smp.c 9.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422
  1. /*
  2. * Xen SMP support
  3. *
  4. * This file implements the Xen versions of smp_ops. SMP under Xen is
  5. * very straightforward. Bringing a CPU up is simply a matter of
  6. * loading its initial context and setting it running.
  7. *
  8. * IPIs are handled through the Xen event mechanism.
  9. *
  10. * Because virtual CPUs can be scheduled onto any real CPU, there's no
  11. * useful topology information for the kernel to make use of. As a
  12. * result, all CPUs are treated as if they're single-core and
  13. * single-threaded.
  14. *
  15. * This does not handle HOTPLUG_CPU yet.
  16. */
  17. #include <linux/sched.h>
  18. #include <linux/err.h>
  19. #include <linux/smp.h>
  20. #include <asm/paravirt.h>
  21. #include <asm/desc.h>
  22. #include <asm/pgtable.h>
  23. #include <asm/cpu.h>
  24. #include <xen/interface/xen.h>
  25. #include <xen/interface/vcpu.h>
  26. #include <asm/xen/interface.h>
  27. #include <asm/xen/hypercall.h>
  28. #include <xen/page.h>
  29. #include <xen/events.h>
  30. #include "xen-ops.h"
  31. #include "mmu.h"
  32. static cpumask_t xen_cpu_initialized_map;
  33. static DEFINE_PER_CPU(int, resched_irq);
  34. static DEFINE_PER_CPU(int, callfunc_irq);
  35. /*
  36. * Structure and data for smp_call_function(). This is designed to minimise
  37. * static memory requirements. It also looks cleaner.
  38. */
  39. static DEFINE_SPINLOCK(call_lock);
  40. struct call_data_struct {
  41. void (*func) (void *info);
  42. void *info;
  43. atomic_t started;
  44. atomic_t finished;
  45. int wait;
  46. };
  47. static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id);
  48. static struct call_data_struct *call_data;
  49. /*
  50. * Reschedule call back. Nothing to do,
  51. * all the work is done automatically when
  52. * we return from the interrupt.
  53. */
  54. static irqreturn_t xen_reschedule_interrupt(int irq, void *dev_id)
  55. {
  56. return IRQ_HANDLED;
  57. }
  58. static __cpuinit void cpu_bringup_and_idle(void)
  59. {
  60. int cpu = smp_processor_id();
  61. cpu_init();
  62. xen_enable_sysenter();
  63. preempt_disable();
  64. per_cpu(cpu_state, cpu) = CPU_ONLINE;
  65. xen_setup_cpu_clockevents();
  66. /* We can take interrupts now: we're officially "up". */
  67. local_irq_enable();
  68. wmb(); /* make sure everything is out */
  69. cpu_idle();
  70. }
  71. static int xen_smp_intr_init(unsigned int cpu)
  72. {
  73. int rc;
  74. const char *resched_name, *callfunc_name;
  75. per_cpu(resched_irq, cpu) = per_cpu(callfunc_irq, cpu) = -1;
  76. resched_name = kasprintf(GFP_KERNEL, "resched%d", cpu);
  77. rc = bind_ipi_to_irqhandler(XEN_RESCHEDULE_VECTOR,
  78. cpu,
  79. xen_reschedule_interrupt,
  80. IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING,
  81. resched_name,
  82. NULL);
  83. if (rc < 0)
  84. goto fail;
  85. per_cpu(resched_irq, cpu) = rc;
  86. callfunc_name = kasprintf(GFP_KERNEL, "callfunc%d", cpu);
  87. rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_VECTOR,
  88. cpu,
  89. xen_call_function_interrupt,
  90. IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING,
  91. callfunc_name,
  92. NULL);
  93. if (rc < 0)
  94. goto fail;
  95. per_cpu(callfunc_irq, cpu) = rc;
  96. return 0;
  97. fail:
  98. if (per_cpu(resched_irq, cpu) >= 0)
  99. unbind_from_irqhandler(per_cpu(resched_irq, cpu), NULL);
  100. if (per_cpu(callfunc_irq, cpu) >= 0)
  101. unbind_from_irqhandler(per_cpu(callfunc_irq, cpu), NULL);
  102. return rc;
  103. }
  104. void __init xen_fill_possible_map(void)
  105. {
  106. int i, rc;
  107. for (i = 0; i < NR_CPUS; i++) {
  108. rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL);
  109. if (rc >= 0)
  110. cpu_set(i, cpu_possible_map);
  111. }
  112. }
  113. void __init xen_smp_prepare_boot_cpu(void)
  114. {
  115. int cpu;
  116. BUG_ON(smp_processor_id() != 0);
  117. native_smp_prepare_boot_cpu();
  118. /* We've switched to the "real" per-cpu gdt, so make sure the
  119. old memory can be recycled */
  120. make_lowmem_page_readwrite(&per_cpu__gdt_page);
  121. for_each_possible_cpu(cpu) {
  122. cpus_clear(per_cpu(cpu_sibling_map, cpu));
  123. /*
  124. * cpu_core_map lives in a per cpu area that is cleared
  125. * when the per cpu array is allocated.
  126. *
  127. * cpus_clear(per_cpu(cpu_core_map, cpu));
  128. */
  129. }
  130. xen_setup_vcpu_info_placement();
  131. }
  132. void __init xen_smp_prepare_cpus(unsigned int max_cpus)
  133. {
  134. unsigned cpu;
  135. for_each_possible_cpu(cpu) {
  136. cpus_clear(per_cpu(cpu_sibling_map, cpu));
  137. /*
  138. * cpu_core_ map will be zeroed when the per
  139. * cpu area is allocated.
  140. *
  141. * cpus_clear(per_cpu(cpu_core_map, cpu));
  142. */
  143. }
  144. smp_store_cpu_info(0);
  145. set_cpu_sibling_map(0);
  146. if (xen_smp_intr_init(0))
  147. BUG();
  148. xen_cpu_initialized_map = cpumask_of_cpu(0);
  149. /* Restrict the possible_map according to max_cpus. */
  150. while ((num_possible_cpus() > 1) && (num_possible_cpus() > max_cpus)) {
  151. for (cpu = NR_CPUS-1; !cpu_isset(cpu, cpu_possible_map); cpu--)
  152. continue;
  153. cpu_clear(cpu, cpu_possible_map);
  154. }
  155. for_each_possible_cpu (cpu) {
  156. struct task_struct *idle;
  157. if (cpu == 0)
  158. continue;
  159. idle = fork_idle(cpu);
  160. if (IS_ERR(idle))
  161. panic("failed fork for CPU %d", cpu);
  162. cpu_set(cpu, cpu_present_map);
  163. }
  164. //init_xenbus_allowed_cpumask();
  165. }
  166. static __cpuinit int
  167. cpu_initialize_context(unsigned int cpu, struct task_struct *idle)
  168. {
  169. struct vcpu_guest_context *ctxt;
  170. struct gdt_page *gdt = &per_cpu(gdt_page, cpu);
  171. if (cpu_test_and_set(cpu, xen_cpu_initialized_map))
  172. return 0;
  173. ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
  174. if (ctxt == NULL)
  175. return -ENOMEM;
  176. ctxt->flags = VGCF_IN_KERNEL;
  177. ctxt->user_regs.ds = __USER_DS;
  178. ctxt->user_regs.es = __USER_DS;
  179. ctxt->user_regs.fs = __KERNEL_PERCPU;
  180. ctxt->user_regs.gs = 0;
  181. ctxt->user_regs.ss = __KERNEL_DS;
  182. ctxt->user_regs.eip = (unsigned long)cpu_bringup_and_idle;
  183. ctxt->user_regs.eflags = 0x1000; /* IOPL_RING1 */
  184. memset(&ctxt->fpu_ctxt, 0, sizeof(ctxt->fpu_ctxt));
  185. xen_copy_trap_info(ctxt->trap_ctxt);
  186. ctxt->ldt_ents = 0;
  187. BUG_ON((unsigned long)gdt->gdt & ~PAGE_MASK);
  188. make_lowmem_page_readonly(gdt->gdt);
  189. ctxt->gdt_frames[0] = virt_to_mfn(gdt->gdt);
  190. ctxt->gdt_ents = ARRAY_SIZE(gdt->gdt);
  191. ctxt->user_regs.cs = __KERNEL_CS;
  192. ctxt->user_regs.esp = idle->thread.sp0 - sizeof(struct pt_regs);
  193. ctxt->kernel_ss = __KERNEL_DS;
  194. ctxt->kernel_sp = idle->thread.sp0;
  195. ctxt->event_callback_cs = __KERNEL_CS;
  196. ctxt->event_callback_eip = (unsigned long)xen_hypervisor_callback;
  197. ctxt->failsafe_callback_cs = __KERNEL_CS;
  198. ctxt->failsafe_callback_eip = (unsigned long)xen_failsafe_callback;
  199. per_cpu(xen_cr3, cpu) = __pa(swapper_pg_dir);
  200. ctxt->ctrlreg[3] = xen_pfn_to_cr3(virt_to_mfn(swapper_pg_dir));
  201. if (HYPERVISOR_vcpu_op(VCPUOP_initialise, cpu, ctxt))
  202. BUG();
  203. kfree(ctxt);
  204. return 0;
  205. }
  206. int __cpuinit xen_cpu_up(unsigned int cpu)
  207. {
  208. struct task_struct *idle = idle_task(cpu);
  209. int rc;
  210. #if 0
  211. rc = cpu_up_check(cpu);
  212. if (rc)
  213. return rc;
  214. #endif
  215. init_gdt(cpu);
  216. per_cpu(current_task, cpu) = idle;
  217. irq_ctx_init(cpu);
  218. xen_setup_timer(cpu);
  219. /* make sure interrupts start blocked */
  220. per_cpu(xen_vcpu, cpu)->evtchn_upcall_mask = 1;
  221. rc = cpu_initialize_context(cpu, idle);
  222. if (rc)
  223. return rc;
  224. if (num_online_cpus() == 1)
  225. alternatives_smp_switch(1);
  226. rc = xen_smp_intr_init(cpu);
  227. if (rc)
  228. return rc;
  229. smp_store_cpu_info(cpu);
  230. set_cpu_sibling_map(cpu);
  231. /* This must be done before setting cpu_online_map */
  232. wmb();
  233. cpu_set(cpu, cpu_online_map);
  234. rc = HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL);
  235. BUG_ON(rc);
  236. return 0;
  237. }
  238. void xen_smp_cpus_done(unsigned int max_cpus)
  239. {
  240. }
  241. static void stop_self(void *v)
  242. {
  243. int cpu = smp_processor_id();
  244. /* make sure we're not pinning something down */
  245. load_cr3(swapper_pg_dir);
  246. /* should set up a minimal gdt */
  247. HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL);
  248. BUG();
  249. }
  250. void xen_smp_send_stop(void)
  251. {
  252. smp_call_function(stop_self, NULL, 0, 0);
  253. }
  254. void xen_smp_send_reschedule(int cpu)
  255. {
  256. xen_send_IPI_one(cpu, XEN_RESCHEDULE_VECTOR);
  257. }
  258. static void xen_send_IPI_mask(cpumask_t mask, enum ipi_vector vector)
  259. {
  260. unsigned cpu;
  261. cpus_and(mask, mask, cpu_online_map);
  262. for_each_cpu_mask(cpu, mask)
  263. xen_send_IPI_one(cpu, vector);
  264. }
  265. static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id)
  266. {
  267. void (*func) (void *info) = call_data->func;
  268. void *info = call_data->info;
  269. int wait = call_data->wait;
  270. /*
  271. * Notify initiating CPU that I've grabbed the data and am
  272. * about to execute the function
  273. */
  274. mb();
  275. atomic_inc(&call_data->started);
  276. /*
  277. * At this point the info structure may be out of scope unless wait==1
  278. */
  279. irq_enter();
  280. (*func)(info);
  281. __get_cpu_var(irq_stat).irq_call_count++;
  282. irq_exit();
  283. if (wait) {
  284. mb(); /* commit everything before setting finished */
  285. atomic_inc(&call_data->finished);
  286. }
  287. return IRQ_HANDLED;
  288. }
  289. int xen_smp_call_function_mask(cpumask_t mask, void (*func)(void *),
  290. void *info, int wait)
  291. {
  292. struct call_data_struct data;
  293. int cpus, cpu;
  294. bool yield;
  295. /* Holding any lock stops cpus from going down. */
  296. spin_lock(&call_lock);
  297. cpu_clear(smp_processor_id(), mask);
  298. cpus = cpus_weight(mask);
  299. if (!cpus) {
  300. spin_unlock(&call_lock);
  301. return 0;
  302. }
  303. /* Can deadlock when called with interrupts disabled */
  304. WARN_ON(irqs_disabled());
  305. data.func = func;
  306. data.info = info;
  307. atomic_set(&data.started, 0);
  308. data.wait = wait;
  309. if (wait)
  310. atomic_set(&data.finished, 0);
  311. call_data = &data;
  312. mb(); /* write everything before IPI */
  313. /* Send a message to other CPUs and wait for them to respond */
  314. xen_send_IPI_mask(mask, XEN_CALL_FUNCTION_VECTOR);
  315. /* Make sure other vcpus get a chance to run if they need to. */
  316. yield = false;
  317. for_each_cpu_mask(cpu, mask)
  318. if (xen_vcpu_stolen(cpu))
  319. yield = true;
  320. if (yield)
  321. HYPERVISOR_sched_op(SCHEDOP_yield, 0);
  322. /* Wait for response */
  323. while (atomic_read(&data.started) != cpus ||
  324. (wait && atomic_read(&data.finished) != cpus))
  325. cpu_relax();
  326. spin_unlock(&call_lock);
  327. return 0;
  328. }