rt2x00queue.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935
  1. /*
  2. Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
  3. Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
  4. <http://rt2x00.serialmonkey.com>
  5. This program is free software; you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation; either version 2 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program; if not, write to the
  15. Free Software Foundation, Inc.,
  16. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17. */
  18. /*
  19. Module: rt2x00lib
  20. Abstract: rt2x00 queue specific routines.
  21. */
  22. #include <linux/slab.h>
  23. #include <linux/kernel.h>
  24. #include <linux/module.h>
  25. #include <linux/dma-mapping.h>
  26. #include "rt2x00.h"
  27. #include "rt2x00lib.h"
  28. struct sk_buff *rt2x00queue_alloc_rxskb(struct rt2x00_dev *rt2x00dev,
  29. struct queue_entry *entry)
  30. {
  31. struct sk_buff *skb;
  32. struct skb_frame_desc *skbdesc;
  33. unsigned int frame_size;
  34. unsigned int head_size = 0;
  35. unsigned int tail_size = 0;
  36. /*
  37. * The frame size includes descriptor size, because the
  38. * hardware directly receive the frame into the skbuffer.
  39. */
  40. frame_size = entry->queue->data_size + entry->queue->desc_size;
  41. /*
  42. * The payload should be aligned to a 4-byte boundary,
  43. * this means we need at least 3 bytes for moving the frame
  44. * into the correct offset.
  45. */
  46. head_size = 4;
  47. /*
  48. * For IV/EIV/ICV assembly we must make sure there is
  49. * at least 8 bytes bytes available in headroom for IV/EIV
  50. * and 8 bytes for ICV data as tailroon.
  51. */
  52. if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
  53. head_size += 8;
  54. tail_size += 8;
  55. }
  56. /*
  57. * Allocate skbuffer.
  58. */
  59. skb = dev_alloc_skb(frame_size + head_size + tail_size);
  60. if (!skb)
  61. return NULL;
  62. /*
  63. * Make sure we not have a frame with the requested bytes
  64. * available in the head and tail.
  65. */
  66. skb_reserve(skb, head_size);
  67. skb_put(skb, frame_size);
  68. /*
  69. * Populate skbdesc.
  70. */
  71. skbdesc = get_skb_frame_desc(skb);
  72. memset(skbdesc, 0, sizeof(*skbdesc));
  73. skbdesc->entry = entry;
  74. if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags)) {
  75. skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
  76. skb->data,
  77. skb->len,
  78. DMA_FROM_DEVICE);
  79. skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
  80. }
  81. return skb;
  82. }
  83. void rt2x00queue_map_txskb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
  84. {
  85. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  86. skbdesc->skb_dma =
  87. dma_map_single(rt2x00dev->dev, skb->data, skb->len, DMA_TO_DEVICE);
  88. skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
  89. }
  90. EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
  91. void rt2x00queue_unmap_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
  92. {
  93. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  94. if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
  95. dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
  96. DMA_FROM_DEVICE);
  97. skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
  98. }
  99. if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
  100. dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
  101. DMA_TO_DEVICE);
  102. skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
  103. }
  104. }
  105. EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb);
  106. void rt2x00queue_free_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
  107. {
  108. if (!skb)
  109. return;
  110. rt2x00queue_unmap_skb(rt2x00dev, skb);
  111. dev_kfree_skb_any(skb);
  112. }
  113. void rt2x00queue_align_frame(struct sk_buff *skb)
  114. {
  115. unsigned int frame_length = skb->len;
  116. unsigned int align = ALIGN_SIZE(skb, 0);
  117. if (!align)
  118. return;
  119. skb_push(skb, align);
  120. memmove(skb->data, skb->data + align, frame_length);
  121. skb_trim(skb, frame_length);
  122. }
  123. void rt2x00queue_align_payload(struct sk_buff *skb, unsigned int header_length)
  124. {
  125. unsigned int frame_length = skb->len;
  126. unsigned int align = ALIGN_SIZE(skb, header_length);
  127. if (!align)
  128. return;
  129. skb_push(skb, align);
  130. memmove(skb->data, skb->data + align, frame_length);
  131. skb_trim(skb, frame_length);
  132. }
  133. void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int header_length)
  134. {
  135. unsigned int payload_length = skb->len - header_length;
  136. unsigned int header_align = ALIGN_SIZE(skb, 0);
  137. unsigned int payload_align = ALIGN_SIZE(skb, header_length);
  138. unsigned int l2pad = payload_length ? L2PAD_SIZE(header_length) : 0;
  139. /*
  140. * Adjust the header alignment if the payload needs to be moved more
  141. * than the header.
  142. */
  143. if (payload_align > header_align)
  144. header_align += 4;
  145. /* There is nothing to do if no alignment is needed */
  146. if (!header_align)
  147. return;
  148. /* Reserve the amount of space needed in front of the frame */
  149. skb_push(skb, header_align);
  150. /*
  151. * Move the header.
  152. */
  153. memmove(skb->data, skb->data + header_align, header_length);
  154. /* Move the payload, if present and if required */
  155. if (payload_length && payload_align)
  156. memmove(skb->data + header_length + l2pad,
  157. skb->data + header_length + l2pad + payload_align,
  158. payload_length);
  159. /* Trim the skb to the correct size */
  160. skb_trim(skb, header_length + l2pad + payload_length);
  161. }
  162. void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int header_length)
  163. {
  164. unsigned int l2pad = L2PAD_SIZE(header_length);
  165. if (!l2pad)
  166. return;
  167. memmove(skb->data + l2pad, skb->data, header_length);
  168. skb_pull(skb, l2pad);
  169. }
  170. static void rt2x00queue_create_tx_descriptor_seq(struct queue_entry *entry,
  171. struct txentry_desc *txdesc)
  172. {
  173. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
  174. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
  175. struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
  176. unsigned long irqflags;
  177. if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) ||
  178. unlikely(!tx_info->control.vif))
  179. return;
  180. /*
  181. * Hardware should insert sequence counter.
  182. * FIXME: We insert a software sequence counter first for
  183. * hardware that doesn't support hardware sequence counting.
  184. *
  185. * This is wrong because beacons are not getting sequence
  186. * numbers assigned properly.
  187. *
  188. * A secondary problem exists for drivers that cannot toggle
  189. * sequence counting per-frame, since those will override the
  190. * sequence counter given by mac80211.
  191. */
  192. spin_lock_irqsave(&intf->seqlock, irqflags);
  193. if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
  194. intf->seqno += 0x10;
  195. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  196. hdr->seq_ctrl |= cpu_to_le16(intf->seqno);
  197. spin_unlock_irqrestore(&intf->seqlock, irqflags);
  198. __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
  199. }
  200. static void rt2x00queue_create_tx_descriptor_plcp(struct queue_entry *entry,
  201. struct txentry_desc *txdesc,
  202. const struct rt2x00_rate *hwrate)
  203. {
  204. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  205. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
  206. struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
  207. unsigned int data_length;
  208. unsigned int duration;
  209. unsigned int residual;
  210. /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
  211. data_length = entry->skb->len + 4;
  212. data_length += rt2x00crypto_tx_overhead(rt2x00dev, entry->skb);
  213. /*
  214. * PLCP setup
  215. * Length calculation depends on OFDM/CCK rate.
  216. */
  217. txdesc->signal = hwrate->plcp;
  218. txdesc->service = 0x04;
  219. if (hwrate->flags & DEV_RATE_OFDM) {
  220. txdesc->length_high = (data_length >> 6) & 0x3f;
  221. txdesc->length_low = data_length & 0x3f;
  222. } else {
  223. /*
  224. * Convert length to microseconds.
  225. */
  226. residual = GET_DURATION_RES(data_length, hwrate->bitrate);
  227. duration = GET_DURATION(data_length, hwrate->bitrate);
  228. if (residual != 0) {
  229. duration++;
  230. /*
  231. * Check if we need to set the Length Extension
  232. */
  233. if (hwrate->bitrate == 110 && residual <= 30)
  234. txdesc->service |= 0x80;
  235. }
  236. txdesc->length_high = (duration >> 8) & 0xff;
  237. txdesc->length_low = duration & 0xff;
  238. /*
  239. * When preamble is enabled we should set the
  240. * preamble bit for the signal.
  241. */
  242. if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  243. txdesc->signal |= 0x08;
  244. }
  245. }
  246. static void rt2x00queue_create_tx_descriptor(struct queue_entry *entry,
  247. struct txentry_desc *txdesc)
  248. {
  249. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  250. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
  251. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
  252. struct ieee80211_rate *rate =
  253. ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
  254. const struct rt2x00_rate *hwrate;
  255. memset(txdesc, 0, sizeof(*txdesc));
  256. /*
  257. * Initialize information from queue
  258. */
  259. txdesc->queue = entry->queue->qid;
  260. txdesc->cw_min = entry->queue->cw_min;
  261. txdesc->cw_max = entry->queue->cw_max;
  262. txdesc->aifs = entry->queue->aifs;
  263. /*
  264. * Header and frame information.
  265. */
  266. txdesc->length = entry->skb->len;
  267. txdesc->header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
  268. /*
  269. * Check whether this frame is to be acked.
  270. */
  271. if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
  272. __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
  273. /*
  274. * Check if this is a RTS/CTS frame
  275. */
  276. if (ieee80211_is_rts(hdr->frame_control) ||
  277. ieee80211_is_cts(hdr->frame_control)) {
  278. __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
  279. if (ieee80211_is_rts(hdr->frame_control))
  280. __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
  281. else
  282. __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
  283. if (tx_info->control.rts_cts_rate_idx >= 0)
  284. rate =
  285. ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
  286. }
  287. /*
  288. * Determine retry information.
  289. */
  290. txdesc->retry_limit = tx_info->control.rates[0].count - 1;
  291. if (txdesc->retry_limit >= rt2x00dev->long_retry)
  292. __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
  293. /*
  294. * Check if more fragments are pending
  295. */
  296. if (ieee80211_has_morefrags(hdr->frame_control)) {
  297. __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
  298. __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
  299. }
  300. /*
  301. * Check if more frames (!= fragments) are pending
  302. */
  303. if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)
  304. __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
  305. /*
  306. * Beacons and probe responses require the tsf timestamp
  307. * to be inserted into the frame, except for a frame that has been injected
  308. * through a monitor interface. This latter is needed for testing a
  309. * monitor interface.
  310. */
  311. if ((ieee80211_is_beacon(hdr->frame_control) ||
  312. ieee80211_is_probe_resp(hdr->frame_control)) &&
  313. (!(tx_info->flags & IEEE80211_TX_CTL_INJECTED)))
  314. __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
  315. /*
  316. * Determine with what IFS priority this frame should be send.
  317. * Set ifs to IFS_SIFS when the this is not the first fragment,
  318. * or this fragment came after RTS/CTS.
  319. */
  320. if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
  321. !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)) {
  322. __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
  323. txdesc->ifs = IFS_BACKOFF;
  324. } else
  325. txdesc->ifs = IFS_SIFS;
  326. /*
  327. * Determine rate modulation.
  328. */
  329. hwrate = rt2x00_get_rate(rate->hw_value);
  330. txdesc->rate_mode = RATE_MODE_CCK;
  331. if (hwrate->flags & DEV_RATE_OFDM)
  332. txdesc->rate_mode = RATE_MODE_OFDM;
  333. /*
  334. * Apply TX descriptor handling by components
  335. */
  336. rt2x00crypto_create_tx_descriptor(entry, txdesc);
  337. rt2x00ht_create_tx_descriptor(entry, txdesc, hwrate);
  338. rt2x00queue_create_tx_descriptor_seq(entry, txdesc);
  339. rt2x00queue_create_tx_descriptor_plcp(entry, txdesc, hwrate);
  340. }
  341. static int rt2x00queue_write_tx_data(struct queue_entry *entry,
  342. struct txentry_desc *txdesc)
  343. {
  344. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  345. /*
  346. * This should not happen, we already checked the entry
  347. * was ours. When the hardware disagrees there has been
  348. * a queue corruption!
  349. */
  350. if (unlikely(rt2x00dev->ops->lib->get_entry_state &&
  351. rt2x00dev->ops->lib->get_entry_state(entry))) {
  352. ERROR(rt2x00dev,
  353. "Corrupt queue %d, accessing entry which is not ours.\n"
  354. "Please file bug report to %s.\n",
  355. entry->queue->qid, DRV_PROJECT);
  356. return -EINVAL;
  357. }
  358. /*
  359. * Add the requested extra tx headroom in front of the skb.
  360. */
  361. skb_push(entry->skb, rt2x00dev->ops->extra_tx_headroom);
  362. memset(entry->skb->data, 0, rt2x00dev->ops->extra_tx_headroom);
  363. /*
  364. * Call the driver's write_tx_data function, if it exists.
  365. */
  366. if (rt2x00dev->ops->lib->write_tx_data)
  367. rt2x00dev->ops->lib->write_tx_data(entry, txdesc);
  368. /*
  369. * Map the skb to DMA.
  370. */
  371. if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags))
  372. rt2x00queue_map_txskb(rt2x00dev, entry->skb);
  373. return 0;
  374. }
  375. static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
  376. struct txentry_desc *txdesc)
  377. {
  378. struct data_queue *queue = entry->queue;
  379. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  380. rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, entry->skb, txdesc);
  381. /*
  382. * All processing on the frame has been completed, this means
  383. * it is now ready to be dumped to userspace through debugfs.
  384. */
  385. rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TX, entry->skb);
  386. }
  387. static void rt2x00queue_kick_tx_queue(struct queue_entry *entry,
  388. struct txentry_desc *txdesc)
  389. {
  390. struct data_queue *queue = entry->queue;
  391. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  392. /*
  393. * Check if we need to kick the queue, there are however a few rules
  394. * 1) Don't kick unless this is the last in frame in a burst.
  395. * When the burst flag is set, this frame is always followed
  396. * by another frame which in some way are related to eachother.
  397. * This is true for fragments, RTS or CTS-to-self frames.
  398. * 2) Rule 1 can be broken when the available entries
  399. * in the queue are less then a certain threshold.
  400. */
  401. if (rt2x00queue_threshold(queue) ||
  402. !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
  403. rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, queue->qid);
  404. }
  405. int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
  406. bool local)
  407. {
  408. struct ieee80211_tx_info *tx_info;
  409. struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
  410. struct txentry_desc txdesc;
  411. struct skb_frame_desc *skbdesc;
  412. u8 rate_idx, rate_flags;
  413. if (unlikely(rt2x00queue_full(queue)))
  414. return -ENOBUFS;
  415. if (test_and_set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags)) {
  416. ERROR(queue->rt2x00dev,
  417. "Arrived at non-free entry in the non-full queue %d.\n"
  418. "Please file bug report to %s.\n",
  419. queue->qid, DRV_PROJECT);
  420. return -EINVAL;
  421. }
  422. /*
  423. * Copy all TX descriptor information into txdesc,
  424. * after that we are free to use the skb->cb array
  425. * for our information.
  426. */
  427. entry->skb = skb;
  428. rt2x00queue_create_tx_descriptor(entry, &txdesc);
  429. /*
  430. * All information is retrieved from the skb->cb array,
  431. * now we should claim ownership of the driver part of that
  432. * array, preserving the bitrate index and flags.
  433. */
  434. tx_info = IEEE80211_SKB_CB(skb);
  435. rate_idx = tx_info->control.rates[0].idx;
  436. rate_flags = tx_info->control.rates[0].flags;
  437. skbdesc = get_skb_frame_desc(skb);
  438. memset(skbdesc, 0, sizeof(*skbdesc));
  439. skbdesc->entry = entry;
  440. skbdesc->tx_rate_idx = rate_idx;
  441. skbdesc->tx_rate_flags = rate_flags;
  442. if (local)
  443. skbdesc->flags |= SKBDESC_NOT_MAC80211;
  444. /*
  445. * When hardware encryption is supported, and this frame
  446. * is to be encrypted, we should strip the IV/EIV data from
  447. * the frame so we can provide it to the driver separately.
  448. */
  449. if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
  450. !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
  451. if (test_bit(DRIVER_REQUIRE_COPY_IV, &queue->rt2x00dev->flags))
  452. rt2x00crypto_tx_copy_iv(skb, &txdesc);
  453. else
  454. rt2x00crypto_tx_remove_iv(skb, &txdesc);
  455. }
  456. /*
  457. * When DMA allocation is required we should guarentee to the
  458. * driver that the DMA is aligned to a 4-byte boundary.
  459. * However some drivers require L2 padding to pad the payload
  460. * rather then the header. This could be a requirement for
  461. * PCI and USB devices, while header alignment only is valid
  462. * for PCI devices.
  463. */
  464. if (test_bit(DRIVER_REQUIRE_L2PAD, &queue->rt2x00dev->flags))
  465. rt2x00queue_insert_l2pad(entry->skb, txdesc.header_length);
  466. else if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags))
  467. rt2x00queue_align_frame(entry->skb);
  468. /*
  469. * It could be possible that the queue was corrupted and this
  470. * call failed. Since we always return NETDEV_TX_OK to mac80211,
  471. * this frame will simply be dropped.
  472. */
  473. if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) {
  474. clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
  475. entry->skb = NULL;
  476. return -EIO;
  477. }
  478. set_bit(ENTRY_DATA_PENDING, &entry->flags);
  479. rt2x00queue_index_inc(queue, Q_INDEX);
  480. rt2x00queue_write_tx_descriptor(entry, &txdesc);
  481. rt2x00queue_kick_tx_queue(entry, &txdesc);
  482. return 0;
  483. }
  484. int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
  485. struct ieee80211_vif *vif,
  486. const bool enable_beacon)
  487. {
  488. struct rt2x00_intf *intf = vif_to_intf(vif);
  489. struct skb_frame_desc *skbdesc;
  490. struct txentry_desc txdesc;
  491. if (unlikely(!intf->beacon))
  492. return -ENOBUFS;
  493. mutex_lock(&intf->beacon_skb_mutex);
  494. /*
  495. * Clean up the beacon skb.
  496. */
  497. rt2x00queue_free_skb(rt2x00dev, intf->beacon->skb);
  498. intf->beacon->skb = NULL;
  499. if (!enable_beacon) {
  500. rt2x00dev->ops->lib->kill_tx_queue(rt2x00dev, QID_BEACON);
  501. mutex_unlock(&intf->beacon_skb_mutex);
  502. return 0;
  503. }
  504. intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
  505. if (!intf->beacon->skb) {
  506. mutex_unlock(&intf->beacon_skb_mutex);
  507. return -ENOMEM;
  508. }
  509. /*
  510. * Copy all TX descriptor information into txdesc,
  511. * after that we are free to use the skb->cb array
  512. * for our information.
  513. */
  514. rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc);
  515. /*
  516. * Fill in skb descriptor
  517. */
  518. skbdesc = get_skb_frame_desc(intf->beacon->skb);
  519. memset(skbdesc, 0, sizeof(*skbdesc));
  520. skbdesc->entry = intf->beacon;
  521. /*
  522. * Send beacon to hardware and enable beacon genaration..
  523. */
  524. rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
  525. mutex_unlock(&intf->beacon_skb_mutex);
  526. return 0;
  527. }
  528. struct data_queue *rt2x00queue_get_queue(struct rt2x00_dev *rt2x00dev,
  529. const enum data_queue_qid queue)
  530. {
  531. int atim = test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
  532. if (queue == QID_RX)
  533. return rt2x00dev->rx;
  534. if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
  535. return &rt2x00dev->tx[queue];
  536. if (!rt2x00dev->bcn)
  537. return NULL;
  538. if (queue == QID_BEACON)
  539. return &rt2x00dev->bcn[0];
  540. else if (queue == QID_ATIM && atim)
  541. return &rt2x00dev->bcn[1];
  542. return NULL;
  543. }
  544. EXPORT_SYMBOL_GPL(rt2x00queue_get_queue);
  545. struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
  546. enum queue_index index)
  547. {
  548. struct queue_entry *entry;
  549. unsigned long irqflags;
  550. if (unlikely(index >= Q_INDEX_MAX)) {
  551. ERROR(queue->rt2x00dev,
  552. "Entry requested from invalid index type (%d)\n", index);
  553. return NULL;
  554. }
  555. spin_lock_irqsave(&queue->lock, irqflags);
  556. entry = &queue->entries[queue->index[index]];
  557. spin_unlock_irqrestore(&queue->lock, irqflags);
  558. return entry;
  559. }
  560. EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
  561. void rt2x00queue_index_inc(struct data_queue *queue, enum queue_index index)
  562. {
  563. unsigned long irqflags;
  564. if (unlikely(index >= Q_INDEX_MAX)) {
  565. ERROR(queue->rt2x00dev,
  566. "Index change on invalid index type (%d)\n", index);
  567. return;
  568. }
  569. spin_lock_irqsave(&queue->lock, irqflags);
  570. queue->index[index]++;
  571. if (queue->index[index] >= queue->limit)
  572. queue->index[index] = 0;
  573. if (index == Q_INDEX) {
  574. queue->length++;
  575. queue->last_index = jiffies;
  576. } else if (index == Q_INDEX_DONE) {
  577. queue->length--;
  578. queue->count++;
  579. queue->last_index_done = jiffies;
  580. }
  581. spin_unlock_irqrestore(&queue->lock, irqflags);
  582. }
  583. static void rt2x00queue_reset(struct data_queue *queue)
  584. {
  585. unsigned long irqflags;
  586. spin_lock_irqsave(&queue->lock, irqflags);
  587. queue->count = 0;
  588. queue->length = 0;
  589. queue->last_index = jiffies;
  590. queue->last_index_done = jiffies;
  591. memset(queue->index, 0, sizeof(queue->index));
  592. spin_unlock_irqrestore(&queue->lock, irqflags);
  593. }
  594. void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
  595. {
  596. struct data_queue *queue;
  597. txall_queue_for_each(rt2x00dev, queue)
  598. rt2x00dev->ops->lib->kill_tx_queue(rt2x00dev, queue->qid);
  599. }
  600. void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
  601. {
  602. struct data_queue *queue;
  603. unsigned int i;
  604. queue_for_each(rt2x00dev, queue) {
  605. rt2x00queue_reset(queue);
  606. for (i = 0; i < queue->limit; i++) {
  607. queue->entries[i].flags = 0;
  608. rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
  609. }
  610. }
  611. }
  612. static int rt2x00queue_alloc_entries(struct data_queue *queue,
  613. const struct data_queue_desc *qdesc)
  614. {
  615. struct queue_entry *entries;
  616. unsigned int entry_size;
  617. unsigned int i;
  618. rt2x00queue_reset(queue);
  619. queue->limit = qdesc->entry_num;
  620. queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
  621. queue->data_size = qdesc->data_size;
  622. queue->desc_size = qdesc->desc_size;
  623. /*
  624. * Allocate all queue entries.
  625. */
  626. entry_size = sizeof(*entries) + qdesc->priv_size;
  627. entries = kzalloc(queue->limit * entry_size, GFP_KERNEL);
  628. if (!entries)
  629. return -ENOMEM;
  630. #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
  631. ( ((char *)(__base)) + ((__limit) * (__esize)) + \
  632. ((__index) * (__psize)) )
  633. for (i = 0; i < queue->limit; i++) {
  634. entries[i].flags = 0;
  635. entries[i].queue = queue;
  636. entries[i].skb = NULL;
  637. entries[i].entry_idx = i;
  638. entries[i].priv_data =
  639. QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
  640. sizeof(*entries), qdesc->priv_size);
  641. }
  642. #undef QUEUE_ENTRY_PRIV_OFFSET
  643. queue->entries = entries;
  644. return 0;
  645. }
  646. static void rt2x00queue_free_skbs(struct rt2x00_dev *rt2x00dev,
  647. struct data_queue *queue)
  648. {
  649. unsigned int i;
  650. if (!queue->entries)
  651. return;
  652. for (i = 0; i < queue->limit; i++) {
  653. if (queue->entries[i].skb)
  654. rt2x00queue_free_skb(rt2x00dev, queue->entries[i].skb);
  655. }
  656. }
  657. static int rt2x00queue_alloc_rxskbs(struct rt2x00_dev *rt2x00dev,
  658. struct data_queue *queue)
  659. {
  660. unsigned int i;
  661. struct sk_buff *skb;
  662. for (i = 0; i < queue->limit; i++) {
  663. skb = rt2x00queue_alloc_rxskb(rt2x00dev, &queue->entries[i]);
  664. if (!skb)
  665. return -ENOMEM;
  666. queue->entries[i].skb = skb;
  667. }
  668. return 0;
  669. }
  670. int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
  671. {
  672. struct data_queue *queue;
  673. int status;
  674. status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
  675. if (status)
  676. goto exit;
  677. tx_queue_for_each(rt2x00dev, queue) {
  678. status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
  679. if (status)
  680. goto exit;
  681. }
  682. status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
  683. if (status)
  684. goto exit;
  685. if (test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags)) {
  686. status = rt2x00queue_alloc_entries(&rt2x00dev->bcn[1],
  687. rt2x00dev->ops->atim);
  688. if (status)
  689. goto exit;
  690. }
  691. status = rt2x00queue_alloc_rxskbs(rt2x00dev, rt2x00dev->rx);
  692. if (status)
  693. goto exit;
  694. return 0;
  695. exit:
  696. ERROR(rt2x00dev, "Queue entries allocation failed.\n");
  697. rt2x00queue_uninitialize(rt2x00dev);
  698. return status;
  699. }
  700. void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
  701. {
  702. struct data_queue *queue;
  703. rt2x00queue_free_skbs(rt2x00dev, rt2x00dev->rx);
  704. queue_for_each(rt2x00dev, queue) {
  705. kfree(queue->entries);
  706. queue->entries = NULL;
  707. }
  708. }
  709. static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
  710. struct data_queue *queue, enum data_queue_qid qid)
  711. {
  712. spin_lock_init(&queue->lock);
  713. queue->rt2x00dev = rt2x00dev;
  714. queue->qid = qid;
  715. queue->txop = 0;
  716. queue->aifs = 2;
  717. queue->cw_min = 5;
  718. queue->cw_max = 10;
  719. }
  720. int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
  721. {
  722. struct data_queue *queue;
  723. enum data_queue_qid qid;
  724. unsigned int req_atim =
  725. !!test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
  726. /*
  727. * We need the following queues:
  728. * RX: 1
  729. * TX: ops->tx_queues
  730. * Beacon: 1
  731. * Atim: 1 (if required)
  732. */
  733. rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
  734. queue = kzalloc(rt2x00dev->data_queues * sizeof(*queue), GFP_KERNEL);
  735. if (!queue) {
  736. ERROR(rt2x00dev, "Queue allocation failed.\n");
  737. return -ENOMEM;
  738. }
  739. /*
  740. * Initialize pointers
  741. */
  742. rt2x00dev->rx = queue;
  743. rt2x00dev->tx = &queue[1];
  744. rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
  745. /*
  746. * Initialize queue parameters.
  747. * RX: qid = QID_RX
  748. * TX: qid = QID_AC_BE + index
  749. * TX: cw_min: 2^5 = 32.
  750. * TX: cw_max: 2^10 = 1024.
  751. * BCN: qid = QID_BEACON
  752. * ATIM: qid = QID_ATIM
  753. */
  754. rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
  755. qid = QID_AC_BE;
  756. tx_queue_for_each(rt2x00dev, queue)
  757. rt2x00queue_init(rt2x00dev, queue, qid++);
  758. rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[0], QID_BEACON);
  759. if (req_atim)
  760. rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[1], QID_ATIM);
  761. return 0;
  762. }
  763. void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
  764. {
  765. kfree(rt2x00dev->rx);
  766. rt2x00dev->rx = NULL;
  767. rt2x00dev->tx = NULL;
  768. rt2x00dev->bcn = NULL;
  769. }