i915_gem.c 104 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/shmem_fs.h>
  34. #include <linux/slab.h>
  35. #include <linux/swap.h>
  36. #include <linux/pci.h>
  37. static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
  38. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  39. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  40. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  41. unsigned alignment,
  42. bool map_and_fenceable);
  43. static void i915_gem_clear_fence_reg(struct drm_device *dev,
  44. struct drm_i915_fence_reg *reg);
  45. static int i915_gem_phys_pwrite(struct drm_device *dev,
  46. struct drm_i915_gem_object *obj,
  47. struct drm_i915_gem_pwrite *args,
  48. struct drm_file *file);
  49. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
  50. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  51. struct shrink_control *sc);
  52. static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
  53. /* some bookkeeping */
  54. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  55. size_t size)
  56. {
  57. dev_priv->mm.object_count++;
  58. dev_priv->mm.object_memory += size;
  59. }
  60. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  61. size_t size)
  62. {
  63. dev_priv->mm.object_count--;
  64. dev_priv->mm.object_memory -= size;
  65. }
  66. static int
  67. i915_gem_wait_for_error(struct drm_device *dev)
  68. {
  69. struct drm_i915_private *dev_priv = dev->dev_private;
  70. struct completion *x = &dev_priv->error_completion;
  71. unsigned long flags;
  72. int ret;
  73. if (!atomic_read(&dev_priv->mm.wedged))
  74. return 0;
  75. ret = wait_for_completion_interruptible(x);
  76. if (ret)
  77. return ret;
  78. if (atomic_read(&dev_priv->mm.wedged)) {
  79. /* GPU is hung, bump the completion count to account for
  80. * the token we just consumed so that we never hit zero and
  81. * end up waiting upon a subsequent completion event that
  82. * will never happen.
  83. */
  84. spin_lock_irqsave(&x->wait.lock, flags);
  85. x->done++;
  86. spin_unlock_irqrestore(&x->wait.lock, flags);
  87. }
  88. return 0;
  89. }
  90. int i915_mutex_lock_interruptible(struct drm_device *dev)
  91. {
  92. int ret;
  93. ret = i915_gem_wait_for_error(dev);
  94. if (ret)
  95. return ret;
  96. ret = mutex_lock_interruptible(&dev->struct_mutex);
  97. if (ret)
  98. return ret;
  99. WARN_ON(i915_verify_lists(dev));
  100. return 0;
  101. }
  102. static inline bool
  103. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  104. {
  105. return obj->gtt_space && !obj->active && obj->pin_count == 0;
  106. }
  107. int
  108. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  109. struct drm_file *file)
  110. {
  111. struct drm_i915_gem_init *args = data;
  112. if (args->gtt_start >= args->gtt_end ||
  113. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  114. return -EINVAL;
  115. /* GEM with user mode setting was never supported on ilk and later. */
  116. if (INTEL_INFO(dev)->gen >= 5)
  117. return -ENODEV;
  118. mutex_lock(&dev->struct_mutex);
  119. i915_gem_init_global_gtt(dev, args->gtt_start,
  120. args->gtt_end, args->gtt_end);
  121. mutex_unlock(&dev->struct_mutex);
  122. return 0;
  123. }
  124. int
  125. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  126. struct drm_file *file)
  127. {
  128. struct drm_i915_private *dev_priv = dev->dev_private;
  129. struct drm_i915_gem_get_aperture *args = data;
  130. struct drm_i915_gem_object *obj;
  131. size_t pinned;
  132. if (!(dev->driver->driver_features & DRIVER_GEM))
  133. return -ENODEV;
  134. pinned = 0;
  135. mutex_lock(&dev->struct_mutex);
  136. list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
  137. pinned += obj->gtt_space->size;
  138. mutex_unlock(&dev->struct_mutex);
  139. args->aper_size = dev_priv->mm.gtt_total;
  140. args->aper_available_size = args->aper_size - pinned;
  141. return 0;
  142. }
  143. static int
  144. i915_gem_create(struct drm_file *file,
  145. struct drm_device *dev,
  146. uint64_t size,
  147. uint32_t *handle_p)
  148. {
  149. struct drm_i915_gem_object *obj;
  150. int ret;
  151. u32 handle;
  152. size = roundup(size, PAGE_SIZE);
  153. if (size == 0)
  154. return -EINVAL;
  155. /* Allocate the new object */
  156. obj = i915_gem_alloc_object(dev, size);
  157. if (obj == NULL)
  158. return -ENOMEM;
  159. ret = drm_gem_handle_create(file, &obj->base, &handle);
  160. if (ret) {
  161. drm_gem_object_release(&obj->base);
  162. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  163. kfree(obj);
  164. return ret;
  165. }
  166. /* drop reference from allocate - handle holds it now */
  167. drm_gem_object_unreference(&obj->base);
  168. trace_i915_gem_object_create(obj);
  169. *handle_p = handle;
  170. return 0;
  171. }
  172. int
  173. i915_gem_dumb_create(struct drm_file *file,
  174. struct drm_device *dev,
  175. struct drm_mode_create_dumb *args)
  176. {
  177. /* have to work out size/pitch and return them */
  178. args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
  179. args->size = args->pitch * args->height;
  180. return i915_gem_create(file, dev,
  181. args->size, &args->handle);
  182. }
  183. int i915_gem_dumb_destroy(struct drm_file *file,
  184. struct drm_device *dev,
  185. uint32_t handle)
  186. {
  187. return drm_gem_handle_delete(file, handle);
  188. }
  189. /**
  190. * Creates a new mm object and returns a handle to it.
  191. */
  192. int
  193. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  194. struct drm_file *file)
  195. {
  196. struct drm_i915_gem_create *args = data;
  197. return i915_gem_create(file, dev,
  198. args->size, &args->handle);
  199. }
  200. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  201. {
  202. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  203. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  204. obj->tiling_mode != I915_TILING_NONE;
  205. }
  206. static inline int
  207. __copy_to_user_swizzled(char __user *cpu_vaddr,
  208. const char *gpu_vaddr, int gpu_offset,
  209. int length)
  210. {
  211. int ret, cpu_offset = 0;
  212. while (length > 0) {
  213. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  214. int this_length = min(cacheline_end - gpu_offset, length);
  215. int swizzled_gpu_offset = gpu_offset ^ 64;
  216. ret = __copy_to_user(cpu_vaddr + cpu_offset,
  217. gpu_vaddr + swizzled_gpu_offset,
  218. this_length);
  219. if (ret)
  220. return ret + length;
  221. cpu_offset += this_length;
  222. gpu_offset += this_length;
  223. length -= this_length;
  224. }
  225. return 0;
  226. }
  227. static inline int
  228. __copy_from_user_swizzled(char __user *gpu_vaddr, int gpu_offset,
  229. const char *cpu_vaddr,
  230. int length)
  231. {
  232. int ret, cpu_offset = 0;
  233. while (length > 0) {
  234. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  235. int this_length = min(cacheline_end - gpu_offset, length);
  236. int swizzled_gpu_offset = gpu_offset ^ 64;
  237. ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
  238. cpu_vaddr + cpu_offset,
  239. this_length);
  240. if (ret)
  241. return ret + length;
  242. cpu_offset += this_length;
  243. gpu_offset += this_length;
  244. length -= this_length;
  245. }
  246. return 0;
  247. }
  248. /* Per-page copy function for the shmem pread fastpath.
  249. * Flushes invalid cachelines before reading the target if
  250. * needs_clflush is set. */
  251. static int
  252. shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
  253. char __user *user_data,
  254. bool page_do_bit17_swizzling, bool needs_clflush)
  255. {
  256. char *vaddr;
  257. int ret;
  258. if (unlikely(page_do_bit17_swizzling))
  259. return -EINVAL;
  260. vaddr = kmap_atomic(page);
  261. if (needs_clflush)
  262. drm_clflush_virt_range(vaddr + shmem_page_offset,
  263. page_length);
  264. ret = __copy_to_user_inatomic(user_data,
  265. vaddr + shmem_page_offset,
  266. page_length);
  267. kunmap_atomic(vaddr);
  268. return ret;
  269. }
  270. static void
  271. shmem_clflush_swizzled_range(char *addr, unsigned long length,
  272. bool swizzled)
  273. {
  274. if (unlikely(swizzled)) {
  275. unsigned long start = (unsigned long) addr;
  276. unsigned long end = (unsigned long) addr + length;
  277. /* For swizzling simply ensure that we always flush both
  278. * channels. Lame, but simple and it works. Swizzled
  279. * pwrite/pread is far from a hotpath - current userspace
  280. * doesn't use it at all. */
  281. start = round_down(start, 128);
  282. end = round_up(end, 128);
  283. drm_clflush_virt_range((void *)start, end - start);
  284. } else {
  285. drm_clflush_virt_range(addr, length);
  286. }
  287. }
  288. /* Only difference to the fast-path function is that this can handle bit17
  289. * and uses non-atomic copy and kmap functions. */
  290. static int
  291. shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
  292. char __user *user_data,
  293. bool page_do_bit17_swizzling, bool needs_clflush)
  294. {
  295. char *vaddr;
  296. int ret;
  297. vaddr = kmap(page);
  298. if (needs_clflush)
  299. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  300. page_length,
  301. page_do_bit17_swizzling);
  302. if (page_do_bit17_swizzling)
  303. ret = __copy_to_user_swizzled(user_data,
  304. vaddr, shmem_page_offset,
  305. page_length);
  306. else
  307. ret = __copy_to_user(user_data,
  308. vaddr + shmem_page_offset,
  309. page_length);
  310. kunmap(page);
  311. return ret;
  312. }
  313. static int
  314. i915_gem_shmem_pread(struct drm_device *dev,
  315. struct drm_i915_gem_object *obj,
  316. struct drm_i915_gem_pread *args,
  317. struct drm_file *file)
  318. {
  319. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  320. char __user *user_data;
  321. ssize_t remain;
  322. loff_t offset;
  323. int shmem_page_offset, page_length, ret = 0;
  324. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  325. int hit_slowpath = 0;
  326. int prefaulted = 0;
  327. int needs_clflush = 0;
  328. int release_page;
  329. user_data = (char __user *) (uintptr_t) args->data_ptr;
  330. remain = args->size;
  331. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  332. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
  333. /* If we're not in the cpu read domain, set ourself into the gtt
  334. * read domain and manually flush cachelines (if required). This
  335. * optimizes for the case when the gpu will dirty the data
  336. * anyway again before the next pread happens. */
  337. if (obj->cache_level == I915_CACHE_NONE)
  338. needs_clflush = 1;
  339. ret = i915_gem_object_set_to_gtt_domain(obj, false);
  340. if (ret)
  341. return ret;
  342. }
  343. offset = args->offset;
  344. while (remain > 0) {
  345. struct page *page;
  346. /* Operation in this page
  347. *
  348. * shmem_page_offset = offset within page in shmem file
  349. * page_length = bytes to copy for this page
  350. */
  351. shmem_page_offset = offset_in_page(offset);
  352. page_length = remain;
  353. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  354. page_length = PAGE_SIZE - shmem_page_offset;
  355. if (obj->pages) {
  356. page = obj->pages[offset >> PAGE_SHIFT];
  357. release_page = 0;
  358. } else {
  359. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  360. if (IS_ERR(page)) {
  361. ret = PTR_ERR(page);
  362. goto out;
  363. }
  364. release_page = 1;
  365. }
  366. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  367. (page_to_phys(page) & (1 << 17)) != 0;
  368. ret = shmem_pread_fast(page, shmem_page_offset, page_length,
  369. user_data, page_do_bit17_swizzling,
  370. needs_clflush);
  371. if (ret == 0)
  372. goto next_page;
  373. hit_slowpath = 1;
  374. page_cache_get(page);
  375. mutex_unlock(&dev->struct_mutex);
  376. if (!prefaulted) {
  377. ret = fault_in_multipages_writeable(user_data, remain);
  378. /* Userspace is tricking us, but we've already clobbered
  379. * its pages with the prefault and promised to write the
  380. * data up to the first fault. Hence ignore any errors
  381. * and just continue. */
  382. (void)ret;
  383. prefaulted = 1;
  384. }
  385. ret = shmem_pread_slow(page, shmem_page_offset, page_length,
  386. user_data, page_do_bit17_swizzling,
  387. needs_clflush);
  388. mutex_lock(&dev->struct_mutex);
  389. page_cache_release(page);
  390. next_page:
  391. mark_page_accessed(page);
  392. if (release_page)
  393. page_cache_release(page);
  394. if (ret) {
  395. ret = -EFAULT;
  396. goto out;
  397. }
  398. remain -= page_length;
  399. user_data += page_length;
  400. offset += page_length;
  401. }
  402. out:
  403. if (hit_slowpath) {
  404. /* Fixup: Kill any reinstated backing storage pages */
  405. if (obj->madv == __I915_MADV_PURGED)
  406. i915_gem_object_truncate(obj);
  407. }
  408. return ret;
  409. }
  410. /**
  411. * Reads data from the object referenced by handle.
  412. *
  413. * On error, the contents of *data are undefined.
  414. */
  415. int
  416. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  417. struct drm_file *file)
  418. {
  419. struct drm_i915_gem_pread *args = data;
  420. struct drm_i915_gem_object *obj;
  421. int ret = 0;
  422. if (args->size == 0)
  423. return 0;
  424. if (!access_ok(VERIFY_WRITE,
  425. (char __user *)(uintptr_t)args->data_ptr,
  426. args->size))
  427. return -EFAULT;
  428. ret = i915_mutex_lock_interruptible(dev);
  429. if (ret)
  430. return ret;
  431. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  432. if (&obj->base == NULL) {
  433. ret = -ENOENT;
  434. goto unlock;
  435. }
  436. /* Bounds check source. */
  437. if (args->offset > obj->base.size ||
  438. args->size > obj->base.size - args->offset) {
  439. ret = -EINVAL;
  440. goto out;
  441. }
  442. trace_i915_gem_object_pread(obj, args->offset, args->size);
  443. ret = i915_gem_shmem_pread(dev, obj, args, file);
  444. out:
  445. drm_gem_object_unreference(&obj->base);
  446. unlock:
  447. mutex_unlock(&dev->struct_mutex);
  448. return ret;
  449. }
  450. /* This is the fast write path which cannot handle
  451. * page faults in the source data
  452. */
  453. static inline int
  454. fast_user_write(struct io_mapping *mapping,
  455. loff_t page_base, int page_offset,
  456. char __user *user_data,
  457. int length)
  458. {
  459. char *vaddr_atomic;
  460. unsigned long unwritten;
  461. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  462. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  463. user_data, length);
  464. io_mapping_unmap_atomic(vaddr_atomic);
  465. return unwritten;
  466. }
  467. /**
  468. * This is the fast pwrite path, where we copy the data directly from the
  469. * user into the GTT, uncached.
  470. */
  471. static int
  472. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  473. struct drm_i915_gem_object *obj,
  474. struct drm_i915_gem_pwrite *args,
  475. struct drm_file *file)
  476. {
  477. drm_i915_private_t *dev_priv = dev->dev_private;
  478. ssize_t remain;
  479. loff_t offset, page_base;
  480. char __user *user_data;
  481. int page_offset, page_length, ret;
  482. ret = i915_gem_object_pin(obj, 0, true);
  483. if (ret)
  484. goto out;
  485. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  486. if (ret)
  487. goto out_unpin;
  488. ret = i915_gem_object_put_fence(obj);
  489. if (ret)
  490. goto out_unpin;
  491. user_data = (char __user *) (uintptr_t) args->data_ptr;
  492. remain = args->size;
  493. offset = obj->gtt_offset + args->offset;
  494. while (remain > 0) {
  495. /* Operation in this page
  496. *
  497. * page_base = page offset within aperture
  498. * page_offset = offset within page
  499. * page_length = bytes to copy for this page
  500. */
  501. page_base = offset & PAGE_MASK;
  502. page_offset = offset_in_page(offset);
  503. page_length = remain;
  504. if ((page_offset + remain) > PAGE_SIZE)
  505. page_length = PAGE_SIZE - page_offset;
  506. /* If we get a fault while copying data, then (presumably) our
  507. * source page isn't available. Return the error and we'll
  508. * retry in the slow path.
  509. */
  510. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  511. page_offset, user_data, page_length)) {
  512. ret = -EFAULT;
  513. goto out_unpin;
  514. }
  515. remain -= page_length;
  516. user_data += page_length;
  517. offset += page_length;
  518. }
  519. out_unpin:
  520. i915_gem_object_unpin(obj);
  521. out:
  522. return ret;
  523. }
  524. /* Per-page copy function for the shmem pwrite fastpath.
  525. * Flushes invalid cachelines before writing to the target if
  526. * needs_clflush_before is set and flushes out any written cachelines after
  527. * writing if needs_clflush is set. */
  528. static int
  529. shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
  530. char __user *user_data,
  531. bool page_do_bit17_swizzling,
  532. bool needs_clflush_before,
  533. bool needs_clflush_after)
  534. {
  535. char *vaddr;
  536. int ret;
  537. if (unlikely(page_do_bit17_swizzling))
  538. return -EINVAL;
  539. vaddr = kmap_atomic(page);
  540. if (needs_clflush_before)
  541. drm_clflush_virt_range(vaddr + shmem_page_offset,
  542. page_length);
  543. ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
  544. user_data,
  545. page_length);
  546. if (needs_clflush_after)
  547. drm_clflush_virt_range(vaddr + shmem_page_offset,
  548. page_length);
  549. kunmap_atomic(vaddr);
  550. return ret;
  551. }
  552. /* Only difference to the fast-path function is that this can handle bit17
  553. * and uses non-atomic copy and kmap functions. */
  554. static int
  555. shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
  556. char __user *user_data,
  557. bool page_do_bit17_swizzling,
  558. bool needs_clflush_before,
  559. bool needs_clflush_after)
  560. {
  561. char *vaddr;
  562. int ret;
  563. vaddr = kmap(page);
  564. if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
  565. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  566. page_length,
  567. page_do_bit17_swizzling);
  568. if (page_do_bit17_swizzling)
  569. ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
  570. user_data,
  571. page_length);
  572. else
  573. ret = __copy_from_user(vaddr + shmem_page_offset,
  574. user_data,
  575. page_length);
  576. if (needs_clflush_after)
  577. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  578. page_length,
  579. page_do_bit17_swizzling);
  580. kunmap(page);
  581. return ret;
  582. }
  583. static int
  584. i915_gem_shmem_pwrite(struct drm_device *dev,
  585. struct drm_i915_gem_object *obj,
  586. struct drm_i915_gem_pwrite *args,
  587. struct drm_file *file)
  588. {
  589. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  590. ssize_t remain;
  591. loff_t offset;
  592. char __user *user_data;
  593. int shmem_page_offset, page_length, ret = 0;
  594. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  595. int hit_slowpath = 0;
  596. int needs_clflush_after = 0;
  597. int needs_clflush_before = 0;
  598. int release_page;
  599. user_data = (char __user *) (uintptr_t) args->data_ptr;
  600. remain = args->size;
  601. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  602. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  603. /* If we're not in the cpu write domain, set ourself into the gtt
  604. * write domain and manually flush cachelines (if required). This
  605. * optimizes for the case when the gpu will use the data
  606. * right away and we therefore have to clflush anyway. */
  607. if (obj->cache_level == I915_CACHE_NONE)
  608. needs_clflush_after = 1;
  609. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  610. if (ret)
  611. return ret;
  612. }
  613. /* Same trick applies for invalidate partially written cachelines before
  614. * writing. */
  615. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
  616. && obj->cache_level == I915_CACHE_NONE)
  617. needs_clflush_before = 1;
  618. offset = args->offset;
  619. obj->dirty = 1;
  620. while (remain > 0) {
  621. struct page *page;
  622. int partial_cacheline_write;
  623. /* Operation in this page
  624. *
  625. * shmem_page_offset = offset within page in shmem file
  626. * page_length = bytes to copy for this page
  627. */
  628. shmem_page_offset = offset_in_page(offset);
  629. page_length = remain;
  630. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  631. page_length = PAGE_SIZE - shmem_page_offset;
  632. /* If we don't overwrite a cacheline completely we need to be
  633. * careful to have up-to-date data by first clflushing. Don't
  634. * overcomplicate things and flush the entire patch. */
  635. partial_cacheline_write = needs_clflush_before &&
  636. ((shmem_page_offset | page_length)
  637. & (boot_cpu_data.x86_clflush_size - 1));
  638. if (obj->pages) {
  639. page = obj->pages[offset >> PAGE_SHIFT];
  640. release_page = 0;
  641. } else {
  642. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  643. if (IS_ERR(page)) {
  644. ret = PTR_ERR(page);
  645. goto out;
  646. }
  647. release_page = 1;
  648. }
  649. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  650. (page_to_phys(page) & (1 << 17)) != 0;
  651. ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
  652. user_data, page_do_bit17_swizzling,
  653. partial_cacheline_write,
  654. needs_clflush_after);
  655. if (ret == 0)
  656. goto next_page;
  657. hit_slowpath = 1;
  658. page_cache_get(page);
  659. mutex_unlock(&dev->struct_mutex);
  660. ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
  661. user_data, page_do_bit17_swizzling,
  662. partial_cacheline_write,
  663. needs_clflush_after);
  664. mutex_lock(&dev->struct_mutex);
  665. page_cache_release(page);
  666. next_page:
  667. set_page_dirty(page);
  668. mark_page_accessed(page);
  669. if (release_page)
  670. page_cache_release(page);
  671. if (ret) {
  672. ret = -EFAULT;
  673. goto out;
  674. }
  675. remain -= page_length;
  676. user_data += page_length;
  677. offset += page_length;
  678. }
  679. out:
  680. if (hit_slowpath) {
  681. /* Fixup: Kill any reinstated backing storage pages */
  682. if (obj->madv == __I915_MADV_PURGED)
  683. i915_gem_object_truncate(obj);
  684. /* and flush dirty cachelines in case the object isn't in the cpu write
  685. * domain anymore. */
  686. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  687. i915_gem_clflush_object(obj);
  688. intel_gtt_chipset_flush();
  689. }
  690. }
  691. if (needs_clflush_after)
  692. intel_gtt_chipset_flush();
  693. return ret;
  694. }
  695. /**
  696. * Writes data to the object referenced by handle.
  697. *
  698. * On error, the contents of the buffer that were to be modified are undefined.
  699. */
  700. int
  701. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  702. struct drm_file *file)
  703. {
  704. struct drm_i915_gem_pwrite *args = data;
  705. struct drm_i915_gem_object *obj;
  706. int ret;
  707. if (args->size == 0)
  708. return 0;
  709. if (!access_ok(VERIFY_READ,
  710. (char __user *)(uintptr_t)args->data_ptr,
  711. args->size))
  712. return -EFAULT;
  713. ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
  714. args->size);
  715. if (ret)
  716. return -EFAULT;
  717. ret = i915_mutex_lock_interruptible(dev);
  718. if (ret)
  719. return ret;
  720. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  721. if (&obj->base == NULL) {
  722. ret = -ENOENT;
  723. goto unlock;
  724. }
  725. /* Bounds check destination. */
  726. if (args->offset > obj->base.size ||
  727. args->size > obj->base.size - args->offset) {
  728. ret = -EINVAL;
  729. goto out;
  730. }
  731. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  732. ret = -EFAULT;
  733. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  734. * it would end up going through the fenced access, and we'll get
  735. * different detiling behavior between reading and writing.
  736. * pread/pwrite currently are reading and writing from the CPU
  737. * perspective, requiring manual detiling by the client.
  738. */
  739. if (obj->phys_obj) {
  740. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  741. goto out;
  742. }
  743. if (obj->gtt_space &&
  744. obj->cache_level == I915_CACHE_NONE &&
  745. obj->map_and_fenceable &&
  746. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  747. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  748. /* Note that the gtt paths might fail with non-page-backed user
  749. * pointers (e.g. gtt mappings when moving data between
  750. * textures). Fallback to the shmem path in that case. */
  751. }
  752. if (ret == -EFAULT)
  753. ret = i915_gem_shmem_pwrite(dev, obj, args, file);
  754. out:
  755. drm_gem_object_unreference(&obj->base);
  756. unlock:
  757. mutex_unlock(&dev->struct_mutex);
  758. return ret;
  759. }
  760. /**
  761. * Called when user space prepares to use an object with the CPU, either
  762. * through the mmap ioctl's mapping or a GTT mapping.
  763. */
  764. int
  765. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  766. struct drm_file *file)
  767. {
  768. struct drm_i915_gem_set_domain *args = data;
  769. struct drm_i915_gem_object *obj;
  770. uint32_t read_domains = args->read_domains;
  771. uint32_t write_domain = args->write_domain;
  772. int ret;
  773. if (!(dev->driver->driver_features & DRIVER_GEM))
  774. return -ENODEV;
  775. /* Only handle setting domains to types used by the CPU. */
  776. if (write_domain & I915_GEM_GPU_DOMAINS)
  777. return -EINVAL;
  778. if (read_domains & I915_GEM_GPU_DOMAINS)
  779. return -EINVAL;
  780. /* Having something in the write domain implies it's in the read
  781. * domain, and only that read domain. Enforce that in the request.
  782. */
  783. if (write_domain != 0 && read_domains != write_domain)
  784. return -EINVAL;
  785. ret = i915_mutex_lock_interruptible(dev);
  786. if (ret)
  787. return ret;
  788. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  789. if (&obj->base == NULL) {
  790. ret = -ENOENT;
  791. goto unlock;
  792. }
  793. if (read_domains & I915_GEM_DOMAIN_GTT) {
  794. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  795. /* Silently promote "you're not bound, there was nothing to do"
  796. * to success, since the client was just asking us to
  797. * make sure everything was done.
  798. */
  799. if (ret == -EINVAL)
  800. ret = 0;
  801. } else {
  802. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  803. }
  804. drm_gem_object_unreference(&obj->base);
  805. unlock:
  806. mutex_unlock(&dev->struct_mutex);
  807. return ret;
  808. }
  809. /**
  810. * Called when user space has done writes to this buffer
  811. */
  812. int
  813. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  814. struct drm_file *file)
  815. {
  816. struct drm_i915_gem_sw_finish *args = data;
  817. struct drm_i915_gem_object *obj;
  818. int ret = 0;
  819. if (!(dev->driver->driver_features & DRIVER_GEM))
  820. return -ENODEV;
  821. ret = i915_mutex_lock_interruptible(dev);
  822. if (ret)
  823. return ret;
  824. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  825. if (&obj->base == NULL) {
  826. ret = -ENOENT;
  827. goto unlock;
  828. }
  829. /* Pinned buffers may be scanout, so flush the cache */
  830. if (obj->pin_count)
  831. i915_gem_object_flush_cpu_write_domain(obj);
  832. drm_gem_object_unreference(&obj->base);
  833. unlock:
  834. mutex_unlock(&dev->struct_mutex);
  835. return ret;
  836. }
  837. /**
  838. * Maps the contents of an object, returning the address it is mapped
  839. * into.
  840. *
  841. * While the mapping holds a reference on the contents of the object, it doesn't
  842. * imply a ref on the object itself.
  843. */
  844. int
  845. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  846. struct drm_file *file)
  847. {
  848. struct drm_i915_gem_mmap *args = data;
  849. struct drm_gem_object *obj;
  850. unsigned long addr;
  851. if (!(dev->driver->driver_features & DRIVER_GEM))
  852. return -ENODEV;
  853. obj = drm_gem_object_lookup(dev, file, args->handle);
  854. if (obj == NULL)
  855. return -ENOENT;
  856. down_write(&current->mm->mmap_sem);
  857. addr = do_mmap(obj->filp, 0, args->size,
  858. PROT_READ | PROT_WRITE, MAP_SHARED,
  859. args->offset);
  860. up_write(&current->mm->mmap_sem);
  861. drm_gem_object_unreference_unlocked(obj);
  862. if (IS_ERR((void *)addr))
  863. return addr;
  864. args->addr_ptr = (uint64_t) addr;
  865. return 0;
  866. }
  867. /**
  868. * i915_gem_fault - fault a page into the GTT
  869. * vma: VMA in question
  870. * vmf: fault info
  871. *
  872. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  873. * from userspace. The fault handler takes care of binding the object to
  874. * the GTT (if needed), allocating and programming a fence register (again,
  875. * only if needed based on whether the old reg is still valid or the object
  876. * is tiled) and inserting a new PTE into the faulting process.
  877. *
  878. * Note that the faulting process may involve evicting existing objects
  879. * from the GTT and/or fence registers to make room. So performance may
  880. * suffer if the GTT working set is large or there are few fence registers
  881. * left.
  882. */
  883. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  884. {
  885. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  886. struct drm_device *dev = obj->base.dev;
  887. drm_i915_private_t *dev_priv = dev->dev_private;
  888. pgoff_t page_offset;
  889. unsigned long pfn;
  890. int ret = 0;
  891. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  892. /* We don't use vmf->pgoff since that has the fake offset */
  893. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  894. PAGE_SHIFT;
  895. ret = i915_mutex_lock_interruptible(dev);
  896. if (ret)
  897. goto out;
  898. trace_i915_gem_object_fault(obj, page_offset, true, write);
  899. /* Now bind it into the GTT if needed */
  900. if (!obj->map_and_fenceable) {
  901. ret = i915_gem_object_unbind(obj);
  902. if (ret)
  903. goto unlock;
  904. }
  905. if (!obj->gtt_space) {
  906. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  907. if (ret)
  908. goto unlock;
  909. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  910. if (ret)
  911. goto unlock;
  912. }
  913. if (!obj->has_global_gtt_mapping)
  914. i915_gem_gtt_bind_object(obj, obj->cache_level);
  915. ret = i915_gem_object_get_fence(obj, NULL);
  916. if (ret)
  917. goto unlock;
  918. if (i915_gem_object_is_inactive(obj))
  919. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  920. obj->fault_mappable = true;
  921. pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
  922. page_offset;
  923. /* Finally, remap it using the new GTT offset */
  924. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  925. unlock:
  926. mutex_unlock(&dev->struct_mutex);
  927. out:
  928. switch (ret) {
  929. case -EIO:
  930. case -EAGAIN:
  931. /* Give the error handler a chance to run and move the
  932. * objects off the GPU active list. Next time we service the
  933. * fault, we should be able to transition the page into the
  934. * GTT without touching the GPU (and so avoid further
  935. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  936. * with coherency, just lost writes.
  937. */
  938. set_need_resched();
  939. case 0:
  940. case -ERESTARTSYS:
  941. case -EINTR:
  942. return VM_FAULT_NOPAGE;
  943. case -ENOMEM:
  944. return VM_FAULT_OOM;
  945. default:
  946. return VM_FAULT_SIGBUS;
  947. }
  948. }
  949. /**
  950. * i915_gem_release_mmap - remove physical page mappings
  951. * @obj: obj in question
  952. *
  953. * Preserve the reservation of the mmapping with the DRM core code, but
  954. * relinquish ownership of the pages back to the system.
  955. *
  956. * It is vital that we remove the page mapping if we have mapped a tiled
  957. * object through the GTT and then lose the fence register due to
  958. * resource pressure. Similarly if the object has been moved out of the
  959. * aperture, than pages mapped into userspace must be revoked. Removing the
  960. * mapping will then trigger a page fault on the next user access, allowing
  961. * fixup by i915_gem_fault().
  962. */
  963. void
  964. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  965. {
  966. if (!obj->fault_mappable)
  967. return;
  968. if (obj->base.dev->dev_mapping)
  969. unmap_mapping_range(obj->base.dev->dev_mapping,
  970. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  971. obj->base.size, 1);
  972. obj->fault_mappable = false;
  973. }
  974. static uint32_t
  975. i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
  976. {
  977. uint32_t gtt_size;
  978. if (INTEL_INFO(dev)->gen >= 4 ||
  979. tiling_mode == I915_TILING_NONE)
  980. return size;
  981. /* Previous chips need a power-of-two fence region when tiling */
  982. if (INTEL_INFO(dev)->gen == 3)
  983. gtt_size = 1024*1024;
  984. else
  985. gtt_size = 512*1024;
  986. while (gtt_size < size)
  987. gtt_size <<= 1;
  988. return gtt_size;
  989. }
  990. /**
  991. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  992. * @obj: object to check
  993. *
  994. * Return the required GTT alignment for an object, taking into account
  995. * potential fence register mapping.
  996. */
  997. static uint32_t
  998. i915_gem_get_gtt_alignment(struct drm_device *dev,
  999. uint32_t size,
  1000. int tiling_mode)
  1001. {
  1002. /*
  1003. * Minimum alignment is 4k (GTT page size), but might be greater
  1004. * if a fence register is needed for the object.
  1005. */
  1006. if (INTEL_INFO(dev)->gen >= 4 ||
  1007. tiling_mode == I915_TILING_NONE)
  1008. return 4096;
  1009. /*
  1010. * Previous chips need to be aligned to the size of the smallest
  1011. * fence register that can contain the object.
  1012. */
  1013. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1014. }
  1015. /**
  1016. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1017. * unfenced object
  1018. * @dev: the device
  1019. * @size: size of the object
  1020. * @tiling_mode: tiling mode of the object
  1021. *
  1022. * Return the required GTT alignment for an object, only taking into account
  1023. * unfenced tiled surface requirements.
  1024. */
  1025. uint32_t
  1026. i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
  1027. uint32_t size,
  1028. int tiling_mode)
  1029. {
  1030. /*
  1031. * Minimum alignment is 4k (GTT page size) for sane hw.
  1032. */
  1033. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1034. tiling_mode == I915_TILING_NONE)
  1035. return 4096;
  1036. /* Previous hardware however needs to be aligned to a power-of-two
  1037. * tile height. The simplest method for determining this is to reuse
  1038. * the power-of-tile object size.
  1039. */
  1040. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1041. }
  1042. int
  1043. i915_gem_mmap_gtt(struct drm_file *file,
  1044. struct drm_device *dev,
  1045. uint32_t handle,
  1046. uint64_t *offset)
  1047. {
  1048. struct drm_i915_private *dev_priv = dev->dev_private;
  1049. struct drm_i915_gem_object *obj;
  1050. int ret;
  1051. if (!(dev->driver->driver_features & DRIVER_GEM))
  1052. return -ENODEV;
  1053. ret = i915_mutex_lock_interruptible(dev);
  1054. if (ret)
  1055. return ret;
  1056. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1057. if (&obj->base == NULL) {
  1058. ret = -ENOENT;
  1059. goto unlock;
  1060. }
  1061. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1062. ret = -E2BIG;
  1063. goto out;
  1064. }
  1065. if (obj->madv != I915_MADV_WILLNEED) {
  1066. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1067. ret = -EINVAL;
  1068. goto out;
  1069. }
  1070. if (!obj->base.map_list.map) {
  1071. ret = drm_gem_create_mmap_offset(&obj->base);
  1072. if (ret)
  1073. goto out;
  1074. }
  1075. *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1076. out:
  1077. drm_gem_object_unreference(&obj->base);
  1078. unlock:
  1079. mutex_unlock(&dev->struct_mutex);
  1080. return ret;
  1081. }
  1082. /**
  1083. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1084. * @dev: DRM device
  1085. * @data: GTT mapping ioctl data
  1086. * @file: GEM object info
  1087. *
  1088. * Simply returns the fake offset to userspace so it can mmap it.
  1089. * The mmap call will end up in drm_gem_mmap(), which will set things
  1090. * up so we can get faults in the handler above.
  1091. *
  1092. * The fault handler will take care of binding the object into the GTT
  1093. * (since it may have been evicted to make room for something), allocating
  1094. * a fence register, and mapping the appropriate aperture address into
  1095. * userspace.
  1096. */
  1097. int
  1098. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1099. struct drm_file *file)
  1100. {
  1101. struct drm_i915_gem_mmap_gtt *args = data;
  1102. if (!(dev->driver->driver_features & DRIVER_GEM))
  1103. return -ENODEV;
  1104. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1105. }
  1106. static int
  1107. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
  1108. gfp_t gfpmask)
  1109. {
  1110. int page_count, i;
  1111. struct address_space *mapping;
  1112. struct inode *inode;
  1113. struct page *page;
  1114. /* Get the list of pages out of our struct file. They'll be pinned
  1115. * at this point until we release them.
  1116. */
  1117. page_count = obj->base.size / PAGE_SIZE;
  1118. BUG_ON(obj->pages != NULL);
  1119. obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1120. if (obj->pages == NULL)
  1121. return -ENOMEM;
  1122. inode = obj->base.filp->f_path.dentry->d_inode;
  1123. mapping = inode->i_mapping;
  1124. gfpmask |= mapping_gfp_mask(mapping);
  1125. for (i = 0; i < page_count; i++) {
  1126. page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
  1127. if (IS_ERR(page))
  1128. goto err_pages;
  1129. obj->pages[i] = page;
  1130. }
  1131. if (i915_gem_object_needs_bit17_swizzle(obj))
  1132. i915_gem_object_do_bit_17_swizzle(obj);
  1133. return 0;
  1134. err_pages:
  1135. while (i--)
  1136. page_cache_release(obj->pages[i]);
  1137. drm_free_large(obj->pages);
  1138. obj->pages = NULL;
  1139. return PTR_ERR(page);
  1140. }
  1141. static void
  1142. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1143. {
  1144. int page_count = obj->base.size / PAGE_SIZE;
  1145. int i;
  1146. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1147. if (i915_gem_object_needs_bit17_swizzle(obj))
  1148. i915_gem_object_save_bit_17_swizzle(obj);
  1149. if (obj->madv == I915_MADV_DONTNEED)
  1150. obj->dirty = 0;
  1151. for (i = 0; i < page_count; i++) {
  1152. if (obj->dirty)
  1153. set_page_dirty(obj->pages[i]);
  1154. if (obj->madv == I915_MADV_WILLNEED)
  1155. mark_page_accessed(obj->pages[i]);
  1156. page_cache_release(obj->pages[i]);
  1157. }
  1158. obj->dirty = 0;
  1159. drm_free_large(obj->pages);
  1160. obj->pages = NULL;
  1161. }
  1162. void
  1163. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1164. struct intel_ring_buffer *ring,
  1165. u32 seqno)
  1166. {
  1167. struct drm_device *dev = obj->base.dev;
  1168. struct drm_i915_private *dev_priv = dev->dev_private;
  1169. BUG_ON(ring == NULL);
  1170. obj->ring = ring;
  1171. /* Add a reference if we're newly entering the active list. */
  1172. if (!obj->active) {
  1173. drm_gem_object_reference(&obj->base);
  1174. obj->active = 1;
  1175. }
  1176. /* Move from whatever list we were on to the tail of execution. */
  1177. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1178. list_move_tail(&obj->ring_list, &ring->active_list);
  1179. obj->last_rendering_seqno = seqno;
  1180. if (obj->fenced_gpu_access) {
  1181. obj->last_fenced_seqno = seqno;
  1182. obj->last_fenced_ring = ring;
  1183. /* Bump MRU to take account of the delayed flush */
  1184. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1185. struct drm_i915_fence_reg *reg;
  1186. reg = &dev_priv->fence_regs[obj->fence_reg];
  1187. list_move_tail(&reg->lru_list,
  1188. &dev_priv->mm.fence_list);
  1189. }
  1190. }
  1191. }
  1192. static void
  1193. i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
  1194. {
  1195. list_del_init(&obj->ring_list);
  1196. obj->last_rendering_seqno = 0;
  1197. }
  1198. static void
  1199. i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
  1200. {
  1201. struct drm_device *dev = obj->base.dev;
  1202. drm_i915_private_t *dev_priv = dev->dev_private;
  1203. BUG_ON(!obj->active);
  1204. list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
  1205. i915_gem_object_move_off_active(obj);
  1206. }
  1207. static void
  1208. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1209. {
  1210. struct drm_device *dev = obj->base.dev;
  1211. struct drm_i915_private *dev_priv = dev->dev_private;
  1212. if (obj->pin_count != 0)
  1213. list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
  1214. else
  1215. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1216. BUG_ON(!list_empty(&obj->gpu_write_list));
  1217. BUG_ON(!obj->active);
  1218. obj->ring = NULL;
  1219. i915_gem_object_move_off_active(obj);
  1220. obj->fenced_gpu_access = false;
  1221. obj->active = 0;
  1222. obj->pending_gpu_write = false;
  1223. drm_gem_object_unreference(&obj->base);
  1224. WARN_ON(i915_verify_lists(dev));
  1225. }
  1226. /* Immediately discard the backing storage */
  1227. static void
  1228. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1229. {
  1230. struct inode *inode;
  1231. /* Our goal here is to return as much of the memory as
  1232. * is possible back to the system as we are called from OOM.
  1233. * To do this we must instruct the shmfs to drop all of its
  1234. * backing pages, *now*.
  1235. */
  1236. inode = obj->base.filp->f_path.dentry->d_inode;
  1237. shmem_truncate_range(inode, 0, (loff_t)-1);
  1238. if (obj->base.map_list.map)
  1239. drm_gem_free_mmap_offset(&obj->base);
  1240. obj->madv = __I915_MADV_PURGED;
  1241. }
  1242. static inline int
  1243. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1244. {
  1245. return obj->madv == I915_MADV_DONTNEED;
  1246. }
  1247. static void
  1248. i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
  1249. uint32_t flush_domains)
  1250. {
  1251. struct drm_i915_gem_object *obj, *next;
  1252. list_for_each_entry_safe(obj, next,
  1253. &ring->gpu_write_list,
  1254. gpu_write_list) {
  1255. if (obj->base.write_domain & flush_domains) {
  1256. uint32_t old_write_domain = obj->base.write_domain;
  1257. obj->base.write_domain = 0;
  1258. list_del_init(&obj->gpu_write_list);
  1259. i915_gem_object_move_to_active(obj, ring,
  1260. i915_gem_next_request_seqno(ring));
  1261. trace_i915_gem_object_change_domain(obj,
  1262. obj->base.read_domains,
  1263. old_write_domain);
  1264. }
  1265. }
  1266. }
  1267. static u32
  1268. i915_gem_get_seqno(struct drm_device *dev)
  1269. {
  1270. drm_i915_private_t *dev_priv = dev->dev_private;
  1271. u32 seqno = dev_priv->next_seqno;
  1272. /* reserve 0 for non-seqno */
  1273. if (++dev_priv->next_seqno == 0)
  1274. dev_priv->next_seqno = 1;
  1275. return seqno;
  1276. }
  1277. u32
  1278. i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
  1279. {
  1280. if (ring->outstanding_lazy_request == 0)
  1281. ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
  1282. return ring->outstanding_lazy_request;
  1283. }
  1284. int
  1285. i915_add_request(struct intel_ring_buffer *ring,
  1286. struct drm_file *file,
  1287. struct drm_i915_gem_request *request)
  1288. {
  1289. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1290. uint32_t seqno;
  1291. u32 request_ring_position;
  1292. int was_empty;
  1293. int ret;
  1294. BUG_ON(request == NULL);
  1295. seqno = i915_gem_next_request_seqno(ring);
  1296. /* Record the position of the start of the request so that
  1297. * should we detect the updated seqno part-way through the
  1298. * GPU processing the request, we never over-estimate the
  1299. * position of the head.
  1300. */
  1301. request_ring_position = intel_ring_get_tail(ring);
  1302. ret = ring->add_request(ring, &seqno);
  1303. if (ret)
  1304. return ret;
  1305. trace_i915_gem_request_add(ring, seqno);
  1306. request->seqno = seqno;
  1307. request->ring = ring;
  1308. request->tail = request_ring_position;
  1309. request->emitted_jiffies = jiffies;
  1310. was_empty = list_empty(&ring->request_list);
  1311. list_add_tail(&request->list, &ring->request_list);
  1312. if (file) {
  1313. struct drm_i915_file_private *file_priv = file->driver_priv;
  1314. spin_lock(&file_priv->mm.lock);
  1315. request->file_priv = file_priv;
  1316. list_add_tail(&request->client_list,
  1317. &file_priv->mm.request_list);
  1318. spin_unlock(&file_priv->mm.lock);
  1319. }
  1320. ring->outstanding_lazy_request = 0;
  1321. if (!dev_priv->mm.suspended) {
  1322. if (i915_enable_hangcheck) {
  1323. mod_timer(&dev_priv->hangcheck_timer,
  1324. jiffies +
  1325. msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1326. }
  1327. if (was_empty)
  1328. queue_delayed_work(dev_priv->wq,
  1329. &dev_priv->mm.retire_work, HZ);
  1330. }
  1331. return 0;
  1332. }
  1333. static inline void
  1334. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1335. {
  1336. struct drm_i915_file_private *file_priv = request->file_priv;
  1337. if (!file_priv)
  1338. return;
  1339. spin_lock(&file_priv->mm.lock);
  1340. if (request->file_priv) {
  1341. list_del(&request->client_list);
  1342. request->file_priv = NULL;
  1343. }
  1344. spin_unlock(&file_priv->mm.lock);
  1345. }
  1346. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1347. struct intel_ring_buffer *ring)
  1348. {
  1349. while (!list_empty(&ring->request_list)) {
  1350. struct drm_i915_gem_request *request;
  1351. request = list_first_entry(&ring->request_list,
  1352. struct drm_i915_gem_request,
  1353. list);
  1354. list_del(&request->list);
  1355. i915_gem_request_remove_from_client(request);
  1356. kfree(request);
  1357. }
  1358. while (!list_empty(&ring->active_list)) {
  1359. struct drm_i915_gem_object *obj;
  1360. obj = list_first_entry(&ring->active_list,
  1361. struct drm_i915_gem_object,
  1362. ring_list);
  1363. obj->base.write_domain = 0;
  1364. list_del_init(&obj->gpu_write_list);
  1365. i915_gem_object_move_to_inactive(obj);
  1366. }
  1367. }
  1368. static void i915_gem_reset_fences(struct drm_device *dev)
  1369. {
  1370. struct drm_i915_private *dev_priv = dev->dev_private;
  1371. int i;
  1372. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  1373. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1374. struct drm_i915_gem_object *obj = reg->obj;
  1375. if (!obj)
  1376. continue;
  1377. if (obj->tiling_mode)
  1378. i915_gem_release_mmap(obj);
  1379. reg->obj->fence_reg = I915_FENCE_REG_NONE;
  1380. reg->obj->fenced_gpu_access = false;
  1381. reg->obj->last_fenced_seqno = 0;
  1382. reg->obj->last_fenced_ring = NULL;
  1383. i915_gem_clear_fence_reg(dev, reg);
  1384. }
  1385. }
  1386. void i915_gem_reset(struct drm_device *dev)
  1387. {
  1388. struct drm_i915_private *dev_priv = dev->dev_private;
  1389. struct drm_i915_gem_object *obj;
  1390. int i;
  1391. for (i = 0; i < I915_NUM_RINGS; i++)
  1392. i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
  1393. /* Remove anything from the flushing lists. The GPU cache is likely
  1394. * to be lost on reset along with the data, so simply move the
  1395. * lost bo to the inactive list.
  1396. */
  1397. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1398. obj = list_first_entry(&dev_priv->mm.flushing_list,
  1399. struct drm_i915_gem_object,
  1400. mm_list);
  1401. obj->base.write_domain = 0;
  1402. list_del_init(&obj->gpu_write_list);
  1403. i915_gem_object_move_to_inactive(obj);
  1404. }
  1405. /* Move everything out of the GPU domains to ensure we do any
  1406. * necessary invalidation upon reuse.
  1407. */
  1408. list_for_each_entry(obj,
  1409. &dev_priv->mm.inactive_list,
  1410. mm_list)
  1411. {
  1412. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1413. }
  1414. /* The fence registers are invalidated so clear them out */
  1415. i915_gem_reset_fences(dev);
  1416. }
  1417. /**
  1418. * This function clears the request list as sequence numbers are passed.
  1419. */
  1420. void
  1421. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  1422. {
  1423. uint32_t seqno;
  1424. int i;
  1425. if (list_empty(&ring->request_list))
  1426. return;
  1427. WARN_ON(i915_verify_lists(ring->dev));
  1428. seqno = ring->get_seqno(ring);
  1429. for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
  1430. if (seqno >= ring->sync_seqno[i])
  1431. ring->sync_seqno[i] = 0;
  1432. while (!list_empty(&ring->request_list)) {
  1433. struct drm_i915_gem_request *request;
  1434. request = list_first_entry(&ring->request_list,
  1435. struct drm_i915_gem_request,
  1436. list);
  1437. if (!i915_seqno_passed(seqno, request->seqno))
  1438. break;
  1439. trace_i915_gem_request_retire(ring, request->seqno);
  1440. /* We know the GPU must have read the request to have
  1441. * sent us the seqno + interrupt, so use the position
  1442. * of tail of the request to update the last known position
  1443. * of the GPU head.
  1444. */
  1445. ring->last_retired_head = request->tail;
  1446. list_del(&request->list);
  1447. i915_gem_request_remove_from_client(request);
  1448. kfree(request);
  1449. }
  1450. /* Move any buffers on the active list that are no longer referenced
  1451. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1452. */
  1453. while (!list_empty(&ring->active_list)) {
  1454. struct drm_i915_gem_object *obj;
  1455. obj = list_first_entry(&ring->active_list,
  1456. struct drm_i915_gem_object,
  1457. ring_list);
  1458. if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
  1459. break;
  1460. if (obj->base.write_domain != 0)
  1461. i915_gem_object_move_to_flushing(obj);
  1462. else
  1463. i915_gem_object_move_to_inactive(obj);
  1464. }
  1465. if (unlikely(ring->trace_irq_seqno &&
  1466. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  1467. ring->irq_put(ring);
  1468. ring->trace_irq_seqno = 0;
  1469. }
  1470. WARN_ON(i915_verify_lists(ring->dev));
  1471. }
  1472. void
  1473. i915_gem_retire_requests(struct drm_device *dev)
  1474. {
  1475. drm_i915_private_t *dev_priv = dev->dev_private;
  1476. int i;
  1477. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1478. struct drm_i915_gem_object *obj, *next;
  1479. /* We must be careful that during unbind() we do not
  1480. * accidentally infinitely recurse into retire requests.
  1481. * Currently:
  1482. * retire -> free -> unbind -> wait -> retire_ring
  1483. */
  1484. list_for_each_entry_safe(obj, next,
  1485. &dev_priv->mm.deferred_free_list,
  1486. mm_list)
  1487. i915_gem_free_object_tail(obj);
  1488. }
  1489. for (i = 0; i < I915_NUM_RINGS; i++)
  1490. i915_gem_retire_requests_ring(&dev_priv->ring[i]);
  1491. }
  1492. static void
  1493. i915_gem_retire_work_handler(struct work_struct *work)
  1494. {
  1495. drm_i915_private_t *dev_priv;
  1496. struct drm_device *dev;
  1497. bool idle;
  1498. int i;
  1499. dev_priv = container_of(work, drm_i915_private_t,
  1500. mm.retire_work.work);
  1501. dev = dev_priv->dev;
  1502. /* Come back later if the device is busy... */
  1503. if (!mutex_trylock(&dev->struct_mutex)) {
  1504. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1505. return;
  1506. }
  1507. i915_gem_retire_requests(dev);
  1508. /* Send a periodic flush down the ring so we don't hold onto GEM
  1509. * objects indefinitely.
  1510. */
  1511. idle = true;
  1512. for (i = 0; i < I915_NUM_RINGS; i++) {
  1513. struct intel_ring_buffer *ring = &dev_priv->ring[i];
  1514. if (!list_empty(&ring->gpu_write_list)) {
  1515. struct drm_i915_gem_request *request;
  1516. int ret;
  1517. ret = i915_gem_flush_ring(ring,
  1518. 0, I915_GEM_GPU_DOMAINS);
  1519. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1520. if (ret || request == NULL ||
  1521. i915_add_request(ring, NULL, request))
  1522. kfree(request);
  1523. }
  1524. idle &= list_empty(&ring->request_list);
  1525. }
  1526. if (!dev_priv->mm.suspended && !idle)
  1527. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1528. mutex_unlock(&dev->struct_mutex);
  1529. }
  1530. /**
  1531. * Waits for a sequence number to be signaled, and cleans up the
  1532. * request and object lists appropriately for that event.
  1533. */
  1534. int
  1535. i915_wait_request(struct intel_ring_buffer *ring,
  1536. uint32_t seqno,
  1537. bool do_retire)
  1538. {
  1539. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1540. u32 ier;
  1541. int ret = 0;
  1542. BUG_ON(seqno == 0);
  1543. if (atomic_read(&dev_priv->mm.wedged)) {
  1544. struct completion *x = &dev_priv->error_completion;
  1545. bool recovery_complete;
  1546. unsigned long flags;
  1547. /* Give the error handler a chance to run. */
  1548. spin_lock_irqsave(&x->wait.lock, flags);
  1549. recovery_complete = x->done > 0;
  1550. spin_unlock_irqrestore(&x->wait.lock, flags);
  1551. return recovery_complete ? -EIO : -EAGAIN;
  1552. }
  1553. if (seqno == ring->outstanding_lazy_request) {
  1554. struct drm_i915_gem_request *request;
  1555. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1556. if (request == NULL)
  1557. return -ENOMEM;
  1558. ret = i915_add_request(ring, NULL, request);
  1559. if (ret) {
  1560. kfree(request);
  1561. return ret;
  1562. }
  1563. seqno = request->seqno;
  1564. }
  1565. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1566. if (HAS_PCH_SPLIT(ring->dev))
  1567. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1568. else if (IS_VALLEYVIEW(ring->dev))
  1569. ier = I915_READ(GTIER) | I915_READ(VLV_IER);
  1570. else
  1571. ier = I915_READ(IER);
  1572. if (!ier) {
  1573. DRM_ERROR("something (likely vbetool) disabled "
  1574. "interrupts, re-enabling\n");
  1575. ring->dev->driver->irq_preinstall(ring->dev);
  1576. ring->dev->driver->irq_postinstall(ring->dev);
  1577. }
  1578. trace_i915_gem_request_wait_begin(ring, seqno);
  1579. ring->waiting_seqno = seqno;
  1580. if (ring->irq_get(ring)) {
  1581. if (dev_priv->mm.interruptible)
  1582. ret = wait_event_interruptible(ring->irq_queue,
  1583. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1584. || atomic_read(&dev_priv->mm.wedged));
  1585. else
  1586. wait_event(ring->irq_queue,
  1587. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1588. || atomic_read(&dev_priv->mm.wedged));
  1589. ring->irq_put(ring);
  1590. } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
  1591. seqno) ||
  1592. atomic_read(&dev_priv->mm.wedged), 3000))
  1593. ret = -EBUSY;
  1594. ring->waiting_seqno = 0;
  1595. trace_i915_gem_request_wait_end(ring, seqno);
  1596. }
  1597. if (atomic_read(&dev_priv->mm.wedged))
  1598. ret = -EAGAIN;
  1599. /* Directly dispatch request retiring. While we have the work queue
  1600. * to handle this, the waiter on a request often wants an associated
  1601. * buffer to have made it to the inactive list, and we would need
  1602. * a separate wait queue to handle that.
  1603. */
  1604. if (ret == 0 && do_retire)
  1605. i915_gem_retire_requests_ring(ring);
  1606. return ret;
  1607. }
  1608. /**
  1609. * Ensures that all rendering to the object has completed and the object is
  1610. * safe to unbind from the GTT or access from the CPU.
  1611. */
  1612. int
  1613. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
  1614. {
  1615. int ret;
  1616. /* This function only exists to support waiting for existing rendering,
  1617. * not for emitting required flushes.
  1618. */
  1619. BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1620. /* If there is rendering queued on the buffer being evicted, wait for
  1621. * it.
  1622. */
  1623. if (obj->active) {
  1624. ret = i915_wait_request(obj->ring, obj->last_rendering_seqno,
  1625. true);
  1626. if (ret)
  1627. return ret;
  1628. }
  1629. return 0;
  1630. }
  1631. int
  1632. i915_gem_object_sync(struct drm_i915_gem_object *obj,
  1633. struct intel_ring_buffer *to)
  1634. {
  1635. struct intel_ring_buffer *from = obj->ring;
  1636. u32 seqno;
  1637. int ret, idx;
  1638. if (from == NULL || to == from)
  1639. return 0;
  1640. if (!i915_semaphore_is_enabled(obj->base.dev))
  1641. return i915_gem_object_wait_rendering(obj);
  1642. idx = intel_ring_sync_index(from, to);
  1643. seqno = obj->last_rendering_seqno;
  1644. if (seqno <= from->sync_seqno[idx])
  1645. return 0;
  1646. if (seqno == from->outstanding_lazy_request) {
  1647. struct drm_i915_gem_request *request;
  1648. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1649. if (request == NULL)
  1650. return -ENOMEM;
  1651. ret = i915_add_request(from, NULL, request);
  1652. if (ret) {
  1653. kfree(request);
  1654. return ret;
  1655. }
  1656. seqno = request->seqno;
  1657. }
  1658. from->sync_seqno[idx] = seqno;
  1659. return to->sync_to(to, from, seqno - 1);
  1660. }
  1661. static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
  1662. {
  1663. u32 old_write_domain, old_read_domains;
  1664. /* Act a barrier for all accesses through the GTT */
  1665. mb();
  1666. /* Force a pagefault for domain tracking on next user access */
  1667. i915_gem_release_mmap(obj);
  1668. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  1669. return;
  1670. old_read_domains = obj->base.read_domains;
  1671. old_write_domain = obj->base.write_domain;
  1672. obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
  1673. obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
  1674. trace_i915_gem_object_change_domain(obj,
  1675. old_read_domains,
  1676. old_write_domain);
  1677. }
  1678. /**
  1679. * Unbinds an object from the GTT aperture.
  1680. */
  1681. int
  1682. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  1683. {
  1684. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  1685. int ret = 0;
  1686. if (obj->gtt_space == NULL)
  1687. return 0;
  1688. if (obj->pin_count != 0) {
  1689. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1690. return -EINVAL;
  1691. }
  1692. ret = i915_gem_object_finish_gpu(obj);
  1693. if (ret == -ERESTARTSYS)
  1694. return ret;
  1695. /* Continue on if we fail due to EIO, the GPU is hung so we
  1696. * should be safe and we need to cleanup or else we might
  1697. * cause memory corruption through use-after-free.
  1698. */
  1699. i915_gem_object_finish_gtt(obj);
  1700. /* Move the object to the CPU domain to ensure that
  1701. * any possible CPU writes while it's not in the GTT
  1702. * are flushed when we go to remap it.
  1703. */
  1704. if (ret == 0)
  1705. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1706. if (ret == -ERESTARTSYS)
  1707. return ret;
  1708. if (ret) {
  1709. /* In the event of a disaster, abandon all caches and
  1710. * hope for the best.
  1711. */
  1712. i915_gem_clflush_object(obj);
  1713. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1714. }
  1715. /* release the fence reg _after_ flushing */
  1716. ret = i915_gem_object_put_fence(obj);
  1717. if (ret == -ERESTARTSYS)
  1718. return ret;
  1719. trace_i915_gem_object_unbind(obj);
  1720. if (obj->has_global_gtt_mapping)
  1721. i915_gem_gtt_unbind_object(obj);
  1722. if (obj->has_aliasing_ppgtt_mapping) {
  1723. i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
  1724. obj->has_aliasing_ppgtt_mapping = 0;
  1725. }
  1726. i915_gem_gtt_finish_object(obj);
  1727. i915_gem_object_put_pages_gtt(obj);
  1728. list_del_init(&obj->gtt_list);
  1729. list_del_init(&obj->mm_list);
  1730. /* Avoid an unnecessary call to unbind on rebind. */
  1731. obj->map_and_fenceable = true;
  1732. drm_mm_put_block(obj->gtt_space);
  1733. obj->gtt_space = NULL;
  1734. obj->gtt_offset = 0;
  1735. if (i915_gem_object_is_purgeable(obj))
  1736. i915_gem_object_truncate(obj);
  1737. return ret;
  1738. }
  1739. int
  1740. i915_gem_flush_ring(struct intel_ring_buffer *ring,
  1741. uint32_t invalidate_domains,
  1742. uint32_t flush_domains)
  1743. {
  1744. int ret;
  1745. if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
  1746. return 0;
  1747. trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
  1748. ret = ring->flush(ring, invalidate_domains, flush_domains);
  1749. if (ret)
  1750. return ret;
  1751. if (flush_domains & I915_GEM_GPU_DOMAINS)
  1752. i915_gem_process_flushing_list(ring, flush_domains);
  1753. return 0;
  1754. }
  1755. static int i915_ring_idle(struct intel_ring_buffer *ring, bool do_retire)
  1756. {
  1757. int ret;
  1758. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1759. return 0;
  1760. if (!list_empty(&ring->gpu_write_list)) {
  1761. ret = i915_gem_flush_ring(ring,
  1762. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1763. if (ret)
  1764. return ret;
  1765. }
  1766. return i915_wait_request(ring, i915_gem_next_request_seqno(ring),
  1767. do_retire);
  1768. }
  1769. int i915_gpu_idle(struct drm_device *dev, bool do_retire)
  1770. {
  1771. drm_i915_private_t *dev_priv = dev->dev_private;
  1772. int ret, i;
  1773. /* Flush everything onto the inactive list. */
  1774. for (i = 0; i < I915_NUM_RINGS; i++) {
  1775. ret = i915_ring_idle(&dev_priv->ring[i], do_retire);
  1776. if (ret)
  1777. return ret;
  1778. }
  1779. return 0;
  1780. }
  1781. static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
  1782. struct intel_ring_buffer *pipelined)
  1783. {
  1784. struct drm_device *dev = obj->base.dev;
  1785. drm_i915_private_t *dev_priv = dev->dev_private;
  1786. u32 size = obj->gtt_space->size;
  1787. int regnum = obj->fence_reg;
  1788. uint64_t val;
  1789. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1790. 0xfffff000) << 32;
  1791. val |= obj->gtt_offset & 0xfffff000;
  1792. val |= (uint64_t)((obj->stride / 128) - 1) <<
  1793. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1794. if (obj->tiling_mode == I915_TILING_Y)
  1795. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1796. val |= I965_FENCE_REG_VALID;
  1797. if (pipelined) {
  1798. int ret = intel_ring_begin(pipelined, 6);
  1799. if (ret)
  1800. return ret;
  1801. intel_ring_emit(pipelined, MI_NOOP);
  1802. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1803. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
  1804. intel_ring_emit(pipelined, (u32)val);
  1805. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
  1806. intel_ring_emit(pipelined, (u32)(val >> 32));
  1807. intel_ring_advance(pipelined);
  1808. } else
  1809. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
  1810. return 0;
  1811. }
  1812. static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
  1813. struct intel_ring_buffer *pipelined)
  1814. {
  1815. struct drm_device *dev = obj->base.dev;
  1816. drm_i915_private_t *dev_priv = dev->dev_private;
  1817. u32 size = obj->gtt_space->size;
  1818. int regnum = obj->fence_reg;
  1819. uint64_t val;
  1820. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1821. 0xfffff000) << 32;
  1822. val |= obj->gtt_offset & 0xfffff000;
  1823. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1824. if (obj->tiling_mode == I915_TILING_Y)
  1825. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1826. val |= I965_FENCE_REG_VALID;
  1827. if (pipelined) {
  1828. int ret = intel_ring_begin(pipelined, 6);
  1829. if (ret)
  1830. return ret;
  1831. intel_ring_emit(pipelined, MI_NOOP);
  1832. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1833. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
  1834. intel_ring_emit(pipelined, (u32)val);
  1835. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
  1836. intel_ring_emit(pipelined, (u32)(val >> 32));
  1837. intel_ring_advance(pipelined);
  1838. } else
  1839. I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
  1840. return 0;
  1841. }
  1842. static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
  1843. struct intel_ring_buffer *pipelined)
  1844. {
  1845. struct drm_device *dev = obj->base.dev;
  1846. drm_i915_private_t *dev_priv = dev->dev_private;
  1847. u32 size = obj->gtt_space->size;
  1848. u32 fence_reg, val, pitch_val;
  1849. int tile_width;
  1850. if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  1851. (size & -size) != size ||
  1852. (obj->gtt_offset & (size - 1)),
  1853. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  1854. obj->gtt_offset, obj->map_and_fenceable, size))
  1855. return -EINVAL;
  1856. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  1857. tile_width = 128;
  1858. else
  1859. tile_width = 512;
  1860. /* Note: pitch better be a power of two tile widths */
  1861. pitch_val = obj->stride / tile_width;
  1862. pitch_val = ffs(pitch_val) - 1;
  1863. val = obj->gtt_offset;
  1864. if (obj->tiling_mode == I915_TILING_Y)
  1865. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1866. val |= I915_FENCE_SIZE_BITS(size);
  1867. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1868. val |= I830_FENCE_REG_VALID;
  1869. fence_reg = obj->fence_reg;
  1870. if (fence_reg < 8)
  1871. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  1872. else
  1873. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  1874. if (pipelined) {
  1875. int ret = intel_ring_begin(pipelined, 4);
  1876. if (ret)
  1877. return ret;
  1878. intel_ring_emit(pipelined, MI_NOOP);
  1879. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1880. intel_ring_emit(pipelined, fence_reg);
  1881. intel_ring_emit(pipelined, val);
  1882. intel_ring_advance(pipelined);
  1883. } else
  1884. I915_WRITE(fence_reg, val);
  1885. return 0;
  1886. }
  1887. static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
  1888. struct intel_ring_buffer *pipelined)
  1889. {
  1890. struct drm_device *dev = obj->base.dev;
  1891. drm_i915_private_t *dev_priv = dev->dev_private;
  1892. u32 size = obj->gtt_space->size;
  1893. int regnum = obj->fence_reg;
  1894. uint32_t val;
  1895. uint32_t pitch_val;
  1896. if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  1897. (size & -size) != size ||
  1898. (obj->gtt_offset & (size - 1)),
  1899. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  1900. obj->gtt_offset, size))
  1901. return -EINVAL;
  1902. pitch_val = obj->stride / 128;
  1903. pitch_val = ffs(pitch_val) - 1;
  1904. val = obj->gtt_offset;
  1905. if (obj->tiling_mode == I915_TILING_Y)
  1906. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1907. val |= I830_FENCE_SIZE_BITS(size);
  1908. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1909. val |= I830_FENCE_REG_VALID;
  1910. if (pipelined) {
  1911. int ret = intel_ring_begin(pipelined, 4);
  1912. if (ret)
  1913. return ret;
  1914. intel_ring_emit(pipelined, MI_NOOP);
  1915. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1916. intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
  1917. intel_ring_emit(pipelined, val);
  1918. intel_ring_advance(pipelined);
  1919. } else
  1920. I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
  1921. return 0;
  1922. }
  1923. static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
  1924. {
  1925. return i915_seqno_passed(ring->get_seqno(ring), seqno);
  1926. }
  1927. static int
  1928. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
  1929. struct intel_ring_buffer *pipelined)
  1930. {
  1931. int ret;
  1932. if (obj->fenced_gpu_access) {
  1933. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  1934. ret = i915_gem_flush_ring(obj->last_fenced_ring,
  1935. 0, obj->base.write_domain);
  1936. if (ret)
  1937. return ret;
  1938. }
  1939. obj->fenced_gpu_access = false;
  1940. }
  1941. if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
  1942. if (!ring_passed_seqno(obj->last_fenced_ring,
  1943. obj->last_fenced_seqno)) {
  1944. ret = i915_wait_request(obj->last_fenced_ring,
  1945. obj->last_fenced_seqno,
  1946. true);
  1947. if (ret)
  1948. return ret;
  1949. }
  1950. obj->last_fenced_seqno = 0;
  1951. obj->last_fenced_ring = NULL;
  1952. }
  1953. /* Ensure that all CPU reads are completed before installing a fence
  1954. * and all writes before removing the fence.
  1955. */
  1956. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  1957. mb();
  1958. return 0;
  1959. }
  1960. int
  1961. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  1962. {
  1963. int ret;
  1964. if (obj->tiling_mode)
  1965. i915_gem_release_mmap(obj);
  1966. ret = i915_gem_object_flush_fence(obj, NULL);
  1967. if (ret)
  1968. return ret;
  1969. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1970. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1971. WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count);
  1972. i915_gem_clear_fence_reg(obj->base.dev,
  1973. &dev_priv->fence_regs[obj->fence_reg]);
  1974. obj->fence_reg = I915_FENCE_REG_NONE;
  1975. }
  1976. return 0;
  1977. }
  1978. static struct drm_i915_fence_reg *
  1979. i915_find_fence_reg(struct drm_device *dev,
  1980. struct intel_ring_buffer *pipelined)
  1981. {
  1982. struct drm_i915_private *dev_priv = dev->dev_private;
  1983. struct drm_i915_fence_reg *reg, *first, *avail;
  1984. int i;
  1985. /* First try to find a free reg */
  1986. avail = NULL;
  1987. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  1988. reg = &dev_priv->fence_regs[i];
  1989. if (!reg->obj)
  1990. return reg;
  1991. if (!reg->pin_count)
  1992. avail = reg;
  1993. }
  1994. if (avail == NULL)
  1995. return NULL;
  1996. /* None available, try to steal one or wait for a user to finish */
  1997. avail = first = NULL;
  1998. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  1999. if (reg->pin_count)
  2000. continue;
  2001. if (first == NULL)
  2002. first = reg;
  2003. if (!pipelined ||
  2004. !reg->obj->last_fenced_ring ||
  2005. reg->obj->last_fenced_ring == pipelined) {
  2006. avail = reg;
  2007. break;
  2008. }
  2009. }
  2010. if (avail == NULL)
  2011. avail = first;
  2012. return avail;
  2013. }
  2014. /**
  2015. * i915_gem_object_get_fence - set up fencing for an object
  2016. * @obj: object to map through a fence reg
  2017. * @pipelined: ring on which to queue the change, or NULL for CPU access
  2018. *
  2019. * When mapping objects through the GTT, userspace wants to be able to write
  2020. * to them without having to worry about swizzling if the object is tiled.
  2021. * This function walks the fence regs looking for a free one for @obj,
  2022. * stealing one if it can't find any.
  2023. *
  2024. * It then sets up the reg based on the object's properties: address, pitch
  2025. * and tiling format.
  2026. *
  2027. * For an untiled surface, this removes any existing fence.
  2028. */
  2029. int
  2030. i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
  2031. struct intel_ring_buffer *pipelined)
  2032. {
  2033. struct drm_device *dev = obj->base.dev;
  2034. struct drm_i915_private *dev_priv = dev->dev_private;
  2035. struct drm_i915_fence_reg *reg;
  2036. int ret;
  2037. if (obj->tiling_mode == I915_TILING_NONE)
  2038. return i915_gem_object_put_fence(obj);
  2039. /* XXX disable pipelining. There are bugs. Shocking. */
  2040. pipelined = NULL;
  2041. /* Just update our place in the LRU if our fence is getting reused. */
  2042. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2043. reg = &dev_priv->fence_regs[obj->fence_reg];
  2044. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2045. if (obj->tiling_changed) {
  2046. ret = i915_gem_object_flush_fence(obj, pipelined);
  2047. if (ret)
  2048. return ret;
  2049. if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
  2050. pipelined = NULL;
  2051. if (pipelined) {
  2052. reg->setup_seqno =
  2053. i915_gem_next_request_seqno(pipelined);
  2054. obj->last_fenced_seqno = reg->setup_seqno;
  2055. obj->last_fenced_ring = pipelined;
  2056. }
  2057. goto update;
  2058. }
  2059. if (!pipelined) {
  2060. if (reg->setup_seqno) {
  2061. if (!ring_passed_seqno(obj->last_fenced_ring,
  2062. reg->setup_seqno)) {
  2063. ret = i915_wait_request(obj->last_fenced_ring,
  2064. reg->setup_seqno,
  2065. true);
  2066. if (ret)
  2067. return ret;
  2068. }
  2069. reg->setup_seqno = 0;
  2070. }
  2071. } else if (obj->last_fenced_ring &&
  2072. obj->last_fenced_ring != pipelined) {
  2073. ret = i915_gem_object_flush_fence(obj, pipelined);
  2074. if (ret)
  2075. return ret;
  2076. }
  2077. return 0;
  2078. }
  2079. reg = i915_find_fence_reg(dev, pipelined);
  2080. if (reg == NULL)
  2081. return -EDEADLK;
  2082. ret = i915_gem_object_flush_fence(obj, pipelined);
  2083. if (ret)
  2084. return ret;
  2085. if (reg->obj) {
  2086. struct drm_i915_gem_object *old = reg->obj;
  2087. drm_gem_object_reference(&old->base);
  2088. if (old->tiling_mode)
  2089. i915_gem_release_mmap(old);
  2090. ret = i915_gem_object_flush_fence(old, pipelined);
  2091. if (ret) {
  2092. drm_gem_object_unreference(&old->base);
  2093. return ret;
  2094. }
  2095. if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
  2096. pipelined = NULL;
  2097. old->fence_reg = I915_FENCE_REG_NONE;
  2098. old->last_fenced_ring = pipelined;
  2099. old->last_fenced_seqno =
  2100. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2101. drm_gem_object_unreference(&old->base);
  2102. } else if (obj->last_fenced_seqno == 0)
  2103. pipelined = NULL;
  2104. reg->obj = obj;
  2105. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2106. obj->fence_reg = reg - dev_priv->fence_regs;
  2107. obj->last_fenced_ring = pipelined;
  2108. reg->setup_seqno =
  2109. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2110. obj->last_fenced_seqno = reg->setup_seqno;
  2111. update:
  2112. obj->tiling_changed = false;
  2113. switch (INTEL_INFO(dev)->gen) {
  2114. case 7:
  2115. case 6:
  2116. ret = sandybridge_write_fence_reg(obj, pipelined);
  2117. break;
  2118. case 5:
  2119. case 4:
  2120. ret = i965_write_fence_reg(obj, pipelined);
  2121. break;
  2122. case 3:
  2123. ret = i915_write_fence_reg(obj, pipelined);
  2124. break;
  2125. case 2:
  2126. ret = i830_write_fence_reg(obj, pipelined);
  2127. break;
  2128. }
  2129. return ret;
  2130. }
  2131. /**
  2132. * i915_gem_clear_fence_reg - clear out fence register info
  2133. * @obj: object to clear
  2134. *
  2135. * Zeroes out the fence register itself and clears out the associated
  2136. * data structures in dev_priv and obj.
  2137. */
  2138. static void
  2139. i915_gem_clear_fence_reg(struct drm_device *dev,
  2140. struct drm_i915_fence_reg *reg)
  2141. {
  2142. drm_i915_private_t *dev_priv = dev->dev_private;
  2143. uint32_t fence_reg = reg - dev_priv->fence_regs;
  2144. switch (INTEL_INFO(dev)->gen) {
  2145. case 7:
  2146. case 6:
  2147. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
  2148. break;
  2149. case 5:
  2150. case 4:
  2151. I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
  2152. break;
  2153. case 3:
  2154. if (fence_reg >= 8)
  2155. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  2156. else
  2157. case 2:
  2158. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  2159. I915_WRITE(fence_reg, 0);
  2160. break;
  2161. }
  2162. list_del_init(&reg->lru_list);
  2163. reg->obj = NULL;
  2164. reg->setup_seqno = 0;
  2165. reg->pin_count = 0;
  2166. }
  2167. /**
  2168. * Finds free space in the GTT aperture and binds the object there.
  2169. */
  2170. static int
  2171. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2172. unsigned alignment,
  2173. bool map_and_fenceable)
  2174. {
  2175. struct drm_device *dev = obj->base.dev;
  2176. drm_i915_private_t *dev_priv = dev->dev_private;
  2177. struct drm_mm_node *free_space;
  2178. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2179. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2180. bool mappable, fenceable;
  2181. int ret;
  2182. if (obj->madv != I915_MADV_WILLNEED) {
  2183. DRM_ERROR("Attempting to bind a purgeable object\n");
  2184. return -EINVAL;
  2185. }
  2186. fence_size = i915_gem_get_gtt_size(dev,
  2187. obj->base.size,
  2188. obj->tiling_mode);
  2189. fence_alignment = i915_gem_get_gtt_alignment(dev,
  2190. obj->base.size,
  2191. obj->tiling_mode);
  2192. unfenced_alignment =
  2193. i915_gem_get_unfenced_gtt_alignment(dev,
  2194. obj->base.size,
  2195. obj->tiling_mode);
  2196. if (alignment == 0)
  2197. alignment = map_and_fenceable ? fence_alignment :
  2198. unfenced_alignment;
  2199. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2200. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2201. return -EINVAL;
  2202. }
  2203. size = map_and_fenceable ? fence_size : obj->base.size;
  2204. /* If the object is bigger than the entire aperture, reject it early
  2205. * before evicting everything in a vain attempt to find space.
  2206. */
  2207. if (obj->base.size >
  2208. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2209. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2210. return -E2BIG;
  2211. }
  2212. search_free:
  2213. if (map_and_fenceable)
  2214. free_space =
  2215. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2216. size, alignment, 0,
  2217. dev_priv->mm.gtt_mappable_end,
  2218. 0);
  2219. else
  2220. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2221. size, alignment, 0);
  2222. if (free_space != NULL) {
  2223. if (map_and_fenceable)
  2224. obj->gtt_space =
  2225. drm_mm_get_block_range_generic(free_space,
  2226. size, alignment, 0,
  2227. dev_priv->mm.gtt_mappable_end,
  2228. 0);
  2229. else
  2230. obj->gtt_space =
  2231. drm_mm_get_block(free_space, size, alignment);
  2232. }
  2233. if (obj->gtt_space == NULL) {
  2234. /* If the gtt is empty and we're still having trouble
  2235. * fitting our object in, we're out of memory.
  2236. */
  2237. ret = i915_gem_evict_something(dev, size, alignment,
  2238. map_and_fenceable);
  2239. if (ret)
  2240. return ret;
  2241. goto search_free;
  2242. }
  2243. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2244. if (ret) {
  2245. drm_mm_put_block(obj->gtt_space);
  2246. obj->gtt_space = NULL;
  2247. if (ret == -ENOMEM) {
  2248. /* first try to reclaim some memory by clearing the GTT */
  2249. ret = i915_gem_evict_everything(dev, false);
  2250. if (ret) {
  2251. /* now try to shrink everyone else */
  2252. if (gfpmask) {
  2253. gfpmask = 0;
  2254. goto search_free;
  2255. }
  2256. return -ENOMEM;
  2257. }
  2258. goto search_free;
  2259. }
  2260. return ret;
  2261. }
  2262. ret = i915_gem_gtt_prepare_object(obj);
  2263. if (ret) {
  2264. i915_gem_object_put_pages_gtt(obj);
  2265. drm_mm_put_block(obj->gtt_space);
  2266. obj->gtt_space = NULL;
  2267. if (i915_gem_evict_everything(dev, false))
  2268. return ret;
  2269. goto search_free;
  2270. }
  2271. if (!dev_priv->mm.aliasing_ppgtt)
  2272. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2273. list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
  2274. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2275. /* Assert that the object is not currently in any GPU domain. As it
  2276. * wasn't in the GTT, there shouldn't be any way it could have been in
  2277. * a GPU cache
  2278. */
  2279. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  2280. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  2281. obj->gtt_offset = obj->gtt_space->start;
  2282. fenceable =
  2283. obj->gtt_space->size == fence_size &&
  2284. (obj->gtt_space->start & (fence_alignment - 1)) == 0;
  2285. mappable =
  2286. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2287. obj->map_and_fenceable = mappable && fenceable;
  2288. trace_i915_gem_object_bind(obj, map_and_fenceable);
  2289. return 0;
  2290. }
  2291. void
  2292. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2293. {
  2294. /* If we don't have a page list set up, then we're not pinned
  2295. * to GPU, and we can ignore the cache flush because it'll happen
  2296. * again at bind time.
  2297. */
  2298. if (obj->pages == NULL)
  2299. return;
  2300. /* If the GPU is snooping the contents of the CPU cache,
  2301. * we do not need to manually clear the CPU cache lines. However,
  2302. * the caches are only snooped when the render cache is
  2303. * flushed/invalidated. As we always have to emit invalidations
  2304. * and flushes when moving into and out of the RENDER domain, correct
  2305. * snooping behaviour occurs naturally as the result of our domain
  2306. * tracking.
  2307. */
  2308. if (obj->cache_level != I915_CACHE_NONE)
  2309. return;
  2310. trace_i915_gem_object_clflush(obj);
  2311. drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
  2312. }
  2313. /** Flushes any GPU write domain for the object if it's dirty. */
  2314. static int
  2315. i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
  2316. {
  2317. if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2318. return 0;
  2319. /* Queue the GPU write cache flushing we need. */
  2320. return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2321. }
  2322. /** Flushes the GTT write domain for the object if it's dirty. */
  2323. static void
  2324. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2325. {
  2326. uint32_t old_write_domain;
  2327. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2328. return;
  2329. /* No actual flushing is required for the GTT write domain. Writes
  2330. * to it immediately go to main memory as far as we know, so there's
  2331. * no chipset flush. It also doesn't land in render cache.
  2332. *
  2333. * However, we do have to enforce the order so that all writes through
  2334. * the GTT land before any writes to the device, such as updates to
  2335. * the GATT itself.
  2336. */
  2337. wmb();
  2338. old_write_domain = obj->base.write_domain;
  2339. obj->base.write_domain = 0;
  2340. trace_i915_gem_object_change_domain(obj,
  2341. obj->base.read_domains,
  2342. old_write_domain);
  2343. }
  2344. /** Flushes the CPU write domain for the object if it's dirty. */
  2345. static void
  2346. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2347. {
  2348. uint32_t old_write_domain;
  2349. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2350. return;
  2351. i915_gem_clflush_object(obj);
  2352. intel_gtt_chipset_flush();
  2353. old_write_domain = obj->base.write_domain;
  2354. obj->base.write_domain = 0;
  2355. trace_i915_gem_object_change_domain(obj,
  2356. obj->base.read_domains,
  2357. old_write_domain);
  2358. }
  2359. /**
  2360. * Moves a single object to the GTT read, and possibly write domain.
  2361. *
  2362. * This function returns when the move is complete, including waiting on
  2363. * flushes to occur.
  2364. */
  2365. int
  2366. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2367. {
  2368. uint32_t old_write_domain, old_read_domains;
  2369. int ret;
  2370. /* Not valid to be called on unbound objects. */
  2371. if (obj->gtt_space == NULL)
  2372. return -EINVAL;
  2373. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2374. return 0;
  2375. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2376. if (ret)
  2377. return ret;
  2378. if (obj->pending_gpu_write || write) {
  2379. ret = i915_gem_object_wait_rendering(obj);
  2380. if (ret)
  2381. return ret;
  2382. }
  2383. i915_gem_object_flush_cpu_write_domain(obj);
  2384. old_write_domain = obj->base.write_domain;
  2385. old_read_domains = obj->base.read_domains;
  2386. /* It should now be out of any other write domains, and we can update
  2387. * the domain values for our changes.
  2388. */
  2389. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2390. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2391. if (write) {
  2392. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2393. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2394. obj->dirty = 1;
  2395. }
  2396. trace_i915_gem_object_change_domain(obj,
  2397. old_read_domains,
  2398. old_write_domain);
  2399. return 0;
  2400. }
  2401. int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
  2402. enum i915_cache_level cache_level)
  2403. {
  2404. struct drm_device *dev = obj->base.dev;
  2405. drm_i915_private_t *dev_priv = dev->dev_private;
  2406. int ret;
  2407. if (obj->cache_level == cache_level)
  2408. return 0;
  2409. if (obj->pin_count) {
  2410. DRM_DEBUG("can not change the cache level of pinned objects\n");
  2411. return -EBUSY;
  2412. }
  2413. if (obj->gtt_space) {
  2414. ret = i915_gem_object_finish_gpu(obj);
  2415. if (ret)
  2416. return ret;
  2417. i915_gem_object_finish_gtt(obj);
  2418. /* Before SandyBridge, you could not use tiling or fence
  2419. * registers with snooped memory, so relinquish any fences
  2420. * currently pointing to our region in the aperture.
  2421. */
  2422. if (INTEL_INFO(obj->base.dev)->gen < 6) {
  2423. ret = i915_gem_object_put_fence(obj);
  2424. if (ret)
  2425. return ret;
  2426. }
  2427. if (obj->has_global_gtt_mapping)
  2428. i915_gem_gtt_bind_object(obj, cache_level);
  2429. if (obj->has_aliasing_ppgtt_mapping)
  2430. i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
  2431. obj, cache_level);
  2432. }
  2433. if (cache_level == I915_CACHE_NONE) {
  2434. u32 old_read_domains, old_write_domain;
  2435. /* If we're coming from LLC cached, then we haven't
  2436. * actually been tracking whether the data is in the
  2437. * CPU cache or not, since we only allow one bit set
  2438. * in obj->write_domain and have been skipping the clflushes.
  2439. * Just set it to the CPU cache for now.
  2440. */
  2441. WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
  2442. WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
  2443. old_read_domains = obj->base.read_domains;
  2444. old_write_domain = obj->base.write_domain;
  2445. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2446. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2447. trace_i915_gem_object_change_domain(obj,
  2448. old_read_domains,
  2449. old_write_domain);
  2450. }
  2451. obj->cache_level = cache_level;
  2452. return 0;
  2453. }
  2454. /*
  2455. * Prepare buffer for display plane (scanout, cursors, etc).
  2456. * Can be called from an uninterruptible phase (modesetting) and allows
  2457. * any flushes to be pipelined (for pageflips).
  2458. */
  2459. int
  2460. i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
  2461. u32 alignment,
  2462. struct intel_ring_buffer *pipelined)
  2463. {
  2464. u32 old_read_domains, old_write_domain;
  2465. int ret;
  2466. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2467. if (ret)
  2468. return ret;
  2469. if (pipelined != obj->ring) {
  2470. ret = i915_gem_object_sync(obj, pipelined);
  2471. if (ret)
  2472. return ret;
  2473. }
  2474. /* The display engine is not coherent with the LLC cache on gen6. As
  2475. * a result, we make sure that the pinning that is about to occur is
  2476. * done with uncached PTEs. This is lowest common denominator for all
  2477. * chipsets.
  2478. *
  2479. * However for gen6+, we could do better by using the GFDT bit instead
  2480. * of uncaching, which would allow us to flush all the LLC-cached data
  2481. * with that bit in the PTE to main memory with just one PIPE_CONTROL.
  2482. */
  2483. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
  2484. if (ret)
  2485. return ret;
  2486. /* As the user may map the buffer once pinned in the display plane
  2487. * (e.g. libkms for the bootup splash), we have to ensure that we
  2488. * always use map_and_fenceable for all scanout buffers.
  2489. */
  2490. ret = i915_gem_object_pin(obj, alignment, true);
  2491. if (ret)
  2492. return ret;
  2493. i915_gem_object_flush_cpu_write_domain(obj);
  2494. old_write_domain = obj->base.write_domain;
  2495. old_read_domains = obj->base.read_domains;
  2496. /* It should now be out of any other write domains, and we can update
  2497. * the domain values for our changes.
  2498. */
  2499. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2500. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2501. trace_i915_gem_object_change_domain(obj,
  2502. old_read_domains,
  2503. old_write_domain);
  2504. return 0;
  2505. }
  2506. int
  2507. i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
  2508. {
  2509. int ret;
  2510. if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
  2511. return 0;
  2512. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2513. ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2514. if (ret)
  2515. return ret;
  2516. }
  2517. ret = i915_gem_object_wait_rendering(obj);
  2518. if (ret)
  2519. return ret;
  2520. /* Ensure that we invalidate the GPU's caches and TLBs. */
  2521. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  2522. return 0;
  2523. }
  2524. /**
  2525. * Moves a single object to the CPU read, and possibly write domain.
  2526. *
  2527. * This function returns when the move is complete, including waiting on
  2528. * flushes to occur.
  2529. */
  2530. int
  2531. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2532. {
  2533. uint32_t old_write_domain, old_read_domains;
  2534. int ret;
  2535. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  2536. return 0;
  2537. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2538. if (ret)
  2539. return ret;
  2540. ret = i915_gem_object_wait_rendering(obj);
  2541. if (ret)
  2542. return ret;
  2543. i915_gem_object_flush_gtt_write_domain(obj);
  2544. old_write_domain = obj->base.write_domain;
  2545. old_read_domains = obj->base.read_domains;
  2546. /* Flush the CPU cache if it's still invalid. */
  2547. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2548. i915_gem_clflush_object(obj);
  2549. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2550. }
  2551. /* It should now be out of any other write domains, and we can update
  2552. * the domain values for our changes.
  2553. */
  2554. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2555. /* If we're writing through the CPU, then the GPU read domains will
  2556. * need to be invalidated at next use.
  2557. */
  2558. if (write) {
  2559. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2560. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2561. }
  2562. trace_i915_gem_object_change_domain(obj,
  2563. old_read_domains,
  2564. old_write_domain);
  2565. return 0;
  2566. }
  2567. /* Throttle our rendering by waiting until the ring has completed our requests
  2568. * emitted over 20 msec ago.
  2569. *
  2570. * Note that if we were to use the current jiffies each time around the loop,
  2571. * we wouldn't escape the function with any frames outstanding if the time to
  2572. * render a frame was over 20ms.
  2573. *
  2574. * This should get us reasonable parallelism between CPU and GPU but also
  2575. * relatively low latency when blocking on a particular request to finish.
  2576. */
  2577. static int
  2578. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2579. {
  2580. struct drm_i915_private *dev_priv = dev->dev_private;
  2581. struct drm_i915_file_private *file_priv = file->driver_priv;
  2582. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2583. struct drm_i915_gem_request *request;
  2584. struct intel_ring_buffer *ring = NULL;
  2585. u32 seqno = 0;
  2586. int ret;
  2587. if (atomic_read(&dev_priv->mm.wedged))
  2588. return -EIO;
  2589. spin_lock(&file_priv->mm.lock);
  2590. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2591. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2592. break;
  2593. ring = request->ring;
  2594. seqno = request->seqno;
  2595. }
  2596. spin_unlock(&file_priv->mm.lock);
  2597. if (seqno == 0)
  2598. return 0;
  2599. ret = 0;
  2600. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  2601. /* And wait for the seqno passing without holding any locks and
  2602. * causing extra latency for others. This is safe as the irq
  2603. * generation is designed to be run atomically and so is
  2604. * lockless.
  2605. */
  2606. if (ring->irq_get(ring)) {
  2607. ret = wait_event_interruptible(ring->irq_queue,
  2608. i915_seqno_passed(ring->get_seqno(ring), seqno)
  2609. || atomic_read(&dev_priv->mm.wedged));
  2610. ring->irq_put(ring);
  2611. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  2612. ret = -EIO;
  2613. } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
  2614. seqno) ||
  2615. atomic_read(&dev_priv->mm.wedged), 3000)) {
  2616. ret = -EBUSY;
  2617. }
  2618. }
  2619. if (ret == 0)
  2620. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2621. return ret;
  2622. }
  2623. int
  2624. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2625. uint32_t alignment,
  2626. bool map_and_fenceable)
  2627. {
  2628. struct drm_device *dev = obj->base.dev;
  2629. struct drm_i915_private *dev_priv = dev->dev_private;
  2630. int ret;
  2631. BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  2632. WARN_ON(i915_verify_lists(dev));
  2633. if (obj->gtt_space != NULL) {
  2634. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2635. (map_and_fenceable && !obj->map_and_fenceable)) {
  2636. WARN(obj->pin_count,
  2637. "bo is already pinned with incorrect alignment:"
  2638. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2639. " obj->map_and_fenceable=%d\n",
  2640. obj->gtt_offset, alignment,
  2641. map_and_fenceable,
  2642. obj->map_and_fenceable);
  2643. ret = i915_gem_object_unbind(obj);
  2644. if (ret)
  2645. return ret;
  2646. }
  2647. }
  2648. if (obj->gtt_space == NULL) {
  2649. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2650. map_and_fenceable);
  2651. if (ret)
  2652. return ret;
  2653. }
  2654. if (!obj->has_global_gtt_mapping && map_and_fenceable)
  2655. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2656. if (obj->pin_count++ == 0) {
  2657. if (!obj->active)
  2658. list_move_tail(&obj->mm_list,
  2659. &dev_priv->mm.pinned_list);
  2660. }
  2661. obj->pin_mappable |= map_and_fenceable;
  2662. WARN_ON(i915_verify_lists(dev));
  2663. return 0;
  2664. }
  2665. void
  2666. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2667. {
  2668. struct drm_device *dev = obj->base.dev;
  2669. drm_i915_private_t *dev_priv = dev->dev_private;
  2670. WARN_ON(i915_verify_lists(dev));
  2671. BUG_ON(obj->pin_count == 0);
  2672. BUG_ON(obj->gtt_space == NULL);
  2673. if (--obj->pin_count == 0) {
  2674. if (!obj->active)
  2675. list_move_tail(&obj->mm_list,
  2676. &dev_priv->mm.inactive_list);
  2677. obj->pin_mappable = false;
  2678. }
  2679. WARN_ON(i915_verify_lists(dev));
  2680. }
  2681. int
  2682. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2683. struct drm_file *file)
  2684. {
  2685. struct drm_i915_gem_pin *args = data;
  2686. struct drm_i915_gem_object *obj;
  2687. int ret;
  2688. ret = i915_mutex_lock_interruptible(dev);
  2689. if (ret)
  2690. return ret;
  2691. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2692. if (&obj->base == NULL) {
  2693. ret = -ENOENT;
  2694. goto unlock;
  2695. }
  2696. if (obj->madv != I915_MADV_WILLNEED) {
  2697. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2698. ret = -EINVAL;
  2699. goto out;
  2700. }
  2701. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2702. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2703. args->handle);
  2704. ret = -EINVAL;
  2705. goto out;
  2706. }
  2707. obj->user_pin_count++;
  2708. obj->pin_filp = file;
  2709. if (obj->user_pin_count == 1) {
  2710. ret = i915_gem_object_pin(obj, args->alignment, true);
  2711. if (ret)
  2712. goto out;
  2713. }
  2714. /* XXX - flush the CPU caches for pinned objects
  2715. * as the X server doesn't manage domains yet
  2716. */
  2717. i915_gem_object_flush_cpu_write_domain(obj);
  2718. args->offset = obj->gtt_offset;
  2719. out:
  2720. drm_gem_object_unreference(&obj->base);
  2721. unlock:
  2722. mutex_unlock(&dev->struct_mutex);
  2723. return ret;
  2724. }
  2725. int
  2726. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2727. struct drm_file *file)
  2728. {
  2729. struct drm_i915_gem_pin *args = data;
  2730. struct drm_i915_gem_object *obj;
  2731. int ret;
  2732. ret = i915_mutex_lock_interruptible(dev);
  2733. if (ret)
  2734. return ret;
  2735. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2736. if (&obj->base == NULL) {
  2737. ret = -ENOENT;
  2738. goto unlock;
  2739. }
  2740. if (obj->pin_filp != file) {
  2741. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2742. args->handle);
  2743. ret = -EINVAL;
  2744. goto out;
  2745. }
  2746. obj->user_pin_count--;
  2747. if (obj->user_pin_count == 0) {
  2748. obj->pin_filp = NULL;
  2749. i915_gem_object_unpin(obj);
  2750. }
  2751. out:
  2752. drm_gem_object_unreference(&obj->base);
  2753. unlock:
  2754. mutex_unlock(&dev->struct_mutex);
  2755. return ret;
  2756. }
  2757. int
  2758. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2759. struct drm_file *file)
  2760. {
  2761. struct drm_i915_gem_busy *args = data;
  2762. struct drm_i915_gem_object *obj;
  2763. int ret;
  2764. ret = i915_mutex_lock_interruptible(dev);
  2765. if (ret)
  2766. return ret;
  2767. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2768. if (&obj->base == NULL) {
  2769. ret = -ENOENT;
  2770. goto unlock;
  2771. }
  2772. /* Count all active objects as busy, even if they are currently not used
  2773. * by the gpu. Users of this interface expect objects to eventually
  2774. * become non-busy without any further actions, therefore emit any
  2775. * necessary flushes here.
  2776. */
  2777. args->busy = obj->active;
  2778. if (args->busy) {
  2779. /* Unconditionally flush objects, even when the gpu still uses this
  2780. * object. Userspace calling this function indicates that it wants to
  2781. * use this buffer rather sooner than later, so issuing the required
  2782. * flush earlier is beneficial.
  2783. */
  2784. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2785. ret = i915_gem_flush_ring(obj->ring,
  2786. 0, obj->base.write_domain);
  2787. } else if (obj->ring->outstanding_lazy_request ==
  2788. obj->last_rendering_seqno) {
  2789. struct drm_i915_gem_request *request;
  2790. /* This ring is not being cleared by active usage,
  2791. * so emit a request to do so.
  2792. */
  2793. request = kzalloc(sizeof(*request), GFP_KERNEL);
  2794. if (request) {
  2795. ret = i915_add_request(obj->ring, NULL, request);
  2796. if (ret)
  2797. kfree(request);
  2798. } else
  2799. ret = -ENOMEM;
  2800. }
  2801. /* Update the active list for the hardware's current position.
  2802. * Otherwise this only updates on a delayed timer or when irqs
  2803. * are actually unmasked, and our working set ends up being
  2804. * larger than required.
  2805. */
  2806. i915_gem_retire_requests_ring(obj->ring);
  2807. args->busy = obj->active;
  2808. }
  2809. drm_gem_object_unreference(&obj->base);
  2810. unlock:
  2811. mutex_unlock(&dev->struct_mutex);
  2812. return ret;
  2813. }
  2814. int
  2815. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2816. struct drm_file *file_priv)
  2817. {
  2818. return i915_gem_ring_throttle(dev, file_priv);
  2819. }
  2820. int
  2821. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2822. struct drm_file *file_priv)
  2823. {
  2824. struct drm_i915_gem_madvise *args = data;
  2825. struct drm_i915_gem_object *obj;
  2826. int ret;
  2827. switch (args->madv) {
  2828. case I915_MADV_DONTNEED:
  2829. case I915_MADV_WILLNEED:
  2830. break;
  2831. default:
  2832. return -EINVAL;
  2833. }
  2834. ret = i915_mutex_lock_interruptible(dev);
  2835. if (ret)
  2836. return ret;
  2837. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  2838. if (&obj->base == NULL) {
  2839. ret = -ENOENT;
  2840. goto unlock;
  2841. }
  2842. if (obj->pin_count) {
  2843. ret = -EINVAL;
  2844. goto out;
  2845. }
  2846. if (obj->madv != __I915_MADV_PURGED)
  2847. obj->madv = args->madv;
  2848. /* if the object is no longer bound, discard its backing storage */
  2849. if (i915_gem_object_is_purgeable(obj) &&
  2850. obj->gtt_space == NULL)
  2851. i915_gem_object_truncate(obj);
  2852. args->retained = obj->madv != __I915_MADV_PURGED;
  2853. out:
  2854. drm_gem_object_unreference(&obj->base);
  2855. unlock:
  2856. mutex_unlock(&dev->struct_mutex);
  2857. return ret;
  2858. }
  2859. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  2860. size_t size)
  2861. {
  2862. struct drm_i915_private *dev_priv = dev->dev_private;
  2863. struct drm_i915_gem_object *obj;
  2864. struct address_space *mapping;
  2865. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  2866. if (obj == NULL)
  2867. return NULL;
  2868. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  2869. kfree(obj);
  2870. return NULL;
  2871. }
  2872. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  2873. mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
  2874. i915_gem_info_add_obj(dev_priv, size);
  2875. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2876. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2877. if (HAS_LLC(dev)) {
  2878. /* On some devices, we can have the GPU use the LLC (the CPU
  2879. * cache) for about a 10% performance improvement
  2880. * compared to uncached. Graphics requests other than
  2881. * display scanout are coherent with the CPU in
  2882. * accessing this cache. This means in this mode we
  2883. * don't need to clflush on the CPU side, and on the
  2884. * GPU side we only need to flush internal caches to
  2885. * get data visible to the CPU.
  2886. *
  2887. * However, we maintain the display planes as UC, and so
  2888. * need to rebind when first used as such.
  2889. */
  2890. obj->cache_level = I915_CACHE_LLC;
  2891. } else
  2892. obj->cache_level = I915_CACHE_NONE;
  2893. obj->base.driver_private = NULL;
  2894. obj->fence_reg = I915_FENCE_REG_NONE;
  2895. INIT_LIST_HEAD(&obj->mm_list);
  2896. INIT_LIST_HEAD(&obj->gtt_list);
  2897. INIT_LIST_HEAD(&obj->ring_list);
  2898. INIT_LIST_HEAD(&obj->exec_list);
  2899. INIT_LIST_HEAD(&obj->gpu_write_list);
  2900. obj->madv = I915_MADV_WILLNEED;
  2901. /* Avoid an unnecessary call to unbind on the first bind. */
  2902. obj->map_and_fenceable = true;
  2903. return obj;
  2904. }
  2905. int i915_gem_init_object(struct drm_gem_object *obj)
  2906. {
  2907. BUG();
  2908. return 0;
  2909. }
  2910. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
  2911. {
  2912. struct drm_device *dev = obj->base.dev;
  2913. drm_i915_private_t *dev_priv = dev->dev_private;
  2914. int ret;
  2915. ret = i915_gem_object_unbind(obj);
  2916. if (ret == -ERESTARTSYS) {
  2917. list_move(&obj->mm_list,
  2918. &dev_priv->mm.deferred_free_list);
  2919. return;
  2920. }
  2921. trace_i915_gem_object_destroy(obj);
  2922. if (obj->base.map_list.map)
  2923. drm_gem_free_mmap_offset(&obj->base);
  2924. drm_gem_object_release(&obj->base);
  2925. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  2926. kfree(obj->bit_17);
  2927. kfree(obj);
  2928. }
  2929. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  2930. {
  2931. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  2932. struct drm_device *dev = obj->base.dev;
  2933. while (obj->pin_count > 0)
  2934. i915_gem_object_unpin(obj);
  2935. if (obj->phys_obj)
  2936. i915_gem_detach_phys_object(dev, obj);
  2937. i915_gem_free_object_tail(obj);
  2938. }
  2939. int
  2940. i915_gem_idle(struct drm_device *dev)
  2941. {
  2942. drm_i915_private_t *dev_priv = dev->dev_private;
  2943. int ret;
  2944. mutex_lock(&dev->struct_mutex);
  2945. if (dev_priv->mm.suspended) {
  2946. mutex_unlock(&dev->struct_mutex);
  2947. return 0;
  2948. }
  2949. ret = i915_gpu_idle(dev, true);
  2950. if (ret) {
  2951. mutex_unlock(&dev->struct_mutex);
  2952. return ret;
  2953. }
  2954. /* Under UMS, be paranoid and evict. */
  2955. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  2956. ret = i915_gem_evict_inactive(dev, false);
  2957. if (ret) {
  2958. mutex_unlock(&dev->struct_mutex);
  2959. return ret;
  2960. }
  2961. }
  2962. i915_gem_reset_fences(dev);
  2963. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  2964. * We need to replace this with a semaphore, or something.
  2965. * And not confound mm.suspended!
  2966. */
  2967. dev_priv->mm.suspended = 1;
  2968. del_timer_sync(&dev_priv->hangcheck_timer);
  2969. i915_kernel_lost_context(dev);
  2970. i915_gem_cleanup_ringbuffer(dev);
  2971. mutex_unlock(&dev->struct_mutex);
  2972. /* Cancel the retire work handler, which should be idle now. */
  2973. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  2974. return 0;
  2975. }
  2976. void i915_gem_init_swizzling(struct drm_device *dev)
  2977. {
  2978. drm_i915_private_t *dev_priv = dev->dev_private;
  2979. if (INTEL_INFO(dev)->gen < 5 ||
  2980. dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
  2981. return;
  2982. I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  2983. DISP_TILE_SURFACE_SWIZZLING);
  2984. if (IS_GEN5(dev))
  2985. return;
  2986. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
  2987. if (IS_GEN6(dev))
  2988. I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_SNB));
  2989. else
  2990. I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_IVB));
  2991. }
  2992. void i915_gem_init_ppgtt(struct drm_device *dev)
  2993. {
  2994. drm_i915_private_t *dev_priv = dev->dev_private;
  2995. uint32_t pd_offset;
  2996. struct intel_ring_buffer *ring;
  2997. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  2998. uint32_t __iomem *pd_addr;
  2999. uint32_t pd_entry;
  3000. int i;
  3001. if (!dev_priv->mm.aliasing_ppgtt)
  3002. return;
  3003. pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
  3004. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  3005. dma_addr_t pt_addr;
  3006. if (dev_priv->mm.gtt->needs_dmar)
  3007. pt_addr = ppgtt->pt_dma_addr[i];
  3008. else
  3009. pt_addr = page_to_phys(ppgtt->pt_pages[i]);
  3010. pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
  3011. pd_entry |= GEN6_PDE_VALID;
  3012. writel(pd_entry, pd_addr + i);
  3013. }
  3014. readl(pd_addr);
  3015. pd_offset = ppgtt->pd_offset;
  3016. pd_offset /= 64; /* in cachelines, */
  3017. pd_offset <<= 16;
  3018. if (INTEL_INFO(dev)->gen == 6) {
  3019. uint32_t ecochk = I915_READ(GAM_ECOCHK);
  3020. I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
  3021. ECOCHK_PPGTT_CACHE64B);
  3022. I915_WRITE(GFX_MODE, GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
  3023. } else if (INTEL_INFO(dev)->gen >= 7) {
  3024. I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
  3025. /* GFX_MODE is per-ring on gen7+ */
  3026. }
  3027. for (i = 0; i < I915_NUM_RINGS; i++) {
  3028. ring = &dev_priv->ring[i];
  3029. if (INTEL_INFO(dev)->gen >= 7)
  3030. I915_WRITE(RING_MODE_GEN7(ring),
  3031. GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
  3032. I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
  3033. I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
  3034. }
  3035. }
  3036. int
  3037. i915_gem_init_hw(struct drm_device *dev)
  3038. {
  3039. drm_i915_private_t *dev_priv = dev->dev_private;
  3040. int ret;
  3041. i915_gem_init_swizzling(dev);
  3042. ret = intel_init_render_ring_buffer(dev);
  3043. if (ret)
  3044. return ret;
  3045. if (HAS_BSD(dev)) {
  3046. ret = intel_init_bsd_ring_buffer(dev);
  3047. if (ret)
  3048. goto cleanup_render_ring;
  3049. }
  3050. if (HAS_BLT(dev)) {
  3051. ret = intel_init_blt_ring_buffer(dev);
  3052. if (ret)
  3053. goto cleanup_bsd_ring;
  3054. }
  3055. dev_priv->next_seqno = 1;
  3056. i915_gem_init_ppgtt(dev);
  3057. return 0;
  3058. cleanup_bsd_ring:
  3059. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3060. cleanup_render_ring:
  3061. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3062. return ret;
  3063. }
  3064. void
  3065. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3066. {
  3067. drm_i915_private_t *dev_priv = dev->dev_private;
  3068. int i;
  3069. for (i = 0; i < I915_NUM_RINGS; i++)
  3070. intel_cleanup_ring_buffer(&dev_priv->ring[i]);
  3071. }
  3072. int
  3073. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3074. struct drm_file *file_priv)
  3075. {
  3076. drm_i915_private_t *dev_priv = dev->dev_private;
  3077. int ret, i;
  3078. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3079. return 0;
  3080. if (atomic_read(&dev_priv->mm.wedged)) {
  3081. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3082. atomic_set(&dev_priv->mm.wedged, 0);
  3083. }
  3084. mutex_lock(&dev->struct_mutex);
  3085. dev_priv->mm.suspended = 0;
  3086. ret = i915_gem_init_hw(dev);
  3087. if (ret != 0) {
  3088. mutex_unlock(&dev->struct_mutex);
  3089. return ret;
  3090. }
  3091. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3092. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3093. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3094. for (i = 0; i < I915_NUM_RINGS; i++) {
  3095. BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
  3096. BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
  3097. }
  3098. mutex_unlock(&dev->struct_mutex);
  3099. ret = drm_irq_install(dev);
  3100. if (ret)
  3101. goto cleanup_ringbuffer;
  3102. return 0;
  3103. cleanup_ringbuffer:
  3104. mutex_lock(&dev->struct_mutex);
  3105. i915_gem_cleanup_ringbuffer(dev);
  3106. dev_priv->mm.suspended = 1;
  3107. mutex_unlock(&dev->struct_mutex);
  3108. return ret;
  3109. }
  3110. int
  3111. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3112. struct drm_file *file_priv)
  3113. {
  3114. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3115. return 0;
  3116. drm_irq_uninstall(dev);
  3117. return i915_gem_idle(dev);
  3118. }
  3119. void
  3120. i915_gem_lastclose(struct drm_device *dev)
  3121. {
  3122. int ret;
  3123. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3124. return;
  3125. ret = i915_gem_idle(dev);
  3126. if (ret)
  3127. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3128. }
  3129. static void
  3130. init_ring_lists(struct intel_ring_buffer *ring)
  3131. {
  3132. INIT_LIST_HEAD(&ring->active_list);
  3133. INIT_LIST_HEAD(&ring->request_list);
  3134. INIT_LIST_HEAD(&ring->gpu_write_list);
  3135. }
  3136. void
  3137. i915_gem_load(struct drm_device *dev)
  3138. {
  3139. int i;
  3140. drm_i915_private_t *dev_priv = dev->dev_private;
  3141. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3142. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3143. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3144. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  3145. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3146. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3147. INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
  3148. for (i = 0; i < I915_NUM_RINGS; i++)
  3149. init_ring_lists(&dev_priv->ring[i]);
  3150. for (i = 0; i < I915_MAX_NUM_FENCES; i++)
  3151. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3152. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3153. i915_gem_retire_work_handler);
  3154. init_completion(&dev_priv->error_completion);
  3155. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3156. if (IS_GEN3(dev)) {
  3157. u32 tmp = I915_READ(MI_ARB_STATE);
  3158. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3159. /* arb state is a masked write, so set bit + bit in mask */
  3160. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3161. I915_WRITE(MI_ARB_STATE, tmp);
  3162. }
  3163. }
  3164. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3165. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3166. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3167. dev_priv->fence_reg_start = 3;
  3168. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3169. dev_priv->num_fence_regs = 16;
  3170. else
  3171. dev_priv->num_fence_regs = 8;
  3172. /* Initialize fence registers to zero */
  3173. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  3174. i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
  3175. }
  3176. i915_gem_detect_bit_6_swizzle(dev);
  3177. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3178. dev_priv->mm.interruptible = true;
  3179. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3180. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3181. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3182. }
  3183. /*
  3184. * Create a physically contiguous memory object for this object
  3185. * e.g. for cursor + overlay regs
  3186. */
  3187. static int i915_gem_init_phys_object(struct drm_device *dev,
  3188. int id, int size, int align)
  3189. {
  3190. drm_i915_private_t *dev_priv = dev->dev_private;
  3191. struct drm_i915_gem_phys_object *phys_obj;
  3192. int ret;
  3193. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3194. return 0;
  3195. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3196. if (!phys_obj)
  3197. return -ENOMEM;
  3198. phys_obj->id = id;
  3199. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3200. if (!phys_obj->handle) {
  3201. ret = -ENOMEM;
  3202. goto kfree_obj;
  3203. }
  3204. #ifdef CONFIG_X86
  3205. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3206. #endif
  3207. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3208. return 0;
  3209. kfree_obj:
  3210. kfree(phys_obj);
  3211. return ret;
  3212. }
  3213. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3214. {
  3215. drm_i915_private_t *dev_priv = dev->dev_private;
  3216. struct drm_i915_gem_phys_object *phys_obj;
  3217. if (!dev_priv->mm.phys_objs[id - 1])
  3218. return;
  3219. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3220. if (phys_obj->cur_obj) {
  3221. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3222. }
  3223. #ifdef CONFIG_X86
  3224. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3225. #endif
  3226. drm_pci_free(dev, phys_obj->handle);
  3227. kfree(phys_obj);
  3228. dev_priv->mm.phys_objs[id - 1] = NULL;
  3229. }
  3230. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3231. {
  3232. int i;
  3233. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3234. i915_gem_free_phys_object(dev, i);
  3235. }
  3236. void i915_gem_detach_phys_object(struct drm_device *dev,
  3237. struct drm_i915_gem_object *obj)
  3238. {
  3239. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3240. char *vaddr;
  3241. int i;
  3242. int page_count;
  3243. if (!obj->phys_obj)
  3244. return;
  3245. vaddr = obj->phys_obj->handle->vaddr;
  3246. page_count = obj->base.size / PAGE_SIZE;
  3247. for (i = 0; i < page_count; i++) {
  3248. struct page *page = shmem_read_mapping_page(mapping, i);
  3249. if (!IS_ERR(page)) {
  3250. char *dst = kmap_atomic(page);
  3251. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3252. kunmap_atomic(dst);
  3253. drm_clflush_pages(&page, 1);
  3254. set_page_dirty(page);
  3255. mark_page_accessed(page);
  3256. page_cache_release(page);
  3257. }
  3258. }
  3259. intel_gtt_chipset_flush();
  3260. obj->phys_obj->cur_obj = NULL;
  3261. obj->phys_obj = NULL;
  3262. }
  3263. int
  3264. i915_gem_attach_phys_object(struct drm_device *dev,
  3265. struct drm_i915_gem_object *obj,
  3266. int id,
  3267. int align)
  3268. {
  3269. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3270. drm_i915_private_t *dev_priv = dev->dev_private;
  3271. int ret = 0;
  3272. int page_count;
  3273. int i;
  3274. if (id > I915_MAX_PHYS_OBJECT)
  3275. return -EINVAL;
  3276. if (obj->phys_obj) {
  3277. if (obj->phys_obj->id == id)
  3278. return 0;
  3279. i915_gem_detach_phys_object(dev, obj);
  3280. }
  3281. /* create a new object */
  3282. if (!dev_priv->mm.phys_objs[id - 1]) {
  3283. ret = i915_gem_init_phys_object(dev, id,
  3284. obj->base.size, align);
  3285. if (ret) {
  3286. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3287. id, obj->base.size);
  3288. return ret;
  3289. }
  3290. }
  3291. /* bind to the object */
  3292. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3293. obj->phys_obj->cur_obj = obj;
  3294. page_count = obj->base.size / PAGE_SIZE;
  3295. for (i = 0; i < page_count; i++) {
  3296. struct page *page;
  3297. char *dst, *src;
  3298. page = shmem_read_mapping_page(mapping, i);
  3299. if (IS_ERR(page))
  3300. return PTR_ERR(page);
  3301. src = kmap_atomic(page);
  3302. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3303. memcpy(dst, src, PAGE_SIZE);
  3304. kunmap_atomic(src);
  3305. mark_page_accessed(page);
  3306. page_cache_release(page);
  3307. }
  3308. return 0;
  3309. }
  3310. static int
  3311. i915_gem_phys_pwrite(struct drm_device *dev,
  3312. struct drm_i915_gem_object *obj,
  3313. struct drm_i915_gem_pwrite *args,
  3314. struct drm_file *file_priv)
  3315. {
  3316. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3317. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3318. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3319. unsigned long unwritten;
  3320. /* The physical object once assigned is fixed for the lifetime
  3321. * of the obj, so we can safely drop the lock and continue
  3322. * to access vaddr.
  3323. */
  3324. mutex_unlock(&dev->struct_mutex);
  3325. unwritten = copy_from_user(vaddr, user_data, args->size);
  3326. mutex_lock(&dev->struct_mutex);
  3327. if (unwritten)
  3328. return -EFAULT;
  3329. }
  3330. intel_gtt_chipset_flush();
  3331. return 0;
  3332. }
  3333. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3334. {
  3335. struct drm_i915_file_private *file_priv = file->driver_priv;
  3336. /* Clean up our request list when the client is going away, so that
  3337. * later retire_requests won't dereference our soon-to-be-gone
  3338. * file_priv.
  3339. */
  3340. spin_lock(&file_priv->mm.lock);
  3341. while (!list_empty(&file_priv->mm.request_list)) {
  3342. struct drm_i915_gem_request *request;
  3343. request = list_first_entry(&file_priv->mm.request_list,
  3344. struct drm_i915_gem_request,
  3345. client_list);
  3346. list_del(&request->client_list);
  3347. request->file_priv = NULL;
  3348. }
  3349. spin_unlock(&file_priv->mm.lock);
  3350. }
  3351. static int
  3352. i915_gpu_is_active(struct drm_device *dev)
  3353. {
  3354. drm_i915_private_t *dev_priv = dev->dev_private;
  3355. int lists_empty;
  3356. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  3357. list_empty(&dev_priv->mm.active_list);
  3358. return !lists_empty;
  3359. }
  3360. static int
  3361. i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
  3362. {
  3363. struct drm_i915_private *dev_priv =
  3364. container_of(shrinker,
  3365. struct drm_i915_private,
  3366. mm.inactive_shrinker);
  3367. struct drm_device *dev = dev_priv->dev;
  3368. struct drm_i915_gem_object *obj, *next;
  3369. int nr_to_scan = sc->nr_to_scan;
  3370. int cnt;
  3371. if (!mutex_trylock(&dev->struct_mutex))
  3372. return 0;
  3373. /* "fast-path" to count number of available objects */
  3374. if (nr_to_scan == 0) {
  3375. cnt = 0;
  3376. list_for_each_entry(obj,
  3377. &dev_priv->mm.inactive_list,
  3378. mm_list)
  3379. cnt++;
  3380. mutex_unlock(&dev->struct_mutex);
  3381. return cnt / 100 * sysctl_vfs_cache_pressure;
  3382. }
  3383. rescan:
  3384. /* first scan for clean buffers */
  3385. i915_gem_retire_requests(dev);
  3386. list_for_each_entry_safe(obj, next,
  3387. &dev_priv->mm.inactive_list,
  3388. mm_list) {
  3389. if (i915_gem_object_is_purgeable(obj)) {
  3390. if (i915_gem_object_unbind(obj) == 0 &&
  3391. --nr_to_scan == 0)
  3392. break;
  3393. }
  3394. }
  3395. /* second pass, evict/count anything still on the inactive list */
  3396. cnt = 0;
  3397. list_for_each_entry_safe(obj, next,
  3398. &dev_priv->mm.inactive_list,
  3399. mm_list) {
  3400. if (nr_to_scan &&
  3401. i915_gem_object_unbind(obj) == 0)
  3402. nr_to_scan--;
  3403. else
  3404. cnt++;
  3405. }
  3406. if (nr_to_scan && i915_gpu_is_active(dev)) {
  3407. /*
  3408. * We are desperate for pages, so as a last resort, wait
  3409. * for the GPU to finish and discard whatever we can.
  3410. * This has a dramatic impact to reduce the number of
  3411. * OOM-killer events whilst running the GPU aggressively.
  3412. */
  3413. if (i915_gpu_idle(dev, true) == 0)
  3414. goto rescan;
  3415. }
  3416. mutex_unlock(&dev->struct_mutex);
  3417. return cnt / 100 * sysctl_vfs_cache_pressure;
  3418. }