sysctrl.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378
  1. /*
  2. * This program is free software; you can redistribute it and/or modify it
  3. * under the terms of the GNU General Public License version 2 as published
  4. * by the Free Software Foundation.
  5. *
  6. * Copyright (C) 2011-2012 John Crispin <blogic@openwrt.org>
  7. */
  8. #include <linux/ioport.h>
  9. #include <linux/export.h>
  10. #include <linux/clkdev.h>
  11. #include <linux/of.h>
  12. #include <linux/of_platform.h>
  13. #include <linux/of_address.h>
  14. #include <lantiq_soc.h>
  15. #include "../clk.h"
  16. #include "../prom.h"
  17. /* clock control register */
  18. #define CGU_IFCCR 0x0018
  19. #define CGU_IFCCR_VR9 0x0024
  20. /* system clock register */
  21. #define CGU_SYS 0x0010
  22. /* pci control register */
  23. #define CGU_PCICR 0x0034
  24. #define CGU_PCICR_VR9 0x0038
  25. /* ephy configuration register */
  26. #define CGU_EPHY 0x10
  27. /* power control register */
  28. #define PMU_PWDCR 0x1C
  29. /* power status register */
  30. #define PMU_PWDSR 0x20
  31. /* power control register */
  32. #define PMU_PWDCR1 0x24
  33. /* power status register */
  34. #define PMU_PWDSR1 0x28
  35. /* power control register */
  36. #define PWDCR(x) ((x) ? (PMU_PWDCR1) : (PMU_PWDCR))
  37. /* power status register */
  38. #define PWDSR(x) ((x) ? (PMU_PWDSR1) : (PMU_PWDSR))
  39. /* clock gates that we can en/disable */
  40. #define PMU_USB0_P BIT(0)
  41. #define PMU_PCI BIT(4)
  42. #define PMU_DMA BIT(5)
  43. #define PMU_USB0 BIT(6)
  44. #define PMU_ASC0 BIT(7)
  45. #define PMU_EPHY BIT(7) /* ase */
  46. #define PMU_SPI BIT(8)
  47. #define PMU_DFE BIT(9)
  48. #define PMU_EBU BIT(10)
  49. #define PMU_STP BIT(11)
  50. #define PMU_GPT BIT(12)
  51. #define PMU_AHBS BIT(13) /* vr9 */
  52. #define PMU_FPI BIT(14)
  53. #define PMU_AHBM BIT(15)
  54. #define PMU_ASC1 BIT(17)
  55. #define PMU_PPE_QSB BIT(18)
  56. #define PMU_PPE_SLL01 BIT(19)
  57. #define PMU_PPE_TC BIT(21)
  58. #define PMU_PPE_EMA BIT(22)
  59. #define PMU_PPE_DPLUM BIT(23)
  60. #define PMU_PPE_DPLUS BIT(24)
  61. #define PMU_USB1_P BIT(26)
  62. #define PMU_USB1 BIT(27)
  63. #define PMU_SWITCH BIT(28)
  64. #define PMU_PPE_TOP BIT(29)
  65. #define PMU_GPHY BIT(30)
  66. #define PMU_PCIE_CLK BIT(31)
  67. #define PMU1_PCIE_PHY BIT(0)
  68. #define PMU1_PCIE_CTL BIT(1)
  69. #define PMU1_PCIE_PDI BIT(4)
  70. #define PMU1_PCIE_MSI BIT(5)
  71. #define pmu_w32(x, y) ltq_w32((x), pmu_membase + (y))
  72. #define pmu_r32(x) ltq_r32(pmu_membase + (x))
  73. static void __iomem *pmu_membase;
  74. void __iomem *ltq_cgu_membase;
  75. void __iomem *ltq_ebu_membase;
  76. static u32 ifccr = CGU_IFCCR;
  77. static u32 pcicr = CGU_PCICR;
  78. /* legacy function kept alive to ease clkdev transition */
  79. void ltq_pmu_enable(unsigned int module)
  80. {
  81. int err = 1000000;
  82. pmu_w32(pmu_r32(PMU_PWDCR) & ~module, PMU_PWDCR);
  83. do {} while (--err && (pmu_r32(PMU_PWDSR) & module));
  84. if (!err)
  85. panic("activating PMU module failed!");
  86. }
  87. EXPORT_SYMBOL(ltq_pmu_enable);
  88. /* legacy function kept alive to ease clkdev transition */
  89. void ltq_pmu_disable(unsigned int module)
  90. {
  91. pmu_w32(pmu_r32(PMU_PWDCR) | module, PMU_PWDCR);
  92. }
  93. EXPORT_SYMBOL(ltq_pmu_disable);
  94. /* enable a hw clock */
  95. static int cgu_enable(struct clk *clk)
  96. {
  97. ltq_cgu_w32(ltq_cgu_r32(ifccr) | clk->bits, ifccr);
  98. return 0;
  99. }
  100. /* disable a hw clock */
  101. static void cgu_disable(struct clk *clk)
  102. {
  103. ltq_cgu_w32(ltq_cgu_r32(ifccr) & ~clk->bits, ifccr);
  104. }
  105. /* enable a clock gate */
  106. static int pmu_enable(struct clk *clk)
  107. {
  108. int retry = 1000000;
  109. pmu_w32(pmu_r32(PWDCR(clk->module)) & ~clk->bits,
  110. PWDCR(clk->module));
  111. do {} while (--retry && (pmu_r32(PWDSR(clk->module)) & clk->bits));
  112. if (!retry)
  113. panic("activating PMU module failed!\n");
  114. return 0;
  115. }
  116. /* disable a clock gate */
  117. static void pmu_disable(struct clk *clk)
  118. {
  119. pmu_w32(pmu_r32(PWDCR(clk->module)) | clk->bits,
  120. PWDCR(clk->module));
  121. }
  122. /* the pci enable helper */
  123. static int pci_enable(struct clk *clk)
  124. {
  125. unsigned int val = ltq_cgu_r32(ifccr);
  126. /* set bus clock speed */
  127. if (of_machine_is_compatible("lantiq,ar9")) {
  128. val &= ~0x1f00000;
  129. if (clk->rate == CLOCK_33M)
  130. val |= 0xe00000;
  131. else
  132. val |= 0x700000; /* 62.5M */
  133. } else {
  134. val &= ~0xf00000;
  135. if (clk->rate == CLOCK_33M)
  136. val |= 0x800000;
  137. else
  138. val |= 0x400000; /* 62.5M */
  139. }
  140. ltq_cgu_w32(val, ifccr);
  141. pmu_enable(clk);
  142. return 0;
  143. }
  144. /* enable the external clock as a source */
  145. static int pci_ext_enable(struct clk *clk)
  146. {
  147. ltq_cgu_w32(ltq_cgu_r32(ifccr) & ~(1 << 16), ifccr);
  148. ltq_cgu_w32((1 << 30), pcicr);
  149. return 0;
  150. }
  151. /* disable the external clock as a source */
  152. static void pci_ext_disable(struct clk *clk)
  153. {
  154. ltq_cgu_w32(ltq_cgu_r32(ifccr) | (1 << 16), ifccr);
  155. ltq_cgu_w32((1 << 31) | (1 << 30), pcicr);
  156. }
  157. /* enable a clockout source */
  158. static int clkout_enable(struct clk *clk)
  159. {
  160. int i;
  161. /* get the correct rate */
  162. for (i = 0; i < 4; i++) {
  163. if (clk->rates[i] == clk->rate) {
  164. int shift = 14 - (2 * clk->module);
  165. unsigned int val = ltq_cgu_r32(ifccr);
  166. val &= ~(3 << shift);
  167. val |= i << shift;
  168. ltq_cgu_w32(val, ifccr);
  169. return 0;
  170. }
  171. }
  172. return -1;
  173. }
  174. /* manage the clock gates via PMU */
  175. static void clkdev_add_pmu(const char *dev, const char *con,
  176. unsigned int module, unsigned int bits)
  177. {
  178. struct clk *clk = kzalloc(sizeof(struct clk), GFP_KERNEL);
  179. clk->cl.dev_id = dev;
  180. clk->cl.con_id = con;
  181. clk->cl.clk = clk;
  182. clk->enable = pmu_enable;
  183. clk->disable = pmu_disable;
  184. clk->module = module;
  185. clk->bits = bits;
  186. clkdev_add(&clk->cl);
  187. }
  188. /* manage the clock generator */
  189. static void clkdev_add_cgu(const char *dev, const char *con,
  190. unsigned int bits)
  191. {
  192. struct clk *clk = kzalloc(sizeof(struct clk), GFP_KERNEL);
  193. clk->cl.dev_id = dev;
  194. clk->cl.con_id = con;
  195. clk->cl.clk = clk;
  196. clk->enable = cgu_enable;
  197. clk->disable = cgu_disable;
  198. clk->bits = bits;
  199. clkdev_add(&clk->cl);
  200. }
  201. /* pci needs its own enable function as the setup is a bit more complex */
  202. static unsigned long valid_pci_rates[] = {CLOCK_33M, CLOCK_62_5M, 0};
  203. static void clkdev_add_pci(void)
  204. {
  205. struct clk *clk = kzalloc(sizeof(struct clk), GFP_KERNEL);
  206. struct clk *clk_ext = kzalloc(sizeof(struct clk), GFP_KERNEL);
  207. /* main pci clock */
  208. clk->cl.dev_id = "17000000.pci";
  209. clk->cl.con_id = NULL;
  210. clk->cl.clk = clk;
  211. clk->rate = CLOCK_33M;
  212. clk->rates = valid_pci_rates;
  213. clk->enable = pci_enable;
  214. clk->disable = pmu_disable;
  215. clk->module = 0;
  216. clk->bits = PMU_PCI;
  217. clkdev_add(&clk->cl);
  218. /* use internal/external bus clock */
  219. clk_ext->cl.dev_id = "17000000.pci";
  220. clk_ext->cl.con_id = "external";
  221. clk_ext->cl.clk = clk_ext;
  222. clk_ext->enable = pci_ext_enable;
  223. clk_ext->disable = pci_ext_disable;
  224. clkdev_add(&clk_ext->cl);
  225. }
  226. /* xway socs can generate clocks on gpio pins */
  227. static unsigned long valid_clkout_rates[4][5] = {
  228. {CLOCK_32_768K, CLOCK_1_536M, CLOCK_2_5M, CLOCK_12M, 0},
  229. {CLOCK_40M, CLOCK_12M, CLOCK_24M, CLOCK_48M, 0},
  230. {CLOCK_25M, CLOCK_40M, CLOCK_30M, CLOCK_60M, 0},
  231. {CLOCK_12M, CLOCK_50M, CLOCK_32_768K, CLOCK_25M, 0},
  232. };
  233. static void clkdev_add_clkout(void)
  234. {
  235. int i;
  236. for (i = 0; i < 4; i++) {
  237. struct clk *clk;
  238. char *name;
  239. name = kzalloc(sizeof("clkout0"), GFP_KERNEL);
  240. sprintf(name, "clkout%d", i);
  241. clk = kzalloc(sizeof(struct clk), GFP_KERNEL);
  242. clk->cl.dev_id = "1f103000.cgu";
  243. clk->cl.con_id = name;
  244. clk->cl.clk = clk;
  245. clk->rate = 0;
  246. clk->rates = valid_clkout_rates[i];
  247. clk->enable = clkout_enable;
  248. clk->module = i;
  249. clkdev_add(&clk->cl);
  250. }
  251. }
  252. /* bring up all register ranges that we need for basic system control */
  253. void __init ltq_soc_init(void)
  254. {
  255. struct resource res_pmu, res_cgu, res_ebu;
  256. struct device_node *np_pmu =
  257. of_find_compatible_node(NULL, NULL, "lantiq,pmu-xway");
  258. struct device_node *np_cgu =
  259. of_find_compatible_node(NULL, NULL, "lantiq,cgu-xway");
  260. struct device_node *np_ebu =
  261. of_find_compatible_node(NULL, NULL, "lantiq,ebu-xway");
  262. /* check if all the core register ranges are available */
  263. if (!np_pmu || !np_cgu || !np_ebu)
  264. panic("Failed to load core nodess from devicetree");
  265. if (of_address_to_resource(np_pmu, 0, &res_pmu) ||
  266. of_address_to_resource(np_cgu, 0, &res_cgu) ||
  267. of_address_to_resource(np_ebu, 0, &res_ebu))
  268. panic("Failed to get core resources");
  269. if ((request_mem_region(res_pmu.start, resource_size(&res_pmu),
  270. res_pmu.name) < 0) ||
  271. (request_mem_region(res_cgu.start, resource_size(&res_cgu),
  272. res_cgu.name) < 0) ||
  273. (request_mem_region(res_ebu.start, resource_size(&res_ebu),
  274. res_ebu.name) < 0))
  275. pr_err("Failed to request core reources");
  276. pmu_membase = ioremap_nocache(res_pmu.start, resource_size(&res_pmu));
  277. ltq_cgu_membase = ioremap_nocache(res_cgu.start,
  278. resource_size(&res_cgu));
  279. ltq_ebu_membase = ioremap_nocache(res_ebu.start,
  280. resource_size(&res_ebu));
  281. if (!pmu_membase || !ltq_cgu_membase || !ltq_ebu_membase)
  282. panic("Failed to remap core resources");
  283. /* make sure to unprotect the memory region where flash is located */
  284. ltq_ebu_w32(ltq_ebu_r32(LTQ_EBU_BUSCON0) & ~EBU_WRDIS, LTQ_EBU_BUSCON0);
  285. /* add our generic xway clocks */
  286. clkdev_add_pmu("10000000.fpi", NULL, 0, PMU_FPI);
  287. clkdev_add_pmu("1e100400.serial", NULL, 0, PMU_ASC0);
  288. clkdev_add_pmu("1e100a00.gptu", NULL, 0, PMU_GPT);
  289. clkdev_add_pmu("1e100bb0.stp", NULL, 0, PMU_STP);
  290. clkdev_add_pmu("1e104100.dma", NULL, 0, PMU_DMA);
  291. clkdev_add_pmu("1e100800.spi", NULL, 0, PMU_SPI);
  292. clkdev_add_pmu("1e105300.ebu", NULL, 0, PMU_EBU);
  293. clkdev_add_clkout();
  294. /* add the soc dependent clocks */
  295. if (of_machine_is_compatible("lantiq,vr9")) {
  296. ifccr = CGU_IFCCR_VR9;
  297. pcicr = CGU_PCICR_VR9;
  298. } else {
  299. clkdev_add_pmu("1e180000.etop", NULL, 0, PMU_PPE);
  300. }
  301. if (!of_machine_is_compatible("lantiq,ase")) {
  302. clkdev_add_pmu("1e100c00.serial", NULL, 0, PMU_ASC1);
  303. clkdev_add_pci();
  304. }
  305. if (of_machine_is_compatible("lantiq,ase")) {
  306. if (ltq_cgu_r32(CGU_SYS) & (1 << 5))
  307. clkdev_add_static(CLOCK_266M, CLOCK_133M, CLOCK_133M);
  308. else
  309. clkdev_add_static(CLOCK_133M, CLOCK_133M, CLOCK_133M);
  310. clkdev_add_cgu("1e180000.etop", "ephycgu", CGU_EPHY),
  311. clkdev_add_pmu("1e180000.etop", "ephy", 0, PMU_EPHY);
  312. } else if (of_machine_is_compatible("lantiq,vr9")) {
  313. clkdev_add_static(ltq_vr9_cpu_hz(), ltq_vr9_fpi_hz(),
  314. ltq_vr9_fpi_hz());
  315. clkdev_add_pmu("1d900000.pcie", "phy", 1, PMU1_PCIE_PHY);
  316. clkdev_add_pmu("1d900000.pcie", "bus", 0, PMU_PCIE_CLK);
  317. clkdev_add_pmu("1d900000.pcie", "msi", 1, PMU1_PCIE_MSI);
  318. clkdev_add_pmu("1d900000.pcie", "pdi", 1, PMU1_PCIE_PDI);
  319. clkdev_add_pmu("1d900000.pcie", "ctl", 1, PMU1_PCIE_CTL);
  320. clkdev_add_pmu("1d900000.pcie", "ahb", 0, PMU_AHBM | PMU_AHBS);
  321. } else if (of_machine_is_compatible("lantiq,ar9")) {
  322. clkdev_add_static(ltq_ar9_cpu_hz(), ltq_ar9_fpi_hz(),
  323. ltq_ar9_fpi_hz());
  324. clkdev_add_pmu("1e180000.etop", "switch", 0, PMU_SWITCH);
  325. } else {
  326. clkdev_add_static(ltq_danube_cpu_hz(), ltq_danube_fpi_hz(),
  327. ltq_danube_fpi_hz());
  328. }
  329. }