intel_display.c 258 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include <drm/drmP.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include <drm/drm_dp_helper.h>
  40. #include <drm/drm_crtc_helper.h>
  41. #include <linux/dma_remapping.h>
  42. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  43. static void intel_increase_pllclock(struct drm_crtc *crtc);
  44. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  45. typedef struct {
  46. /* given values */
  47. int n;
  48. int m1, m2;
  49. int p1, p2;
  50. /* derived values */
  51. int dot;
  52. int vco;
  53. int m;
  54. int p;
  55. } intel_clock_t;
  56. typedef struct {
  57. int min, max;
  58. } intel_range_t;
  59. typedef struct {
  60. int dot_limit;
  61. int p2_slow, p2_fast;
  62. } intel_p2_t;
  63. #define INTEL_P2_NUM 2
  64. typedef struct intel_limit intel_limit_t;
  65. struct intel_limit {
  66. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  67. intel_p2_t p2;
  68. /**
  69. * find_pll() - Find the best values for the PLL
  70. * @limit: limits for the PLL
  71. * @crtc: current CRTC
  72. * @target: target frequency in kHz
  73. * @refclk: reference clock frequency in kHz
  74. * @match_clock: if provided, @best_clock P divider must
  75. * match the P divider from @match_clock
  76. * used for LVDS downclocking
  77. * @best_clock: best PLL values found
  78. *
  79. * Returns true on success, false on failure.
  80. */
  81. bool (*find_pll)(const intel_limit_t *limit,
  82. struct drm_crtc *crtc,
  83. int target, int refclk,
  84. intel_clock_t *match_clock,
  85. intel_clock_t *best_clock);
  86. };
  87. /* FDI */
  88. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  89. int
  90. intel_pch_rawclk(struct drm_device *dev)
  91. {
  92. struct drm_i915_private *dev_priv = dev->dev_private;
  93. WARN_ON(!HAS_PCH_SPLIT(dev));
  94. return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  95. }
  96. static bool
  97. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  98. int target, int refclk, intel_clock_t *match_clock,
  99. intel_clock_t *best_clock);
  100. static bool
  101. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  102. int target, int refclk, intel_clock_t *match_clock,
  103. intel_clock_t *best_clock);
  104. static bool
  105. intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
  106. int target, int refclk, intel_clock_t *match_clock,
  107. intel_clock_t *best_clock);
  108. static bool
  109. intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
  110. int target, int refclk, intel_clock_t *match_clock,
  111. intel_clock_t *best_clock);
  112. static bool
  113. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  114. int target, int refclk, intel_clock_t *match_clock,
  115. intel_clock_t *best_clock);
  116. static inline u32 /* units of 100MHz */
  117. intel_fdi_link_freq(struct drm_device *dev)
  118. {
  119. if (IS_GEN5(dev)) {
  120. struct drm_i915_private *dev_priv = dev->dev_private;
  121. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  122. } else
  123. return 27;
  124. }
  125. static const intel_limit_t intel_limits_i8xx_dvo = {
  126. .dot = { .min = 25000, .max = 350000 },
  127. .vco = { .min = 930000, .max = 1400000 },
  128. .n = { .min = 3, .max = 16 },
  129. .m = { .min = 96, .max = 140 },
  130. .m1 = { .min = 18, .max = 26 },
  131. .m2 = { .min = 6, .max = 16 },
  132. .p = { .min = 4, .max = 128 },
  133. .p1 = { .min = 2, .max = 33 },
  134. .p2 = { .dot_limit = 165000,
  135. .p2_slow = 4, .p2_fast = 2 },
  136. .find_pll = intel_find_best_PLL,
  137. };
  138. static const intel_limit_t intel_limits_i8xx_lvds = {
  139. .dot = { .min = 25000, .max = 350000 },
  140. .vco = { .min = 930000, .max = 1400000 },
  141. .n = { .min = 3, .max = 16 },
  142. .m = { .min = 96, .max = 140 },
  143. .m1 = { .min = 18, .max = 26 },
  144. .m2 = { .min = 6, .max = 16 },
  145. .p = { .min = 4, .max = 128 },
  146. .p1 = { .min = 1, .max = 6 },
  147. .p2 = { .dot_limit = 165000,
  148. .p2_slow = 14, .p2_fast = 7 },
  149. .find_pll = intel_find_best_PLL,
  150. };
  151. static const intel_limit_t intel_limits_i9xx_sdvo = {
  152. .dot = { .min = 20000, .max = 400000 },
  153. .vco = { .min = 1400000, .max = 2800000 },
  154. .n = { .min = 1, .max = 6 },
  155. .m = { .min = 70, .max = 120 },
  156. .m1 = { .min = 8, .max = 18 },
  157. .m2 = { .min = 3, .max = 7 },
  158. .p = { .min = 5, .max = 80 },
  159. .p1 = { .min = 1, .max = 8 },
  160. .p2 = { .dot_limit = 200000,
  161. .p2_slow = 10, .p2_fast = 5 },
  162. .find_pll = intel_find_best_PLL,
  163. };
  164. static const intel_limit_t intel_limits_i9xx_lvds = {
  165. .dot = { .min = 20000, .max = 400000 },
  166. .vco = { .min = 1400000, .max = 2800000 },
  167. .n = { .min = 1, .max = 6 },
  168. .m = { .min = 70, .max = 120 },
  169. .m1 = { .min = 8, .max = 18 },
  170. .m2 = { .min = 3, .max = 7 },
  171. .p = { .min = 7, .max = 98 },
  172. .p1 = { .min = 1, .max = 8 },
  173. .p2 = { .dot_limit = 112000,
  174. .p2_slow = 14, .p2_fast = 7 },
  175. .find_pll = intel_find_best_PLL,
  176. };
  177. static const intel_limit_t intel_limits_g4x_sdvo = {
  178. .dot = { .min = 25000, .max = 270000 },
  179. .vco = { .min = 1750000, .max = 3500000},
  180. .n = { .min = 1, .max = 4 },
  181. .m = { .min = 104, .max = 138 },
  182. .m1 = { .min = 17, .max = 23 },
  183. .m2 = { .min = 5, .max = 11 },
  184. .p = { .min = 10, .max = 30 },
  185. .p1 = { .min = 1, .max = 3},
  186. .p2 = { .dot_limit = 270000,
  187. .p2_slow = 10,
  188. .p2_fast = 10
  189. },
  190. .find_pll = intel_g4x_find_best_PLL,
  191. };
  192. static const intel_limit_t intel_limits_g4x_hdmi = {
  193. .dot = { .min = 22000, .max = 400000 },
  194. .vco = { .min = 1750000, .max = 3500000},
  195. .n = { .min = 1, .max = 4 },
  196. .m = { .min = 104, .max = 138 },
  197. .m1 = { .min = 16, .max = 23 },
  198. .m2 = { .min = 5, .max = 11 },
  199. .p = { .min = 5, .max = 80 },
  200. .p1 = { .min = 1, .max = 8},
  201. .p2 = { .dot_limit = 165000,
  202. .p2_slow = 10, .p2_fast = 5 },
  203. .find_pll = intel_g4x_find_best_PLL,
  204. };
  205. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  206. .dot = { .min = 20000, .max = 115000 },
  207. .vco = { .min = 1750000, .max = 3500000 },
  208. .n = { .min = 1, .max = 3 },
  209. .m = { .min = 104, .max = 138 },
  210. .m1 = { .min = 17, .max = 23 },
  211. .m2 = { .min = 5, .max = 11 },
  212. .p = { .min = 28, .max = 112 },
  213. .p1 = { .min = 2, .max = 8 },
  214. .p2 = { .dot_limit = 0,
  215. .p2_slow = 14, .p2_fast = 14
  216. },
  217. .find_pll = intel_g4x_find_best_PLL,
  218. };
  219. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  220. .dot = { .min = 80000, .max = 224000 },
  221. .vco = { .min = 1750000, .max = 3500000 },
  222. .n = { .min = 1, .max = 3 },
  223. .m = { .min = 104, .max = 138 },
  224. .m1 = { .min = 17, .max = 23 },
  225. .m2 = { .min = 5, .max = 11 },
  226. .p = { .min = 14, .max = 42 },
  227. .p1 = { .min = 2, .max = 6 },
  228. .p2 = { .dot_limit = 0,
  229. .p2_slow = 7, .p2_fast = 7
  230. },
  231. .find_pll = intel_g4x_find_best_PLL,
  232. };
  233. static const intel_limit_t intel_limits_g4x_display_port = {
  234. .dot = { .min = 161670, .max = 227000 },
  235. .vco = { .min = 1750000, .max = 3500000},
  236. .n = { .min = 1, .max = 2 },
  237. .m = { .min = 97, .max = 108 },
  238. .m1 = { .min = 0x10, .max = 0x12 },
  239. .m2 = { .min = 0x05, .max = 0x06 },
  240. .p = { .min = 10, .max = 20 },
  241. .p1 = { .min = 1, .max = 2},
  242. .p2 = { .dot_limit = 0,
  243. .p2_slow = 10, .p2_fast = 10 },
  244. .find_pll = intel_find_pll_g4x_dp,
  245. };
  246. static const intel_limit_t intel_limits_pineview_sdvo = {
  247. .dot = { .min = 20000, .max = 400000},
  248. .vco = { .min = 1700000, .max = 3500000 },
  249. /* Pineview's Ncounter is a ring counter */
  250. .n = { .min = 3, .max = 6 },
  251. .m = { .min = 2, .max = 256 },
  252. /* Pineview only has one combined m divider, which we treat as m2. */
  253. .m1 = { .min = 0, .max = 0 },
  254. .m2 = { .min = 0, .max = 254 },
  255. .p = { .min = 5, .max = 80 },
  256. .p1 = { .min = 1, .max = 8 },
  257. .p2 = { .dot_limit = 200000,
  258. .p2_slow = 10, .p2_fast = 5 },
  259. .find_pll = intel_find_best_PLL,
  260. };
  261. static const intel_limit_t intel_limits_pineview_lvds = {
  262. .dot = { .min = 20000, .max = 400000 },
  263. .vco = { .min = 1700000, .max = 3500000 },
  264. .n = { .min = 3, .max = 6 },
  265. .m = { .min = 2, .max = 256 },
  266. .m1 = { .min = 0, .max = 0 },
  267. .m2 = { .min = 0, .max = 254 },
  268. .p = { .min = 7, .max = 112 },
  269. .p1 = { .min = 1, .max = 8 },
  270. .p2 = { .dot_limit = 112000,
  271. .p2_slow = 14, .p2_fast = 14 },
  272. .find_pll = intel_find_best_PLL,
  273. };
  274. /* Ironlake / Sandybridge
  275. *
  276. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  277. * the range value for them is (actual_value - 2).
  278. */
  279. static const intel_limit_t intel_limits_ironlake_dac = {
  280. .dot = { .min = 25000, .max = 350000 },
  281. .vco = { .min = 1760000, .max = 3510000 },
  282. .n = { .min = 1, .max = 5 },
  283. .m = { .min = 79, .max = 127 },
  284. .m1 = { .min = 12, .max = 22 },
  285. .m2 = { .min = 5, .max = 9 },
  286. .p = { .min = 5, .max = 80 },
  287. .p1 = { .min = 1, .max = 8 },
  288. .p2 = { .dot_limit = 225000,
  289. .p2_slow = 10, .p2_fast = 5 },
  290. .find_pll = intel_g4x_find_best_PLL,
  291. };
  292. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  293. .dot = { .min = 25000, .max = 350000 },
  294. .vco = { .min = 1760000, .max = 3510000 },
  295. .n = { .min = 1, .max = 3 },
  296. .m = { .min = 79, .max = 118 },
  297. .m1 = { .min = 12, .max = 22 },
  298. .m2 = { .min = 5, .max = 9 },
  299. .p = { .min = 28, .max = 112 },
  300. .p1 = { .min = 2, .max = 8 },
  301. .p2 = { .dot_limit = 225000,
  302. .p2_slow = 14, .p2_fast = 14 },
  303. .find_pll = intel_g4x_find_best_PLL,
  304. };
  305. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  306. .dot = { .min = 25000, .max = 350000 },
  307. .vco = { .min = 1760000, .max = 3510000 },
  308. .n = { .min = 1, .max = 3 },
  309. .m = { .min = 79, .max = 127 },
  310. .m1 = { .min = 12, .max = 22 },
  311. .m2 = { .min = 5, .max = 9 },
  312. .p = { .min = 14, .max = 56 },
  313. .p1 = { .min = 2, .max = 8 },
  314. .p2 = { .dot_limit = 225000,
  315. .p2_slow = 7, .p2_fast = 7 },
  316. .find_pll = intel_g4x_find_best_PLL,
  317. };
  318. /* LVDS 100mhz refclk limits. */
  319. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  320. .dot = { .min = 25000, .max = 350000 },
  321. .vco = { .min = 1760000, .max = 3510000 },
  322. .n = { .min = 1, .max = 2 },
  323. .m = { .min = 79, .max = 126 },
  324. .m1 = { .min = 12, .max = 22 },
  325. .m2 = { .min = 5, .max = 9 },
  326. .p = { .min = 28, .max = 112 },
  327. .p1 = { .min = 2, .max = 8 },
  328. .p2 = { .dot_limit = 225000,
  329. .p2_slow = 14, .p2_fast = 14 },
  330. .find_pll = intel_g4x_find_best_PLL,
  331. };
  332. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  333. .dot = { .min = 25000, .max = 350000 },
  334. .vco = { .min = 1760000, .max = 3510000 },
  335. .n = { .min = 1, .max = 3 },
  336. .m = { .min = 79, .max = 126 },
  337. .m1 = { .min = 12, .max = 22 },
  338. .m2 = { .min = 5, .max = 9 },
  339. .p = { .min = 14, .max = 42 },
  340. .p1 = { .min = 2, .max = 6 },
  341. .p2 = { .dot_limit = 225000,
  342. .p2_slow = 7, .p2_fast = 7 },
  343. .find_pll = intel_g4x_find_best_PLL,
  344. };
  345. static const intel_limit_t intel_limits_ironlake_display_port = {
  346. .dot = { .min = 25000, .max = 350000 },
  347. .vco = { .min = 1760000, .max = 3510000},
  348. .n = { .min = 1, .max = 2 },
  349. .m = { .min = 81, .max = 90 },
  350. .m1 = { .min = 12, .max = 22 },
  351. .m2 = { .min = 5, .max = 9 },
  352. .p = { .min = 10, .max = 20 },
  353. .p1 = { .min = 1, .max = 2},
  354. .p2 = { .dot_limit = 0,
  355. .p2_slow = 10, .p2_fast = 10 },
  356. .find_pll = intel_find_pll_ironlake_dp,
  357. };
  358. static const intel_limit_t intel_limits_vlv_dac = {
  359. .dot = { .min = 25000, .max = 270000 },
  360. .vco = { .min = 4000000, .max = 6000000 },
  361. .n = { .min = 1, .max = 7 },
  362. .m = { .min = 22, .max = 450 }, /* guess */
  363. .m1 = { .min = 2, .max = 3 },
  364. .m2 = { .min = 11, .max = 156 },
  365. .p = { .min = 10, .max = 30 },
  366. .p1 = { .min = 1, .max = 3 },
  367. .p2 = { .dot_limit = 270000,
  368. .p2_slow = 2, .p2_fast = 20 },
  369. .find_pll = intel_vlv_find_best_pll,
  370. };
  371. static const intel_limit_t intel_limits_vlv_hdmi = {
  372. .dot = { .min = 25000, .max = 270000 },
  373. .vco = { .min = 4000000, .max = 6000000 },
  374. .n = { .min = 1, .max = 7 },
  375. .m = { .min = 60, .max = 300 }, /* guess */
  376. .m1 = { .min = 2, .max = 3 },
  377. .m2 = { .min = 11, .max = 156 },
  378. .p = { .min = 10, .max = 30 },
  379. .p1 = { .min = 2, .max = 3 },
  380. .p2 = { .dot_limit = 270000,
  381. .p2_slow = 2, .p2_fast = 20 },
  382. .find_pll = intel_vlv_find_best_pll,
  383. };
  384. static const intel_limit_t intel_limits_vlv_dp = {
  385. .dot = { .min = 25000, .max = 270000 },
  386. .vco = { .min = 4000000, .max = 6000000 },
  387. .n = { .min = 1, .max = 7 },
  388. .m = { .min = 22, .max = 450 },
  389. .m1 = { .min = 2, .max = 3 },
  390. .m2 = { .min = 11, .max = 156 },
  391. .p = { .min = 10, .max = 30 },
  392. .p1 = { .min = 1, .max = 3 },
  393. .p2 = { .dot_limit = 270000,
  394. .p2_slow = 2, .p2_fast = 20 },
  395. .find_pll = intel_vlv_find_best_pll,
  396. };
  397. u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
  398. {
  399. WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
  400. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  401. DRM_ERROR("DPIO idle wait timed out\n");
  402. return 0;
  403. }
  404. I915_WRITE(DPIO_REG, reg);
  405. I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
  406. DPIO_BYTE);
  407. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  408. DRM_ERROR("DPIO read wait timed out\n");
  409. return 0;
  410. }
  411. return I915_READ(DPIO_DATA);
  412. }
  413. void intel_dpio_write(struct drm_i915_private *dev_priv, int reg, u32 val)
  414. {
  415. WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
  416. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  417. DRM_ERROR("DPIO idle wait timed out\n");
  418. return;
  419. }
  420. I915_WRITE(DPIO_DATA, val);
  421. I915_WRITE(DPIO_REG, reg);
  422. I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
  423. DPIO_BYTE);
  424. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
  425. DRM_ERROR("DPIO write wait timed out\n");
  426. }
  427. static void vlv_init_dpio(struct drm_device *dev)
  428. {
  429. struct drm_i915_private *dev_priv = dev->dev_private;
  430. /* Reset the DPIO config */
  431. I915_WRITE(DPIO_CTL, 0);
  432. POSTING_READ(DPIO_CTL);
  433. I915_WRITE(DPIO_CTL, 1);
  434. POSTING_READ(DPIO_CTL);
  435. }
  436. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  437. int refclk)
  438. {
  439. struct drm_device *dev = crtc->dev;
  440. const intel_limit_t *limit;
  441. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  442. if (intel_is_dual_link_lvds(dev)) {
  443. if (refclk == 100000)
  444. limit = &intel_limits_ironlake_dual_lvds_100m;
  445. else
  446. limit = &intel_limits_ironlake_dual_lvds;
  447. } else {
  448. if (refclk == 100000)
  449. limit = &intel_limits_ironlake_single_lvds_100m;
  450. else
  451. limit = &intel_limits_ironlake_single_lvds;
  452. }
  453. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  454. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  455. limit = &intel_limits_ironlake_display_port;
  456. else
  457. limit = &intel_limits_ironlake_dac;
  458. return limit;
  459. }
  460. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  461. {
  462. struct drm_device *dev = crtc->dev;
  463. const intel_limit_t *limit;
  464. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  465. if (intel_is_dual_link_lvds(dev))
  466. limit = &intel_limits_g4x_dual_channel_lvds;
  467. else
  468. limit = &intel_limits_g4x_single_channel_lvds;
  469. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  470. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  471. limit = &intel_limits_g4x_hdmi;
  472. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  473. limit = &intel_limits_g4x_sdvo;
  474. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  475. limit = &intel_limits_g4x_display_port;
  476. } else /* The option is for other outputs */
  477. limit = &intel_limits_i9xx_sdvo;
  478. return limit;
  479. }
  480. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  481. {
  482. struct drm_device *dev = crtc->dev;
  483. const intel_limit_t *limit;
  484. if (HAS_PCH_SPLIT(dev))
  485. limit = intel_ironlake_limit(crtc, refclk);
  486. else if (IS_G4X(dev)) {
  487. limit = intel_g4x_limit(crtc);
  488. } else if (IS_PINEVIEW(dev)) {
  489. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  490. limit = &intel_limits_pineview_lvds;
  491. else
  492. limit = &intel_limits_pineview_sdvo;
  493. } else if (IS_VALLEYVIEW(dev)) {
  494. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  495. limit = &intel_limits_vlv_dac;
  496. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  497. limit = &intel_limits_vlv_hdmi;
  498. else
  499. limit = &intel_limits_vlv_dp;
  500. } else if (!IS_GEN2(dev)) {
  501. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  502. limit = &intel_limits_i9xx_lvds;
  503. else
  504. limit = &intel_limits_i9xx_sdvo;
  505. } else {
  506. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  507. limit = &intel_limits_i8xx_lvds;
  508. else
  509. limit = &intel_limits_i8xx_dvo;
  510. }
  511. return limit;
  512. }
  513. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  514. static void pineview_clock(int refclk, intel_clock_t *clock)
  515. {
  516. clock->m = clock->m2 + 2;
  517. clock->p = clock->p1 * clock->p2;
  518. clock->vco = refclk * clock->m / clock->n;
  519. clock->dot = clock->vco / clock->p;
  520. }
  521. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  522. {
  523. if (IS_PINEVIEW(dev)) {
  524. pineview_clock(refclk, clock);
  525. return;
  526. }
  527. clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
  528. clock->p = clock->p1 * clock->p2;
  529. clock->vco = refclk * clock->m / (clock->n + 2);
  530. clock->dot = clock->vco / clock->p;
  531. }
  532. /**
  533. * Returns whether any output on the specified pipe is of the specified type
  534. */
  535. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  536. {
  537. struct drm_device *dev = crtc->dev;
  538. struct intel_encoder *encoder;
  539. for_each_encoder_on_crtc(dev, crtc, encoder)
  540. if (encoder->type == type)
  541. return true;
  542. return false;
  543. }
  544. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  545. /**
  546. * Returns whether the given set of divisors are valid for a given refclk with
  547. * the given connectors.
  548. */
  549. static bool intel_PLL_is_valid(struct drm_device *dev,
  550. const intel_limit_t *limit,
  551. const intel_clock_t *clock)
  552. {
  553. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  554. INTELPllInvalid("p1 out of range\n");
  555. if (clock->p < limit->p.min || limit->p.max < clock->p)
  556. INTELPllInvalid("p out of range\n");
  557. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  558. INTELPllInvalid("m2 out of range\n");
  559. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  560. INTELPllInvalid("m1 out of range\n");
  561. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  562. INTELPllInvalid("m1 <= m2\n");
  563. if (clock->m < limit->m.min || limit->m.max < clock->m)
  564. INTELPllInvalid("m out of range\n");
  565. if (clock->n < limit->n.min || limit->n.max < clock->n)
  566. INTELPllInvalid("n out of range\n");
  567. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  568. INTELPllInvalid("vco out of range\n");
  569. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  570. * connector, etc., rather than just a single range.
  571. */
  572. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  573. INTELPllInvalid("dot out of range\n");
  574. return true;
  575. }
  576. static bool
  577. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  578. int target, int refclk, intel_clock_t *match_clock,
  579. intel_clock_t *best_clock)
  580. {
  581. struct drm_device *dev = crtc->dev;
  582. intel_clock_t clock;
  583. int err = target;
  584. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  585. /*
  586. * For LVDS just rely on its current settings for dual-channel.
  587. * We haven't figured out how to reliably set up different
  588. * single/dual channel state, if we even can.
  589. */
  590. if (intel_is_dual_link_lvds(dev))
  591. clock.p2 = limit->p2.p2_fast;
  592. else
  593. clock.p2 = limit->p2.p2_slow;
  594. } else {
  595. if (target < limit->p2.dot_limit)
  596. clock.p2 = limit->p2.p2_slow;
  597. else
  598. clock.p2 = limit->p2.p2_fast;
  599. }
  600. memset(best_clock, 0, sizeof(*best_clock));
  601. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  602. clock.m1++) {
  603. for (clock.m2 = limit->m2.min;
  604. clock.m2 <= limit->m2.max; clock.m2++) {
  605. /* m1 is always 0 in Pineview */
  606. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  607. break;
  608. for (clock.n = limit->n.min;
  609. clock.n <= limit->n.max; clock.n++) {
  610. for (clock.p1 = limit->p1.min;
  611. clock.p1 <= limit->p1.max; clock.p1++) {
  612. int this_err;
  613. intel_clock(dev, refclk, &clock);
  614. if (!intel_PLL_is_valid(dev, limit,
  615. &clock))
  616. continue;
  617. if (match_clock &&
  618. clock.p != match_clock->p)
  619. continue;
  620. this_err = abs(clock.dot - target);
  621. if (this_err < err) {
  622. *best_clock = clock;
  623. err = this_err;
  624. }
  625. }
  626. }
  627. }
  628. }
  629. return (err != target);
  630. }
  631. static bool
  632. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  633. int target, int refclk, intel_clock_t *match_clock,
  634. intel_clock_t *best_clock)
  635. {
  636. struct drm_device *dev = crtc->dev;
  637. intel_clock_t clock;
  638. int max_n;
  639. bool found;
  640. /* approximately equals target * 0.00585 */
  641. int err_most = (target >> 8) + (target >> 9);
  642. found = false;
  643. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  644. int lvds_reg;
  645. if (HAS_PCH_SPLIT(dev))
  646. lvds_reg = PCH_LVDS;
  647. else
  648. lvds_reg = LVDS;
  649. if (intel_is_dual_link_lvds(dev))
  650. clock.p2 = limit->p2.p2_fast;
  651. else
  652. clock.p2 = limit->p2.p2_slow;
  653. } else {
  654. if (target < limit->p2.dot_limit)
  655. clock.p2 = limit->p2.p2_slow;
  656. else
  657. clock.p2 = limit->p2.p2_fast;
  658. }
  659. memset(best_clock, 0, sizeof(*best_clock));
  660. max_n = limit->n.max;
  661. /* based on hardware requirement, prefer smaller n to precision */
  662. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  663. /* based on hardware requirement, prefere larger m1,m2 */
  664. for (clock.m1 = limit->m1.max;
  665. clock.m1 >= limit->m1.min; clock.m1--) {
  666. for (clock.m2 = limit->m2.max;
  667. clock.m2 >= limit->m2.min; clock.m2--) {
  668. for (clock.p1 = limit->p1.max;
  669. clock.p1 >= limit->p1.min; clock.p1--) {
  670. int this_err;
  671. intel_clock(dev, refclk, &clock);
  672. if (!intel_PLL_is_valid(dev, limit,
  673. &clock))
  674. continue;
  675. if (match_clock &&
  676. clock.p != match_clock->p)
  677. continue;
  678. this_err = abs(clock.dot - target);
  679. if (this_err < err_most) {
  680. *best_clock = clock;
  681. err_most = this_err;
  682. max_n = clock.n;
  683. found = true;
  684. }
  685. }
  686. }
  687. }
  688. }
  689. return found;
  690. }
  691. static bool
  692. intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  693. int target, int refclk, intel_clock_t *match_clock,
  694. intel_clock_t *best_clock)
  695. {
  696. struct drm_device *dev = crtc->dev;
  697. intel_clock_t clock;
  698. if (target < 200000) {
  699. clock.n = 1;
  700. clock.p1 = 2;
  701. clock.p2 = 10;
  702. clock.m1 = 12;
  703. clock.m2 = 9;
  704. } else {
  705. clock.n = 2;
  706. clock.p1 = 1;
  707. clock.p2 = 10;
  708. clock.m1 = 14;
  709. clock.m2 = 8;
  710. }
  711. intel_clock(dev, refclk, &clock);
  712. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  713. return true;
  714. }
  715. /* DisplayPort has only two frequencies, 162MHz and 270MHz */
  716. static bool
  717. intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  718. int target, int refclk, intel_clock_t *match_clock,
  719. intel_clock_t *best_clock)
  720. {
  721. intel_clock_t clock;
  722. if (target < 200000) {
  723. clock.p1 = 2;
  724. clock.p2 = 10;
  725. clock.n = 2;
  726. clock.m1 = 23;
  727. clock.m2 = 8;
  728. } else {
  729. clock.p1 = 1;
  730. clock.p2 = 10;
  731. clock.n = 1;
  732. clock.m1 = 14;
  733. clock.m2 = 2;
  734. }
  735. clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
  736. clock.p = (clock.p1 * clock.p2);
  737. clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
  738. clock.vco = 0;
  739. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  740. return true;
  741. }
  742. static bool
  743. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  744. int target, int refclk, intel_clock_t *match_clock,
  745. intel_clock_t *best_clock)
  746. {
  747. u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  748. u32 m, n, fastclk;
  749. u32 updrate, minupdate, fracbits, p;
  750. unsigned long bestppm, ppm, absppm;
  751. int dotclk, flag;
  752. flag = 0;
  753. dotclk = target * 1000;
  754. bestppm = 1000000;
  755. ppm = absppm = 0;
  756. fastclk = dotclk / (2*100);
  757. updrate = 0;
  758. minupdate = 19200;
  759. fracbits = 1;
  760. n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  761. bestm1 = bestm2 = bestp1 = bestp2 = 0;
  762. /* based on hardware requirement, prefer smaller n to precision */
  763. for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  764. updrate = refclk / n;
  765. for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  766. for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  767. if (p2 > 10)
  768. p2 = p2 - 1;
  769. p = p1 * p2;
  770. /* based on hardware requirement, prefer bigger m1,m2 values */
  771. for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  772. m2 = (((2*(fastclk * p * n / m1 )) +
  773. refclk) / (2*refclk));
  774. m = m1 * m2;
  775. vco = updrate * m;
  776. if (vco >= limit->vco.min && vco < limit->vco.max) {
  777. ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  778. absppm = (ppm > 0) ? ppm : (-ppm);
  779. if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  780. bestppm = 0;
  781. flag = 1;
  782. }
  783. if (absppm < bestppm - 10) {
  784. bestppm = absppm;
  785. flag = 1;
  786. }
  787. if (flag) {
  788. bestn = n;
  789. bestm1 = m1;
  790. bestm2 = m2;
  791. bestp1 = p1;
  792. bestp2 = p2;
  793. flag = 0;
  794. }
  795. }
  796. }
  797. }
  798. }
  799. }
  800. best_clock->n = bestn;
  801. best_clock->m1 = bestm1;
  802. best_clock->m2 = bestm2;
  803. best_clock->p1 = bestp1;
  804. best_clock->p2 = bestp2;
  805. return true;
  806. }
  807. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  808. enum pipe pipe)
  809. {
  810. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  811. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  812. return intel_crtc->config.cpu_transcoder;
  813. }
  814. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  815. {
  816. struct drm_i915_private *dev_priv = dev->dev_private;
  817. u32 frame, frame_reg = PIPEFRAME(pipe);
  818. frame = I915_READ(frame_reg);
  819. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  820. DRM_DEBUG_KMS("vblank wait timed out\n");
  821. }
  822. /**
  823. * intel_wait_for_vblank - wait for vblank on a given pipe
  824. * @dev: drm device
  825. * @pipe: pipe to wait for
  826. *
  827. * Wait for vblank to occur on a given pipe. Needed for various bits of
  828. * mode setting code.
  829. */
  830. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  831. {
  832. struct drm_i915_private *dev_priv = dev->dev_private;
  833. int pipestat_reg = PIPESTAT(pipe);
  834. if (INTEL_INFO(dev)->gen >= 5) {
  835. ironlake_wait_for_vblank(dev, pipe);
  836. return;
  837. }
  838. /* Clear existing vblank status. Note this will clear any other
  839. * sticky status fields as well.
  840. *
  841. * This races with i915_driver_irq_handler() with the result
  842. * that either function could miss a vblank event. Here it is not
  843. * fatal, as we will either wait upon the next vblank interrupt or
  844. * timeout. Generally speaking intel_wait_for_vblank() is only
  845. * called during modeset at which time the GPU should be idle and
  846. * should *not* be performing page flips and thus not waiting on
  847. * vblanks...
  848. * Currently, the result of us stealing a vblank from the irq
  849. * handler is that a single frame will be skipped during swapbuffers.
  850. */
  851. I915_WRITE(pipestat_reg,
  852. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  853. /* Wait for vblank interrupt bit to set */
  854. if (wait_for(I915_READ(pipestat_reg) &
  855. PIPE_VBLANK_INTERRUPT_STATUS,
  856. 50))
  857. DRM_DEBUG_KMS("vblank wait timed out\n");
  858. }
  859. /*
  860. * intel_wait_for_pipe_off - wait for pipe to turn off
  861. * @dev: drm device
  862. * @pipe: pipe to wait for
  863. *
  864. * After disabling a pipe, we can't wait for vblank in the usual way,
  865. * spinning on the vblank interrupt status bit, since we won't actually
  866. * see an interrupt when the pipe is disabled.
  867. *
  868. * On Gen4 and above:
  869. * wait for the pipe register state bit to turn off
  870. *
  871. * Otherwise:
  872. * wait for the display line value to settle (it usually
  873. * ends up stopping at the start of the next frame).
  874. *
  875. */
  876. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  877. {
  878. struct drm_i915_private *dev_priv = dev->dev_private;
  879. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  880. pipe);
  881. if (INTEL_INFO(dev)->gen >= 4) {
  882. int reg = PIPECONF(cpu_transcoder);
  883. /* Wait for the Pipe State to go off */
  884. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  885. 100))
  886. WARN(1, "pipe_off wait timed out\n");
  887. } else {
  888. u32 last_line, line_mask;
  889. int reg = PIPEDSL(pipe);
  890. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  891. if (IS_GEN2(dev))
  892. line_mask = DSL_LINEMASK_GEN2;
  893. else
  894. line_mask = DSL_LINEMASK_GEN3;
  895. /* Wait for the display line to settle */
  896. do {
  897. last_line = I915_READ(reg) & line_mask;
  898. mdelay(5);
  899. } while (((I915_READ(reg) & line_mask) != last_line) &&
  900. time_after(timeout, jiffies));
  901. if (time_after(jiffies, timeout))
  902. WARN(1, "pipe_off wait timed out\n");
  903. }
  904. }
  905. /*
  906. * ibx_digital_port_connected - is the specified port connected?
  907. * @dev_priv: i915 private structure
  908. * @port: the port to test
  909. *
  910. * Returns true if @port is connected, false otherwise.
  911. */
  912. bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
  913. struct intel_digital_port *port)
  914. {
  915. u32 bit;
  916. if (HAS_PCH_IBX(dev_priv->dev)) {
  917. switch(port->port) {
  918. case PORT_B:
  919. bit = SDE_PORTB_HOTPLUG;
  920. break;
  921. case PORT_C:
  922. bit = SDE_PORTC_HOTPLUG;
  923. break;
  924. case PORT_D:
  925. bit = SDE_PORTD_HOTPLUG;
  926. break;
  927. default:
  928. return true;
  929. }
  930. } else {
  931. switch(port->port) {
  932. case PORT_B:
  933. bit = SDE_PORTB_HOTPLUG_CPT;
  934. break;
  935. case PORT_C:
  936. bit = SDE_PORTC_HOTPLUG_CPT;
  937. break;
  938. case PORT_D:
  939. bit = SDE_PORTD_HOTPLUG_CPT;
  940. break;
  941. default:
  942. return true;
  943. }
  944. }
  945. return I915_READ(SDEISR) & bit;
  946. }
  947. static const char *state_string(bool enabled)
  948. {
  949. return enabled ? "on" : "off";
  950. }
  951. /* Only for pre-ILK configs */
  952. static void assert_pll(struct drm_i915_private *dev_priv,
  953. enum pipe pipe, bool state)
  954. {
  955. int reg;
  956. u32 val;
  957. bool cur_state;
  958. reg = DPLL(pipe);
  959. val = I915_READ(reg);
  960. cur_state = !!(val & DPLL_VCO_ENABLE);
  961. WARN(cur_state != state,
  962. "PLL state assertion failure (expected %s, current %s)\n",
  963. state_string(state), state_string(cur_state));
  964. }
  965. #define assert_pll_enabled(d, p) assert_pll(d, p, true)
  966. #define assert_pll_disabled(d, p) assert_pll(d, p, false)
  967. /* For ILK+ */
  968. static void assert_pch_pll(struct drm_i915_private *dev_priv,
  969. struct intel_pch_pll *pll,
  970. struct intel_crtc *crtc,
  971. bool state)
  972. {
  973. u32 val;
  974. bool cur_state;
  975. if (HAS_PCH_LPT(dev_priv->dev)) {
  976. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  977. return;
  978. }
  979. if (WARN (!pll,
  980. "asserting PCH PLL %s with no PLL\n", state_string(state)))
  981. return;
  982. val = I915_READ(pll->pll_reg);
  983. cur_state = !!(val & DPLL_VCO_ENABLE);
  984. WARN(cur_state != state,
  985. "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
  986. pll->pll_reg, state_string(state), state_string(cur_state), val);
  987. /* Make sure the selected PLL is correctly attached to the transcoder */
  988. if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
  989. u32 pch_dpll;
  990. pch_dpll = I915_READ(PCH_DPLL_SEL);
  991. cur_state = pll->pll_reg == _PCH_DPLL_B;
  992. if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
  993. "PLL[%d] not attached to this transcoder %c: %08x\n",
  994. cur_state, pipe_name(crtc->pipe), pch_dpll)) {
  995. cur_state = !!(val >> (4*crtc->pipe + 3));
  996. WARN(cur_state != state,
  997. "PLL[%d] not %s on this transcoder %c: %08x\n",
  998. pll->pll_reg == _PCH_DPLL_B,
  999. state_string(state),
  1000. pipe_name(crtc->pipe),
  1001. val);
  1002. }
  1003. }
  1004. }
  1005. #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
  1006. #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
  1007. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  1008. enum pipe pipe, bool state)
  1009. {
  1010. int reg;
  1011. u32 val;
  1012. bool cur_state;
  1013. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1014. pipe);
  1015. if (HAS_DDI(dev_priv->dev)) {
  1016. /* DDI does not have a specific FDI_TX register */
  1017. reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  1018. val = I915_READ(reg);
  1019. cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  1020. } else {
  1021. reg = FDI_TX_CTL(pipe);
  1022. val = I915_READ(reg);
  1023. cur_state = !!(val & FDI_TX_ENABLE);
  1024. }
  1025. WARN(cur_state != state,
  1026. "FDI TX state assertion failure (expected %s, current %s)\n",
  1027. state_string(state), state_string(cur_state));
  1028. }
  1029. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  1030. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  1031. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  1032. enum pipe pipe, bool state)
  1033. {
  1034. int reg;
  1035. u32 val;
  1036. bool cur_state;
  1037. reg = FDI_RX_CTL(pipe);
  1038. val = I915_READ(reg);
  1039. cur_state = !!(val & FDI_RX_ENABLE);
  1040. WARN(cur_state != state,
  1041. "FDI RX state assertion failure (expected %s, current %s)\n",
  1042. state_string(state), state_string(cur_state));
  1043. }
  1044. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  1045. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  1046. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  1047. enum pipe pipe)
  1048. {
  1049. int reg;
  1050. u32 val;
  1051. /* ILK FDI PLL is always enabled */
  1052. if (dev_priv->info->gen == 5)
  1053. return;
  1054. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  1055. if (HAS_DDI(dev_priv->dev))
  1056. return;
  1057. reg = FDI_TX_CTL(pipe);
  1058. val = I915_READ(reg);
  1059. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  1060. }
  1061. static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
  1062. enum pipe pipe)
  1063. {
  1064. int reg;
  1065. u32 val;
  1066. reg = FDI_RX_CTL(pipe);
  1067. val = I915_READ(reg);
  1068. WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
  1069. }
  1070. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  1071. enum pipe pipe)
  1072. {
  1073. int pp_reg, lvds_reg;
  1074. u32 val;
  1075. enum pipe panel_pipe = PIPE_A;
  1076. bool locked = true;
  1077. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  1078. pp_reg = PCH_PP_CONTROL;
  1079. lvds_reg = PCH_LVDS;
  1080. } else {
  1081. pp_reg = PP_CONTROL;
  1082. lvds_reg = LVDS;
  1083. }
  1084. val = I915_READ(pp_reg);
  1085. if (!(val & PANEL_POWER_ON) ||
  1086. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  1087. locked = false;
  1088. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  1089. panel_pipe = PIPE_B;
  1090. WARN(panel_pipe == pipe && locked,
  1091. "panel assertion failure, pipe %c regs locked\n",
  1092. pipe_name(pipe));
  1093. }
  1094. void assert_pipe(struct drm_i915_private *dev_priv,
  1095. enum pipe pipe, bool state)
  1096. {
  1097. int reg;
  1098. u32 val;
  1099. bool cur_state;
  1100. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1101. pipe);
  1102. /* if we need the pipe A quirk it must be always on */
  1103. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  1104. state = true;
  1105. if (!intel_using_power_well(dev_priv->dev) &&
  1106. cpu_transcoder != TRANSCODER_EDP) {
  1107. cur_state = false;
  1108. } else {
  1109. reg = PIPECONF(cpu_transcoder);
  1110. val = I915_READ(reg);
  1111. cur_state = !!(val & PIPECONF_ENABLE);
  1112. }
  1113. WARN(cur_state != state,
  1114. "pipe %c assertion failure (expected %s, current %s)\n",
  1115. pipe_name(pipe), state_string(state), state_string(cur_state));
  1116. }
  1117. static void assert_plane(struct drm_i915_private *dev_priv,
  1118. enum plane plane, bool state)
  1119. {
  1120. int reg;
  1121. u32 val;
  1122. bool cur_state;
  1123. reg = DSPCNTR(plane);
  1124. val = I915_READ(reg);
  1125. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  1126. WARN(cur_state != state,
  1127. "plane %c assertion failure (expected %s, current %s)\n",
  1128. plane_name(plane), state_string(state), state_string(cur_state));
  1129. }
  1130. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  1131. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  1132. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  1133. enum pipe pipe)
  1134. {
  1135. int reg, i;
  1136. u32 val;
  1137. int cur_pipe;
  1138. /* Planes are fixed to pipes on ILK+ */
  1139. if (HAS_PCH_SPLIT(dev_priv->dev) || IS_VALLEYVIEW(dev_priv->dev)) {
  1140. reg = DSPCNTR(pipe);
  1141. val = I915_READ(reg);
  1142. WARN((val & DISPLAY_PLANE_ENABLE),
  1143. "plane %c assertion failure, should be disabled but not\n",
  1144. plane_name(pipe));
  1145. return;
  1146. }
  1147. /* Need to check both planes against the pipe */
  1148. for (i = 0; i < 2; i++) {
  1149. reg = DSPCNTR(i);
  1150. val = I915_READ(reg);
  1151. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1152. DISPPLANE_SEL_PIPE_SHIFT;
  1153. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1154. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1155. plane_name(i), pipe_name(pipe));
  1156. }
  1157. }
  1158. static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
  1159. enum pipe pipe)
  1160. {
  1161. int reg, i;
  1162. u32 val;
  1163. if (!IS_VALLEYVIEW(dev_priv->dev))
  1164. return;
  1165. /* Need to check both planes against the pipe */
  1166. for (i = 0; i < dev_priv->num_plane; i++) {
  1167. reg = SPCNTR(pipe, i);
  1168. val = I915_READ(reg);
  1169. WARN((val & SP_ENABLE),
  1170. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1171. sprite_name(pipe, i), pipe_name(pipe));
  1172. }
  1173. }
  1174. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1175. {
  1176. u32 val;
  1177. bool enabled;
  1178. if (HAS_PCH_LPT(dev_priv->dev)) {
  1179. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1180. return;
  1181. }
  1182. val = I915_READ(PCH_DREF_CONTROL);
  1183. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1184. DREF_SUPERSPREAD_SOURCE_MASK));
  1185. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1186. }
  1187. static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
  1188. enum pipe pipe)
  1189. {
  1190. int reg;
  1191. u32 val;
  1192. bool enabled;
  1193. reg = TRANSCONF(pipe);
  1194. val = I915_READ(reg);
  1195. enabled = !!(val & TRANS_ENABLE);
  1196. WARN(enabled,
  1197. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1198. pipe_name(pipe));
  1199. }
  1200. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1201. enum pipe pipe, u32 port_sel, u32 val)
  1202. {
  1203. if ((val & DP_PORT_EN) == 0)
  1204. return false;
  1205. if (HAS_PCH_CPT(dev_priv->dev)) {
  1206. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1207. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1208. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1209. return false;
  1210. } else {
  1211. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1212. return false;
  1213. }
  1214. return true;
  1215. }
  1216. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1217. enum pipe pipe, u32 val)
  1218. {
  1219. if ((val & SDVO_ENABLE) == 0)
  1220. return false;
  1221. if (HAS_PCH_CPT(dev_priv->dev)) {
  1222. if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
  1223. return false;
  1224. } else {
  1225. if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
  1226. return false;
  1227. }
  1228. return true;
  1229. }
  1230. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1231. enum pipe pipe, u32 val)
  1232. {
  1233. if ((val & LVDS_PORT_EN) == 0)
  1234. return false;
  1235. if (HAS_PCH_CPT(dev_priv->dev)) {
  1236. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1237. return false;
  1238. } else {
  1239. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1240. return false;
  1241. }
  1242. return true;
  1243. }
  1244. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1245. enum pipe pipe, u32 val)
  1246. {
  1247. if ((val & ADPA_DAC_ENABLE) == 0)
  1248. return false;
  1249. if (HAS_PCH_CPT(dev_priv->dev)) {
  1250. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1251. return false;
  1252. } else {
  1253. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1254. return false;
  1255. }
  1256. return true;
  1257. }
  1258. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1259. enum pipe pipe, int reg, u32 port_sel)
  1260. {
  1261. u32 val = I915_READ(reg);
  1262. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1263. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1264. reg, pipe_name(pipe));
  1265. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1266. && (val & DP_PIPEB_SELECT),
  1267. "IBX PCH dp port still using transcoder B\n");
  1268. }
  1269. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1270. enum pipe pipe, int reg)
  1271. {
  1272. u32 val = I915_READ(reg);
  1273. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1274. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1275. reg, pipe_name(pipe));
  1276. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
  1277. && (val & SDVO_PIPE_B_SELECT),
  1278. "IBX PCH hdmi port still using transcoder B\n");
  1279. }
  1280. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1281. enum pipe pipe)
  1282. {
  1283. int reg;
  1284. u32 val;
  1285. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1286. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1287. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1288. reg = PCH_ADPA;
  1289. val = I915_READ(reg);
  1290. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1291. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1292. pipe_name(pipe));
  1293. reg = PCH_LVDS;
  1294. val = I915_READ(reg);
  1295. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1296. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1297. pipe_name(pipe));
  1298. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
  1299. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
  1300. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
  1301. }
  1302. /**
  1303. * intel_enable_pll - enable a PLL
  1304. * @dev_priv: i915 private structure
  1305. * @pipe: pipe PLL to enable
  1306. *
  1307. * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
  1308. * make sure the PLL reg is writable first though, since the panel write
  1309. * protect mechanism may be enabled.
  1310. *
  1311. * Note! This is for pre-ILK only.
  1312. *
  1313. * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
  1314. */
  1315. static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1316. {
  1317. int reg;
  1318. u32 val;
  1319. assert_pipe_disabled(dev_priv, pipe);
  1320. /* No really, not for ILK+ */
  1321. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
  1322. /* PLL is protected by panel, make sure we can write it */
  1323. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1324. assert_panel_unlocked(dev_priv, pipe);
  1325. reg = DPLL(pipe);
  1326. val = I915_READ(reg);
  1327. val |= DPLL_VCO_ENABLE;
  1328. /* We do this three times for luck */
  1329. I915_WRITE(reg, val);
  1330. POSTING_READ(reg);
  1331. udelay(150); /* wait for warmup */
  1332. I915_WRITE(reg, val);
  1333. POSTING_READ(reg);
  1334. udelay(150); /* wait for warmup */
  1335. I915_WRITE(reg, val);
  1336. POSTING_READ(reg);
  1337. udelay(150); /* wait for warmup */
  1338. }
  1339. /**
  1340. * intel_disable_pll - disable a PLL
  1341. * @dev_priv: i915 private structure
  1342. * @pipe: pipe PLL to disable
  1343. *
  1344. * Disable the PLL for @pipe, making sure the pipe is off first.
  1345. *
  1346. * Note! This is for pre-ILK only.
  1347. */
  1348. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1349. {
  1350. int reg;
  1351. u32 val;
  1352. /* Don't disable pipe A or pipe A PLLs if needed */
  1353. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1354. return;
  1355. /* Make sure the pipe isn't still relying on us */
  1356. assert_pipe_disabled(dev_priv, pipe);
  1357. reg = DPLL(pipe);
  1358. val = I915_READ(reg);
  1359. val &= ~DPLL_VCO_ENABLE;
  1360. I915_WRITE(reg, val);
  1361. POSTING_READ(reg);
  1362. }
  1363. /* SBI access */
  1364. static void
  1365. intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
  1366. enum intel_sbi_destination destination)
  1367. {
  1368. u32 tmp;
  1369. WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
  1370. if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
  1371. 100)) {
  1372. DRM_ERROR("timeout waiting for SBI to become ready\n");
  1373. return;
  1374. }
  1375. I915_WRITE(SBI_ADDR, (reg << 16));
  1376. I915_WRITE(SBI_DATA, value);
  1377. if (destination == SBI_ICLK)
  1378. tmp = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRWR;
  1379. else
  1380. tmp = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IOWR;
  1381. I915_WRITE(SBI_CTL_STAT, SBI_BUSY | tmp);
  1382. if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
  1383. 100)) {
  1384. DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
  1385. return;
  1386. }
  1387. }
  1388. static u32
  1389. intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
  1390. enum intel_sbi_destination destination)
  1391. {
  1392. u32 value = 0;
  1393. WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
  1394. if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
  1395. 100)) {
  1396. DRM_ERROR("timeout waiting for SBI to become ready\n");
  1397. return 0;
  1398. }
  1399. I915_WRITE(SBI_ADDR, (reg << 16));
  1400. if (destination == SBI_ICLK)
  1401. value = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRRD;
  1402. else
  1403. value = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IORD;
  1404. I915_WRITE(SBI_CTL_STAT, value | SBI_BUSY);
  1405. if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
  1406. 100)) {
  1407. DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
  1408. return 0;
  1409. }
  1410. return I915_READ(SBI_DATA);
  1411. }
  1412. /**
  1413. * ironlake_enable_pch_pll - enable PCH PLL
  1414. * @dev_priv: i915 private structure
  1415. * @pipe: pipe PLL to enable
  1416. *
  1417. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1418. * drives the transcoder clock.
  1419. */
  1420. static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
  1421. {
  1422. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1423. struct intel_pch_pll *pll;
  1424. int reg;
  1425. u32 val;
  1426. /* PCH PLLs only available on ILK, SNB and IVB */
  1427. BUG_ON(dev_priv->info->gen < 5);
  1428. pll = intel_crtc->pch_pll;
  1429. if (pll == NULL)
  1430. return;
  1431. if (WARN_ON(pll->refcount == 0))
  1432. return;
  1433. DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
  1434. pll->pll_reg, pll->active, pll->on,
  1435. intel_crtc->base.base.id);
  1436. /* PCH refclock must be enabled first */
  1437. assert_pch_refclk_enabled(dev_priv);
  1438. if (pll->active++ && pll->on) {
  1439. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1440. return;
  1441. }
  1442. DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
  1443. reg = pll->pll_reg;
  1444. val = I915_READ(reg);
  1445. val |= DPLL_VCO_ENABLE;
  1446. I915_WRITE(reg, val);
  1447. POSTING_READ(reg);
  1448. udelay(200);
  1449. pll->on = true;
  1450. }
  1451. static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
  1452. {
  1453. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1454. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  1455. int reg;
  1456. u32 val;
  1457. /* PCH only available on ILK+ */
  1458. BUG_ON(dev_priv->info->gen < 5);
  1459. if (pll == NULL)
  1460. return;
  1461. if (WARN_ON(pll->refcount == 0))
  1462. return;
  1463. DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
  1464. pll->pll_reg, pll->active, pll->on,
  1465. intel_crtc->base.base.id);
  1466. if (WARN_ON(pll->active == 0)) {
  1467. assert_pch_pll_disabled(dev_priv, pll, NULL);
  1468. return;
  1469. }
  1470. if (--pll->active) {
  1471. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1472. return;
  1473. }
  1474. DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
  1475. /* Make sure transcoder isn't still depending on us */
  1476. assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
  1477. reg = pll->pll_reg;
  1478. val = I915_READ(reg);
  1479. val &= ~DPLL_VCO_ENABLE;
  1480. I915_WRITE(reg, val);
  1481. POSTING_READ(reg);
  1482. udelay(200);
  1483. pll->on = false;
  1484. }
  1485. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1486. enum pipe pipe)
  1487. {
  1488. struct drm_device *dev = dev_priv->dev;
  1489. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1490. uint32_t reg, val, pipeconf_val;
  1491. /* PCH only available on ILK+ */
  1492. BUG_ON(dev_priv->info->gen < 5);
  1493. /* Make sure PCH DPLL is enabled */
  1494. assert_pch_pll_enabled(dev_priv,
  1495. to_intel_crtc(crtc)->pch_pll,
  1496. to_intel_crtc(crtc));
  1497. /* FDI must be feeding us bits for PCH ports */
  1498. assert_fdi_tx_enabled(dev_priv, pipe);
  1499. assert_fdi_rx_enabled(dev_priv, pipe);
  1500. if (HAS_PCH_CPT(dev)) {
  1501. /* Workaround: Set the timing override bit before enabling the
  1502. * pch transcoder. */
  1503. reg = TRANS_CHICKEN2(pipe);
  1504. val = I915_READ(reg);
  1505. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1506. I915_WRITE(reg, val);
  1507. }
  1508. reg = TRANSCONF(pipe);
  1509. val = I915_READ(reg);
  1510. pipeconf_val = I915_READ(PIPECONF(pipe));
  1511. if (HAS_PCH_IBX(dev_priv->dev)) {
  1512. /*
  1513. * make the BPC in transcoder be consistent with
  1514. * that in pipeconf reg.
  1515. */
  1516. val &= ~PIPECONF_BPC_MASK;
  1517. val |= pipeconf_val & PIPECONF_BPC_MASK;
  1518. }
  1519. val &= ~TRANS_INTERLACE_MASK;
  1520. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1521. if (HAS_PCH_IBX(dev_priv->dev) &&
  1522. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1523. val |= TRANS_LEGACY_INTERLACED_ILK;
  1524. else
  1525. val |= TRANS_INTERLACED;
  1526. else
  1527. val |= TRANS_PROGRESSIVE;
  1528. I915_WRITE(reg, val | TRANS_ENABLE);
  1529. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1530. DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
  1531. }
  1532. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1533. enum transcoder cpu_transcoder)
  1534. {
  1535. u32 val, pipeconf_val;
  1536. /* PCH only available on ILK+ */
  1537. BUG_ON(dev_priv->info->gen < 5);
  1538. /* FDI must be feeding us bits for PCH ports */
  1539. assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
  1540. assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  1541. /* Workaround: set timing override bit. */
  1542. val = I915_READ(_TRANSA_CHICKEN2);
  1543. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1544. I915_WRITE(_TRANSA_CHICKEN2, val);
  1545. val = TRANS_ENABLE;
  1546. pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  1547. if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  1548. PIPECONF_INTERLACED_ILK)
  1549. val |= TRANS_INTERLACED;
  1550. else
  1551. val |= TRANS_PROGRESSIVE;
  1552. I915_WRITE(TRANSCONF(TRANSCODER_A), val);
  1553. if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
  1554. DRM_ERROR("Failed to enable PCH transcoder\n");
  1555. }
  1556. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  1557. enum pipe pipe)
  1558. {
  1559. struct drm_device *dev = dev_priv->dev;
  1560. uint32_t reg, val;
  1561. /* FDI relies on the transcoder */
  1562. assert_fdi_tx_disabled(dev_priv, pipe);
  1563. assert_fdi_rx_disabled(dev_priv, pipe);
  1564. /* Ports must be off as well */
  1565. assert_pch_ports_disabled(dev_priv, pipe);
  1566. reg = TRANSCONF(pipe);
  1567. val = I915_READ(reg);
  1568. val &= ~TRANS_ENABLE;
  1569. I915_WRITE(reg, val);
  1570. /* wait for PCH transcoder off, transcoder state */
  1571. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1572. DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
  1573. if (!HAS_PCH_IBX(dev)) {
  1574. /* Workaround: Clear the timing override chicken bit again. */
  1575. reg = TRANS_CHICKEN2(pipe);
  1576. val = I915_READ(reg);
  1577. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1578. I915_WRITE(reg, val);
  1579. }
  1580. }
  1581. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  1582. {
  1583. u32 val;
  1584. val = I915_READ(_TRANSACONF);
  1585. val &= ~TRANS_ENABLE;
  1586. I915_WRITE(_TRANSACONF, val);
  1587. /* wait for PCH transcoder off, transcoder state */
  1588. if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
  1589. DRM_ERROR("Failed to disable PCH transcoder\n");
  1590. /* Workaround: clear timing override bit. */
  1591. val = I915_READ(_TRANSA_CHICKEN2);
  1592. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1593. I915_WRITE(_TRANSA_CHICKEN2, val);
  1594. }
  1595. /**
  1596. * intel_enable_pipe - enable a pipe, asserting requirements
  1597. * @dev_priv: i915 private structure
  1598. * @pipe: pipe to enable
  1599. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1600. *
  1601. * Enable @pipe, making sure that various hardware specific requirements
  1602. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1603. *
  1604. * @pipe should be %PIPE_A or %PIPE_B.
  1605. *
  1606. * Will wait until the pipe is actually running (i.e. first vblank) before
  1607. * returning.
  1608. */
  1609. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1610. bool pch_port)
  1611. {
  1612. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1613. pipe);
  1614. enum pipe pch_transcoder;
  1615. int reg;
  1616. u32 val;
  1617. assert_planes_disabled(dev_priv, pipe);
  1618. assert_sprites_disabled(dev_priv, pipe);
  1619. if (HAS_PCH_LPT(dev_priv->dev))
  1620. pch_transcoder = TRANSCODER_A;
  1621. else
  1622. pch_transcoder = pipe;
  1623. /*
  1624. * A pipe without a PLL won't actually be able to drive bits from
  1625. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1626. * need the check.
  1627. */
  1628. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1629. assert_pll_enabled(dev_priv, pipe);
  1630. else {
  1631. if (pch_port) {
  1632. /* if driving the PCH, we need FDI enabled */
  1633. assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  1634. assert_fdi_tx_pll_enabled(dev_priv,
  1635. (enum pipe) cpu_transcoder);
  1636. }
  1637. /* FIXME: assert CPU port conditions for SNB+ */
  1638. }
  1639. reg = PIPECONF(cpu_transcoder);
  1640. val = I915_READ(reg);
  1641. if (val & PIPECONF_ENABLE)
  1642. return;
  1643. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1644. intel_wait_for_vblank(dev_priv->dev, pipe);
  1645. }
  1646. /**
  1647. * intel_disable_pipe - disable a pipe, asserting requirements
  1648. * @dev_priv: i915 private structure
  1649. * @pipe: pipe to disable
  1650. *
  1651. * Disable @pipe, making sure that various hardware specific requirements
  1652. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1653. *
  1654. * @pipe should be %PIPE_A or %PIPE_B.
  1655. *
  1656. * Will wait until the pipe has shut down before returning.
  1657. */
  1658. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1659. enum pipe pipe)
  1660. {
  1661. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1662. pipe);
  1663. int reg;
  1664. u32 val;
  1665. /*
  1666. * Make sure planes won't keep trying to pump pixels to us,
  1667. * or we might hang the display.
  1668. */
  1669. assert_planes_disabled(dev_priv, pipe);
  1670. assert_sprites_disabled(dev_priv, pipe);
  1671. /* Don't disable pipe A or pipe A PLLs if needed */
  1672. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1673. return;
  1674. reg = PIPECONF(cpu_transcoder);
  1675. val = I915_READ(reg);
  1676. if ((val & PIPECONF_ENABLE) == 0)
  1677. return;
  1678. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1679. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1680. }
  1681. /*
  1682. * Plane regs are double buffered, going from enabled->disabled needs a
  1683. * trigger in order to latch. The display address reg provides this.
  1684. */
  1685. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1686. enum plane plane)
  1687. {
  1688. if (dev_priv->info->gen >= 4)
  1689. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1690. else
  1691. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1692. }
  1693. /**
  1694. * intel_enable_plane - enable a display plane on a given pipe
  1695. * @dev_priv: i915 private structure
  1696. * @plane: plane to enable
  1697. * @pipe: pipe being fed
  1698. *
  1699. * Enable @plane on @pipe, making sure that @pipe is running first.
  1700. */
  1701. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1702. enum plane plane, enum pipe pipe)
  1703. {
  1704. int reg;
  1705. u32 val;
  1706. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1707. assert_pipe_enabled(dev_priv, pipe);
  1708. reg = DSPCNTR(plane);
  1709. val = I915_READ(reg);
  1710. if (val & DISPLAY_PLANE_ENABLE)
  1711. return;
  1712. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1713. intel_flush_display_plane(dev_priv, plane);
  1714. intel_wait_for_vblank(dev_priv->dev, pipe);
  1715. }
  1716. /**
  1717. * intel_disable_plane - disable a display plane
  1718. * @dev_priv: i915 private structure
  1719. * @plane: plane to disable
  1720. * @pipe: pipe consuming the data
  1721. *
  1722. * Disable @plane; should be an independent operation.
  1723. */
  1724. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1725. enum plane plane, enum pipe pipe)
  1726. {
  1727. int reg;
  1728. u32 val;
  1729. reg = DSPCNTR(plane);
  1730. val = I915_READ(reg);
  1731. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1732. return;
  1733. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1734. intel_flush_display_plane(dev_priv, plane);
  1735. intel_wait_for_vblank(dev_priv->dev, pipe);
  1736. }
  1737. static bool need_vtd_wa(struct drm_device *dev)
  1738. {
  1739. #ifdef CONFIG_INTEL_IOMMU
  1740. if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
  1741. return true;
  1742. #endif
  1743. return false;
  1744. }
  1745. int
  1746. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1747. struct drm_i915_gem_object *obj,
  1748. struct intel_ring_buffer *pipelined)
  1749. {
  1750. struct drm_i915_private *dev_priv = dev->dev_private;
  1751. u32 alignment;
  1752. int ret;
  1753. switch (obj->tiling_mode) {
  1754. case I915_TILING_NONE:
  1755. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1756. alignment = 128 * 1024;
  1757. else if (INTEL_INFO(dev)->gen >= 4)
  1758. alignment = 4 * 1024;
  1759. else
  1760. alignment = 64 * 1024;
  1761. break;
  1762. case I915_TILING_X:
  1763. /* pin() will align the object as required by fence */
  1764. alignment = 0;
  1765. break;
  1766. case I915_TILING_Y:
  1767. /* Despite that we check this in framebuffer_init userspace can
  1768. * screw us over and change the tiling after the fact. Only
  1769. * pinned buffers can't change their tiling. */
  1770. DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
  1771. return -EINVAL;
  1772. default:
  1773. BUG();
  1774. }
  1775. /* Note that the w/a also requires 64 PTE of padding following the
  1776. * bo. We currently fill all unused PTE with the shadow page and so
  1777. * we should always have valid PTE following the scanout preventing
  1778. * the VT-d warning.
  1779. */
  1780. if (need_vtd_wa(dev) && alignment < 256 * 1024)
  1781. alignment = 256 * 1024;
  1782. dev_priv->mm.interruptible = false;
  1783. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1784. if (ret)
  1785. goto err_interruptible;
  1786. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1787. * fence, whereas 965+ only requires a fence if using
  1788. * framebuffer compression. For simplicity, we always install
  1789. * a fence as the cost is not that onerous.
  1790. */
  1791. ret = i915_gem_object_get_fence(obj);
  1792. if (ret)
  1793. goto err_unpin;
  1794. i915_gem_object_pin_fence(obj);
  1795. dev_priv->mm.interruptible = true;
  1796. return 0;
  1797. err_unpin:
  1798. i915_gem_object_unpin(obj);
  1799. err_interruptible:
  1800. dev_priv->mm.interruptible = true;
  1801. return ret;
  1802. }
  1803. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1804. {
  1805. i915_gem_object_unpin_fence(obj);
  1806. i915_gem_object_unpin(obj);
  1807. }
  1808. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1809. * is assumed to be a power-of-two. */
  1810. unsigned long intel_gen4_compute_page_offset(int *x, int *y,
  1811. unsigned int tiling_mode,
  1812. unsigned int cpp,
  1813. unsigned int pitch)
  1814. {
  1815. if (tiling_mode != I915_TILING_NONE) {
  1816. unsigned int tile_rows, tiles;
  1817. tile_rows = *y / 8;
  1818. *y %= 8;
  1819. tiles = *x / (512/cpp);
  1820. *x %= 512/cpp;
  1821. return tile_rows * pitch * 8 + tiles * 4096;
  1822. } else {
  1823. unsigned int offset;
  1824. offset = *y * pitch + *x * cpp;
  1825. *y = 0;
  1826. *x = (offset & 4095) / cpp;
  1827. return offset & -4096;
  1828. }
  1829. }
  1830. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1831. int x, int y)
  1832. {
  1833. struct drm_device *dev = crtc->dev;
  1834. struct drm_i915_private *dev_priv = dev->dev_private;
  1835. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1836. struct intel_framebuffer *intel_fb;
  1837. struct drm_i915_gem_object *obj;
  1838. int plane = intel_crtc->plane;
  1839. unsigned long linear_offset;
  1840. u32 dspcntr;
  1841. u32 reg;
  1842. switch (plane) {
  1843. case 0:
  1844. case 1:
  1845. break;
  1846. default:
  1847. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1848. return -EINVAL;
  1849. }
  1850. intel_fb = to_intel_framebuffer(fb);
  1851. obj = intel_fb->obj;
  1852. reg = DSPCNTR(plane);
  1853. dspcntr = I915_READ(reg);
  1854. /* Mask out pixel format bits in case we change it */
  1855. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1856. switch (fb->pixel_format) {
  1857. case DRM_FORMAT_C8:
  1858. dspcntr |= DISPPLANE_8BPP;
  1859. break;
  1860. case DRM_FORMAT_XRGB1555:
  1861. case DRM_FORMAT_ARGB1555:
  1862. dspcntr |= DISPPLANE_BGRX555;
  1863. break;
  1864. case DRM_FORMAT_RGB565:
  1865. dspcntr |= DISPPLANE_BGRX565;
  1866. break;
  1867. case DRM_FORMAT_XRGB8888:
  1868. case DRM_FORMAT_ARGB8888:
  1869. dspcntr |= DISPPLANE_BGRX888;
  1870. break;
  1871. case DRM_FORMAT_XBGR8888:
  1872. case DRM_FORMAT_ABGR8888:
  1873. dspcntr |= DISPPLANE_RGBX888;
  1874. break;
  1875. case DRM_FORMAT_XRGB2101010:
  1876. case DRM_FORMAT_ARGB2101010:
  1877. dspcntr |= DISPPLANE_BGRX101010;
  1878. break;
  1879. case DRM_FORMAT_XBGR2101010:
  1880. case DRM_FORMAT_ABGR2101010:
  1881. dspcntr |= DISPPLANE_RGBX101010;
  1882. break;
  1883. default:
  1884. BUG();
  1885. }
  1886. if (INTEL_INFO(dev)->gen >= 4) {
  1887. if (obj->tiling_mode != I915_TILING_NONE)
  1888. dspcntr |= DISPPLANE_TILED;
  1889. else
  1890. dspcntr &= ~DISPPLANE_TILED;
  1891. }
  1892. I915_WRITE(reg, dspcntr);
  1893. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1894. if (INTEL_INFO(dev)->gen >= 4) {
  1895. intel_crtc->dspaddr_offset =
  1896. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1897. fb->bits_per_pixel / 8,
  1898. fb->pitches[0]);
  1899. linear_offset -= intel_crtc->dspaddr_offset;
  1900. } else {
  1901. intel_crtc->dspaddr_offset = linear_offset;
  1902. }
  1903. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1904. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1905. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1906. if (INTEL_INFO(dev)->gen >= 4) {
  1907. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1908. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1909. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1910. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1911. } else
  1912. I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
  1913. POSTING_READ(reg);
  1914. return 0;
  1915. }
  1916. static int ironlake_update_plane(struct drm_crtc *crtc,
  1917. struct drm_framebuffer *fb, int x, int y)
  1918. {
  1919. struct drm_device *dev = crtc->dev;
  1920. struct drm_i915_private *dev_priv = dev->dev_private;
  1921. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1922. struct intel_framebuffer *intel_fb;
  1923. struct drm_i915_gem_object *obj;
  1924. int plane = intel_crtc->plane;
  1925. unsigned long linear_offset;
  1926. u32 dspcntr;
  1927. u32 reg;
  1928. switch (plane) {
  1929. case 0:
  1930. case 1:
  1931. case 2:
  1932. break;
  1933. default:
  1934. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1935. return -EINVAL;
  1936. }
  1937. intel_fb = to_intel_framebuffer(fb);
  1938. obj = intel_fb->obj;
  1939. reg = DSPCNTR(plane);
  1940. dspcntr = I915_READ(reg);
  1941. /* Mask out pixel format bits in case we change it */
  1942. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1943. switch (fb->pixel_format) {
  1944. case DRM_FORMAT_C8:
  1945. dspcntr |= DISPPLANE_8BPP;
  1946. break;
  1947. case DRM_FORMAT_RGB565:
  1948. dspcntr |= DISPPLANE_BGRX565;
  1949. break;
  1950. case DRM_FORMAT_XRGB8888:
  1951. case DRM_FORMAT_ARGB8888:
  1952. dspcntr |= DISPPLANE_BGRX888;
  1953. break;
  1954. case DRM_FORMAT_XBGR8888:
  1955. case DRM_FORMAT_ABGR8888:
  1956. dspcntr |= DISPPLANE_RGBX888;
  1957. break;
  1958. case DRM_FORMAT_XRGB2101010:
  1959. case DRM_FORMAT_ARGB2101010:
  1960. dspcntr |= DISPPLANE_BGRX101010;
  1961. break;
  1962. case DRM_FORMAT_XBGR2101010:
  1963. case DRM_FORMAT_ABGR2101010:
  1964. dspcntr |= DISPPLANE_RGBX101010;
  1965. break;
  1966. default:
  1967. BUG();
  1968. }
  1969. if (obj->tiling_mode != I915_TILING_NONE)
  1970. dspcntr |= DISPPLANE_TILED;
  1971. else
  1972. dspcntr &= ~DISPPLANE_TILED;
  1973. /* must disable */
  1974. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1975. I915_WRITE(reg, dspcntr);
  1976. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1977. intel_crtc->dspaddr_offset =
  1978. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1979. fb->bits_per_pixel / 8,
  1980. fb->pitches[0]);
  1981. linear_offset -= intel_crtc->dspaddr_offset;
  1982. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1983. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1984. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1985. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1986. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1987. if (IS_HASWELL(dev)) {
  1988. I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  1989. } else {
  1990. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1991. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1992. }
  1993. POSTING_READ(reg);
  1994. return 0;
  1995. }
  1996. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1997. static int
  1998. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1999. int x, int y, enum mode_set_atomic state)
  2000. {
  2001. struct drm_device *dev = crtc->dev;
  2002. struct drm_i915_private *dev_priv = dev->dev_private;
  2003. if (dev_priv->display.disable_fbc)
  2004. dev_priv->display.disable_fbc(dev);
  2005. intel_increase_pllclock(crtc);
  2006. return dev_priv->display.update_plane(crtc, fb, x, y);
  2007. }
  2008. void intel_display_handle_reset(struct drm_device *dev)
  2009. {
  2010. struct drm_i915_private *dev_priv = dev->dev_private;
  2011. struct drm_crtc *crtc;
  2012. /*
  2013. * Flips in the rings have been nuked by the reset,
  2014. * so complete all pending flips so that user space
  2015. * will get its events and not get stuck.
  2016. *
  2017. * Also update the base address of all primary
  2018. * planes to the the last fb to make sure we're
  2019. * showing the correct fb after a reset.
  2020. *
  2021. * Need to make two loops over the crtcs so that we
  2022. * don't try to grab a crtc mutex before the
  2023. * pending_flip_queue really got woken up.
  2024. */
  2025. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  2026. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2027. enum plane plane = intel_crtc->plane;
  2028. intel_prepare_page_flip(dev, plane);
  2029. intel_finish_page_flip_plane(dev, plane);
  2030. }
  2031. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  2032. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2033. mutex_lock(&crtc->mutex);
  2034. if (intel_crtc->active)
  2035. dev_priv->display.update_plane(crtc, crtc->fb,
  2036. crtc->x, crtc->y);
  2037. mutex_unlock(&crtc->mutex);
  2038. }
  2039. }
  2040. static int
  2041. intel_finish_fb(struct drm_framebuffer *old_fb)
  2042. {
  2043. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  2044. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2045. bool was_interruptible = dev_priv->mm.interruptible;
  2046. int ret;
  2047. /* Big Hammer, we also need to ensure that any pending
  2048. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  2049. * current scanout is retired before unpinning the old
  2050. * framebuffer.
  2051. *
  2052. * This should only fail upon a hung GPU, in which case we
  2053. * can safely continue.
  2054. */
  2055. dev_priv->mm.interruptible = false;
  2056. ret = i915_gem_object_finish_gpu(obj);
  2057. dev_priv->mm.interruptible = was_interruptible;
  2058. return ret;
  2059. }
  2060. static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
  2061. {
  2062. struct drm_device *dev = crtc->dev;
  2063. struct drm_i915_master_private *master_priv;
  2064. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2065. if (!dev->primary->master)
  2066. return;
  2067. master_priv = dev->primary->master->driver_priv;
  2068. if (!master_priv->sarea_priv)
  2069. return;
  2070. switch (intel_crtc->pipe) {
  2071. case 0:
  2072. master_priv->sarea_priv->pipeA_x = x;
  2073. master_priv->sarea_priv->pipeA_y = y;
  2074. break;
  2075. case 1:
  2076. master_priv->sarea_priv->pipeB_x = x;
  2077. master_priv->sarea_priv->pipeB_y = y;
  2078. break;
  2079. default:
  2080. break;
  2081. }
  2082. }
  2083. static int
  2084. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  2085. struct drm_framebuffer *fb)
  2086. {
  2087. struct drm_device *dev = crtc->dev;
  2088. struct drm_i915_private *dev_priv = dev->dev_private;
  2089. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2090. struct drm_framebuffer *old_fb;
  2091. int ret;
  2092. /* no fb bound */
  2093. if (!fb) {
  2094. DRM_ERROR("No FB bound\n");
  2095. return 0;
  2096. }
  2097. if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
  2098. DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
  2099. plane_name(intel_crtc->plane),
  2100. INTEL_INFO(dev)->num_pipes);
  2101. return -EINVAL;
  2102. }
  2103. mutex_lock(&dev->struct_mutex);
  2104. ret = intel_pin_and_fence_fb_obj(dev,
  2105. to_intel_framebuffer(fb)->obj,
  2106. NULL);
  2107. if (ret != 0) {
  2108. mutex_unlock(&dev->struct_mutex);
  2109. DRM_ERROR("pin & fence failed\n");
  2110. return ret;
  2111. }
  2112. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  2113. if (ret) {
  2114. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  2115. mutex_unlock(&dev->struct_mutex);
  2116. DRM_ERROR("failed to update base address\n");
  2117. return ret;
  2118. }
  2119. old_fb = crtc->fb;
  2120. crtc->fb = fb;
  2121. crtc->x = x;
  2122. crtc->y = y;
  2123. if (old_fb) {
  2124. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2125. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  2126. }
  2127. intel_update_fbc(dev);
  2128. mutex_unlock(&dev->struct_mutex);
  2129. intel_crtc_update_sarea_pos(crtc, x, y);
  2130. return 0;
  2131. }
  2132. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2133. {
  2134. struct drm_device *dev = crtc->dev;
  2135. struct drm_i915_private *dev_priv = dev->dev_private;
  2136. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2137. int pipe = intel_crtc->pipe;
  2138. u32 reg, temp;
  2139. /* enable normal train */
  2140. reg = FDI_TX_CTL(pipe);
  2141. temp = I915_READ(reg);
  2142. if (IS_IVYBRIDGE(dev)) {
  2143. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2144. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2145. } else {
  2146. temp &= ~FDI_LINK_TRAIN_NONE;
  2147. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2148. }
  2149. I915_WRITE(reg, temp);
  2150. reg = FDI_RX_CTL(pipe);
  2151. temp = I915_READ(reg);
  2152. if (HAS_PCH_CPT(dev)) {
  2153. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2154. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2155. } else {
  2156. temp &= ~FDI_LINK_TRAIN_NONE;
  2157. temp |= FDI_LINK_TRAIN_NONE;
  2158. }
  2159. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2160. /* wait one idle pattern time */
  2161. POSTING_READ(reg);
  2162. udelay(1000);
  2163. /* IVB wants error correction enabled */
  2164. if (IS_IVYBRIDGE(dev))
  2165. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2166. FDI_FE_ERRC_ENABLE);
  2167. }
  2168. static void ivb_modeset_global_resources(struct drm_device *dev)
  2169. {
  2170. struct drm_i915_private *dev_priv = dev->dev_private;
  2171. struct intel_crtc *pipe_B_crtc =
  2172. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  2173. struct intel_crtc *pipe_C_crtc =
  2174. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
  2175. uint32_t temp;
  2176. /* When everything is off disable fdi C so that we could enable fdi B
  2177. * with all lanes. XXX: This misses the case where a pipe is not using
  2178. * any pch resources and so doesn't need any fdi lanes. */
  2179. if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
  2180. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  2181. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  2182. temp = I915_READ(SOUTH_CHICKEN1);
  2183. temp &= ~FDI_BC_BIFURCATION_SELECT;
  2184. DRM_DEBUG_KMS("disabling fdi C rx\n");
  2185. I915_WRITE(SOUTH_CHICKEN1, temp);
  2186. }
  2187. }
  2188. /* The FDI link training functions for ILK/Ibexpeak. */
  2189. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2190. {
  2191. struct drm_device *dev = crtc->dev;
  2192. struct drm_i915_private *dev_priv = dev->dev_private;
  2193. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2194. int pipe = intel_crtc->pipe;
  2195. int plane = intel_crtc->plane;
  2196. u32 reg, temp, tries;
  2197. /* FDI needs bits from pipe & plane first */
  2198. assert_pipe_enabled(dev_priv, pipe);
  2199. assert_plane_enabled(dev_priv, plane);
  2200. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2201. for train result */
  2202. reg = FDI_RX_IMR(pipe);
  2203. temp = I915_READ(reg);
  2204. temp &= ~FDI_RX_SYMBOL_LOCK;
  2205. temp &= ~FDI_RX_BIT_LOCK;
  2206. I915_WRITE(reg, temp);
  2207. I915_READ(reg);
  2208. udelay(150);
  2209. /* enable CPU FDI TX and PCH FDI RX */
  2210. reg = FDI_TX_CTL(pipe);
  2211. temp = I915_READ(reg);
  2212. temp &= ~(7 << 19);
  2213. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2214. temp &= ~FDI_LINK_TRAIN_NONE;
  2215. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2216. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2217. reg = FDI_RX_CTL(pipe);
  2218. temp = I915_READ(reg);
  2219. temp &= ~FDI_LINK_TRAIN_NONE;
  2220. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2221. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2222. POSTING_READ(reg);
  2223. udelay(150);
  2224. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2225. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2226. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2227. FDI_RX_PHASE_SYNC_POINTER_EN);
  2228. reg = FDI_RX_IIR(pipe);
  2229. for (tries = 0; tries < 5; tries++) {
  2230. temp = I915_READ(reg);
  2231. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2232. if ((temp & FDI_RX_BIT_LOCK)) {
  2233. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2234. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2235. break;
  2236. }
  2237. }
  2238. if (tries == 5)
  2239. DRM_ERROR("FDI train 1 fail!\n");
  2240. /* Train 2 */
  2241. reg = FDI_TX_CTL(pipe);
  2242. temp = I915_READ(reg);
  2243. temp &= ~FDI_LINK_TRAIN_NONE;
  2244. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2245. I915_WRITE(reg, temp);
  2246. reg = FDI_RX_CTL(pipe);
  2247. temp = I915_READ(reg);
  2248. temp &= ~FDI_LINK_TRAIN_NONE;
  2249. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2250. I915_WRITE(reg, temp);
  2251. POSTING_READ(reg);
  2252. udelay(150);
  2253. reg = FDI_RX_IIR(pipe);
  2254. for (tries = 0; tries < 5; tries++) {
  2255. temp = I915_READ(reg);
  2256. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2257. if (temp & FDI_RX_SYMBOL_LOCK) {
  2258. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2259. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2260. break;
  2261. }
  2262. }
  2263. if (tries == 5)
  2264. DRM_ERROR("FDI train 2 fail!\n");
  2265. DRM_DEBUG_KMS("FDI train done\n");
  2266. }
  2267. static const int snb_b_fdi_train_param[] = {
  2268. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2269. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2270. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2271. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2272. };
  2273. /* The FDI link training functions for SNB/Cougarpoint. */
  2274. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2275. {
  2276. struct drm_device *dev = crtc->dev;
  2277. struct drm_i915_private *dev_priv = dev->dev_private;
  2278. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2279. int pipe = intel_crtc->pipe;
  2280. u32 reg, temp, i, retry;
  2281. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2282. for train result */
  2283. reg = FDI_RX_IMR(pipe);
  2284. temp = I915_READ(reg);
  2285. temp &= ~FDI_RX_SYMBOL_LOCK;
  2286. temp &= ~FDI_RX_BIT_LOCK;
  2287. I915_WRITE(reg, temp);
  2288. POSTING_READ(reg);
  2289. udelay(150);
  2290. /* enable CPU FDI TX and PCH FDI RX */
  2291. reg = FDI_TX_CTL(pipe);
  2292. temp = I915_READ(reg);
  2293. temp &= ~(7 << 19);
  2294. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2295. temp &= ~FDI_LINK_TRAIN_NONE;
  2296. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2297. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2298. /* SNB-B */
  2299. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2300. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2301. I915_WRITE(FDI_RX_MISC(pipe),
  2302. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2303. reg = FDI_RX_CTL(pipe);
  2304. temp = I915_READ(reg);
  2305. if (HAS_PCH_CPT(dev)) {
  2306. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2307. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2308. } else {
  2309. temp &= ~FDI_LINK_TRAIN_NONE;
  2310. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2311. }
  2312. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2313. POSTING_READ(reg);
  2314. udelay(150);
  2315. for (i = 0; i < 4; i++) {
  2316. reg = FDI_TX_CTL(pipe);
  2317. temp = I915_READ(reg);
  2318. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2319. temp |= snb_b_fdi_train_param[i];
  2320. I915_WRITE(reg, temp);
  2321. POSTING_READ(reg);
  2322. udelay(500);
  2323. for (retry = 0; retry < 5; retry++) {
  2324. reg = FDI_RX_IIR(pipe);
  2325. temp = I915_READ(reg);
  2326. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2327. if (temp & FDI_RX_BIT_LOCK) {
  2328. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2329. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2330. break;
  2331. }
  2332. udelay(50);
  2333. }
  2334. if (retry < 5)
  2335. break;
  2336. }
  2337. if (i == 4)
  2338. DRM_ERROR("FDI train 1 fail!\n");
  2339. /* Train 2 */
  2340. reg = FDI_TX_CTL(pipe);
  2341. temp = I915_READ(reg);
  2342. temp &= ~FDI_LINK_TRAIN_NONE;
  2343. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2344. if (IS_GEN6(dev)) {
  2345. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2346. /* SNB-B */
  2347. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2348. }
  2349. I915_WRITE(reg, temp);
  2350. reg = FDI_RX_CTL(pipe);
  2351. temp = I915_READ(reg);
  2352. if (HAS_PCH_CPT(dev)) {
  2353. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2354. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2355. } else {
  2356. temp &= ~FDI_LINK_TRAIN_NONE;
  2357. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2358. }
  2359. I915_WRITE(reg, temp);
  2360. POSTING_READ(reg);
  2361. udelay(150);
  2362. for (i = 0; i < 4; i++) {
  2363. reg = FDI_TX_CTL(pipe);
  2364. temp = I915_READ(reg);
  2365. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2366. temp |= snb_b_fdi_train_param[i];
  2367. I915_WRITE(reg, temp);
  2368. POSTING_READ(reg);
  2369. udelay(500);
  2370. for (retry = 0; retry < 5; retry++) {
  2371. reg = FDI_RX_IIR(pipe);
  2372. temp = I915_READ(reg);
  2373. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2374. if (temp & FDI_RX_SYMBOL_LOCK) {
  2375. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2376. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2377. break;
  2378. }
  2379. udelay(50);
  2380. }
  2381. if (retry < 5)
  2382. break;
  2383. }
  2384. if (i == 4)
  2385. DRM_ERROR("FDI train 2 fail!\n");
  2386. DRM_DEBUG_KMS("FDI train done.\n");
  2387. }
  2388. /* Manual link training for Ivy Bridge A0 parts */
  2389. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2390. {
  2391. struct drm_device *dev = crtc->dev;
  2392. struct drm_i915_private *dev_priv = dev->dev_private;
  2393. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2394. int pipe = intel_crtc->pipe;
  2395. u32 reg, temp, i;
  2396. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2397. for train result */
  2398. reg = FDI_RX_IMR(pipe);
  2399. temp = I915_READ(reg);
  2400. temp &= ~FDI_RX_SYMBOL_LOCK;
  2401. temp &= ~FDI_RX_BIT_LOCK;
  2402. I915_WRITE(reg, temp);
  2403. POSTING_READ(reg);
  2404. udelay(150);
  2405. DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  2406. I915_READ(FDI_RX_IIR(pipe)));
  2407. /* enable CPU FDI TX and PCH FDI RX */
  2408. reg = FDI_TX_CTL(pipe);
  2409. temp = I915_READ(reg);
  2410. temp &= ~(7 << 19);
  2411. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2412. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2413. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2414. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2415. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2416. temp |= FDI_COMPOSITE_SYNC;
  2417. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2418. I915_WRITE(FDI_RX_MISC(pipe),
  2419. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2420. reg = FDI_RX_CTL(pipe);
  2421. temp = I915_READ(reg);
  2422. temp &= ~FDI_LINK_TRAIN_AUTO;
  2423. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2424. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2425. temp |= FDI_COMPOSITE_SYNC;
  2426. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2427. POSTING_READ(reg);
  2428. udelay(150);
  2429. for (i = 0; i < 4; i++) {
  2430. reg = FDI_TX_CTL(pipe);
  2431. temp = I915_READ(reg);
  2432. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2433. temp |= snb_b_fdi_train_param[i];
  2434. I915_WRITE(reg, temp);
  2435. POSTING_READ(reg);
  2436. udelay(500);
  2437. reg = FDI_RX_IIR(pipe);
  2438. temp = I915_READ(reg);
  2439. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2440. if (temp & FDI_RX_BIT_LOCK ||
  2441. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2442. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2443. DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
  2444. break;
  2445. }
  2446. }
  2447. if (i == 4)
  2448. DRM_ERROR("FDI train 1 fail!\n");
  2449. /* Train 2 */
  2450. reg = FDI_TX_CTL(pipe);
  2451. temp = I915_READ(reg);
  2452. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2453. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2454. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2455. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2456. I915_WRITE(reg, temp);
  2457. reg = FDI_RX_CTL(pipe);
  2458. temp = I915_READ(reg);
  2459. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2460. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2461. I915_WRITE(reg, temp);
  2462. POSTING_READ(reg);
  2463. udelay(150);
  2464. for (i = 0; i < 4; i++) {
  2465. reg = FDI_TX_CTL(pipe);
  2466. temp = I915_READ(reg);
  2467. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2468. temp |= snb_b_fdi_train_param[i];
  2469. I915_WRITE(reg, temp);
  2470. POSTING_READ(reg);
  2471. udelay(500);
  2472. reg = FDI_RX_IIR(pipe);
  2473. temp = I915_READ(reg);
  2474. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2475. if (temp & FDI_RX_SYMBOL_LOCK) {
  2476. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2477. DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
  2478. break;
  2479. }
  2480. }
  2481. if (i == 4)
  2482. DRM_ERROR("FDI train 2 fail!\n");
  2483. DRM_DEBUG_KMS("FDI train done.\n");
  2484. }
  2485. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2486. {
  2487. struct drm_device *dev = intel_crtc->base.dev;
  2488. struct drm_i915_private *dev_priv = dev->dev_private;
  2489. int pipe = intel_crtc->pipe;
  2490. u32 reg, temp;
  2491. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2492. reg = FDI_RX_CTL(pipe);
  2493. temp = I915_READ(reg);
  2494. temp &= ~((0x7 << 19) | (0x7 << 16));
  2495. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2496. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2497. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2498. POSTING_READ(reg);
  2499. udelay(200);
  2500. /* Switch from Rawclk to PCDclk */
  2501. temp = I915_READ(reg);
  2502. I915_WRITE(reg, temp | FDI_PCDCLK);
  2503. POSTING_READ(reg);
  2504. udelay(200);
  2505. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2506. reg = FDI_TX_CTL(pipe);
  2507. temp = I915_READ(reg);
  2508. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2509. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2510. POSTING_READ(reg);
  2511. udelay(100);
  2512. }
  2513. }
  2514. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2515. {
  2516. struct drm_device *dev = intel_crtc->base.dev;
  2517. struct drm_i915_private *dev_priv = dev->dev_private;
  2518. int pipe = intel_crtc->pipe;
  2519. u32 reg, temp;
  2520. /* Switch from PCDclk to Rawclk */
  2521. reg = FDI_RX_CTL(pipe);
  2522. temp = I915_READ(reg);
  2523. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2524. /* Disable CPU FDI TX PLL */
  2525. reg = FDI_TX_CTL(pipe);
  2526. temp = I915_READ(reg);
  2527. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2528. POSTING_READ(reg);
  2529. udelay(100);
  2530. reg = FDI_RX_CTL(pipe);
  2531. temp = I915_READ(reg);
  2532. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2533. /* Wait for the clocks to turn off. */
  2534. POSTING_READ(reg);
  2535. udelay(100);
  2536. }
  2537. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2538. {
  2539. struct drm_device *dev = crtc->dev;
  2540. struct drm_i915_private *dev_priv = dev->dev_private;
  2541. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2542. int pipe = intel_crtc->pipe;
  2543. u32 reg, temp;
  2544. /* disable CPU FDI tx and PCH FDI rx */
  2545. reg = FDI_TX_CTL(pipe);
  2546. temp = I915_READ(reg);
  2547. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2548. POSTING_READ(reg);
  2549. reg = FDI_RX_CTL(pipe);
  2550. temp = I915_READ(reg);
  2551. temp &= ~(0x7 << 16);
  2552. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2553. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2554. POSTING_READ(reg);
  2555. udelay(100);
  2556. /* Ironlake workaround, disable clock pointer after downing FDI */
  2557. if (HAS_PCH_IBX(dev)) {
  2558. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2559. }
  2560. /* still set train pattern 1 */
  2561. reg = FDI_TX_CTL(pipe);
  2562. temp = I915_READ(reg);
  2563. temp &= ~FDI_LINK_TRAIN_NONE;
  2564. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2565. I915_WRITE(reg, temp);
  2566. reg = FDI_RX_CTL(pipe);
  2567. temp = I915_READ(reg);
  2568. if (HAS_PCH_CPT(dev)) {
  2569. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2570. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2571. } else {
  2572. temp &= ~FDI_LINK_TRAIN_NONE;
  2573. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2574. }
  2575. /* BPC in FDI rx is consistent with that in PIPECONF */
  2576. temp &= ~(0x07 << 16);
  2577. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2578. I915_WRITE(reg, temp);
  2579. POSTING_READ(reg);
  2580. udelay(100);
  2581. }
  2582. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2583. {
  2584. struct drm_device *dev = crtc->dev;
  2585. struct drm_i915_private *dev_priv = dev->dev_private;
  2586. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2587. unsigned long flags;
  2588. bool pending;
  2589. if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  2590. intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  2591. return false;
  2592. spin_lock_irqsave(&dev->event_lock, flags);
  2593. pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2594. spin_unlock_irqrestore(&dev->event_lock, flags);
  2595. return pending;
  2596. }
  2597. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2598. {
  2599. struct drm_device *dev = crtc->dev;
  2600. struct drm_i915_private *dev_priv = dev->dev_private;
  2601. if (crtc->fb == NULL)
  2602. return;
  2603. WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
  2604. wait_event(dev_priv->pending_flip_queue,
  2605. !intel_crtc_has_pending_flip(crtc));
  2606. mutex_lock(&dev->struct_mutex);
  2607. intel_finish_fb(crtc->fb);
  2608. mutex_unlock(&dev->struct_mutex);
  2609. }
  2610. /* Program iCLKIP clock to the desired frequency */
  2611. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2612. {
  2613. struct drm_device *dev = crtc->dev;
  2614. struct drm_i915_private *dev_priv = dev->dev_private;
  2615. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2616. u32 temp;
  2617. mutex_lock(&dev_priv->dpio_lock);
  2618. /* It is necessary to ungate the pixclk gate prior to programming
  2619. * the divisors, and gate it back when it is done.
  2620. */
  2621. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2622. /* Disable SSCCTL */
  2623. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2624. intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
  2625. SBI_SSCCTL_DISABLE,
  2626. SBI_ICLK);
  2627. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2628. if (crtc->mode.clock == 20000) {
  2629. auxdiv = 1;
  2630. divsel = 0x41;
  2631. phaseinc = 0x20;
  2632. } else {
  2633. /* The iCLK virtual clock root frequency is in MHz,
  2634. * but the crtc->mode.clock in in KHz. To get the divisors,
  2635. * it is necessary to divide one by another, so we
  2636. * convert the virtual clock precision to KHz here for higher
  2637. * precision.
  2638. */
  2639. u32 iclk_virtual_root_freq = 172800 * 1000;
  2640. u32 iclk_pi_range = 64;
  2641. u32 desired_divisor, msb_divisor_value, pi_value;
  2642. desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
  2643. msb_divisor_value = desired_divisor / iclk_pi_range;
  2644. pi_value = desired_divisor % iclk_pi_range;
  2645. auxdiv = 0;
  2646. divsel = msb_divisor_value - 2;
  2647. phaseinc = pi_value;
  2648. }
  2649. /* This should not happen with any sane values */
  2650. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2651. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2652. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2653. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2654. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2655. crtc->mode.clock,
  2656. auxdiv,
  2657. divsel,
  2658. phasedir,
  2659. phaseinc);
  2660. /* Program SSCDIVINTPHASE6 */
  2661. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
  2662. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2663. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2664. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2665. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2666. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2667. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2668. intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
  2669. /* Program SSCAUXDIV */
  2670. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
  2671. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2672. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2673. intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
  2674. /* Enable modulator and associated divider */
  2675. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
  2676. temp &= ~SBI_SSCCTL_DISABLE;
  2677. intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
  2678. /* Wait for initialization time */
  2679. udelay(24);
  2680. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2681. mutex_unlock(&dev_priv->dpio_lock);
  2682. }
  2683. /*
  2684. * Enable PCH resources required for PCH ports:
  2685. * - PCH PLLs
  2686. * - FDI training & RX/TX
  2687. * - update transcoder timings
  2688. * - DP transcoding bits
  2689. * - transcoder
  2690. */
  2691. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2692. {
  2693. struct drm_device *dev = crtc->dev;
  2694. struct drm_i915_private *dev_priv = dev->dev_private;
  2695. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2696. int pipe = intel_crtc->pipe;
  2697. u32 reg, temp;
  2698. assert_transcoder_disabled(dev_priv, pipe);
  2699. /* Write the TU size bits before fdi link training, so that error
  2700. * detection works. */
  2701. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2702. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2703. /* For PCH output, training FDI link */
  2704. dev_priv->display.fdi_link_train(crtc);
  2705. /* XXX: pch pll's can be enabled any time before we enable the PCH
  2706. * transcoder, and we actually should do this to not upset any PCH
  2707. * transcoder that already use the clock when we share it.
  2708. *
  2709. * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
  2710. * unconditionally resets the pll - we need that to have the right LVDS
  2711. * enable sequence. */
  2712. ironlake_enable_pch_pll(intel_crtc);
  2713. if (HAS_PCH_CPT(dev)) {
  2714. u32 sel;
  2715. temp = I915_READ(PCH_DPLL_SEL);
  2716. switch (pipe) {
  2717. default:
  2718. case 0:
  2719. temp |= TRANSA_DPLL_ENABLE;
  2720. sel = TRANSA_DPLLB_SEL;
  2721. break;
  2722. case 1:
  2723. temp |= TRANSB_DPLL_ENABLE;
  2724. sel = TRANSB_DPLLB_SEL;
  2725. break;
  2726. case 2:
  2727. temp |= TRANSC_DPLL_ENABLE;
  2728. sel = TRANSC_DPLLB_SEL;
  2729. break;
  2730. }
  2731. if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
  2732. temp |= sel;
  2733. else
  2734. temp &= ~sel;
  2735. I915_WRITE(PCH_DPLL_SEL, temp);
  2736. }
  2737. /* set transcoder timing, panel must allow it */
  2738. assert_panel_unlocked(dev_priv, pipe);
  2739. I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
  2740. I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
  2741. I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
  2742. I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
  2743. I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
  2744. I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
  2745. I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
  2746. intel_fdi_normal_train(crtc);
  2747. /* For PCH DP, enable TRANS_DP_CTL */
  2748. if (HAS_PCH_CPT(dev) &&
  2749. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2750. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2751. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
  2752. reg = TRANS_DP_CTL(pipe);
  2753. temp = I915_READ(reg);
  2754. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2755. TRANS_DP_SYNC_MASK |
  2756. TRANS_DP_BPC_MASK);
  2757. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2758. TRANS_DP_ENH_FRAMING);
  2759. temp |= bpc << 9; /* same format but at 11:9 */
  2760. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2761. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2762. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2763. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2764. switch (intel_trans_dp_port_sel(crtc)) {
  2765. case PCH_DP_B:
  2766. temp |= TRANS_DP_PORT_SEL_B;
  2767. break;
  2768. case PCH_DP_C:
  2769. temp |= TRANS_DP_PORT_SEL_C;
  2770. break;
  2771. case PCH_DP_D:
  2772. temp |= TRANS_DP_PORT_SEL_D;
  2773. break;
  2774. default:
  2775. BUG();
  2776. }
  2777. I915_WRITE(reg, temp);
  2778. }
  2779. ironlake_enable_pch_transcoder(dev_priv, pipe);
  2780. }
  2781. static void lpt_pch_enable(struct drm_crtc *crtc)
  2782. {
  2783. struct drm_device *dev = crtc->dev;
  2784. struct drm_i915_private *dev_priv = dev->dev_private;
  2785. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2786. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2787. assert_transcoder_disabled(dev_priv, TRANSCODER_A);
  2788. lpt_program_iclkip(crtc);
  2789. /* Set transcoder timing. */
  2790. I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
  2791. I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
  2792. I915_WRITE(_TRANS_HSYNC_A, I915_READ(HSYNC(cpu_transcoder)));
  2793. I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
  2794. I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
  2795. I915_WRITE(_TRANS_VSYNC_A, I915_READ(VSYNC(cpu_transcoder)));
  2796. I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
  2797. lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  2798. }
  2799. static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
  2800. {
  2801. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  2802. if (pll == NULL)
  2803. return;
  2804. if (pll->refcount == 0) {
  2805. WARN(1, "bad PCH PLL refcount\n");
  2806. return;
  2807. }
  2808. --pll->refcount;
  2809. intel_crtc->pch_pll = NULL;
  2810. }
  2811. static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
  2812. {
  2813. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  2814. struct intel_pch_pll *pll;
  2815. int i;
  2816. pll = intel_crtc->pch_pll;
  2817. if (pll) {
  2818. DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
  2819. intel_crtc->base.base.id, pll->pll_reg);
  2820. goto prepare;
  2821. }
  2822. if (HAS_PCH_IBX(dev_priv->dev)) {
  2823. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2824. i = intel_crtc->pipe;
  2825. pll = &dev_priv->pch_plls[i];
  2826. DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
  2827. intel_crtc->base.base.id, pll->pll_reg);
  2828. goto found;
  2829. }
  2830. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2831. pll = &dev_priv->pch_plls[i];
  2832. /* Only want to check enabled timings first */
  2833. if (pll->refcount == 0)
  2834. continue;
  2835. if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
  2836. fp == I915_READ(pll->fp0_reg)) {
  2837. DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
  2838. intel_crtc->base.base.id,
  2839. pll->pll_reg, pll->refcount, pll->active);
  2840. goto found;
  2841. }
  2842. }
  2843. /* Ok no matching timings, maybe there's a free one? */
  2844. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2845. pll = &dev_priv->pch_plls[i];
  2846. if (pll->refcount == 0) {
  2847. DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
  2848. intel_crtc->base.base.id, pll->pll_reg);
  2849. goto found;
  2850. }
  2851. }
  2852. return NULL;
  2853. found:
  2854. intel_crtc->pch_pll = pll;
  2855. pll->refcount++;
  2856. DRM_DEBUG_DRIVER("using pll %d for pipe %c\n", i, pipe_name(intel_crtc->pipe));
  2857. prepare: /* separate function? */
  2858. DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
  2859. /* Wait for the clocks to stabilize before rewriting the regs */
  2860. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2861. POSTING_READ(pll->pll_reg);
  2862. udelay(150);
  2863. I915_WRITE(pll->fp0_reg, fp);
  2864. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2865. pll->on = false;
  2866. return pll;
  2867. }
  2868. void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
  2869. {
  2870. struct drm_i915_private *dev_priv = dev->dev_private;
  2871. int dslreg = PIPEDSL(pipe);
  2872. u32 temp;
  2873. temp = I915_READ(dslreg);
  2874. udelay(500);
  2875. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2876. if (wait_for(I915_READ(dslreg) != temp, 5))
  2877. DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
  2878. }
  2879. }
  2880. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2881. {
  2882. struct drm_device *dev = crtc->dev;
  2883. struct drm_i915_private *dev_priv = dev->dev_private;
  2884. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2885. struct intel_encoder *encoder;
  2886. int pipe = intel_crtc->pipe;
  2887. int plane = intel_crtc->plane;
  2888. u32 temp;
  2889. WARN_ON(!crtc->enabled);
  2890. if (intel_crtc->active)
  2891. return;
  2892. intel_crtc->active = true;
  2893. intel_update_watermarks(dev);
  2894. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  2895. temp = I915_READ(PCH_LVDS);
  2896. if ((temp & LVDS_PORT_EN) == 0)
  2897. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  2898. }
  2899. if (intel_crtc->config.has_pch_encoder) {
  2900. /* Note: FDI PLL enabling _must_ be done before we enable the
  2901. * cpu pipes, hence this is separate from all the other fdi/pch
  2902. * enabling. */
  2903. ironlake_fdi_pll_enable(intel_crtc);
  2904. } else {
  2905. assert_fdi_tx_disabled(dev_priv, pipe);
  2906. assert_fdi_rx_disabled(dev_priv, pipe);
  2907. }
  2908. for_each_encoder_on_crtc(dev, crtc, encoder)
  2909. if (encoder->pre_enable)
  2910. encoder->pre_enable(encoder);
  2911. /* Enable panel fitting for LVDS */
  2912. if (dev_priv->pch_pf_size &&
  2913. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
  2914. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2915. /* Force use of hard-coded filter coefficients
  2916. * as some pre-programmed values are broken,
  2917. * e.g. x201.
  2918. */
  2919. if (IS_IVYBRIDGE(dev))
  2920. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2921. PF_PIPE_SEL_IVB(pipe));
  2922. else
  2923. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2924. I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
  2925. I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
  2926. }
  2927. /*
  2928. * On ILK+ LUT must be loaded before the pipe is running but with
  2929. * clocks enabled
  2930. */
  2931. intel_crtc_load_lut(crtc);
  2932. intel_enable_pipe(dev_priv, pipe,
  2933. intel_crtc->config.has_pch_encoder);
  2934. intel_enable_plane(dev_priv, plane, pipe);
  2935. if (intel_crtc->config.has_pch_encoder)
  2936. ironlake_pch_enable(crtc);
  2937. mutex_lock(&dev->struct_mutex);
  2938. intel_update_fbc(dev);
  2939. mutex_unlock(&dev->struct_mutex);
  2940. intel_crtc_update_cursor(crtc, true);
  2941. for_each_encoder_on_crtc(dev, crtc, encoder)
  2942. encoder->enable(encoder);
  2943. if (HAS_PCH_CPT(dev))
  2944. intel_cpt_verify_modeset(dev, intel_crtc->pipe);
  2945. /*
  2946. * There seems to be a race in PCH platform hw (at least on some
  2947. * outputs) where an enabled pipe still completes any pageflip right
  2948. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2949. * as the first vblank happend, everything works as expected. Hence just
  2950. * wait for one vblank before returning to avoid strange things
  2951. * happening.
  2952. */
  2953. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2954. }
  2955. static void haswell_crtc_enable(struct drm_crtc *crtc)
  2956. {
  2957. struct drm_device *dev = crtc->dev;
  2958. struct drm_i915_private *dev_priv = dev->dev_private;
  2959. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2960. struct intel_encoder *encoder;
  2961. int pipe = intel_crtc->pipe;
  2962. int plane = intel_crtc->plane;
  2963. WARN_ON(!crtc->enabled);
  2964. if (intel_crtc->active)
  2965. return;
  2966. intel_crtc->active = true;
  2967. intel_update_watermarks(dev);
  2968. if (intel_crtc->config.has_pch_encoder)
  2969. dev_priv->display.fdi_link_train(crtc);
  2970. for_each_encoder_on_crtc(dev, crtc, encoder)
  2971. if (encoder->pre_enable)
  2972. encoder->pre_enable(encoder);
  2973. intel_ddi_enable_pipe_clock(intel_crtc);
  2974. /* Enable panel fitting for eDP */
  2975. if (dev_priv->pch_pf_size &&
  2976. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  2977. /* Force use of hard-coded filter coefficients
  2978. * as some pre-programmed values are broken,
  2979. * e.g. x201.
  2980. */
  2981. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2982. PF_PIPE_SEL_IVB(pipe));
  2983. I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
  2984. I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
  2985. }
  2986. /*
  2987. * On ILK+ LUT must be loaded before the pipe is running but with
  2988. * clocks enabled
  2989. */
  2990. intel_crtc_load_lut(crtc);
  2991. intel_ddi_set_pipe_settings(crtc);
  2992. intel_ddi_enable_transcoder_func(crtc);
  2993. intel_enable_pipe(dev_priv, pipe,
  2994. intel_crtc->config.has_pch_encoder);
  2995. intel_enable_plane(dev_priv, plane, pipe);
  2996. if (intel_crtc->config.has_pch_encoder)
  2997. lpt_pch_enable(crtc);
  2998. mutex_lock(&dev->struct_mutex);
  2999. intel_update_fbc(dev);
  3000. mutex_unlock(&dev->struct_mutex);
  3001. intel_crtc_update_cursor(crtc, true);
  3002. for_each_encoder_on_crtc(dev, crtc, encoder)
  3003. encoder->enable(encoder);
  3004. /*
  3005. * There seems to be a race in PCH platform hw (at least on some
  3006. * outputs) where an enabled pipe still completes any pageflip right
  3007. * away (as if the pipe is off) instead of waiting for vblank. As soon
  3008. * as the first vblank happend, everything works as expected. Hence just
  3009. * wait for one vblank before returning to avoid strange things
  3010. * happening.
  3011. */
  3012. intel_wait_for_vblank(dev, intel_crtc->pipe);
  3013. }
  3014. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  3015. {
  3016. struct drm_device *dev = crtc->dev;
  3017. struct drm_i915_private *dev_priv = dev->dev_private;
  3018. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3019. struct intel_encoder *encoder;
  3020. int pipe = intel_crtc->pipe;
  3021. int plane = intel_crtc->plane;
  3022. u32 reg, temp;
  3023. if (!intel_crtc->active)
  3024. return;
  3025. for_each_encoder_on_crtc(dev, crtc, encoder)
  3026. encoder->disable(encoder);
  3027. intel_crtc_wait_for_pending_flips(crtc);
  3028. drm_vblank_off(dev, pipe);
  3029. intel_crtc_update_cursor(crtc, false);
  3030. intel_disable_plane(dev_priv, plane, pipe);
  3031. if (dev_priv->cfb_plane == plane)
  3032. intel_disable_fbc(dev);
  3033. intel_disable_pipe(dev_priv, pipe);
  3034. /* Disable PF */
  3035. I915_WRITE(PF_CTL(pipe), 0);
  3036. I915_WRITE(PF_WIN_SZ(pipe), 0);
  3037. for_each_encoder_on_crtc(dev, crtc, encoder)
  3038. if (encoder->post_disable)
  3039. encoder->post_disable(encoder);
  3040. ironlake_fdi_disable(crtc);
  3041. ironlake_disable_pch_transcoder(dev_priv, pipe);
  3042. if (HAS_PCH_CPT(dev)) {
  3043. /* disable TRANS_DP_CTL */
  3044. reg = TRANS_DP_CTL(pipe);
  3045. temp = I915_READ(reg);
  3046. temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  3047. temp |= TRANS_DP_PORT_SEL_NONE;
  3048. I915_WRITE(reg, temp);
  3049. /* disable DPLL_SEL */
  3050. temp = I915_READ(PCH_DPLL_SEL);
  3051. switch (pipe) {
  3052. case 0:
  3053. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
  3054. break;
  3055. case 1:
  3056. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  3057. break;
  3058. case 2:
  3059. /* C shares PLL A or B */
  3060. temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
  3061. break;
  3062. default:
  3063. BUG(); /* wtf */
  3064. }
  3065. I915_WRITE(PCH_DPLL_SEL, temp);
  3066. }
  3067. /* disable PCH DPLL */
  3068. intel_disable_pch_pll(intel_crtc);
  3069. ironlake_fdi_pll_disable(intel_crtc);
  3070. intel_crtc->active = false;
  3071. intel_update_watermarks(dev);
  3072. mutex_lock(&dev->struct_mutex);
  3073. intel_update_fbc(dev);
  3074. mutex_unlock(&dev->struct_mutex);
  3075. }
  3076. static void haswell_crtc_disable(struct drm_crtc *crtc)
  3077. {
  3078. struct drm_device *dev = crtc->dev;
  3079. struct drm_i915_private *dev_priv = dev->dev_private;
  3080. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3081. struct intel_encoder *encoder;
  3082. int pipe = intel_crtc->pipe;
  3083. int plane = intel_crtc->plane;
  3084. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3085. if (!intel_crtc->active)
  3086. return;
  3087. for_each_encoder_on_crtc(dev, crtc, encoder)
  3088. encoder->disable(encoder);
  3089. intel_crtc_wait_for_pending_flips(crtc);
  3090. drm_vblank_off(dev, pipe);
  3091. intel_crtc_update_cursor(crtc, false);
  3092. intel_disable_plane(dev_priv, plane, pipe);
  3093. if (dev_priv->cfb_plane == plane)
  3094. intel_disable_fbc(dev);
  3095. intel_disable_pipe(dev_priv, pipe);
  3096. intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  3097. /* XXX: Once we have proper panel fitter state tracking implemented with
  3098. * hardware state read/check support we should switch to only disable
  3099. * the panel fitter when we know it's used. */
  3100. if (intel_using_power_well(dev)) {
  3101. I915_WRITE(PF_CTL(pipe), 0);
  3102. I915_WRITE(PF_WIN_SZ(pipe), 0);
  3103. }
  3104. intel_ddi_disable_pipe_clock(intel_crtc);
  3105. for_each_encoder_on_crtc(dev, crtc, encoder)
  3106. if (encoder->post_disable)
  3107. encoder->post_disable(encoder);
  3108. if (intel_crtc->config.has_pch_encoder) {
  3109. lpt_disable_pch_transcoder(dev_priv);
  3110. intel_ddi_fdi_disable(crtc);
  3111. }
  3112. intel_crtc->active = false;
  3113. intel_update_watermarks(dev);
  3114. mutex_lock(&dev->struct_mutex);
  3115. intel_update_fbc(dev);
  3116. mutex_unlock(&dev->struct_mutex);
  3117. }
  3118. static void ironlake_crtc_off(struct drm_crtc *crtc)
  3119. {
  3120. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3121. intel_put_pch_pll(intel_crtc);
  3122. }
  3123. static void haswell_crtc_off(struct drm_crtc *crtc)
  3124. {
  3125. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3126. /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
  3127. * start using it. */
  3128. intel_crtc->config.cpu_transcoder = (enum transcoder) intel_crtc->pipe;
  3129. intel_ddi_put_crtc_pll(crtc);
  3130. }
  3131. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  3132. {
  3133. if (!enable && intel_crtc->overlay) {
  3134. struct drm_device *dev = intel_crtc->base.dev;
  3135. struct drm_i915_private *dev_priv = dev->dev_private;
  3136. mutex_lock(&dev->struct_mutex);
  3137. dev_priv->mm.interruptible = false;
  3138. (void) intel_overlay_switch_off(intel_crtc->overlay);
  3139. dev_priv->mm.interruptible = true;
  3140. mutex_unlock(&dev->struct_mutex);
  3141. }
  3142. /* Let userspace switch the overlay on again. In most cases userspace
  3143. * has to recompute where to put it anyway.
  3144. */
  3145. }
  3146. /**
  3147. * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
  3148. * cursor plane briefly if not already running after enabling the display
  3149. * plane.
  3150. * This workaround avoids occasional blank screens when self refresh is
  3151. * enabled.
  3152. */
  3153. static void
  3154. g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
  3155. {
  3156. u32 cntl = I915_READ(CURCNTR(pipe));
  3157. if ((cntl & CURSOR_MODE) == 0) {
  3158. u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
  3159. I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
  3160. I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
  3161. intel_wait_for_vblank(dev_priv->dev, pipe);
  3162. I915_WRITE(CURCNTR(pipe), cntl);
  3163. I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  3164. I915_WRITE(FW_BLC_SELF, fw_bcl_self);
  3165. }
  3166. }
  3167. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3168. {
  3169. struct drm_device *dev = crtc->dev;
  3170. struct drm_i915_private *dev_priv = dev->dev_private;
  3171. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3172. struct intel_encoder *encoder;
  3173. int pipe = intel_crtc->pipe;
  3174. int plane = intel_crtc->plane;
  3175. WARN_ON(!crtc->enabled);
  3176. if (intel_crtc->active)
  3177. return;
  3178. intel_crtc->active = true;
  3179. intel_update_watermarks(dev);
  3180. intel_enable_pll(dev_priv, pipe);
  3181. for_each_encoder_on_crtc(dev, crtc, encoder)
  3182. if (encoder->pre_enable)
  3183. encoder->pre_enable(encoder);
  3184. intel_enable_pipe(dev_priv, pipe, false);
  3185. intel_enable_plane(dev_priv, plane, pipe);
  3186. if (IS_G4X(dev))
  3187. g4x_fixup_plane(dev_priv, pipe);
  3188. intel_crtc_load_lut(crtc);
  3189. intel_update_fbc(dev);
  3190. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3191. intel_crtc_dpms_overlay(intel_crtc, true);
  3192. intel_crtc_update_cursor(crtc, true);
  3193. for_each_encoder_on_crtc(dev, crtc, encoder)
  3194. encoder->enable(encoder);
  3195. }
  3196. static void i9xx_pfit_disable(struct intel_crtc *crtc)
  3197. {
  3198. struct drm_device *dev = crtc->base.dev;
  3199. struct drm_i915_private *dev_priv = dev->dev_private;
  3200. enum pipe pipe;
  3201. uint32_t pctl = I915_READ(PFIT_CONTROL);
  3202. assert_pipe_disabled(dev_priv, crtc->pipe);
  3203. if (INTEL_INFO(dev)->gen >= 4)
  3204. pipe = (pctl & PFIT_PIPE_MASK) >> PFIT_PIPE_SHIFT;
  3205. else
  3206. pipe = PIPE_B;
  3207. if (pipe == crtc->pipe) {
  3208. DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n", pctl);
  3209. I915_WRITE(PFIT_CONTROL, 0);
  3210. }
  3211. }
  3212. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3213. {
  3214. struct drm_device *dev = crtc->dev;
  3215. struct drm_i915_private *dev_priv = dev->dev_private;
  3216. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3217. struct intel_encoder *encoder;
  3218. int pipe = intel_crtc->pipe;
  3219. int plane = intel_crtc->plane;
  3220. if (!intel_crtc->active)
  3221. return;
  3222. for_each_encoder_on_crtc(dev, crtc, encoder)
  3223. encoder->disable(encoder);
  3224. /* Give the overlay scaler a chance to disable if it's on this pipe */
  3225. intel_crtc_wait_for_pending_flips(crtc);
  3226. drm_vblank_off(dev, pipe);
  3227. intel_crtc_dpms_overlay(intel_crtc, false);
  3228. intel_crtc_update_cursor(crtc, false);
  3229. if (dev_priv->cfb_plane == plane)
  3230. intel_disable_fbc(dev);
  3231. intel_disable_plane(dev_priv, plane, pipe);
  3232. intel_disable_pipe(dev_priv, pipe);
  3233. i9xx_pfit_disable(intel_crtc);
  3234. intel_disable_pll(dev_priv, pipe);
  3235. intel_crtc->active = false;
  3236. intel_update_fbc(dev);
  3237. intel_update_watermarks(dev);
  3238. }
  3239. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3240. {
  3241. }
  3242. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3243. bool enabled)
  3244. {
  3245. struct drm_device *dev = crtc->dev;
  3246. struct drm_i915_master_private *master_priv;
  3247. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3248. int pipe = intel_crtc->pipe;
  3249. if (!dev->primary->master)
  3250. return;
  3251. master_priv = dev->primary->master->driver_priv;
  3252. if (!master_priv->sarea_priv)
  3253. return;
  3254. switch (pipe) {
  3255. case 0:
  3256. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3257. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3258. break;
  3259. case 1:
  3260. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3261. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3262. break;
  3263. default:
  3264. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3265. break;
  3266. }
  3267. }
  3268. /**
  3269. * Sets the power management mode of the pipe and plane.
  3270. */
  3271. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3272. {
  3273. struct drm_device *dev = crtc->dev;
  3274. struct drm_i915_private *dev_priv = dev->dev_private;
  3275. struct intel_encoder *intel_encoder;
  3276. bool enable = false;
  3277. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3278. enable |= intel_encoder->connectors_active;
  3279. if (enable)
  3280. dev_priv->display.crtc_enable(crtc);
  3281. else
  3282. dev_priv->display.crtc_disable(crtc);
  3283. intel_crtc_update_sarea(crtc, enable);
  3284. }
  3285. static void intel_crtc_disable(struct drm_crtc *crtc)
  3286. {
  3287. struct drm_device *dev = crtc->dev;
  3288. struct drm_connector *connector;
  3289. struct drm_i915_private *dev_priv = dev->dev_private;
  3290. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3291. /* crtc should still be enabled when we disable it. */
  3292. WARN_ON(!crtc->enabled);
  3293. intel_crtc->eld_vld = false;
  3294. dev_priv->display.crtc_disable(crtc);
  3295. intel_crtc_update_sarea(crtc, false);
  3296. dev_priv->display.off(crtc);
  3297. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3298. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3299. if (crtc->fb) {
  3300. mutex_lock(&dev->struct_mutex);
  3301. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3302. mutex_unlock(&dev->struct_mutex);
  3303. crtc->fb = NULL;
  3304. }
  3305. /* Update computed state. */
  3306. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3307. if (!connector->encoder || !connector->encoder->crtc)
  3308. continue;
  3309. if (connector->encoder->crtc != crtc)
  3310. continue;
  3311. connector->dpms = DRM_MODE_DPMS_OFF;
  3312. to_intel_encoder(connector->encoder)->connectors_active = false;
  3313. }
  3314. }
  3315. void intel_modeset_disable(struct drm_device *dev)
  3316. {
  3317. struct drm_crtc *crtc;
  3318. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3319. if (crtc->enabled)
  3320. intel_crtc_disable(crtc);
  3321. }
  3322. }
  3323. void intel_encoder_destroy(struct drm_encoder *encoder)
  3324. {
  3325. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3326. drm_encoder_cleanup(encoder);
  3327. kfree(intel_encoder);
  3328. }
  3329. /* Simple dpms helper for encodres with just one connector, no cloning and only
  3330. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3331. * state of the entire output pipe. */
  3332. void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3333. {
  3334. if (mode == DRM_MODE_DPMS_ON) {
  3335. encoder->connectors_active = true;
  3336. intel_crtc_update_dpms(encoder->base.crtc);
  3337. } else {
  3338. encoder->connectors_active = false;
  3339. intel_crtc_update_dpms(encoder->base.crtc);
  3340. }
  3341. }
  3342. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3343. * internal consistency). */
  3344. static void intel_connector_check_state(struct intel_connector *connector)
  3345. {
  3346. if (connector->get_hw_state(connector)) {
  3347. struct intel_encoder *encoder = connector->encoder;
  3348. struct drm_crtc *crtc;
  3349. bool encoder_enabled;
  3350. enum pipe pipe;
  3351. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3352. connector->base.base.id,
  3353. drm_get_connector_name(&connector->base));
  3354. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3355. "wrong connector dpms state\n");
  3356. WARN(connector->base.encoder != &encoder->base,
  3357. "active connector not linked to encoder\n");
  3358. WARN(!encoder->connectors_active,
  3359. "encoder->connectors_active not set\n");
  3360. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3361. WARN(!encoder_enabled, "encoder not enabled\n");
  3362. if (WARN_ON(!encoder->base.crtc))
  3363. return;
  3364. crtc = encoder->base.crtc;
  3365. WARN(!crtc->enabled, "crtc not enabled\n");
  3366. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3367. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3368. "encoder active on the wrong pipe\n");
  3369. }
  3370. }
  3371. /* Even simpler default implementation, if there's really no special case to
  3372. * consider. */
  3373. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3374. {
  3375. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3376. /* All the simple cases only support two dpms states. */
  3377. if (mode != DRM_MODE_DPMS_ON)
  3378. mode = DRM_MODE_DPMS_OFF;
  3379. if (mode == connector->dpms)
  3380. return;
  3381. connector->dpms = mode;
  3382. /* Only need to change hw state when actually enabled */
  3383. if (encoder->base.crtc)
  3384. intel_encoder_dpms(encoder, mode);
  3385. else
  3386. WARN_ON(encoder->connectors_active != false);
  3387. intel_modeset_check_state(connector->dev);
  3388. }
  3389. /* Simple connector->get_hw_state implementation for encoders that support only
  3390. * one connector and no cloning and hence the encoder state determines the state
  3391. * of the connector. */
  3392. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3393. {
  3394. enum pipe pipe = 0;
  3395. struct intel_encoder *encoder = connector->encoder;
  3396. return encoder->get_hw_state(encoder, &pipe);
  3397. }
  3398. static bool intel_crtc_compute_config(struct drm_crtc *crtc,
  3399. struct intel_crtc_config *pipe_config)
  3400. {
  3401. struct drm_device *dev = crtc->dev;
  3402. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3403. if (HAS_PCH_SPLIT(dev)) {
  3404. /* FDI link clock is fixed at 2.7G */
  3405. if (pipe_config->requested_mode.clock * 3
  3406. > IRONLAKE_FDI_FREQ * 4)
  3407. return false;
  3408. }
  3409. /* All interlaced capable intel hw wants timings in frames. Note though
  3410. * that intel_lvds_mode_fixup does some funny tricks with the crtc
  3411. * timings, so we need to be careful not to clobber these.*/
  3412. if (!pipe_config->timings_set)
  3413. drm_mode_set_crtcinfo(adjusted_mode, 0);
  3414. /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
  3415. * with a hsync front porch of 0.
  3416. */
  3417. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3418. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3419. return false;
  3420. if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
  3421. pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
  3422. } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
  3423. /* only a 8bpc pipe, with 6bpc dither through the panel fitter
  3424. * for lvds. */
  3425. pipe_config->pipe_bpp = 8*3;
  3426. }
  3427. return true;
  3428. }
  3429. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3430. {
  3431. return 400000; /* FIXME */
  3432. }
  3433. static int i945_get_display_clock_speed(struct drm_device *dev)
  3434. {
  3435. return 400000;
  3436. }
  3437. static int i915_get_display_clock_speed(struct drm_device *dev)
  3438. {
  3439. return 333000;
  3440. }
  3441. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3442. {
  3443. return 200000;
  3444. }
  3445. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3446. {
  3447. u16 gcfgc = 0;
  3448. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3449. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3450. return 133000;
  3451. else {
  3452. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3453. case GC_DISPLAY_CLOCK_333_MHZ:
  3454. return 333000;
  3455. default:
  3456. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3457. return 190000;
  3458. }
  3459. }
  3460. }
  3461. static int i865_get_display_clock_speed(struct drm_device *dev)
  3462. {
  3463. return 266000;
  3464. }
  3465. static int i855_get_display_clock_speed(struct drm_device *dev)
  3466. {
  3467. u16 hpllcc = 0;
  3468. /* Assume that the hardware is in the high speed state. This
  3469. * should be the default.
  3470. */
  3471. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3472. case GC_CLOCK_133_200:
  3473. case GC_CLOCK_100_200:
  3474. return 200000;
  3475. case GC_CLOCK_166_250:
  3476. return 250000;
  3477. case GC_CLOCK_100_133:
  3478. return 133000;
  3479. }
  3480. /* Shouldn't happen */
  3481. return 0;
  3482. }
  3483. static int i830_get_display_clock_speed(struct drm_device *dev)
  3484. {
  3485. return 133000;
  3486. }
  3487. static void
  3488. intel_reduce_ratio(uint32_t *num, uint32_t *den)
  3489. {
  3490. while (*num > 0xffffff || *den > 0xffffff) {
  3491. *num >>= 1;
  3492. *den >>= 1;
  3493. }
  3494. }
  3495. void
  3496. intel_link_compute_m_n(int bits_per_pixel, int nlanes,
  3497. int pixel_clock, int link_clock,
  3498. struct intel_link_m_n *m_n)
  3499. {
  3500. m_n->tu = 64;
  3501. m_n->gmch_m = bits_per_pixel * pixel_clock;
  3502. m_n->gmch_n = link_clock * nlanes * 8;
  3503. intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  3504. m_n->link_m = pixel_clock;
  3505. m_n->link_n = link_clock;
  3506. intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
  3507. }
  3508. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3509. {
  3510. if (i915_panel_use_ssc >= 0)
  3511. return i915_panel_use_ssc != 0;
  3512. return dev_priv->lvds_use_ssc
  3513. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3514. }
  3515. static int vlv_get_refclk(struct drm_crtc *crtc)
  3516. {
  3517. struct drm_device *dev = crtc->dev;
  3518. struct drm_i915_private *dev_priv = dev->dev_private;
  3519. int refclk = 27000; /* for DP & HDMI */
  3520. return 100000; /* only one validated so far */
  3521. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  3522. refclk = 96000;
  3523. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3524. if (intel_panel_use_ssc(dev_priv))
  3525. refclk = 100000;
  3526. else
  3527. refclk = 96000;
  3528. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3529. refclk = 100000;
  3530. }
  3531. return refclk;
  3532. }
  3533. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3534. {
  3535. struct drm_device *dev = crtc->dev;
  3536. struct drm_i915_private *dev_priv = dev->dev_private;
  3537. int refclk;
  3538. if (IS_VALLEYVIEW(dev)) {
  3539. refclk = vlv_get_refclk(crtc);
  3540. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3541. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3542. refclk = dev_priv->lvds_ssc_freq * 1000;
  3543. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3544. refclk / 1000);
  3545. } else if (!IS_GEN2(dev)) {
  3546. refclk = 96000;
  3547. } else {
  3548. refclk = 48000;
  3549. }
  3550. return refclk;
  3551. }
  3552. static void i9xx_adjust_sdvo_tv_clock(struct intel_crtc *crtc)
  3553. {
  3554. unsigned dotclock = crtc->config.adjusted_mode.clock;
  3555. struct dpll *clock = &crtc->config.dpll;
  3556. /* SDVO TV has fixed PLL values depend on its clock range,
  3557. this mirrors vbios setting. */
  3558. if (dotclock >= 100000 && dotclock < 140500) {
  3559. clock->p1 = 2;
  3560. clock->p2 = 10;
  3561. clock->n = 3;
  3562. clock->m1 = 16;
  3563. clock->m2 = 8;
  3564. } else if (dotclock >= 140500 && dotclock <= 200000) {
  3565. clock->p1 = 1;
  3566. clock->p2 = 10;
  3567. clock->n = 6;
  3568. clock->m1 = 12;
  3569. clock->m2 = 8;
  3570. }
  3571. crtc->config.clock_set = true;
  3572. }
  3573. static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
  3574. intel_clock_t *reduced_clock)
  3575. {
  3576. struct drm_device *dev = crtc->base.dev;
  3577. struct drm_i915_private *dev_priv = dev->dev_private;
  3578. int pipe = crtc->pipe;
  3579. u32 fp, fp2 = 0;
  3580. struct dpll *clock = &crtc->config.dpll;
  3581. if (IS_PINEVIEW(dev)) {
  3582. fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
  3583. if (reduced_clock)
  3584. fp2 = (1 << reduced_clock->n) << 16 |
  3585. reduced_clock->m1 << 8 | reduced_clock->m2;
  3586. } else {
  3587. fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
  3588. if (reduced_clock)
  3589. fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
  3590. reduced_clock->m2;
  3591. }
  3592. I915_WRITE(FP0(pipe), fp);
  3593. crtc->lowfreq_avail = false;
  3594. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3595. reduced_clock && i915_powersave) {
  3596. I915_WRITE(FP1(pipe), fp2);
  3597. crtc->lowfreq_avail = true;
  3598. } else {
  3599. I915_WRITE(FP1(pipe), fp);
  3600. }
  3601. }
  3602. static void intel_dp_set_m_n(struct intel_crtc *crtc)
  3603. {
  3604. if (crtc->config.has_pch_encoder)
  3605. intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3606. else
  3607. intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3608. }
  3609. static void vlv_update_pll(struct intel_crtc *crtc)
  3610. {
  3611. struct drm_device *dev = crtc->base.dev;
  3612. struct drm_i915_private *dev_priv = dev->dev_private;
  3613. int pipe = crtc->pipe;
  3614. u32 dpll, mdiv, pdiv;
  3615. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3616. bool is_sdvo;
  3617. u32 temp;
  3618. mutex_lock(&dev_priv->dpio_lock);
  3619. is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
  3620. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3621. dpll = DPLL_VGA_MODE_DIS;
  3622. dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
  3623. dpll |= DPLL_REFA_CLK_ENABLE_VLV;
  3624. dpll |= DPLL_INTEGRATED_CLOCK_VLV;
  3625. I915_WRITE(DPLL(pipe), dpll);
  3626. POSTING_READ(DPLL(pipe));
  3627. bestn = crtc->config.dpll.n;
  3628. bestm1 = crtc->config.dpll.m1;
  3629. bestm2 = crtc->config.dpll.m2;
  3630. bestp1 = crtc->config.dpll.p1;
  3631. bestp2 = crtc->config.dpll.p2;
  3632. /*
  3633. * In Valleyview PLL and program lane counter registers are exposed
  3634. * through DPIO interface
  3635. */
  3636. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3637. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3638. mdiv |= ((bestn << DPIO_N_SHIFT));
  3639. mdiv |= (1 << DPIO_POST_DIV_SHIFT);
  3640. mdiv |= (1 << DPIO_K_SHIFT);
  3641. mdiv |= DPIO_ENABLE_CALIBRATION;
  3642. intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3643. intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
  3644. pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
  3645. (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
  3646. (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
  3647. (5 << DPIO_CLK_BIAS_CTL_SHIFT);
  3648. intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
  3649. intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
  3650. dpll |= DPLL_VCO_ENABLE;
  3651. I915_WRITE(DPLL(pipe), dpll);
  3652. POSTING_READ(DPLL(pipe));
  3653. if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  3654. DRM_ERROR("DPLL %d failed to lock\n", pipe);
  3655. intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
  3656. if (crtc->config.has_dp_encoder)
  3657. intel_dp_set_m_n(crtc);
  3658. I915_WRITE(DPLL(pipe), dpll);
  3659. /* Wait for the clocks to stabilize. */
  3660. POSTING_READ(DPLL(pipe));
  3661. udelay(150);
  3662. temp = 0;
  3663. if (is_sdvo) {
  3664. temp = 0;
  3665. if (crtc->config.pixel_multiplier > 1) {
  3666. temp = (crtc->config.pixel_multiplier - 1)
  3667. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3668. }
  3669. }
  3670. I915_WRITE(DPLL_MD(pipe), temp);
  3671. POSTING_READ(DPLL_MD(pipe));
  3672. /* Now program lane control registers */
  3673. if(intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)
  3674. || intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
  3675. temp = 0x1000C4;
  3676. if(pipe == 1)
  3677. temp |= (1 << 21);
  3678. intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
  3679. }
  3680. if(intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP)) {
  3681. temp = 0x1000C4;
  3682. if(pipe == 1)
  3683. temp |= (1 << 21);
  3684. intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
  3685. }
  3686. mutex_unlock(&dev_priv->dpio_lock);
  3687. }
  3688. static void i9xx_update_pll(struct intel_crtc *crtc,
  3689. intel_clock_t *reduced_clock,
  3690. int num_connectors)
  3691. {
  3692. struct drm_device *dev = crtc->base.dev;
  3693. struct drm_i915_private *dev_priv = dev->dev_private;
  3694. struct intel_encoder *encoder;
  3695. int pipe = crtc->pipe;
  3696. u32 dpll;
  3697. bool is_sdvo;
  3698. struct dpll *clock = &crtc->config.dpll;
  3699. i9xx_update_pll_dividers(crtc, reduced_clock);
  3700. is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
  3701. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3702. dpll = DPLL_VGA_MODE_DIS;
  3703. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
  3704. dpll |= DPLLB_MODE_LVDS;
  3705. else
  3706. dpll |= DPLLB_MODE_DAC_SERIAL;
  3707. if (is_sdvo) {
  3708. if ((crtc->config.pixel_multiplier > 1) &&
  3709. (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))) {
  3710. dpll |= (crtc->config.pixel_multiplier - 1)
  3711. << SDVO_MULTIPLIER_SHIFT_HIRES;
  3712. }
  3713. dpll |= DPLL_DVO_HIGH_SPEED;
  3714. }
  3715. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
  3716. dpll |= DPLL_DVO_HIGH_SPEED;
  3717. /* compute bitmask from p1 value */
  3718. if (IS_PINEVIEW(dev))
  3719. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3720. else {
  3721. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3722. if (IS_G4X(dev) && reduced_clock)
  3723. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3724. }
  3725. switch (clock->p2) {
  3726. case 5:
  3727. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3728. break;
  3729. case 7:
  3730. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3731. break;
  3732. case 10:
  3733. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3734. break;
  3735. case 14:
  3736. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3737. break;
  3738. }
  3739. if (INTEL_INFO(dev)->gen >= 4)
  3740. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3741. if (is_sdvo && intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_TVOUT))
  3742. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3743. else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_TVOUT))
  3744. /* XXX: just matching BIOS for now */
  3745. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  3746. dpll |= 3;
  3747. else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3748. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3749. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3750. else
  3751. dpll |= PLL_REF_INPUT_DREFCLK;
  3752. dpll |= DPLL_VCO_ENABLE;
  3753. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3754. POSTING_READ(DPLL(pipe));
  3755. udelay(150);
  3756. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3757. if (encoder->pre_pll_enable)
  3758. encoder->pre_pll_enable(encoder);
  3759. if (crtc->config.has_dp_encoder)
  3760. intel_dp_set_m_n(crtc);
  3761. I915_WRITE(DPLL(pipe), dpll);
  3762. /* Wait for the clocks to stabilize. */
  3763. POSTING_READ(DPLL(pipe));
  3764. udelay(150);
  3765. if (INTEL_INFO(dev)->gen >= 4) {
  3766. u32 temp = 0;
  3767. if (is_sdvo) {
  3768. temp = 0;
  3769. if (crtc->config.pixel_multiplier > 1) {
  3770. temp = (crtc->config.pixel_multiplier - 1)
  3771. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3772. }
  3773. }
  3774. I915_WRITE(DPLL_MD(pipe), temp);
  3775. } else {
  3776. /* The pixel multiplier can only be updated once the
  3777. * DPLL is enabled and the clocks are stable.
  3778. *
  3779. * So write it again.
  3780. */
  3781. I915_WRITE(DPLL(pipe), dpll);
  3782. }
  3783. }
  3784. static void i8xx_update_pll(struct intel_crtc *crtc,
  3785. struct drm_display_mode *adjusted_mode,
  3786. intel_clock_t *reduced_clock,
  3787. int num_connectors)
  3788. {
  3789. struct drm_device *dev = crtc->base.dev;
  3790. struct drm_i915_private *dev_priv = dev->dev_private;
  3791. struct intel_encoder *encoder;
  3792. int pipe = crtc->pipe;
  3793. u32 dpll;
  3794. struct dpll *clock = &crtc->config.dpll;
  3795. i9xx_update_pll_dividers(crtc, reduced_clock);
  3796. dpll = DPLL_VGA_MODE_DIS;
  3797. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
  3798. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3799. } else {
  3800. if (clock->p1 == 2)
  3801. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3802. else
  3803. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3804. if (clock->p2 == 4)
  3805. dpll |= PLL_P2_DIVIDE_BY_4;
  3806. }
  3807. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3808. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3809. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3810. else
  3811. dpll |= PLL_REF_INPUT_DREFCLK;
  3812. dpll |= DPLL_VCO_ENABLE;
  3813. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3814. POSTING_READ(DPLL(pipe));
  3815. udelay(150);
  3816. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3817. if (encoder->pre_pll_enable)
  3818. encoder->pre_pll_enable(encoder);
  3819. I915_WRITE(DPLL(pipe), dpll);
  3820. /* Wait for the clocks to stabilize. */
  3821. POSTING_READ(DPLL(pipe));
  3822. udelay(150);
  3823. /* The pixel multiplier can only be updated once the
  3824. * DPLL is enabled and the clocks are stable.
  3825. *
  3826. * So write it again.
  3827. */
  3828. I915_WRITE(DPLL(pipe), dpll);
  3829. }
  3830. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
  3831. struct drm_display_mode *mode,
  3832. struct drm_display_mode *adjusted_mode)
  3833. {
  3834. struct drm_device *dev = intel_crtc->base.dev;
  3835. struct drm_i915_private *dev_priv = dev->dev_private;
  3836. enum pipe pipe = intel_crtc->pipe;
  3837. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3838. uint32_t vsyncshift;
  3839. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3840. /* the chip adds 2 halflines automatically */
  3841. adjusted_mode->crtc_vtotal -= 1;
  3842. adjusted_mode->crtc_vblank_end -= 1;
  3843. vsyncshift = adjusted_mode->crtc_hsync_start
  3844. - adjusted_mode->crtc_htotal / 2;
  3845. } else {
  3846. vsyncshift = 0;
  3847. }
  3848. if (INTEL_INFO(dev)->gen > 3)
  3849. I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  3850. I915_WRITE(HTOTAL(cpu_transcoder),
  3851. (adjusted_mode->crtc_hdisplay - 1) |
  3852. ((adjusted_mode->crtc_htotal - 1) << 16));
  3853. I915_WRITE(HBLANK(cpu_transcoder),
  3854. (adjusted_mode->crtc_hblank_start - 1) |
  3855. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3856. I915_WRITE(HSYNC(cpu_transcoder),
  3857. (adjusted_mode->crtc_hsync_start - 1) |
  3858. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3859. I915_WRITE(VTOTAL(cpu_transcoder),
  3860. (adjusted_mode->crtc_vdisplay - 1) |
  3861. ((adjusted_mode->crtc_vtotal - 1) << 16));
  3862. I915_WRITE(VBLANK(cpu_transcoder),
  3863. (adjusted_mode->crtc_vblank_start - 1) |
  3864. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  3865. I915_WRITE(VSYNC(cpu_transcoder),
  3866. (adjusted_mode->crtc_vsync_start - 1) |
  3867. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3868. /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  3869. * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  3870. * documented on the DDI_FUNC_CTL register description, EDP Input Select
  3871. * bits. */
  3872. if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  3873. (pipe == PIPE_B || pipe == PIPE_C))
  3874. I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  3875. /* pipesrc controls the size that is scaled from, which should
  3876. * always be the user's requested size.
  3877. */
  3878. I915_WRITE(PIPESRC(pipe),
  3879. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  3880. }
  3881. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
  3882. {
  3883. struct drm_device *dev = intel_crtc->base.dev;
  3884. struct drm_i915_private *dev_priv = dev->dev_private;
  3885. uint32_t pipeconf;
  3886. pipeconf = I915_READ(PIPECONF(intel_crtc->pipe));
  3887. if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  3888. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  3889. * core speed.
  3890. *
  3891. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  3892. * pipe == 0 check?
  3893. */
  3894. if (intel_crtc->config.requested_mode.clock >
  3895. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  3896. pipeconf |= PIPECONF_DOUBLE_WIDE;
  3897. else
  3898. pipeconf &= ~PIPECONF_DOUBLE_WIDE;
  3899. }
  3900. /* default to 8bpc */
  3901. pipeconf &= ~(PIPECONF_BPC_MASK | PIPECONF_DITHER_EN);
  3902. if (intel_crtc->config.has_dp_encoder) {
  3903. if (intel_crtc->config.dither) {
  3904. pipeconf |= PIPECONF_6BPC |
  3905. PIPECONF_DITHER_EN |
  3906. PIPECONF_DITHER_TYPE_SP;
  3907. }
  3908. }
  3909. if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(&intel_crtc->base,
  3910. INTEL_OUTPUT_EDP)) {
  3911. if (intel_crtc->config.dither) {
  3912. pipeconf |= PIPECONF_6BPC |
  3913. PIPECONF_ENABLE |
  3914. I965_PIPECONF_ACTIVE;
  3915. }
  3916. }
  3917. if (HAS_PIPE_CXSR(dev)) {
  3918. if (intel_crtc->lowfreq_avail) {
  3919. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  3920. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  3921. } else {
  3922. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  3923. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  3924. }
  3925. }
  3926. pipeconf &= ~PIPECONF_INTERLACE_MASK;
  3927. if (!IS_GEN2(dev) &&
  3928. intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  3929. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  3930. else
  3931. pipeconf |= PIPECONF_PROGRESSIVE;
  3932. if (IS_VALLEYVIEW(dev)) {
  3933. if (intel_crtc->config.limited_color_range)
  3934. pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
  3935. else
  3936. pipeconf &= ~PIPECONF_COLOR_RANGE_SELECT;
  3937. }
  3938. I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
  3939. POSTING_READ(PIPECONF(intel_crtc->pipe));
  3940. }
  3941. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  3942. int x, int y,
  3943. struct drm_framebuffer *fb)
  3944. {
  3945. struct drm_device *dev = crtc->dev;
  3946. struct drm_i915_private *dev_priv = dev->dev_private;
  3947. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3948. struct drm_display_mode *adjusted_mode =
  3949. &intel_crtc->config.adjusted_mode;
  3950. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  3951. int pipe = intel_crtc->pipe;
  3952. int plane = intel_crtc->plane;
  3953. int refclk, num_connectors = 0;
  3954. intel_clock_t clock, reduced_clock;
  3955. u32 dspcntr;
  3956. bool ok, has_reduced_clock = false, is_sdvo = false;
  3957. bool is_lvds = false, is_tv = false;
  3958. struct intel_encoder *encoder;
  3959. const intel_limit_t *limit;
  3960. int ret;
  3961. for_each_encoder_on_crtc(dev, crtc, encoder) {
  3962. switch (encoder->type) {
  3963. case INTEL_OUTPUT_LVDS:
  3964. is_lvds = true;
  3965. break;
  3966. case INTEL_OUTPUT_SDVO:
  3967. case INTEL_OUTPUT_HDMI:
  3968. is_sdvo = true;
  3969. if (encoder->needs_tv_clock)
  3970. is_tv = true;
  3971. break;
  3972. case INTEL_OUTPUT_TVOUT:
  3973. is_tv = true;
  3974. break;
  3975. }
  3976. num_connectors++;
  3977. }
  3978. refclk = i9xx_get_refclk(crtc, num_connectors);
  3979. /*
  3980. * Returns a set of divisors for the desired target clock with the given
  3981. * refclk, or FALSE. The returned values represent the clock equation:
  3982. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  3983. */
  3984. limit = intel_limit(crtc, refclk);
  3985. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  3986. &clock);
  3987. if (!ok) {
  3988. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  3989. return -EINVAL;
  3990. }
  3991. /* Ensure that the cursor is valid for the new mode before changing... */
  3992. intel_crtc_update_cursor(crtc, true);
  3993. if (is_lvds && dev_priv->lvds_downclock_avail) {
  3994. /*
  3995. * Ensure we match the reduced clock's P to the target clock.
  3996. * If the clocks don't match, we can't switch the display clock
  3997. * by using the FP0/FP1. In such case we will disable the LVDS
  3998. * downclock feature.
  3999. */
  4000. has_reduced_clock = limit->find_pll(limit, crtc,
  4001. dev_priv->lvds_downclock,
  4002. refclk,
  4003. &clock,
  4004. &reduced_clock);
  4005. }
  4006. /* Compat-code for transition, will disappear. */
  4007. if (!intel_crtc->config.clock_set) {
  4008. intel_crtc->config.dpll.n = clock.n;
  4009. intel_crtc->config.dpll.m1 = clock.m1;
  4010. intel_crtc->config.dpll.m2 = clock.m2;
  4011. intel_crtc->config.dpll.p1 = clock.p1;
  4012. intel_crtc->config.dpll.p2 = clock.p2;
  4013. }
  4014. if (is_sdvo && is_tv)
  4015. i9xx_adjust_sdvo_tv_clock(intel_crtc);
  4016. if (IS_GEN2(dev))
  4017. i8xx_update_pll(intel_crtc, adjusted_mode,
  4018. has_reduced_clock ? &reduced_clock : NULL,
  4019. num_connectors);
  4020. else if (IS_VALLEYVIEW(dev))
  4021. vlv_update_pll(intel_crtc);
  4022. else
  4023. i9xx_update_pll(intel_crtc,
  4024. has_reduced_clock ? &reduced_clock : NULL,
  4025. num_connectors);
  4026. /* Set up the display plane register */
  4027. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4028. if (!IS_VALLEYVIEW(dev)) {
  4029. if (pipe == 0)
  4030. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4031. else
  4032. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4033. }
  4034. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe_name(pipe));
  4035. drm_mode_debug_printmodeline(mode);
  4036. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4037. /* pipesrc and dspsize control the size that is scaled from,
  4038. * which should always be the user's requested size.
  4039. */
  4040. I915_WRITE(DSPSIZE(plane),
  4041. ((mode->vdisplay - 1) << 16) |
  4042. (mode->hdisplay - 1));
  4043. I915_WRITE(DSPPOS(plane), 0);
  4044. i9xx_set_pipeconf(intel_crtc);
  4045. I915_WRITE(DSPCNTR(plane), dspcntr);
  4046. POSTING_READ(DSPCNTR(plane));
  4047. ret = intel_pipe_set_base(crtc, x, y, fb);
  4048. intel_update_watermarks(dev);
  4049. return ret;
  4050. }
  4051. static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
  4052. struct intel_crtc_config *pipe_config)
  4053. {
  4054. struct drm_device *dev = crtc->base.dev;
  4055. struct drm_i915_private *dev_priv = dev->dev_private;
  4056. uint32_t tmp;
  4057. tmp = I915_READ(PIPECONF(crtc->pipe));
  4058. if (!(tmp & PIPECONF_ENABLE))
  4059. return false;
  4060. return true;
  4061. }
  4062. static void ironlake_init_pch_refclk(struct drm_device *dev)
  4063. {
  4064. struct drm_i915_private *dev_priv = dev->dev_private;
  4065. struct drm_mode_config *mode_config = &dev->mode_config;
  4066. struct intel_encoder *encoder;
  4067. u32 val, final;
  4068. bool has_lvds = false;
  4069. bool has_cpu_edp = false;
  4070. bool has_pch_edp = false;
  4071. bool has_panel = false;
  4072. bool has_ck505 = false;
  4073. bool can_ssc = false;
  4074. /* We need to take the global config into account */
  4075. list_for_each_entry(encoder, &mode_config->encoder_list,
  4076. base.head) {
  4077. switch (encoder->type) {
  4078. case INTEL_OUTPUT_LVDS:
  4079. has_panel = true;
  4080. has_lvds = true;
  4081. break;
  4082. case INTEL_OUTPUT_EDP:
  4083. has_panel = true;
  4084. if (intel_encoder_is_pch_edp(&encoder->base))
  4085. has_pch_edp = true;
  4086. else
  4087. has_cpu_edp = true;
  4088. break;
  4089. }
  4090. }
  4091. if (HAS_PCH_IBX(dev)) {
  4092. has_ck505 = dev_priv->display_clock_mode;
  4093. can_ssc = has_ck505;
  4094. } else {
  4095. has_ck505 = false;
  4096. can_ssc = true;
  4097. }
  4098. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
  4099. has_panel, has_lvds, has_pch_edp, has_cpu_edp,
  4100. has_ck505);
  4101. /* Ironlake: try to setup display ref clock before DPLL
  4102. * enabling. This is only under driver's control after
  4103. * PCH B stepping, previous chipset stepping should be
  4104. * ignoring this setting.
  4105. */
  4106. val = I915_READ(PCH_DREF_CONTROL);
  4107. /* As we must carefully and slowly disable/enable each source in turn,
  4108. * compute the final state we want first and check if we need to
  4109. * make any changes at all.
  4110. */
  4111. final = val;
  4112. final &= ~DREF_NONSPREAD_SOURCE_MASK;
  4113. if (has_ck505)
  4114. final |= DREF_NONSPREAD_CK505_ENABLE;
  4115. else
  4116. final |= DREF_NONSPREAD_SOURCE_ENABLE;
  4117. final &= ~DREF_SSC_SOURCE_MASK;
  4118. final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4119. final &= ~DREF_SSC1_ENABLE;
  4120. if (has_panel) {
  4121. final |= DREF_SSC_SOURCE_ENABLE;
  4122. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4123. final |= DREF_SSC1_ENABLE;
  4124. if (has_cpu_edp) {
  4125. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4126. final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4127. else
  4128. final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4129. } else
  4130. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4131. } else {
  4132. final |= DREF_SSC_SOURCE_DISABLE;
  4133. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4134. }
  4135. if (final == val)
  4136. return;
  4137. /* Always enable nonspread source */
  4138. val &= ~DREF_NONSPREAD_SOURCE_MASK;
  4139. if (has_ck505)
  4140. val |= DREF_NONSPREAD_CK505_ENABLE;
  4141. else
  4142. val |= DREF_NONSPREAD_SOURCE_ENABLE;
  4143. if (has_panel) {
  4144. val &= ~DREF_SSC_SOURCE_MASK;
  4145. val |= DREF_SSC_SOURCE_ENABLE;
  4146. /* SSC must be turned on before enabling the CPU output */
  4147. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4148. DRM_DEBUG_KMS("Using SSC on panel\n");
  4149. val |= DREF_SSC1_ENABLE;
  4150. } else
  4151. val &= ~DREF_SSC1_ENABLE;
  4152. /* Get SSC going before enabling the outputs */
  4153. I915_WRITE(PCH_DREF_CONTROL, val);
  4154. POSTING_READ(PCH_DREF_CONTROL);
  4155. udelay(200);
  4156. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4157. /* Enable CPU source on CPU attached eDP */
  4158. if (has_cpu_edp) {
  4159. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4160. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4161. val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4162. }
  4163. else
  4164. val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4165. } else
  4166. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4167. I915_WRITE(PCH_DREF_CONTROL, val);
  4168. POSTING_READ(PCH_DREF_CONTROL);
  4169. udelay(200);
  4170. } else {
  4171. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4172. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4173. /* Turn off CPU output */
  4174. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4175. I915_WRITE(PCH_DREF_CONTROL, val);
  4176. POSTING_READ(PCH_DREF_CONTROL);
  4177. udelay(200);
  4178. /* Turn off the SSC source */
  4179. val &= ~DREF_SSC_SOURCE_MASK;
  4180. val |= DREF_SSC_SOURCE_DISABLE;
  4181. /* Turn off SSC1 */
  4182. val &= ~DREF_SSC1_ENABLE;
  4183. I915_WRITE(PCH_DREF_CONTROL, val);
  4184. POSTING_READ(PCH_DREF_CONTROL);
  4185. udelay(200);
  4186. }
  4187. BUG_ON(val != final);
  4188. }
  4189. /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
  4190. static void lpt_init_pch_refclk(struct drm_device *dev)
  4191. {
  4192. struct drm_i915_private *dev_priv = dev->dev_private;
  4193. struct drm_mode_config *mode_config = &dev->mode_config;
  4194. struct intel_encoder *encoder;
  4195. bool has_vga = false;
  4196. bool is_sdv = false;
  4197. u32 tmp;
  4198. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4199. switch (encoder->type) {
  4200. case INTEL_OUTPUT_ANALOG:
  4201. has_vga = true;
  4202. break;
  4203. }
  4204. }
  4205. if (!has_vga)
  4206. return;
  4207. mutex_lock(&dev_priv->dpio_lock);
  4208. /* XXX: Rip out SDV support once Haswell ships for real. */
  4209. if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
  4210. is_sdv = true;
  4211. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4212. tmp &= ~SBI_SSCCTL_DISABLE;
  4213. tmp |= SBI_SSCCTL_PATHALT;
  4214. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4215. udelay(24);
  4216. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4217. tmp &= ~SBI_SSCCTL_PATHALT;
  4218. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4219. if (!is_sdv) {
  4220. tmp = I915_READ(SOUTH_CHICKEN2);
  4221. tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
  4222. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4223. if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
  4224. FDI_MPHY_IOSFSB_RESET_STATUS, 100))
  4225. DRM_ERROR("FDI mPHY reset assert timeout\n");
  4226. tmp = I915_READ(SOUTH_CHICKEN2);
  4227. tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
  4228. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4229. if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
  4230. FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
  4231. 100))
  4232. DRM_ERROR("FDI mPHY reset de-assert timeout\n");
  4233. }
  4234. tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
  4235. tmp &= ~(0xFF << 24);
  4236. tmp |= (0x12 << 24);
  4237. intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
  4238. if (is_sdv) {
  4239. tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
  4240. tmp |= 0x7FFF;
  4241. intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
  4242. }
  4243. tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
  4244. tmp |= (1 << 11);
  4245. intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
  4246. tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
  4247. tmp |= (1 << 11);
  4248. intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
  4249. if (is_sdv) {
  4250. tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
  4251. tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
  4252. intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
  4253. tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
  4254. tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
  4255. intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
  4256. tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
  4257. tmp |= (0x3F << 8);
  4258. intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
  4259. tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
  4260. tmp |= (0x3F << 8);
  4261. intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
  4262. }
  4263. tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
  4264. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4265. intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
  4266. tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
  4267. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4268. intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
  4269. if (!is_sdv) {
  4270. tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
  4271. tmp &= ~(7 << 13);
  4272. tmp |= (5 << 13);
  4273. intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
  4274. tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
  4275. tmp &= ~(7 << 13);
  4276. tmp |= (5 << 13);
  4277. intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
  4278. }
  4279. tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
  4280. tmp &= ~0xFF;
  4281. tmp |= 0x1C;
  4282. intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
  4283. tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
  4284. tmp &= ~0xFF;
  4285. tmp |= 0x1C;
  4286. intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
  4287. tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
  4288. tmp &= ~(0xFF << 16);
  4289. tmp |= (0x1C << 16);
  4290. intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
  4291. tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
  4292. tmp &= ~(0xFF << 16);
  4293. tmp |= (0x1C << 16);
  4294. intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
  4295. if (!is_sdv) {
  4296. tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
  4297. tmp |= (1 << 27);
  4298. intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
  4299. tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
  4300. tmp |= (1 << 27);
  4301. intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
  4302. tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
  4303. tmp &= ~(0xF << 28);
  4304. tmp |= (4 << 28);
  4305. intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
  4306. tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
  4307. tmp &= ~(0xF << 28);
  4308. tmp |= (4 << 28);
  4309. intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
  4310. }
  4311. /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
  4312. tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
  4313. tmp |= SBI_DBUFF0_ENABLE;
  4314. intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
  4315. mutex_unlock(&dev_priv->dpio_lock);
  4316. }
  4317. /*
  4318. * Initialize reference clocks when the driver loads
  4319. */
  4320. void intel_init_pch_refclk(struct drm_device *dev)
  4321. {
  4322. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4323. ironlake_init_pch_refclk(dev);
  4324. else if (HAS_PCH_LPT(dev))
  4325. lpt_init_pch_refclk(dev);
  4326. }
  4327. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4328. {
  4329. struct drm_device *dev = crtc->dev;
  4330. struct drm_i915_private *dev_priv = dev->dev_private;
  4331. struct intel_encoder *encoder;
  4332. struct intel_encoder *edp_encoder = NULL;
  4333. int num_connectors = 0;
  4334. bool is_lvds = false;
  4335. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4336. switch (encoder->type) {
  4337. case INTEL_OUTPUT_LVDS:
  4338. is_lvds = true;
  4339. break;
  4340. case INTEL_OUTPUT_EDP:
  4341. edp_encoder = encoder;
  4342. break;
  4343. }
  4344. num_connectors++;
  4345. }
  4346. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4347. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4348. dev_priv->lvds_ssc_freq);
  4349. return dev_priv->lvds_ssc_freq * 1000;
  4350. }
  4351. return 120000;
  4352. }
  4353. static void ironlake_set_pipeconf(struct drm_crtc *crtc,
  4354. struct drm_display_mode *adjusted_mode,
  4355. bool dither)
  4356. {
  4357. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4358. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4359. int pipe = intel_crtc->pipe;
  4360. uint32_t val;
  4361. val = I915_READ(PIPECONF(pipe));
  4362. val &= ~PIPECONF_BPC_MASK;
  4363. switch (intel_crtc->config.pipe_bpp) {
  4364. case 18:
  4365. val |= PIPECONF_6BPC;
  4366. break;
  4367. case 24:
  4368. val |= PIPECONF_8BPC;
  4369. break;
  4370. case 30:
  4371. val |= PIPECONF_10BPC;
  4372. break;
  4373. case 36:
  4374. val |= PIPECONF_12BPC;
  4375. break;
  4376. default:
  4377. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4378. BUG();
  4379. }
  4380. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4381. if (dither)
  4382. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4383. val &= ~PIPECONF_INTERLACE_MASK;
  4384. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
  4385. val |= PIPECONF_INTERLACED_ILK;
  4386. else
  4387. val |= PIPECONF_PROGRESSIVE;
  4388. if (intel_crtc->config.limited_color_range)
  4389. val |= PIPECONF_COLOR_RANGE_SELECT;
  4390. else
  4391. val &= ~PIPECONF_COLOR_RANGE_SELECT;
  4392. I915_WRITE(PIPECONF(pipe), val);
  4393. POSTING_READ(PIPECONF(pipe));
  4394. }
  4395. /*
  4396. * Set up the pipe CSC unit.
  4397. *
  4398. * Currently only full range RGB to limited range RGB conversion
  4399. * is supported, but eventually this should handle various
  4400. * RGB<->YCbCr scenarios as well.
  4401. */
  4402. static void intel_set_pipe_csc(struct drm_crtc *crtc)
  4403. {
  4404. struct drm_device *dev = crtc->dev;
  4405. struct drm_i915_private *dev_priv = dev->dev_private;
  4406. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4407. int pipe = intel_crtc->pipe;
  4408. uint16_t coeff = 0x7800; /* 1.0 */
  4409. /*
  4410. * TODO: Check what kind of values actually come out of the pipe
  4411. * with these coeff/postoff values and adjust to get the best
  4412. * accuracy. Perhaps we even need to take the bpc value into
  4413. * consideration.
  4414. */
  4415. if (intel_crtc->config.limited_color_range)
  4416. coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
  4417. /*
  4418. * GY/GU and RY/RU should be the other way around according
  4419. * to BSpec, but reality doesn't agree. Just set them up in
  4420. * a way that results in the correct picture.
  4421. */
  4422. I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
  4423. I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
  4424. I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
  4425. I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
  4426. I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
  4427. I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
  4428. I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
  4429. I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
  4430. I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
  4431. if (INTEL_INFO(dev)->gen > 6) {
  4432. uint16_t postoff = 0;
  4433. if (intel_crtc->config.limited_color_range)
  4434. postoff = (16 * (1 << 13) / 255) & 0x1fff;
  4435. I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
  4436. I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
  4437. I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
  4438. I915_WRITE(PIPE_CSC_MODE(pipe), 0);
  4439. } else {
  4440. uint32_t mode = CSC_MODE_YUV_TO_RGB;
  4441. if (intel_crtc->config.limited_color_range)
  4442. mode |= CSC_BLACK_SCREEN_OFFSET;
  4443. I915_WRITE(PIPE_CSC_MODE(pipe), mode);
  4444. }
  4445. }
  4446. static void haswell_set_pipeconf(struct drm_crtc *crtc,
  4447. struct drm_display_mode *adjusted_mode,
  4448. bool dither)
  4449. {
  4450. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4451. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4452. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  4453. uint32_t val;
  4454. val = I915_READ(PIPECONF(cpu_transcoder));
  4455. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4456. if (dither)
  4457. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4458. val &= ~PIPECONF_INTERLACE_MASK_HSW;
  4459. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
  4460. val |= PIPECONF_INTERLACED_ILK;
  4461. else
  4462. val |= PIPECONF_PROGRESSIVE;
  4463. I915_WRITE(PIPECONF(cpu_transcoder), val);
  4464. POSTING_READ(PIPECONF(cpu_transcoder));
  4465. }
  4466. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4467. struct drm_display_mode *adjusted_mode,
  4468. intel_clock_t *clock,
  4469. bool *has_reduced_clock,
  4470. intel_clock_t *reduced_clock)
  4471. {
  4472. struct drm_device *dev = crtc->dev;
  4473. struct drm_i915_private *dev_priv = dev->dev_private;
  4474. struct intel_encoder *intel_encoder;
  4475. int refclk;
  4476. const intel_limit_t *limit;
  4477. bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
  4478. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4479. switch (intel_encoder->type) {
  4480. case INTEL_OUTPUT_LVDS:
  4481. is_lvds = true;
  4482. break;
  4483. case INTEL_OUTPUT_SDVO:
  4484. case INTEL_OUTPUT_HDMI:
  4485. is_sdvo = true;
  4486. if (intel_encoder->needs_tv_clock)
  4487. is_tv = true;
  4488. break;
  4489. case INTEL_OUTPUT_TVOUT:
  4490. is_tv = true;
  4491. break;
  4492. }
  4493. }
  4494. refclk = ironlake_get_refclk(crtc);
  4495. /*
  4496. * Returns a set of divisors for the desired target clock with the given
  4497. * refclk, or FALSE. The returned values represent the clock equation:
  4498. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4499. */
  4500. limit = intel_limit(crtc, refclk);
  4501. ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4502. clock);
  4503. if (!ret)
  4504. return false;
  4505. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4506. /*
  4507. * Ensure we match the reduced clock's P to the target clock.
  4508. * If the clocks don't match, we can't switch the display clock
  4509. * by using the FP0/FP1. In such case we will disable the LVDS
  4510. * downclock feature.
  4511. */
  4512. *has_reduced_clock = limit->find_pll(limit, crtc,
  4513. dev_priv->lvds_downclock,
  4514. refclk,
  4515. clock,
  4516. reduced_clock);
  4517. }
  4518. if (is_sdvo && is_tv)
  4519. i9xx_adjust_sdvo_tv_clock(to_intel_crtc(crtc));
  4520. return true;
  4521. }
  4522. static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
  4523. {
  4524. struct drm_i915_private *dev_priv = dev->dev_private;
  4525. uint32_t temp;
  4526. temp = I915_READ(SOUTH_CHICKEN1);
  4527. if (temp & FDI_BC_BIFURCATION_SELECT)
  4528. return;
  4529. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4530. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4531. temp |= FDI_BC_BIFURCATION_SELECT;
  4532. DRM_DEBUG_KMS("enabling fdi C rx\n");
  4533. I915_WRITE(SOUTH_CHICKEN1, temp);
  4534. POSTING_READ(SOUTH_CHICKEN1);
  4535. }
  4536. static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
  4537. {
  4538. struct drm_device *dev = intel_crtc->base.dev;
  4539. struct drm_i915_private *dev_priv = dev->dev_private;
  4540. struct intel_crtc *pipe_B_crtc =
  4541. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  4542. DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
  4543. pipe_name(intel_crtc->pipe), intel_crtc->fdi_lanes);
  4544. if (intel_crtc->fdi_lanes > 4) {
  4545. DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
  4546. pipe_name(intel_crtc->pipe), intel_crtc->fdi_lanes);
  4547. /* Clamp lanes to avoid programming the hw with bogus values. */
  4548. intel_crtc->fdi_lanes = 4;
  4549. return false;
  4550. }
  4551. if (INTEL_INFO(dev)->num_pipes == 2)
  4552. return true;
  4553. switch (intel_crtc->pipe) {
  4554. case PIPE_A:
  4555. return true;
  4556. case PIPE_B:
  4557. if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
  4558. intel_crtc->fdi_lanes > 2) {
  4559. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  4560. pipe_name(intel_crtc->pipe), intel_crtc->fdi_lanes);
  4561. /* Clamp lanes to avoid programming the hw with bogus values. */
  4562. intel_crtc->fdi_lanes = 2;
  4563. return false;
  4564. }
  4565. if (intel_crtc->fdi_lanes > 2)
  4566. WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
  4567. else
  4568. cpt_enable_fdi_bc_bifurcation(dev);
  4569. return true;
  4570. case PIPE_C:
  4571. if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
  4572. if (intel_crtc->fdi_lanes > 2) {
  4573. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  4574. pipe_name(intel_crtc->pipe), intel_crtc->fdi_lanes);
  4575. /* Clamp lanes to avoid programming the hw with bogus values. */
  4576. intel_crtc->fdi_lanes = 2;
  4577. return false;
  4578. }
  4579. } else {
  4580. DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  4581. return false;
  4582. }
  4583. cpt_enable_fdi_bc_bifurcation(dev);
  4584. return true;
  4585. default:
  4586. BUG();
  4587. }
  4588. }
  4589. int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
  4590. {
  4591. /*
  4592. * Account for spread spectrum to avoid
  4593. * oversubscribing the link. Max center spread
  4594. * is 2.5%; use 5% for safety's sake.
  4595. */
  4596. u32 bps = target_clock * bpp * 21 / 20;
  4597. return bps / (link_bw * 8) + 1;
  4598. }
  4599. void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
  4600. struct intel_link_m_n *m_n)
  4601. {
  4602. struct drm_device *dev = crtc->base.dev;
  4603. struct drm_i915_private *dev_priv = dev->dev_private;
  4604. int pipe = crtc->pipe;
  4605. I915_WRITE(TRANSDATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  4606. I915_WRITE(TRANSDATA_N1(pipe), m_n->gmch_n);
  4607. I915_WRITE(TRANSDPLINK_M1(pipe), m_n->link_m);
  4608. I915_WRITE(TRANSDPLINK_N1(pipe), m_n->link_n);
  4609. }
  4610. void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  4611. struct intel_link_m_n *m_n)
  4612. {
  4613. struct drm_device *dev = crtc->base.dev;
  4614. struct drm_i915_private *dev_priv = dev->dev_private;
  4615. int pipe = crtc->pipe;
  4616. enum transcoder transcoder = crtc->config.cpu_transcoder;
  4617. if (INTEL_INFO(dev)->gen >= 5) {
  4618. I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
  4619. I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
  4620. I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
  4621. I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
  4622. } else {
  4623. I915_WRITE(PIPE_GMCH_DATA_M(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  4624. I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n->gmch_n);
  4625. I915_WRITE(PIPE_DP_LINK_M(pipe), m_n->link_m);
  4626. I915_WRITE(PIPE_DP_LINK_N(pipe), m_n->link_n);
  4627. }
  4628. }
  4629. static void ironlake_fdi_set_m_n(struct drm_crtc *crtc)
  4630. {
  4631. struct drm_device *dev = crtc->dev;
  4632. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4633. struct drm_display_mode *adjusted_mode =
  4634. &intel_crtc->config.adjusted_mode;
  4635. struct intel_link_m_n m_n = {0};
  4636. int target_clock, lane, link_bw;
  4637. /* FDI is a binary signal running at ~2.7GHz, encoding
  4638. * each output octet as 10 bits. The actual frequency
  4639. * is stored as a divider into a 100MHz clock, and the
  4640. * mode pixel clock is stored in units of 1KHz.
  4641. * Hence the bw of each lane in terms of the mode signal
  4642. * is:
  4643. */
  4644. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  4645. if (intel_crtc->config.pixel_target_clock)
  4646. target_clock = intel_crtc->config.pixel_target_clock;
  4647. else
  4648. target_clock = adjusted_mode->clock;
  4649. lane = ironlake_get_lanes_required(target_clock, link_bw,
  4650. intel_crtc->config.pipe_bpp);
  4651. intel_crtc->fdi_lanes = lane;
  4652. if (intel_crtc->config.pixel_multiplier > 1)
  4653. link_bw *= intel_crtc->config.pixel_multiplier;
  4654. intel_link_compute_m_n(intel_crtc->config.pipe_bpp, lane, target_clock,
  4655. link_bw, &m_n);
  4656. intel_cpu_transcoder_set_m_n(intel_crtc, &m_n);
  4657. }
  4658. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4659. intel_clock_t *clock, u32 *fp,
  4660. intel_clock_t *reduced_clock, u32 *fp2)
  4661. {
  4662. struct drm_crtc *crtc = &intel_crtc->base;
  4663. struct drm_device *dev = crtc->dev;
  4664. struct drm_i915_private *dev_priv = dev->dev_private;
  4665. struct intel_encoder *intel_encoder;
  4666. uint32_t dpll;
  4667. int factor, num_connectors = 0;
  4668. bool is_lvds = false, is_sdvo = false, is_tv = false;
  4669. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4670. switch (intel_encoder->type) {
  4671. case INTEL_OUTPUT_LVDS:
  4672. is_lvds = true;
  4673. break;
  4674. case INTEL_OUTPUT_SDVO:
  4675. case INTEL_OUTPUT_HDMI:
  4676. is_sdvo = true;
  4677. if (intel_encoder->needs_tv_clock)
  4678. is_tv = true;
  4679. break;
  4680. case INTEL_OUTPUT_TVOUT:
  4681. is_tv = true;
  4682. break;
  4683. }
  4684. num_connectors++;
  4685. }
  4686. /* Enable autotuning of the PLL clock (if permissible) */
  4687. factor = 21;
  4688. if (is_lvds) {
  4689. if ((intel_panel_use_ssc(dev_priv) &&
  4690. dev_priv->lvds_ssc_freq == 100) ||
  4691. (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
  4692. factor = 25;
  4693. } else if (is_sdvo && is_tv)
  4694. factor = 20;
  4695. if (clock->m < factor * clock->n)
  4696. *fp |= FP_CB_TUNE;
  4697. if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
  4698. *fp2 |= FP_CB_TUNE;
  4699. dpll = 0;
  4700. if (is_lvds)
  4701. dpll |= DPLLB_MODE_LVDS;
  4702. else
  4703. dpll |= DPLLB_MODE_DAC_SERIAL;
  4704. if (is_sdvo) {
  4705. if (intel_crtc->config.pixel_multiplier > 1) {
  4706. dpll |= (intel_crtc->config.pixel_multiplier - 1)
  4707. << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4708. }
  4709. dpll |= DPLL_DVO_HIGH_SPEED;
  4710. }
  4711. if (intel_crtc->config.has_dp_encoder &&
  4712. intel_crtc->config.has_pch_encoder)
  4713. dpll |= DPLL_DVO_HIGH_SPEED;
  4714. /* compute bitmask from p1 value */
  4715. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4716. /* also FPA1 */
  4717. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4718. switch (clock->p2) {
  4719. case 5:
  4720. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4721. break;
  4722. case 7:
  4723. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4724. break;
  4725. case 10:
  4726. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4727. break;
  4728. case 14:
  4729. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4730. break;
  4731. }
  4732. if (is_sdvo && is_tv)
  4733. dpll |= PLL_REF_INPUT_TVCLKINBC;
  4734. else if (is_tv)
  4735. /* XXX: just matching BIOS for now */
  4736. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  4737. dpll |= 3;
  4738. else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4739. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4740. else
  4741. dpll |= PLL_REF_INPUT_DREFCLK;
  4742. return dpll;
  4743. }
  4744. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4745. int x, int y,
  4746. struct drm_framebuffer *fb)
  4747. {
  4748. struct drm_device *dev = crtc->dev;
  4749. struct drm_i915_private *dev_priv = dev->dev_private;
  4750. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4751. struct drm_display_mode *adjusted_mode =
  4752. &intel_crtc->config.adjusted_mode;
  4753. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4754. int pipe = intel_crtc->pipe;
  4755. int plane = intel_crtc->plane;
  4756. int num_connectors = 0;
  4757. intel_clock_t clock, reduced_clock;
  4758. u32 dpll, fp = 0, fp2 = 0;
  4759. bool ok, has_reduced_clock = false;
  4760. bool is_lvds = false;
  4761. struct intel_encoder *encoder;
  4762. int ret;
  4763. bool dither, fdi_config_ok;
  4764. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4765. switch (encoder->type) {
  4766. case INTEL_OUTPUT_LVDS:
  4767. is_lvds = true;
  4768. break;
  4769. }
  4770. num_connectors++;
  4771. }
  4772. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  4773. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  4774. intel_crtc->config.cpu_transcoder = pipe;
  4775. ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
  4776. &has_reduced_clock, &reduced_clock);
  4777. if (!ok) {
  4778. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4779. return -EINVAL;
  4780. }
  4781. /* Compat-code for transition, will disappear. */
  4782. if (!intel_crtc->config.clock_set) {
  4783. intel_crtc->config.dpll.n = clock.n;
  4784. intel_crtc->config.dpll.m1 = clock.m1;
  4785. intel_crtc->config.dpll.m2 = clock.m2;
  4786. intel_crtc->config.dpll.p1 = clock.p1;
  4787. intel_crtc->config.dpll.p2 = clock.p2;
  4788. }
  4789. /* Ensure that the cursor is valid for the new mode before changing... */
  4790. intel_crtc_update_cursor(crtc, true);
  4791. /* determine panel color depth */
  4792. dither = intel_crtc->config.dither;
  4793. if (is_lvds && dev_priv->lvds_dither)
  4794. dither = true;
  4795. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  4796. if (has_reduced_clock)
  4797. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  4798. reduced_clock.m2;
  4799. dpll = ironlake_compute_dpll(intel_crtc, &clock, &fp, &reduced_clock,
  4800. has_reduced_clock ? &fp2 : NULL);
  4801. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe_name(pipe));
  4802. drm_mode_debug_printmodeline(mode);
  4803. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  4804. if (intel_crtc->config.has_pch_encoder) {
  4805. struct intel_pch_pll *pll;
  4806. pll = intel_get_pch_pll(intel_crtc, dpll, fp);
  4807. if (pll == NULL) {
  4808. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  4809. pipe_name(pipe));
  4810. return -EINVAL;
  4811. }
  4812. } else
  4813. intel_put_pch_pll(intel_crtc);
  4814. if (intel_crtc->config.has_dp_encoder)
  4815. intel_dp_set_m_n(intel_crtc);
  4816. for_each_encoder_on_crtc(dev, crtc, encoder)
  4817. if (encoder->pre_pll_enable)
  4818. encoder->pre_pll_enable(encoder);
  4819. if (intel_crtc->pch_pll) {
  4820. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4821. /* Wait for the clocks to stabilize. */
  4822. POSTING_READ(intel_crtc->pch_pll->pll_reg);
  4823. udelay(150);
  4824. /* The pixel multiplier can only be updated once the
  4825. * DPLL is enabled and the clocks are stable.
  4826. *
  4827. * So write it again.
  4828. */
  4829. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4830. }
  4831. intel_crtc->lowfreq_avail = false;
  4832. if (intel_crtc->pch_pll) {
  4833. if (is_lvds && has_reduced_clock && i915_powersave) {
  4834. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
  4835. intel_crtc->lowfreq_avail = true;
  4836. } else {
  4837. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
  4838. }
  4839. }
  4840. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4841. /* Note, this also computes intel_crtc->fdi_lanes which is used below in
  4842. * ironlake_check_fdi_lanes. */
  4843. intel_crtc->fdi_lanes = 0;
  4844. if (intel_crtc->config.has_pch_encoder)
  4845. ironlake_fdi_set_m_n(crtc);
  4846. fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
  4847. ironlake_set_pipeconf(crtc, adjusted_mode, dither);
  4848. /* Set up the display plane register */
  4849. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4850. POSTING_READ(DSPCNTR(plane));
  4851. ret = intel_pipe_set_base(crtc, x, y, fb);
  4852. intel_update_watermarks(dev);
  4853. intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
  4854. return fdi_config_ok ? ret : -EINVAL;
  4855. }
  4856. static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
  4857. struct intel_crtc_config *pipe_config)
  4858. {
  4859. struct drm_device *dev = crtc->base.dev;
  4860. struct drm_i915_private *dev_priv = dev->dev_private;
  4861. uint32_t tmp;
  4862. tmp = I915_READ(PIPECONF(crtc->pipe));
  4863. if (!(tmp & PIPECONF_ENABLE))
  4864. return false;
  4865. if (I915_READ(TRANSCONF(crtc->pipe)) & TRANS_ENABLE)
  4866. pipe_config->has_pch_encoder = true;
  4867. return true;
  4868. }
  4869. static void haswell_modeset_global_resources(struct drm_device *dev)
  4870. {
  4871. struct drm_i915_private *dev_priv = dev->dev_private;
  4872. bool enable = false;
  4873. struct intel_crtc *crtc;
  4874. struct intel_encoder *encoder;
  4875. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  4876. if (crtc->pipe != PIPE_A && crtc->base.enabled)
  4877. enable = true;
  4878. /* XXX: Should check for edp transcoder here, but thanks to init
  4879. * sequence that's not yet available. Just in case desktop eDP
  4880. * on PORT D is possible on haswell, too. */
  4881. }
  4882. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  4883. base.head) {
  4884. if (encoder->type != INTEL_OUTPUT_EDP &&
  4885. encoder->connectors_active)
  4886. enable = true;
  4887. }
  4888. /* Even the eDP panel fitter is outside the always-on well. */
  4889. if (dev_priv->pch_pf_size)
  4890. enable = true;
  4891. intel_set_power_well(dev, enable);
  4892. }
  4893. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  4894. int x, int y,
  4895. struct drm_framebuffer *fb)
  4896. {
  4897. struct drm_device *dev = crtc->dev;
  4898. struct drm_i915_private *dev_priv = dev->dev_private;
  4899. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4900. struct drm_display_mode *adjusted_mode =
  4901. &intel_crtc->config.adjusted_mode;
  4902. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4903. int pipe = intel_crtc->pipe;
  4904. int plane = intel_crtc->plane;
  4905. int num_connectors = 0;
  4906. bool is_cpu_edp = false;
  4907. struct intel_encoder *encoder;
  4908. int ret;
  4909. bool dither;
  4910. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4911. switch (encoder->type) {
  4912. case INTEL_OUTPUT_EDP:
  4913. if (!intel_encoder_is_pch_edp(&encoder->base))
  4914. is_cpu_edp = true;
  4915. break;
  4916. }
  4917. num_connectors++;
  4918. }
  4919. if (is_cpu_edp)
  4920. intel_crtc->config.cpu_transcoder = TRANSCODER_EDP;
  4921. else
  4922. intel_crtc->config.cpu_transcoder = pipe;
  4923. /* We are not sure yet this won't happen. */
  4924. WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
  4925. INTEL_PCH_TYPE(dev));
  4926. WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
  4927. num_connectors, pipe_name(pipe));
  4928. WARN_ON(I915_READ(PIPECONF(intel_crtc->config.cpu_transcoder)) &
  4929. (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
  4930. WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
  4931. if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
  4932. return -EINVAL;
  4933. /* Ensure that the cursor is valid for the new mode before changing... */
  4934. intel_crtc_update_cursor(crtc, true);
  4935. /* determine panel color depth */
  4936. dither = intel_crtc->config.dither;
  4937. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe_name(pipe));
  4938. drm_mode_debug_printmodeline(mode);
  4939. if (intel_crtc->config.has_dp_encoder)
  4940. intel_dp_set_m_n(intel_crtc);
  4941. intel_crtc->lowfreq_avail = false;
  4942. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4943. if (intel_crtc->config.has_pch_encoder)
  4944. ironlake_fdi_set_m_n(crtc);
  4945. haswell_set_pipeconf(crtc, adjusted_mode, dither);
  4946. intel_set_pipe_csc(crtc);
  4947. /* Set up the display plane register */
  4948. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
  4949. POSTING_READ(DSPCNTR(plane));
  4950. ret = intel_pipe_set_base(crtc, x, y, fb);
  4951. intel_update_watermarks(dev);
  4952. intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
  4953. return ret;
  4954. }
  4955. static bool haswell_get_pipe_config(struct intel_crtc *crtc,
  4956. struct intel_crtc_config *pipe_config)
  4957. {
  4958. struct drm_device *dev = crtc->base.dev;
  4959. struct drm_i915_private *dev_priv = dev->dev_private;
  4960. uint32_t tmp;
  4961. tmp = I915_READ(PIPECONF(crtc->config.cpu_transcoder));
  4962. if (!(tmp & PIPECONF_ENABLE))
  4963. return false;
  4964. /*
  4965. * aswell has only FDI/PCH transcoder A. It is which is connected to
  4966. * DDI E. So just check whether this pipe is wired to DDI E and whether
  4967. * the PCH transcoder is on.
  4968. */
  4969. tmp = I915_READ(TRANS_DDI_FUNC_CTL(crtc->pipe));
  4970. if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
  4971. I915_READ(TRANSCONF(PIPE_A)) & TRANS_ENABLE)
  4972. pipe_config->has_pch_encoder = true;
  4973. return true;
  4974. }
  4975. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  4976. int x, int y,
  4977. struct drm_framebuffer *fb)
  4978. {
  4979. struct drm_device *dev = crtc->dev;
  4980. struct drm_i915_private *dev_priv = dev->dev_private;
  4981. struct drm_encoder_helper_funcs *encoder_funcs;
  4982. struct intel_encoder *encoder;
  4983. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4984. struct drm_display_mode *adjusted_mode =
  4985. &intel_crtc->config.adjusted_mode;
  4986. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4987. int pipe = intel_crtc->pipe;
  4988. int ret;
  4989. drm_vblank_pre_modeset(dev, pipe);
  4990. ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
  4991. drm_vblank_post_modeset(dev, pipe);
  4992. if (ret != 0)
  4993. return ret;
  4994. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4995. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  4996. encoder->base.base.id,
  4997. drm_get_encoder_name(&encoder->base),
  4998. mode->base.id, mode->name);
  4999. if (encoder->mode_set) {
  5000. encoder->mode_set(encoder);
  5001. } else {
  5002. encoder_funcs = encoder->base.helper_private;
  5003. encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
  5004. }
  5005. }
  5006. return 0;
  5007. }
  5008. static bool intel_eld_uptodate(struct drm_connector *connector,
  5009. int reg_eldv, uint32_t bits_eldv,
  5010. int reg_elda, uint32_t bits_elda,
  5011. int reg_edid)
  5012. {
  5013. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5014. uint8_t *eld = connector->eld;
  5015. uint32_t i;
  5016. i = I915_READ(reg_eldv);
  5017. i &= bits_eldv;
  5018. if (!eld[0])
  5019. return !i;
  5020. if (!i)
  5021. return false;
  5022. i = I915_READ(reg_elda);
  5023. i &= ~bits_elda;
  5024. I915_WRITE(reg_elda, i);
  5025. for (i = 0; i < eld[2]; i++)
  5026. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5027. return false;
  5028. return true;
  5029. }
  5030. static void g4x_write_eld(struct drm_connector *connector,
  5031. struct drm_crtc *crtc)
  5032. {
  5033. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5034. uint8_t *eld = connector->eld;
  5035. uint32_t eldv;
  5036. uint32_t len;
  5037. uint32_t i;
  5038. i = I915_READ(G4X_AUD_VID_DID);
  5039. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5040. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5041. else
  5042. eldv = G4X_ELDV_DEVCTG;
  5043. if (intel_eld_uptodate(connector,
  5044. G4X_AUD_CNTL_ST, eldv,
  5045. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5046. G4X_HDMIW_HDMIEDID))
  5047. return;
  5048. i = I915_READ(G4X_AUD_CNTL_ST);
  5049. i &= ~(eldv | G4X_ELD_ADDR);
  5050. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5051. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5052. if (!eld[0])
  5053. return;
  5054. len = min_t(uint8_t, eld[2], len);
  5055. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5056. for (i = 0; i < len; i++)
  5057. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5058. i = I915_READ(G4X_AUD_CNTL_ST);
  5059. i |= eldv;
  5060. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5061. }
  5062. static void haswell_write_eld(struct drm_connector *connector,
  5063. struct drm_crtc *crtc)
  5064. {
  5065. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5066. uint8_t *eld = connector->eld;
  5067. struct drm_device *dev = crtc->dev;
  5068. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5069. uint32_t eldv;
  5070. uint32_t i;
  5071. int len;
  5072. int pipe = to_intel_crtc(crtc)->pipe;
  5073. int tmp;
  5074. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  5075. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  5076. int aud_config = HSW_AUD_CFG(pipe);
  5077. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  5078. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  5079. /* Audio output enable */
  5080. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  5081. tmp = I915_READ(aud_cntrl_st2);
  5082. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  5083. I915_WRITE(aud_cntrl_st2, tmp);
  5084. /* Wait for 1 vertical blank */
  5085. intel_wait_for_vblank(dev, pipe);
  5086. /* Set ELD valid state */
  5087. tmp = I915_READ(aud_cntrl_st2);
  5088. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
  5089. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  5090. I915_WRITE(aud_cntrl_st2, tmp);
  5091. tmp = I915_READ(aud_cntrl_st2);
  5092. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
  5093. /* Enable HDMI mode */
  5094. tmp = I915_READ(aud_config);
  5095. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
  5096. /* clear N_programing_enable and N_value_index */
  5097. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  5098. I915_WRITE(aud_config, tmp);
  5099. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5100. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  5101. intel_crtc->eld_vld = true;
  5102. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5103. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5104. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5105. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5106. } else
  5107. I915_WRITE(aud_config, 0);
  5108. if (intel_eld_uptodate(connector,
  5109. aud_cntrl_st2, eldv,
  5110. aud_cntl_st, IBX_ELD_ADDRESS,
  5111. hdmiw_hdmiedid))
  5112. return;
  5113. i = I915_READ(aud_cntrl_st2);
  5114. i &= ~eldv;
  5115. I915_WRITE(aud_cntrl_st2, i);
  5116. if (!eld[0])
  5117. return;
  5118. i = I915_READ(aud_cntl_st);
  5119. i &= ~IBX_ELD_ADDRESS;
  5120. I915_WRITE(aud_cntl_st, i);
  5121. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5122. DRM_DEBUG_DRIVER("port num:%d\n", i);
  5123. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5124. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5125. for (i = 0; i < len; i++)
  5126. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5127. i = I915_READ(aud_cntrl_st2);
  5128. i |= eldv;
  5129. I915_WRITE(aud_cntrl_st2, i);
  5130. }
  5131. static void ironlake_write_eld(struct drm_connector *connector,
  5132. struct drm_crtc *crtc)
  5133. {
  5134. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5135. uint8_t *eld = connector->eld;
  5136. uint32_t eldv;
  5137. uint32_t i;
  5138. int len;
  5139. int hdmiw_hdmiedid;
  5140. int aud_config;
  5141. int aud_cntl_st;
  5142. int aud_cntrl_st2;
  5143. int pipe = to_intel_crtc(crtc)->pipe;
  5144. if (HAS_PCH_IBX(connector->dev)) {
  5145. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  5146. aud_config = IBX_AUD_CFG(pipe);
  5147. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  5148. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5149. } else {
  5150. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  5151. aud_config = CPT_AUD_CFG(pipe);
  5152. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  5153. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5154. }
  5155. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5156. i = I915_READ(aud_cntl_st);
  5157. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5158. if (!i) {
  5159. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5160. /* operate blindly on all ports */
  5161. eldv = IBX_ELD_VALIDB;
  5162. eldv |= IBX_ELD_VALIDB << 4;
  5163. eldv |= IBX_ELD_VALIDB << 8;
  5164. } else {
  5165. DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
  5166. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5167. }
  5168. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5169. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5170. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5171. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5172. } else
  5173. I915_WRITE(aud_config, 0);
  5174. if (intel_eld_uptodate(connector,
  5175. aud_cntrl_st2, eldv,
  5176. aud_cntl_st, IBX_ELD_ADDRESS,
  5177. hdmiw_hdmiedid))
  5178. return;
  5179. i = I915_READ(aud_cntrl_st2);
  5180. i &= ~eldv;
  5181. I915_WRITE(aud_cntrl_st2, i);
  5182. if (!eld[0])
  5183. return;
  5184. i = I915_READ(aud_cntl_st);
  5185. i &= ~IBX_ELD_ADDRESS;
  5186. I915_WRITE(aud_cntl_st, i);
  5187. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5188. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5189. for (i = 0; i < len; i++)
  5190. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5191. i = I915_READ(aud_cntrl_st2);
  5192. i |= eldv;
  5193. I915_WRITE(aud_cntrl_st2, i);
  5194. }
  5195. void intel_write_eld(struct drm_encoder *encoder,
  5196. struct drm_display_mode *mode)
  5197. {
  5198. struct drm_crtc *crtc = encoder->crtc;
  5199. struct drm_connector *connector;
  5200. struct drm_device *dev = encoder->dev;
  5201. struct drm_i915_private *dev_priv = dev->dev_private;
  5202. connector = drm_select_eld(encoder, mode);
  5203. if (!connector)
  5204. return;
  5205. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5206. connector->base.id,
  5207. drm_get_connector_name(connector),
  5208. connector->encoder->base.id,
  5209. drm_get_encoder_name(connector->encoder));
  5210. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5211. if (dev_priv->display.write_eld)
  5212. dev_priv->display.write_eld(connector, crtc);
  5213. }
  5214. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5215. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5216. {
  5217. struct drm_device *dev = crtc->dev;
  5218. struct drm_i915_private *dev_priv = dev->dev_private;
  5219. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5220. int palreg = PALETTE(intel_crtc->pipe);
  5221. int i;
  5222. /* The clocks have to be on to load the palette. */
  5223. if (!crtc->enabled || !intel_crtc->active)
  5224. return;
  5225. /* use legacy palette for Ironlake */
  5226. if (HAS_PCH_SPLIT(dev))
  5227. palreg = LGC_PALETTE(intel_crtc->pipe);
  5228. for (i = 0; i < 256; i++) {
  5229. I915_WRITE(palreg + 4 * i,
  5230. (intel_crtc->lut_r[i] << 16) |
  5231. (intel_crtc->lut_g[i] << 8) |
  5232. intel_crtc->lut_b[i]);
  5233. }
  5234. }
  5235. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5236. {
  5237. struct drm_device *dev = crtc->dev;
  5238. struct drm_i915_private *dev_priv = dev->dev_private;
  5239. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5240. bool visible = base != 0;
  5241. u32 cntl;
  5242. if (intel_crtc->cursor_visible == visible)
  5243. return;
  5244. cntl = I915_READ(_CURACNTR);
  5245. if (visible) {
  5246. /* On these chipsets we can only modify the base whilst
  5247. * the cursor is disabled.
  5248. */
  5249. I915_WRITE(_CURABASE, base);
  5250. cntl &= ~(CURSOR_FORMAT_MASK);
  5251. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5252. cntl |= CURSOR_ENABLE |
  5253. CURSOR_GAMMA_ENABLE |
  5254. CURSOR_FORMAT_ARGB;
  5255. } else
  5256. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5257. I915_WRITE(_CURACNTR, cntl);
  5258. intel_crtc->cursor_visible = visible;
  5259. }
  5260. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5261. {
  5262. struct drm_device *dev = crtc->dev;
  5263. struct drm_i915_private *dev_priv = dev->dev_private;
  5264. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5265. int pipe = intel_crtc->pipe;
  5266. bool visible = base != 0;
  5267. if (intel_crtc->cursor_visible != visible) {
  5268. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5269. if (base) {
  5270. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5271. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5272. cntl |= pipe << 28; /* Connect to correct pipe */
  5273. } else {
  5274. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5275. cntl |= CURSOR_MODE_DISABLE;
  5276. }
  5277. I915_WRITE(CURCNTR(pipe), cntl);
  5278. intel_crtc->cursor_visible = visible;
  5279. }
  5280. /* and commit changes on next vblank */
  5281. I915_WRITE(CURBASE(pipe), base);
  5282. }
  5283. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5284. {
  5285. struct drm_device *dev = crtc->dev;
  5286. struct drm_i915_private *dev_priv = dev->dev_private;
  5287. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5288. int pipe = intel_crtc->pipe;
  5289. bool visible = base != 0;
  5290. if (intel_crtc->cursor_visible != visible) {
  5291. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5292. if (base) {
  5293. cntl &= ~CURSOR_MODE;
  5294. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5295. } else {
  5296. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5297. cntl |= CURSOR_MODE_DISABLE;
  5298. }
  5299. if (IS_HASWELL(dev))
  5300. cntl |= CURSOR_PIPE_CSC_ENABLE;
  5301. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5302. intel_crtc->cursor_visible = visible;
  5303. }
  5304. /* and commit changes on next vblank */
  5305. I915_WRITE(CURBASE_IVB(pipe), base);
  5306. }
  5307. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5308. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5309. bool on)
  5310. {
  5311. struct drm_device *dev = crtc->dev;
  5312. struct drm_i915_private *dev_priv = dev->dev_private;
  5313. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5314. int pipe = intel_crtc->pipe;
  5315. int x = intel_crtc->cursor_x;
  5316. int y = intel_crtc->cursor_y;
  5317. u32 base, pos;
  5318. bool visible;
  5319. pos = 0;
  5320. if (on && crtc->enabled && crtc->fb) {
  5321. base = intel_crtc->cursor_addr;
  5322. if (x > (int) crtc->fb->width)
  5323. base = 0;
  5324. if (y > (int) crtc->fb->height)
  5325. base = 0;
  5326. } else
  5327. base = 0;
  5328. if (x < 0) {
  5329. if (x + intel_crtc->cursor_width < 0)
  5330. base = 0;
  5331. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5332. x = -x;
  5333. }
  5334. pos |= x << CURSOR_X_SHIFT;
  5335. if (y < 0) {
  5336. if (y + intel_crtc->cursor_height < 0)
  5337. base = 0;
  5338. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5339. y = -y;
  5340. }
  5341. pos |= y << CURSOR_Y_SHIFT;
  5342. visible = base != 0;
  5343. if (!visible && !intel_crtc->cursor_visible)
  5344. return;
  5345. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  5346. I915_WRITE(CURPOS_IVB(pipe), pos);
  5347. ivb_update_cursor(crtc, base);
  5348. } else {
  5349. I915_WRITE(CURPOS(pipe), pos);
  5350. if (IS_845G(dev) || IS_I865G(dev))
  5351. i845_update_cursor(crtc, base);
  5352. else
  5353. i9xx_update_cursor(crtc, base);
  5354. }
  5355. }
  5356. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5357. struct drm_file *file,
  5358. uint32_t handle,
  5359. uint32_t width, uint32_t height)
  5360. {
  5361. struct drm_device *dev = crtc->dev;
  5362. struct drm_i915_private *dev_priv = dev->dev_private;
  5363. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5364. struct drm_i915_gem_object *obj;
  5365. uint32_t addr;
  5366. int ret;
  5367. /* if we want to turn off the cursor ignore width and height */
  5368. if (!handle) {
  5369. DRM_DEBUG_KMS("cursor off\n");
  5370. addr = 0;
  5371. obj = NULL;
  5372. mutex_lock(&dev->struct_mutex);
  5373. goto finish;
  5374. }
  5375. /* Currently we only support 64x64 cursors */
  5376. if (width != 64 || height != 64) {
  5377. DRM_ERROR("we currently only support 64x64 cursors\n");
  5378. return -EINVAL;
  5379. }
  5380. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5381. if (&obj->base == NULL)
  5382. return -ENOENT;
  5383. if (obj->base.size < width * height * 4) {
  5384. DRM_ERROR("buffer is to small\n");
  5385. ret = -ENOMEM;
  5386. goto fail;
  5387. }
  5388. /* we only need to pin inside GTT if cursor is non-phy */
  5389. mutex_lock(&dev->struct_mutex);
  5390. if (!dev_priv->info->cursor_needs_physical) {
  5391. unsigned alignment;
  5392. if (obj->tiling_mode) {
  5393. DRM_ERROR("cursor cannot be tiled\n");
  5394. ret = -EINVAL;
  5395. goto fail_locked;
  5396. }
  5397. /* Note that the w/a also requires 2 PTE of padding following
  5398. * the bo. We currently fill all unused PTE with the shadow
  5399. * page and so we should always have valid PTE following the
  5400. * cursor preventing the VT-d warning.
  5401. */
  5402. alignment = 0;
  5403. if (need_vtd_wa(dev))
  5404. alignment = 64*1024;
  5405. ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
  5406. if (ret) {
  5407. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5408. goto fail_locked;
  5409. }
  5410. ret = i915_gem_object_put_fence(obj);
  5411. if (ret) {
  5412. DRM_ERROR("failed to release fence for cursor");
  5413. goto fail_unpin;
  5414. }
  5415. addr = obj->gtt_offset;
  5416. } else {
  5417. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5418. ret = i915_gem_attach_phys_object(dev, obj,
  5419. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5420. align);
  5421. if (ret) {
  5422. DRM_ERROR("failed to attach phys object\n");
  5423. goto fail_locked;
  5424. }
  5425. addr = obj->phys_obj->handle->busaddr;
  5426. }
  5427. if (IS_GEN2(dev))
  5428. I915_WRITE(CURSIZE, (height << 12) | width);
  5429. finish:
  5430. if (intel_crtc->cursor_bo) {
  5431. if (dev_priv->info->cursor_needs_physical) {
  5432. if (intel_crtc->cursor_bo != obj)
  5433. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5434. } else
  5435. i915_gem_object_unpin(intel_crtc->cursor_bo);
  5436. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5437. }
  5438. mutex_unlock(&dev->struct_mutex);
  5439. intel_crtc->cursor_addr = addr;
  5440. intel_crtc->cursor_bo = obj;
  5441. intel_crtc->cursor_width = width;
  5442. intel_crtc->cursor_height = height;
  5443. intel_crtc_update_cursor(crtc, true);
  5444. return 0;
  5445. fail_unpin:
  5446. i915_gem_object_unpin(obj);
  5447. fail_locked:
  5448. mutex_unlock(&dev->struct_mutex);
  5449. fail:
  5450. drm_gem_object_unreference_unlocked(&obj->base);
  5451. return ret;
  5452. }
  5453. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5454. {
  5455. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5456. intel_crtc->cursor_x = x;
  5457. intel_crtc->cursor_y = y;
  5458. intel_crtc_update_cursor(crtc, true);
  5459. return 0;
  5460. }
  5461. /** Sets the color ramps on behalf of RandR */
  5462. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5463. u16 blue, int regno)
  5464. {
  5465. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5466. intel_crtc->lut_r[regno] = red >> 8;
  5467. intel_crtc->lut_g[regno] = green >> 8;
  5468. intel_crtc->lut_b[regno] = blue >> 8;
  5469. }
  5470. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5471. u16 *blue, int regno)
  5472. {
  5473. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5474. *red = intel_crtc->lut_r[regno] << 8;
  5475. *green = intel_crtc->lut_g[regno] << 8;
  5476. *blue = intel_crtc->lut_b[regno] << 8;
  5477. }
  5478. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5479. u16 *blue, uint32_t start, uint32_t size)
  5480. {
  5481. int end = (start + size > 256) ? 256 : start + size, i;
  5482. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5483. for (i = start; i < end; i++) {
  5484. intel_crtc->lut_r[i] = red[i] >> 8;
  5485. intel_crtc->lut_g[i] = green[i] >> 8;
  5486. intel_crtc->lut_b[i] = blue[i] >> 8;
  5487. }
  5488. intel_crtc_load_lut(crtc);
  5489. }
  5490. /* VESA 640x480x72Hz mode to set on the pipe */
  5491. static struct drm_display_mode load_detect_mode = {
  5492. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5493. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5494. };
  5495. static struct drm_framebuffer *
  5496. intel_framebuffer_create(struct drm_device *dev,
  5497. struct drm_mode_fb_cmd2 *mode_cmd,
  5498. struct drm_i915_gem_object *obj)
  5499. {
  5500. struct intel_framebuffer *intel_fb;
  5501. int ret;
  5502. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5503. if (!intel_fb) {
  5504. drm_gem_object_unreference_unlocked(&obj->base);
  5505. return ERR_PTR(-ENOMEM);
  5506. }
  5507. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5508. if (ret) {
  5509. drm_gem_object_unreference_unlocked(&obj->base);
  5510. kfree(intel_fb);
  5511. return ERR_PTR(ret);
  5512. }
  5513. return &intel_fb->base;
  5514. }
  5515. static u32
  5516. intel_framebuffer_pitch_for_width(int width, int bpp)
  5517. {
  5518. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5519. return ALIGN(pitch, 64);
  5520. }
  5521. static u32
  5522. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5523. {
  5524. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5525. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5526. }
  5527. static struct drm_framebuffer *
  5528. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5529. struct drm_display_mode *mode,
  5530. int depth, int bpp)
  5531. {
  5532. struct drm_i915_gem_object *obj;
  5533. struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  5534. obj = i915_gem_alloc_object(dev,
  5535. intel_framebuffer_size_for_mode(mode, bpp));
  5536. if (obj == NULL)
  5537. return ERR_PTR(-ENOMEM);
  5538. mode_cmd.width = mode->hdisplay;
  5539. mode_cmd.height = mode->vdisplay;
  5540. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  5541. bpp);
  5542. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  5543. return intel_framebuffer_create(dev, &mode_cmd, obj);
  5544. }
  5545. static struct drm_framebuffer *
  5546. mode_fits_in_fbdev(struct drm_device *dev,
  5547. struct drm_display_mode *mode)
  5548. {
  5549. struct drm_i915_private *dev_priv = dev->dev_private;
  5550. struct drm_i915_gem_object *obj;
  5551. struct drm_framebuffer *fb;
  5552. if (dev_priv->fbdev == NULL)
  5553. return NULL;
  5554. obj = dev_priv->fbdev->ifb.obj;
  5555. if (obj == NULL)
  5556. return NULL;
  5557. fb = &dev_priv->fbdev->ifb.base;
  5558. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  5559. fb->bits_per_pixel))
  5560. return NULL;
  5561. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  5562. return NULL;
  5563. return fb;
  5564. }
  5565. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  5566. struct drm_display_mode *mode,
  5567. struct intel_load_detect_pipe *old)
  5568. {
  5569. struct intel_crtc *intel_crtc;
  5570. struct intel_encoder *intel_encoder =
  5571. intel_attached_encoder(connector);
  5572. struct drm_crtc *possible_crtc;
  5573. struct drm_encoder *encoder = &intel_encoder->base;
  5574. struct drm_crtc *crtc = NULL;
  5575. struct drm_device *dev = encoder->dev;
  5576. struct drm_framebuffer *fb;
  5577. int i = -1;
  5578. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5579. connector->base.id, drm_get_connector_name(connector),
  5580. encoder->base.id, drm_get_encoder_name(encoder));
  5581. /*
  5582. * Algorithm gets a little messy:
  5583. *
  5584. * - if the connector already has an assigned crtc, use it (but make
  5585. * sure it's on first)
  5586. *
  5587. * - try to find the first unused crtc that can drive this connector,
  5588. * and use that if we find one
  5589. */
  5590. /* See if we already have a CRTC for this connector */
  5591. if (encoder->crtc) {
  5592. crtc = encoder->crtc;
  5593. mutex_lock(&crtc->mutex);
  5594. old->dpms_mode = connector->dpms;
  5595. old->load_detect_temp = false;
  5596. /* Make sure the crtc and connector are running */
  5597. if (connector->dpms != DRM_MODE_DPMS_ON)
  5598. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  5599. return true;
  5600. }
  5601. /* Find an unused one (if possible) */
  5602. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  5603. i++;
  5604. if (!(encoder->possible_crtcs & (1 << i)))
  5605. continue;
  5606. if (!possible_crtc->enabled) {
  5607. crtc = possible_crtc;
  5608. break;
  5609. }
  5610. }
  5611. /*
  5612. * If we didn't find an unused CRTC, don't use any.
  5613. */
  5614. if (!crtc) {
  5615. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  5616. return false;
  5617. }
  5618. mutex_lock(&crtc->mutex);
  5619. intel_encoder->new_crtc = to_intel_crtc(crtc);
  5620. to_intel_connector(connector)->new_encoder = intel_encoder;
  5621. intel_crtc = to_intel_crtc(crtc);
  5622. old->dpms_mode = connector->dpms;
  5623. old->load_detect_temp = true;
  5624. old->release_fb = NULL;
  5625. if (!mode)
  5626. mode = &load_detect_mode;
  5627. /* We need a framebuffer large enough to accommodate all accesses
  5628. * that the plane may generate whilst we perform load detection.
  5629. * We can not rely on the fbcon either being present (we get called
  5630. * during its initialisation to detect all boot displays, or it may
  5631. * not even exist) or that it is large enough to satisfy the
  5632. * requested mode.
  5633. */
  5634. fb = mode_fits_in_fbdev(dev, mode);
  5635. if (fb == NULL) {
  5636. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  5637. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  5638. old->release_fb = fb;
  5639. } else
  5640. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  5641. if (IS_ERR(fb)) {
  5642. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  5643. mutex_unlock(&crtc->mutex);
  5644. return false;
  5645. }
  5646. if (intel_set_mode(crtc, mode, 0, 0, fb)) {
  5647. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  5648. if (old->release_fb)
  5649. old->release_fb->funcs->destroy(old->release_fb);
  5650. mutex_unlock(&crtc->mutex);
  5651. return false;
  5652. }
  5653. /* let the connector get through one full cycle before testing */
  5654. intel_wait_for_vblank(dev, intel_crtc->pipe);
  5655. return true;
  5656. }
  5657. void intel_release_load_detect_pipe(struct drm_connector *connector,
  5658. struct intel_load_detect_pipe *old)
  5659. {
  5660. struct intel_encoder *intel_encoder =
  5661. intel_attached_encoder(connector);
  5662. struct drm_encoder *encoder = &intel_encoder->base;
  5663. struct drm_crtc *crtc = encoder->crtc;
  5664. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5665. connector->base.id, drm_get_connector_name(connector),
  5666. encoder->base.id, drm_get_encoder_name(encoder));
  5667. if (old->load_detect_temp) {
  5668. to_intel_connector(connector)->new_encoder = NULL;
  5669. intel_encoder->new_crtc = NULL;
  5670. intel_set_mode(crtc, NULL, 0, 0, NULL);
  5671. if (old->release_fb) {
  5672. drm_framebuffer_unregister_private(old->release_fb);
  5673. drm_framebuffer_unreference(old->release_fb);
  5674. }
  5675. mutex_unlock(&crtc->mutex);
  5676. return;
  5677. }
  5678. /* Switch crtc and encoder back off if necessary */
  5679. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  5680. connector->funcs->dpms(connector, old->dpms_mode);
  5681. mutex_unlock(&crtc->mutex);
  5682. }
  5683. /* Returns the clock of the currently programmed mode of the given pipe. */
  5684. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  5685. {
  5686. struct drm_i915_private *dev_priv = dev->dev_private;
  5687. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5688. int pipe = intel_crtc->pipe;
  5689. u32 dpll = I915_READ(DPLL(pipe));
  5690. u32 fp;
  5691. intel_clock_t clock;
  5692. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  5693. fp = I915_READ(FP0(pipe));
  5694. else
  5695. fp = I915_READ(FP1(pipe));
  5696. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  5697. if (IS_PINEVIEW(dev)) {
  5698. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  5699. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5700. } else {
  5701. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  5702. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5703. }
  5704. if (!IS_GEN2(dev)) {
  5705. if (IS_PINEVIEW(dev))
  5706. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  5707. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  5708. else
  5709. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  5710. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5711. switch (dpll & DPLL_MODE_MASK) {
  5712. case DPLLB_MODE_DAC_SERIAL:
  5713. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  5714. 5 : 10;
  5715. break;
  5716. case DPLLB_MODE_LVDS:
  5717. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  5718. 7 : 14;
  5719. break;
  5720. default:
  5721. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  5722. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  5723. return 0;
  5724. }
  5725. /* XXX: Handle the 100Mhz refclk */
  5726. intel_clock(dev, 96000, &clock);
  5727. } else {
  5728. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  5729. if (is_lvds) {
  5730. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  5731. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5732. clock.p2 = 14;
  5733. if ((dpll & PLL_REF_INPUT_MASK) ==
  5734. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  5735. /* XXX: might not be 66MHz */
  5736. intel_clock(dev, 66000, &clock);
  5737. } else
  5738. intel_clock(dev, 48000, &clock);
  5739. } else {
  5740. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  5741. clock.p1 = 2;
  5742. else {
  5743. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  5744. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  5745. }
  5746. if (dpll & PLL_P2_DIVIDE_BY_4)
  5747. clock.p2 = 4;
  5748. else
  5749. clock.p2 = 2;
  5750. intel_clock(dev, 48000, &clock);
  5751. }
  5752. }
  5753. /* XXX: It would be nice to validate the clocks, but we can't reuse
  5754. * i830PllIsValid() because it relies on the xf86_config connector
  5755. * configuration being accurate, which it isn't necessarily.
  5756. */
  5757. return clock.dot;
  5758. }
  5759. /** Returns the currently programmed mode of the given pipe. */
  5760. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  5761. struct drm_crtc *crtc)
  5762. {
  5763. struct drm_i915_private *dev_priv = dev->dev_private;
  5764. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5765. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  5766. struct drm_display_mode *mode;
  5767. int htot = I915_READ(HTOTAL(cpu_transcoder));
  5768. int hsync = I915_READ(HSYNC(cpu_transcoder));
  5769. int vtot = I915_READ(VTOTAL(cpu_transcoder));
  5770. int vsync = I915_READ(VSYNC(cpu_transcoder));
  5771. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  5772. if (!mode)
  5773. return NULL;
  5774. mode->clock = intel_crtc_clock_get(dev, crtc);
  5775. mode->hdisplay = (htot & 0xffff) + 1;
  5776. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  5777. mode->hsync_start = (hsync & 0xffff) + 1;
  5778. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  5779. mode->vdisplay = (vtot & 0xffff) + 1;
  5780. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  5781. mode->vsync_start = (vsync & 0xffff) + 1;
  5782. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  5783. drm_mode_set_name(mode);
  5784. return mode;
  5785. }
  5786. static void intel_increase_pllclock(struct drm_crtc *crtc)
  5787. {
  5788. struct drm_device *dev = crtc->dev;
  5789. drm_i915_private_t *dev_priv = dev->dev_private;
  5790. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5791. int pipe = intel_crtc->pipe;
  5792. int dpll_reg = DPLL(pipe);
  5793. int dpll;
  5794. if (HAS_PCH_SPLIT(dev))
  5795. return;
  5796. if (!dev_priv->lvds_downclock_avail)
  5797. return;
  5798. dpll = I915_READ(dpll_reg);
  5799. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  5800. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  5801. assert_panel_unlocked(dev_priv, pipe);
  5802. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  5803. I915_WRITE(dpll_reg, dpll);
  5804. intel_wait_for_vblank(dev, pipe);
  5805. dpll = I915_READ(dpll_reg);
  5806. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  5807. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  5808. }
  5809. }
  5810. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  5811. {
  5812. struct drm_device *dev = crtc->dev;
  5813. drm_i915_private_t *dev_priv = dev->dev_private;
  5814. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5815. if (HAS_PCH_SPLIT(dev))
  5816. return;
  5817. if (!dev_priv->lvds_downclock_avail)
  5818. return;
  5819. /*
  5820. * Since this is called by a timer, we should never get here in
  5821. * the manual case.
  5822. */
  5823. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  5824. int pipe = intel_crtc->pipe;
  5825. int dpll_reg = DPLL(pipe);
  5826. int dpll;
  5827. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  5828. assert_panel_unlocked(dev_priv, pipe);
  5829. dpll = I915_READ(dpll_reg);
  5830. dpll |= DISPLAY_RATE_SELECT_FPA1;
  5831. I915_WRITE(dpll_reg, dpll);
  5832. intel_wait_for_vblank(dev, pipe);
  5833. dpll = I915_READ(dpll_reg);
  5834. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  5835. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  5836. }
  5837. }
  5838. void intel_mark_busy(struct drm_device *dev)
  5839. {
  5840. i915_update_gfx_val(dev->dev_private);
  5841. }
  5842. void intel_mark_idle(struct drm_device *dev)
  5843. {
  5844. struct drm_crtc *crtc;
  5845. if (!i915_powersave)
  5846. return;
  5847. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5848. if (!crtc->fb)
  5849. continue;
  5850. intel_decrease_pllclock(crtc);
  5851. }
  5852. }
  5853. void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
  5854. {
  5855. struct drm_device *dev = obj->base.dev;
  5856. struct drm_crtc *crtc;
  5857. if (!i915_powersave)
  5858. return;
  5859. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5860. if (!crtc->fb)
  5861. continue;
  5862. if (to_intel_framebuffer(crtc->fb)->obj == obj)
  5863. intel_increase_pllclock(crtc);
  5864. }
  5865. }
  5866. static void intel_crtc_destroy(struct drm_crtc *crtc)
  5867. {
  5868. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5869. struct drm_device *dev = crtc->dev;
  5870. struct intel_unpin_work *work;
  5871. unsigned long flags;
  5872. spin_lock_irqsave(&dev->event_lock, flags);
  5873. work = intel_crtc->unpin_work;
  5874. intel_crtc->unpin_work = NULL;
  5875. spin_unlock_irqrestore(&dev->event_lock, flags);
  5876. if (work) {
  5877. cancel_work_sync(&work->work);
  5878. kfree(work);
  5879. }
  5880. drm_crtc_cleanup(crtc);
  5881. kfree(intel_crtc);
  5882. }
  5883. static void intel_unpin_work_fn(struct work_struct *__work)
  5884. {
  5885. struct intel_unpin_work *work =
  5886. container_of(__work, struct intel_unpin_work, work);
  5887. struct drm_device *dev = work->crtc->dev;
  5888. mutex_lock(&dev->struct_mutex);
  5889. intel_unpin_fb_obj(work->old_fb_obj);
  5890. drm_gem_object_unreference(&work->pending_flip_obj->base);
  5891. drm_gem_object_unreference(&work->old_fb_obj->base);
  5892. intel_update_fbc(dev);
  5893. mutex_unlock(&dev->struct_mutex);
  5894. BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
  5895. atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
  5896. kfree(work);
  5897. }
  5898. static void do_intel_finish_page_flip(struct drm_device *dev,
  5899. struct drm_crtc *crtc)
  5900. {
  5901. drm_i915_private_t *dev_priv = dev->dev_private;
  5902. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5903. struct intel_unpin_work *work;
  5904. unsigned long flags;
  5905. /* Ignore early vblank irqs */
  5906. if (intel_crtc == NULL)
  5907. return;
  5908. spin_lock_irqsave(&dev->event_lock, flags);
  5909. work = intel_crtc->unpin_work;
  5910. /* Ensure we don't miss a work->pending update ... */
  5911. smp_rmb();
  5912. if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  5913. spin_unlock_irqrestore(&dev->event_lock, flags);
  5914. return;
  5915. }
  5916. /* and that the unpin work is consistent wrt ->pending. */
  5917. smp_rmb();
  5918. intel_crtc->unpin_work = NULL;
  5919. if (work->event)
  5920. drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
  5921. drm_vblank_put(dev, intel_crtc->pipe);
  5922. spin_unlock_irqrestore(&dev->event_lock, flags);
  5923. wake_up_all(&dev_priv->pending_flip_queue);
  5924. queue_work(dev_priv->wq, &work->work);
  5925. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  5926. }
  5927. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  5928. {
  5929. drm_i915_private_t *dev_priv = dev->dev_private;
  5930. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  5931. do_intel_finish_page_flip(dev, crtc);
  5932. }
  5933. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  5934. {
  5935. drm_i915_private_t *dev_priv = dev->dev_private;
  5936. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  5937. do_intel_finish_page_flip(dev, crtc);
  5938. }
  5939. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  5940. {
  5941. drm_i915_private_t *dev_priv = dev->dev_private;
  5942. struct intel_crtc *intel_crtc =
  5943. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  5944. unsigned long flags;
  5945. /* NB: An MMIO update of the plane base pointer will also
  5946. * generate a page-flip completion irq, i.e. every modeset
  5947. * is also accompanied by a spurious intel_prepare_page_flip().
  5948. */
  5949. spin_lock_irqsave(&dev->event_lock, flags);
  5950. if (intel_crtc->unpin_work)
  5951. atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
  5952. spin_unlock_irqrestore(&dev->event_lock, flags);
  5953. }
  5954. inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
  5955. {
  5956. /* Ensure that the work item is consistent when activating it ... */
  5957. smp_wmb();
  5958. atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
  5959. /* and that it is marked active as soon as the irq could fire. */
  5960. smp_wmb();
  5961. }
  5962. static int intel_gen2_queue_flip(struct drm_device *dev,
  5963. struct drm_crtc *crtc,
  5964. struct drm_framebuffer *fb,
  5965. struct drm_i915_gem_object *obj)
  5966. {
  5967. struct drm_i915_private *dev_priv = dev->dev_private;
  5968. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5969. u32 flip_mask;
  5970. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  5971. int ret;
  5972. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5973. if (ret)
  5974. goto err;
  5975. ret = intel_ring_begin(ring, 6);
  5976. if (ret)
  5977. goto err_unpin;
  5978. /* Can't queue multiple flips, so wait for the previous
  5979. * one to finish before executing the next.
  5980. */
  5981. if (intel_crtc->plane)
  5982. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  5983. else
  5984. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  5985. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  5986. intel_ring_emit(ring, MI_NOOP);
  5987. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  5988. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5989. intel_ring_emit(ring, fb->pitches[0]);
  5990. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  5991. intel_ring_emit(ring, 0); /* aux display base address, unused */
  5992. intel_mark_page_flip_active(intel_crtc);
  5993. intel_ring_advance(ring);
  5994. return 0;
  5995. err_unpin:
  5996. intel_unpin_fb_obj(obj);
  5997. err:
  5998. return ret;
  5999. }
  6000. static int intel_gen3_queue_flip(struct drm_device *dev,
  6001. struct drm_crtc *crtc,
  6002. struct drm_framebuffer *fb,
  6003. struct drm_i915_gem_object *obj)
  6004. {
  6005. struct drm_i915_private *dev_priv = dev->dev_private;
  6006. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6007. u32 flip_mask;
  6008. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6009. int ret;
  6010. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6011. if (ret)
  6012. goto err;
  6013. ret = intel_ring_begin(ring, 6);
  6014. if (ret)
  6015. goto err_unpin;
  6016. if (intel_crtc->plane)
  6017. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6018. else
  6019. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6020. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6021. intel_ring_emit(ring, MI_NOOP);
  6022. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  6023. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6024. intel_ring_emit(ring, fb->pitches[0]);
  6025. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6026. intel_ring_emit(ring, MI_NOOP);
  6027. intel_mark_page_flip_active(intel_crtc);
  6028. intel_ring_advance(ring);
  6029. return 0;
  6030. err_unpin:
  6031. intel_unpin_fb_obj(obj);
  6032. err:
  6033. return ret;
  6034. }
  6035. static int intel_gen4_queue_flip(struct drm_device *dev,
  6036. struct drm_crtc *crtc,
  6037. struct drm_framebuffer *fb,
  6038. struct drm_i915_gem_object *obj)
  6039. {
  6040. struct drm_i915_private *dev_priv = dev->dev_private;
  6041. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6042. uint32_t pf, pipesrc;
  6043. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6044. int ret;
  6045. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6046. if (ret)
  6047. goto err;
  6048. ret = intel_ring_begin(ring, 4);
  6049. if (ret)
  6050. goto err_unpin;
  6051. /* i965+ uses the linear or tiled offsets from the
  6052. * Display Registers (which do not change across a page-flip)
  6053. * so we need only reprogram the base address.
  6054. */
  6055. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6056. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6057. intel_ring_emit(ring, fb->pitches[0]);
  6058. intel_ring_emit(ring,
  6059. (obj->gtt_offset + intel_crtc->dspaddr_offset) |
  6060. obj->tiling_mode);
  6061. /* XXX Enabling the panel-fitter across page-flip is so far
  6062. * untested on non-native modes, so ignore it for now.
  6063. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6064. */
  6065. pf = 0;
  6066. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6067. intel_ring_emit(ring, pf | pipesrc);
  6068. intel_mark_page_flip_active(intel_crtc);
  6069. intel_ring_advance(ring);
  6070. return 0;
  6071. err_unpin:
  6072. intel_unpin_fb_obj(obj);
  6073. err:
  6074. return ret;
  6075. }
  6076. static int intel_gen6_queue_flip(struct drm_device *dev,
  6077. struct drm_crtc *crtc,
  6078. struct drm_framebuffer *fb,
  6079. struct drm_i915_gem_object *obj)
  6080. {
  6081. struct drm_i915_private *dev_priv = dev->dev_private;
  6082. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6083. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6084. uint32_t pf, pipesrc;
  6085. int ret;
  6086. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6087. if (ret)
  6088. goto err;
  6089. ret = intel_ring_begin(ring, 4);
  6090. if (ret)
  6091. goto err_unpin;
  6092. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6093. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6094. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  6095. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6096. /* Contrary to the suggestions in the documentation,
  6097. * "Enable Panel Fitter" does not seem to be required when page
  6098. * flipping with a non-native mode, and worse causes a normal
  6099. * modeset to fail.
  6100. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6101. */
  6102. pf = 0;
  6103. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6104. intel_ring_emit(ring, pf | pipesrc);
  6105. intel_mark_page_flip_active(intel_crtc);
  6106. intel_ring_advance(ring);
  6107. return 0;
  6108. err_unpin:
  6109. intel_unpin_fb_obj(obj);
  6110. err:
  6111. return ret;
  6112. }
  6113. /*
  6114. * On gen7 we currently use the blit ring because (in early silicon at least)
  6115. * the render ring doesn't give us interrpts for page flip completion, which
  6116. * means clients will hang after the first flip is queued. Fortunately the
  6117. * blit ring generates interrupts properly, so use it instead.
  6118. */
  6119. static int intel_gen7_queue_flip(struct drm_device *dev,
  6120. struct drm_crtc *crtc,
  6121. struct drm_framebuffer *fb,
  6122. struct drm_i915_gem_object *obj)
  6123. {
  6124. struct drm_i915_private *dev_priv = dev->dev_private;
  6125. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6126. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  6127. uint32_t plane_bit = 0;
  6128. int ret;
  6129. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6130. if (ret)
  6131. goto err;
  6132. switch(intel_crtc->plane) {
  6133. case PLANE_A:
  6134. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  6135. break;
  6136. case PLANE_B:
  6137. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  6138. break;
  6139. case PLANE_C:
  6140. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  6141. break;
  6142. default:
  6143. WARN_ONCE(1, "unknown plane in flip command\n");
  6144. ret = -ENODEV;
  6145. goto err_unpin;
  6146. }
  6147. ret = intel_ring_begin(ring, 4);
  6148. if (ret)
  6149. goto err_unpin;
  6150. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  6151. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6152. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6153. intel_ring_emit(ring, (MI_NOOP));
  6154. intel_mark_page_flip_active(intel_crtc);
  6155. intel_ring_advance(ring);
  6156. return 0;
  6157. err_unpin:
  6158. intel_unpin_fb_obj(obj);
  6159. err:
  6160. return ret;
  6161. }
  6162. static int intel_default_queue_flip(struct drm_device *dev,
  6163. struct drm_crtc *crtc,
  6164. struct drm_framebuffer *fb,
  6165. struct drm_i915_gem_object *obj)
  6166. {
  6167. return -ENODEV;
  6168. }
  6169. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6170. struct drm_framebuffer *fb,
  6171. struct drm_pending_vblank_event *event)
  6172. {
  6173. struct drm_device *dev = crtc->dev;
  6174. struct drm_i915_private *dev_priv = dev->dev_private;
  6175. struct drm_framebuffer *old_fb = crtc->fb;
  6176. struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
  6177. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6178. struct intel_unpin_work *work;
  6179. unsigned long flags;
  6180. int ret;
  6181. /* Can't change pixel format via MI display flips. */
  6182. if (fb->pixel_format != crtc->fb->pixel_format)
  6183. return -EINVAL;
  6184. /*
  6185. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  6186. * Note that pitch changes could also affect these register.
  6187. */
  6188. if (INTEL_INFO(dev)->gen > 3 &&
  6189. (fb->offsets[0] != crtc->fb->offsets[0] ||
  6190. fb->pitches[0] != crtc->fb->pitches[0]))
  6191. return -EINVAL;
  6192. work = kzalloc(sizeof *work, GFP_KERNEL);
  6193. if (work == NULL)
  6194. return -ENOMEM;
  6195. work->event = event;
  6196. work->crtc = crtc;
  6197. work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
  6198. INIT_WORK(&work->work, intel_unpin_work_fn);
  6199. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6200. if (ret)
  6201. goto free_work;
  6202. /* We borrow the event spin lock for protecting unpin_work */
  6203. spin_lock_irqsave(&dev->event_lock, flags);
  6204. if (intel_crtc->unpin_work) {
  6205. spin_unlock_irqrestore(&dev->event_lock, flags);
  6206. kfree(work);
  6207. drm_vblank_put(dev, intel_crtc->pipe);
  6208. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6209. return -EBUSY;
  6210. }
  6211. intel_crtc->unpin_work = work;
  6212. spin_unlock_irqrestore(&dev->event_lock, flags);
  6213. if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  6214. flush_workqueue(dev_priv->wq);
  6215. ret = i915_mutex_lock_interruptible(dev);
  6216. if (ret)
  6217. goto cleanup;
  6218. /* Reference the objects for the scheduled work. */
  6219. drm_gem_object_reference(&work->old_fb_obj->base);
  6220. drm_gem_object_reference(&obj->base);
  6221. crtc->fb = fb;
  6222. work->pending_flip_obj = obj;
  6223. work->enable_stall_check = true;
  6224. atomic_inc(&intel_crtc->unpin_work_count);
  6225. intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  6226. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  6227. if (ret)
  6228. goto cleanup_pending;
  6229. intel_disable_fbc(dev);
  6230. intel_mark_fb_busy(obj);
  6231. mutex_unlock(&dev->struct_mutex);
  6232. trace_i915_flip_request(intel_crtc->plane, obj);
  6233. return 0;
  6234. cleanup_pending:
  6235. atomic_dec(&intel_crtc->unpin_work_count);
  6236. crtc->fb = old_fb;
  6237. drm_gem_object_unreference(&work->old_fb_obj->base);
  6238. drm_gem_object_unreference(&obj->base);
  6239. mutex_unlock(&dev->struct_mutex);
  6240. cleanup:
  6241. spin_lock_irqsave(&dev->event_lock, flags);
  6242. intel_crtc->unpin_work = NULL;
  6243. spin_unlock_irqrestore(&dev->event_lock, flags);
  6244. drm_vblank_put(dev, intel_crtc->pipe);
  6245. free_work:
  6246. kfree(work);
  6247. return ret;
  6248. }
  6249. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6250. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6251. .load_lut = intel_crtc_load_lut,
  6252. };
  6253. bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
  6254. {
  6255. struct intel_encoder *other_encoder;
  6256. struct drm_crtc *crtc = &encoder->new_crtc->base;
  6257. if (WARN_ON(!crtc))
  6258. return false;
  6259. list_for_each_entry(other_encoder,
  6260. &crtc->dev->mode_config.encoder_list,
  6261. base.head) {
  6262. if (&other_encoder->new_crtc->base != crtc ||
  6263. encoder == other_encoder)
  6264. continue;
  6265. else
  6266. return true;
  6267. }
  6268. return false;
  6269. }
  6270. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  6271. struct drm_crtc *crtc)
  6272. {
  6273. struct drm_device *dev;
  6274. struct drm_crtc *tmp;
  6275. int crtc_mask = 1;
  6276. WARN(!crtc, "checking null crtc?\n");
  6277. dev = crtc->dev;
  6278. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  6279. if (tmp == crtc)
  6280. break;
  6281. crtc_mask <<= 1;
  6282. }
  6283. if (encoder->possible_crtcs & crtc_mask)
  6284. return true;
  6285. return false;
  6286. }
  6287. /**
  6288. * intel_modeset_update_staged_output_state
  6289. *
  6290. * Updates the staged output configuration state, e.g. after we've read out the
  6291. * current hw state.
  6292. */
  6293. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  6294. {
  6295. struct intel_encoder *encoder;
  6296. struct intel_connector *connector;
  6297. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6298. base.head) {
  6299. connector->new_encoder =
  6300. to_intel_encoder(connector->base.encoder);
  6301. }
  6302. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6303. base.head) {
  6304. encoder->new_crtc =
  6305. to_intel_crtc(encoder->base.crtc);
  6306. }
  6307. }
  6308. /**
  6309. * intel_modeset_commit_output_state
  6310. *
  6311. * This function copies the stage display pipe configuration to the real one.
  6312. */
  6313. static void intel_modeset_commit_output_state(struct drm_device *dev)
  6314. {
  6315. struct intel_encoder *encoder;
  6316. struct intel_connector *connector;
  6317. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6318. base.head) {
  6319. connector->base.encoder = &connector->new_encoder->base;
  6320. }
  6321. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6322. base.head) {
  6323. encoder->base.crtc = &encoder->new_crtc->base;
  6324. }
  6325. }
  6326. static int
  6327. pipe_config_set_bpp(struct drm_crtc *crtc,
  6328. struct drm_framebuffer *fb,
  6329. struct intel_crtc_config *pipe_config)
  6330. {
  6331. struct drm_device *dev = crtc->dev;
  6332. struct drm_connector *connector;
  6333. int bpp;
  6334. switch (fb->pixel_format) {
  6335. case DRM_FORMAT_C8:
  6336. bpp = 8*3; /* since we go through a colormap */
  6337. break;
  6338. case DRM_FORMAT_XRGB1555:
  6339. case DRM_FORMAT_ARGB1555:
  6340. /* checked in intel_framebuffer_init already */
  6341. if (WARN_ON(INTEL_INFO(dev)->gen > 3))
  6342. return -EINVAL;
  6343. case DRM_FORMAT_RGB565:
  6344. bpp = 6*3; /* min is 18bpp */
  6345. break;
  6346. case DRM_FORMAT_XBGR8888:
  6347. case DRM_FORMAT_ABGR8888:
  6348. /* checked in intel_framebuffer_init already */
  6349. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6350. return -EINVAL;
  6351. case DRM_FORMAT_XRGB8888:
  6352. case DRM_FORMAT_ARGB8888:
  6353. bpp = 8*3;
  6354. break;
  6355. case DRM_FORMAT_XRGB2101010:
  6356. case DRM_FORMAT_ARGB2101010:
  6357. case DRM_FORMAT_XBGR2101010:
  6358. case DRM_FORMAT_ABGR2101010:
  6359. /* checked in intel_framebuffer_init already */
  6360. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6361. return -EINVAL;
  6362. bpp = 10*3;
  6363. break;
  6364. /* TODO: gen4+ supports 16 bpc floating point, too. */
  6365. default:
  6366. DRM_DEBUG_KMS("unsupported depth\n");
  6367. return -EINVAL;
  6368. }
  6369. pipe_config->pipe_bpp = bpp;
  6370. /* Clamp display bpp to EDID value */
  6371. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6372. head) {
  6373. if (connector->encoder && connector->encoder->crtc != crtc)
  6374. continue;
  6375. /* Don't use an invalid EDID bpc value */
  6376. if (connector->display_info.bpc &&
  6377. connector->display_info.bpc * 3 < bpp) {
  6378. DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
  6379. bpp, connector->display_info.bpc*3);
  6380. pipe_config->pipe_bpp = connector->display_info.bpc*3;
  6381. }
  6382. }
  6383. return bpp;
  6384. }
  6385. static struct intel_crtc_config *
  6386. intel_modeset_pipe_config(struct drm_crtc *crtc,
  6387. struct drm_framebuffer *fb,
  6388. struct drm_display_mode *mode)
  6389. {
  6390. struct drm_device *dev = crtc->dev;
  6391. struct drm_encoder_helper_funcs *encoder_funcs;
  6392. struct intel_encoder *encoder;
  6393. struct intel_crtc_config *pipe_config;
  6394. int plane_bpp;
  6395. pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
  6396. if (!pipe_config)
  6397. return ERR_PTR(-ENOMEM);
  6398. drm_mode_copy(&pipe_config->adjusted_mode, mode);
  6399. drm_mode_copy(&pipe_config->requested_mode, mode);
  6400. plane_bpp = pipe_config_set_bpp(crtc, fb, pipe_config);
  6401. if (plane_bpp < 0)
  6402. goto fail;
  6403. /* Pass our mode to the connectors and the CRTC to give them a chance to
  6404. * adjust it according to limitations or connector properties, and also
  6405. * a chance to reject the mode entirely.
  6406. */
  6407. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6408. base.head) {
  6409. if (&encoder->new_crtc->base != crtc)
  6410. continue;
  6411. if (encoder->compute_config) {
  6412. if (!(encoder->compute_config(encoder, pipe_config))) {
  6413. DRM_DEBUG_KMS("Encoder config failure\n");
  6414. goto fail;
  6415. }
  6416. continue;
  6417. }
  6418. encoder_funcs = encoder->base.helper_private;
  6419. if (!(encoder_funcs->mode_fixup(&encoder->base,
  6420. &pipe_config->requested_mode,
  6421. &pipe_config->adjusted_mode))) {
  6422. DRM_DEBUG_KMS("Encoder fixup failed\n");
  6423. goto fail;
  6424. }
  6425. }
  6426. if (!(intel_crtc_compute_config(crtc, pipe_config))) {
  6427. DRM_DEBUG_KMS("CRTC fixup failed\n");
  6428. goto fail;
  6429. }
  6430. DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
  6431. pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
  6432. DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
  6433. plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
  6434. return pipe_config;
  6435. fail:
  6436. kfree(pipe_config);
  6437. return ERR_PTR(-EINVAL);
  6438. }
  6439. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  6440. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  6441. static void
  6442. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  6443. unsigned *prepare_pipes, unsigned *disable_pipes)
  6444. {
  6445. struct intel_crtc *intel_crtc;
  6446. struct drm_device *dev = crtc->dev;
  6447. struct intel_encoder *encoder;
  6448. struct intel_connector *connector;
  6449. struct drm_crtc *tmp_crtc;
  6450. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  6451. /* Check which crtcs have changed outputs connected to them, these need
  6452. * to be part of the prepare_pipes mask. We don't (yet) support global
  6453. * modeset across multiple crtcs, so modeset_pipes will only have one
  6454. * bit set at most. */
  6455. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6456. base.head) {
  6457. if (connector->base.encoder == &connector->new_encoder->base)
  6458. continue;
  6459. if (connector->base.encoder) {
  6460. tmp_crtc = connector->base.encoder->crtc;
  6461. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6462. }
  6463. if (connector->new_encoder)
  6464. *prepare_pipes |=
  6465. 1 << connector->new_encoder->new_crtc->pipe;
  6466. }
  6467. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6468. base.head) {
  6469. if (encoder->base.crtc == &encoder->new_crtc->base)
  6470. continue;
  6471. if (encoder->base.crtc) {
  6472. tmp_crtc = encoder->base.crtc;
  6473. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6474. }
  6475. if (encoder->new_crtc)
  6476. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  6477. }
  6478. /* Check for any pipes that will be fully disabled ... */
  6479. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6480. base.head) {
  6481. bool used = false;
  6482. /* Don't try to disable disabled crtcs. */
  6483. if (!intel_crtc->base.enabled)
  6484. continue;
  6485. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6486. base.head) {
  6487. if (encoder->new_crtc == intel_crtc)
  6488. used = true;
  6489. }
  6490. if (!used)
  6491. *disable_pipes |= 1 << intel_crtc->pipe;
  6492. }
  6493. /* set_mode is also used to update properties on life display pipes. */
  6494. intel_crtc = to_intel_crtc(crtc);
  6495. if (crtc->enabled)
  6496. *prepare_pipes |= 1 << intel_crtc->pipe;
  6497. /*
  6498. * For simplicity do a full modeset on any pipe where the output routing
  6499. * changed. We could be more clever, but that would require us to be
  6500. * more careful with calling the relevant encoder->mode_set functions.
  6501. */
  6502. if (*prepare_pipes)
  6503. *modeset_pipes = *prepare_pipes;
  6504. /* ... and mask these out. */
  6505. *modeset_pipes &= ~(*disable_pipes);
  6506. *prepare_pipes &= ~(*disable_pipes);
  6507. /*
  6508. * HACK: We don't (yet) fully support global modesets. intel_set_config
  6509. * obies this rule, but the modeset restore mode of
  6510. * intel_modeset_setup_hw_state does not.
  6511. */
  6512. *modeset_pipes &= 1 << intel_crtc->pipe;
  6513. *prepare_pipes &= 1 << intel_crtc->pipe;
  6514. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  6515. *modeset_pipes, *prepare_pipes, *disable_pipes);
  6516. }
  6517. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  6518. {
  6519. struct drm_encoder *encoder;
  6520. struct drm_device *dev = crtc->dev;
  6521. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  6522. if (encoder->crtc == crtc)
  6523. return true;
  6524. return false;
  6525. }
  6526. static void
  6527. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  6528. {
  6529. struct intel_encoder *intel_encoder;
  6530. struct intel_crtc *intel_crtc;
  6531. struct drm_connector *connector;
  6532. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  6533. base.head) {
  6534. if (!intel_encoder->base.crtc)
  6535. continue;
  6536. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  6537. if (prepare_pipes & (1 << intel_crtc->pipe))
  6538. intel_encoder->connectors_active = false;
  6539. }
  6540. intel_modeset_commit_output_state(dev);
  6541. /* Update computed state. */
  6542. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6543. base.head) {
  6544. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  6545. }
  6546. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6547. if (!connector->encoder || !connector->encoder->crtc)
  6548. continue;
  6549. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  6550. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  6551. struct drm_property *dpms_property =
  6552. dev->mode_config.dpms_property;
  6553. connector->dpms = DRM_MODE_DPMS_ON;
  6554. drm_object_property_set_value(&connector->base,
  6555. dpms_property,
  6556. DRM_MODE_DPMS_ON);
  6557. intel_encoder = to_intel_encoder(connector->encoder);
  6558. intel_encoder->connectors_active = true;
  6559. }
  6560. }
  6561. }
  6562. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  6563. list_for_each_entry((intel_crtc), \
  6564. &(dev)->mode_config.crtc_list, \
  6565. base.head) \
  6566. if (mask & (1 <<(intel_crtc)->pipe)) \
  6567. static bool
  6568. intel_pipe_config_compare(struct intel_crtc_config *current_config,
  6569. struct intel_crtc_config *pipe_config)
  6570. {
  6571. if (current_config->has_pch_encoder != pipe_config->has_pch_encoder) {
  6572. DRM_ERROR("mismatch in has_pch_encoder "
  6573. "(expected %i, found %i)\n",
  6574. current_config->has_pch_encoder,
  6575. pipe_config->has_pch_encoder);
  6576. return false;
  6577. }
  6578. return true;
  6579. }
  6580. void
  6581. intel_modeset_check_state(struct drm_device *dev)
  6582. {
  6583. drm_i915_private_t *dev_priv = dev->dev_private;
  6584. struct intel_crtc *crtc;
  6585. struct intel_encoder *encoder;
  6586. struct intel_connector *connector;
  6587. struct intel_crtc_config pipe_config;
  6588. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6589. base.head) {
  6590. /* This also checks the encoder/connector hw state with the
  6591. * ->get_hw_state callbacks. */
  6592. intel_connector_check_state(connector);
  6593. WARN(&connector->new_encoder->base != connector->base.encoder,
  6594. "connector's staged encoder doesn't match current encoder\n");
  6595. }
  6596. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6597. base.head) {
  6598. bool enabled = false;
  6599. bool active = false;
  6600. enum pipe pipe, tracked_pipe;
  6601. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  6602. encoder->base.base.id,
  6603. drm_get_encoder_name(&encoder->base));
  6604. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  6605. "encoder's stage crtc doesn't match current crtc\n");
  6606. WARN(encoder->connectors_active && !encoder->base.crtc,
  6607. "encoder's active_connectors set, but no crtc\n");
  6608. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6609. base.head) {
  6610. if (connector->base.encoder != &encoder->base)
  6611. continue;
  6612. enabled = true;
  6613. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  6614. active = true;
  6615. }
  6616. WARN(!!encoder->base.crtc != enabled,
  6617. "encoder's enabled state mismatch "
  6618. "(expected %i, found %i)\n",
  6619. !!encoder->base.crtc, enabled);
  6620. WARN(active && !encoder->base.crtc,
  6621. "active encoder with no crtc\n");
  6622. WARN(encoder->connectors_active != active,
  6623. "encoder's computed active state doesn't match tracked active state "
  6624. "(expected %i, found %i)\n", active, encoder->connectors_active);
  6625. active = encoder->get_hw_state(encoder, &pipe);
  6626. WARN(active != encoder->connectors_active,
  6627. "encoder's hw state doesn't match sw tracking "
  6628. "(expected %i, found %i)\n",
  6629. encoder->connectors_active, active);
  6630. if (!encoder->base.crtc)
  6631. continue;
  6632. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  6633. WARN(active && pipe != tracked_pipe,
  6634. "active encoder's pipe doesn't match"
  6635. "(expected %i, found %i)\n",
  6636. tracked_pipe, pipe);
  6637. }
  6638. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  6639. base.head) {
  6640. bool enabled = false;
  6641. bool active = false;
  6642. DRM_DEBUG_KMS("[CRTC:%d]\n",
  6643. crtc->base.base.id);
  6644. WARN(crtc->active && !crtc->base.enabled,
  6645. "active crtc, but not enabled in sw tracking\n");
  6646. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6647. base.head) {
  6648. if (encoder->base.crtc != &crtc->base)
  6649. continue;
  6650. enabled = true;
  6651. if (encoder->connectors_active)
  6652. active = true;
  6653. }
  6654. WARN(active != crtc->active,
  6655. "crtc's computed active state doesn't match tracked active state "
  6656. "(expected %i, found %i)\n", active, crtc->active);
  6657. WARN(enabled != crtc->base.enabled,
  6658. "crtc's computed enabled state doesn't match tracked enabled state "
  6659. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  6660. memset(&pipe_config, 0, sizeof(pipe_config));
  6661. active = dev_priv->display.get_pipe_config(crtc,
  6662. &pipe_config);
  6663. WARN(crtc->active != active,
  6664. "crtc active state doesn't match with hw state "
  6665. "(expected %i, found %i)\n", crtc->active, active);
  6666. WARN(active &&
  6667. !intel_pipe_config_compare(&crtc->config, &pipe_config),
  6668. "pipe state doesn't match!\n");
  6669. }
  6670. }
  6671. static int __intel_set_mode(struct drm_crtc *crtc,
  6672. struct drm_display_mode *mode,
  6673. int x, int y, struct drm_framebuffer *fb)
  6674. {
  6675. struct drm_device *dev = crtc->dev;
  6676. drm_i915_private_t *dev_priv = dev->dev_private;
  6677. struct drm_display_mode *saved_mode, *saved_hwmode;
  6678. struct intel_crtc_config *pipe_config = NULL;
  6679. struct intel_crtc *intel_crtc;
  6680. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  6681. int ret = 0;
  6682. saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
  6683. if (!saved_mode)
  6684. return -ENOMEM;
  6685. saved_hwmode = saved_mode + 1;
  6686. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  6687. &prepare_pipes, &disable_pipes);
  6688. *saved_hwmode = crtc->hwmode;
  6689. *saved_mode = crtc->mode;
  6690. /* Hack: Because we don't (yet) support global modeset on multiple
  6691. * crtcs, we don't keep track of the new mode for more than one crtc.
  6692. * Hence simply check whether any bit is set in modeset_pipes in all the
  6693. * pieces of code that are not yet converted to deal with mutliple crtcs
  6694. * changing their mode at the same time. */
  6695. if (modeset_pipes) {
  6696. pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
  6697. if (IS_ERR(pipe_config)) {
  6698. ret = PTR_ERR(pipe_config);
  6699. pipe_config = NULL;
  6700. goto out;
  6701. }
  6702. }
  6703. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  6704. intel_crtc_disable(&intel_crtc->base);
  6705. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  6706. if (intel_crtc->base.enabled)
  6707. dev_priv->display.crtc_disable(&intel_crtc->base);
  6708. }
  6709. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  6710. * to set it here already despite that we pass it down the callchain.
  6711. */
  6712. if (modeset_pipes) {
  6713. enum transcoder tmp = to_intel_crtc(crtc)->config.cpu_transcoder;
  6714. crtc->mode = *mode;
  6715. /* mode_set/enable/disable functions rely on a correct pipe
  6716. * config. */
  6717. to_intel_crtc(crtc)->config = *pipe_config;
  6718. to_intel_crtc(crtc)->config.cpu_transcoder = tmp;
  6719. }
  6720. /* Only after disabling all output pipelines that will be changed can we
  6721. * update the the output configuration. */
  6722. intel_modeset_update_state(dev, prepare_pipes);
  6723. if (dev_priv->display.modeset_global_resources)
  6724. dev_priv->display.modeset_global_resources(dev);
  6725. /* Set up the DPLL and any encoders state that needs to adjust or depend
  6726. * on the DPLL.
  6727. */
  6728. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  6729. ret = intel_crtc_mode_set(&intel_crtc->base,
  6730. x, y, fb);
  6731. if (ret)
  6732. goto done;
  6733. }
  6734. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  6735. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  6736. dev_priv->display.crtc_enable(&intel_crtc->base);
  6737. if (modeset_pipes) {
  6738. /* Store real post-adjustment hardware mode. */
  6739. crtc->hwmode = pipe_config->adjusted_mode;
  6740. /* Calculate and store various constants which
  6741. * are later needed by vblank and swap-completion
  6742. * timestamping. They are derived from true hwmode.
  6743. */
  6744. drm_calc_timestamping_constants(crtc);
  6745. }
  6746. /* FIXME: add subpixel order */
  6747. done:
  6748. if (ret && crtc->enabled) {
  6749. crtc->hwmode = *saved_hwmode;
  6750. crtc->mode = *saved_mode;
  6751. }
  6752. out:
  6753. kfree(pipe_config);
  6754. kfree(saved_mode);
  6755. return ret;
  6756. }
  6757. int intel_set_mode(struct drm_crtc *crtc,
  6758. struct drm_display_mode *mode,
  6759. int x, int y, struct drm_framebuffer *fb)
  6760. {
  6761. int ret;
  6762. ret = __intel_set_mode(crtc, mode, x, y, fb);
  6763. if (ret == 0)
  6764. intel_modeset_check_state(crtc->dev);
  6765. return ret;
  6766. }
  6767. void intel_crtc_restore_mode(struct drm_crtc *crtc)
  6768. {
  6769. intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
  6770. }
  6771. #undef for_each_intel_crtc_masked
  6772. static void intel_set_config_free(struct intel_set_config *config)
  6773. {
  6774. if (!config)
  6775. return;
  6776. kfree(config->save_connector_encoders);
  6777. kfree(config->save_encoder_crtcs);
  6778. kfree(config);
  6779. }
  6780. static int intel_set_config_save_state(struct drm_device *dev,
  6781. struct intel_set_config *config)
  6782. {
  6783. struct drm_encoder *encoder;
  6784. struct drm_connector *connector;
  6785. int count;
  6786. config->save_encoder_crtcs =
  6787. kcalloc(dev->mode_config.num_encoder,
  6788. sizeof(struct drm_crtc *), GFP_KERNEL);
  6789. if (!config->save_encoder_crtcs)
  6790. return -ENOMEM;
  6791. config->save_connector_encoders =
  6792. kcalloc(dev->mode_config.num_connector,
  6793. sizeof(struct drm_encoder *), GFP_KERNEL);
  6794. if (!config->save_connector_encoders)
  6795. return -ENOMEM;
  6796. /* Copy data. Note that driver private data is not affected.
  6797. * Should anything bad happen only the expected state is
  6798. * restored, not the drivers personal bookkeeping.
  6799. */
  6800. count = 0;
  6801. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  6802. config->save_encoder_crtcs[count++] = encoder->crtc;
  6803. }
  6804. count = 0;
  6805. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6806. config->save_connector_encoders[count++] = connector->encoder;
  6807. }
  6808. return 0;
  6809. }
  6810. static void intel_set_config_restore_state(struct drm_device *dev,
  6811. struct intel_set_config *config)
  6812. {
  6813. struct intel_encoder *encoder;
  6814. struct intel_connector *connector;
  6815. int count;
  6816. count = 0;
  6817. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6818. encoder->new_crtc =
  6819. to_intel_crtc(config->save_encoder_crtcs[count++]);
  6820. }
  6821. count = 0;
  6822. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  6823. connector->new_encoder =
  6824. to_intel_encoder(config->save_connector_encoders[count++]);
  6825. }
  6826. }
  6827. static void
  6828. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  6829. struct intel_set_config *config)
  6830. {
  6831. /* We should be able to check here if the fb has the same properties
  6832. * and then just flip_or_move it */
  6833. if (set->crtc->fb != set->fb) {
  6834. /* If we have no fb then treat it as a full mode set */
  6835. if (set->crtc->fb == NULL) {
  6836. DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
  6837. config->mode_changed = true;
  6838. } else if (set->fb == NULL) {
  6839. config->mode_changed = true;
  6840. } else if (set->fb->pixel_format !=
  6841. set->crtc->fb->pixel_format) {
  6842. config->mode_changed = true;
  6843. } else
  6844. config->fb_changed = true;
  6845. }
  6846. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  6847. config->fb_changed = true;
  6848. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  6849. DRM_DEBUG_KMS("modes are different, full mode set\n");
  6850. drm_mode_debug_printmodeline(&set->crtc->mode);
  6851. drm_mode_debug_printmodeline(set->mode);
  6852. config->mode_changed = true;
  6853. }
  6854. }
  6855. static int
  6856. intel_modeset_stage_output_state(struct drm_device *dev,
  6857. struct drm_mode_set *set,
  6858. struct intel_set_config *config)
  6859. {
  6860. struct drm_crtc *new_crtc;
  6861. struct intel_connector *connector;
  6862. struct intel_encoder *encoder;
  6863. int count, ro;
  6864. /* The upper layers ensure that we either disable a crtc or have a list
  6865. * of connectors. For paranoia, double-check this. */
  6866. WARN_ON(!set->fb && (set->num_connectors != 0));
  6867. WARN_ON(set->fb && (set->num_connectors == 0));
  6868. count = 0;
  6869. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6870. base.head) {
  6871. /* Otherwise traverse passed in connector list and get encoders
  6872. * for them. */
  6873. for (ro = 0; ro < set->num_connectors; ro++) {
  6874. if (set->connectors[ro] == &connector->base) {
  6875. connector->new_encoder = connector->encoder;
  6876. break;
  6877. }
  6878. }
  6879. /* If we disable the crtc, disable all its connectors. Also, if
  6880. * the connector is on the changing crtc but not on the new
  6881. * connector list, disable it. */
  6882. if ((!set->fb || ro == set->num_connectors) &&
  6883. connector->base.encoder &&
  6884. connector->base.encoder->crtc == set->crtc) {
  6885. connector->new_encoder = NULL;
  6886. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  6887. connector->base.base.id,
  6888. drm_get_connector_name(&connector->base));
  6889. }
  6890. if (&connector->new_encoder->base != connector->base.encoder) {
  6891. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  6892. config->mode_changed = true;
  6893. }
  6894. }
  6895. /* connector->new_encoder is now updated for all connectors. */
  6896. /* Update crtc of enabled connectors. */
  6897. count = 0;
  6898. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6899. base.head) {
  6900. if (!connector->new_encoder)
  6901. continue;
  6902. new_crtc = connector->new_encoder->base.crtc;
  6903. for (ro = 0; ro < set->num_connectors; ro++) {
  6904. if (set->connectors[ro] == &connector->base)
  6905. new_crtc = set->crtc;
  6906. }
  6907. /* Make sure the new CRTC will work with the encoder */
  6908. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  6909. new_crtc)) {
  6910. return -EINVAL;
  6911. }
  6912. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  6913. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  6914. connector->base.base.id,
  6915. drm_get_connector_name(&connector->base),
  6916. new_crtc->base.id);
  6917. }
  6918. /* Check for any encoders that needs to be disabled. */
  6919. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6920. base.head) {
  6921. list_for_each_entry(connector,
  6922. &dev->mode_config.connector_list,
  6923. base.head) {
  6924. if (connector->new_encoder == encoder) {
  6925. WARN_ON(!connector->new_encoder->new_crtc);
  6926. goto next_encoder;
  6927. }
  6928. }
  6929. encoder->new_crtc = NULL;
  6930. next_encoder:
  6931. /* Only now check for crtc changes so we don't miss encoders
  6932. * that will be disabled. */
  6933. if (&encoder->new_crtc->base != encoder->base.crtc) {
  6934. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  6935. config->mode_changed = true;
  6936. }
  6937. }
  6938. /* Now we've also updated encoder->new_crtc for all encoders. */
  6939. return 0;
  6940. }
  6941. static int intel_crtc_set_config(struct drm_mode_set *set)
  6942. {
  6943. struct drm_device *dev;
  6944. struct drm_mode_set save_set;
  6945. struct intel_set_config *config;
  6946. int ret;
  6947. BUG_ON(!set);
  6948. BUG_ON(!set->crtc);
  6949. BUG_ON(!set->crtc->helper_private);
  6950. /* Enforce sane interface api - has been abused by the fb helper. */
  6951. BUG_ON(!set->mode && set->fb);
  6952. BUG_ON(set->fb && set->num_connectors == 0);
  6953. if (set->fb) {
  6954. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  6955. set->crtc->base.id, set->fb->base.id,
  6956. (int)set->num_connectors, set->x, set->y);
  6957. } else {
  6958. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  6959. }
  6960. dev = set->crtc->dev;
  6961. ret = -ENOMEM;
  6962. config = kzalloc(sizeof(*config), GFP_KERNEL);
  6963. if (!config)
  6964. goto out_config;
  6965. ret = intel_set_config_save_state(dev, config);
  6966. if (ret)
  6967. goto out_config;
  6968. save_set.crtc = set->crtc;
  6969. save_set.mode = &set->crtc->mode;
  6970. save_set.x = set->crtc->x;
  6971. save_set.y = set->crtc->y;
  6972. save_set.fb = set->crtc->fb;
  6973. /* Compute whether we need a full modeset, only an fb base update or no
  6974. * change at all. In the future we might also check whether only the
  6975. * mode changed, e.g. for LVDS where we only change the panel fitter in
  6976. * such cases. */
  6977. intel_set_config_compute_mode_changes(set, config);
  6978. ret = intel_modeset_stage_output_state(dev, set, config);
  6979. if (ret)
  6980. goto fail;
  6981. if (config->mode_changed) {
  6982. if (set->mode) {
  6983. DRM_DEBUG_KMS("attempting to set mode from"
  6984. " userspace\n");
  6985. drm_mode_debug_printmodeline(set->mode);
  6986. }
  6987. ret = intel_set_mode(set->crtc, set->mode,
  6988. set->x, set->y, set->fb);
  6989. if (ret) {
  6990. DRM_ERROR("failed to set mode on [CRTC:%d], err = %d\n",
  6991. set->crtc->base.id, ret);
  6992. goto fail;
  6993. }
  6994. } else if (config->fb_changed) {
  6995. intel_crtc_wait_for_pending_flips(set->crtc);
  6996. ret = intel_pipe_set_base(set->crtc,
  6997. set->x, set->y, set->fb);
  6998. }
  6999. intel_set_config_free(config);
  7000. return 0;
  7001. fail:
  7002. intel_set_config_restore_state(dev, config);
  7003. /* Try to restore the config */
  7004. if (config->mode_changed &&
  7005. intel_set_mode(save_set.crtc, save_set.mode,
  7006. save_set.x, save_set.y, save_set.fb))
  7007. DRM_ERROR("failed to restore config after modeset failure\n");
  7008. out_config:
  7009. intel_set_config_free(config);
  7010. return ret;
  7011. }
  7012. static const struct drm_crtc_funcs intel_crtc_funcs = {
  7013. .cursor_set = intel_crtc_cursor_set,
  7014. .cursor_move = intel_crtc_cursor_move,
  7015. .gamma_set = intel_crtc_gamma_set,
  7016. .set_config = intel_crtc_set_config,
  7017. .destroy = intel_crtc_destroy,
  7018. .page_flip = intel_crtc_page_flip,
  7019. };
  7020. static void intel_cpu_pll_init(struct drm_device *dev)
  7021. {
  7022. if (HAS_DDI(dev))
  7023. intel_ddi_pll_init(dev);
  7024. }
  7025. static void intel_pch_pll_init(struct drm_device *dev)
  7026. {
  7027. drm_i915_private_t *dev_priv = dev->dev_private;
  7028. int i;
  7029. if (dev_priv->num_pch_pll == 0) {
  7030. DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
  7031. return;
  7032. }
  7033. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  7034. dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
  7035. dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
  7036. dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
  7037. }
  7038. }
  7039. static void intel_crtc_init(struct drm_device *dev, int pipe)
  7040. {
  7041. drm_i915_private_t *dev_priv = dev->dev_private;
  7042. struct intel_crtc *intel_crtc;
  7043. int i;
  7044. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  7045. if (intel_crtc == NULL)
  7046. return;
  7047. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  7048. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  7049. for (i = 0; i < 256; i++) {
  7050. intel_crtc->lut_r[i] = i;
  7051. intel_crtc->lut_g[i] = i;
  7052. intel_crtc->lut_b[i] = i;
  7053. }
  7054. /* Swap pipes & planes for FBC on pre-965 */
  7055. intel_crtc->pipe = pipe;
  7056. intel_crtc->plane = pipe;
  7057. intel_crtc->config.cpu_transcoder = pipe;
  7058. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  7059. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  7060. intel_crtc->plane = !pipe;
  7061. }
  7062. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  7063. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  7064. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  7065. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  7066. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  7067. }
  7068. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  7069. struct drm_file *file)
  7070. {
  7071. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  7072. struct drm_mode_object *drmmode_obj;
  7073. struct intel_crtc *crtc;
  7074. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  7075. return -ENODEV;
  7076. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  7077. DRM_MODE_OBJECT_CRTC);
  7078. if (!drmmode_obj) {
  7079. DRM_ERROR("no such CRTC id\n");
  7080. return -EINVAL;
  7081. }
  7082. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  7083. pipe_from_crtc_id->pipe = crtc->pipe;
  7084. return 0;
  7085. }
  7086. static int intel_encoder_clones(struct intel_encoder *encoder)
  7087. {
  7088. struct drm_device *dev = encoder->base.dev;
  7089. struct intel_encoder *source_encoder;
  7090. int index_mask = 0;
  7091. int entry = 0;
  7092. list_for_each_entry(source_encoder,
  7093. &dev->mode_config.encoder_list, base.head) {
  7094. if (encoder == source_encoder)
  7095. index_mask |= (1 << entry);
  7096. /* Intel hw has only one MUX where enocoders could be cloned. */
  7097. if (encoder->cloneable && source_encoder->cloneable)
  7098. index_mask |= (1 << entry);
  7099. entry++;
  7100. }
  7101. return index_mask;
  7102. }
  7103. static bool has_edp_a(struct drm_device *dev)
  7104. {
  7105. struct drm_i915_private *dev_priv = dev->dev_private;
  7106. if (!IS_MOBILE(dev))
  7107. return false;
  7108. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  7109. return false;
  7110. if (IS_GEN5(dev) &&
  7111. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  7112. return false;
  7113. return true;
  7114. }
  7115. static void intel_setup_outputs(struct drm_device *dev)
  7116. {
  7117. struct drm_i915_private *dev_priv = dev->dev_private;
  7118. struct intel_encoder *encoder;
  7119. bool dpd_is_edp = false;
  7120. bool has_lvds;
  7121. has_lvds = intel_lvds_init(dev);
  7122. if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
  7123. /* disable the panel fitter on everything but LVDS */
  7124. I915_WRITE(PFIT_CONTROL, 0);
  7125. }
  7126. if (!IS_ULT(dev))
  7127. intel_crt_init(dev);
  7128. if (HAS_DDI(dev)) {
  7129. int found;
  7130. /* Haswell uses DDI functions to detect digital outputs */
  7131. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  7132. /* DDI A only supports eDP */
  7133. if (found)
  7134. intel_ddi_init(dev, PORT_A);
  7135. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  7136. * register */
  7137. found = I915_READ(SFUSE_STRAP);
  7138. if (found & SFUSE_STRAP_DDIB_DETECTED)
  7139. intel_ddi_init(dev, PORT_B);
  7140. if (found & SFUSE_STRAP_DDIC_DETECTED)
  7141. intel_ddi_init(dev, PORT_C);
  7142. if (found & SFUSE_STRAP_DDID_DETECTED)
  7143. intel_ddi_init(dev, PORT_D);
  7144. } else if (HAS_PCH_SPLIT(dev)) {
  7145. int found;
  7146. dpd_is_edp = intel_dpd_is_edp(dev);
  7147. if (has_edp_a(dev))
  7148. intel_dp_init(dev, DP_A, PORT_A);
  7149. if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
  7150. /* PCH SDVOB multiplex with HDMIB */
  7151. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  7152. if (!found)
  7153. intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
  7154. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  7155. intel_dp_init(dev, PCH_DP_B, PORT_B);
  7156. }
  7157. if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
  7158. intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
  7159. if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
  7160. intel_hdmi_init(dev, PCH_HDMID, PORT_D);
  7161. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  7162. intel_dp_init(dev, PCH_DP_C, PORT_C);
  7163. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  7164. intel_dp_init(dev, PCH_DP_D, PORT_D);
  7165. } else if (IS_VALLEYVIEW(dev)) {
  7166. /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  7167. if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
  7168. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
  7169. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
  7170. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
  7171. PORT_B);
  7172. if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
  7173. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
  7174. }
  7175. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  7176. bool found = false;
  7177. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7178. DRM_DEBUG_KMS("probing SDVOB\n");
  7179. found = intel_sdvo_init(dev, GEN3_SDVOB, true);
  7180. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  7181. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  7182. intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
  7183. }
  7184. if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
  7185. DRM_DEBUG_KMS("probing DP_B\n");
  7186. intel_dp_init(dev, DP_B, PORT_B);
  7187. }
  7188. }
  7189. /* Before G4X SDVOC doesn't have its own detect register */
  7190. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7191. DRM_DEBUG_KMS("probing SDVOC\n");
  7192. found = intel_sdvo_init(dev, GEN3_SDVOC, false);
  7193. }
  7194. if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
  7195. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  7196. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  7197. intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
  7198. }
  7199. if (SUPPORTS_INTEGRATED_DP(dev)) {
  7200. DRM_DEBUG_KMS("probing DP_C\n");
  7201. intel_dp_init(dev, DP_C, PORT_C);
  7202. }
  7203. }
  7204. if (SUPPORTS_INTEGRATED_DP(dev) &&
  7205. (I915_READ(DP_D) & DP_DETECTED)) {
  7206. DRM_DEBUG_KMS("probing DP_D\n");
  7207. intel_dp_init(dev, DP_D, PORT_D);
  7208. }
  7209. } else if (IS_GEN2(dev))
  7210. intel_dvo_init(dev);
  7211. if (SUPPORTS_TV(dev))
  7212. intel_tv_init(dev);
  7213. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7214. encoder->base.possible_crtcs = encoder->crtc_mask;
  7215. encoder->base.possible_clones =
  7216. intel_encoder_clones(encoder);
  7217. }
  7218. intel_init_pch_refclk(dev);
  7219. drm_helper_move_panel_connectors_to_head(dev);
  7220. }
  7221. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  7222. {
  7223. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7224. drm_framebuffer_cleanup(fb);
  7225. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  7226. kfree(intel_fb);
  7227. }
  7228. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  7229. struct drm_file *file,
  7230. unsigned int *handle)
  7231. {
  7232. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7233. struct drm_i915_gem_object *obj = intel_fb->obj;
  7234. return drm_gem_handle_create(file, &obj->base, handle);
  7235. }
  7236. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  7237. .destroy = intel_user_framebuffer_destroy,
  7238. .create_handle = intel_user_framebuffer_create_handle,
  7239. };
  7240. int intel_framebuffer_init(struct drm_device *dev,
  7241. struct intel_framebuffer *intel_fb,
  7242. struct drm_mode_fb_cmd2 *mode_cmd,
  7243. struct drm_i915_gem_object *obj)
  7244. {
  7245. int ret;
  7246. if (obj->tiling_mode == I915_TILING_Y) {
  7247. DRM_DEBUG("hardware does not support tiling Y\n");
  7248. return -EINVAL;
  7249. }
  7250. if (mode_cmd->pitches[0] & 63) {
  7251. DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
  7252. mode_cmd->pitches[0]);
  7253. return -EINVAL;
  7254. }
  7255. /* FIXME <= Gen4 stride limits are bit unclear */
  7256. if (mode_cmd->pitches[0] > 32768) {
  7257. DRM_DEBUG("pitch (%d) must be at less than 32768\n",
  7258. mode_cmd->pitches[0]);
  7259. return -EINVAL;
  7260. }
  7261. if (obj->tiling_mode != I915_TILING_NONE &&
  7262. mode_cmd->pitches[0] != obj->stride) {
  7263. DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
  7264. mode_cmd->pitches[0], obj->stride);
  7265. return -EINVAL;
  7266. }
  7267. /* Reject formats not supported by any plane early. */
  7268. switch (mode_cmd->pixel_format) {
  7269. case DRM_FORMAT_C8:
  7270. case DRM_FORMAT_RGB565:
  7271. case DRM_FORMAT_XRGB8888:
  7272. case DRM_FORMAT_ARGB8888:
  7273. break;
  7274. case DRM_FORMAT_XRGB1555:
  7275. case DRM_FORMAT_ARGB1555:
  7276. if (INTEL_INFO(dev)->gen > 3) {
  7277. DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
  7278. return -EINVAL;
  7279. }
  7280. break;
  7281. case DRM_FORMAT_XBGR8888:
  7282. case DRM_FORMAT_ABGR8888:
  7283. case DRM_FORMAT_XRGB2101010:
  7284. case DRM_FORMAT_ARGB2101010:
  7285. case DRM_FORMAT_XBGR2101010:
  7286. case DRM_FORMAT_ABGR2101010:
  7287. if (INTEL_INFO(dev)->gen < 4) {
  7288. DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
  7289. return -EINVAL;
  7290. }
  7291. break;
  7292. case DRM_FORMAT_YUYV:
  7293. case DRM_FORMAT_UYVY:
  7294. case DRM_FORMAT_YVYU:
  7295. case DRM_FORMAT_VYUY:
  7296. if (INTEL_INFO(dev)->gen < 5) {
  7297. DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
  7298. return -EINVAL;
  7299. }
  7300. break;
  7301. default:
  7302. DRM_DEBUG("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
  7303. return -EINVAL;
  7304. }
  7305. /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  7306. if (mode_cmd->offsets[0] != 0)
  7307. return -EINVAL;
  7308. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  7309. intel_fb->obj = obj;
  7310. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  7311. if (ret) {
  7312. DRM_ERROR("framebuffer init failed %d\n", ret);
  7313. return ret;
  7314. }
  7315. return 0;
  7316. }
  7317. static struct drm_framebuffer *
  7318. intel_user_framebuffer_create(struct drm_device *dev,
  7319. struct drm_file *filp,
  7320. struct drm_mode_fb_cmd2 *mode_cmd)
  7321. {
  7322. struct drm_i915_gem_object *obj;
  7323. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  7324. mode_cmd->handles[0]));
  7325. if (&obj->base == NULL)
  7326. return ERR_PTR(-ENOENT);
  7327. return intel_framebuffer_create(dev, mode_cmd, obj);
  7328. }
  7329. static const struct drm_mode_config_funcs intel_mode_funcs = {
  7330. .fb_create = intel_user_framebuffer_create,
  7331. .output_poll_changed = intel_fb_output_poll_changed,
  7332. };
  7333. /* Set up chip specific display functions */
  7334. static void intel_init_display(struct drm_device *dev)
  7335. {
  7336. struct drm_i915_private *dev_priv = dev->dev_private;
  7337. if (HAS_DDI(dev)) {
  7338. dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  7339. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  7340. dev_priv->display.crtc_enable = haswell_crtc_enable;
  7341. dev_priv->display.crtc_disable = haswell_crtc_disable;
  7342. dev_priv->display.off = haswell_crtc_off;
  7343. dev_priv->display.update_plane = ironlake_update_plane;
  7344. } else if (HAS_PCH_SPLIT(dev)) {
  7345. dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
  7346. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  7347. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  7348. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  7349. dev_priv->display.off = ironlake_crtc_off;
  7350. dev_priv->display.update_plane = ironlake_update_plane;
  7351. } else {
  7352. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  7353. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7354. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  7355. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7356. dev_priv->display.off = i9xx_crtc_off;
  7357. dev_priv->display.update_plane = i9xx_update_plane;
  7358. }
  7359. /* Returns the core display clock speed */
  7360. if (IS_VALLEYVIEW(dev))
  7361. dev_priv->display.get_display_clock_speed =
  7362. valleyview_get_display_clock_speed;
  7363. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  7364. dev_priv->display.get_display_clock_speed =
  7365. i945_get_display_clock_speed;
  7366. else if (IS_I915G(dev))
  7367. dev_priv->display.get_display_clock_speed =
  7368. i915_get_display_clock_speed;
  7369. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  7370. dev_priv->display.get_display_clock_speed =
  7371. i9xx_misc_get_display_clock_speed;
  7372. else if (IS_I915GM(dev))
  7373. dev_priv->display.get_display_clock_speed =
  7374. i915gm_get_display_clock_speed;
  7375. else if (IS_I865G(dev))
  7376. dev_priv->display.get_display_clock_speed =
  7377. i865_get_display_clock_speed;
  7378. else if (IS_I85X(dev))
  7379. dev_priv->display.get_display_clock_speed =
  7380. i855_get_display_clock_speed;
  7381. else /* 852, 830 */
  7382. dev_priv->display.get_display_clock_speed =
  7383. i830_get_display_clock_speed;
  7384. if (HAS_PCH_SPLIT(dev)) {
  7385. if (IS_GEN5(dev)) {
  7386. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  7387. dev_priv->display.write_eld = ironlake_write_eld;
  7388. } else if (IS_GEN6(dev)) {
  7389. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  7390. dev_priv->display.write_eld = ironlake_write_eld;
  7391. } else if (IS_IVYBRIDGE(dev)) {
  7392. /* FIXME: detect B0+ stepping and use auto training */
  7393. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  7394. dev_priv->display.write_eld = ironlake_write_eld;
  7395. dev_priv->display.modeset_global_resources =
  7396. ivb_modeset_global_resources;
  7397. } else if (IS_HASWELL(dev)) {
  7398. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  7399. dev_priv->display.write_eld = haswell_write_eld;
  7400. dev_priv->display.modeset_global_resources =
  7401. haswell_modeset_global_resources;
  7402. }
  7403. } else if (IS_G4X(dev)) {
  7404. dev_priv->display.write_eld = g4x_write_eld;
  7405. }
  7406. /* Default just returns -ENODEV to indicate unsupported */
  7407. dev_priv->display.queue_flip = intel_default_queue_flip;
  7408. switch (INTEL_INFO(dev)->gen) {
  7409. case 2:
  7410. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  7411. break;
  7412. case 3:
  7413. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  7414. break;
  7415. case 4:
  7416. case 5:
  7417. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  7418. break;
  7419. case 6:
  7420. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  7421. break;
  7422. case 7:
  7423. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  7424. break;
  7425. }
  7426. }
  7427. /*
  7428. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  7429. * resume, or other times. This quirk makes sure that's the case for
  7430. * affected systems.
  7431. */
  7432. static void quirk_pipea_force(struct drm_device *dev)
  7433. {
  7434. struct drm_i915_private *dev_priv = dev->dev_private;
  7435. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  7436. DRM_INFO("applying pipe a force quirk\n");
  7437. }
  7438. /*
  7439. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  7440. */
  7441. static void quirk_ssc_force_disable(struct drm_device *dev)
  7442. {
  7443. struct drm_i915_private *dev_priv = dev->dev_private;
  7444. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  7445. DRM_INFO("applying lvds SSC disable quirk\n");
  7446. }
  7447. /*
  7448. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  7449. * brightness value
  7450. */
  7451. static void quirk_invert_brightness(struct drm_device *dev)
  7452. {
  7453. struct drm_i915_private *dev_priv = dev->dev_private;
  7454. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  7455. DRM_INFO("applying inverted panel brightness quirk\n");
  7456. }
  7457. struct intel_quirk {
  7458. int device;
  7459. int subsystem_vendor;
  7460. int subsystem_device;
  7461. void (*hook)(struct drm_device *dev);
  7462. };
  7463. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  7464. struct intel_dmi_quirk {
  7465. void (*hook)(struct drm_device *dev);
  7466. const struct dmi_system_id (*dmi_id_list)[];
  7467. };
  7468. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  7469. {
  7470. DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  7471. return 1;
  7472. }
  7473. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  7474. {
  7475. .dmi_id_list = &(const struct dmi_system_id[]) {
  7476. {
  7477. .callback = intel_dmi_reverse_brightness,
  7478. .ident = "NCR Corporation",
  7479. .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  7480. DMI_MATCH(DMI_PRODUCT_NAME, ""),
  7481. },
  7482. },
  7483. { } /* terminating entry */
  7484. },
  7485. .hook = quirk_invert_brightness,
  7486. },
  7487. };
  7488. static struct intel_quirk intel_quirks[] = {
  7489. /* HP Mini needs pipe A force quirk (LP: #322104) */
  7490. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  7491. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  7492. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  7493. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  7494. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  7495. /* 830/845 need to leave pipe A & dpll A up */
  7496. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7497. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7498. /* Lenovo U160 cannot use SSC on LVDS */
  7499. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  7500. /* Sony Vaio Y cannot use SSC on LVDS */
  7501. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  7502. /* Acer Aspire 5734Z must invert backlight brightness */
  7503. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  7504. /* Acer/eMachines G725 */
  7505. { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
  7506. /* Acer/eMachines e725 */
  7507. { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
  7508. /* Acer/Packard Bell NCL20 */
  7509. { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
  7510. /* Acer Aspire 4736Z */
  7511. { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
  7512. };
  7513. static void intel_init_quirks(struct drm_device *dev)
  7514. {
  7515. struct pci_dev *d = dev->pdev;
  7516. int i;
  7517. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  7518. struct intel_quirk *q = &intel_quirks[i];
  7519. if (d->device == q->device &&
  7520. (d->subsystem_vendor == q->subsystem_vendor ||
  7521. q->subsystem_vendor == PCI_ANY_ID) &&
  7522. (d->subsystem_device == q->subsystem_device ||
  7523. q->subsystem_device == PCI_ANY_ID))
  7524. q->hook(dev);
  7525. }
  7526. for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  7527. if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  7528. intel_dmi_quirks[i].hook(dev);
  7529. }
  7530. }
  7531. /* Disable the VGA plane that we never use */
  7532. static void i915_disable_vga(struct drm_device *dev)
  7533. {
  7534. struct drm_i915_private *dev_priv = dev->dev_private;
  7535. u8 sr1;
  7536. u32 vga_reg = i915_vgacntrl_reg(dev);
  7537. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  7538. outb(SR01, VGA_SR_INDEX);
  7539. sr1 = inb(VGA_SR_DATA);
  7540. outb(sr1 | 1<<5, VGA_SR_DATA);
  7541. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  7542. udelay(300);
  7543. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  7544. POSTING_READ(vga_reg);
  7545. }
  7546. void intel_modeset_init_hw(struct drm_device *dev)
  7547. {
  7548. intel_init_power_well(dev);
  7549. intel_prepare_ddi(dev);
  7550. intel_init_clock_gating(dev);
  7551. mutex_lock(&dev->struct_mutex);
  7552. intel_enable_gt_powersave(dev);
  7553. mutex_unlock(&dev->struct_mutex);
  7554. }
  7555. void intel_modeset_init(struct drm_device *dev)
  7556. {
  7557. struct drm_i915_private *dev_priv = dev->dev_private;
  7558. int i, j, ret;
  7559. drm_mode_config_init(dev);
  7560. dev->mode_config.min_width = 0;
  7561. dev->mode_config.min_height = 0;
  7562. dev->mode_config.preferred_depth = 24;
  7563. dev->mode_config.prefer_shadow = 1;
  7564. dev->mode_config.funcs = &intel_mode_funcs;
  7565. intel_init_quirks(dev);
  7566. intel_init_pm(dev);
  7567. if (INTEL_INFO(dev)->num_pipes == 0)
  7568. return;
  7569. intel_init_display(dev);
  7570. if (IS_GEN2(dev)) {
  7571. dev->mode_config.max_width = 2048;
  7572. dev->mode_config.max_height = 2048;
  7573. } else if (IS_GEN3(dev)) {
  7574. dev->mode_config.max_width = 4096;
  7575. dev->mode_config.max_height = 4096;
  7576. } else {
  7577. dev->mode_config.max_width = 8192;
  7578. dev->mode_config.max_height = 8192;
  7579. }
  7580. dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
  7581. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  7582. INTEL_INFO(dev)->num_pipes,
  7583. INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
  7584. for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
  7585. intel_crtc_init(dev, i);
  7586. for (j = 0; j < dev_priv->num_plane; j++) {
  7587. ret = intel_plane_init(dev, i, j);
  7588. if (ret)
  7589. DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
  7590. pipe_name(i), sprite_name(i, j), ret);
  7591. }
  7592. }
  7593. intel_cpu_pll_init(dev);
  7594. intel_pch_pll_init(dev);
  7595. /* Just disable it once at startup */
  7596. i915_disable_vga(dev);
  7597. intel_setup_outputs(dev);
  7598. /* Just in case the BIOS is doing something questionable. */
  7599. intel_disable_fbc(dev);
  7600. }
  7601. static void
  7602. intel_connector_break_all_links(struct intel_connector *connector)
  7603. {
  7604. connector->base.dpms = DRM_MODE_DPMS_OFF;
  7605. connector->base.encoder = NULL;
  7606. connector->encoder->connectors_active = false;
  7607. connector->encoder->base.crtc = NULL;
  7608. }
  7609. static void intel_enable_pipe_a(struct drm_device *dev)
  7610. {
  7611. struct intel_connector *connector;
  7612. struct drm_connector *crt = NULL;
  7613. struct intel_load_detect_pipe load_detect_temp;
  7614. /* We can't just switch on the pipe A, we need to set things up with a
  7615. * proper mode and output configuration. As a gross hack, enable pipe A
  7616. * by enabling the load detect pipe once. */
  7617. list_for_each_entry(connector,
  7618. &dev->mode_config.connector_list,
  7619. base.head) {
  7620. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  7621. crt = &connector->base;
  7622. break;
  7623. }
  7624. }
  7625. if (!crt)
  7626. return;
  7627. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  7628. intel_release_load_detect_pipe(crt, &load_detect_temp);
  7629. }
  7630. static bool
  7631. intel_check_plane_mapping(struct intel_crtc *crtc)
  7632. {
  7633. struct drm_device *dev = crtc->base.dev;
  7634. struct drm_i915_private *dev_priv = dev->dev_private;
  7635. u32 reg, val;
  7636. if (INTEL_INFO(dev)->num_pipes == 1)
  7637. return true;
  7638. reg = DSPCNTR(!crtc->plane);
  7639. val = I915_READ(reg);
  7640. if ((val & DISPLAY_PLANE_ENABLE) &&
  7641. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  7642. return false;
  7643. return true;
  7644. }
  7645. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  7646. {
  7647. struct drm_device *dev = crtc->base.dev;
  7648. struct drm_i915_private *dev_priv = dev->dev_private;
  7649. u32 reg;
  7650. /* Clear any frame start delays used for debugging left by the BIOS */
  7651. reg = PIPECONF(crtc->config.cpu_transcoder);
  7652. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  7653. /* We need to sanitize the plane -> pipe mapping first because this will
  7654. * disable the crtc (and hence change the state) if it is wrong. Note
  7655. * that gen4+ has a fixed plane -> pipe mapping. */
  7656. if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  7657. struct intel_connector *connector;
  7658. bool plane;
  7659. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  7660. crtc->base.base.id);
  7661. /* Pipe has the wrong plane attached and the plane is active.
  7662. * Temporarily change the plane mapping and disable everything
  7663. * ... */
  7664. plane = crtc->plane;
  7665. crtc->plane = !plane;
  7666. dev_priv->display.crtc_disable(&crtc->base);
  7667. crtc->plane = plane;
  7668. /* ... and break all links. */
  7669. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7670. base.head) {
  7671. if (connector->encoder->base.crtc != &crtc->base)
  7672. continue;
  7673. intel_connector_break_all_links(connector);
  7674. }
  7675. WARN_ON(crtc->active);
  7676. crtc->base.enabled = false;
  7677. }
  7678. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  7679. crtc->pipe == PIPE_A && !crtc->active) {
  7680. /* BIOS forgot to enable pipe A, this mostly happens after
  7681. * resume. Force-enable the pipe to fix this, the update_dpms
  7682. * call below we restore the pipe to the right state, but leave
  7683. * the required bits on. */
  7684. intel_enable_pipe_a(dev);
  7685. }
  7686. /* Adjust the state of the output pipe according to whether we
  7687. * have active connectors/encoders. */
  7688. intel_crtc_update_dpms(&crtc->base);
  7689. if (crtc->active != crtc->base.enabled) {
  7690. struct intel_encoder *encoder;
  7691. /* This can happen either due to bugs in the get_hw_state
  7692. * functions or because the pipe is force-enabled due to the
  7693. * pipe A quirk. */
  7694. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  7695. crtc->base.base.id,
  7696. crtc->base.enabled ? "enabled" : "disabled",
  7697. crtc->active ? "enabled" : "disabled");
  7698. crtc->base.enabled = crtc->active;
  7699. /* Because we only establish the connector -> encoder ->
  7700. * crtc links if something is active, this means the
  7701. * crtc is now deactivated. Break the links. connector
  7702. * -> encoder links are only establish when things are
  7703. * actually up, hence no need to break them. */
  7704. WARN_ON(crtc->active);
  7705. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  7706. WARN_ON(encoder->connectors_active);
  7707. encoder->base.crtc = NULL;
  7708. }
  7709. }
  7710. }
  7711. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  7712. {
  7713. struct intel_connector *connector;
  7714. struct drm_device *dev = encoder->base.dev;
  7715. /* We need to check both for a crtc link (meaning that the
  7716. * encoder is active and trying to read from a pipe) and the
  7717. * pipe itself being active. */
  7718. bool has_active_crtc = encoder->base.crtc &&
  7719. to_intel_crtc(encoder->base.crtc)->active;
  7720. if (encoder->connectors_active && !has_active_crtc) {
  7721. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  7722. encoder->base.base.id,
  7723. drm_get_encoder_name(&encoder->base));
  7724. /* Connector is active, but has no active pipe. This is
  7725. * fallout from our resume register restoring. Disable
  7726. * the encoder manually again. */
  7727. if (encoder->base.crtc) {
  7728. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  7729. encoder->base.base.id,
  7730. drm_get_encoder_name(&encoder->base));
  7731. encoder->disable(encoder);
  7732. }
  7733. /* Inconsistent output/port/pipe state happens presumably due to
  7734. * a bug in one of the get_hw_state functions. Or someplace else
  7735. * in our code, like the register restore mess on resume. Clamp
  7736. * things to off as a safer default. */
  7737. list_for_each_entry(connector,
  7738. &dev->mode_config.connector_list,
  7739. base.head) {
  7740. if (connector->encoder != encoder)
  7741. continue;
  7742. intel_connector_break_all_links(connector);
  7743. }
  7744. }
  7745. /* Enabled encoders without active connectors will be fixed in
  7746. * the crtc fixup. */
  7747. }
  7748. void i915_redisable_vga(struct drm_device *dev)
  7749. {
  7750. struct drm_i915_private *dev_priv = dev->dev_private;
  7751. u32 vga_reg = i915_vgacntrl_reg(dev);
  7752. if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
  7753. DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
  7754. i915_disable_vga(dev);
  7755. }
  7756. }
  7757. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  7758. * and i915 state tracking structures. */
  7759. void intel_modeset_setup_hw_state(struct drm_device *dev,
  7760. bool force_restore)
  7761. {
  7762. struct drm_i915_private *dev_priv = dev->dev_private;
  7763. enum pipe pipe;
  7764. u32 tmp;
  7765. struct drm_plane *plane;
  7766. struct intel_crtc *crtc;
  7767. struct intel_encoder *encoder;
  7768. struct intel_connector *connector;
  7769. if (HAS_DDI(dev)) {
  7770. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  7771. if (tmp & TRANS_DDI_FUNC_ENABLE) {
  7772. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  7773. case TRANS_DDI_EDP_INPUT_A_ON:
  7774. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  7775. pipe = PIPE_A;
  7776. break;
  7777. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  7778. pipe = PIPE_B;
  7779. break;
  7780. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  7781. pipe = PIPE_C;
  7782. break;
  7783. default:
  7784. /* A bogus value has been programmed, disable
  7785. * the transcoder */
  7786. WARN(1, "Bogus eDP source %08x\n", tmp);
  7787. intel_ddi_disable_transcoder_func(dev_priv,
  7788. TRANSCODER_EDP);
  7789. goto setup_pipes;
  7790. }
  7791. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7792. crtc->config.cpu_transcoder = TRANSCODER_EDP;
  7793. DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
  7794. pipe_name(pipe));
  7795. }
  7796. }
  7797. setup_pipes:
  7798. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7799. base.head) {
  7800. enum transcoder tmp = crtc->config.cpu_transcoder;
  7801. memset(&crtc->config, 0, sizeof(crtc->config));
  7802. crtc->config.cpu_transcoder = tmp;
  7803. crtc->active = dev_priv->display.get_pipe_config(crtc,
  7804. &crtc->config);
  7805. crtc->base.enabled = crtc->active;
  7806. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  7807. crtc->base.base.id,
  7808. crtc->active ? "enabled" : "disabled");
  7809. }
  7810. if (HAS_DDI(dev))
  7811. intel_ddi_setup_hw_pll_state(dev);
  7812. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7813. base.head) {
  7814. pipe = 0;
  7815. if (encoder->get_hw_state(encoder, &pipe)) {
  7816. encoder->base.crtc =
  7817. dev_priv->pipe_to_crtc_mapping[pipe];
  7818. } else {
  7819. encoder->base.crtc = NULL;
  7820. }
  7821. encoder->connectors_active = false;
  7822. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  7823. encoder->base.base.id,
  7824. drm_get_encoder_name(&encoder->base),
  7825. encoder->base.crtc ? "enabled" : "disabled",
  7826. pipe);
  7827. }
  7828. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7829. base.head) {
  7830. if (connector->get_hw_state(connector)) {
  7831. connector->base.dpms = DRM_MODE_DPMS_ON;
  7832. connector->encoder->connectors_active = true;
  7833. connector->base.encoder = &connector->encoder->base;
  7834. } else {
  7835. connector->base.dpms = DRM_MODE_DPMS_OFF;
  7836. connector->base.encoder = NULL;
  7837. }
  7838. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  7839. connector->base.base.id,
  7840. drm_get_connector_name(&connector->base),
  7841. connector->base.encoder ? "enabled" : "disabled");
  7842. }
  7843. /* HW state is read out, now we need to sanitize this mess. */
  7844. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7845. base.head) {
  7846. intel_sanitize_encoder(encoder);
  7847. }
  7848. for_each_pipe(pipe) {
  7849. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7850. intel_sanitize_crtc(crtc);
  7851. }
  7852. if (force_restore) {
  7853. /*
  7854. * We need to use raw interfaces for restoring state to avoid
  7855. * checking (bogus) intermediate states.
  7856. */
  7857. for_each_pipe(pipe) {
  7858. struct drm_crtc *crtc =
  7859. dev_priv->pipe_to_crtc_mapping[pipe];
  7860. __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
  7861. crtc->fb);
  7862. }
  7863. list_for_each_entry(plane, &dev->mode_config.plane_list, head)
  7864. intel_plane_restore(plane);
  7865. i915_redisable_vga(dev);
  7866. } else {
  7867. intel_modeset_update_staged_output_state(dev);
  7868. }
  7869. intel_modeset_check_state(dev);
  7870. drm_mode_config_reset(dev);
  7871. }
  7872. void intel_modeset_gem_init(struct drm_device *dev)
  7873. {
  7874. intel_modeset_init_hw(dev);
  7875. intel_setup_overlay(dev);
  7876. intel_modeset_setup_hw_state(dev, false);
  7877. }
  7878. void intel_modeset_cleanup(struct drm_device *dev)
  7879. {
  7880. struct drm_i915_private *dev_priv = dev->dev_private;
  7881. struct drm_crtc *crtc;
  7882. struct intel_crtc *intel_crtc;
  7883. drm_kms_helper_poll_fini(dev);
  7884. mutex_lock(&dev->struct_mutex);
  7885. intel_unregister_dsm_handler();
  7886. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  7887. /* Skip inactive CRTCs */
  7888. if (!crtc->fb)
  7889. continue;
  7890. intel_crtc = to_intel_crtc(crtc);
  7891. intel_increase_pllclock(crtc);
  7892. }
  7893. intel_disable_fbc(dev);
  7894. intel_disable_gt_powersave(dev);
  7895. ironlake_teardown_rc6(dev);
  7896. if (IS_VALLEYVIEW(dev))
  7897. vlv_init_dpio(dev);
  7898. mutex_unlock(&dev->struct_mutex);
  7899. /* Disable the irq before mode object teardown, for the irq might
  7900. * enqueue unpin/hotplug work. */
  7901. drm_irq_uninstall(dev);
  7902. cancel_work_sync(&dev_priv->hotplug_work);
  7903. cancel_work_sync(&dev_priv->rps.work);
  7904. /* flush any delayed tasks or pending work */
  7905. flush_scheduled_work();
  7906. /* destroy backlight, if any, before the connectors */
  7907. intel_panel_destroy_backlight(dev);
  7908. drm_mode_config_cleanup(dev);
  7909. intel_cleanup_overlay(dev);
  7910. }
  7911. /*
  7912. * Return which encoder is currently attached for connector.
  7913. */
  7914. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  7915. {
  7916. return &intel_attached_encoder(connector)->base;
  7917. }
  7918. void intel_connector_attach_encoder(struct intel_connector *connector,
  7919. struct intel_encoder *encoder)
  7920. {
  7921. connector->encoder = encoder;
  7922. drm_mode_connector_attach_encoder(&connector->base,
  7923. &encoder->base);
  7924. }
  7925. /*
  7926. * set vga decode state - true == enable VGA decode
  7927. */
  7928. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  7929. {
  7930. struct drm_i915_private *dev_priv = dev->dev_private;
  7931. u16 gmch_ctrl;
  7932. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  7933. if (state)
  7934. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  7935. else
  7936. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  7937. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  7938. return 0;
  7939. }
  7940. #ifdef CONFIG_DEBUG_FS
  7941. #include <linux/seq_file.h>
  7942. struct intel_display_error_state {
  7943. struct intel_cursor_error_state {
  7944. u32 control;
  7945. u32 position;
  7946. u32 base;
  7947. u32 size;
  7948. } cursor[I915_MAX_PIPES];
  7949. struct intel_pipe_error_state {
  7950. u32 conf;
  7951. u32 source;
  7952. u32 htotal;
  7953. u32 hblank;
  7954. u32 hsync;
  7955. u32 vtotal;
  7956. u32 vblank;
  7957. u32 vsync;
  7958. } pipe[I915_MAX_PIPES];
  7959. struct intel_plane_error_state {
  7960. u32 control;
  7961. u32 stride;
  7962. u32 size;
  7963. u32 pos;
  7964. u32 addr;
  7965. u32 surface;
  7966. u32 tile_offset;
  7967. } plane[I915_MAX_PIPES];
  7968. };
  7969. struct intel_display_error_state *
  7970. intel_display_capture_error_state(struct drm_device *dev)
  7971. {
  7972. drm_i915_private_t *dev_priv = dev->dev_private;
  7973. struct intel_display_error_state *error;
  7974. enum transcoder cpu_transcoder;
  7975. int i;
  7976. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  7977. if (error == NULL)
  7978. return NULL;
  7979. for_each_pipe(i) {
  7980. cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
  7981. if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
  7982. error->cursor[i].control = I915_READ(CURCNTR(i));
  7983. error->cursor[i].position = I915_READ(CURPOS(i));
  7984. error->cursor[i].base = I915_READ(CURBASE(i));
  7985. } else {
  7986. error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
  7987. error->cursor[i].position = I915_READ(CURPOS_IVB(i));
  7988. error->cursor[i].base = I915_READ(CURBASE_IVB(i));
  7989. }
  7990. error->plane[i].control = I915_READ(DSPCNTR(i));
  7991. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  7992. if (INTEL_INFO(dev)->gen <= 3) {
  7993. error->plane[i].size = I915_READ(DSPSIZE(i));
  7994. error->plane[i].pos = I915_READ(DSPPOS(i));
  7995. }
  7996. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  7997. error->plane[i].addr = I915_READ(DSPADDR(i));
  7998. if (INTEL_INFO(dev)->gen >= 4) {
  7999. error->plane[i].surface = I915_READ(DSPSURF(i));
  8000. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  8001. }
  8002. error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  8003. error->pipe[i].source = I915_READ(PIPESRC(i));
  8004. error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  8005. error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  8006. error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  8007. error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  8008. error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  8009. error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  8010. }
  8011. return error;
  8012. }
  8013. void
  8014. intel_display_print_error_state(struct seq_file *m,
  8015. struct drm_device *dev,
  8016. struct intel_display_error_state *error)
  8017. {
  8018. int i;
  8019. seq_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
  8020. for_each_pipe(i) {
  8021. seq_printf(m, "Pipe [%d]:\n", i);
  8022. seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  8023. seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
  8024. seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  8025. seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  8026. seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  8027. seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  8028. seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  8029. seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  8030. seq_printf(m, "Plane [%d]:\n", i);
  8031. seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
  8032. seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  8033. if (INTEL_INFO(dev)->gen <= 3) {
  8034. seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
  8035. seq_printf(m, " POS: %08x\n", error->plane[i].pos);
  8036. }
  8037. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8038. seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  8039. if (INTEL_INFO(dev)->gen >= 4) {
  8040. seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
  8041. seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  8042. }
  8043. seq_printf(m, "Cursor [%d]:\n", i);
  8044. seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  8045. seq_printf(m, " POS: %08x\n", error->cursor[i].position);
  8046. seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
  8047. }
  8048. }
  8049. #endif