 8) | 0x05);
  949. lp->mii_if.dev = dev;
  950. lp->mii_if.mdio_read = mdio_read;
  951. lp->mii_if.mdio_write = mdio_write;
  952. lp->mii_if.phy_id = lp->phy_addr;
  953. lp->mii_if.phy_id_mask = 0x1f;
  954. lp->mii_if.reg_num_mask = 0x1f;
  955. rc = register_netdev(dev);
  956. if (rc < 0) {
  957. printk(KERN_ERR DRV_NAME
  958. ": cannot register net device %d\n", rc);
  959. goto probe_err_register;
  960. }
  961. out:
  962. return rc;
  963. probe_err_register:
  964. kfree(lp->td_ring);
  965. probe_err_td_ring:
  966. iounmap(lp->tx_dma_regs);
  967. probe_err_dma_tx:
  968. iounmap(lp->rx_dma_regs);
  969. probe_err_dma_rx:
  970. iounmap(lp->eth_regs);
  971. probe_err_out:
  972. free_netdev(dev);
  973. goto out;
  974. }
  975. static int korina_remove(struct platform_device *pdev)
  976. {
  977. struct korina_device *bif = platform_get_drvdata(pdev);
  978. struct korina_private *lp = netdev_priv(bif->dev);
  979. iounmap(lp->eth_regs);
  980. iounmap(lp->rx_dma_regs);
  981. iounmap(lp->tx_dma_regs);
  982. platform_set_drvdata(pdev, NULL);
  983. unregister_netdev(bif->dev);
  984. free_netdev(bif->dev);
  985. return 0;
  986. }
  987. static struct platform_driver korina_driver = {
  988. .driver.name = "korina",
  989. .probe = korina_probe,
  990. .remove = korina_remove,
  991. };
  992. static int __init korina_init_module(void)
  993. {
  994. return platform_driver_register(&korina_driver);
  995. }
  996. static void korina_cleanup_module(void)
  997. {
  998. return platform_driver_unregister(&korina_driver);
  999. }
  1000. module_init(korina_init_module);
  1001. module_exit(korina_cleanup_module);
  1002. MODULE_AUTHOR("Philip Rischel <rischelp@idt.com>");
  1003. MODULE_AUTHOR("Felix Fietkau <nbd@openwrt.org>");
  1004. MODULE_AUTHOR("Florian Fainelli <florian@openwrt.org>");
  1005. MODULE_DESCRIPTION("IDT RC32434 (Korina) Ethernet driver");
  1006. MODULE_LICENSE("GPL");