paging_tmpl.h 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. /*
  20. * We need the mmu code to access both 32-bit and 64-bit guest ptes,
  21. * so the code in this file is compiled twice, once per pte size.
  22. */
  23. #if PTTYPE == 64
  24. #define pt_element_t u64
  25. #define guest_walker guest_walker64
  26. #define FNAME(name) paging##64_##name
  27. #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
  28. #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
  29. #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  30. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  31. #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
  32. #define PT_PTE_COPY_MASK PT64_PTE_COPY_MASK
  33. #ifdef CONFIG_X86_64
  34. #define PT_MAX_FULL_LEVELS 4
  35. #else
  36. #define PT_MAX_FULL_LEVELS 2
  37. #endif
  38. #elif PTTYPE == 32
  39. #define pt_element_t u32
  40. #define guest_walker guest_walker32
  41. #define FNAME(name) paging##32_##name
  42. #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
  43. #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
  44. #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
  45. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  46. #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
  47. #define PT_PTE_COPY_MASK PT32_PTE_COPY_MASK
  48. #define PT_MAX_FULL_LEVELS 2
  49. #else
  50. #error Invalid PTTYPE value
  51. #endif
  52. /*
  53. * The guest_walker structure emulates the behavior of the hardware page
  54. * table walker.
  55. */
  56. struct guest_walker {
  57. int level;
  58. gfn_t table_gfn[PT_MAX_FULL_LEVELS];
  59. pt_element_t *table;
  60. pt_element_t *ptep;
  61. pt_element_t inherited_ar;
  62. gfn_t gfn;
  63. };
  64. /*
  65. * Fetch a guest pte for a guest virtual address
  66. */
  67. static void FNAME(walk_addr)(struct guest_walker *walker,
  68. struct kvm_vcpu *vcpu, gva_t addr)
  69. {
  70. hpa_t hpa;
  71. struct kvm_memory_slot *slot;
  72. pt_element_t *ptep;
  73. pt_element_t root;
  74. gfn_t table_gfn;
  75. pgprintk("%s: addr %lx\n", __FUNCTION__, addr);
  76. walker->level = vcpu->mmu.root_level;
  77. walker->table = NULL;
  78. root = vcpu->cr3;
  79. #if PTTYPE == 64
  80. if (!is_long_mode(vcpu)) {
  81. walker->ptep = &vcpu->pdptrs[(addr >> 30) & 3];
  82. root = *walker->ptep;
  83. if (!(root & PT_PRESENT_MASK))
  84. return;
  85. --walker->level;
  86. }
  87. #endif
  88. table_gfn = (root & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  89. walker->table_gfn[walker->level - 1] = table_gfn;
  90. pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
  91. walker->level - 1, table_gfn);
  92. slot = gfn_to_memslot(vcpu->kvm, table_gfn);
  93. hpa = safe_gpa_to_hpa(vcpu, root & PT64_BASE_ADDR_MASK);
  94. walker->table = kmap_atomic(pfn_to_page(hpa >> PAGE_SHIFT), KM_USER0);
  95. ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
  96. (vcpu->cr3 & ~(PAGE_MASK | CR3_FLAGS_MASK)) == 0);
  97. walker->inherited_ar = PT_USER_MASK | PT_WRITABLE_MASK;
  98. for (;;) {
  99. int index = PT_INDEX(addr, walker->level);
  100. hpa_t paddr;
  101. ptep = &walker->table[index];
  102. ASSERT(((unsigned long)walker->table & PAGE_MASK) ==
  103. ((unsigned long)ptep & PAGE_MASK));
  104. if (is_present_pte(*ptep) && !(*ptep & PT_ACCESSED_MASK))
  105. *ptep |= PT_ACCESSED_MASK;
  106. if (!is_present_pte(*ptep))
  107. break;
  108. if (walker->level == PT_PAGE_TABLE_LEVEL) {
  109. walker->gfn = (*ptep & PT_BASE_ADDR_MASK)
  110. >> PAGE_SHIFT;
  111. break;
  112. }
  113. if (walker->level == PT_DIRECTORY_LEVEL
  114. && (*ptep & PT_PAGE_SIZE_MASK)
  115. && (PTTYPE == 64 || is_pse(vcpu))) {
  116. walker->gfn = (*ptep & PT_DIR_BASE_ADDR_MASK)
  117. >> PAGE_SHIFT;
  118. walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL);
  119. break;
  120. }
  121. if (walker->level != 3 || is_long_mode(vcpu))
  122. walker->inherited_ar &= walker->table[index];
  123. table_gfn = (*ptep & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
  124. paddr = safe_gpa_to_hpa(vcpu, *ptep & PT_BASE_ADDR_MASK);
  125. kunmap_atomic(walker->table, KM_USER0);
  126. walker->table = kmap_atomic(pfn_to_page(paddr >> PAGE_SHIFT),
  127. KM_USER0);
  128. --walker->level;
  129. walker->table_gfn[walker->level - 1 ] = table_gfn;
  130. pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
  131. walker->level - 1, table_gfn);
  132. }
  133. walker->ptep = ptep;
  134. pgprintk("%s: pte %llx\n", __FUNCTION__, (u64)*ptep);
  135. }
  136. static void FNAME(release_walker)(struct guest_walker *walker)
  137. {
  138. if (walker->table)
  139. kunmap_atomic(walker->table, KM_USER0);
  140. }
  141. static void FNAME(set_pte)(struct kvm_vcpu *vcpu, u64 guest_pte,
  142. u64 *shadow_pte, u64 access_bits, gfn_t gfn)
  143. {
  144. ASSERT(*shadow_pte == 0);
  145. access_bits &= guest_pte;
  146. *shadow_pte = (guest_pte & PT_PTE_COPY_MASK);
  147. set_pte_common(vcpu, shadow_pte, guest_pte & PT_BASE_ADDR_MASK,
  148. guest_pte & PT_DIRTY_MASK, access_bits, gfn);
  149. }
  150. static void FNAME(set_pde)(struct kvm_vcpu *vcpu, u64 guest_pde,
  151. u64 *shadow_pte, u64 access_bits, gfn_t gfn)
  152. {
  153. gpa_t gaddr;
  154. ASSERT(*shadow_pte == 0);
  155. access_bits &= guest_pde;
  156. gaddr = (gpa_t)gfn << PAGE_SHIFT;
  157. if (PTTYPE == 32 && is_cpuid_PSE36())
  158. gaddr |= (guest_pde & PT32_DIR_PSE36_MASK) <<
  159. (32 - PT32_DIR_PSE36_SHIFT);
  160. *shadow_pte = guest_pde & PT_PTE_COPY_MASK;
  161. set_pte_common(vcpu, shadow_pte, gaddr,
  162. guest_pde & PT_DIRTY_MASK, access_bits, gfn);
  163. }
  164. /*
  165. * Fetch a shadow pte for a specific level in the paging hierarchy.
  166. */
  167. static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
  168. struct guest_walker *walker)
  169. {
  170. hpa_t shadow_addr;
  171. int level;
  172. u64 *prev_shadow_ent = NULL;
  173. pt_element_t *guest_ent = walker->ptep;
  174. if (!is_present_pte(*guest_ent))
  175. return NULL;
  176. shadow_addr = vcpu->mmu.root_hpa;
  177. level = vcpu->mmu.shadow_root_level;
  178. if (level == PT32E_ROOT_LEVEL) {
  179. shadow_addr = vcpu->mmu.pae_root[(addr >> 30) & 3];
  180. shadow_addr &= PT64_BASE_ADDR_MASK;
  181. --level;
  182. }
  183. for (; ; level--) {
  184. u32 index = SHADOW_PT_INDEX(addr, level);
  185. u64 *shadow_ent = ((u64 *)__va(shadow_addr)) + index;
  186. struct kvm_mmu_page *shadow_page;
  187. u64 shadow_pte;
  188. int metaphysical;
  189. gfn_t table_gfn;
  190. if (is_present_pte(*shadow_ent) || is_io_pte(*shadow_ent)) {
  191. if (level == PT_PAGE_TABLE_LEVEL)
  192. return shadow_ent;
  193. shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK;
  194. prev_shadow_ent = shadow_ent;
  195. continue;
  196. }
  197. if (level == PT_PAGE_TABLE_LEVEL) {
  198. if (walker->level == PT_DIRECTORY_LEVEL) {
  199. if (prev_shadow_ent)
  200. *prev_shadow_ent |= PT_SHADOW_PS_MARK;
  201. FNAME(set_pde)(vcpu, *guest_ent, shadow_ent,
  202. walker->inherited_ar,
  203. walker->gfn);
  204. } else {
  205. ASSERT(walker->level == PT_PAGE_TABLE_LEVEL);
  206. FNAME(set_pte)(vcpu, *guest_ent, shadow_ent,
  207. walker->inherited_ar,
  208. walker->gfn);
  209. }
  210. return shadow_ent;
  211. }
  212. if (level - 1 == PT_PAGE_TABLE_LEVEL
  213. && walker->level == PT_DIRECTORY_LEVEL) {
  214. metaphysical = 1;
  215. table_gfn = (*guest_ent & PT_BASE_ADDR_MASK)
  216. >> PAGE_SHIFT;
  217. } else {
  218. metaphysical = 0;
  219. table_gfn = walker->table_gfn[level - 2];
  220. }
  221. shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
  222. metaphysical, shadow_ent);
  223. shadow_addr = shadow_page->page_hpa;
  224. shadow_pte = shadow_addr | PT_PRESENT_MASK | PT_ACCESSED_MASK
  225. | PT_WRITABLE_MASK | PT_USER_MASK;
  226. *shadow_ent = shadow_pte;
  227. prev_shadow_ent = shadow_ent;
  228. }
  229. }
  230. /*
  231. * The guest faulted for write. We need to
  232. *
  233. * - check write permissions
  234. * - update the guest pte dirty bit
  235. * - update our own dirty page tracking structures
  236. */
  237. static int FNAME(fix_write_pf)(struct kvm_vcpu *vcpu,
  238. u64 *shadow_ent,
  239. struct guest_walker *walker,
  240. gva_t addr,
  241. int user,
  242. int *write_pt)
  243. {
  244. pt_element_t *guest_ent;
  245. int writable_shadow;
  246. gfn_t gfn;
  247. struct kvm_mmu_page *page;
  248. if (is_writeble_pte(*shadow_ent))
  249. return 0;
  250. writable_shadow = *shadow_ent & PT_SHADOW_WRITABLE_MASK;
  251. if (user) {
  252. /*
  253. * User mode access. Fail if it's a kernel page or a read-only
  254. * page.
  255. */
  256. if (!(*shadow_ent & PT_SHADOW_USER_MASK) || !writable_shadow)
  257. return 0;
  258. ASSERT(*shadow_ent & PT_USER_MASK);
  259. } else
  260. /*
  261. * Kernel mode access. Fail if it's a read-only page and
  262. * supervisor write protection is enabled.
  263. */
  264. if (!writable_shadow) {
  265. if (is_write_protection(vcpu))
  266. return 0;
  267. *shadow_ent &= ~PT_USER_MASK;
  268. }
  269. guest_ent = walker->ptep;
  270. if (!is_present_pte(*guest_ent)) {
  271. *shadow_ent = 0;
  272. return 0;
  273. }
  274. gfn = walker->gfn;
  275. if (user) {
  276. /*
  277. * Usermode page faults won't be for page table updates.
  278. */
  279. while ((page = kvm_mmu_lookup_page(vcpu, gfn)) != NULL) {
  280. pgprintk("%s: zap %lx %x\n",
  281. __FUNCTION__, gfn, page->role.word);
  282. kvm_mmu_zap_page(vcpu, page);
  283. }
  284. } else if (kvm_mmu_lookup_page(vcpu, gfn)) {
  285. pgprintk("%s: found shadow page for %lx, marking ro\n",
  286. __FUNCTION__, gfn);
  287. *write_pt = 1;
  288. return 0;
  289. }
  290. mark_page_dirty(vcpu->kvm, gfn);
  291. *shadow_ent |= PT_WRITABLE_MASK;
  292. *guest_ent |= PT_DIRTY_MASK;
  293. rmap_add(vcpu, shadow_ent);
  294. return 1;
  295. }
  296. /*
  297. * Page fault handler. There are several causes for a page fault:
  298. * - there is no shadow pte for the guest pte
  299. * - write access through a shadow pte marked read only so that we can set
  300. * the dirty bit
  301. * - write access to a shadow pte marked read only so we can update the page
  302. * dirty bitmap, when userspace requests it
  303. * - mmio access; in this case we will never install a present shadow pte
  304. * - normal guest page fault due to the guest pte marked not present, not
  305. * writable, or not executable
  306. *
  307. * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
  308. * a negative value on error.
  309. */
  310. static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
  311. u32 error_code)
  312. {
  313. int write_fault = error_code & PFERR_WRITE_MASK;
  314. int pte_present = error_code & PFERR_PRESENT_MASK;
  315. int user_fault = error_code & PFERR_USER_MASK;
  316. struct guest_walker walker;
  317. u64 *shadow_pte;
  318. int fixed;
  319. int write_pt = 0;
  320. int r;
  321. pgprintk("%s: addr %lx err %x\n", __FUNCTION__, addr, error_code);
  322. r = mmu_topup_memory_caches(vcpu);
  323. if (r)
  324. return r;
  325. /*
  326. * Look up the shadow pte for the faulting address.
  327. */
  328. FNAME(walk_addr)(&walker, vcpu, addr);
  329. shadow_pte = FNAME(fetch)(vcpu, addr, &walker);
  330. /*
  331. * The page is not mapped by the guest. Let the guest handle it.
  332. */
  333. if (!shadow_pte) {
  334. pgprintk("%s: not mapped\n", __FUNCTION__);
  335. inject_page_fault(vcpu, addr, error_code);
  336. FNAME(release_walker)(&walker);
  337. return 0;
  338. }
  339. pgprintk("%s: shadow pte %p %llx\n", __FUNCTION__,
  340. shadow_pte, *shadow_pte);
  341. /*
  342. * Update the shadow pte.
  343. */
  344. if (write_fault)
  345. fixed = FNAME(fix_write_pf)(vcpu, shadow_pte, &walker, addr,
  346. user_fault, &write_pt);
  347. else
  348. fixed = fix_read_pf(shadow_pte);
  349. pgprintk("%s: updated shadow pte %p %llx\n", __FUNCTION__,
  350. shadow_pte, *shadow_pte);
  351. FNAME(release_walker)(&walker);
  352. /*
  353. * mmio: emulate if accessible, otherwise its a guest fault.
  354. */
  355. if (is_io_pte(*shadow_pte)) {
  356. if (may_access(*shadow_pte, write_fault, user_fault))
  357. return 1;
  358. pgprintk("%s: io work, no access\n", __FUNCTION__);
  359. inject_page_fault(vcpu, addr,
  360. error_code | PFERR_PRESENT_MASK);
  361. return 0;
  362. }
  363. /*
  364. * pte not present, guest page fault.
  365. */
  366. if (pte_present && !fixed && !write_pt) {
  367. inject_page_fault(vcpu, addr, error_code);
  368. return 0;
  369. }
  370. ++kvm_stat.pf_fixed;
  371. return write_pt;
  372. }
  373. static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
  374. {
  375. struct guest_walker walker;
  376. pt_element_t guest_pte;
  377. gpa_t gpa;
  378. FNAME(walk_addr)(&walker, vcpu, vaddr);
  379. guest_pte = *walker.ptep;
  380. FNAME(release_walker)(&walker);
  381. if (!is_present_pte(guest_pte))
  382. return UNMAPPED_GVA;
  383. if (walker.level == PT_DIRECTORY_LEVEL) {
  384. ASSERT((guest_pte & PT_PAGE_SIZE_MASK));
  385. ASSERT(PTTYPE == 64 || is_pse(vcpu));
  386. gpa = (guest_pte & PT_DIR_BASE_ADDR_MASK) | (vaddr &
  387. (PT_LEVEL_MASK(PT_PAGE_TABLE_LEVEL) | ~PAGE_MASK));
  388. if (PTTYPE == 32 && is_cpuid_PSE36())
  389. gpa |= (guest_pte & PT32_DIR_PSE36_MASK) <<
  390. (32 - PT32_DIR_PSE36_SHIFT);
  391. } else {
  392. gpa = (guest_pte & PT_BASE_ADDR_MASK);
  393. gpa |= (vaddr & ~PAGE_MASK);
  394. }
  395. return gpa;
  396. }
  397. #undef pt_element_t
  398. #undef guest_walker
  399. #undef FNAME
  400. #undef PT_BASE_ADDR_MASK
  401. #undef PT_INDEX
  402. #undef SHADOW_PT_INDEX
  403. #undef PT_LEVEL_MASK
  404. #undef PT_PTE_COPY_MASK
  405. #undef PT_NON_PTE_COPY_MASK
  406. #undef PT_DIR_BASE_ADDR_MASK
  407. #undef PT_MAX_FULL_LEVELS