sched.c 270 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  29. #include <linux/mm.h>
  30. #include <linux/module.h>
  31. #include <linux/nmi.h>
  32. #include <linux/init.h>
  33. #include <linux/uaccess.h>
  34. #include <linux/highmem.h>
  35. #include <linux/smp_lock.h>
  36. #include <asm/mmu_context.h>
  37. #include <linux/interrupt.h>
  38. #include <linux/capability.h>
  39. #include <linux/completion.h>
  40. #include <linux/kernel_stat.h>
  41. #include <linux/debug_locks.h>
  42. #include <linux/perf_event.h>
  43. #include <linux/security.h>
  44. #include <linux/notifier.h>
  45. #include <linux/profile.h>
  46. #include <linux/freezer.h>
  47. #include <linux/vmalloc.h>
  48. #include <linux/blkdev.h>
  49. #include <linux/delay.h>
  50. #include <linux/pid_namespace.h>
  51. #include <linux/smp.h>
  52. #include <linux/threads.h>
  53. #include <linux/timer.h>
  54. #include <linux/rcupdate.h>
  55. #include <linux/cpu.h>
  56. #include <linux/cpuset.h>
  57. #include <linux/percpu.h>
  58. #include <linux/kthread.h>
  59. #include <linux/proc_fs.h>
  60. #include <linux/seq_file.h>
  61. #include <linux/sysctl.h>
  62. #include <linux/syscalls.h>
  63. #include <linux/times.h>
  64. #include <linux/tsacct_kern.h>
  65. #include <linux/kprobes.h>
  66. #include <linux/delayacct.h>
  67. #include <linux/unistd.h>
  68. #include <linux/pagemap.h>
  69. #include <linux/hrtimer.h>
  70. #include <linux/tick.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include "sched_cpupri.h"
  77. #define CREATE_TRACE_POINTS
  78. #include <trace/events/sched.h>
  79. /*
  80. * Convert user-nice values [ -20 ... 0 ... 19 ]
  81. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  82. * and back.
  83. */
  84. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  85. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  86. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  87. /*
  88. * 'User priority' is the nice value converted to something we
  89. * can work with better when scaling various scheduler parameters,
  90. * it's a [ 0 ... 39 ] range.
  91. */
  92. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  93. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  94. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  95. /*
  96. * Helpers for converting nanosecond timing to jiffy resolution
  97. */
  98. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  99. #define NICE_0_LOAD SCHED_LOAD_SCALE
  100. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  101. /*
  102. * These are the 'tuning knobs' of the scheduler:
  103. *
  104. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  105. * Timeslices get refilled after they expire.
  106. */
  107. #define DEF_TIMESLICE (100 * HZ / 1000)
  108. /*
  109. * single value that denotes runtime == period, ie unlimited time.
  110. */
  111. #define RUNTIME_INF ((u64)~0ULL)
  112. static inline int rt_policy(int policy)
  113. {
  114. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  115. return 1;
  116. return 0;
  117. }
  118. static inline int task_has_rt_policy(struct task_struct *p)
  119. {
  120. return rt_policy(p->policy);
  121. }
  122. /*
  123. * This is the priority-queue data structure of the RT scheduling class:
  124. */
  125. struct rt_prio_array {
  126. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  127. struct list_head queue[MAX_RT_PRIO];
  128. };
  129. struct rt_bandwidth {
  130. /* nests inside the rq lock: */
  131. raw_spinlock_t rt_runtime_lock;
  132. ktime_t rt_period;
  133. u64 rt_runtime;
  134. struct hrtimer rt_period_timer;
  135. };
  136. static struct rt_bandwidth def_rt_bandwidth;
  137. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  138. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  139. {
  140. struct rt_bandwidth *rt_b =
  141. container_of(timer, struct rt_bandwidth, rt_period_timer);
  142. ktime_t now;
  143. int overrun;
  144. int idle = 0;
  145. for (;;) {
  146. now = hrtimer_cb_get_time(timer);
  147. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  148. if (!overrun)
  149. break;
  150. idle = do_sched_rt_period_timer(rt_b, overrun);
  151. }
  152. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  153. }
  154. static
  155. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  156. {
  157. rt_b->rt_period = ns_to_ktime(period);
  158. rt_b->rt_runtime = runtime;
  159. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  160. hrtimer_init(&rt_b->rt_period_timer,
  161. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  162. rt_b->rt_period_timer.function = sched_rt_period_timer;
  163. }
  164. static inline int rt_bandwidth_enabled(void)
  165. {
  166. return sysctl_sched_rt_runtime >= 0;
  167. }
  168. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  169. {
  170. ktime_t now;
  171. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  172. return;
  173. if (hrtimer_active(&rt_b->rt_period_timer))
  174. return;
  175. raw_spin_lock(&rt_b->rt_runtime_lock);
  176. for (;;) {
  177. unsigned long delta;
  178. ktime_t soft, hard;
  179. if (hrtimer_active(&rt_b->rt_period_timer))
  180. break;
  181. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  182. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  183. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  184. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  185. delta = ktime_to_ns(ktime_sub(hard, soft));
  186. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  187. HRTIMER_MODE_ABS_PINNED, 0);
  188. }
  189. raw_spin_unlock(&rt_b->rt_runtime_lock);
  190. }
  191. #ifdef CONFIG_RT_GROUP_SCHED
  192. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  193. {
  194. hrtimer_cancel(&rt_b->rt_period_timer);
  195. }
  196. #endif
  197. /*
  198. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  199. * detach_destroy_domains and partition_sched_domains.
  200. */
  201. static DEFINE_MUTEX(sched_domains_mutex);
  202. #ifdef CONFIG_GROUP_SCHED
  203. #include <linux/cgroup.h>
  204. struct cfs_rq;
  205. static LIST_HEAD(task_groups);
  206. /* task group related information */
  207. struct task_group {
  208. #ifdef CONFIG_CGROUP_SCHED
  209. struct cgroup_subsys_state css;
  210. #endif
  211. #ifdef CONFIG_USER_SCHED
  212. uid_t uid;
  213. #endif
  214. #ifdef CONFIG_FAIR_GROUP_SCHED
  215. /* schedulable entities of this group on each cpu */
  216. struct sched_entity **se;
  217. /* runqueue "owned" by this group on each cpu */
  218. struct cfs_rq **cfs_rq;
  219. unsigned long shares;
  220. #endif
  221. #ifdef CONFIG_RT_GROUP_SCHED
  222. struct sched_rt_entity **rt_se;
  223. struct rt_rq **rt_rq;
  224. struct rt_bandwidth rt_bandwidth;
  225. #endif
  226. struct rcu_head rcu;
  227. struct list_head list;
  228. struct task_group *parent;
  229. struct list_head siblings;
  230. struct list_head children;
  231. };
  232. #ifdef CONFIG_USER_SCHED
  233. /* Helper function to pass uid information to create_sched_user() */
  234. void set_tg_uid(struct user_struct *user)
  235. {
  236. user->tg->uid = user->uid;
  237. }
  238. /*
  239. * Root task group.
  240. * Every UID task group (including init_task_group aka UID-0) will
  241. * be a child to this group.
  242. */
  243. struct task_group root_task_group;
  244. #ifdef CONFIG_FAIR_GROUP_SCHED
  245. /* Default task group's sched entity on each cpu */
  246. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  247. /* Default task group's cfs_rq on each cpu */
  248. static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
  249. #endif /* CONFIG_FAIR_GROUP_SCHED */
  250. #ifdef CONFIG_RT_GROUP_SCHED
  251. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  252. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
  253. #endif /* CONFIG_RT_GROUP_SCHED */
  254. #else /* !CONFIG_USER_SCHED */
  255. #define root_task_group init_task_group
  256. #endif /* CONFIG_USER_SCHED */
  257. /* task_group_lock serializes add/remove of task groups and also changes to
  258. * a task group's cpu shares.
  259. */
  260. static DEFINE_SPINLOCK(task_group_lock);
  261. #ifdef CONFIG_FAIR_GROUP_SCHED
  262. #ifdef CONFIG_SMP
  263. static int root_task_group_empty(void)
  264. {
  265. return list_empty(&root_task_group.children);
  266. }
  267. #endif
  268. #ifdef CONFIG_USER_SCHED
  269. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  270. #else /* !CONFIG_USER_SCHED */
  271. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  272. #endif /* CONFIG_USER_SCHED */
  273. /*
  274. * A weight of 0 or 1 can cause arithmetics problems.
  275. * A weight of a cfs_rq is the sum of weights of which entities
  276. * are queued on this cfs_rq, so a weight of a entity should not be
  277. * too large, so as the shares value of a task group.
  278. * (The default weight is 1024 - so there's no practical
  279. * limitation from this.)
  280. */
  281. #define MIN_SHARES 2
  282. #define MAX_SHARES (1UL << 18)
  283. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  284. #endif
  285. /* Default task group.
  286. * Every task in system belong to this group at bootup.
  287. */
  288. struct task_group init_task_group;
  289. /* return group to which a task belongs */
  290. static inline struct task_group *task_group(struct task_struct *p)
  291. {
  292. struct task_group *tg;
  293. #ifdef CONFIG_USER_SCHED
  294. rcu_read_lock();
  295. tg = __task_cred(p)->user->tg;
  296. rcu_read_unlock();
  297. #elif defined(CONFIG_CGROUP_SCHED)
  298. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  299. struct task_group, css);
  300. #else
  301. tg = &init_task_group;
  302. #endif
  303. return tg;
  304. }
  305. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  306. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  307. {
  308. #ifdef CONFIG_FAIR_GROUP_SCHED
  309. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  310. p->se.parent = task_group(p)->se[cpu];
  311. #endif
  312. #ifdef CONFIG_RT_GROUP_SCHED
  313. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  314. p->rt.parent = task_group(p)->rt_se[cpu];
  315. #endif
  316. }
  317. #else
  318. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  319. static inline struct task_group *task_group(struct task_struct *p)
  320. {
  321. return NULL;
  322. }
  323. #endif /* CONFIG_GROUP_SCHED */
  324. /* CFS-related fields in a runqueue */
  325. struct cfs_rq {
  326. struct load_weight load;
  327. unsigned long nr_running;
  328. u64 exec_clock;
  329. u64 min_vruntime;
  330. struct rb_root tasks_timeline;
  331. struct rb_node *rb_leftmost;
  332. struct list_head tasks;
  333. struct list_head *balance_iterator;
  334. /*
  335. * 'curr' points to currently running entity on this cfs_rq.
  336. * It is set to NULL otherwise (i.e when none are currently running).
  337. */
  338. struct sched_entity *curr, *next, *last;
  339. unsigned int nr_spread_over;
  340. #ifdef CONFIG_FAIR_GROUP_SCHED
  341. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  342. /*
  343. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  344. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  345. * (like users, containers etc.)
  346. *
  347. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  348. * list is used during load balance.
  349. */
  350. struct list_head leaf_cfs_rq_list;
  351. struct task_group *tg; /* group that "owns" this runqueue */
  352. #ifdef CONFIG_SMP
  353. /*
  354. * the part of load.weight contributed by tasks
  355. */
  356. unsigned long task_weight;
  357. /*
  358. * h_load = weight * f(tg)
  359. *
  360. * Where f(tg) is the recursive weight fraction assigned to
  361. * this group.
  362. */
  363. unsigned long h_load;
  364. /*
  365. * this cpu's part of tg->shares
  366. */
  367. unsigned long shares;
  368. /*
  369. * load.weight at the time we set shares
  370. */
  371. unsigned long rq_weight;
  372. #endif
  373. #endif
  374. };
  375. /* Real-Time classes' related field in a runqueue: */
  376. struct rt_rq {
  377. struct rt_prio_array active;
  378. unsigned long rt_nr_running;
  379. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  380. struct {
  381. int curr; /* highest queued rt task prio */
  382. #ifdef CONFIG_SMP
  383. int next; /* next highest */
  384. #endif
  385. } highest_prio;
  386. #endif
  387. #ifdef CONFIG_SMP
  388. unsigned long rt_nr_migratory;
  389. unsigned long rt_nr_total;
  390. int overloaded;
  391. struct plist_head pushable_tasks;
  392. #endif
  393. int rt_throttled;
  394. u64 rt_time;
  395. u64 rt_runtime;
  396. /* Nests inside the rq lock: */
  397. raw_spinlock_t rt_runtime_lock;
  398. #ifdef CONFIG_RT_GROUP_SCHED
  399. unsigned long rt_nr_boosted;
  400. struct rq *rq;
  401. struct list_head leaf_rt_rq_list;
  402. struct task_group *tg;
  403. struct sched_rt_entity *rt_se;
  404. #endif
  405. };
  406. #ifdef CONFIG_SMP
  407. /*
  408. * We add the notion of a root-domain which will be used to define per-domain
  409. * variables. Each exclusive cpuset essentially defines an island domain by
  410. * fully partitioning the member cpus from any other cpuset. Whenever a new
  411. * exclusive cpuset is created, we also create and attach a new root-domain
  412. * object.
  413. *
  414. */
  415. struct root_domain {
  416. atomic_t refcount;
  417. cpumask_var_t span;
  418. cpumask_var_t online;
  419. /*
  420. * The "RT overload" flag: it gets set if a CPU has more than
  421. * one runnable RT task.
  422. */
  423. cpumask_var_t rto_mask;
  424. atomic_t rto_count;
  425. #ifdef CONFIG_SMP
  426. struct cpupri cpupri;
  427. #endif
  428. };
  429. /*
  430. * By default the system creates a single root-domain with all cpus as
  431. * members (mimicking the global state we have today).
  432. */
  433. static struct root_domain def_root_domain;
  434. #endif
  435. /*
  436. * This is the main, per-CPU runqueue data structure.
  437. *
  438. * Locking rule: those places that want to lock multiple runqueues
  439. * (such as the load balancing or the thread migration code), lock
  440. * acquire operations must be ordered by ascending &runqueue.
  441. */
  442. struct rq {
  443. /* runqueue lock: */
  444. raw_spinlock_t lock;
  445. /*
  446. * nr_running and cpu_load should be in the same cacheline because
  447. * remote CPUs use both these fields when doing load calculation.
  448. */
  449. unsigned long nr_running;
  450. #define CPU_LOAD_IDX_MAX 5
  451. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  452. #ifdef CONFIG_NO_HZ
  453. unsigned char in_nohz_recently;
  454. #endif
  455. /* capture load from *all* tasks on this cpu: */
  456. struct load_weight load;
  457. unsigned long nr_load_updates;
  458. u64 nr_switches;
  459. struct cfs_rq cfs;
  460. struct rt_rq rt;
  461. #ifdef CONFIG_FAIR_GROUP_SCHED
  462. /* list of leaf cfs_rq on this cpu: */
  463. struct list_head leaf_cfs_rq_list;
  464. #endif
  465. #ifdef CONFIG_RT_GROUP_SCHED
  466. struct list_head leaf_rt_rq_list;
  467. #endif
  468. /*
  469. * This is part of a global counter where only the total sum
  470. * over all CPUs matters. A task can increase this counter on
  471. * one CPU and if it got migrated afterwards it may decrease
  472. * it on another CPU. Always updated under the runqueue lock:
  473. */
  474. unsigned long nr_uninterruptible;
  475. struct task_struct *curr, *idle;
  476. unsigned long next_balance;
  477. struct mm_struct *prev_mm;
  478. u64 clock;
  479. atomic_t nr_iowait;
  480. #ifdef CONFIG_SMP
  481. struct root_domain *rd;
  482. struct sched_domain *sd;
  483. unsigned char idle_at_tick;
  484. /* For active balancing */
  485. int post_schedule;
  486. int active_balance;
  487. int push_cpu;
  488. /* cpu of this runqueue: */
  489. int cpu;
  490. int online;
  491. unsigned long avg_load_per_task;
  492. struct task_struct *migration_thread;
  493. struct list_head migration_queue;
  494. u64 rt_avg;
  495. u64 age_stamp;
  496. u64 idle_stamp;
  497. u64 avg_idle;
  498. #endif
  499. /* calc_load related fields */
  500. unsigned long calc_load_update;
  501. long calc_load_active;
  502. #ifdef CONFIG_SCHED_HRTICK
  503. #ifdef CONFIG_SMP
  504. int hrtick_csd_pending;
  505. struct call_single_data hrtick_csd;
  506. #endif
  507. struct hrtimer hrtick_timer;
  508. #endif
  509. #ifdef CONFIG_SCHEDSTATS
  510. /* latency stats */
  511. struct sched_info rq_sched_info;
  512. unsigned long long rq_cpu_time;
  513. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  514. /* sys_sched_yield() stats */
  515. unsigned int yld_count;
  516. /* schedule() stats */
  517. unsigned int sched_switch;
  518. unsigned int sched_count;
  519. unsigned int sched_goidle;
  520. /* try_to_wake_up() stats */
  521. unsigned int ttwu_count;
  522. unsigned int ttwu_local;
  523. /* BKL stats */
  524. unsigned int bkl_count;
  525. #endif
  526. };
  527. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  528. static inline
  529. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  530. {
  531. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  532. }
  533. static inline int cpu_of(struct rq *rq)
  534. {
  535. #ifdef CONFIG_SMP
  536. return rq->cpu;
  537. #else
  538. return 0;
  539. #endif
  540. }
  541. /*
  542. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  543. * See detach_destroy_domains: synchronize_sched for details.
  544. *
  545. * The domain tree of any CPU may only be accessed from within
  546. * preempt-disabled sections.
  547. */
  548. #define for_each_domain(cpu, __sd) \
  549. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  550. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  551. #define this_rq() (&__get_cpu_var(runqueues))
  552. #define task_rq(p) cpu_rq(task_cpu(p))
  553. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  554. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  555. inline void update_rq_clock(struct rq *rq)
  556. {
  557. rq->clock = sched_clock_cpu(cpu_of(rq));
  558. }
  559. /*
  560. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  561. */
  562. #ifdef CONFIG_SCHED_DEBUG
  563. # define const_debug __read_mostly
  564. #else
  565. # define const_debug static const
  566. #endif
  567. /**
  568. * runqueue_is_locked
  569. * @cpu: the processor in question.
  570. *
  571. * Returns true if the current cpu runqueue is locked.
  572. * This interface allows printk to be called with the runqueue lock
  573. * held and know whether or not it is OK to wake up the klogd.
  574. */
  575. int runqueue_is_locked(int cpu)
  576. {
  577. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  578. }
  579. /*
  580. * Debugging: various feature bits
  581. */
  582. #define SCHED_FEAT(name, enabled) \
  583. __SCHED_FEAT_##name ,
  584. enum {
  585. #include "sched_features.h"
  586. };
  587. #undef SCHED_FEAT
  588. #define SCHED_FEAT(name, enabled) \
  589. (1UL << __SCHED_FEAT_##name) * enabled |
  590. const_debug unsigned int sysctl_sched_features =
  591. #include "sched_features.h"
  592. 0;
  593. #undef SCHED_FEAT
  594. #ifdef CONFIG_SCHED_DEBUG
  595. #define SCHED_FEAT(name, enabled) \
  596. #name ,
  597. static __read_mostly char *sched_feat_names[] = {
  598. #include "sched_features.h"
  599. NULL
  600. };
  601. #undef SCHED_FEAT
  602. static int sched_feat_show(struct seq_file *m, void *v)
  603. {
  604. int i;
  605. for (i = 0; sched_feat_names[i]; i++) {
  606. if (!(sysctl_sched_features & (1UL << i)))
  607. seq_puts(m, "NO_");
  608. seq_printf(m, "%s ", sched_feat_names[i]);
  609. }
  610. seq_puts(m, "\n");
  611. return 0;
  612. }
  613. static ssize_t
  614. sched_feat_write(struct file *filp, const char __user *ubuf,
  615. size_t cnt, loff_t *ppos)
  616. {
  617. char buf[64];
  618. char *cmp = buf;
  619. int neg = 0;
  620. int i;
  621. if (cnt > 63)
  622. cnt = 63;
  623. if (copy_from_user(&buf, ubuf, cnt))
  624. return -EFAULT;
  625. buf[cnt] = 0;
  626. if (strncmp(buf, "NO_", 3) == 0) {
  627. neg = 1;
  628. cmp += 3;
  629. }
  630. for (i = 0; sched_feat_names[i]; i++) {
  631. int len = strlen(sched_feat_names[i]);
  632. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  633. if (neg)
  634. sysctl_sched_features &= ~(1UL << i);
  635. else
  636. sysctl_sched_features |= (1UL << i);
  637. break;
  638. }
  639. }
  640. if (!sched_feat_names[i])
  641. return -EINVAL;
  642. *ppos += cnt;
  643. return cnt;
  644. }
  645. static int sched_feat_open(struct inode *inode, struct file *filp)
  646. {
  647. return single_open(filp, sched_feat_show, NULL);
  648. }
  649. static const struct file_operations sched_feat_fops = {
  650. .open = sched_feat_open,
  651. .write = sched_feat_write,
  652. .read = seq_read,
  653. .llseek = seq_lseek,
  654. .release = single_release,
  655. };
  656. static __init int sched_init_debug(void)
  657. {
  658. debugfs_create_file("sched_features", 0644, NULL, NULL,
  659. &sched_feat_fops);
  660. return 0;
  661. }
  662. late_initcall(sched_init_debug);
  663. #endif
  664. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  665. /*
  666. * Number of tasks to iterate in a single balance run.
  667. * Limited because this is done with IRQs disabled.
  668. */
  669. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  670. /*
  671. * ratelimit for updating the group shares.
  672. * default: 0.25ms
  673. */
  674. unsigned int sysctl_sched_shares_ratelimit = 250000;
  675. unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
  676. /*
  677. * Inject some fuzzyness into changing the per-cpu group shares
  678. * this avoids remote rq-locks at the expense of fairness.
  679. * default: 4
  680. */
  681. unsigned int sysctl_sched_shares_thresh = 4;
  682. /*
  683. * period over which we average the RT time consumption, measured
  684. * in ms.
  685. *
  686. * default: 1s
  687. */
  688. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  689. /*
  690. * period over which we measure -rt task cpu usage in us.
  691. * default: 1s
  692. */
  693. unsigned int sysctl_sched_rt_period = 1000000;
  694. static __read_mostly int scheduler_running;
  695. /*
  696. * part of the period that we allow rt tasks to run in us.
  697. * default: 0.95s
  698. */
  699. int sysctl_sched_rt_runtime = 950000;
  700. static inline u64 global_rt_period(void)
  701. {
  702. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  703. }
  704. static inline u64 global_rt_runtime(void)
  705. {
  706. if (sysctl_sched_rt_runtime < 0)
  707. return RUNTIME_INF;
  708. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  709. }
  710. #ifndef prepare_arch_switch
  711. # define prepare_arch_switch(next) do { } while (0)
  712. #endif
  713. #ifndef finish_arch_switch
  714. # define finish_arch_switch(prev) do { } while (0)
  715. #endif
  716. static inline int task_current(struct rq *rq, struct task_struct *p)
  717. {
  718. return rq->curr == p;
  719. }
  720. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  721. static inline int task_running(struct rq *rq, struct task_struct *p)
  722. {
  723. return task_current(rq, p);
  724. }
  725. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  726. {
  727. }
  728. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  729. {
  730. #ifdef CONFIG_DEBUG_SPINLOCK
  731. /* this is a valid case when another task releases the spinlock */
  732. rq->lock.owner = current;
  733. #endif
  734. /*
  735. * If we are tracking spinlock dependencies then we have to
  736. * fix up the runqueue lock - which gets 'carried over' from
  737. * prev into current:
  738. */
  739. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  740. raw_spin_unlock_irq(&rq->lock);
  741. }
  742. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  743. static inline int task_running(struct rq *rq, struct task_struct *p)
  744. {
  745. #ifdef CONFIG_SMP
  746. return p->oncpu;
  747. #else
  748. return task_current(rq, p);
  749. #endif
  750. }
  751. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  752. {
  753. #ifdef CONFIG_SMP
  754. /*
  755. * We can optimise this out completely for !SMP, because the
  756. * SMP rebalancing from interrupt is the only thing that cares
  757. * here.
  758. */
  759. next->oncpu = 1;
  760. #endif
  761. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  762. raw_spin_unlock_irq(&rq->lock);
  763. #else
  764. raw_spin_unlock(&rq->lock);
  765. #endif
  766. }
  767. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  768. {
  769. #ifdef CONFIG_SMP
  770. /*
  771. * After ->oncpu is cleared, the task can be moved to a different CPU.
  772. * We must ensure this doesn't happen until the switch is completely
  773. * finished.
  774. */
  775. smp_wmb();
  776. prev->oncpu = 0;
  777. #endif
  778. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  779. local_irq_enable();
  780. #endif
  781. }
  782. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  783. /*
  784. * __task_rq_lock - lock the runqueue a given task resides on.
  785. * Must be called interrupts disabled.
  786. */
  787. static inline struct rq *__task_rq_lock(struct task_struct *p)
  788. __acquires(rq->lock)
  789. {
  790. for (;;) {
  791. struct rq *rq = task_rq(p);
  792. raw_spin_lock(&rq->lock);
  793. if (likely(rq == task_rq(p)))
  794. return rq;
  795. raw_spin_unlock(&rq->lock);
  796. }
  797. }
  798. /*
  799. * task_rq_lock - lock the runqueue a given task resides on and disable
  800. * interrupts. Note the ordering: we can safely lookup the task_rq without
  801. * explicitly disabling preemption.
  802. */
  803. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  804. __acquires(rq->lock)
  805. {
  806. struct rq *rq;
  807. for (;;) {
  808. local_irq_save(*flags);
  809. rq = task_rq(p);
  810. raw_spin_lock(&rq->lock);
  811. if (likely(rq == task_rq(p)))
  812. return rq;
  813. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  814. }
  815. }
  816. void task_rq_unlock_wait(struct task_struct *p)
  817. {
  818. struct rq *rq = task_rq(p);
  819. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  820. raw_spin_unlock_wait(&rq->lock);
  821. }
  822. static void __task_rq_unlock(struct rq *rq)
  823. __releases(rq->lock)
  824. {
  825. raw_spin_unlock(&rq->lock);
  826. }
  827. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  828. __releases(rq->lock)
  829. {
  830. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  831. }
  832. /*
  833. * this_rq_lock - lock this runqueue and disable interrupts.
  834. */
  835. static struct rq *this_rq_lock(void)
  836. __acquires(rq->lock)
  837. {
  838. struct rq *rq;
  839. local_irq_disable();
  840. rq = this_rq();
  841. raw_spin_lock(&rq->lock);
  842. return rq;
  843. }
  844. #ifdef CONFIG_SCHED_HRTICK
  845. /*
  846. * Use HR-timers to deliver accurate preemption points.
  847. *
  848. * Its all a bit involved since we cannot program an hrt while holding the
  849. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  850. * reschedule event.
  851. *
  852. * When we get rescheduled we reprogram the hrtick_timer outside of the
  853. * rq->lock.
  854. */
  855. /*
  856. * Use hrtick when:
  857. * - enabled by features
  858. * - hrtimer is actually high res
  859. */
  860. static inline int hrtick_enabled(struct rq *rq)
  861. {
  862. if (!sched_feat(HRTICK))
  863. return 0;
  864. if (!cpu_active(cpu_of(rq)))
  865. return 0;
  866. return hrtimer_is_hres_active(&rq->hrtick_timer);
  867. }
  868. static void hrtick_clear(struct rq *rq)
  869. {
  870. if (hrtimer_active(&rq->hrtick_timer))
  871. hrtimer_cancel(&rq->hrtick_timer);
  872. }
  873. /*
  874. * High-resolution timer tick.
  875. * Runs from hardirq context with interrupts disabled.
  876. */
  877. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  878. {
  879. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  880. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  881. raw_spin_lock(&rq->lock);
  882. update_rq_clock(rq);
  883. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  884. raw_spin_unlock(&rq->lock);
  885. return HRTIMER_NORESTART;
  886. }
  887. #ifdef CONFIG_SMP
  888. /*
  889. * called from hardirq (IPI) context
  890. */
  891. static void __hrtick_start(void *arg)
  892. {
  893. struct rq *rq = arg;
  894. raw_spin_lock(&rq->lock);
  895. hrtimer_restart(&rq->hrtick_timer);
  896. rq->hrtick_csd_pending = 0;
  897. raw_spin_unlock(&rq->lock);
  898. }
  899. /*
  900. * Called to set the hrtick timer state.
  901. *
  902. * called with rq->lock held and irqs disabled
  903. */
  904. static void hrtick_start(struct rq *rq, u64 delay)
  905. {
  906. struct hrtimer *timer = &rq->hrtick_timer;
  907. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  908. hrtimer_set_expires(timer, time);
  909. if (rq == this_rq()) {
  910. hrtimer_restart(timer);
  911. } else if (!rq->hrtick_csd_pending) {
  912. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  913. rq->hrtick_csd_pending = 1;
  914. }
  915. }
  916. static int
  917. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  918. {
  919. int cpu = (int)(long)hcpu;
  920. switch (action) {
  921. case CPU_UP_CANCELED:
  922. case CPU_UP_CANCELED_FROZEN:
  923. case CPU_DOWN_PREPARE:
  924. case CPU_DOWN_PREPARE_FROZEN:
  925. case CPU_DEAD:
  926. case CPU_DEAD_FROZEN:
  927. hrtick_clear(cpu_rq(cpu));
  928. return NOTIFY_OK;
  929. }
  930. return NOTIFY_DONE;
  931. }
  932. static __init void init_hrtick(void)
  933. {
  934. hotcpu_notifier(hotplug_hrtick, 0);
  935. }
  936. #else
  937. /*
  938. * Called to set the hrtick timer state.
  939. *
  940. * called with rq->lock held and irqs disabled
  941. */
  942. static void hrtick_start(struct rq *rq, u64 delay)
  943. {
  944. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  945. HRTIMER_MODE_REL_PINNED, 0);
  946. }
  947. static inline void init_hrtick(void)
  948. {
  949. }
  950. #endif /* CONFIG_SMP */
  951. static void init_rq_hrtick(struct rq *rq)
  952. {
  953. #ifdef CONFIG_SMP
  954. rq->hrtick_csd_pending = 0;
  955. rq->hrtick_csd.flags = 0;
  956. rq->hrtick_csd.func = __hrtick_start;
  957. rq->hrtick_csd.info = rq;
  958. #endif
  959. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  960. rq->hrtick_timer.function = hrtick;
  961. }
  962. #else /* CONFIG_SCHED_HRTICK */
  963. static inline void hrtick_clear(struct rq *rq)
  964. {
  965. }
  966. static inline void init_rq_hrtick(struct rq *rq)
  967. {
  968. }
  969. static inline void init_hrtick(void)
  970. {
  971. }
  972. #endif /* CONFIG_SCHED_HRTICK */
  973. /*
  974. * resched_task - mark a task 'to be rescheduled now'.
  975. *
  976. * On UP this means the setting of the need_resched flag, on SMP it
  977. * might also involve a cross-CPU call to trigger the scheduler on
  978. * the target CPU.
  979. */
  980. #ifdef CONFIG_SMP
  981. #ifndef tsk_is_polling
  982. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  983. #endif
  984. static void resched_task(struct task_struct *p)
  985. {
  986. int cpu;
  987. assert_raw_spin_locked(&task_rq(p)->lock);
  988. if (test_tsk_need_resched(p))
  989. return;
  990. set_tsk_need_resched(p);
  991. cpu = task_cpu(p);
  992. if (cpu == smp_processor_id())
  993. return;
  994. /* NEED_RESCHED must be visible before we test polling */
  995. smp_mb();
  996. if (!tsk_is_polling(p))
  997. smp_send_reschedule(cpu);
  998. }
  999. static void resched_cpu(int cpu)
  1000. {
  1001. struct rq *rq = cpu_rq(cpu);
  1002. unsigned long flags;
  1003. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  1004. return;
  1005. resched_task(cpu_curr(cpu));
  1006. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1007. }
  1008. #ifdef CONFIG_NO_HZ
  1009. /*
  1010. * When add_timer_on() enqueues a timer into the timer wheel of an
  1011. * idle CPU then this timer might expire before the next timer event
  1012. * which is scheduled to wake up that CPU. In case of a completely
  1013. * idle system the next event might even be infinite time into the
  1014. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1015. * leaves the inner idle loop so the newly added timer is taken into
  1016. * account when the CPU goes back to idle and evaluates the timer
  1017. * wheel for the next timer event.
  1018. */
  1019. void wake_up_idle_cpu(int cpu)
  1020. {
  1021. struct rq *rq = cpu_rq(cpu);
  1022. if (cpu == smp_processor_id())
  1023. return;
  1024. /*
  1025. * This is safe, as this function is called with the timer
  1026. * wheel base lock of (cpu) held. When the CPU is on the way
  1027. * to idle and has not yet set rq->curr to idle then it will
  1028. * be serialized on the timer wheel base lock and take the new
  1029. * timer into account automatically.
  1030. */
  1031. if (rq->curr != rq->idle)
  1032. return;
  1033. /*
  1034. * We can set TIF_RESCHED on the idle task of the other CPU
  1035. * lockless. The worst case is that the other CPU runs the
  1036. * idle task through an additional NOOP schedule()
  1037. */
  1038. set_tsk_need_resched(rq->idle);
  1039. /* NEED_RESCHED must be visible before we test polling */
  1040. smp_mb();
  1041. if (!tsk_is_polling(rq->idle))
  1042. smp_send_reschedule(cpu);
  1043. }
  1044. #endif /* CONFIG_NO_HZ */
  1045. static u64 sched_avg_period(void)
  1046. {
  1047. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1048. }
  1049. static void sched_avg_update(struct rq *rq)
  1050. {
  1051. s64 period = sched_avg_period();
  1052. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1053. rq->age_stamp += period;
  1054. rq->rt_avg /= 2;
  1055. }
  1056. }
  1057. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1058. {
  1059. rq->rt_avg += rt_delta;
  1060. sched_avg_update(rq);
  1061. }
  1062. #else /* !CONFIG_SMP */
  1063. static void resched_task(struct task_struct *p)
  1064. {
  1065. assert_raw_spin_locked(&task_rq(p)->lock);
  1066. set_tsk_need_resched(p);
  1067. }
  1068. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1069. {
  1070. }
  1071. #endif /* CONFIG_SMP */
  1072. #if BITS_PER_LONG == 32
  1073. # define WMULT_CONST (~0UL)
  1074. #else
  1075. # define WMULT_CONST (1UL << 32)
  1076. #endif
  1077. #define WMULT_SHIFT 32
  1078. /*
  1079. * Shift right and round:
  1080. */
  1081. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1082. /*
  1083. * delta *= weight / lw
  1084. */
  1085. static unsigned long
  1086. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1087. struct load_weight *lw)
  1088. {
  1089. u64 tmp;
  1090. if (!lw->inv_weight) {
  1091. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1092. lw->inv_weight = 1;
  1093. else
  1094. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1095. / (lw->weight+1);
  1096. }
  1097. tmp = (u64)delta_exec * weight;
  1098. /*
  1099. * Check whether we'd overflow the 64-bit multiplication:
  1100. */
  1101. if (unlikely(tmp > WMULT_CONST))
  1102. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1103. WMULT_SHIFT/2);
  1104. else
  1105. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1106. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1107. }
  1108. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1109. {
  1110. lw->weight += inc;
  1111. lw->inv_weight = 0;
  1112. }
  1113. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1114. {
  1115. lw->weight -= dec;
  1116. lw->inv_weight = 0;
  1117. }
  1118. /*
  1119. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1120. * of tasks with abnormal "nice" values across CPUs the contribution that
  1121. * each task makes to its run queue's load is weighted according to its
  1122. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1123. * scaled version of the new time slice allocation that they receive on time
  1124. * slice expiry etc.
  1125. */
  1126. #define WEIGHT_IDLEPRIO 3
  1127. #define WMULT_IDLEPRIO 1431655765
  1128. /*
  1129. * Nice levels are multiplicative, with a gentle 10% change for every
  1130. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1131. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1132. * that remained on nice 0.
  1133. *
  1134. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1135. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1136. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1137. * If a task goes up by ~10% and another task goes down by ~10% then
  1138. * the relative distance between them is ~25%.)
  1139. */
  1140. static const int prio_to_weight[40] = {
  1141. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1142. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1143. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1144. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1145. /* 0 */ 1024, 820, 655, 526, 423,
  1146. /* 5 */ 335, 272, 215, 172, 137,
  1147. /* 10 */ 110, 87, 70, 56, 45,
  1148. /* 15 */ 36, 29, 23, 18, 15,
  1149. };
  1150. /*
  1151. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1152. *
  1153. * In cases where the weight does not change often, we can use the
  1154. * precalculated inverse to speed up arithmetics by turning divisions
  1155. * into multiplications:
  1156. */
  1157. static const u32 prio_to_wmult[40] = {
  1158. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1159. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1160. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1161. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1162. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1163. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1164. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1165. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1166. };
  1167. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1168. /*
  1169. * runqueue iterator, to support SMP load-balancing between different
  1170. * scheduling classes, without having to expose their internal data
  1171. * structures to the load-balancing proper:
  1172. */
  1173. struct rq_iterator {
  1174. void *arg;
  1175. struct task_struct *(*start)(void *);
  1176. struct task_struct *(*next)(void *);
  1177. };
  1178. #ifdef CONFIG_SMP
  1179. static unsigned long
  1180. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1181. unsigned long max_load_move, struct sched_domain *sd,
  1182. enum cpu_idle_type idle, int *all_pinned,
  1183. int *this_best_prio, struct rq_iterator *iterator);
  1184. static int
  1185. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1186. struct sched_domain *sd, enum cpu_idle_type idle,
  1187. struct rq_iterator *iterator);
  1188. #endif
  1189. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1190. enum cpuacct_stat_index {
  1191. CPUACCT_STAT_USER, /* ... user mode */
  1192. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1193. CPUACCT_STAT_NSTATS,
  1194. };
  1195. #ifdef CONFIG_CGROUP_CPUACCT
  1196. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1197. static void cpuacct_update_stats(struct task_struct *tsk,
  1198. enum cpuacct_stat_index idx, cputime_t val);
  1199. #else
  1200. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1201. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1202. enum cpuacct_stat_index idx, cputime_t val) {}
  1203. #endif
  1204. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1205. {
  1206. update_load_add(&rq->load, load);
  1207. }
  1208. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1209. {
  1210. update_load_sub(&rq->load, load);
  1211. }
  1212. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1213. typedef int (*tg_visitor)(struct task_group *, void *);
  1214. /*
  1215. * Iterate the full tree, calling @down when first entering a node and @up when
  1216. * leaving it for the final time.
  1217. */
  1218. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1219. {
  1220. struct task_group *parent, *child;
  1221. int ret;
  1222. rcu_read_lock();
  1223. parent = &root_task_group;
  1224. down:
  1225. ret = (*down)(parent, data);
  1226. if (ret)
  1227. goto out_unlock;
  1228. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1229. parent = child;
  1230. goto down;
  1231. up:
  1232. continue;
  1233. }
  1234. ret = (*up)(parent, data);
  1235. if (ret)
  1236. goto out_unlock;
  1237. child = parent;
  1238. parent = parent->parent;
  1239. if (parent)
  1240. goto up;
  1241. out_unlock:
  1242. rcu_read_unlock();
  1243. return ret;
  1244. }
  1245. static int tg_nop(struct task_group *tg, void *data)
  1246. {
  1247. return 0;
  1248. }
  1249. #endif
  1250. #ifdef CONFIG_SMP
  1251. /* Used instead of source_load when we know the type == 0 */
  1252. static unsigned long weighted_cpuload(const int cpu)
  1253. {
  1254. return cpu_rq(cpu)->load.weight;
  1255. }
  1256. /*
  1257. * Return a low guess at the load of a migration-source cpu weighted
  1258. * according to the scheduling class and "nice" value.
  1259. *
  1260. * We want to under-estimate the load of migration sources, to
  1261. * balance conservatively.
  1262. */
  1263. static unsigned long source_load(int cpu, int type)
  1264. {
  1265. struct rq *rq = cpu_rq(cpu);
  1266. unsigned long total = weighted_cpuload(cpu);
  1267. if (type == 0 || !sched_feat(LB_BIAS))
  1268. return total;
  1269. return min(rq->cpu_load[type-1], total);
  1270. }
  1271. /*
  1272. * Return a high guess at the load of a migration-target cpu weighted
  1273. * according to the scheduling class and "nice" value.
  1274. */
  1275. static unsigned long target_load(int cpu, int type)
  1276. {
  1277. struct rq *rq = cpu_rq(cpu);
  1278. unsigned long total = weighted_cpuload(cpu);
  1279. if (type == 0 || !sched_feat(LB_BIAS))
  1280. return total;
  1281. return max(rq->cpu_load[type-1], total);
  1282. }
  1283. static struct sched_group *group_of(int cpu)
  1284. {
  1285. struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
  1286. if (!sd)
  1287. return NULL;
  1288. return sd->groups;
  1289. }
  1290. static unsigned long power_of(int cpu)
  1291. {
  1292. struct sched_group *group = group_of(cpu);
  1293. if (!group)
  1294. return SCHED_LOAD_SCALE;
  1295. return group->cpu_power;
  1296. }
  1297. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1298. static unsigned long cpu_avg_load_per_task(int cpu)
  1299. {
  1300. struct rq *rq = cpu_rq(cpu);
  1301. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1302. if (nr_running)
  1303. rq->avg_load_per_task = rq->load.weight / nr_running;
  1304. else
  1305. rq->avg_load_per_task = 0;
  1306. return rq->avg_load_per_task;
  1307. }
  1308. #ifdef CONFIG_FAIR_GROUP_SCHED
  1309. static __read_mostly unsigned long *update_shares_data;
  1310. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1311. /*
  1312. * Calculate and set the cpu's group shares.
  1313. */
  1314. static void update_group_shares_cpu(struct task_group *tg, int cpu,
  1315. unsigned long sd_shares,
  1316. unsigned long sd_rq_weight,
  1317. unsigned long *usd_rq_weight)
  1318. {
  1319. unsigned long shares, rq_weight;
  1320. int boost = 0;
  1321. rq_weight = usd_rq_weight[cpu];
  1322. if (!rq_weight) {
  1323. boost = 1;
  1324. rq_weight = NICE_0_LOAD;
  1325. }
  1326. /*
  1327. * \Sum_j shares_j * rq_weight_i
  1328. * shares_i = -----------------------------
  1329. * \Sum_j rq_weight_j
  1330. */
  1331. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1332. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1333. if (abs(shares - tg->se[cpu]->load.weight) >
  1334. sysctl_sched_shares_thresh) {
  1335. struct rq *rq = cpu_rq(cpu);
  1336. unsigned long flags;
  1337. raw_spin_lock_irqsave(&rq->lock, flags);
  1338. tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
  1339. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1340. __set_se_shares(tg->se[cpu], shares);
  1341. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1342. }
  1343. }
  1344. /*
  1345. * Re-compute the task group their per cpu shares over the given domain.
  1346. * This needs to be done in a bottom-up fashion because the rq weight of a
  1347. * parent group depends on the shares of its child groups.
  1348. */
  1349. static int tg_shares_up(struct task_group *tg, void *data)
  1350. {
  1351. unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
  1352. unsigned long *usd_rq_weight;
  1353. struct sched_domain *sd = data;
  1354. unsigned long flags;
  1355. int i;
  1356. if (!tg->se[0])
  1357. return 0;
  1358. local_irq_save(flags);
  1359. usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
  1360. for_each_cpu(i, sched_domain_span(sd)) {
  1361. weight = tg->cfs_rq[i]->load.weight;
  1362. usd_rq_weight[i] = weight;
  1363. rq_weight += weight;
  1364. /*
  1365. * If there are currently no tasks on the cpu pretend there
  1366. * is one of average load so that when a new task gets to
  1367. * run here it will not get delayed by group starvation.
  1368. */
  1369. if (!weight)
  1370. weight = NICE_0_LOAD;
  1371. sum_weight += weight;
  1372. shares += tg->cfs_rq[i]->shares;
  1373. }
  1374. if (!rq_weight)
  1375. rq_weight = sum_weight;
  1376. if ((!shares && rq_weight) || shares > tg->shares)
  1377. shares = tg->shares;
  1378. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1379. shares = tg->shares;
  1380. for_each_cpu(i, sched_domain_span(sd))
  1381. update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
  1382. local_irq_restore(flags);
  1383. return 0;
  1384. }
  1385. /*
  1386. * Compute the cpu's hierarchical load factor for each task group.
  1387. * This needs to be done in a top-down fashion because the load of a child
  1388. * group is a fraction of its parents load.
  1389. */
  1390. static int tg_load_down(struct task_group *tg, void *data)
  1391. {
  1392. unsigned long load;
  1393. long cpu = (long)data;
  1394. if (!tg->parent) {
  1395. load = cpu_rq(cpu)->load.weight;
  1396. } else {
  1397. load = tg->parent->cfs_rq[cpu]->h_load;
  1398. load *= tg->cfs_rq[cpu]->shares;
  1399. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1400. }
  1401. tg->cfs_rq[cpu]->h_load = load;
  1402. return 0;
  1403. }
  1404. static void update_shares(struct sched_domain *sd)
  1405. {
  1406. s64 elapsed;
  1407. u64 now;
  1408. if (root_task_group_empty())
  1409. return;
  1410. now = cpu_clock(raw_smp_processor_id());
  1411. elapsed = now - sd->last_update;
  1412. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1413. sd->last_update = now;
  1414. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1415. }
  1416. }
  1417. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1418. {
  1419. if (root_task_group_empty())
  1420. return;
  1421. raw_spin_unlock(&rq->lock);
  1422. update_shares(sd);
  1423. raw_spin_lock(&rq->lock);
  1424. }
  1425. static void update_h_load(long cpu)
  1426. {
  1427. if (root_task_group_empty())
  1428. return;
  1429. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1430. }
  1431. #else
  1432. static inline void update_shares(struct sched_domain *sd)
  1433. {
  1434. }
  1435. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1436. {
  1437. }
  1438. #endif
  1439. #ifdef CONFIG_PREEMPT
  1440. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1441. /*
  1442. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1443. * way at the expense of forcing extra atomic operations in all
  1444. * invocations. This assures that the double_lock is acquired using the
  1445. * same underlying policy as the spinlock_t on this architecture, which
  1446. * reduces latency compared to the unfair variant below. However, it
  1447. * also adds more overhead and therefore may reduce throughput.
  1448. */
  1449. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1450. __releases(this_rq->lock)
  1451. __acquires(busiest->lock)
  1452. __acquires(this_rq->lock)
  1453. {
  1454. raw_spin_unlock(&this_rq->lock);
  1455. double_rq_lock(this_rq, busiest);
  1456. return 1;
  1457. }
  1458. #else
  1459. /*
  1460. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1461. * latency by eliminating extra atomic operations when the locks are
  1462. * already in proper order on entry. This favors lower cpu-ids and will
  1463. * grant the double lock to lower cpus over higher ids under contention,
  1464. * regardless of entry order into the function.
  1465. */
  1466. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1467. __releases(this_rq->lock)
  1468. __acquires(busiest->lock)
  1469. __acquires(this_rq->lock)
  1470. {
  1471. int ret = 0;
  1472. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1473. if (busiest < this_rq) {
  1474. raw_spin_unlock(&this_rq->lock);
  1475. raw_spin_lock(&busiest->lock);
  1476. raw_spin_lock_nested(&this_rq->lock,
  1477. SINGLE_DEPTH_NESTING);
  1478. ret = 1;
  1479. } else
  1480. raw_spin_lock_nested(&busiest->lock,
  1481. SINGLE_DEPTH_NESTING);
  1482. }
  1483. return ret;
  1484. }
  1485. #endif /* CONFIG_PREEMPT */
  1486. /*
  1487. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1488. */
  1489. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1490. {
  1491. if (unlikely(!irqs_disabled())) {
  1492. /* printk() doesn't work good under rq->lock */
  1493. raw_spin_unlock(&this_rq->lock);
  1494. BUG_ON(1);
  1495. }
  1496. return _double_lock_balance(this_rq, busiest);
  1497. }
  1498. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1499. __releases(busiest->lock)
  1500. {
  1501. raw_spin_unlock(&busiest->lock);
  1502. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1503. }
  1504. #endif
  1505. #ifdef CONFIG_FAIR_GROUP_SCHED
  1506. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1507. {
  1508. #ifdef CONFIG_SMP
  1509. cfs_rq->shares = shares;
  1510. #endif
  1511. }
  1512. #endif
  1513. static void calc_load_account_active(struct rq *this_rq);
  1514. static void update_sysctl(void);
  1515. static int get_update_sysctl_factor(void);
  1516. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1517. {
  1518. set_task_rq(p, cpu);
  1519. #ifdef CONFIG_SMP
  1520. /*
  1521. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1522. * successfuly executed on another CPU. We must ensure that updates of
  1523. * per-task data have been completed by this moment.
  1524. */
  1525. smp_wmb();
  1526. task_thread_info(p)->cpu = cpu;
  1527. #endif
  1528. }
  1529. #include "sched_stats.h"
  1530. #include "sched_idletask.c"
  1531. #include "sched_fair.c"
  1532. #include "sched_rt.c"
  1533. #ifdef CONFIG_SCHED_DEBUG
  1534. # include "sched_debug.c"
  1535. #endif
  1536. #define sched_class_highest (&rt_sched_class)
  1537. #define for_each_class(class) \
  1538. for (class = sched_class_highest; class; class = class->next)
  1539. static void inc_nr_running(struct rq *rq)
  1540. {
  1541. rq->nr_running++;
  1542. }
  1543. static void dec_nr_running(struct rq *rq)
  1544. {
  1545. rq->nr_running--;
  1546. }
  1547. static void set_load_weight(struct task_struct *p)
  1548. {
  1549. if (task_has_rt_policy(p)) {
  1550. p->se.load.weight = prio_to_weight[0] * 2;
  1551. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1552. return;
  1553. }
  1554. /*
  1555. * SCHED_IDLE tasks get minimal weight:
  1556. */
  1557. if (p->policy == SCHED_IDLE) {
  1558. p->se.load.weight = WEIGHT_IDLEPRIO;
  1559. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1560. return;
  1561. }
  1562. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1563. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1564. }
  1565. static void update_avg(u64 *avg, u64 sample)
  1566. {
  1567. s64 diff = sample - *avg;
  1568. *avg += diff >> 3;
  1569. }
  1570. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1571. {
  1572. if (wakeup)
  1573. p->se.start_runtime = p->se.sum_exec_runtime;
  1574. sched_info_queued(p);
  1575. p->sched_class->enqueue_task(rq, p, wakeup);
  1576. p->se.on_rq = 1;
  1577. }
  1578. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1579. {
  1580. if (sleep) {
  1581. if (p->se.last_wakeup) {
  1582. update_avg(&p->se.avg_overlap,
  1583. p->se.sum_exec_runtime - p->se.last_wakeup);
  1584. p->se.last_wakeup = 0;
  1585. } else {
  1586. update_avg(&p->se.avg_wakeup,
  1587. sysctl_sched_wakeup_granularity);
  1588. }
  1589. }
  1590. sched_info_dequeued(p);
  1591. p->sched_class->dequeue_task(rq, p, sleep);
  1592. p->se.on_rq = 0;
  1593. }
  1594. /*
  1595. * __normal_prio - return the priority that is based on the static prio
  1596. */
  1597. static inline int __normal_prio(struct task_struct *p)
  1598. {
  1599. return p->static_prio;
  1600. }
  1601. /*
  1602. * Calculate the expected normal priority: i.e. priority
  1603. * without taking RT-inheritance into account. Might be
  1604. * boosted by interactivity modifiers. Changes upon fork,
  1605. * setprio syscalls, and whenever the interactivity
  1606. * estimator recalculates.
  1607. */
  1608. static inline int normal_prio(struct task_struct *p)
  1609. {
  1610. int prio;
  1611. if (task_has_rt_policy(p))
  1612. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1613. else
  1614. prio = __normal_prio(p);
  1615. return prio;
  1616. }
  1617. /*
  1618. * Calculate the current priority, i.e. the priority
  1619. * taken into account by the scheduler. This value might
  1620. * be boosted by RT tasks, or might be boosted by
  1621. * interactivity modifiers. Will be RT if the task got
  1622. * RT-boosted. If not then it returns p->normal_prio.
  1623. */
  1624. static int effective_prio(struct task_struct *p)
  1625. {
  1626. p->normal_prio = normal_prio(p);
  1627. /*
  1628. * If we are RT tasks or we were boosted to RT priority,
  1629. * keep the priority unchanged. Otherwise, update priority
  1630. * to the normal priority:
  1631. */
  1632. if (!rt_prio(p->prio))
  1633. return p->normal_prio;
  1634. return p->prio;
  1635. }
  1636. /*
  1637. * activate_task - move a task to the runqueue.
  1638. */
  1639. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1640. {
  1641. if (task_contributes_to_load(p))
  1642. rq->nr_uninterruptible--;
  1643. enqueue_task(rq, p, wakeup);
  1644. inc_nr_running(rq);
  1645. }
  1646. /*
  1647. * deactivate_task - remove a task from the runqueue.
  1648. */
  1649. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1650. {
  1651. if (task_contributes_to_load(p))
  1652. rq->nr_uninterruptible++;
  1653. dequeue_task(rq, p, sleep);
  1654. dec_nr_running(rq);
  1655. }
  1656. /**
  1657. * task_curr - is this task currently executing on a CPU?
  1658. * @p: the task in question.
  1659. */
  1660. inline int task_curr(const struct task_struct *p)
  1661. {
  1662. return cpu_curr(task_cpu(p)) == p;
  1663. }
  1664. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1665. const struct sched_class *prev_class,
  1666. int oldprio, int running)
  1667. {
  1668. if (prev_class != p->sched_class) {
  1669. if (prev_class->switched_from)
  1670. prev_class->switched_from(rq, p, running);
  1671. p->sched_class->switched_to(rq, p, running);
  1672. } else
  1673. p->sched_class->prio_changed(rq, p, oldprio, running);
  1674. }
  1675. /**
  1676. * kthread_bind - bind a just-created kthread to a cpu.
  1677. * @p: thread created by kthread_create().
  1678. * @cpu: cpu (might not be online, must be possible) for @k to run on.
  1679. *
  1680. * Description: This function is equivalent to set_cpus_allowed(),
  1681. * except that @cpu doesn't need to be online, and the thread must be
  1682. * stopped (i.e., just returned from kthread_create()).
  1683. *
  1684. * Function lives here instead of kthread.c because it messes with
  1685. * scheduler internals which require locking.
  1686. */
  1687. void kthread_bind(struct task_struct *p, unsigned int cpu)
  1688. {
  1689. /* Must have done schedule() in kthread() before we set_task_cpu */
  1690. if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
  1691. WARN_ON(1);
  1692. return;
  1693. }
  1694. p->cpus_allowed = cpumask_of_cpu(cpu);
  1695. p->rt.nr_cpus_allowed = 1;
  1696. p->flags |= PF_THREAD_BOUND;
  1697. }
  1698. EXPORT_SYMBOL(kthread_bind);
  1699. #ifdef CONFIG_SMP
  1700. /*
  1701. * Is this task likely cache-hot:
  1702. */
  1703. static int
  1704. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1705. {
  1706. s64 delta;
  1707. if (p->sched_class != &fair_sched_class)
  1708. return 0;
  1709. /*
  1710. * Buddy candidates are cache hot:
  1711. */
  1712. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1713. (&p->se == cfs_rq_of(&p->se)->next ||
  1714. &p->se == cfs_rq_of(&p->se)->last))
  1715. return 1;
  1716. if (sysctl_sched_migration_cost == -1)
  1717. return 1;
  1718. if (sysctl_sched_migration_cost == 0)
  1719. return 0;
  1720. delta = now - p->se.exec_start;
  1721. return delta < (s64)sysctl_sched_migration_cost;
  1722. }
  1723. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1724. {
  1725. int old_cpu = task_cpu(p);
  1726. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1727. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1728. #ifdef CONFIG_SCHED_DEBUG
  1729. /*
  1730. * We should never call set_task_cpu() on a blocked task,
  1731. * ttwu() will sort out the placement.
  1732. */
  1733. WARN_ON(p->state != TASK_RUNNING && p->state != TASK_WAKING);
  1734. #endif
  1735. trace_sched_migrate_task(p, new_cpu);
  1736. if (old_cpu != new_cpu) {
  1737. p->se.nr_migrations++;
  1738. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
  1739. 1, 1, NULL, 0);
  1740. }
  1741. p->se.vruntime -= old_cfsrq->min_vruntime -
  1742. new_cfsrq->min_vruntime;
  1743. __set_task_cpu(p, new_cpu);
  1744. }
  1745. struct migration_req {
  1746. struct list_head list;
  1747. struct task_struct *task;
  1748. int dest_cpu;
  1749. struct completion done;
  1750. };
  1751. /*
  1752. * The task's runqueue lock must be held.
  1753. * Returns true if you have to wait for migration thread.
  1754. */
  1755. static int
  1756. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1757. {
  1758. struct rq *rq = task_rq(p);
  1759. /*
  1760. * If the task is not on a runqueue (and not running), then
  1761. * the next wake-up will properly place the task.
  1762. */
  1763. if (!p->se.on_rq && !task_running(rq, p))
  1764. return 0;
  1765. init_completion(&req->done);
  1766. req->task = p;
  1767. req->dest_cpu = dest_cpu;
  1768. list_add(&req->list, &rq->migration_queue);
  1769. return 1;
  1770. }
  1771. /*
  1772. * wait_task_context_switch - wait for a thread to complete at least one
  1773. * context switch.
  1774. *
  1775. * @p must not be current.
  1776. */
  1777. void wait_task_context_switch(struct task_struct *p)
  1778. {
  1779. unsigned long nvcsw, nivcsw, flags;
  1780. int running;
  1781. struct rq *rq;
  1782. nvcsw = p->nvcsw;
  1783. nivcsw = p->nivcsw;
  1784. for (;;) {
  1785. /*
  1786. * The runqueue is assigned before the actual context
  1787. * switch. We need to take the runqueue lock.
  1788. *
  1789. * We could check initially without the lock but it is
  1790. * very likely that we need to take the lock in every
  1791. * iteration.
  1792. */
  1793. rq = task_rq_lock(p, &flags);
  1794. running = task_running(rq, p);
  1795. task_rq_unlock(rq, &flags);
  1796. if (likely(!running))
  1797. break;
  1798. /*
  1799. * The switch count is incremented before the actual
  1800. * context switch. We thus wait for two switches to be
  1801. * sure at least one completed.
  1802. */
  1803. if ((p->nvcsw - nvcsw) > 1)
  1804. break;
  1805. if ((p->nivcsw - nivcsw) > 1)
  1806. break;
  1807. cpu_relax();
  1808. }
  1809. }
  1810. /*
  1811. * wait_task_inactive - wait for a thread to unschedule.
  1812. *
  1813. * If @match_state is nonzero, it's the @p->state value just checked and
  1814. * not expected to change. If it changes, i.e. @p might have woken up,
  1815. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1816. * we return a positive number (its total switch count). If a second call
  1817. * a short while later returns the same number, the caller can be sure that
  1818. * @p has remained unscheduled the whole time.
  1819. *
  1820. * The caller must ensure that the task *will* unschedule sometime soon,
  1821. * else this function might spin for a *long* time. This function can't
  1822. * be called with interrupts off, or it may introduce deadlock with
  1823. * smp_call_function() if an IPI is sent by the same process we are
  1824. * waiting to become inactive.
  1825. */
  1826. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1827. {
  1828. unsigned long flags;
  1829. int running, on_rq;
  1830. unsigned long ncsw;
  1831. struct rq *rq;
  1832. for (;;) {
  1833. /*
  1834. * We do the initial early heuristics without holding
  1835. * any task-queue locks at all. We'll only try to get
  1836. * the runqueue lock when things look like they will
  1837. * work out!
  1838. */
  1839. rq = task_rq(p);
  1840. /*
  1841. * If the task is actively running on another CPU
  1842. * still, just relax and busy-wait without holding
  1843. * any locks.
  1844. *
  1845. * NOTE! Since we don't hold any locks, it's not
  1846. * even sure that "rq" stays as the right runqueue!
  1847. * But we don't care, since "task_running()" will
  1848. * return false if the runqueue has changed and p
  1849. * is actually now running somewhere else!
  1850. */
  1851. while (task_running(rq, p)) {
  1852. if (match_state && unlikely(p->state != match_state))
  1853. return 0;
  1854. cpu_relax();
  1855. }
  1856. /*
  1857. * Ok, time to look more closely! We need the rq
  1858. * lock now, to be *sure*. If we're wrong, we'll
  1859. * just go back and repeat.
  1860. */
  1861. rq = task_rq_lock(p, &flags);
  1862. trace_sched_wait_task(rq, p);
  1863. running = task_running(rq, p);
  1864. on_rq = p->se.on_rq;
  1865. ncsw = 0;
  1866. if (!match_state || p->state == match_state)
  1867. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1868. task_rq_unlock(rq, &flags);
  1869. /*
  1870. * If it changed from the expected state, bail out now.
  1871. */
  1872. if (unlikely(!ncsw))
  1873. break;
  1874. /*
  1875. * Was it really running after all now that we
  1876. * checked with the proper locks actually held?
  1877. *
  1878. * Oops. Go back and try again..
  1879. */
  1880. if (unlikely(running)) {
  1881. cpu_relax();
  1882. continue;
  1883. }
  1884. /*
  1885. * It's not enough that it's not actively running,
  1886. * it must be off the runqueue _entirely_, and not
  1887. * preempted!
  1888. *
  1889. * So if it was still runnable (but just not actively
  1890. * running right now), it's preempted, and we should
  1891. * yield - it could be a while.
  1892. */
  1893. if (unlikely(on_rq)) {
  1894. schedule_timeout_uninterruptible(1);
  1895. continue;
  1896. }
  1897. /*
  1898. * Ahh, all good. It wasn't running, and it wasn't
  1899. * runnable, which means that it will never become
  1900. * running in the future either. We're all done!
  1901. */
  1902. break;
  1903. }
  1904. return ncsw;
  1905. }
  1906. /***
  1907. * kick_process - kick a running thread to enter/exit the kernel
  1908. * @p: the to-be-kicked thread
  1909. *
  1910. * Cause a process which is running on another CPU to enter
  1911. * kernel-mode, without any delay. (to get signals handled.)
  1912. *
  1913. * NOTE: this function doesnt have to take the runqueue lock,
  1914. * because all it wants to ensure is that the remote task enters
  1915. * the kernel. If the IPI races and the task has been migrated
  1916. * to another CPU then no harm is done and the purpose has been
  1917. * achieved as well.
  1918. */
  1919. void kick_process(struct task_struct *p)
  1920. {
  1921. int cpu;
  1922. preempt_disable();
  1923. cpu = task_cpu(p);
  1924. if ((cpu != smp_processor_id()) && task_curr(p))
  1925. smp_send_reschedule(cpu);
  1926. preempt_enable();
  1927. }
  1928. EXPORT_SYMBOL_GPL(kick_process);
  1929. #endif /* CONFIG_SMP */
  1930. /**
  1931. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1932. * @p: the task to evaluate
  1933. * @func: the function to be called
  1934. * @info: the function call argument
  1935. *
  1936. * Calls the function @func when the task is currently running. This might
  1937. * be on the current CPU, which just calls the function directly
  1938. */
  1939. void task_oncpu_function_call(struct task_struct *p,
  1940. void (*func) (void *info), void *info)
  1941. {
  1942. int cpu;
  1943. preempt_disable();
  1944. cpu = task_cpu(p);
  1945. if (task_curr(p))
  1946. smp_call_function_single(cpu, func, info, 1);
  1947. preempt_enable();
  1948. }
  1949. #ifdef CONFIG_SMP
  1950. /*
  1951. * Called from:
  1952. *
  1953. * - fork, @p is stable because it isn't on the tasklist yet
  1954. *
  1955. * - exec, @p is unstable XXX
  1956. *
  1957. * - wake-up, we serialize ->cpus_allowed against TASK_WAKING so
  1958. * we should be good.
  1959. */
  1960. static inline
  1961. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  1962. {
  1963. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  1964. /*
  1965. * In order not to call set_task_cpu() on a blocking task we need
  1966. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1967. * cpu.
  1968. *
  1969. * Since this is common to all placement strategies, this lives here.
  1970. *
  1971. * [ this allows ->select_task() to simply return task_cpu(p) and
  1972. * not worry about this generic constraint ]
  1973. */
  1974. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  1975. !cpu_active(cpu))) {
  1976. cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1977. /*
  1978. * XXX: race against hot-plug modifying cpu_active_mask
  1979. */
  1980. BUG_ON(cpu >= nr_cpu_ids);
  1981. }
  1982. return cpu;
  1983. }
  1984. #endif
  1985. /***
  1986. * try_to_wake_up - wake up a thread
  1987. * @p: the to-be-woken-up thread
  1988. * @state: the mask of task states that can be woken
  1989. * @sync: do a synchronous wakeup?
  1990. *
  1991. * Put it on the run-queue if it's not already there. The "current"
  1992. * thread is always on the run-queue (except when the actual
  1993. * re-schedule is in progress), and as such you're allowed to do
  1994. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1995. * runnable without the overhead of this.
  1996. *
  1997. * returns failure only if the task is already active.
  1998. */
  1999. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  2000. int wake_flags)
  2001. {
  2002. int cpu, orig_cpu, this_cpu, success = 0;
  2003. unsigned long flags;
  2004. struct rq *rq, *orig_rq;
  2005. if (!sched_feat(SYNC_WAKEUPS))
  2006. wake_flags &= ~WF_SYNC;
  2007. this_cpu = get_cpu();
  2008. smp_wmb();
  2009. rq = orig_rq = task_rq_lock(p, &flags);
  2010. update_rq_clock(rq);
  2011. if (!(p->state & state))
  2012. goto out;
  2013. if (p->se.on_rq)
  2014. goto out_running;
  2015. cpu = task_cpu(p);
  2016. orig_cpu = cpu;
  2017. #ifdef CONFIG_SMP
  2018. if (unlikely(task_running(rq, p)))
  2019. goto out_activate;
  2020. /*
  2021. * In order to handle concurrent wakeups and release the rq->lock
  2022. * we put the task in TASK_WAKING state.
  2023. *
  2024. * First fix up the nr_uninterruptible count:
  2025. */
  2026. if (task_contributes_to_load(p))
  2027. rq->nr_uninterruptible--;
  2028. p->state = TASK_WAKING;
  2029. __task_rq_unlock(rq);
  2030. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  2031. if (cpu != orig_cpu)
  2032. set_task_cpu(p, cpu);
  2033. rq = __task_rq_lock(p);
  2034. update_rq_clock(rq);
  2035. WARN_ON(p->state != TASK_WAKING);
  2036. cpu = task_cpu(p);
  2037. #ifdef CONFIG_SCHEDSTATS
  2038. schedstat_inc(rq, ttwu_count);
  2039. if (cpu == this_cpu)
  2040. schedstat_inc(rq, ttwu_local);
  2041. else {
  2042. struct sched_domain *sd;
  2043. for_each_domain(this_cpu, sd) {
  2044. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2045. schedstat_inc(sd, ttwu_wake_remote);
  2046. break;
  2047. }
  2048. }
  2049. }
  2050. #endif /* CONFIG_SCHEDSTATS */
  2051. out_activate:
  2052. #endif /* CONFIG_SMP */
  2053. schedstat_inc(p, se.nr_wakeups);
  2054. if (wake_flags & WF_SYNC)
  2055. schedstat_inc(p, se.nr_wakeups_sync);
  2056. if (orig_cpu != cpu)
  2057. schedstat_inc(p, se.nr_wakeups_migrate);
  2058. if (cpu == this_cpu)
  2059. schedstat_inc(p, se.nr_wakeups_local);
  2060. else
  2061. schedstat_inc(p, se.nr_wakeups_remote);
  2062. activate_task(rq, p, 1);
  2063. success = 1;
  2064. /*
  2065. * Only attribute actual wakeups done by this task.
  2066. */
  2067. if (!in_interrupt()) {
  2068. struct sched_entity *se = &current->se;
  2069. u64 sample = se->sum_exec_runtime;
  2070. if (se->last_wakeup)
  2071. sample -= se->last_wakeup;
  2072. else
  2073. sample -= se->start_runtime;
  2074. update_avg(&se->avg_wakeup, sample);
  2075. se->last_wakeup = se->sum_exec_runtime;
  2076. }
  2077. out_running:
  2078. trace_sched_wakeup(rq, p, success);
  2079. check_preempt_curr(rq, p, wake_flags);
  2080. p->state = TASK_RUNNING;
  2081. #ifdef CONFIG_SMP
  2082. if (p->sched_class->task_wake_up)
  2083. p->sched_class->task_wake_up(rq, p);
  2084. if (unlikely(rq->idle_stamp)) {
  2085. u64 delta = rq->clock - rq->idle_stamp;
  2086. u64 max = 2*sysctl_sched_migration_cost;
  2087. if (delta > max)
  2088. rq->avg_idle = max;
  2089. else
  2090. update_avg(&rq->avg_idle, delta);
  2091. rq->idle_stamp = 0;
  2092. }
  2093. #endif
  2094. out:
  2095. task_rq_unlock(rq, &flags);
  2096. put_cpu();
  2097. return success;
  2098. }
  2099. /**
  2100. * wake_up_process - Wake up a specific process
  2101. * @p: The process to be woken up.
  2102. *
  2103. * Attempt to wake up the nominated process and move it to the set of runnable
  2104. * processes. Returns 1 if the process was woken up, 0 if it was already
  2105. * running.
  2106. *
  2107. * It may be assumed that this function implies a write memory barrier before
  2108. * changing the task state if and only if any tasks are woken up.
  2109. */
  2110. int wake_up_process(struct task_struct *p)
  2111. {
  2112. return try_to_wake_up(p, TASK_ALL, 0);
  2113. }
  2114. EXPORT_SYMBOL(wake_up_process);
  2115. int wake_up_state(struct task_struct *p, unsigned int state)
  2116. {
  2117. return try_to_wake_up(p, state, 0);
  2118. }
  2119. /*
  2120. * Perform scheduler related setup for a newly forked process p.
  2121. * p is forked by current.
  2122. *
  2123. * __sched_fork() is basic setup used by init_idle() too:
  2124. */
  2125. static void __sched_fork(struct task_struct *p)
  2126. {
  2127. p->se.exec_start = 0;
  2128. p->se.sum_exec_runtime = 0;
  2129. p->se.prev_sum_exec_runtime = 0;
  2130. p->se.nr_migrations = 0;
  2131. p->se.last_wakeup = 0;
  2132. p->se.avg_overlap = 0;
  2133. p->se.start_runtime = 0;
  2134. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2135. #ifdef CONFIG_SCHEDSTATS
  2136. p->se.wait_start = 0;
  2137. p->se.wait_max = 0;
  2138. p->se.wait_count = 0;
  2139. p->se.wait_sum = 0;
  2140. p->se.sleep_start = 0;
  2141. p->se.sleep_max = 0;
  2142. p->se.sum_sleep_runtime = 0;
  2143. p->se.block_start = 0;
  2144. p->se.block_max = 0;
  2145. p->se.exec_max = 0;
  2146. p->se.slice_max = 0;
  2147. p->se.nr_migrations_cold = 0;
  2148. p->se.nr_failed_migrations_affine = 0;
  2149. p->se.nr_failed_migrations_running = 0;
  2150. p->se.nr_failed_migrations_hot = 0;
  2151. p->se.nr_forced_migrations = 0;
  2152. p->se.nr_wakeups = 0;
  2153. p->se.nr_wakeups_sync = 0;
  2154. p->se.nr_wakeups_migrate = 0;
  2155. p->se.nr_wakeups_local = 0;
  2156. p->se.nr_wakeups_remote = 0;
  2157. p->se.nr_wakeups_affine = 0;
  2158. p->se.nr_wakeups_affine_attempts = 0;
  2159. p->se.nr_wakeups_passive = 0;
  2160. p->se.nr_wakeups_idle = 0;
  2161. #endif
  2162. INIT_LIST_HEAD(&p->rt.run_list);
  2163. p->se.on_rq = 0;
  2164. INIT_LIST_HEAD(&p->se.group_node);
  2165. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2166. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2167. #endif
  2168. }
  2169. /*
  2170. * fork()/clone()-time setup:
  2171. */
  2172. void sched_fork(struct task_struct *p, int clone_flags)
  2173. {
  2174. int cpu = get_cpu();
  2175. __sched_fork(p);
  2176. /*
  2177. * We mark the process as waking here. This guarantees that
  2178. * nobody will actually run it, and a signal or other external
  2179. * event cannot wake it up and insert it on the runqueue either.
  2180. */
  2181. p->state = TASK_WAKING;
  2182. /*
  2183. * Revert to default priority/policy on fork if requested.
  2184. */
  2185. if (unlikely(p->sched_reset_on_fork)) {
  2186. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2187. p->policy = SCHED_NORMAL;
  2188. p->normal_prio = p->static_prio;
  2189. }
  2190. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2191. p->static_prio = NICE_TO_PRIO(0);
  2192. p->normal_prio = p->static_prio;
  2193. set_load_weight(p);
  2194. }
  2195. /*
  2196. * We don't need the reset flag anymore after the fork. It has
  2197. * fulfilled its duty:
  2198. */
  2199. p->sched_reset_on_fork = 0;
  2200. }
  2201. /*
  2202. * Make sure we do not leak PI boosting priority to the child.
  2203. */
  2204. p->prio = current->normal_prio;
  2205. if (!rt_prio(p->prio))
  2206. p->sched_class = &fair_sched_class;
  2207. if (p->sched_class->task_fork)
  2208. p->sched_class->task_fork(p);
  2209. #ifdef CONFIG_SMP
  2210. cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
  2211. #endif
  2212. set_task_cpu(p, cpu);
  2213. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2214. if (likely(sched_info_on()))
  2215. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2216. #endif
  2217. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2218. p->oncpu = 0;
  2219. #endif
  2220. #ifdef CONFIG_PREEMPT
  2221. /* Want to start with kernel preemption disabled. */
  2222. task_thread_info(p)->preempt_count = 1;
  2223. #endif
  2224. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2225. put_cpu();
  2226. }
  2227. /*
  2228. * wake_up_new_task - wake up a newly created task for the first time.
  2229. *
  2230. * This function will do some initial scheduler statistics housekeeping
  2231. * that must be done for every newly created context, then puts the task
  2232. * on the runqueue and wakes it.
  2233. */
  2234. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2235. {
  2236. unsigned long flags;
  2237. struct rq *rq;
  2238. rq = task_rq_lock(p, &flags);
  2239. BUG_ON(p->state != TASK_WAKING);
  2240. p->state = TASK_RUNNING;
  2241. update_rq_clock(rq);
  2242. activate_task(rq, p, 0);
  2243. trace_sched_wakeup_new(rq, p, 1);
  2244. check_preempt_curr(rq, p, WF_FORK);
  2245. #ifdef CONFIG_SMP
  2246. if (p->sched_class->task_wake_up)
  2247. p->sched_class->task_wake_up(rq, p);
  2248. #endif
  2249. task_rq_unlock(rq, &flags);
  2250. }
  2251. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2252. /**
  2253. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2254. * @notifier: notifier struct to register
  2255. */
  2256. void preempt_notifier_register(struct preempt_notifier *notifier)
  2257. {
  2258. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2259. }
  2260. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2261. /**
  2262. * preempt_notifier_unregister - no longer interested in preemption notifications
  2263. * @notifier: notifier struct to unregister
  2264. *
  2265. * This is safe to call from within a preemption notifier.
  2266. */
  2267. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2268. {
  2269. hlist_del(&notifier->link);
  2270. }
  2271. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2272. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2273. {
  2274. struct preempt_notifier *notifier;
  2275. struct hlist_node *node;
  2276. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2277. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2278. }
  2279. static void
  2280. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2281. struct task_struct *next)
  2282. {
  2283. struct preempt_notifier *notifier;
  2284. struct hlist_node *node;
  2285. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2286. notifier->ops->sched_out(notifier, next);
  2287. }
  2288. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2289. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2290. {
  2291. }
  2292. static void
  2293. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2294. struct task_struct *next)
  2295. {
  2296. }
  2297. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2298. /**
  2299. * prepare_task_switch - prepare to switch tasks
  2300. * @rq: the runqueue preparing to switch
  2301. * @prev: the current task that is being switched out
  2302. * @next: the task we are going to switch to.
  2303. *
  2304. * This is called with the rq lock held and interrupts off. It must
  2305. * be paired with a subsequent finish_task_switch after the context
  2306. * switch.
  2307. *
  2308. * prepare_task_switch sets up locking and calls architecture specific
  2309. * hooks.
  2310. */
  2311. static inline void
  2312. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2313. struct task_struct *next)
  2314. {
  2315. fire_sched_out_preempt_notifiers(prev, next);
  2316. prepare_lock_switch(rq, next);
  2317. prepare_arch_switch(next);
  2318. }
  2319. /**
  2320. * finish_task_switch - clean up after a task-switch
  2321. * @rq: runqueue associated with task-switch
  2322. * @prev: the thread we just switched away from.
  2323. *
  2324. * finish_task_switch must be called after the context switch, paired
  2325. * with a prepare_task_switch call before the context switch.
  2326. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2327. * and do any other architecture-specific cleanup actions.
  2328. *
  2329. * Note that we may have delayed dropping an mm in context_switch(). If
  2330. * so, we finish that here outside of the runqueue lock. (Doing it
  2331. * with the lock held can cause deadlocks; see schedule() for
  2332. * details.)
  2333. */
  2334. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2335. __releases(rq->lock)
  2336. {
  2337. struct mm_struct *mm = rq->prev_mm;
  2338. long prev_state;
  2339. rq->prev_mm = NULL;
  2340. /*
  2341. * A task struct has one reference for the use as "current".
  2342. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2343. * schedule one last time. The schedule call will never return, and
  2344. * the scheduled task must drop that reference.
  2345. * The test for TASK_DEAD must occur while the runqueue locks are
  2346. * still held, otherwise prev could be scheduled on another cpu, die
  2347. * there before we look at prev->state, and then the reference would
  2348. * be dropped twice.
  2349. * Manfred Spraul <manfred@colorfullife.com>
  2350. */
  2351. prev_state = prev->state;
  2352. finish_arch_switch(prev);
  2353. perf_event_task_sched_in(current, cpu_of(rq));
  2354. finish_lock_switch(rq, prev);
  2355. fire_sched_in_preempt_notifiers(current);
  2356. if (mm)
  2357. mmdrop(mm);
  2358. if (unlikely(prev_state == TASK_DEAD)) {
  2359. /*
  2360. * Remove function-return probe instances associated with this
  2361. * task and put them back on the free list.
  2362. */
  2363. kprobe_flush_task(prev);
  2364. put_task_struct(prev);
  2365. }
  2366. }
  2367. #ifdef CONFIG_SMP
  2368. /* assumes rq->lock is held */
  2369. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2370. {
  2371. if (prev->sched_class->pre_schedule)
  2372. prev->sched_class->pre_schedule(rq, prev);
  2373. }
  2374. /* rq->lock is NOT held, but preemption is disabled */
  2375. static inline void post_schedule(struct rq *rq)
  2376. {
  2377. if (rq->post_schedule) {
  2378. unsigned long flags;
  2379. raw_spin_lock_irqsave(&rq->lock, flags);
  2380. if (rq->curr->sched_class->post_schedule)
  2381. rq->curr->sched_class->post_schedule(rq);
  2382. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2383. rq->post_schedule = 0;
  2384. }
  2385. }
  2386. #else
  2387. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2388. {
  2389. }
  2390. static inline void post_schedule(struct rq *rq)
  2391. {
  2392. }
  2393. #endif
  2394. /**
  2395. * schedule_tail - first thing a freshly forked thread must call.
  2396. * @prev: the thread we just switched away from.
  2397. */
  2398. asmlinkage void schedule_tail(struct task_struct *prev)
  2399. __releases(rq->lock)
  2400. {
  2401. struct rq *rq = this_rq();
  2402. finish_task_switch(rq, prev);
  2403. /*
  2404. * FIXME: do we need to worry about rq being invalidated by the
  2405. * task_switch?
  2406. */
  2407. post_schedule(rq);
  2408. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2409. /* In this case, finish_task_switch does not reenable preemption */
  2410. preempt_enable();
  2411. #endif
  2412. if (current->set_child_tid)
  2413. put_user(task_pid_vnr(current), current->set_child_tid);
  2414. }
  2415. /*
  2416. * context_switch - switch to the new MM and the new
  2417. * thread's register state.
  2418. */
  2419. static inline void
  2420. context_switch(struct rq *rq, struct task_struct *prev,
  2421. struct task_struct *next)
  2422. {
  2423. struct mm_struct *mm, *oldmm;
  2424. prepare_task_switch(rq, prev, next);
  2425. trace_sched_switch(rq, prev, next);
  2426. mm = next->mm;
  2427. oldmm = prev->active_mm;
  2428. /*
  2429. * For paravirt, this is coupled with an exit in switch_to to
  2430. * combine the page table reload and the switch backend into
  2431. * one hypercall.
  2432. */
  2433. arch_start_context_switch(prev);
  2434. if (likely(!mm)) {
  2435. next->active_mm = oldmm;
  2436. atomic_inc(&oldmm->mm_count);
  2437. enter_lazy_tlb(oldmm, next);
  2438. } else
  2439. switch_mm(oldmm, mm, next);
  2440. if (likely(!prev->mm)) {
  2441. prev->active_mm = NULL;
  2442. rq->prev_mm = oldmm;
  2443. }
  2444. /*
  2445. * Since the runqueue lock will be released by the next
  2446. * task (which is an invalid locking op but in the case
  2447. * of the scheduler it's an obvious special-case), so we
  2448. * do an early lockdep release here:
  2449. */
  2450. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2451. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2452. #endif
  2453. /* Here we just switch the register state and the stack. */
  2454. switch_to(prev, next, prev);
  2455. barrier();
  2456. /*
  2457. * this_rq must be evaluated again because prev may have moved
  2458. * CPUs since it called schedule(), thus the 'rq' on its stack
  2459. * frame will be invalid.
  2460. */
  2461. finish_task_switch(this_rq(), prev);
  2462. }
  2463. /*
  2464. * nr_running, nr_uninterruptible and nr_context_switches:
  2465. *
  2466. * externally visible scheduler statistics: current number of runnable
  2467. * threads, current number of uninterruptible-sleeping threads, total
  2468. * number of context switches performed since bootup.
  2469. */
  2470. unsigned long nr_running(void)
  2471. {
  2472. unsigned long i, sum = 0;
  2473. for_each_online_cpu(i)
  2474. sum += cpu_rq(i)->nr_running;
  2475. return sum;
  2476. }
  2477. unsigned long nr_uninterruptible(void)
  2478. {
  2479. unsigned long i, sum = 0;
  2480. for_each_possible_cpu(i)
  2481. sum += cpu_rq(i)->nr_uninterruptible;
  2482. /*
  2483. * Since we read the counters lockless, it might be slightly
  2484. * inaccurate. Do not allow it to go below zero though:
  2485. */
  2486. if (unlikely((long)sum < 0))
  2487. sum = 0;
  2488. return sum;
  2489. }
  2490. unsigned long long nr_context_switches(void)
  2491. {
  2492. int i;
  2493. unsigned long long sum = 0;
  2494. for_each_possible_cpu(i)
  2495. sum += cpu_rq(i)->nr_switches;
  2496. return sum;
  2497. }
  2498. unsigned long nr_iowait(void)
  2499. {
  2500. unsigned long i, sum = 0;
  2501. for_each_possible_cpu(i)
  2502. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2503. return sum;
  2504. }
  2505. unsigned long nr_iowait_cpu(void)
  2506. {
  2507. struct rq *this = this_rq();
  2508. return atomic_read(&this->nr_iowait);
  2509. }
  2510. unsigned long this_cpu_load(void)
  2511. {
  2512. struct rq *this = this_rq();
  2513. return this->cpu_load[0];
  2514. }
  2515. /* Variables and functions for calc_load */
  2516. static atomic_long_t calc_load_tasks;
  2517. static unsigned long calc_load_update;
  2518. unsigned long avenrun[3];
  2519. EXPORT_SYMBOL(avenrun);
  2520. /**
  2521. * get_avenrun - get the load average array
  2522. * @loads: pointer to dest load array
  2523. * @offset: offset to add
  2524. * @shift: shift count to shift the result left
  2525. *
  2526. * These values are estimates at best, so no need for locking.
  2527. */
  2528. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2529. {
  2530. loads[0] = (avenrun[0] + offset) << shift;
  2531. loads[1] = (avenrun[1] + offset) << shift;
  2532. loads[2] = (avenrun[2] + offset) << shift;
  2533. }
  2534. static unsigned long
  2535. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2536. {
  2537. load *= exp;
  2538. load += active * (FIXED_1 - exp);
  2539. return load >> FSHIFT;
  2540. }
  2541. /*
  2542. * calc_load - update the avenrun load estimates 10 ticks after the
  2543. * CPUs have updated calc_load_tasks.
  2544. */
  2545. void calc_global_load(void)
  2546. {
  2547. unsigned long upd = calc_load_update + 10;
  2548. long active;
  2549. if (time_before(jiffies, upd))
  2550. return;
  2551. active = atomic_long_read(&calc_load_tasks);
  2552. active = active > 0 ? active * FIXED_1 : 0;
  2553. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2554. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2555. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2556. calc_load_update += LOAD_FREQ;
  2557. }
  2558. /*
  2559. * Either called from update_cpu_load() or from a cpu going idle
  2560. */
  2561. static void calc_load_account_active(struct rq *this_rq)
  2562. {
  2563. long nr_active, delta;
  2564. nr_active = this_rq->nr_running;
  2565. nr_active += (long) this_rq->nr_uninterruptible;
  2566. if (nr_active != this_rq->calc_load_active) {
  2567. delta = nr_active - this_rq->calc_load_active;
  2568. this_rq->calc_load_active = nr_active;
  2569. atomic_long_add(delta, &calc_load_tasks);
  2570. }
  2571. }
  2572. /*
  2573. * Update rq->cpu_load[] statistics. This function is usually called every
  2574. * scheduler tick (TICK_NSEC).
  2575. */
  2576. static void update_cpu_load(struct rq *this_rq)
  2577. {
  2578. unsigned long this_load = this_rq->load.weight;
  2579. int i, scale;
  2580. this_rq->nr_load_updates++;
  2581. /* Update our load: */
  2582. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2583. unsigned long old_load, new_load;
  2584. /* scale is effectively 1 << i now, and >> i divides by scale */
  2585. old_load = this_rq->cpu_load[i];
  2586. new_load = this_load;
  2587. /*
  2588. * Round up the averaging division if load is increasing. This
  2589. * prevents us from getting stuck on 9 if the load is 10, for
  2590. * example.
  2591. */
  2592. if (new_load > old_load)
  2593. new_load += scale-1;
  2594. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2595. }
  2596. if (time_after_eq(jiffies, this_rq->calc_load_update)) {
  2597. this_rq->calc_load_update += LOAD_FREQ;
  2598. calc_load_account_active(this_rq);
  2599. }
  2600. }
  2601. #ifdef CONFIG_SMP
  2602. /*
  2603. * double_rq_lock - safely lock two runqueues
  2604. *
  2605. * Note this does not disable interrupts like task_rq_lock,
  2606. * you need to do so manually before calling.
  2607. */
  2608. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2609. __acquires(rq1->lock)
  2610. __acquires(rq2->lock)
  2611. {
  2612. BUG_ON(!irqs_disabled());
  2613. if (rq1 == rq2) {
  2614. raw_spin_lock(&rq1->lock);
  2615. __acquire(rq2->lock); /* Fake it out ;) */
  2616. } else {
  2617. if (rq1 < rq2) {
  2618. raw_spin_lock(&rq1->lock);
  2619. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2620. } else {
  2621. raw_spin_lock(&rq2->lock);
  2622. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2623. }
  2624. }
  2625. update_rq_clock(rq1);
  2626. update_rq_clock(rq2);
  2627. }
  2628. /*
  2629. * double_rq_unlock - safely unlock two runqueues
  2630. *
  2631. * Note this does not restore interrupts like task_rq_unlock,
  2632. * you need to do so manually after calling.
  2633. */
  2634. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2635. __releases(rq1->lock)
  2636. __releases(rq2->lock)
  2637. {
  2638. raw_spin_unlock(&rq1->lock);
  2639. if (rq1 != rq2)
  2640. raw_spin_unlock(&rq2->lock);
  2641. else
  2642. __release(rq2->lock);
  2643. }
  2644. /*
  2645. * If dest_cpu is allowed for this process, migrate the task to it.
  2646. * This is accomplished by forcing the cpu_allowed mask to only
  2647. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2648. * the cpu_allowed mask is restored.
  2649. */
  2650. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2651. {
  2652. struct migration_req req;
  2653. unsigned long flags;
  2654. struct rq *rq;
  2655. rq = task_rq_lock(p, &flags);
  2656. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2657. || unlikely(!cpu_active(dest_cpu)))
  2658. goto out;
  2659. /* force the process onto the specified CPU */
  2660. if (migrate_task(p, dest_cpu, &req)) {
  2661. /* Need to wait for migration thread (might exit: take ref). */
  2662. struct task_struct *mt = rq->migration_thread;
  2663. get_task_struct(mt);
  2664. task_rq_unlock(rq, &flags);
  2665. wake_up_process(mt);
  2666. put_task_struct(mt);
  2667. wait_for_completion(&req.done);
  2668. return;
  2669. }
  2670. out:
  2671. task_rq_unlock(rq, &flags);
  2672. }
  2673. /*
  2674. * sched_exec - execve() is a valuable balancing opportunity, because at
  2675. * this point the task has the smallest effective memory and cache footprint.
  2676. */
  2677. void sched_exec(void)
  2678. {
  2679. int new_cpu, this_cpu = get_cpu();
  2680. new_cpu = select_task_rq(current, SD_BALANCE_EXEC, 0);
  2681. put_cpu();
  2682. if (new_cpu != this_cpu)
  2683. sched_migrate_task(current, new_cpu);
  2684. }
  2685. /*
  2686. * pull_task - move a task from a remote runqueue to the local runqueue.
  2687. * Both runqueues must be locked.
  2688. */
  2689. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2690. struct rq *this_rq, int this_cpu)
  2691. {
  2692. deactivate_task(src_rq, p, 0);
  2693. set_task_cpu(p, this_cpu);
  2694. activate_task(this_rq, p, 0);
  2695. check_preempt_curr(this_rq, p, 0);
  2696. }
  2697. /*
  2698. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2699. */
  2700. static
  2701. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2702. struct sched_domain *sd, enum cpu_idle_type idle,
  2703. int *all_pinned)
  2704. {
  2705. int tsk_cache_hot = 0;
  2706. /*
  2707. * We do not migrate tasks that are:
  2708. * 1) running (obviously), or
  2709. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2710. * 3) are cache-hot on their current CPU.
  2711. */
  2712. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2713. schedstat_inc(p, se.nr_failed_migrations_affine);
  2714. return 0;
  2715. }
  2716. *all_pinned = 0;
  2717. if (task_running(rq, p)) {
  2718. schedstat_inc(p, se.nr_failed_migrations_running);
  2719. return 0;
  2720. }
  2721. /*
  2722. * Aggressive migration if:
  2723. * 1) task is cache cold, or
  2724. * 2) too many balance attempts have failed.
  2725. */
  2726. tsk_cache_hot = task_hot(p, rq->clock, sd);
  2727. if (!tsk_cache_hot ||
  2728. sd->nr_balance_failed > sd->cache_nice_tries) {
  2729. #ifdef CONFIG_SCHEDSTATS
  2730. if (tsk_cache_hot) {
  2731. schedstat_inc(sd, lb_hot_gained[idle]);
  2732. schedstat_inc(p, se.nr_forced_migrations);
  2733. }
  2734. #endif
  2735. return 1;
  2736. }
  2737. if (tsk_cache_hot) {
  2738. schedstat_inc(p, se.nr_failed_migrations_hot);
  2739. return 0;
  2740. }
  2741. return 1;
  2742. }
  2743. static unsigned long
  2744. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2745. unsigned long max_load_move, struct sched_domain *sd,
  2746. enum cpu_idle_type idle, int *all_pinned,
  2747. int *this_best_prio, struct rq_iterator *iterator)
  2748. {
  2749. int loops = 0, pulled = 0, pinned = 0;
  2750. struct task_struct *p;
  2751. long rem_load_move = max_load_move;
  2752. if (max_load_move == 0)
  2753. goto out;
  2754. pinned = 1;
  2755. /*
  2756. * Start the load-balancing iterator:
  2757. */
  2758. p = iterator->start(iterator->arg);
  2759. next:
  2760. if (!p || loops++ > sysctl_sched_nr_migrate)
  2761. goto out;
  2762. if ((p->se.load.weight >> 1) > rem_load_move ||
  2763. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2764. p = iterator->next(iterator->arg);
  2765. goto next;
  2766. }
  2767. pull_task(busiest, p, this_rq, this_cpu);
  2768. pulled++;
  2769. rem_load_move -= p->se.load.weight;
  2770. #ifdef CONFIG_PREEMPT
  2771. /*
  2772. * NEWIDLE balancing is a source of latency, so preemptible kernels
  2773. * will stop after the first task is pulled to minimize the critical
  2774. * section.
  2775. */
  2776. if (idle == CPU_NEWLY_IDLE)
  2777. goto out;
  2778. #endif
  2779. /*
  2780. * We only want to steal up to the prescribed amount of weighted load.
  2781. */
  2782. if (rem_load_move > 0) {
  2783. if (p->prio < *this_best_prio)
  2784. *this_best_prio = p->prio;
  2785. p = iterator->next(iterator->arg);
  2786. goto next;
  2787. }
  2788. out:
  2789. /*
  2790. * Right now, this is one of only two places pull_task() is called,
  2791. * so we can safely collect pull_task() stats here rather than
  2792. * inside pull_task().
  2793. */
  2794. schedstat_add(sd, lb_gained[idle], pulled);
  2795. if (all_pinned)
  2796. *all_pinned = pinned;
  2797. return max_load_move - rem_load_move;
  2798. }
  2799. /*
  2800. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2801. * this_rq, as part of a balancing operation within domain "sd".
  2802. * Returns 1 if successful and 0 otherwise.
  2803. *
  2804. * Called with both runqueues locked.
  2805. */
  2806. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2807. unsigned long max_load_move,
  2808. struct sched_domain *sd, enum cpu_idle_type idle,
  2809. int *all_pinned)
  2810. {
  2811. const struct sched_class *class = sched_class_highest;
  2812. unsigned long total_load_moved = 0;
  2813. int this_best_prio = this_rq->curr->prio;
  2814. do {
  2815. total_load_moved +=
  2816. class->load_balance(this_rq, this_cpu, busiest,
  2817. max_load_move - total_load_moved,
  2818. sd, idle, all_pinned, &this_best_prio);
  2819. class = class->next;
  2820. #ifdef CONFIG_PREEMPT
  2821. /*
  2822. * NEWIDLE balancing is a source of latency, so preemptible
  2823. * kernels will stop after the first task is pulled to minimize
  2824. * the critical section.
  2825. */
  2826. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2827. break;
  2828. #endif
  2829. } while (class && max_load_move > total_load_moved);
  2830. return total_load_moved > 0;
  2831. }
  2832. static int
  2833. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2834. struct sched_domain *sd, enum cpu_idle_type idle,
  2835. struct rq_iterator *iterator)
  2836. {
  2837. struct task_struct *p = iterator->start(iterator->arg);
  2838. int pinned = 0;
  2839. while (p) {
  2840. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2841. pull_task(busiest, p, this_rq, this_cpu);
  2842. /*
  2843. * Right now, this is only the second place pull_task()
  2844. * is called, so we can safely collect pull_task()
  2845. * stats here rather than inside pull_task().
  2846. */
  2847. schedstat_inc(sd, lb_gained[idle]);
  2848. return 1;
  2849. }
  2850. p = iterator->next(iterator->arg);
  2851. }
  2852. return 0;
  2853. }
  2854. /*
  2855. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2856. * part of active balancing operations within "domain".
  2857. * Returns 1 if successful and 0 otherwise.
  2858. *
  2859. * Called with both runqueues locked.
  2860. */
  2861. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2862. struct sched_domain *sd, enum cpu_idle_type idle)
  2863. {
  2864. const struct sched_class *class;
  2865. for_each_class(class) {
  2866. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2867. return 1;
  2868. }
  2869. return 0;
  2870. }
  2871. /********** Helpers for find_busiest_group ************************/
  2872. /*
  2873. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2874. * during load balancing.
  2875. */
  2876. struct sd_lb_stats {
  2877. struct sched_group *busiest; /* Busiest group in this sd */
  2878. struct sched_group *this; /* Local group in this sd */
  2879. unsigned long total_load; /* Total load of all groups in sd */
  2880. unsigned long total_pwr; /* Total power of all groups in sd */
  2881. unsigned long avg_load; /* Average load across all groups in sd */
  2882. /** Statistics of this group */
  2883. unsigned long this_load;
  2884. unsigned long this_load_per_task;
  2885. unsigned long this_nr_running;
  2886. /* Statistics of the busiest group */
  2887. unsigned long max_load;
  2888. unsigned long busiest_load_per_task;
  2889. unsigned long busiest_nr_running;
  2890. int group_imb; /* Is there imbalance in this sd */
  2891. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2892. int power_savings_balance; /* Is powersave balance needed for this sd */
  2893. struct sched_group *group_min; /* Least loaded group in sd */
  2894. struct sched_group *group_leader; /* Group which relieves group_min */
  2895. unsigned long min_load_per_task; /* load_per_task in group_min */
  2896. unsigned long leader_nr_running; /* Nr running of group_leader */
  2897. unsigned long min_nr_running; /* Nr running of group_min */
  2898. #endif
  2899. };
  2900. /*
  2901. * sg_lb_stats - stats of a sched_group required for load_balancing
  2902. */
  2903. struct sg_lb_stats {
  2904. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2905. unsigned long group_load; /* Total load over the CPUs of the group */
  2906. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2907. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2908. unsigned long group_capacity;
  2909. int group_imb; /* Is there an imbalance in the group ? */
  2910. };
  2911. /**
  2912. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2913. * @group: The group whose first cpu is to be returned.
  2914. */
  2915. static inline unsigned int group_first_cpu(struct sched_group *group)
  2916. {
  2917. return cpumask_first(sched_group_cpus(group));
  2918. }
  2919. /**
  2920. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2921. * @sd: The sched_domain whose load_idx is to be obtained.
  2922. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2923. */
  2924. static inline int get_sd_load_idx(struct sched_domain *sd,
  2925. enum cpu_idle_type idle)
  2926. {
  2927. int load_idx;
  2928. switch (idle) {
  2929. case CPU_NOT_IDLE:
  2930. load_idx = sd->busy_idx;
  2931. break;
  2932. case CPU_NEWLY_IDLE:
  2933. load_idx = sd->newidle_idx;
  2934. break;
  2935. default:
  2936. load_idx = sd->idle_idx;
  2937. break;
  2938. }
  2939. return load_idx;
  2940. }
  2941. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2942. /**
  2943. * init_sd_power_savings_stats - Initialize power savings statistics for
  2944. * the given sched_domain, during load balancing.
  2945. *
  2946. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2947. * @sds: Variable containing the statistics for sd.
  2948. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2949. */
  2950. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2951. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2952. {
  2953. /*
  2954. * Busy processors will not participate in power savings
  2955. * balance.
  2956. */
  2957. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2958. sds->power_savings_balance = 0;
  2959. else {
  2960. sds->power_savings_balance = 1;
  2961. sds->min_nr_running = ULONG_MAX;
  2962. sds->leader_nr_running = 0;
  2963. }
  2964. }
  2965. /**
  2966. * update_sd_power_savings_stats - Update the power saving stats for a
  2967. * sched_domain while performing load balancing.
  2968. *
  2969. * @group: sched_group belonging to the sched_domain under consideration.
  2970. * @sds: Variable containing the statistics of the sched_domain
  2971. * @local_group: Does group contain the CPU for which we're performing
  2972. * load balancing ?
  2973. * @sgs: Variable containing the statistics of the group.
  2974. */
  2975. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2976. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2977. {
  2978. if (!sds->power_savings_balance)
  2979. return;
  2980. /*
  2981. * If the local group is idle or completely loaded
  2982. * no need to do power savings balance at this domain
  2983. */
  2984. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2985. !sds->this_nr_running))
  2986. sds->power_savings_balance = 0;
  2987. /*
  2988. * If a group is already running at full capacity or idle,
  2989. * don't include that group in power savings calculations
  2990. */
  2991. if (!sds->power_savings_balance ||
  2992. sgs->sum_nr_running >= sgs->group_capacity ||
  2993. !sgs->sum_nr_running)
  2994. return;
  2995. /*
  2996. * Calculate the group which has the least non-idle load.
  2997. * This is the group from where we need to pick up the load
  2998. * for saving power
  2999. */
  3000. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  3001. (sgs->sum_nr_running == sds->min_nr_running &&
  3002. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  3003. sds->group_min = group;
  3004. sds->min_nr_running = sgs->sum_nr_running;
  3005. sds->min_load_per_task = sgs->sum_weighted_load /
  3006. sgs->sum_nr_running;
  3007. }
  3008. /*
  3009. * Calculate the group which is almost near its
  3010. * capacity but still has some space to pick up some load
  3011. * from other group and save more power
  3012. */
  3013. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  3014. return;
  3015. if (sgs->sum_nr_running > sds->leader_nr_running ||
  3016. (sgs->sum_nr_running == sds->leader_nr_running &&
  3017. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  3018. sds->group_leader = group;
  3019. sds->leader_nr_running = sgs->sum_nr_running;
  3020. }
  3021. }
  3022. /**
  3023. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  3024. * @sds: Variable containing the statistics of the sched_domain
  3025. * under consideration.
  3026. * @this_cpu: Cpu at which we're currently performing load-balancing.
  3027. * @imbalance: Variable to store the imbalance.
  3028. *
  3029. * Description:
  3030. * Check if we have potential to perform some power-savings balance.
  3031. * If yes, set the busiest group to be the least loaded group in the
  3032. * sched_domain, so that it's CPUs can be put to idle.
  3033. *
  3034. * Returns 1 if there is potential to perform power-savings balance.
  3035. * Else returns 0.
  3036. */
  3037. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3038. int this_cpu, unsigned long *imbalance)
  3039. {
  3040. if (!sds->power_savings_balance)
  3041. return 0;
  3042. if (sds->this != sds->group_leader ||
  3043. sds->group_leader == sds->group_min)
  3044. return 0;
  3045. *imbalance = sds->min_load_per_task;
  3046. sds->busiest = sds->group_min;
  3047. return 1;
  3048. }
  3049. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3050. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  3051. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  3052. {
  3053. return;
  3054. }
  3055. static inline void update_sd_power_savings_stats(struct sched_group *group,
  3056. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  3057. {
  3058. return;
  3059. }
  3060. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3061. int this_cpu, unsigned long *imbalance)
  3062. {
  3063. return 0;
  3064. }
  3065. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3066. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  3067. {
  3068. return SCHED_LOAD_SCALE;
  3069. }
  3070. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  3071. {
  3072. return default_scale_freq_power(sd, cpu);
  3073. }
  3074. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  3075. {
  3076. unsigned long weight = cpumask_weight(sched_domain_span(sd));
  3077. unsigned long smt_gain = sd->smt_gain;
  3078. smt_gain /= weight;
  3079. return smt_gain;
  3080. }
  3081. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  3082. {
  3083. return default_scale_smt_power(sd, cpu);
  3084. }
  3085. unsigned long scale_rt_power(int cpu)
  3086. {
  3087. struct rq *rq = cpu_rq(cpu);
  3088. u64 total, available;
  3089. sched_avg_update(rq);
  3090. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  3091. available = total - rq->rt_avg;
  3092. if (unlikely((s64)total < SCHED_LOAD_SCALE))
  3093. total = SCHED_LOAD_SCALE;
  3094. total >>= SCHED_LOAD_SHIFT;
  3095. return div_u64(available, total);
  3096. }
  3097. static void update_cpu_power(struct sched_domain *sd, int cpu)
  3098. {
  3099. unsigned long weight = cpumask_weight(sched_domain_span(sd));
  3100. unsigned long power = SCHED_LOAD_SCALE;
  3101. struct sched_group *sdg = sd->groups;
  3102. if (sched_feat(ARCH_POWER))
  3103. power *= arch_scale_freq_power(sd, cpu);
  3104. else
  3105. power *= default_scale_freq_power(sd, cpu);
  3106. power >>= SCHED_LOAD_SHIFT;
  3107. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  3108. if (sched_feat(ARCH_POWER))
  3109. power *= arch_scale_smt_power(sd, cpu);
  3110. else
  3111. power *= default_scale_smt_power(sd, cpu);
  3112. power >>= SCHED_LOAD_SHIFT;
  3113. }
  3114. power *= scale_rt_power(cpu);
  3115. power >>= SCHED_LOAD_SHIFT;
  3116. if (!power)
  3117. power = 1;
  3118. sdg->cpu_power = power;
  3119. }
  3120. static void update_group_power(struct sched_domain *sd, int cpu)
  3121. {
  3122. struct sched_domain *child = sd->child;
  3123. struct sched_group *group, *sdg = sd->groups;
  3124. unsigned long power;
  3125. if (!child) {
  3126. update_cpu_power(sd, cpu);
  3127. return;
  3128. }
  3129. power = 0;
  3130. group = child->groups;
  3131. do {
  3132. power += group->cpu_power;
  3133. group = group->next;
  3134. } while (group != child->groups);
  3135. sdg->cpu_power = power;
  3136. }
  3137. /**
  3138. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  3139. * @sd: The sched_domain whose statistics are to be updated.
  3140. * @group: sched_group whose statistics are to be updated.
  3141. * @this_cpu: Cpu for which load balance is currently performed.
  3142. * @idle: Idle status of this_cpu
  3143. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  3144. * @sd_idle: Idle status of the sched_domain containing group.
  3145. * @local_group: Does group contain this_cpu.
  3146. * @cpus: Set of cpus considered for load balancing.
  3147. * @balance: Should we balance.
  3148. * @sgs: variable to hold the statistics for this group.
  3149. */
  3150. static inline void update_sg_lb_stats(struct sched_domain *sd,
  3151. struct sched_group *group, int this_cpu,
  3152. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  3153. int local_group, const struct cpumask *cpus,
  3154. int *balance, struct sg_lb_stats *sgs)
  3155. {
  3156. unsigned long load, max_cpu_load, min_cpu_load;
  3157. int i;
  3158. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  3159. unsigned long sum_avg_load_per_task;
  3160. unsigned long avg_load_per_task;
  3161. if (local_group) {
  3162. balance_cpu = group_first_cpu(group);
  3163. if (balance_cpu == this_cpu)
  3164. update_group_power(sd, this_cpu);
  3165. }
  3166. /* Tally up the load of all CPUs in the group */
  3167. sum_avg_load_per_task = avg_load_per_task = 0;
  3168. max_cpu_load = 0;
  3169. min_cpu_load = ~0UL;
  3170. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  3171. struct rq *rq = cpu_rq(i);
  3172. if (*sd_idle && rq->nr_running)
  3173. *sd_idle = 0;
  3174. /* Bias balancing toward cpus of our domain */
  3175. if (local_group) {
  3176. if (idle_cpu(i) && !first_idle_cpu) {
  3177. first_idle_cpu = 1;
  3178. balance_cpu = i;
  3179. }
  3180. load = target_load(i, load_idx);
  3181. } else {
  3182. load = source_load(i, load_idx);
  3183. if (load > max_cpu_load)
  3184. max_cpu_load = load;
  3185. if (min_cpu_load > load)
  3186. min_cpu_load = load;
  3187. }
  3188. sgs->group_load += load;
  3189. sgs->sum_nr_running += rq->nr_running;
  3190. sgs->sum_weighted_load += weighted_cpuload(i);
  3191. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  3192. }
  3193. /*
  3194. * First idle cpu or the first cpu(busiest) in this sched group
  3195. * is eligible for doing load balancing at this and above
  3196. * domains. In the newly idle case, we will allow all the cpu's
  3197. * to do the newly idle load balance.
  3198. */
  3199. if (idle != CPU_NEWLY_IDLE && local_group &&
  3200. balance_cpu != this_cpu && balance) {
  3201. *balance = 0;
  3202. return;
  3203. }
  3204. /* Adjust by relative CPU power of the group */
  3205. sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
  3206. /*
  3207. * Consider the group unbalanced when the imbalance is larger
  3208. * than the average weight of two tasks.
  3209. *
  3210. * APZ: with cgroup the avg task weight can vary wildly and
  3211. * might not be a suitable number - should we keep a
  3212. * normalized nr_running number somewhere that negates
  3213. * the hierarchy?
  3214. */
  3215. avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
  3216. group->cpu_power;
  3217. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  3218. sgs->group_imb = 1;
  3219. sgs->group_capacity =
  3220. DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
  3221. }
  3222. /**
  3223. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  3224. * @sd: sched_domain whose statistics are to be updated.
  3225. * @this_cpu: Cpu for which load balance is currently performed.
  3226. * @idle: Idle status of this_cpu
  3227. * @sd_idle: Idle status of the sched_domain containing group.
  3228. * @cpus: Set of cpus considered for load balancing.
  3229. * @balance: Should we balance.
  3230. * @sds: variable to hold the statistics for this sched_domain.
  3231. */
  3232. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3233. enum cpu_idle_type idle, int *sd_idle,
  3234. const struct cpumask *cpus, int *balance,
  3235. struct sd_lb_stats *sds)
  3236. {
  3237. struct sched_domain *child = sd->child;
  3238. struct sched_group *group = sd->groups;
  3239. struct sg_lb_stats sgs;
  3240. int load_idx, prefer_sibling = 0;
  3241. if (child && child->flags & SD_PREFER_SIBLING)
  3242. prefer_sibling = 1;
  3243. init_sd_power_savings_stats(sd, sds, idle);
  3244. load_idx = get_sd_load_idx(sd, idle);
  3245. do {
  3246. int local_group;
  3247. local_group = cpumask_test_cpu(this_cpu,
  3248. sched_group_cpus(group));
  3249. memset(&sgs, 0, sizeof(sgs));
  3250. update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
  3251. local_group, cpus, balance, &sgs);
  3252. if (local_group && balance && !(*balance))
  3253. return;
  3254. sds->total_load += sgs.group_load;
  3255. sds->total_pwr += group->cpu_power;
  3256. /*
  3257. * In case the child domain prefers tasks go to siblings
  3258. * first, lower the group capacity to one so that we'll try
  3259. * and move all the excess tasks away.
  3260. */
  3261. if (prefer_sibling)
  3262. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  3263. if (local_group) {
  3264. sds->this_load = sgs.avg_load;
  3265. sds->this = group;
  3266. sds->this_nr_running = sgs.sum_nr_running;
  3267. sds->this_load_per_task = sgs.sum_weighted_load;
  3268. } else if (sgs.avg_load > sds->max_load &&
  3269. (sgs.sum_nr_running > sgs.group_capacity ||
  3270. sgs.group_imb)) {
  3271. sds->max_load = sgs.avg_load;
  3272. sds->busiest = group;
  3273. sds->busiest_nr_running = sgs.sum_nr_running;
  3274. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3275. sds->group_imb = sgs.group_imb;
  3276. }
  3277. update_sd_power_savings_stats(group, sds, local_group, &sgs);
  3278. group = group->next;
  3279. } while (group != sd->groups);
  3280. }
  3281. /**
  3282. * fix_small_imbalance - Calculate the minor imbalance that exists
  3283. * amongst the groups of a sched_domain, during
  3284. * load balancing.
  3285. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3286. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3287. * @imbalance: Variable to store the imbalance.
  3288. */
  3289. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3290. int this_cpu, unsigned long *imbalance)
  3291. {
  3292. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3293. unsigned int imbn = 2;
  3294. if (sds->this_nr_running) {
  3295. sds->this_load_per_task /= sds->this_nr_running;
  3296. if (sds->busiest_load_per_task >
  3297. sds->this_load_per_task)
  3298. imbn = 1;
  3299. } else
  3300. sds->this_load_per_task =
  3301. cpu_avg_load_per_task(this_cpu);
  3302. if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
  3303. sds->busiest_load_per_task * imbn) {
  3304. *imbalance = sds->busiest_load_per_task;
  3305. return;
  3306. }
  3307. /*
  3308. * OK, we don't have enough imbalance to justify moving tasks,
  3309. * however we may be able to increase total CPU power used by
  3310. * moving them.
  3311. */
  3312. pwr_now += sds->busiest->cpu_power *
  3313. min(sds->busiest_load_per_task, sds->max_load);
  3314. pwr_now += sds->this->cpu_power *
  3315. min(sds->this_load_per_task, sds->this_load);
  3316. pwr_now /= SCHED_LOAD_SCALE;
  3317. /* Amount of load we'd subtract */
  3318. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  3319. sds->busiest->cpu_power;
  3320. if (sds->max_load > tmp)
  3321. pwr_move += sds->busiest->cpu_power *
  3322. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3323. /* Amount of load we'd add */
  3324. if (sds->max_load * sds->busiest->cpu_power <
  3325. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  3326. tmp = (sds->max_load * sds->busiest->cpu_power) /
  3327. sds->this->cpu_power;
  3328. else
  3329. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  3330. sds->this->cpu_power;
  3331. pwr_move += sds->this->cpu_power *
  3332. min(sds->this_load_per_task, sds->this_load + tmp);
  3333. pwr_move /= SCHED_LOAD_SCALE;
  3334. /* Move if we gain throughput */
  3335. if (pwr_move > pwr_now)
  3336. *imbalance = sds->busiest_load_per_task;
  3337. }
  3338. /**
  3339. * calculate_imbalance - Calculate the amount of imbalance present within the
  3340. * groups of a given sched_domain during load balance.
  3341. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3342. * @this_cpu: Cpu for which currently load balance is being performed.
  3343. * @imbalance: The variable to store the imbalance.
  3344. */
  3345. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3346. unsigned long *imbalance)
  3347. {
  3348. unsigned long max_pull;
  3349. /*
  3350. * In the presence of smp nice balancing, certain scenarios can have
  3351. * max load less than avg load(as we skip the groups at or below
  3352. * its cpu_power, while calculating max_load..)
  3353. */
  3354. if (sds->max_load < sds->avg_load) {
  3355. *imbalance = 0;
  3356. return fix_small_imbalance(sds, this_cpu, imbalance);
  3357. }
  3358. /* Don't want to pull so many tasks that a group would go idle */
  3359. max_pull = min(sds->max_load - sds->avg_load,
  3360. sds->max_load - sds->busiest_load_per_task);
  3361. /* How much load to actually move to equalise the imbalance */
  3362. *imbalance = min(max_pull * sds->busiest->cpu_power,
  3363. (sds->avg_load - sds->this_load) * sds->this->cpu_power)
  3364. / SCHED_LOAD_SCALE;
  3365. /*
  3366. * if *imbalance is less than the average load per runnable task
  3367. * there is no gaurantee that any tasks will be moved so we'll have
  3368. * a think about bumping its value to force at least one task to be
  3369. * moved
  3370. */
  3371. if (*imbalance < sds->busiest_load_per_task)
  3372. return fix_small_imbalance(sds, this_cpu, imbalance);
  3373. }
  3374. /******* find_busiest_group() helpers end here *********************/
  3375. /**
  3376. * find_busiest_group - Returns the busiest group within the sched_domain
  3377. * if there is an imbalance. If there isn't an imbalance, and
  3378. * the user has opted for power-savings, it returns a group whose
  3379. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3380. * such a group exists.
  3381. *
  3382. * Also calculates the amount of weighted load which should be moved
  3383. * to restore balance.
  3384. *
  3385. * @sd: The sched_domain whose busiest group is to be returned.
  3386. * @this_cpu: The cpu for which load balancing is currently being performed.
  3387. * @imbalance: Variable which stores amount of weighted load which should
  3388. * be moved to restore balance/put a group to idle.
  3389. * @idle: The idle status of this_cpu.
  3390. * @sd_idle: The idleness of sd
  3391. * @cpus: The set of CPUs under consideration for load-balancing.
  3392. * @balance: Pointer to a variable indicating if this_cpu
  3393. * is the appropriate cpu to perform load balancing at this_level.
  3394. *
  3395. * Returns: - the busiest group if imbalance exists.
  3396. * - If no imbalance and user has opted for power-savings balance,
  3397. * return the least loaded group whose CPUs can be
  3398. * put to idle by rebalancing its tasks onto our group.
  3399. */
  3400. static struct sched_group *
  3401. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3402. unsigned long *imbalance, enum cpu_idle_type idle,
  3403. int *sd_idle, const struct cpumask *cpus, int *balance)
  3404. {
  3405. struct sd_lb_stats sds;
  3406. memset(&sds, 0, sizeof(sds));
  3407. /*
  3408. * Compute the various statistics relavent for load balancing at
  3409. * this level.
  3410. */
  3411. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  3412. balance, &sds);
  3413. /* Cases where imbalance does not exist from POV of this_cpu */
  3414. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  3415. * at this level.
  3416. * 2) There is no busy sibling group to pull from.
  3417. * 3) This group is the busiest group.
  3418. * 4) This group is more busy than the avg busieness at this
  3419. * sched_domain.
  3420. * 5) The imbalance is within the specified limit.
  3421. * 6) Any rebalance would lead to ping-pong
  3422. */
  3423. if (balance && !(*balance))
  3424. goto ret;
  3425. if (!sds.busiest || sds.busiest_nr_running == 0)
  3426. goto out_balanced;
  3427. if (sds.this_load >= sds.max_load)
  3428. goto out_balanced;
  3429. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  3430. if (sds.this_load >= sds.avg_load)
  3431. goto out_balanced;
  3432. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3433. goto out_balanced;
  3434. sds.busiest_load_per_task /= sds.busiest_nr_running;
  3435. if (sds.group_imb)
  3436. sds.busiest_load_per_task =
  3437. min(sds.busiest_load_per_task, sds.avg_load);
  3438. /*
  3439. * We're trying to get all the cpus to the average_load, so we don't
  3440. * want to push ourselves above the average load, nor do we wish to
  3441. * reduce the max loaded cpu below the average load, as either of these
  3442. * actions would just result in more rebalancing later, and ping-pong
  3443. * tasks around. Thus we look for the minimum possible imbalance.
  3444. * Negative imbalances (*we* are more loaded than anyone else) will
  3445. * be counted as no imbalance for these purposes -- we can't fix that
  3446. * by pulling tasks to us. Be careful of negative numbers as they'll
  3447. * appear as very large values with unsigned longs.
  3448. */
  3449. if (sds.max_load <= sds.busiest_load_per_task)
  3450. goto out_balanced;
  3451. /* Looks like there is an imbalance. Compute it */
  3452. calculate_imbalance(&sds, this_cpu, imbalance);
  3453. return sds.busiest;
  3454. out_balanced:
  3455. /*
  3456. * There is no obvious imbalance. But check if we can do some balancing
  3457. * to save power.
  3458. */
  3459. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3460. return sds.busiest;
  3461. ret:
  3462. *imbalance = 0;
  3463. return NULL;
  3464. }
  3465. /*
  3466. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3467. */
  3468. static struct rq *
  3469. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  3470. unsigned long imbalance, const struct cpumask *cpus)
  3471. {
  3472. struct rq *busiest = NULL, *rq;
  3473. unsigned long max_load = 0;
  3474. int i;
  3475. for_each_cpu(i, sched_group_cpus(group)) {
  3476. unsigned long power = power_of(i);
  3477. unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  3478. unsigned long wl;
  3479. if (!cpumask_test_cpu(i, cpus))
  3480. continue;
  3481. rq = cpu_rq(i);
  3482. wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
  3483. wl /= power;
  3484. if (capacity && rq->nr_running == 1 && wl > imbalance)
  3485. continue;
  3486. if (wl > max_load) {
  3487. max_load = wl;
  3488. busiest = rq;
  3489. }
  3490. }
  3491. return busiest;
  3492. }
  3493. /*
  3494. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3495. * so long as it is large enough.
  3496. */
  3497. #define MAX_PINNED_INTERVAL 512
  3498. /* Working cpumask for load_balance and load_balance_newidle. */
  3499. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3500. /*
  3501. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3502. * tasks if there is an imbalance.
  3503. */
  3504. static int load_balance(int this_cpu, struct rq *this_rq,
  3505. struct sched_domain *sd, enum cpu_idle_type idle,
  3506. int *balance)
  3507. {
  3508. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3509. struct sched_group *group;
  3510. unsigned long imbalance;
  3511. struct rq *busiest;
  3512. unsigned long flags;
  3513. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3514. cpumask_copy(cpus, cpu_active_mask);
  3515. /*
  3516. * When power savings policy is enabled for the parent domain, idle
  3517. * sibling can pick up load irrespective of busy siblings. In this case,
  3518. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3519. * portraying it as CPU_NOT_IDLE.
  3520. */
  3521. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3522. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3523. sd_idle = 1;
  3524. schedstat_inc(sd, lb_count[idle]);
  3525. redo:
  3526. update_shares(sd);
  3527. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3528. cpus, balance);
  3529. if (*balance == 0)
  3530. goto out_balanced;
  3531. if (!group) {
  3532. schedstat_inc(sd, lb_nobusyg[idle]);
  3533. goto out_balanced;
  3534. }
  3535. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3536. if (!busiest) {
  3537. schedstat_inc(sd, lb_nobusyq[idle]);
  3538. goto out_balanced;
  3539. }
  3540. BUG_ON(busiest == this_rq);
  3541. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3542. ld_moved = 0;
  3543. if (busiest->nr_running > 1) {
  3544. /*
  3545. * Attempt to move tasks. If find_busiest_group has found
  3546. * an imbalance but busiest->nr_running <= 1, the group is
  3547. * still unbalanced. ld_moved simply stays zero, so it is
  3548. * correctly treated as an imbalance.
  3549. */
  3550. local_irq_save(flags);
  3551. double_rq_lock(this_rq, busiest);
  3552. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3553. imbalance, sd, idle, &all_pinned);
  3554. double_rq_unlock(this_rq, busiest);
  3555. local_irq_restore(flags);
  3556. /*
  3557. * some other cpu did the load balance for us.
  3558. */
  3559. if (ld_moved && this_cpu != smp_processor_id())
  3560. resched_cpu(this_cpu);
  3561. /* All tasks on this runqueue were pinned by CPU affinity */
  3562. if (unlikely(all_pinned)) {
  3563. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3564. if (!cpumask_empty(cpus))
  3565. goto redo;
  3566. goto out_balanced;
  3567. }
  3568. }
  3569. if (!ld_moved) {
  3570. schedstat_inc(sd, lb_failed[idle]);
  3571. sd->nr_balance_failed++;
  3572. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3573. raw_spin_lock_irqsave(&busiest->lock, flags);
  3574. /* don't kick the migration_thread, if the curr
  3575. * task on busiest cpu can't be moved to this_cpu
  3576. */
  3577. if (!cpumask_test_cpu(this_cpu,
  3578. &busiest->curr->cpus_allowed)) {
  3579. raw_spin_unlock_irqrestore(&busiest->lock,
  3580. flags);
  3581. all_pinned = 1;
  3582. goto out_one_pinned;
  3583. }
  3584. if (!busiest->active_balance) {
  3585. busiest->active_balance = 1;
  3586. busiest->push_cpu = this_cpu;
  3587. active_balance = 1;
  3588. }
  3589. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  3590. if (active_balance)
  3591. wake_up_process(busiest->migration_thread);
  3592. /*
  3593. * We've kicked active balancing, reset the failure
  3594. * counter.
  3595. */
  3596. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3597. }
  3598. } else
  3599. sd->nr_balance_failed = 0;
  3600. if (likely(!active_balance)) {
  3601. /* We were unbalanced, so reset the balancing interval */
  3602. sd->balance_interval = sd->min_interval;
  3603. } else {
  3604. /*
  3605. * If we've begun active balancing, start to back off. This
  3606. * case may not be covered by the all_pinned logic if there
  3607. * is only 1 task on the busy runqueue (because we don't call
  3608. * move_tasks).
  3609. */
  3610. if (sd->balance_interval < sd->max_interval)
  3611. sd->balance_interval *= 2;
  3612. }
  3613. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3614. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3615. ld_moved = -1;
  3616. goto out;
  3617. out_balanced:
  3618. schedstat_inc(sd, lb_balanced[idle]);
  3619. sd->nr_balance_failed = 0;
  3620. out_one_pinned:
  3621. /* tune up the balancing interval */
  3622. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3623. (sd->balance_interval < sd->max_interval))
  3624. sd->balance_interval *= 2;
  3625. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3626. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3627. ld_moved = -1;
  3628. else
  3629. ld_moved = 0;
  3630. out:
  3631. if (ld_moved)
  3632. update_shares(sd);
  3633. return ld_moved;
  3634. }
  3635. /*
  3636. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3637. * tasks if there is an imbalance.
  3638. *
  3639. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3640. * this_rq is locked.
  3641. */
  3642. static int
  3643. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  3644. {
  3645. struct sched_group *group;
  3646. struct rq *busiest = NULL;
  3647. unsigned long imbalance;
  3648. int ld_moved = 0;
  3649. int sd_idle = 0;
  3650. int all_pinned = 0;
  3651. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3652. cpumask_copy(cpus, cpu_active_mask);
  3653. /*
  3654. * When power savings policy is enabled for the parent domain, idle
  3655. * sibling can pick up load irrespective of busy siblings. In this case,
  3656. * let the state of idle sibling percolate up as IDLE, instead of
  3657. * portraying it as CPU_NOT_IDLE.
  3658. */
  3659. if (sd->flags & SD_SHARE_CPUPOWER &&
  3660. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3661. sd_idle = 1;
  3662. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3663. redo:
  3664. update_shares_locked(this_rq, sd);
  3665. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3666. &sd_idle, cpus, NULL);
  3667. if (!group) {
  3668. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3669. goto out_balanced;
  3670. }
  3671. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3672. if (!busiest) {
  3673. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3674. goto out_balanced;
  3675. }
  3676. BUG_ON(busiest == this_rq);
  3677. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3678. ld_moved = 0;
  3679. if (busiest->nr_running > 1) {
  3680. /* Attempt to move tasks */
  3681. double_lock_balance(this_rq, busiest);
  3682. /* this_rq->clock is already updated */
  3683. update_rq_clock(busiest);
  3684. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3685. imbalance, sd, CPU_NEWLY_IDLE,
  3686. &all_pinned);
  3687. double_unlock_balance(this_rq, busiest);
  3688. if (unlikely(all_pinned)) {
  3689. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3690. if (!cpumask_empty(cpus))
  3691. goto redo;
  3692. }
  3693. }
  3694. if (!ld_moved) {
  3695. int active_balance = 0;
  3696. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3697. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3698. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3699. return -1;
  3700. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3701. return -1;
  3702. if (sd->nr_balance_failed++ < 2)
  3703. return -1;
  3704. /*
  3705. * The only task running in a non-idle cpu can be moved to this
  3706. * cpu in an attempt to completely freeup the other CPU
  3707. * package. The same method used to move task in load_balance()
  3708. * have been extended for load_balance_newidle() to speedup
  3709. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3710. *
  3711. * The package power saving logic comes from
  3712. * find_busiest_group(). If there are no imbalance, then
  3713. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3714. * f_b_g() will select a group from which a running task may be
  3715. * pulled to this cpu in order to make the other package idle.
  3716. * If there is no opportunity to make a package idle and if
  3717. * there are no imbalance, then f_b_g() will return NULL and no
  3718. * action will be taken in load_balance_newidle().
  3719. *
  3720. * Under normal task pull operation due to imbalance, there
  3721. * will be more than one task in the source run queue and
  3722. * move_tasks() will succeed. ld_moved will be true and this
  3723. * active balance code will not be triggered.
  3724. */
  3725. /* Lock busiest in correct order while this_rq is held */
  3726. double_lock_balance(this_rq, busiest);
  3727. /*
  3728. * don't kick the migration_thread, if the curr
  3729. * task on busiest cpu can't be moved to this_cpu
  3730. */
  3731. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  3732. double_unlock_balance(this_rq, busiest);
  3733. all_pinned = 1;
  3734. return ld_moved;
  3735. }
  3736. if (!busiest->active_balance) {
  3737. busiest->active_balance = 1;
  3738. busiest->push_cpu = this_cpu;
  3739. active_balance = 1;
  3740. }
  3741. double_unlock_balance(this_rq, busiest);
  3742. /*
  3743. * Should not call ttwu while holding a rq->lock
  3744. */
  3745. raw_spin_unlock(&this_rq->lock);
  3746. if (active_balance)
  3747. wake_up_process(busiest->migration_thread);
  3748. raw_spin_lock(&this_rq->lock);
  3749. } else
  3750. sd->nr_balance_failed = 0;
  3751. update_shares_locked(this_rq, sd);
  3752. return ld_moved;
  3753. out_balanced:
  3754. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3755. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3756. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3757. return -1;
  3758. sd->nr_balance_failed = 0;
  3759. return 0;
  3760. }
  3761. /*
  3762. * idle_balance is called by schedule() if this_cpu is about to become
  3763. * idle. Attempts to pull tasks from other CPUs.
  3764. */
  3765. static void idle_balance(int this_cpu, struct rq *this_rq)
  3766. {
  3767. struct sched_domain *sd;
  3768. int pulled_task = 0;
  3769. unsigned long next_balance = jiffies + HZ;
  3770. this_rq->idle_stamp = this_rq->clock;
  3771. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  3772. return;
  3773. for_each_domain(this_cpu, sd) {
  3774. unsigned long interval;
  3775. if (!(sd->flags & SD_LOAD_BALANCE))
  3776. continue;
  3777. if (sd->flags & SD_BALANCE_NEWIDLE)
  3778. /* If we've pulled tasks over stop searching: */
  3779. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3780. sd);
  3781. interval = msecs_to_jiffies(sd->balance_interval);
  3782. if (time_after(next_balance, sd->last_balance + interval))
  3783. next_balance = sd->last_balance + interval;
  3784. if (pulled_task) {
  3785. this_rq->idle_stamp = 0;
  3786. break;
  3787. }
  3788. }
  3789. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3790. /*
  3791. * We are going idle. next_balance may be set based on
  3792. * a busy processor. So reset next_balance.
  3793. */
  3794. this_rq->next_balance = next_balance;
  3795. }
  3796. }
  3797. /*
  3798. * active_load_balance is run by migration threads. It pushes running tasks
  3799. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3800. * running on each physical CPU where possible, and avoids physical /
  3801. * logical imbalances.
  3802. *
  3803. * Called with busiest_rq locked.
  3804. */
  3805. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3806. {
  3807. int target_cpu = busiest_rq->push_cpu;
  3808. struct sched_domain *sd;
  3809. struct rq *target_rq;
  3810. /* Is there any task to move? */
  3811. if (busiest_rq->nr_running <= 1)
  3812. return;
  3813. target_rq = cpu_rq(target_cpu);
  3814. /*
  3815. * This condition is "impossible", if it occurs
  3816. * we need to fix it. Originally reported by
  3817. * Bjorn Helgaas on a 128-cpu setup.
  3818. */
  3819. BUG_ON(busiest_rq == target_rq);
  3820. /* move a task from busiest_rq to target_rq */
  3821. double_lock_balance(busiest_rq, target_rq);
  3822. update_rq_clock(busiest_rq);
  3823. update_rq_clock(target_rq);
  3824. /* Search for an sd spanning us and the target CPU. */
  3825. for_each_domain(target_cpu, sd) {
  3826. if ((sd->flags & SD_LOAD_BALANCE) &&
  3827. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3828. break;
  3829. }
  3830. if (likely(sd)) {
  3831. schedstat_inc(sd, alb_count);
  3832. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3833. sd, CPU_IDLE))
  3834. schedstat_inc(sd, alb_pushed);
  3835. else
  3836. schedstat_inc(sd, alb_failed);
  3837. }
  3838. double_unlock_balance(busiest_rq, target_rq);
  3839. }
  3840. #ifdef CONFIG_NO_HZ
  3841. static struct {
  3842. atomic_t load_balancer;
  3843. cpumask_var_t cpu_mask;
  3844. cpumask_var_t ilb_grp_nohz_mask;
  3845. } nohz ____cacheline_aligned = {
  3846. .load_balancer = ATOMIC_INIT(-1),
  3847. };
  3848. int get_nohz_load_balancer(void)
  3849. {
  3850. return atomic_read(&nohz.load_balancer);
  3851. }
  3852. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3853. /**
  3854. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3855. * @cpu: The cpu whose lowest level of sched domain is to
  3856. * be returned.
  3857. * @flag: The flag to check for the lowest sched_domain
  3858. * for the given cpu.
  3859. *
  3860. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3861. */
  3862. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3863. {
  3864. struct sched_domain *sd;
  3865. for_each_domain(cpu, sd)
  3866. if (sd && (sd->flags & flag))
  3867. break;
  3868. return sd;
  3869. }
  3870. /**
  3871. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3872. * @cpu: The cpu whose domains we're iterating over.
  3873. * @sd: variable holding the value of the power_savings_sd
  3874. * for cpu.
  3875. * @flag: The flag to filter the sched_domains to be iterated.
  3876. *
  3877. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3878. * set, starting from the lowest sched_domain to the highest.
  3879. */
  3880. #define for_each_flag_domain(cpu, sd, flag) \
  3881. for (sd = lowest_flag_domain(cpu, flag); \
  3882. (sd && (sd->flags & flag)); sd = sd->parent)
  3883. /**
  3884. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  3885. * @ilb_group: group to be checked for semi-idleness
  3886. *
  3887. * Returns: 1 if the group is semi-idle. 0 otherwise.
  3888. *
  3889. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  3890. * and atleast one non-idle CPU. This helper function checks if the given
  3891. * sched_group is semi-idle or not.
  3892. */
  3893. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  3894. {
  3895. cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
  3896. sched_group_cpus(ilb_group));
  3897. /*
  3898. * A sched_group is semi-idle when it has atleast one busy cpu
  3899. * and atleast one idle cpu.
  3900. */
  3901. if (cpumask_empty(nohz.ilb_grp_nohz_mask))
  3902. return 0;
  3903. if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
  3904. return 0;
  3905. return 1;
  3906. }
  3907. /**
  3908. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3909. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3910. *
  3911. * Returns: Returns the id of the idle load balancer if it exists,
  3912. * Else, returns >= nr_cpu_ids.
  3913. *
  3914. * This algorithm picks the idle load balancer such that it belongs to a
  3915. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3916. * completely idle packages/cores just for the purpose of idle load balancing
  3917. * when there are other idle cpu's which are better suited for that job.
  3918. */
  3919. static int find_new_ilb(int cpu)
  3920. {
  3921. struct sched_domain *sd;
  3922. struct sched_group *ilb_group;
  3923. /*
  3924. * Have idle load balancer selection from semi-idle packages only
  3925. * when power-aware load balancing is enabled
  3926. */
  3927. if (!(sched_smt_power_savings || sched_mc_power_savings))
  3928. goto out_done;
  3929. /*
  3930. * Optimize for the case when we have no idle CPUs or only one
  3931. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  3932. */
  3933. if (cpumask_weight(nohz.cpu_mask) < 2)
  3934. goto out_done;
  3935. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  3936. ilb_group = sd->groups;
  3937. do {
  3938. if (is_semi_idle_group(ilb_group))
  3939. return cpumask_first(nohz.ilb_grp_nohz_mask);
  3940. ilb_group = ilb_group->next;
  3941. } while (ilb_group != sd->groups);
  3942. }
  3943. out_done:
  3944. return cpumask_first(nohz.cpu_mask);
  3945. }
  3946. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  3947. static inline int find_new_ilb(int call_cpu)
  3948. {
  3949. return cpumask_first(nohz.cpu_mask);
  3950. }
  3951. #endif
  3952. /*
  3953. * This routine will try to nominate the ilb (idle load balancing)
  3954. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3955. * load balancing on behalf of all those cpus. If all the cpus in the system
  3956. * go into this tickless mode, then there will be no ilb owner (as there is
  3957. * no need for one) and all the cpus will sleep till the next wakeup event
  3958. * arrives...
  3959. *
  3960. * For the ilb owner, tick is not stopped. And this tick will be used
  3961. * for idle load balancing. ilb owner will still be part of
  3962. * nohz.cpu_mask..
  3963. *
  3964. * While stopping the tick, this cpu will become the ilb owner if there
  3965. * is no other owner. And will be the owner till that cpu becomes busy
  3966. * or if all cpus in the system stop their ticks at which point
  3967. * there is no need for ilb owner.
  3968. *
  3969. * When the ilb owner becomes busy, it nominates another owner, during the
  3970. * next busy scheduler_tick()
  3971. */
  3972. int select_nohz_load_balancer(int stop_tick)
  3973. {
  3974. int cpu = smp_processor_id();
  3975. if (stop_tick) {
  3976. cpu_rq(cpu)->in_nohz_recently = 1;
  3977. if (!cpu_active(cpu)) {
  3978. if (atomic_read(&nohz.load_balancer) != cpu)
  3979. return 0;
  3980. /*
  3981. * If we are going offline and still the leader,
  3982. * give up!
  3983. */
  3984. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3985. BUG();
  3986. return 0;
  3987. }
  3988. cpumask_set_cpu(cpu, nohz.cpu_mask);
  3989. /* time for ilb owner also to sleep */
  3990. if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
  3991. if (atomic_read(&nohz.load_balancer) == cpu)
  3992. atomic_set(&nohz.load_balancer, -1);
  3993. return 0;
  3994. }
  3995. if (atomic_read(&nohz.load_balancer) == -1) {
  3996. /* make me the ilb owner */
  3997. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3998. return 1;
  3999. } else if (atomic_read(&nohz.load_balancer) == cpu) {
  4000. int new_ilb;
  4001. if (!(sched_smt_power_savings ||
  4002. sched_mc_power_savings))
  4003. return 1;
  4004. /*
  4005. * Check to see if there is a more power-efficient
  4006. * ilb.
  4007. */
  4008. new_ilb = find_new_ilb(cpu);
  4009. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  4010. atomic_set(&nohz.load_balancer, -1);
  4011. resched_cpu(new_ilb);
  4012. return 0;
  4013. }
  4014. return 1;
  4015. }
  4016. } else {
  4017. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  4018. return 0;
  4019. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  4020. if (atomic_read(&nohz.load_balancer) == cpu)
  4021. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  4022. BUG();
  4023. }
  4024. return 0;
  4025. }
  4026. #endif
  4027. static DEFINE_SPINLOCK(balancing);
  4028. /*
  4029. * It checks each scheduling domain to see if it is due to be balanced,
  4030. * and initiates a balancing operation if so.
  4031. *
  4032. * Balancing parameters are set up in arch_init_sched_domains.
  4033. */
  4034. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  4035. {
  4036. int balance = 1;
  4037. struct rq *rq = cpu_rq(cpu);
  4038. unsigned long interval;
  4039. struct sched_domain *sd;
  4040. /* Earliest time when we have to do rebalance again */
  4041. unsigned long next_balance = jiffies + 60*HZ;
  4042. int update_next_balance = 0;
  4043. int need_serialize;
  4044. for_each_domain(cpu, sd) {
  4045. if (!(sd->flags & SD_LOAD_BALANCE))
  4046. continue;
  4047. interval = sd->balance_interval;
  4048. if (idle != CPU_IDLE)
  4049. interval *= sd->busy_factor;
  4050. /* scale ms to jiffies */
  4051. interval = msecs_to_jiffies(interval);
  4052. if (unlikely(!interval))
  4053. interval = 1;
  4054. if (interval > HZ*NR_CPUS/10)
  4055. interval = HZ*NR_CPUS/10;
  4056. need_serialize = sd->flags & SD_SERIALIZE;
  4057. if (need_serialize) {
  4058. if (!spin_trylock(&balancing))
  4059. goto out;
  4060. }
  4061. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  4062. if (load_balance(cpu, rq, sd, idle, &balance)) {
  4063. /*
  4064. * We've pulled tasks over so either we're no
  4065. * longer idle, or one of our SMT siblings is
  4066. * not idle.
  4067. */
  4068. idle = CPU_NOT_IDLE;
  4069. }
  4070. sd->last_balance = jiffies;
  4071. }
  4072. if (need_serialize)
  4073. spin_unlock(&balancing);
  4074. out:
  4075. if (time_after(next_balance, sd->last_balance + interval)) {
  4076. next_balance = sd->last_balance + interval;
  4077. update_next_balance = 1;
  4078. }
  4079. /*
  4080. * Stop the load balance at this level. There is another
  4081. * CPU in our sched group which is doing load balancing more
  4082. * actively.
  4083. */
  4084. if (!balance)
  4085. break;
  4086. }
  4087. /*
  4088. * next_balance will be updated only when there is a need.
  4089. * When the cpu is attached to null domain for ex, it will not be
  4090. * updated.
  4091. */
  4092. if (likely(update_next_balance))
  4093. rq->next_balance = next_balance;
  4094. }
  4095. /*
  4096. * run_rebalance_domains is triggered when needed from the scheduler tick.
  4097. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  4098. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  4099. */
  4100. static void run_rebalance_domains(struct softirq_action *h)
  4101. {
  4102. int this_cpu = smp_processor_id();
  4103. struct rq *this_rq = cpu_rq(this_cpu);
  4104. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  4105. CPU_IDLE : CPU_NOT_IDLE;
  4106. rebalance_domains(this_cpu, idle);
  4107. #ifdef CONFIG_NO_HZ
  4108. /*
  4109. * If this cpu is the owner for idle load balancing, then do the
  4110. * balancing on behalf of the other idle cpus whose ticks are
  4111. * stopped.
  4112. */
  4113. if (this_rq->idle_at_tick &&
  4114. atomic_read(&nohz.load_balancer) == this_cpu) {
  4115. struct rq *rq;
  4116. int balance_cpu;
  4117. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  4118. if (balance_cpu == this_cpu)
  4119. continue;
  4120. /*
  4121. * If this cpu gets work to do, stop the load balancing
  4122. * work being done for other cpus. Next load
  4123. * balancing owner will pick it up.
  4124. */
  4125. if (need_resched())
  4126. break;
  4127. rebalance_domains(balance_cpu, CPU_IDLE);
  4128. rq = cpu_rq(balance_cpu);
  4129. if (time_after(this_rq->next_balance, rq->next_balance))
  4130. this_rq->next_balance = rq->next_balance;
  4131. }
  4132. }
  4133. #endif
  4134. }
  4135. static inline int on_null_domain(int cpu)
  4136. {
  4137. return !rcu_dereference(cpu_rq(cpu)->sd);
  4138. }
  4139. /*
  4140. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  4141. *
  4142. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  4143. * idle load balancing owner or decide to stop the periodic load balancing,
  4144. * if the whole system is idle.
  4145. */
  4146. static inline void trigger_load_balance(struct rq *rq, int cpu)
  4147. {
  4148. #ifdef CONFIG_NO_HZ
  4149. /*
  4150. * If we were in the nohz mode recently and busy at the current
  4151. * scheduler tick, then check if we need to nominate new idle
  4152. * load balancer.
  4153. */
  4154. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  4155. rq->in_nohz_recently = 0;
  4156. if (atomic_read(&nohz.load_balancer) == cpu) {
  4157. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  4158. atomic_set(&nohz.load_balancer, -1);
  4159. }
  4160. if (atomic_read(&nohz.load_balancer) == -1) {
  4161. int ilb = find_new_ilb(cpu);
  4162. if (ilb < nr_cpu_ids)
  4163. resched_cpu(ilb);
  4164. }
  4165. }
  4166. /*
  4167. * If this cpu is idle and doing idle load balancing for all the
  4168. * cpus with ticks stopped, is it time for that to stop?
  4169. */
  4170. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  4171. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  4172. resched_cpu(cpu);
  4173. return;
  4174. }
  4175. /*
  4176. * If this cpu is idle and the idle load balancing is done by
  4177. * someone else, then no need raise the SCHED_SOFTIRQ
  4178. */
  4179. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  4180. cpumask_test_cpu(cpu, nohz.cpu_mask))
  4181. return;
  4182. #endif
  4183. /* Don't need to rebalance while attached to NULL domain */
  4184. if (time_after_eq(jiffies, rq->next_balance) &&
  4185. likely(!on_null_domain(cpu)))
  4186. raise_softirq(SCHED_SOFTIRQ);
  4187. }
  4188. #else /* CONFIG_SMP */
  4189. /*
  4190. * on UP we do not need to balance between CPUs:
  4191. */
  4192. static inline void idle_balance(int cpu, struct rq *rq)
  4193. {
  4194. }
  4195. #endif
  4196. DEFINE_PER_CPU(struct kernel_stat, kstat);
  4197. EXPORT_PER_CPU_SYMBOL(kstat);
  4198. /*
  4199. * Return any ns on the sched_clock that have not yet been accounted in
  4200. * @p in case that task is currently running.
  4201. *
  4202. * Called with task_rq_lock() held on @rq.
  4203. */
  4204. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  4205. {
  4206. u64 ns = 0;
  4207. if (task_current(rq, p)) {
  4208. update_rq_clock(rq);
  4209. ns = rq->clock - p->se.exec_start;
  4210. if ((s64)ns < 0)
  4211. ns = 0;
  4212. }
  4213. return ns;
  4214. }
  4215. unsigned long long task_delta_exec(struct task_struct *p)
  4216. {
  4217. unsigned long flags;
  4218. struct rq *rq;
  4219. u64 ns = 0;
  4220. rq = task_rq_lock(p, &flags);
  4221. ns = do_task_delta_exec(p, rq);
  4222. task_rq_unlock(rq, &flags);
  4223. return ns;
  4224. }
  4225. /*
  4226. * Return accounted runtime for the task.
  4227. * In case the task is currently running, return the runtime plus current's
  4228. * pending runtime that have not been accounted yet.
  4229. */
  4230. unsigned long long task_sched_runtime(struct task_struct *p)
  4231. {
  4232. unsigned long flags;
  4233. struct rq *rq;
  4234. u64 ns = 0;
  4235. rq = task_rq_lock(p, &flags);
  4236. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  4237. task_rq_unlock(rq, &flags);
  4238. return ns;
  4239. }
  4240. /*
  4241. * Return sum_exec_runtime for the thread group.
  4242. * In case the task is currently running, return the sum plus current's
  4243. * pending runtime that have not been accounted yet.
  4244. *
  4245. * Note that the thread group might have other running tasks as well,
  4246. * so the return value not includes other pending runtime that other
  4247. * running tasks might have.
  4248. */
  4249. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  4250. {
  4251. struct task_cputime totals;
  4252. unsigned long flags;
  4253. struct rq *rq;
  4254. u64 ns;
  4255. rq = task_rq_lock(p, &flags);
  4256. thread_group_cputime(p, &totals);
  4257. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  4258. task_rq_unlock(rq, &flags);
  4259. return ns;
  4260. }
  4261. /*
  4262. * Account user cpu time to a process.
  4263. * @p: the process that the cpu time gets accounted to
  4264. * @cputime: the cpu time spent in user space since the last update
  4265. * @cputime_scaled: cputime scaled by cpu frequency
  4266. */
  4267. void account_user_time(struct task_struct *p, cputime_t cputime,
  4268. cputime_t cputime_scaled)
  4269. {
  4270. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4271. cputime64_t tmp;
  4272. /* Add user time to process. */
  4273. p->utime = cputime_add(p->utime, cputime);
  4274. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4275. account_group_user_time(p, cputime);
  4276. /* Add user time to cpustat. */
  4277. tmp = cputime_to_cputime64(cputime);
  4278. if (TASK_NICE(p) > 0)
  4279. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  4280. else
  4281. cpustat->user = cputime64_add(cpustat->user, tmp);
  4282. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  4283. /* Account for user time used */
  4284. acct_update_integrals(p);
  4285. }
  4286. /*
  4287. * Account guest cpu time to a process.
  4288. * @p: the process that the cpu time gets accounted to
  4289. * @cputime: the cpu time spent in virtual machine since the last update
  4290. * @cputime_scaled: cputime scaled by cpu frequency
  4291. */
  4292. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  4293. cputime_t cputime_scaled)
  4294. {
  4295. cputime64_t tmp;
  4296. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4297. tmp = cputime_to_cputime64(cputime);
  4298. /* Add guest time to process. */
  4299. p->utime = cputime_add(p->utime, cputime);
  4300. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4301. account_group_user_time(p, cputime);
  4302. p->gtime = cputime_add(p->gtime, cputime);
  4303. /* Add guest time to cpustat. */
  4304. if (TASK_NICE(p) > 0) {
  4305. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  4306. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  4307. } else {
  4308. cpustat->user = cputime64_add(cpustat->user, tmp);
  4309. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  4310. }
  4311. }
  4312. /*
  4313. * Account system cpu time to a process.
  4314. * @p: the process that the cpu time gets accounted to
  4315. * @hardirq_offset: the offset to subtract from hardirq_count()
  4316. * @cputime: the cpu time spent in kernel space since the last update
  4317. * @cputime_scaled: cputime scaled by cpu frequency
  4318. */
  4319. void account_system_time(struct task_struct *p, int hardirq_offset,
  4320. cputime_t cputime, cputime_t cputime_scaled)
  4321. {
  4322. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4323. cputime64_t tmp;
  4324. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  4325. account_guest_time(p, cputime, cputime_scaled);
  4326. return;
  4327. }
  4328. /* Add system time to process. */
  4329. p->stime = cputime_add(p->stime, cputime);
  4330. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  4331. account_group_system_time(p, cputime);
  4332. /* Add system time to cpustat. */
  4333. tmp = cputime_to_cputime64(cputime);
  4334. if (hardirq_count() - hardirq_offset)
  4335. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  4336. else if (softirq_count())
  4337. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  4338. else
  4339. cpustat->system = cputime64_add(cpustat->system, tmp);
  4340. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  4341. /* Account for system time used */
  4342. acct_update_integrals(p);
  4343. }
  4344. /*
  4345. * Account for involuntary wait time.
  4346. * @steal: the cpu time spent in involuntary wait
  4347. */
  4348. void account_steal_time(cputime_t cputime)
  4349. {
  4350. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4351. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4352. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  4353. }
  4354. /*
  4355. * Account for idle time.
  4356. * @cputime: the cpu time spent in idle wait
  4357. */
  4358. void account_idle_time(cputime_t cputime)
  4359. {
  4360. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4361. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4362. struct rq *rq = this_rq();
  4363. if (atomic_read(&rq->nr_iowait) > 0)
  4364. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  4365. else
  4366. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  4367. }
  4368. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  4369. /*
  4370. * Account a single tick of cpu time.
  4371. * @p: the process that the cpu time gets accounted to
  4372. * @user_tick: indicates if the tick is a user or a system tick
  4373. */
  4374. void account_process_tick(struct task_struct *p, int user_tick)
  4375. {
  4376. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  4377. struct rq *rq = this_rq();
  4378. if (user_tick)
  4379. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  4380. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  4381. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  4382. one_jiffy_scaled);
  4383. else
  4384. account_idle_time(cputime_one_jiffy);
  4385. }
  4386. /*
  4387. * Account multiple ticks of steal time.
  4388. * @p: the process from which the cpu time has been stolen
  4389. * @ticks: number of stolen ticks
  4390. */
  4391. void account_steal_ticks(unsigned long ticks)
  4392. {
  4393. account_steal_time(jiffies_to_cputime(ticks));
  4394. }
  4395. /*
  4396. * Account multiple ticks of idle time.
  4397. * @ticks: number of stolen ticks
  4398. */
  4399. void account_idle_ticks(unsigned long ticks)
  4400. {
  4401. account_idle_time(jiffies_to_cputime(ticks));
  4402. }
  4403. #endif
  4404. /*
  4405. * Use precise platform statistics if available:
  4406. */
  4407. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  4408. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4409. {
  4410. *ut = p->utime;
  4411. *st = p->stime;
  4412. }
  4413. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4414. {
  4415. struct task_cputime cputime;
  4416. thread_group_cputime(p, &cputime);
  4417. *ut = cputime.utime;
  4418. *st = cputime.stime;
  4419. }
  4420. #else
  4421. #ifndef nsecs_to_cputime
  4422. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  4423. #endif
  4424. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4425. {
  4426. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  4427. /*
  4428. * Use CFS's precise accounting:
  4429. */
  4430. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  4431. if (total) {
  4432. u64 temp;
  4433. temp = (u64)(rtime * utime);
  4434. do_div(temp, total);
  4435. utime = (cputime_t)temp;
  4436. } else
  4437. utime = rtime;
  4438. /*
  4439. * Compare with previous values, to keep monotonicity:
  4440. */
  4441. p->prev_utime = max(p->prev_utime, utime);
  4442. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  4443. *ut = p->prev_utime;
  4444. *st = p->prev_stime;
  4445. }
  4446. /*
  4447. * Must be called with siglock held.
  4448. */
  4449. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4450. {
  4451. struct signal_struct *sig = p->signal;
  4452. struct task_cputime cputime;
  4453. cputime_t rtime, utime, total;
  4454. thread_group_cputime(p, &cputime);
  4455. total = cputime_add(cputime.utime, cputime.stime);
  4456. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  4457. if (total) {
  4458. u64 temp;
  4459. temp = (u64)(rtime * cputime.utime);
  4460. do_div(temp, total);
  4461. utime = (cputime_t)temp;
  4462. } else
  4463. utime = rtime;
  4464. sig->prev_utime = max(sig->prev_utime, utime);
  4465. sig->prev_stime = max(sig->prev_stime,
  4466. cputime_sub(rtime, sig->prev_utime));
  4467. *ut = sig->prev_utime;
  4468. *st = sig->prev_stime;
  4469. }
  4470. #endif
  4471. /*
  4472. * This function gets called by the timer code, with HZ frequency.
  4473. * We call it with interrupts disabled.
  4474. *
  4475. * It also gets called by the fork code, when changing the parent's
  4476. * timeslices.
  4477. */
  4478. void scheduler_tick(void)
  4479. {
  4480. int cpu = smp_processor_id();
  4481. struct rq *rq = cpu_rq(cpu);
  4482. struct task_struct *curr = rq->curr;
  4483. sched_clock_tick();
  4484. raw_spin_lock(&rq->lock);
  4485. update_rq_clock(rq);
  4486. update_cpu_load(rq);
  4487. curr->sched_class->task_tick(rq, curr, 0);
  4488. raw_spin_unlock(&rq->lock);
  4489. perf_event_task_tick(curr, cpu);
  4490. #ifdef CONFIG_SMP
  4491. rq->idle_at_tick = idle_cpu(cpu);
  4492. trigger_load_balance(rq, cpu);
  4493. #endif
  4494. }
  4495. notrace unsigned long get_parent_ip(unsigned long addr)
  4496. {
  4497. if (in_lock_functions(addr)) {
  4498. addr = CALLER_ADDR2;
  4499. if (in_lock_functions(addr))
  4500. addr = CALLER_ADDR3;
  4501. }
  4502. return addr;
  4503. }
  4504. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  4505. defined(CONFIG_PREEMPT_TRACER))
  4506. void __kprobes add_preempt_count(int val)
  4507. {
  4508. #ifdef CONFIG_DEBUG_PREEMPT
  4509. /*
  4510. * Underflow?
  4511. */
  4512. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  4513. return;
  4514. #endif
  4515. preempt_count() += val;
  4516. #ifdef CONFIG_DEBUG_PREEMPT
  4517. /*
  4518. * Spinlock count overflowing soon?
  4519. */
  4520. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  4521. PREEMPT_MASK - 10);
  4522. #endif
  4523. if (preempt_count() == val)
  4524. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4525. }
  4526. EXPORT_SYMBOL(add_preempt_count);
  4527. void __kprobes sub_preempt_count(int val)
  4528. {
  4529. #ifdef CONFIG_DEBUG_PREEMPT
  4530. /*
  4531. * Underflow?
  4532. */
  4533. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  4534. return;
  4535. /*
  4536. * Is the spinlock portion underflowing?
  4537. */
  4538. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  4539. !(preempt_count() & PREEMPT_MASK)))
  4540. return;
  4541. #endif
  4542. if (preempt_count() == val)
  4543. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4544. preempt_count() -= val;
  4545. }
  4546. EXPORT_SYMBOL(sub_preempt_count);
  4547. #endif
  4548. /*
  4549. * Print scheduling while atomic bug:
  4550. */
  4551. static noinline void __schedule_bug(struct task_struct *prev)
  4552. {
  4553. struct pt_regs *regs = get_irq_regs();
  4554. pr_err("BUG: scheduling while atomic: %s/%d/0x%08x\n",
  4555. prev->comm, prev->pid, preempt_count());
  4556. debug_show_held_locks(prev);
  4557. print_modules();
  4558. if (irqs_disabled())
  4559. print_irqtrace_events(prev);
  4560. if (regs)
  4561. show_regs(regs);
  4562. else
  4563. dump_stack();
  4564. }
  4565. /*
  4566. * Various schedule()-time debugging checks and statistics:
  4567. */
  4568. static inline void schedule_debug(struct task_struct *prev)
  4569. {
  4570. /*
  4571. * Test if we are atomic. Since do_exit() needs to call into
  4572. * schedule() atomically, we ignore that path for now.
  4573. * Otherwise, whine if we are scheduling when we should not be.
  4574. */
  4575. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  4576. __schedule_bug(prev);
  4577. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  4578. schedstat_inc(this_rq(), sched_count);
  4579. #ifdef CONFIG_SCHEDSTATS
  4580. if (unlikely(prev->lock_depth >= 0)) {
  4581. schedstat_inc(this_rq(), bkl_count);
  4582. schedstat_inc(prev, sched_info.bkl_count);
  4583. }
  4584. #endif
  4585. }
  4586. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  4587. {
  4588. if (prev->state == TASK_RUNNING) {
  4589. u64 runtime = prev->se.sum_exec_runtime;
  4590. runtime -= prev->se.prev_sum_exec_runtime;
  4591. runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
  4592. /*
  4593. * In order to avoid avg_overlap growing stale when we are
  4594. * indeed overlapping and hence not getting put to sleep, grow
  4595. * the avg_overlap on preemption.
  4596. *
  4597. * We use the average preemption runtime because that
  4598. * correlates to the amount of cache footprint a task can
  4599. * build up.
  4600. */
  4601. update_avg(&prev->se.avg_overlap, runtime);
  4602. }
  4603. prev->sched_class->put_prev_task(rq, prev);
  4604. }
  4605. /*
  4606. * Pick up the highest-prio task:
  4607. */
  4608. static inline struct task_struct *
  4609. pick_next_task(struct rq *rq)
  4610. {
  4611. const struct sched_class *class;
  4612. struct task_struct *p;
  4613. /*
  4614. * Optimization: we know that if all tasks are in
  4615. * the fair class we can call that function directly:
  4616. */
  4617. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  4618. p = fair_sched_class.pick_next_task(rq);
  4619. if (likely(p))
  4620. return p;
  4621. }
  4622. class = sched_class_highest;
  4623. for ( ; ; ) {
  4624. p = class->pick_next_task(rq);
  4625. if (p)
  4626. return p;
  4627. /*
  4628. * Will never be NULL as the idle class always
  4629. * returns a non-NULL p:
  4630. */
  4631. class = class->next;
  4632. }
  4633. }
  4634. /*
  4635. * schedule() is the main scheduler function.
  4636. */
  4637. asmlinkage void __sched schedule(void)
  4638. {
  4639. struct task_struct *prev, *next;
  4640. unsigned long *switch_count;
  4641. struct rq *rq;
  4642. int cpu;
  4643. need_resched:
  4644. preempt_disable();
  4645. cpu = smp_processor_id();
  4646. rq = cpu_rq(cpu);
  4647. rcu_sched_qs(cpu);
  4648. prev = rq->curr;
  4649. switch_count = &prev->nivcsw;
  4650. release_kernel_lock(prev);
  4651. need_resched_nonpreemptible:
  4652. schedule_debug(prev);
  4653. if (sched_feat(HRTICK))
  4654. hrtick_clear(rq);
  4655. raw_spin_lock_irq(&rq->lock);
  4656. update_rq_clock(rq);
  4657. clear_tsk_need_resched(prev);
  4658. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  4659. if (unlikely(signal_pending_state(prev->state, prev)))
  4660. prev->state = TASK_RUNNING;
  4661. else
  4662. deactivate_task(rq, prev, 1);
  4663. switch_count = &prev->nvcsw;
  4664. }
  4665. pre_schedule(rq, prev);
  4666. if (unlikely(!rq->nr_running))
  4667. idle_balance(cpu, rq);
  4668. put_prev_task(rq, prev);
  4669. next = pick_next_task(rq);
  4670. if (likely(prev != next)) {
  4671. sched_info_switch(prev, next);
  4672. perf_event_task_sched_out(prev, next, cpu);
  4673. rq->nr_switches++;
  4674. rq->curr = next;
  4675. ++*switch_count;
  4676. context_switch(rq, prev, next); /* unlocks the rq */
  4677. /*
  4678. * the context switch might have flipped the stack from under
  4679. * us, hence refresh the local variables.
  4680. */
  4681. cpu = smp_processor_id();
  4682. rq = cpu_rq(cpu);
  4683. } else
  4684. raw_spin_unlock_irq(&rq->lock);
  4685. post_schedule(rq);
  4686. if (unlikely(reacquire_kernel_lock(current) < 0))
  4687. goto need_resched_nonpreemptible;
  4688. preempt_enable_no_resched();
  4689. if (need_resched())
  4690. goto need_resched;
  4691. }
  4692. EXPORT_SYMBOL(schedule);
  4693. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  4694. /*
  4695. * Look out! "owner" is an entirely speculative pointer
  4696. * access and not reliable.
  4697. */
  4698. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  4699. {
  4700. unsigned int cpu;
  4701. struct rq *rq;
  4702. if (!sched_feat(OWNER_SPIN))
  4703. return 0;
  4704. #ifdef CONFIG_DEBUG_PAGEALLOC
  4705. /*
  4706. * Need to access the cpu field knowing that
  4707. * DEBUG_PAGEALLOC could have unmapped it if
  4708. * the mutex owner just released it and exited.
  4709. */
  4710. if (probe_kernel_address(&owner->cpu, cpu))
  4711. goto out;
  4712. #else
  4713. cpu = owner->cpu;
  4714. #endif
  4715. /*
  4716. * Even if the access succeeded (likely case),
  4717. * the cpu field may no longer be valid.
  4718. */
  4719. if (cpu >= nr_cpumask_bits)
  4720. goto out;
  4721. /*
  4722. * We need to validate that we can do a
  4723. * get_cpu() and that we have the percpu area.
  4724. */
  4725. if (!cpu_online(cpu))
  4726. goto out;
  4727. rq = cpu_rq(cpu);
  4728. for (;;) {
  4729. /*
  4730. * Owner changed, break to re-assess state.
  4731. */
  4732. if (lock->owner != owner)
  4733. break;
  4734. /*
  4735. * Is that owner really running on that cpu?
  4736. */
  4737. if (task_thread_info(rq->curr) != owner || need_resched())
  4738. return 0;
  4739. cpu_relax();
  4740. }
  4741. out:
  4742. return 1;
  4743. }
  4744. #endif
  4745. #ifdef CONFIG_PREEMPT
  4746. /*
  4747. * this is the entry point to schedule() from in-kernel preemption
  4748. * off of preempt_enable. Kernel preemptions off return from interrupt
  4749. * occur there and call schedule directly.
  4750. */
  4751. asmlinkage void __sched preempt_schedule(void)
  4752. {
  4753. struct thread_info *ti = current_thread_info();
  4754. /*
  4755. * If there is a non-zero preempt_count or interrupts are disabled,
  4756. * we do not want to preempt the current task. Just return..
  4757. */
  4758. if (likely(ti->preempt_count || irqs_disabled()))
  4759. return;
  4760. do {
  4761. add_preempt_count(PREEMPT_ACTIVE);
  4762. schedule();
  4763. sub_preempt_count(PREEMPT_ACTIVE);
  4764. /*
  4765. * Check again in case we missed a preemption opportunity
  4766. * between schedule and now.
  4767. */
  4768. barrier();
  4769. } while (need_resched());
  4770. }
  4771. EXPORT_SYMBOL(preempt_schedule);
  4772. /*
  4773. * this is the entry point to schedule() from kernel preemption
  4774. * off of irq context.
  4775. * Note, that this is called and return with irqs disabled. This will
  4776. * protect us against recursive calling from irq.
  4777. */
  4778. asmlinkage void __sched preempt_schedule_irq(void)
  4779. {
  4780. struct thread_info *ti = current_thread_info();
  4781. /* Catch callers which need to be fixed */
  4782. BUG_ON(ti->preempt_count || !irqs_disabled());
  4783. do {
  4784. add_preempt_count(PREEMPT_ACTIVE);
  4785. local_irq_enable();
  4786. schedule();
  4787. local_irq_disable();
  4788. sub_preempt_count(PREEMPT_ACTIVE);
  4789. /*
  4790. * Check again in case we missed a preemption opportunity
  4791. * between schedule and now.
  4792. */
  4793. barrier();
  4794. } while (need_resched());
  4795. }
  4796. #endif /* CONFIG_PREEMPT */
  4797. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  4798. void *key)
  4799. {
  4800. return try_to_wake_up(curr->private, mode, wake_flags);
  4801. }
  4802. EXPORT_SYMBOL(default_wake_function);
  4803. /*
  4804. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4805. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4806. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4807. *
  4808. * There are circumstances in which we can try to wake a task which has already
  4809. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4810. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4811. */
  4812. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4813. int nr_exclusive, int wake_flags, void *key)
  4814. {
  4815. wait_queue_t *curr, *next;
  4816. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4817. unsigned flags = curr->flags;
  4818. if (curr->func(curr, mode, wake_flags, key) &&
  4819. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4820. break;
  4821. }
  4822. }
  4823. /**
  4824. * __wake_up - wake up threads blocked on a waitqueue.
  4825. * @q: the waitqueue
  4826. * @mode: which threads
  4827. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4828. * @key: is directly passed to the wakeup function
  4829. *
  4830. * It may be assumed that this function implies a write memory barrier before
  4831. * changing the task state if and only if any tasks are woken up.
  4832. */
  4833. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4834. int nr_exclusive, void *key)
  4835. {
  4836. unsigned long flags;
  4837. spin_lock_irqsave(&q->lock, flags);
  4838. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4839. spin_unlock_irqrestore(&q->lock, flags);
  4840. }
  4841. EXPORT_SYMBOL(__wake_up);
  4842. /*
  4843. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4844. */
  4845. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4846. {
  4847. __wake_up_common(q, mode, 1, 0, NULL);
  4848. }
  4849. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  4850. {
  4851. __wake_up_common(q, mode, 1, 0, key);
  4852. }
  4853. /**
  4854. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  4855. * @q: the waitqueue
  4856. * @mode: which threads
  4857. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4858. * @key: opaque value to be passed to wakeup targets
  4859. *
  4860. * The sync wakeup differs that the waker knows that it will schedule
  4861. * away soon, so while the target thread will be woken up, it will not
  4862. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4863. * with each other. This can prevent needless bouncing between CPUs.
  4864. *
  4865. * On UP it can prevent extra preemption.
  4866. *
  4867. * It may be assumed that this function implies a write memory barrier before
  4868. * changing the task state if and only if any tasks are woken up.
  4869. */
  4870. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  4871. int nr_exclusive, void *key)
  4872. {
  4873. unsigned long flags;
  4874. int wake_flags = WF_SYNC;
  4875. if (unlikely(!q))
  4876. return;
  4877. if (unlikely(!nr_exclusive))
  4878. wake_flags = 0;
  4879. spin_lock_irqsave(&q->lock, flags);
  4880. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  4881. spin_unlock_irqrestore(&q->lock, flags);
  4882. }
  4883. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  4884. /*
  4885. * __wake_up_sync - see __wake_up_sync_key()
  4886. */
  4887. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4888. {
  4889. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  4890. }
  4891. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4892. /**
  4893. * complete: - signals a single thread waiting on this completion
  4894. * @x: holds the state of this particular completion
  4895. *
  4896. * This will wake up a single thread waiting on this completion. Threads will be
  4897. * awakened in the same order in which they were queued.
  4898. *
  4899. * See also complete_all(), wait_for_completion() and related routines.
  4900. *
  4901. * It may be assumed that this function implies a write memory barrier before
  4902. * changing the task state if and only if any tasks are woken up.
  4903. */
  4904. void complete(struct completion *x)
  4905. {
  4906. unsigned long flags;
  4907. spin_lock_irqsave(&x->wait.lock, flags);
  4908. x->done++;
  4909. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4910. spin_unlock_irqrestore(&x->wait.lock, flags);
  4911. }
  4912. EXPORT_SYMBOL(complete);
  4913. /**
  4914. * complete_all: - signals all threads waiting on this completion
  4915. * @x: holds the state of this particular completion
  4916. *
  4917. * This will wake up all threads waiting on this particular completion event.
  4918. *
  4919. * It may be assumed that this function implies a write memory barrier before
  4920. * changing the task state if and only if any tasks are woken up.
  4921. */
  4922. void complete_all(struct completion *x)
  4923. {
  4924. unsigned long flags;
  4925. spin_lock_irqsave(&x->wait.lock, flags);
  4926. x->done += UINT_MAX/2;
  4927. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4928. spin_unlock_irqrestore(&x->wait.lock, flags);
  4929. }
  4930. EXPORT_SYMBOL(complete_all);
  4931. static inline long __sched
  4932. do_wait_for_common(struct completion *x, long timeout, int state)
  4933. {
  4934. if (!x->done) {
  4935. DECLARE_WAITQUEUE(wait, current);
  4936. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4937. __add_wait_queue_tail(&x->wait, &wait);
  4938. do {
  4939. if (signal_pending_state(state, current)) {
  4940. timeout = -ERESTARTSYS;
  4941. break;
  4942. }
  4943. __set_current_state(state);
  4944. spin_unlock_irq(&x->wait.lock);
  4945. timeout = schedule_timeout(timeout);
  4946. spin_lock_irq(&x->wait.lock);
  4947. } while (!x->done && timeout);
  4948. __remove_wait_queue(&x->wait, &wait);
  4949. if (!x->done)
  4950. return timeout;
  4951. }
  4952. x->done--;
  4953. return timeout ?: 1;
  4954. }
  4955. static long __sched
  4956. wait_for_common(struct completion *x, long timeout, int state)
  4957. {
  4958. might_sleep();
  4959. spin_lock_irq(&x->wait.lock);
  4960. timeout = do_wait_for_common(x, timeout, state);
  4961. spin_unlock_irq(&x->wait.lock);
  4962. return timeout;
  4963. }
  4964. /**
  4965. * wait_for_completion: - waits for completion of a task
  4966. * @x: holds the state of this particular completion
  4967. *
  4968. * This waits to be signaled for completion of a specific task. It is NOT
  4969. * interruptible and there is no timeout.
  4970. *
  4971. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4972. * and interrupt capability. Also see complete().
  4973. */
  4974. void __sched wait_for_completion(struct completion *x)
  4975. {
  4976. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4977. }
  4978. EXPORT_SYMBOL(wait_for_completion);
  4979. /**
  4980. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4981. * @x: holds the state of this particular completion
  4982. * @timeout: timeout value in jiffies
  4983. *
  4984. * This waits for either a completion of a specific task to be signaled or for a
  4985. * specified timeout to expire. The timeout is in jiffies. It is not
  4986. * interruptible.
  4987. */
  4988. unsigned long __sched
  4989. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4990. {
  4991. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4992. }
  4993. EXPORT_SYMBOL(wait_for_completion_timeout);
  4994. /**
  4995. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4996. * @x: holds the state of this particular completion
  4997. *
  4998. * This waits for completion of a specific task to be signaled. It is
  4999. * interruptible.
  5000. */
  5001. int __sched wait_for_completion_interruptible(struct completion *x)
  5002. {
  5003. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  5004. if (t == -ERESTARTSYS)
  5005. return t;
  5006. return 0;
  5007. }
  5008. EXPORT_SYMBOL(wait_for_completion_interruptible);
  5009. /**
  5010. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  5011. * @x: holds the state of this particular completion
  5012. * @timeout: timeout value in jiffies
  5013. *
  5014. * This waits for either a completion of a specific task to be signaled or for a
  5015. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  5016. */
  5017. unsigned long __sched
  5018. wait_for_completion_interruptible_timeout(struct completion *x,
  5019. unsigned long timeout)
  5020. {
  5021. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  5022. }
  5023. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  5024. /**
  5025. * wait_for_completion_killable: - waits for completion of a task (killable)
  5026. * @x: holds the state of this particular completion
  5027. *
  5028. * This waits to be signaled for completion of a specific task. It can be
  5029. * interrupted by a kill signal.
  5030. */
  5031. int __sched wait_for_completion_killable(struct completion *x)
  5032. {
  5033. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  5034. if (t == -ERESTARTSYS)
  5035. return t;
  5036. return 0;
  5037. }
  5038. EXPORT_SYMBOL(wait_for_completion_killable);
  5039. /**
  5040. * try_wait_for_completion - try to decrement a completion without blocking
  5041. * @x: completion structure
  5042. *
  5043. * Returns: 0 if a decrement cannot be done without blocking
  5044. * 1 if a decrement succeeded.
  5045. *
  5046. * If a completion is being used as a counting completion,
  5047. * attempt to decrement the counter without blocking. This
  5048. * enables us to avoid waiting if the resource the completion
  5049. * is protecting is not available.
  5050. */
  5051. bool try_wait_for_completion(struct completion *x)
  5052. {
  5053. unsigned long flags;
  5054. int ret = 1;
  5055. spin_lock_irqsave(&x->wait.lock, flags);
  5056. if (!x->done)
  5057. ret = 0;
  5058. else
  5059. x->done--;
  5060. spin_unlock_irqrestore(&x->wait.lock, flags);
  5061. return ret;
  5062. }
  5063. EXPORT_SYMBOL(try_wait_for_completion);
  5064. /**
  5065. * completion_done - Test to see if a completion has any waiters
  5066. * @x: completion structure
  5067. *
  5068. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  5069. * 1 if there are no waiters.
  5070. *
  5071. */
  5072. bool completion_done(struct completion *x)
  5073. {
  5074. unsigned long flags;
  5075. int ret = 1;
  5076. spin_lock_irqsave(&x->wait.lock, flags);
  5077. if (!x->done)
  5078. ret = 0;
  5079. spin_unlock_irqrestore(&x->wait.lock, flags);
  5080. return ret;
  5081. }
  5082. EXPORT_SYMBOL(completion_done);
  5083. static long __sched
  5084. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  5085. {
  5086. unsigned long flags;
  5087. wait_queue_t wait;
  5088. init_waitqueue_entry(&wait, current);
  5089. __set_current_state(state);
  5090. spin_lock_irqsave(&q->lock, flags);
  5091. __add_wait_queue(q, &wait);
  5092. spin_unlock(&q->lock);
  5093. timeout = schedule_timeout(timeout);
  5094. spin_lock_irq(&q->lock);
  5095. __remove_wait_queue(q, &wait);
  5096. spin_unlock_irqrestore(&q->lock, flags);
  5097. return timeout;
  5098. }
  5099. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  5100. {
  5101. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5102. }
  5103. EXPORT_SYMBOL(interruptible_sleep_on);
  5104. long __sched
  5105. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5106. {
  5107. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  5108. }
  5109. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  5110. void __sched sleep_on(wait_queue_head_t *q)
  5111. {
  5112. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5113. }
  5114. EXPORT_SYMBOL(sleep_on);
  5115. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5116. {
  5117. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  5118. }
  5119. EXPORT_SYMBOL(sleep_on_timeout);
  5120. #ifdef CONFIG_RT_MUTEXES
  5121. /*
  5122. * rt_mutex_setprio - set the current priority of a task
  5123. * @p: task
  5124. * @prio: prio value (kernel-internal form)
  5125. *
  5126. * This function changes the 'effective' priority of a task. It does
  5127. * not touch ->normal_prio like __setscheduler().
  5128. *
  5129. * Used by the rt_mutex code to implement priority inheritance logic.
  5130. */
  5131. void rt_mutex_setprio(struct task_struct *p, int prio)
  5132. {
  5133. unsigned long flags;
  5134. int oldprio, on_rq, running;
  5135. struct rq *rq;
  5136. const struct sched_class *prev_class = p->sched_class;
  5137. BUG_ON(prio < 0 || prio > MAX_PRIO);
  5138. rq = task_rq_lock(p, &flags);
  5139. update_rq_clock(rq);
  5140. oldprio = p->prio;
  5141. on_rq = p->se.on_rq;
  5142. running = task_current(rq, p);
  5143. if (on_rq)
  5144. dequeue_task(rq, p, 0);
  5145. if (running)
  5146. p->sched_class->put_prev_task(rq, p);
  5147. if (rt_prio(prio))
  5148. p->sched_class = &rt_sched_class;
  5149. else
  5150. p->sched_class = &fair_sched_class;
  5151. p->prio = prio;
  5152. if (running)
  5153. p->sched_class->set_curr_task(rq);
  5154. if (on_rq) {
  5155. enqueue_task(rq, p, 0);
  5156. check_class_changed(rq, p, prev_class, oldprio, running);
  5157. }
  5158. task_rq_unlock(rq, &flags);
  5159. }
  5160. #endif
  5161. void set_user_nice(struct task_struct *p, long nice)
  5162. {
  5163. int old_prio, delta, on_rq;
  5164. unsigned long flags;
  5165. struct rq *rq;
  5166. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  5167. return;
  5168. /*
  5169. * We have to be careful, if called from sys_setpriority(),
  5170. * the task might be in the middle of scheduling on another CPU.
  5171. */
  5172. rq = task_rq_lock(p, &flags);
  5173. update_rq_clock(rq);
  5174. /*
  5175. * The RT priorities are set via sched_setscheduler(), but we still
  5176. * allow the 'normal' nice value to be set - but as expected
  5177. * it wont have any effect on scheduling until the task is
  5178. * SCHED_FIFO/SCHED_RR:
  5179. */
  5180. if (task_has_rt_policy(p)) {
  5181. p->static_prio = NICE_TO_PRIO(nice);
  5182. goto out_unlock;
  5183. }
  5184. on_rq = p->se.on_rq;
  5185. if (on_rq)
  5186. dequeue_task(rq, p, 0);
  5187. p->static_prio = NICE_TO_PRIO(nice);
  5188. set_load_weight(p);
  5189. old_prio = p->prio;
  5190. p->prio = effective_prio(p);
  5191. delta = p->prio - old_prio;
  5192. if (on_rq) {
  5193. enqueue_task(rq, p, 0);
  5194. /*
  5195. * If the task increased its priority or is running and
  5196. * lowered its priority, then reschedule its CPU:
  5197. */
  5198. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  5199. resched_task(rq->curr);
  5200. }
  5201. out_unlock:
  5202. task_rq_unlock(rq, &flags);
  5203. }
  5204. EXPORT_SYMBOL(set_user_nice);
  5205. /*
  5206. * can_nice - check if a task can reduce its nice value
  5207. * @p: task
  5208. * @nice: nice value
  5209. */
  5210. int can_nice(const struct task_struct *p, const int nice)
  5211. {
  5212. /* convert nice value [19,-20] to rlimit style value [1,40] */
  5213. int nice_rlim = 20 - nice;
  5214. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  5215. capable(CAP_SYS_NICE));
  5216. }
  5217. #ifdef __ARCH_WANT_SYS_NICE
  5218. /*
  5219. * sys_nice - change the priority of the current process.
  5220. * @increment: priority increment
  5221. *
  5222. * sys_setpriority is a more generic, but much slower function that
  5223. * does similar things.
  5224. */
  5225. SYSCALL_DEFINE1(nice, int, increment)
  5226. {
  5227. long nice, retval;
  5228. /*
  5229. * Setpriority might change our priority at the same moment.
  5230. * We don't have to worry. Conceptually one call occurs first
  5231. * and we have a single winner.
  5232. */
  5233. if (increment < -40)
  5234. increment = -40;
  5235. if (increment > 40)
  5236. increment = 40;
  5237. nice = TASK_NICE(current) + increment;
  5238. if (nice < -20)
  5239. nice = -20;
  5240. if (nice > 19)
  5241. nice = 19;
  5242. if (increment < 0 && !can_nice(current, nice))
  5243. return -EPERM;
  5244. retval = security_task_setnice(current, nice);
  5245. if (retval)
  5246. return retval;
  5247. set_user_nice(current, nice);
  5248. return 0;
  5249. }
  5250. #endif
  5251. /**
  5252. * task_prio - return the priority value of a given task.
  5253. * @p: the task in question.
  5254. *
  5255. * This is the priority value as seen by users in /proc.
  5256. * RT tasks are offset by -200. Normal tasks are centered
  5257. * around 0, value goes from -16 to +15.
  5258. */
  5259. int task_prio(const struct task_struct *p)
  5260. {
  5261. return p->prio - MAX_RT_PRIO;
  5262. }
  5263. /**
  5264. * task_nice - return the nice value of a given task.
  5265. * @p: the task in question.
  5266. */
  5267. int task_nice(const struct task_struct *p)
  5268. {
  5269. return TASK_NICE(p);
  5270. }
  5271. EXPORT_SYMBOL(task_nice);
  5272. /**
  5273. * idle_cpu - is a given cpu idle currently?
  5274. * @cpu: the processor in question.
  5275. */
  5276. int idle_cpu(int cpu)
  5277. {
  5278. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  5279. }
  5280. /**
  5281. * idle_task - return the idle task for a given cpu.
  5282. * @cpu: the processor in question.
  5283. */
  5284. struct task_struct *idle_task(int cpu)
  5285. {
  5286. return cpu_rq(cpu)->idle;
  5287. }
  5288. /**
  5289. * find_process_by_pid - find a process with a matching PID value.
  5290. * @pid: the pid in question.
  5291. */
  5292. static struct task_struct *find_process_by_pid(pid_t pid)
  5293. {
  5294. return pid ? find_task_by_vpid(pid) : current;
  5295. }
  5296. /* Actually do priority change: must hold rq lock. */
  5297. static void
  5298. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  5299. {
  5300. BUG_ON(p->se.on_rq);
  5301. p->policy = policy;
  5302. p->rt_priority = prio;
  5303. p->normal_prio = normal_prio(p);
  5304. /* we are holding p->pi_lock already */
  5305. p->prio = rt_mutex_getprio(p);
  5306. if (rt_prio(p->prio))
  5307. p->sched_class = &rt_sched_class;
  5308. else
  5309. p->sched_class = &fair_sched_class;
  5310. set_load_weight(p);
  5311. }
  5312. /*
  5313. * check the target process has a UID that matches the current process's
  5314. */
  5315. static bool check_same_owner(struct task_struct *p)
  5316. {
  5317. const struct cred *cred = current_cred(), *pcred;
  5318. bool match;
  5319. rcu_read_lock();
  5320. pcred = __task_cred(p);
  5321. match = (cred->euid == pcred->euid ||
  5322. cred->euid == pcred->uid);
  5323. rcu_read_unlock();
  5324. return match;
  5325. }
  5326. static int __sched_setscheduler(struct task_struct *p, int policy,
  5327. struct sched_param *param, bool user)
  5328. {
  5329. int retval, oldprio, oldpolicy = -1, on_rq, running;
  5330. unsigned long flags;
  5331. const struct sched_class *prev_class = p->sched_class;
  5332. struct rq *rq;
  5333. int reset_on_fork;
  5334. /* may grab non-irq protected spin_locks */
  5335. BUG_ON(in_interrupt());
  5336. recheck:
  5337. /* double check policy once rq lock held */
  5338. if (policy < 0) {
  5339. reset_on_fork = p->sched_reset_on_fork;
  5340. policy = oldpolicy = p->policy;
  5341. } else {
  5342. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  5343. policy &= ~SCHED_RESET_ON_FORK;
  5344. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  5345. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  5346. policy != SCHED_IDLE)
  5347. return -EINVAL;
  5348. }
  5349. /*
  5350. * Valid priorities for SCHED_FIFO and SCHED_RR are
  5351. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  5352. * SCHED_BATCH and SCHED_IDLE is 0.
  5353. */
  5354. if (param->sched_priority < 0 ||
  5355. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  5356. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  5357. return -EINVAL;
  5358. if (rt_policy(policy) != (param->sched_priority != 0))
  5359. return -EINVAL;
  5360. /*
  5361. * Allow unprivileged RT tasks to decrease priority:
  5362. */
  5363. if (user && !capable(CAP_SYS_NICE)) {
  5364. if (rt_policy(policy)) {
  5365. unsigned long rlim_rtprio;
  5366. if (!lock_task_sighand(p, &flags))
  5367. return -ESRCH;
  5368. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  5369. unlock_task_sighand(p, &flags);
  5370. /* can't set/change the rt policy */
  5371. if (policy != p->policy && !rlim_rtprio)
  5372. return -EPERM;
  5373. /* can't increase priority */
  5374. if (param->sched_priority > p->rt_priority &&
  5375. param->sched_priority > rlim_rtprio)
  5376. return -EPERM;
  5377. }
  5378. /*
  5379. * Like positive nice levels, dont allow tasks to
  5380. * move out of SCHED_IDLE either:
  5381. */
  5382. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  5383. return -EPERM;
  5384. /* can't change other user's priorities */
  5385. if (!check_same_owner(p))
  5386. return -EPERM;
  5387. /* Normal users shall not reset the sched_reset_on_fork flag */
  5388. if (p->sched_reset_on_fork && !reset_on_fork)
  5389. return -EPERM;
  5390. }
  5391. if (user) {
  5392. #ifdef CONFIG_RT_GROUP_SCHED
  5393. /*
  5394. * Do not allow realtime tasks into groups that have no runtime
  5395. * assigned.
  5396. */
  5397. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  5398. task_group(p)->rt_bandwidth.rt_runtime == 0)
  5399. return -EPERM;
  5400. #endif
  5401. retval = security_task_setscheduler(p, policy, param);
  5402. if (retval)
  5403. return retval;
  5404. }
  5405. /*
  5406. * make sure no PI-waiters arrive (or leave) while we are
  5407. * changing the priority of the task:
  5408. */
  5409. raw_spin_lock_irqsave(&p->pi_lock, flags);
  5410. /*
  5411. * To be able to change p->policy safely, the apropriate
  5412. * runqueue lock must be held.
  5413. */
  5414. rq = __task_rq_lock(p);
  5415. /* recheck policy now with rq lock held */
  5416. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  5417. policy = oldpolicy = -1;
  5418. __task_rq_unlock(rq);
  5419. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  5420. goto recheck;
  5421. }
  5422. update_rq_clock(rq);
  5423. on_rq = p->se.on_rq;
  5424. running = task_current(rq, p);
  5425. if (on_rq)
  5426. deactivate_task(rq, p, 0);
  5427. if (running)
  5428. p->sched_class->put_prev_task(rq, p);
  5429. p->sched_reset_on_fork = reset_on_fork;
  5430. oldprio = p->prio;
  5431. __setscheduler(rq, p, policy, param->sched_priority);
  5432. if (running)
  5433. p->sched_class->set_curr_task(rq);
  5434. if (on_rq) {
  5435. activate_task(rq, p, 0);
  5436. check_class_changed(rq, p, prev_class, oldprio, running);
  5437. }
  5438. __task_rq_unlock(rq);
  5439. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  5440. rt_mutex_adjust_pi(p);
  5441. return 0;
  5442. }
  5443. /**
  5444. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  5445. * @p: the task in question.
  5446. * @policy: new policy.
  5447. * @param: structure containing the new RT priority.
  5448. *
  5449. * NOTE that the task may be already dead.
  5450. */
  5451. int sched_setscheduler(struct task_struct *p, int policy,
  5452. struct sched_param *param)
  5453. {
  5454. return __sched_setscheduler(p, policy, param, true);
  5455. }
  5456. EXPORT_SYMBOL_GPL(sched_setscheduler);
  5457. /**
  5458. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  5459. * @p: the task in question.
  5460. * @policy: new policy.
  5461. * @param: structure containing the new RT priority.
  5462. *
  5463. * Just like sched_setscheduler, only don't bother checking if the
  5464. * current context has permission. For example, this is needed in
  5465. * stop_machine(): we create temporary high priority worker threads,
  5466. * but our caller might not have that capability.
  5467. */
  5468. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  5469. struct sched_param *param)
  5470. {
  5471. return __sched_setscheduler(p, policy, param, false);
  5472. }
  5473. static int
  5474. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  5475. {
  5476. struct sched_param lparam;
  5477. struct task_struct *p;
  5478. int retval;
  5479. if (!param || pid < 0)
  5480. return -EINVAL;
  5481. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  5482. return -EFAULT;
  5483. rcu_read_lock();
  5484. retval = -ESRCH;
  5485. p = find_process_by_pid(pid);
  5486. if (p != NULL)
  5487. retval = sched_setscheduler(p, policy, &lparam);
  5488. rcu_read_unlock();
  5489. return retval;
  5490. }
  5491. /**
  5492. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  5493. * @pid: the pid in question.
  5494. * @policy: new policy.
  5495. * @param: structure containing the new RT priority.
  5496. */
  5497. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  5498. struct sched_param __user *, param)
  5499. {
  5500. /* negative values for policy are not valid */
  5501. if (policy < 0)
  5502. return -EINVAL;
  5503. return do_sched_setscheduler(pid, policy, param);
  5504. }
  5505. /**
  5506. * sys_sched_setparam - set/change the RT priority of a thread
  5507. * @pid: the pid in question.
  5508. * @param: structure containing the new RT priority.
  5509. */
  5510. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  5511. {
  5512. return do_sched_setscheduler(pid, -1, param);
  5513. }
  5514. /**
  5515. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  5516. * @pid: the pid in question.
  5517. */
  5518. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  5519. {
  5520. struct task_struct *p;
  5521. int retval;
  5522. if (pid < 0)
  5523. return -EINVAL;
  5524. retval = -ESRCH;
  5525. rcu_read_lock();
  5526. p = find_process_by_pid(pid);
  5527. if (p) {
  5528. retval = security_task_getscheduler(p);
  5529. if (!retval)
  5530. retval = p->policy
  5531. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  5532. }
  5533. rcu_read_unlock();
  5534. return retval;
  5535. }
  5536. /**
  5537. * sys_sched_getparam - get the RT priority of a thread
  5538. * @pid: the pid in question.
  5539. * @param: structure containing the RT priority.
  5540. */
  5541. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  5542. {
  5543. struct sched_param lp;
  5544. struct task_struct *p;
  5545. int retval;
  5546. if (!param || pid < 0)
  5547. return -EINVAL;
  5548. rcu_read_lock();
  5549. p = find_process_by_pid(pid);
  5550. retval = -ESRCH;
  5551. if (!p)
  5552. goto out_unlock;
  5553. retval = security_task_getscheduler(p);
  5554. if (retval)
  5555. goto out_unlock;
  5556. lp.sched_priority = p->rt_priority;
  5557. rcu_read_unlock();
  5558. /*
  5559. * This one might sleep, we cannot do it with a spinlock held ...
  5560. */
  5561. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  5562. return retval;
  5563. out_unlock:
  5564. rcu_read_unlock();
  5565. return retval;
  5566. }
  5567. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  5568. {
  5569. cpumask_var_t cpus_allowed, new_mask;
  5570. struct task_struct *p;
  5571. int retval;
  5572. get_online_cpus();
  5573. rcu_read_lock();
  5574. p = find_process_by_pid(pid);
  5575. if (!p) {
  5576. rcu_read_unlock();
  5577. put_online_cpus();
  5578. return -ESRCH;
  5579. }
  5580. /* Prevent p going away */
  5581. get_task_struct(p);
  5582. rcu_read_unlock();
  5583. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  5584. retval = -ENOMEM;
  5585. goto out_put_task;
  5586. }
  5587. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  5588. retval = -ENOMEM;
  5589. goto out_free_cpus_allowed;
  5590. }
  5591. retval = -EPERM;
  5592. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  5593. goto out_unlock;
  5594. retval = security_task_setscheduler(p, 0, NULL);
  5595. if (retval)
  5596. goto out_unlock;
  5597. cpuset_cpus_allowed(p, cpus_allowed);
  5598. cpumask_and(new_mask, in_mask, cpus_allowed);
  5599. again:
  5600. retval = set_cpus_allowed_ptr(p, new_mask);
  5601. if (!retval) {
  5602. cpuset_cpus_allowed(p, cpus_allowed);
  5603. if (!cpumask_subset(new_mask, cpus_allowed)) {
  5604. /*
  5605. * We must have raced with a concurrent cpuset
  5606. * update. Just reset the cpus_allowed to the
  5607. * cpuset's cpus_allowed
  5608. */
  5609. cpumask_copy(new_mask, cpus_allowed);
  5610. goto again;
  5611. }
  5612. }
  5613. out_unlock:
  5614. free_cpumask_var(new_mask);
  5615. out_free_cpus_allowed:
  5616. free_cpumask_var(cpus_allowed);
  5617. out_put_task:
  5618. put_task_struct(p);
  5619. put_online_cpus();
  5620. return retval;
  5621. }
  5622. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  5623. struct cpumask *new_mask)
  5624. {
  5625. if (len < cpumask_size())
  5626. cpumask_clear(new_mask);
  5627. else if (len > cpumask_size())
  5628. len = cpumask_size();
  5629. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  5630. }
  5631. /**
  5632. * sys_sched_setaffinity - set the cpu affinity of a process
  5633. * @pid: pid of the process
  5634. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5635. * @user_mask_ptr: user-space pointer to the new cpu mask
  5636. */
  5637. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  5638. unsigned long __user *, user_mask_ptr)
  5639. {
  5640. cpumask_var_t new_mask;
  5641. int retval;
  5642. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  5643. return -ENOMEM;
  5644. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  5645. if (retval == 0)
  5646. retval = sched_setaffinity(pid, new_mask);
  5647. free_cpumask_var(new_mask);
  5648. return retval;
  5649. }
  5650. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  5651. {
  5652. struct task_struct *p;
  5653. unsigned long flags;
  5654. struct rq *rq;
  5655. int retval;
  5656. get_online_cpus();
  5657. rcu_read_lock();
  5658. retval = -ESRCH;
  5659. p = find_process_by_pid(pid);
  5660. if (!p)
  5661. goto out_unlock;
  5662. retval = security_task_getscheduler(p);
  5663. if (retval)
  5664. goto out_unlock;
  5665. rq = task_rq_lock(p, &flags);
  5666. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  5667. task_rq_unlock(rq, &flags);
  5668. out_unlock:
  5669. rcu_read_unlock();
  5670. put_online_cpus();
  5671. return retval;
  5672. }
  5673. /**
  5674. * sys_sched_getaffinity - get the cpu affinity of a process
  5675. * @pid: pid of the process
  5676. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5677. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  5678. */
  5679. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  5680. unsigned long __user *, user_mask_ptr)
  5681. {
  5682. int ret;
  5683. cpumask_var_t mask;
  5684. if (len < cpumask_size())
  5685. return -EINVAL;
  5686. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  5687. return -ENOMEM;
  5688. ret = sched_getaffinity(pid, mask);
  5689. if (ret == 0) {
  5690. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  5691. ret = -EFAULT;
  5692. else
  5693. ret = cpumask_size();
  5694. }
  5695. free_cpumask_var(mask);
  5696. return ret;
  5697. }
  5698. /**
  5699. * sys_sched_yield - yield the current processor to other threads.
  5700. *
  5701. * This function yields the current CPU to other tasks. If there are no
  5702. * other threads running on this CPU then this function will return.
  5703. */
  5704. SYSCALL_DEFINE0(sched_yield)
  5705. {
  5706. struct rq *rq = this_rq_lock();
  5707. schedstat_inc(rq, yld_count);
  5708. current->sched_class->yield_task(rq);
  5709. /*
  5710. * Since we are going to call schedule() anyway, there's
  5711. * no need to preempt or enable interrupts:
  5712. */
  5713. __release(rq->lock);
  5714. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  5715. do_raw_spin_unlock(&rq->lock);
  5716. preempt_enable_no_resched();
  5717. schedule();
  5718. return 0;
  5719. }
  5720. static inline int should_resched(void)
  5721. {
  5722. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  5723. }
  5724. static void __cond_resched(void)
  5725. {
  5726. add_preempt_count(PREEMPT_ACTIVE);
  5727. schedule();
  5728. sub_preempt_count(PREEMPT_ACTIVE);
  5729. }
  5730. int __sched _cond_resched(void)
  5731. {
  5732. if (should_resched()) {
  5733. __cond_resched();
  5734. return 1;
  5735. }
  5736. return 0;
  5737. }
  5738. EXPORT_SYMBOL(_cond_resched);
  5739. /*
  5740. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  5741. * call schedule, and on return reacquire the lock.
  5742. *
  5743. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  5744. * operations here to prevent schedule() from being called twice (once via
  5745. * spin_unlock(), once by hand).
  5746. */
  5747. int __cond_resched_lock(spinlock_t *lock)
  5748. {
  5749. int resched = should_resched();
  5750. int ret = 0;
  5751. lockdep_assert_held(lock);
  5752. if (spin_needbreak(lock) || resched) {
  5753. spin_unlock(lock);
  5754. if (resched)
  5755. __cond_resched();
  5756. else
  5757. cpu_relax();
  5758. ret = 1;
  5759. spin_lock(lock);
  5760. }
  5761. return ret;
  5762. }
  5763. EXPORT_SYMBOL(__cond_resched_lock);
  5764. int __sched __cond_resched_softirq(void)
  5765. {
  5766. BUG_ON(!in_softirq());
  5767. if (should_resched()) {
  5768. local_bh_enable();
  5769. __cond_resched();
  5770. local_bh_disable();
  5771. return 1;
  5772. }
  5773. return 0;
  5774. }
  5775. EXPORT_SYMBOL(__cond_resched_softirq);
  5776. /**
  5777. * yield - yield the current processor to other threads.
  5778. *
  5779. * This is a shortcut for kernel-space yielding - it marks the
  5780. * thread runnable and calls sys_sched_yield().
  5781. */
  5782. void __sched yield(void)
  5783. {
  5784. set_current_state(TASK_RUNNING);
  5785. sys_sched_yield();
  5786. }
  5787. EXPORT_SYMBOL(yield);
  5788. /*
  5789. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  5790. * that process accounting knows that this is a task in IO wait state.
  5791. */
  5792. void __sched io_schedule(void)
  5793. {
  5794. struct rq *rq = raw_rq();
  5795. delayacct_blkio_start();
  5796. atomic_inc(&rq->nr_iowait);
  5797. current->in_iowait = 1;
  5798. schedule();
  5799. current->in_iowait = 0;
  5800. atomic_dec(&rq->nr_iowait);
  5801. delayacct_blkio_end();
  5802. }
  5803. EXPORT_SYMBOL(io_schedule);
  5804. long __sched io_schedule_timeout(long timeout)
  5805. {
  5806. struct rq *rq = raw_rq();
  5807. long ret;
  5808. delayacct_blkio_start();
  5809. atomic_inc(&rq->nr_iowait);
  5810. current->in_iowait = 1;
  5811. ret = schedule_timeout(timeout);
  5812. current->in_iowait = 0;
  5813. atomic_dec(&rq->nr_iowait);
  5814. delayacct_blkio_end();
  5815. return ret;
  5816. }
  5817. /**
  5818. * sys_sched_get_priority_max - return maximum RT priority.
  5819. * @policy: scheduling class.
  5820. *
  5821. * this syscall returns the maximum rt_priority that can be used
  5822. * by a given scheduling class.
  5823. */
  5824. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5825. {
  5826. int ret = -EINVAL;
  5827. switch (policy) {
  5828. case SCHED_FIFO:
  5829. case SCHED_RR:
  5830. ret = MAX_USER_RT_PRIO-1;
  5831. break;
  5832. case SCHED_NORMAL:
  5833. case SCHED_BATCH:
  5834. case SCHED_IDLE:
  5835. ret = 0;
  5836. break;
  5837. }
  5838. return ret;
  5839. }
  5840. /**
  5841. * sys_sched_get_priority_min - return minimum RT priority.
  5842. * @policy: scheduling class.
  5843. *
  5844. * this syscall returns the minimum rt_priority that can be used
  5845. * by a given scheduling class.
  5846. */
  5847. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5848. {
  5849. int ret = -EINVAL;
  5850. switch (policy) {
  5851. case SCHED_FIFO:
  5852. case SCHED_RR:
  5853. ret = 1;
  5854. break;
  5855. case SCHED_NORMAL:
  5856. case SCHED_BATCH:
  5857. case SCHED_IDLE:
  5858. ret = 0;
  5859. }
  5860. return ret;
  5861. }
  5862. /**
  5863. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5864. * @pid: pid of the process.
  5865. * @interval: userspace pointer to the timeslice value.
  5866. *
  5867. * this syscall writes the default timeslice value of a given process
  5868. * into the user-space timespec buffer. A value of '0' means infinity.
  5869. */
  5870. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5871. struct timespec __user *, interval)
  5872. {
  5873. struct task_struct *p;
  5874. unsigned int time_slice;
  5875. unsigned long flags;
  5876. struct rq *rq;
  5877. int retval;
  5878. struct timespec t;
  5879. if (pid < 0)
  5880. return -EINVAL;
  5881. retval = -ESRCH;
  5882. rcu_read_lock();
  5883. p = find_process_by_pid(pid);
  5884. if (!p)
  5885. goto out_unlock;
  5886. retval = security_task_getscheduler(p);
  5887. if (retval)
  5888. goto out_unlock;
  5889. rq = task_rq_lock(p, &flags);
  5890. time_slice = p->sched_class->get_rr_interval(rq, p);
  5891. task_rq_unlock(rq, &flags);
  5892. rcu_read_unlock();
  5893. jiffies_to_timespec(time_slice, &t);
  5894. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5895. return retval;
  5896. out_unlock:
  5897. rcu_read_unlock();
  5898. return retval;
  5899. }
  5900. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5901. void sched_show_task(struct task_struct *p)
  5902. {
  5903. unsigned long free = 0;
  5904. unsigned state;
  5905. state = p->state ? __ffs(p->state) + 1 : 0;
  5906. pr_info("%-13.13s %c", p->comm,
  5907. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5908. #if BITS_PER_LONG == 32
  5909. if (state == TASK_RUNNING)
  5910. pr_cont(" running ");
  5911. else
  5912. pr_cont(" %08lx ", thread_saved_pc(p));
  5913. #else
  5914. if (state == TASK_RUNNING)
  5915. pr_cont(" running task ");
  5916. else
  5917. pr_cont(" %016lx ", thread_saved_pc(p));
  5918. #endif
  5919. #ifdef CONFIG_DEBUG_STACK_USAGE
  5920. free = stack_not_used(p);
  5921. #endif
  5922. pr_cont("%5lu %5d %6d 0x%08lx\n", free,
  5923. task_pid_nr(p), task_pid_nr(p->real_parent),
  5924. (unsigned long)task_thread_info(p)->flags);
  5925. show_stack(p, NULL);
  5926. }
  5927. void show_state_filter(unsigned long state_filter)
  5928. {
  5929. struct task_struct *g, *p;
  5930. #if BITS_PER_LONG == 32
  5931. pr_info(" task PC stack pid father\n");
  5932. #else
  5933. pr_info(" task PC stack pid father\n");
  5934. #endif
  5935. read_lock(&tasklist_lock);
  5936. do_each_thread(g, p) {
  5937. /*
  5938. * reset the NMI-timeout, listing all files on a slow
  5939. * console might take alot of time:
  5940. */
  5941. touch_nmi_watchdog();
  5942. if (!state_filter || (p->state & state_filter))
  5943. sched_show_task(p);
  5944. } while_each_thread(g, p);
  5945. touch_all_softlockup_watchdogs();
  5946. #ifdef CONFIG_SCHED_DEBUG
  5947. sysrq_sched_debug_show();
  5948. #endif
  5949. read_unlock(&tasklist_lock);
  5950. /*
  5951. * Only show locks if all tasks are dumped:
  5952. */
  5953. if (!state_filter)
  5954. debug_show_all_locks();
  5955. }
  5956. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5957. {
  5958. idle->sched_class = &idle_sched_class;
  5959. }
  5960. /**
  5961. * init_idle - set up an idle thread for a given CPU
  5962. * @idle: task in question
  5963. * @cpu: cpu the idle task belongs to
  5964. *
  5965. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5966. * flag, to make booting more robust.
  5967. */
  5968. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5969. {
  5970. struct rq *rq = cpu_rq(cpu);
  5971. unsigned long flags;
  5972. raw_spin_lock_irqsave(&rq->lock, flags);
  5973. __sched_fork(idle);
  5974. idle->state = TASK_RUNNING;
  5975. idle->se.exec_start = sched_clock();
  5976. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  5977. __set_task_cpu(idle, cpu);
  5978. rq->curr = rq->idle = idle;
  5979. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5980. idle->oncpu = 1;
  5981. #endif
  5982. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5983. /* Set the preempt count _outside_ the spinlocks! */
  5984. #if defined(CONFIG_PREEMPT)
  5985. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5986. #else
  5987. task_thread_info(idle)->preempt_count = 0;
  5988. #endif
  5989. /*
  5990. * The idle tasks have their own, simple scheduling class:
  5991. */
  5992. idle->sched_class = &idle_sched_class;
  5993. ftrace_graph_init_task(idle);
  5994. }
  5995. /*
  5996. * In a system that switches off the HZ timer nohz_cpu_mask
  5997. * indicates which cpus entered this state. This is used
  5998. * in the rcu update to wait only for active cpus. For system
  5999. * which do not switch off the HZ timer nohz_cpu_mask should
  6000. * always be CPU_BITS_NONE.
  6001. */
  6002. cpumask_var_t nohz_cpu_mask;
  6003. /*
  6004. * Increase the granularity value when there are more CPUs,
  6005. * because with more CPUs the 'effective latency' as visible
  6006. * to users decreases. But the relationship is not linear,
  6007. * so pick a second-best guess by going with the log2 of the
  6008. * number of CPUs.
  6009. *
  6010. * This idea comes from the SD scheduler of Con Kolivas:
  6011. */
  6012. static int get_update_sysctl_factor(void)
  6013. {
  6014. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  6015. unsigned int factor;
  6016. switch (sysctl_sched_tunable_scaling) {
  6017. case SCHED_TUNABLESCALING_NONE:
  6018. factor = 1;
  6019. break;
  6020. case SCHED_TUNABLESCALING_LINEAR:
  6021. factor = cpus;
  6022. break;
  6023. case SCHED_TUNABLESCALING_LOG:
  6024. default:
  6025. factor = 1 + ilog2(cpus);
  6026. break;
  6027. }
  6028. return factor;
  6029. }
  6030. static void update_sysctl(void)
  6031. {
  6032. unsigned int factor = get_update_sysctl_factor();
  6033. #define SET_SYSCTL(name) \
  6034. (sysctl_##name = (factor) * normalized_sysctl_##name)
  6035. SET_SYSCTL(sched_min_granularity);
  6036. SET_SYSCTL(sched_latency);
  6037. SET_SYSCTL(sched_wakeup_granularity);
  6038. SET_SYSCTL(sched_shares_ratelimit);
  6039. #undef SET_SYSCTL
  6040. }
  6041. static inline void sched_init_granularity(void)
  6042. {
  6043. update_sysctl();
  6044. }
  6045. #ifdef CONFIG_SMP
  6046. /*
  6047. * This is how migration works:
  6048. *
  6049. * 1) we queue a struct migration_req structure in the source CPU's
  6050. * runqueue and wake up that CPU's migration thread.
  6051. * 2) we down() the locked semaphore => thread blocks.
  6052. * 3) migration thread wakes up (implicitly it forces the migrated
  6053. * thread off the CPU)
  6054. * 4) it gets the migration request and checks whether the migrated
  6055. * task is still in the wrong runqueue.
  6056. * 5) if it's in the wrong runqueue then the migration thread removes
  6057. * it and puts it into the right queue.
  6058. * 6) migration thread up()s the semaphore.
  6059. * 7) we wake up and the migration is done.
  6060. */
  6061. /*
  6062. * Change a given task's CPU affinity. Migrate the thread to a
  6063. * proper CPU and schedule it away if the CPU it's executing on
  6064. * is removed from the allowed bitmask.
  6065. *
  6066. * NOTE: the caller must have a valid reference to the task, the
  6067. * task must not exit() & deallocate itself prematurely. The
  6068. * call is not atomic; no spinlocks may be held.
  6069. */
  6070. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  6071. {
  6072. struct migration_req req;
  6073. unsigned long flags;
  6074. struct rq *rq;
  6075. int ret = 0;
  6076. /*
  6077. * Since we rely on wake-ups to migrate sleeping tasks, don't change
  6078. * the ->cpus_allowed mask from under waking tasks, which would be
  6079. * possible when we change rq->lock in ttwu(), so synchronize against
  6080. * TASK_WAKING to avoid that.
  6081. */
  6082. again:
  6083. while (p->state == TASK_WAKING)
  6084. cpu_relax();
  6085. rq = task_rq_lock(p, &flags);
  6086. if (p->state == TASK_WAKING) {
  6087. task_rq_unlock(rq, &flags);
  6088. goto again;
  6089. }
  6090. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  6091. ret = -EINVAL;
  6092. goto out;
  6093. }
  6094. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  6095. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  6096. ret = -EINVAL;
  6097. goto out;
  6098. }
  6099. if (p->sched_class->set_cpus_allowed)
  6100. p->sched_class->set_cpus_allowed(p, new_mask);
  6101. else {
  6102. cpumask_copy(&p->cpus_allowed, new_mask);
  6103. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  6104. }
  6105. /* Can the task run on the task's current CPU? If so, we're done */
  6106. if (cpumask_test_cpu(task_cpu(p), new_mask))
  6107. goto out;
  6108. if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
  6109. /* Need help from migration thread: drop lock and wait. */
  6110. struct task_struct *mt = rq->migration_thread;
  6111. get_task_struct(mt);
  6112. task_rq_unlock(rq, &flags);
  6113. wake_up_process(rq->migration_thread);
  6114. put_task_struct(mt);
  6115. wait_for_completion(&req.done);
  6116. tlb_migrate_finish(p->mm);
  6117. return 0;
  6118. }
  6119. out:
  6120. task_rq_unlock(rq, &flags);
  6121. return ret;
  6122. }
  6123. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  6124. /*
  6125. * Move (not current) task off this cpu, onto dest cpu. We're doing
  6126. * this because either it can't run here any more (set_cpus_allowed()
  6127. * away from this CPU, or CPU going down), or because we're
  6128. * attempting to rebalance this task on exec (sched_exec).
  6129. *
  6130. * So we race with normal scheduler movements, but that's OK, as long
  6131. * as the task is no longer on this CPU.
  6132. *
  6133. * Returns non-zero if task was successfully migrated.
  6134. */
  6135. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  6136. {
  6137. struct rq *rq_dest, *rq_src;
  6138. int ret = 0;
  6139. if (unlikely(!cpu_active(dest_cpu)))
  6140. return ret;
  6141. rq_src = cpu_rq(src_cpu);
  6142. rq_dest = cpu_rq(dest_cpu);
  6143. double_rq_lock(rq_src, rq_dest);
  6144. /* Already moved. */
  6145. if (task_cpu(p) != src_cpu)
  6146. goto done;
  6147. /* Affinity changed (again). */
  6148. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6149. goto fail;
  6150. /*
  6151. * If we're not on a rq, the next wake-up will ensure we're
  6152. * placed properly.
  6153. */
  6154. if (p->se.on_rq) {
  6155. deactivate_task(rq_src, p, 0);
  6156. set_task_cpu(p, dest_cpu);
  6157. activate_task(rq_dest, p, 0);
  6158. check_preempt_curr(rq_dest, p, 0);
  6159. }
  6160. done:
  6161. ret = 1;
  6162. fail:
  6163. double_rq_unlock(rq_src, rq_dest);
  6164. return ret;
  6165. }
  6166. #define RCU_MIGRATION_IDLE 0
  6167. #define RCU_MIGRATION_NEED_QS 1
  6168. #define RCU_MIGRATION_GOT_QS 2
  6169. #define RCU_MIGRATION_MUST_SYNC 3
  6170. /*
  6171. * migration_thread - this is a highprio system thread that performs
  6172. * thread migration by bumping thread off CPU then 'pushing' onto
  6173. * another runqueue.
  6174. */
  6175. static int migration_thread(void *data)
  6176. {
  6177. int badcpu;
  6178. int cpu = (long)data;
  6179. struct rq *rq;
  6180. rq = cpu_rq(cpu);
  6181. BUG_ON(rq->migration_thread != current);
  6182. set_current_state(TASK_INTERRUPTIBLE);
  6183. while (!kthread_should_stop()) {
  6184. struct migration_req *req;
  6185. struct list_head *head;
  6186. raw_spin_lock_irq(&rq->lock);
  6187. if (cpu_is_offline(cpu)) {
  6188. raw_spin_unlock_irq(&rq->lock);
  6189. break;
  6190. }
  6191. if (rq->active_balance) {
  6192. active_load_balance(rq, cpu);
  6193. rq->active_balance = 0;
  6194. }
  6195. head = &rq->migration_queue;
  6196. if (list_empty(head)) {
  6197. raw_spin_unlock_irq(&rq->lock);
  6198. schedule();
  6199. set_current_state(TASK_INTERRUPTIBLE);
  6200. continue;
  6201. }
  6202. req = list_entry(head->next, struct migration_req, list);
  6203. list_del_init(head->next);
  6204. if (req->task != NULL) {
  6205. raw_spin_unlock(&rq->lock);
  6206. __migrate_task(req->task, cpu, req->dest_cpu);
  6207. } else if (likely(cpu == (badcpu = smp_processor_id()))) {
  6208. req->dest_cpu = RCU_MIGRATION_GOT_QS;
  6209. raw_spin_unlock(&rq->lock);
  6210. } else {
  6211. req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
  6212. raw_spin_unlock(&rq->lock);
  6213. WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
  6214. }
  6215. local_irq_enable();
  6216. complete(&req->done);
  6217. }
  6218. __set_current_state(TASK_RUNNING);
  6219. return 0;
  6220. }
  6221. #ifdef CONFIG_HOTPLUG_CPU
  6222. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  6223. {
  6224. int ret;
  6225. local_irq_disable();
  6226. ret = __migrate_task(p, src_cpu, dest_cpu);
  6227. local_irq_enable();
  6228. return ret;
  6229. }
  6230. /*
  6231. * Figure out where task on dead CPU should go, use force if necessary.
  6232. */
  6233. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  6234. {
  6235. int dest_cpu;
  6236. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
  6237. again:
  6238. /* Look for allowed, online CPU in same node. */
  6239. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  6240. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6241. goto move;
  6242. /* Any allowed, online CPU? */
  6243. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  6244. if (dest_cpu < nr_cpu_ids)
  6245. goto move;
  6246. /* No more Mr. Nice Guy. */
  6247. if (dest_cpu >= nr_cpu_ids) {
  6248. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  6249. dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
  6250. /*
  6251. * Don't tell them about moving exiting tasks or
  6252. * kernel threads (both mm NULL), since they never
  6253. * leave kernel.
  6254. */
  6255. if (p->mm && printk_ratelimit()) {
  6256. pr_info("process %d (%s) no longer affine to cpu%d\n",
  6257. task_pid_nr(p), p->comm, dead_cpu);
  6258. }
  6259. }
  6260. move:
  6261. /* It can have affinity changed while we were choosing. */
  6262. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  6263. goto again;
  6264. }
  6265. /*
  6266. * While a dead CPU has no uninterruptible tasks queued at this point,
  6267. * it might still have a nonzero ->nr_uninterruptible counter, because
  6268. * for performance reasons the counter is not stricly tracking tasks to
  6269. * their home CPUs. So we just add the counter to another CPU's counter,
  6270. * to keep the global sum constant after CPU-down:
  6271. */
  6272. static void migrate_nr_uninterruptible(struct rq *rq_src)
  6273. {
  6274. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  6275. unsigned long flags;
  6276. local_irq_save(flags);
  6277. double_rq_lock(rq_src, rq_dest);
  6278. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  6279. rq_src->nr_uninterruptible = 0;
  6280. double_rq_unlock(rq_src, rq_dest);
  6281. local_irq_restore(flags);
  6282. }
  6283. /* Run through task list and migrate tasks from the dead cpu. */
  6284. static void migrate_live_tasks(int src_cpu)
  6285. {
  6286. struct task_struct *p, *t;
  6287. read_lock(&tasklist_lock);
  6288. do_each_thread(t, p) {
  6289. if (p == current)
  6290. continue;
  6291. if (task_cpu(p) == src_cpu)
  6292. move_task_off_dead_cpu(src_cpu, p);
  6293. } while_each_thread(t, p);
  6294. read_unlock(&tasklist_lock);
  6295. }
  6296. /*
  6297. * Schedules idle task to be the next runnable task on current CPU.
  6298. * It does so by boosting its priority to highest possible.
  6299. * Used by CPU offline code.
  6300. */
  6301. void sched_idle_next(void)
  6302. {
  6303. int this_cpu = smp_processor_id();
  6304. struct rq *rq = cpu_rq(this_cpu);
  6305. struct task_struct *p = rq->idle;
  6306. unsigned long flags;
  6307. /* cpu has to be offline */
  6308. BUG_ON(cpu_online(this_cpu));
  6309. /*
  6310. * Strictly not necessary since rest of the CPUs are stopped by now
  6311. * and interrupts disabled on the current cpu.
  6312. */
  6313. raw_spin_lock_irqsave(&rq->lock, flags);
  6314. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6315. update_rq_clock(rq);
  6316. activate_task(rq, p, 0);
  6317. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6318. }
  6319. /*
  6320. * Ensures that the idle task is using init_mm right before its cpu goes
  6321. * offline.
  6322. */
  6323. void idle_task_exit(void)
  6324. {
  6325. struct mm_struct *mm = current->active_mm;
  6326. BUG_ON(cpu_online(smp_processor_id()));
  6327. if (mm != &init_mm)
  6328. switch_mm(mm, &init_mm, current);
  6329. mmdrop(mm);
  6330. }
  6331. /* called under rq->lock with disabled interrupts */
  6332. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  6333. {
  6334. struct rq *rq = cpu_rq(dead_cpu);
  6335. /* Must be exiting, otherwise would be on tasklist. */
  6336. BUG_ON(!p->exit_state);
  6337. /* Cannot have done final schedule yet: would have vanished. */
  6338. BUG_ON(p->state == TASK_DEAD);
  6339. get_task_struct(p);
  6340. /*
  6341. * Drop lock around migration; if someone else moves it,
  6342. * that's OK. No task can be added to this CPU, so iteration is
  6343. * fine.
  6344. */
  6345. raw_spin_unlock_irq(&rq->lock);
  6346. move_task_off_dead_cpu(dead_cpu, p);
  6347. raw_spin_lock_irq(&rq->lock);
  6348. put_task_struct(p);
  6349. }
  6350. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  6351. static void migrate_dead_tasks(unsigned int dead_cpu)
  6352. {
  6353. struct rq *rq = cpu_rq(dead_cpu);
  6354. struct task_struct *next;
  6355. for ( ; ; ) {
  6356. if (!rq->nr_running)
  6357. break;
  6358. update_rq_clock(rq);
  6359. next = pick_next_task(rq);
  6360. if (!next)
  6361. break;
  6362. next->sched_class->put_prev_task(rq, next);
  6363. migrate_dead(dead_cpu, next);
  6364. }
  6365. }
  6366. /*
  6367. * remove the tasks which were accounted by rq from calc_load_tasks.
  6368. */
  6369. static void calc_global_load_remove(struct rq *rq)
  6370. {
  6371. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  6372. rq->calc_load_active = 0;
  6373. }
  6374. #endif /* CONFIG_HOTPLUG_CPU */
  6375. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  6376. static struct ctl_table sd_ctl_dir[] = {
  6377. {
  6378. .procname = "sched_domain",
  6379. .mode = 0555,
  6380. },
  6381. {}
  6382. };
  6383. static struct ctl_table sd_ctl_root[] = {
  6384. {
  6385. .procname = "kernel",
  6386. .mode = 0555,
  6387. .child = sd_ctl_dir,
  6388. },
  6389. {}
  6390. };
  6391. static struct ctl_table *sd_alloc_ctl_entry(int n)
  6392. {
  6393. struct ctl_table *entry =
  6394. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  6395. return entry;
  6396. }
  6397. static void sd_free_ctl_entry(struct ctl_table **tablep)
  6398. {
  6399. struct ctl_table *entry;
  6400. /*
  6401. * In the intermediate directories, both the child directory and
  6402. * procname are dynamically allocated and could fail but the mode
  6403. * will always be set. In the lowest directory the names are
  6404. * static strings and all have proc handlers.
  6405. */
  6406. for (entry = *tablep; entry->mode; entry++) {
  6407. if (entry->child)
  6408. sd_free_ctl_entry(&entry->child);
  6409. if (entry->proc_handler == NULL)
  6410. kfree(entry->procname);
  6411. }
  6412. kfree(*tablep);
  6413. *tablep = NULL;
  6414. }
  6415. static void
  6416. set_table_entry(struct ctl_table *entry,
  6417. const char *procname, void *data, int maxlen,
  6418. mode_t mode, proc_handler *proc_handler)
  6419. {
  6420. entry->procname = procname;
  6421. entry->data = data;
  6422. entry->maxlen = maxlen;
  6423. entry->mode = mode;
  6424. entry->proc_handler = proc_handler;
  6425. }
  6426. static struct ctl_table *
  6427. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  6428. {
  6429. struct ctl_table *table = sd_alloc_ctl_entry(13);
  6430. if (table == NULL)
  6431. return NULL;
  6432. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  6433. sizeof(long), 0644, proc_doulongvec_minmax);
  6434. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  6435. sizeof(long), 0644, proc_doulongvec_minmax);
  6436. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  6437. sizeof(int), 0644, proc_dointvec_minmax);
  6438. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  6439. sizeof(int), 0644, proc_dointvec_minmax);
  6440. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  6441. sizeof(int), 0644, proc_dointvec_minmax);
  6442. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  6443. sizeof(int), 0644, proc_dointvec_minmax);
  6444. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  6445. sizeof(int), 0644, proc_dointvec_minmax);
  6446. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  6447. sizeof(int), 0644, proc_dointvec_minmax);
  6448. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  6449. sizeof(int), 0644, proc_dointvec_minmax);
  6450. set_table_entry(&table[9], "cache_nice_tries",
  6451. &sd->cache_nice_tries,
  6452. sizeof(int), 0644, proc_dointvec_minmax);
  6453. set_table_entry(&table[10], "flags", &sd->flags,
  6454. sizeof(int), 0644, proc_dointvec_minmax);
  6455. set_table_entry(&table[11], "name", sd->name,
  6456. CORENAME_MAX_SIZE, 0444, proc_dostring);
  6457. /* &table[12] is terminator */
  6458. return table;
  6459. }
  6460. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  6461. {
  6462. struct ctl_table *entry, *table;
  6463. struct sched_domain *sd;
  6464. int domain_num = 0, i;
  6465. char buf[32];
  6466. for_each_domain(cpu, sd)
  6467. domain_num++;
  6468. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  6469. if (table == NULL)
  6470. return NULL;
  6471. i = 0;
  6472. for_each_domain(cpu, sd) {
  6473. snprintf(buf, 32, "domain%d", i);
  6474. entry->procname = kstrdup(buf, GFP_KERNEL);
  6475. entry->mode = 0555;
  6476. entry->child = sd_alloc_ctl_domain_table(sd);
  6477. entry++;
  6478. i++;
  6479. }
  6480. return table;
  6481. }
  6482. static struct ctl_table_header *sd_sysctl_header;
  6483. static void register_sched_domain_sysctl(void)
  6484. {
  6485. int i, cpu_num = num_possible_cpus();
  6486. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  6487. char buf[32];
  6488. WARN_ON(sd_ctl_dir[0].child);
  6489. sd_ctl_dir[0].child = entry;
  6490. if (entry == NULL)
  6491. return;
  6492. for_each_possible_cpu(i) {
  6493. snprintf(buf, 32, "cpu%d", i);
  6494. entry->procname = kstrdup(buf, GFP_KERNEL);
  6495. entry->mode = 0555;
  6496. entry->child = sd_alloc_ctl_cpu_table(i);
  6497. entry++;
  6498. }
  6499. WARN_ON(sd_sysctl_header);
  6500. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  6501. }
  6502. /* may be called multiple times per register */
  6503. static void unregister_sched_domain_sysctl(void)
  6504. {
  6505. if (sd_sysctl_header)
  6506. unregister_sysctl_table(sd_sysctl_header);
  6507. sd_sysctl_header = NULL;
  6508. if (sd_ctl_dir[0].child)
  6509. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  6510. }
  6511. #else
  6512. static void register_sched_domain_sysctl(void)
  6513. {
  6514. }
  6515. static void unregister_sched_domain_sysctl(void)
  6516. {
  6517. }
  6518. #endif
  6519. static void set_rq_online(struct rq *rq)
  6520. {
  6521. if (!rq->online) {
  6522. const struct sched_class *class;
  6523. cpumask_set_cpu(rq->cpu, rq->rd->online);
  6524. rq->online = 1;
  6525. for_each_class(class) {
  6526. if (class->rq_online)
  6527. class->rq_online(rq);
  6528. }
  6529. }
  6530. }
  6531. static void set_rq_offline(struct rq *rq)
  6532. {
  6533. if (rq->online) {
  6534. const struct sched_class *class;
  6535. for_each_class(class) {
  6536. if (class->rq_offline)
  6537. class->rq_offline(rq);
  6538. }
  6539. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  6540. rq->online = 0;
  6541. }
  6542. }
  6543. /*
  6544. * migration_call - callback that gets triggered when a CPU is added.
  6545. * Here we can start up the necessary migration thread for the new CPU.
  6546. */
  6547. static int __cpuinit
  6548. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  6549. {
  6550. struct task_struct *p;
  6551. int cpu = (long)hcpu;
  6552. unsigned long flags;
  6553. struct rq *rq;
  6554. switch (action) {
  6555. case CPU_UP_PREPARE:
  6556. case CPU_UP_PREPARE_FROZEN:
  6557. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  6558. if (IS_ERR(p))
  6559. return NOTIFY_BAD;
  6560. kthread_bind(p, cpu);
  6561. /* Must be high prio: stop_machine expects to yield to it. */
  6562. rq = task_rq_lock(p, &flags);
  6563. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6564. task_rq_unlock(rq, &flags);
  6565. get_task_struct(p);
  6566. cpu_rq(cpu)->migration_thread = p;
  6567. rq->calc_load_update = calc_load_update;
  6568. break;
  6569. case CPU_ONLINE:
  6570. case CPU_ONLINE_FROZEN:
  6571. /* Strictly unnecessary, as first user will wake it. */
  6572. wake_up_process(cpu_rq(cpu)->migration_thread);
  6573. /* Update our root-domain */
  6574. rq = cpu_rq(cpu);
  6575. raw_spin_lock_irqsave(&rq->lock, flags);
  6576. if (rq->rd) {
  6577. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6578. set_rq_online(rq);
  6579. }
  6580. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6581. break;
  6582. #ifdef CONFIG_HOTPLUG_CPU
  6583. case CPU_UP_CANCELED:
  6584. case CPU_UP_CANCELED_FROZEN:
  6585. if (!cpu_rq(cpu)->migration_thread)
  6586. break;
  6587. /* Unbind it from offline cpu so it can run. Fall thru. */
  6588. kthread_bind(cpu_rq(cpu)->migration_thread,
  6589. cpumask_any(cpu_online_mask));
  6590. kthread_stop(cpu_rq(cpu)->migration_thread);
  6591. put_task_struct(cpu_rq(cpu)->migration_thread);
  6592. cpu_rq(cpu)->migration_thread = NULL;
  6593. break;
  6594. case CPU_DEAD:
  6595. case CPU_DEAD_FROZEN:
  6596. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  6597. migrate_live_tasks(cpu);
  6598. rq = cpu_rq(cpu);
  6599. kthread_stop(rq->migration_thread);
  6600. put_task_struct(rq->migration_thread);
  6601. rq->migration_thread = NULL;
  6602. /* Idle task back to normal (off runqueue, low prio) */
  6603. raw_spin_lock_irq(&rq->lock);
  6604. update_rq_clock(rq);
  6605. deactivate_task(rq, rq->idle, 0);
  6606. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  6607. rq->idle->sched_class = &idle_sched_class;
  6608. migrate_dead_tasks(cpu);
  6609. raw_spin_unlock_irq(&rq->lock);
  6610. cpuset_unlock();
  6611. migrate_nr_uninterruptible(rq);
  6612. BUG_ON(rq->nr_running != 0);
  6613. calc_global_load_remove(rq);
  6614. /*
  6615. * No need to migrate the tasks: it was best-effort if
  6616. * they didn't take sched_hotcpu_mutex. Just wake up
  6617. * the requestors.
  6618. */
  6619. raw_spin_lock_irq(&rq->lock);
  6620. while (!list_empty(&rq->migration_queue)) {
  6621. struct migration_req *req;
  6622. req = list_entry(rq->migration_queue.next,
  6623. struct migration_req, list);
  6624. list_del_init(&req->list);
  6625. raw_spin_unlock_irq(&rq->lock);
  6626. complete(&req->done);
  6627. raw_spin_lock_irq(&rq->lock);
  6628. }
  6629. raw_spin_unlock_irq(&rq->lock);
  6630. break;
  6631. case CPU_DYING:
  6632. case CPU_DYING_FROZEN:
  6633. /* Update our root-domain */
  6634. rq = cpu_rq(cpu);
  6635. raw_spin_lock_irqsave(&rq->lock, flags);
  6636. if (rq->rd) {
  6637. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6638. set_rq_offline(rq);
  6639. }
  6640. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6641. break;
  6642. #endif
  6643. }
  6644. return NOTIFY_OK;
  6645. }
  6646. /*
  6647. * Register at high priority so that task migration (migrate_all_tasks)
  6648. * happens before everything else. This has to be lower priority than
  6649. * the notifier in the perf_event subsystem, though.
  6650. */
  6651. static struct notifier_block __cpuinitdata migration_notifier = {
  6652. .notifier_call = migration_call,
  6653. .priority = 10
  6654. };
  6655. static int __init migration_init(void)
  6656. {
  6657. void *cpu = (void *)(long)smp_processor_id();
  6658. int err;
  6659. /* Start one for the boot CPU: */
  6660. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  6661. BUG_ON(err == NOTIFY_BAD);
  6662. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  6663. register_cpu_notifier(&migration_notifier);
  6664. return 0;
  6665. }
  6666. early_initcall(migration_init);
  6667. #endif
  6668. #ifdef CONFIG_SMP
  6669. #ifdef CONFIG_SCHED_DEBUG
  6670. static __read_mostly int sched_domain_debug_enabled;
  6671. static int __init sched_domain_debug_setup(char *str)
  6672. {
  6673. sched_domain_debug_enabled = 1;
  6674. return 0;
  6675. }
  6676. early_param("sched_debug", sched_domain_debug_setup);
  6677. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  6678. struct cpumask *groupmask)
  6679. {
  6680. struct sched_group *group = sd->groups;
  6681. char str[256];
  6682. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  6683. cpumask_clear(groupmask);
  6684. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  6685. if (!(sd->flags & SD_LOAD_BALANCE)) {
  6686. pr_cont("does not load-balance\n");
  6687. if (sd->parent)
  6688. pr_err("ERROR: !SD_LOAD_BALANCE domain has parent\n");
  6689. return -1;
  6690. }
  6691. pr_cont("span %s level %s\n", str, sd->name);
  6692. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  6693. pr_err("ERROR: domain->span does not contain CPU%d\n", cpu);
  6694. }
  6695. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  6696. pr_err("ERROR: domain->groups does not contain CPU%d\n", cpu);
  6697. }
  6698. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  6699. do {
  6700. if (!group) {
  6701. pr_cont("\n");
  6702. pr_err("ERROR: group is NULL\n");
  6703. break;
  6704. }
  6705. if (!group->cpu_power) {
  6706. pr_cont("\n");
  6707. pr_err("ERROR: domain->cpu_power not set\n");
  6708. break;
  6709. }
  6710. if (!cpumask_weight(sched_group_cpus(group))) {
  6711. pr_cont("\n");
  6712. pr_err("ERROR: empty group\n");
  6713. break;
  6714. }
  6715. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  6716. pr_cont("\n");
  6717. pr_err("ERROR: repeated CPUs\n");
  6718. break;
  6719. }
  6720. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  6721. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  6722. pr_cont(" %s", str);
  6723. if (group->cpu_power != SCHED_LOAD_SCALE) {
  6724. pr_cont(" (cpu_power = %d)", group->cpu_power);
  6725. }
  6726. group = group->next;
  6727. } while (group != sd->groups);
  6728. pr_cont("\n");
  6729. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  6730. pr_err("ERROR: groups don't span domain->span\n");
  6731. if (sd->parent &&
  6732. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  6733. pr_err("ERROR: parent span is not a superset of domain->span\n");
  6734. return 0;
  6735. }
  6736. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  6737. {
  6738. cpumask_var_t groupmask;
  6739. int level = 0;
  6740. if (!sched_domain_debug_enabled)
  6741. return;
  6742. if (!sd) {
  6743. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  6744. return;
  6745. }
  6746. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  6747. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  6748. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  6749. return;
  6750. }
  6751. for (;;) {
  6752. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  6753. break;
  6754. level++;
  6755. sd = sd->parent;
  6756. if (!sd)
  6757. break;
  6758. }
  6759. free_cpumask_var(groupmask);
  6760. }
  6761. #else /* !CONFIG_SCHED_DEBUG */
  6762. # define sched_domain_debug(sd, cpu) do { } while (0)
  6763. #endif /* CONFIG_SCHED_DEBUG */
  6764. static int sd_degenerate(struct sched_domain *sd)
  6765. {
  6766. if (cpumask_weight(sched_domain_span(sd)) == 1)
  6767. return 1;
  6768. /* Following flags need at least 2 groups */
  6769. if (sd->flags & (SD_LOAD_BALANCE |
  6770. SD_BALANCE_NEWIDLE |
  6771. SD_BALANCE_FORK |
  6772. SD_BALANCE_EXEC |
  6773. SD_SHARE_CPUPOWER |
  6774. SD_SHARE_PKG_RESOURCES)) {
  6775. if (sd->groups != sd->groups->next)
  6776. return 0;
  6777. }
  6778. /* Following flags don't use groups */
  6779. if (sd->flags & (SD_WAKE_AFFINE))
  6780. return 0;
  6781. return 1;
  6782. }
  6783. static int
  6784. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  6785. {
  6786. unsigned long cflags = sd->flags, pflags = parent->flags;
  6787. if (sd_degenerate(parent))
  6788. return 1;
  6789. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  6790. return 0;
  6791. /* Flags needing groups don't count if only 1 group in parent */
  6792. if (parent->groups == parent->groups->next) {
  6793. pflags &= ~(SD_LOAD_BALANCE |
  6794. SD_BALANCE_NEWIDLE |
  6795. SD_BALANCE_FORK |
  6796. SD_BALANCE_EXEC |
  6797. SD_SHARE_CPUPOWER |
  6798. SD_SHARE_PKG_RESOURCES);
  6799. if (nr_node_ids == 1)
  6800. pflags &= ~SD_SERIALIZE;
  6801. }
  6802. if (~cflags & pflags)
  6803. return 0;
  6804. return 1;
  6805. }
  6806. static void free_rootdomain(struct root_domain *rd)
  6807. {
  6808. synchronize_sched();
  6809. cpupri_cleanup(&rd->cpupri);
  6810. free_cpumask_var(rd->rto_mask);
  6811. free_cpumask_var(rd->online);
  6812. free_cpumask_var(rd->span);
  6813. kfree(rd);
  6814. }
  6815. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  6816. {
  6817. struct root_domain *old_rd = NULL;
  6818. unsigned long flags;
  6819. raw_spin_lock_irqsave(&rq->lock, flags);
  6820. if (rq->rd) {
  6821. old_rd = rq->rd;
  6822. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  6823. set_rq_offline(rq);
  6824. cpumask_clear_cpu(rq->cpu, old_rd->span);
  6825. /*
  6826. * If we dont want to free the old_rt yet then
  6827. * set old_rd to NULL to skip the freeing later
  6828. * in this function:
  6829. */
  6830. if (!atomic_dec_and_test(&old_rd->refcount))
  6831. old_rd = NULL;
  6832. }
  6833. atomic_inc(&rd->refcount);
  6834. rq->rd = rd;
  6835. cpumask_set_cpu(rq->cpu, rd->span);
  6836. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  6837. set_rq_online(rq);
  6838. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6839. if (old_rd)
  6840. free_rootdomain(old_rd);
  6841. }
  6842. static int init_rootdomain(struct root_domain *rd, bool bootmem)
  6843. {
  6844. gfp_t gfp = GFP_KERNEL;
  6845. memset(rd, 0, sizeof(*rd));
  6846. if (bootmem)
  6847. gfp = GFP_NOWAIT;
  6848. if (!alloc_cpumask_var(&rd->span, gfp))
  6849. goto out;
  6850. if (!alloc_cpumask_var(&rd->online, gfp))
  6851. goto free_span;
  6852. if (!alloc_cpumask_var(&rd->rto_mask, gfp))
  6853. goto free_online;
  6854. if (cpupri_init(&rd->cpupri, bootmem) != 0)
  6855. goto free_rto_mask;
  6856. return 0;
  6857. free_rto_mask:
  6858. free_cpumask_var(rd->rto_mask);
  6859. free_online:
  6860. free_cpumask_var(rd->online);
  6861. free_span:
  6862. free_cpumask_var(rd->span);
  6863. out:
  6864. return -ENOMEM;
  6865. }
  6866. static void init_defrootdomain(void)
  6867. {
  6868. init_rootdomain(&def_root_domain, true);
  6869. atomic_set(&def_root_domain.refcount, 1);
  6870. }
  6871. static struct root_domain *alloc_rootdomain(void)
  6872. {
  6873. struct root_domain *rd;
  6874. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  6875. if (!rd)
  6876. return NULL;
  6877. if (init_rootdomain(rd, false) != 0) {
  6878. kfree(rd);
  6879. return NULL;
  6880. }
  6881. return rd;
  6882. }
  6883. /*
  6884. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  6885. * hold the hotplug lock.
  6886. */
  6887. static void
  6888. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  6889. {
  6890. struct rq *rq = cpu_rq(cpu);
  6891. struct sched_domain *tmp;
  6892. /* Remove the sched domains which do not contribute to scheduling. */
  6893. for (tmp = sd; tmp; ) {
  6894. struct sched_domain *parent = tmp->parent;
  6895. if (!parent)
  6896. break;
  6897. if (sd_parent_degenerate(tmp, parent)) {
  6898. tmp->parent = parent->parent;
  6899. if (parent->parent)
  6900. parent->parent->child = tmp;
  6901. } else
  6902. tmp = tmp->parent;
  6903. }
  6904. if (sd && sd_degenerate(sd)) {
  6905. sd = sd->parent;
  6906. if (sd)
  6907. sd->child = NULL;
  6908. }
  6909. sched_domain_debug(sd, cpu);
  6910. rq_attach_root(rq, rd);
  6911. rcu_assign_pointer(rq->sd, sd);
  6912. }
  6913. /* cpus with isolated domains */
  6914. static cpumask_var_t cpu_isolated_map;
  6915. /* Setup the mask of cpus configured for isolated domains */
  6916. static int __init isolated_cpu_setup(char *str)
  6917. {
  6918. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  6919. cpulist_parse(str, cpu_isolated_map);
  6920. return 1;
  6921. }
  6922. __setup("isolcpus=", isolated_cpu_setup);
  6923. /*
  6924. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6925. * to a function which identifies what group(along with sched group) a CPU
  6926. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6927. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6928. *
  6929. * init_sched_build_groups will build a circular linked list of the groups
  6930. * covered by the given span, and will set each group's ->cpumask correctly,
  6931. * and ->cpu_power to 0.
  6932. */
  6933. static void
  6934. init_sched_build_groups(const struct cpumask *span,
  6935. const struct cpumask *cpu_map,
  6936. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6937. struct sched_group **sg,
  6938. struct cpumask *tmpmask),
  6939. struct cpumask *covered, struct cpumask *tmpmask)
  6940. {
  6941. struct sched_group *first = NULL, *last = NULL;
  6942. int i;
  6943. cpumask_clear(covered);
  6944. for_each_cpu(i, span) {
  6945. struct sched_group *sg;
  6946. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6947. int j;
  6948. if (cpumask_test_cpu(i, covered))
  6949. continue;
  6950. cpumask_clear(sched_group_cpus(sg));
  6951. sg->cpu_power = 0;
  6952. for_each_cpu(j, span) {
  6953. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6954. continue;
  6955. cpumask_set_cpu(j, covered);
  6956. cpumask_set_cpu(j, sched_group_cpus(sg));
  6957. }
  6958. if (!first)
  6959. first = sg;
  6960. if (last)
  6961. last->next = sg;
  6962. last = sg;
  6963. }
  6964. last->next = first;
  6965. }
  6966. #define SD_NODES_PER_DOMAIN 16
  6967. #ifdef CONFIG_NUMA
  6968. /**
  6969. * find_next_best_node - find the next node to include in a sched_domain
  6970. * @node: node whose sched_domain we're building
  6971. * @used_nodes: nodes already in the sched_domain
  6972. *
  6973. * Find the next node to include in a given scheduling domain. Simply
  6974. * finds the closest node not already in the @used_nodes map.
  6975. *
  6976. * Should use nodemask_t.
  6977. */
  6978. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6979. {
  6980. int i, n, val, min_val, best_node = 0;
  6981. min_val = INT_MAX;
  6982. for (i = 0; i < nr_node_ids; i++) {
  6983. /* Start at @node */
  6984. n = (node + i) % nr_node_ids;
  6985. if (!nr_cpus_node(n))
  6986. continue;
  6987. /* Skip already used nodes */
  6988. if (node_isset(n, *used_nodes))
  6989. continue;
  6990. /* Simple min distance search */
  6991. val = node_distance(node, n);
  6992. if (val < min_val) {
  6993. min_val = val;
  6994. best_node = n;
  6995. }
  6996. }
  6997. node_set(best_node, *used_nodes);
  6998. return best_node;
  6999. }
  7000. /**
  7001. * sched_domain_node_span - get a cpumask for a node's sched_domain
  7002. * @node: node whose cpumask we're constructing
  7003. * @span: resulting cpumask
  7004. *
  7005. * Given a node, construct a good cpumask for its sched_domain to span. It
  7006. * should be one that prevents unnecessary balancing, but also spreads tasks
  7007. * out optimally.
  7008. */
  7009. static void sched_domain_node_span(int node, struct cpumask *span)
  7010. {
  7011. nodemask_t used_nodes;
  7012. int i;
  7013. cpumask_clear(span);
  7014. nodes_clear(used_nodes);
  7015. cpumask_or(span, span, cpumask_of_node(node));
  7016. node_set(node, used_nodes);
  7017. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  7018. int next_node = find_next_best_node(node, &used_nodes);
  7019. cpumask_or(span, span, cpumask_of_node(next_node));
  7020. }
  7021. }
  7022. #endif /* CONFIG_NUMA */
  7023. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  7024. /*
  7025. * The cpus mask in sched_group and sched_domain hangs off the end.
  7026. *
  7027. * ( See the the comments in include/linux/sched.h:struct sched_group
  7028. * and struct sched_domain. )
  7029. */
  7030. struct static_sched_group {
  7031. struct sched_group sg;
  7032. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  7033. };
  7034. struct static_sched_domain {
  7035. struct sched_domain sd;
  7036. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  7037. };
  7038. struct s_data {
  7039. #ifdef CONFIG_NUMA
  7040. int sd_allnodes;
  7041. cpumask_var_t domainspan;
  7042. cpumask_var_t covered;
  7043. cpumask_var_t notcovered;
  7044. #endif
  7045. cpumask_var_t nodemask;
  7046. cpumask_var_t this_sibling_map;
  7047. cpumask_var_t this_core_map;
  7048. cpumask_var_t send_covered;
  7049. cpumask_var_t tmpmask;
  7050. struct sched_group **sched_group_nodes;
  7051. struct root_domain *rd;
  7052. };
  7053. enum s_alloc {
  7054. sa_sched_groups = 0,
  7055. sa_rootdomain,
  7056. sa_tmpmask,
  7057. sa_send_covered,
  7058. sa_this_core_map,
  7059. sa_this_sibling_map,
  7060. sa_nodemask,
  7061. sa_sched_group_nodes,
  7062. #ifdef CONFIG_NUMA
  7063. sa_notcovered,
  7064. sa_covered,
  7065. sa_domainspan,
  7066. #endif
  7067. sa_none,
  7068. };
  7069. /*
  7070. * SMT sched-domains:
  7071. */
  7072. #ifdef CONFIG_SCHED_SMT
  7073. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  7074. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  7075. static int
  7076. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  7077. struct sched_group **sg, struct cpumask *unused)
  7078. {
  7079. if (sg)
  7080. *sg = &per_cpu(sched_groups, cpu).sg;
  7081. return cpu;
  7082. }
  7083. #endif /* CONFIG_SCHED_SMT */
  7084. /*
  7085. * multi-core sched-domains:
  7086. */
  7087. #ifdef CONFIG_SCHED_MC
  7088. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  7089. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  7090. #endif /* CONFIG_SCHED_MC */
  7091. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  7092. static int
  7093. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  7094. struct sched_group **sg, struct cpumask *mask)
  7095. {
  7096. int group;
  7097. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  7098. group = cpumask_first(mask);
  7099. if (sg)
  7100. *sg = &per_cpu(sched_group_core, group).sg;
  7101. return group;
  7102. }
  7103. #elif defined(CONFIG_SCHED_MC)
  7104. static int
  7105. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  7106. struct sched_group **sg, struct cpumask *unused)
  7107. {
  7108. if (sg)
  7109. *sg = &per_cpu(sched_group_core, cpu).sg;
  7110. return cpu;
  7111. }
  7112. #endif
  7113. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  7114. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  7115. static int
  7116. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  7117. struct sched_group **sg, struct cpumask *mask)
  7118. {
  7119. int group;
  7120. #ifdef CONFIG_SCHED_MC
  7121. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  7122. group = cpumask_first(mask);
  7123. #elif defined(CONFIG_SCHED_SMT)
  7124. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  7125. group = cpumask_first(mask);
  7126. #else
  7127. group = cpu;
  7128. #endif
  7129. if (sg)
  7130. *sg = &per_cpu(sched_group_phys, group).sg;
  7131. return group;
  7132. }
  7133. #ifdef CONFIG_NUMA
  7134. /*
  7135. * The init_sched_build_groups can't handle what we want to do with node
  7136. * groups, so roll our own. Now each node has its own list of groups which
  7137. * gets dynamically allocated.
  7138. */
  7139. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  7140. static struct sched_group ***sched_group_nodes_bycpu;
  7141. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  7142. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  7143. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  7144. struct sched_group **sg,
  7145. struct cpumask *nodemask)
  7146. {
  7147. int group;
  7148. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  7149. group = cpumask_first(nodemask);
  7150. if (sg)
  7151. *sg = &per_cpu(sched_group_allnodes, group).sg;
  7152. return group;
  7153. }
  7154. static void init_numa_sched_groups_power(struct sched_group *group_head)
  7155. {
  7156. struct sched_group *sg = group_head;
  7157. int j;
  7158. if (!sg)
  7159. return;
  7160. do {
  7161. for_each_cpu(j, sched_group_cpus(sg)) {
  7162. struct sched_domain *sd;
  7163. sd = &per_cpu(phys_domains, j).sd;
  7164. if (j != group_first_cpu(sd->groups)) {
  7165. /*
  7166. * Only add "power" once for each
  7167. * physical package.
  7168. */
  7169. continue;
  7170. }
  7171. sg->cpu_power += sd->groups->cpu_power;
  7172. }
  7173. sg = sg->next;
  7174. } while (sg != group_head);
  7175. }
  7176. static int build_numa_sched_groups(struct s_data *d,
  7177. const struct cpumask *cpu_map, int num)
  7178. {
  7179. struct sched_domain *sd;
  7180. struct sched_group *sg, *prev;
  7181. int n, j;
  7182. cpumask_clear(d->covered);
  7183. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  7184. if (cpumask_empty(d->nodemask)) {
  7185. d->sched_group_nodes[num] = NULL;
  7186. goto out;
  7187. }
  7188. sched_domain_node_span(num, d->domainspan);
  7189. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  7190. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7191. GFP_KERNEL, num);
  7192. if (!sg) {
  7193. pr_warning("Can not alloc domain group for node %d\n", num);
  7194. return -ENOMEM;
  7195. }
  7196. d->sched_group_nodes[num] = sg;
  7197. for_each_cpu(j, d->nodemask) {
  7198. sd = &per_cpu(node_domains, j).sd;
  7199. sd->groups = sg;
  7200. }
  7201. sg->cpu_power = 0;
  7202. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  7203. sg->next = sg;
  7204. cpumask_or(d->covered, d->covered, d->nodemask);
  7205. prev = sg;
  7206. for (j = 0; j < nr_node_ids; j++) {
  7207. n = (num + j) % nr_node_ids;
  7208. cpumask_complement(d->notcovered, d->covered);
  7209. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  7210. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  7211. if (cpumask_empty(d->tmpmask))
  7212. break;
  7213. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  7214. if (cpumask_empty(d->tmpmask))
  7215. continue;
  7216. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7217. GFP_KERNEL, num);
  7218. if (!sg) {
  7219. pr_warning("Can not alloc domain group for node %d\n",
  7220. j);
  7221. return -ENOMEM;
  7222. }
  7223. sg->cpu_power = 0;
  7224. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  7225. sg->next = prev->next;
  7226. cpumask_or(d->covered, d->covered, d->tmpmask);
  7227. prev->next = sg;
  7228. prev = sg;
  7229. }
  7230. out:
  7231. return 0;
  7232. }
  7233. #endif /* CONFIG_NUMA */
  7234. #ifdef CONFIG_NUMA
  7235. /* Free memory allocated for various sched_group structures */
  7236. static void free_sched_groups(const struct cpumask *cpu_map,
  7237. struct cpumask *nodemask)
  7238. {
  7239. int cpu, i;
  7240. for_each_cpu(cpu, cpu_map) {
  7241. struct sched_group **sched_group_nodes
  7242. = sched_group_nodes_bycpu[cpu];
  7243. if (!sched_group_nodes)
  7244. continue;
  7245. for (i = 0; i < nr_node_ids; i++) {
  7246. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  7247. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7248. if (cpumask_empty(nodemask))
  7249. continue;
  7250. if (sg == NULL)
  7251. continue;
  7252. sg = sg->next;
  7253. next_sg:
  7254. oldsg = sg;
  7255. sg = sg->next;
  7256. kfree(oldsg);
  7257. if (oldsg != sched_group_nodes[i])
  7258. goto next_sg;
  7259. }
  7260. kfree(sched_group_nodes);
  7261. sched_group_nodes_bycpu[cpu] = NULL;
  7262. }
  7263. }
  7264. #else /* !CONFIG_NUMA */
  7265. static void free_sched_groups(const struct cpumask *cpu_map,
  7266. struct cpumask *nodemask)
  7267. {
  7268. }
  7269. #endif /* CONFIG_NUMA */
  7270. /*
  7271. * Initialize sched groups cpu_power.
  7272. *
  7273. * cpu_power indicates the capacity of sched group, which is used while
  7274. * distributing the load between different sched groups in a sched domain.
  7275. * Typically cpu_power for all the groups in a sched domain will be same unless
  7276. * there are asymmetries in the topology. If there are asymmetries, group
  7277. * having more cpu_power will pickup more load compared to the group having
  7278. * less cpu_power.
  7279. */
  7280. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  7281. {
  7282. struct sched_domain *child;
  7283. struct sched_group *group;
  7284. long power;
  7285. int weight;
  7286. WARN_ON(!sd || !sd->groups);
  7287. if (cpu != group_first_cpu(sd->groups))
  7288. return;
  7289. child = sd->child;
  7290. sd->groups->cpu_power = 0;
  7291. if (!child) {
  7292. power = SCHED_LOAD_SCALE;
  7293. weight = cpumask_weight(sched_domain_span(sd));
  7294. /*
  7295. * SMT siblings share the power of a single core.
  7296. * Usually multiple threads get a better yield out of
  7297. * that one core than a single thread would have,
  7298. * reflect that in sd->smt_gain.
  7299. */
  7300. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  7301. power *= sd->smt_gain;
  7302. power /= weight;
  7303. power >>= SCHED_LOAD_SHIFT;
  7304. }
  7305. sd->groups->cpu_power += power;
  7306. return;
  7307. }
  7308. /*
  7309. * Add cpu_power of each child group to this groups cpu_power.
  7310. */
  7311. group = child->groups;
  7312. do {
  7313. sd->groups->cpu_power += group->cpu_power;
  7314. group = group->next;
  7315. } while (group != child->groups);
  7316. }
  7317. /*
  7318. * Initializers for schedule domains
  7319. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  7320. */
  7321. #ifdef CONFIG_SCHED_DEBUG
  7322. # define SD_INIT_NAME(sd, type) sd->name = #type
  7323. #else
  7324. # define SD_INIT_NAME(sd, type) do { } while (0)
  7325. #endif
  7326. #define SD_INIT(sd, type) sd_init_##type(sd)
  7327. #define SD_INIT_FUNC(type) \
  7328. static noinline void sd_init_##type(struct sched_domain *sd) \
  7329. { \
  7330. memset(sd, 0, sizeof(*sd)); \
  7331. *sd = SD_##type##_INIT; \
  7332. sd->level = SD_LV_##type; \
  7333. SD_INIT_NAME(sd, type); \
  7334. }
  7335. SD_INIT_FUNC(CPU)
  7336. #ifdef CONFIG_NUMA
  7337. SD_INIT_FUNC(ALLNODES)
  7338. SD_INIT_FUNC(NODE)
  7339. #endif
  7340. #ifdef CONFIG_SCHED_SMT
  7341. SD_INIT_FUNC(SIBLING)
  7342. #endif
  7343. #ifdef CONFIG_SCHED_MC
  7344. SD_INIT_FUNC(MC)
  7345. #endif
  7346. static int default_relax_domain_level = -1;
  7347. static int __init setup_relax_domain_level(char *str)
  7348. {
  7349. unsigned long val;
  7350. val = simple_strtoul(str, NULL, 0);
  7351. if (val < SD_LV_MAX)
  7352. default_relax_domain_level = val;
  7353. return 1;
  7354. }
  7355. __setup("relax_domain_level=", setup_relax_domain_level);
  7356. static void set_domain_attribute(struct sched_domain *sd,
  7357. struct sched_domain_attr *attr)
  7358. {
  7359. int request;
  7360. if (!attr || attr->relax_domain_level < 0) {
  7361. if (default_relax_domain_level < 0)
  7362. return;
  7363. else
  7364. request = default_relax_domain_level;
  7365. } else
  7366. request = attr->relax_domain_level;
  7367. if (request < sd->level) {
  7368. /* turn off idle balance on this domain */
  7369. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  7370. } else {
  7371. /* turn on idle balance on this domain */
  7372. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  7373. }
  7374. }
  7375. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  7376. const struct cpumask *cpu_map)
  7377. {
  7378. switch (what) {
  7379. case sa_sched_groups:
  7380. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  7381. d->sched_group_nodes = NULL;
  7382. case sa_rootdomain:
  7383. free_rootdomain(d->rd); /* fall through */
  7384. case sa_tmpmask:
  7385. free_cpumask_var(d->tmpmask); /* fall through */
  7386. case sa_send_covered:
  7387. free_cpumask_var(d->send_covered); /* fall through */
  7388. case sa_this_core_map:
  7389. free_cpumask_var(d->this_core_map); /* fall through */
  7390. case sa_this_sibling_map:
  7391. free_cpumask_var(d->this_sibling_map); /* fall through */
  7392. case sa_nodemask:
  7393. free_cpumask_var(d->nodemask); /* fall through */
  7394. case sa_sched_group_nodes:
  7395. #ifdef CONFIG_NUMA
  7396. kfree(d->sched_group_nodes); /* fall through */
  7397. case sa_notcovered:
  7398. free_cpumask_var(d->notcovered); /* fall through */
  7399. case sa_covered:
  7400. free_cpumask_var(d->covered); /* fall through */
  7401. case sa_domainspan:
  7402. free_cpumask_var(d->domainspan); /* fall through */
  7403. #endif
  7404. case sa_none:
  7405. break;
  7406. }
  7407. }
  7408. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  7409. const struct cpumask *cpu_map)
  7410. {
  7411. #ifdef CONFIG_NUMA
  7412. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  7413. return sa_none;
  7414. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  7415. return sa_domainspan;
  7416. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  7417. return sa_covered;
  7418. /* Allocate the per-node list of sched groups */
  7419. d->sched_group_nodes = kcalloc(nr_node_ids,
  7420. sizeof(struct sched_group *), GFP_KERNEL);
  7421. if (!d->sched_group_nodes) {
  7422. pr_warning("Can not alloc sched group node list\n");
  7423. return sa_notcovered;
  7424. }
  7425. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  7426. #endif
  7427. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  7428. return sa_sched_group_nodes;
  7429. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  7430. return sa_nodemask;
  7431. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  7432. return sa_this_sibling_map;
  7433. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  7434. return sa_this_core_map;
  7435. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  7436. return sa_send_covered;
  7437. d->rd = alloc_rootdomain();
  7438. if (!d->rd) {
  7439. pr_warning("Cannot alloc root domain\n");
  7440. return sa_tmpmask;
  7441. }
  7442. return sa_rootdomain;
  7443. }
  7444. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  7445. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  7446. {
  7447. struct sched_domain *sd = NULL;
  7448. #ifdef CONFIG_NUMA
  7449. struct sched_domain *parent;
  7450. d->sd_allnodes = 0;
  7451. if (cpumask_weight(cpu_map) >
  7452. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  7453. sd = &per_cpu(allnodes_domains, i).sd;
  7454. SD_INIT(sd, ALLNODES);
  7455. set_domain_attribute(sd, attr);
  7456. cpumask_copy(sched_domain_span(sd), cpu_map);
  7457. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  7458. d->sd_allnodes = 1;
  7459. }
  7460. parent = sd;
  7461. sd = &per_cpu(node_domains, i).sd;
  7462. SD_INIT(sd, NODE);
  7463. set_domain_attribute(sd, attr);
  7464. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  7465. sd->parent = parent;
  7466. if (parent)
  7467. parent->child = sd;
  7468. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  7469. #endif
  7470. return sd;
  7471. }
  7472. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  7473. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7474. struct sched_domain *parent, int i)
  7475. {
  7476. struct sched_domain *sd;
  7477. sd = &per_cpu(phys_domains, i).sd;
  7478. SD_INIT(sd, CPU);
  7479. set_domain_attribute(sd, attr);
  7480. cpumask_copy(sched_domain_span(sd), d->nodemask);
  7481. sd->parent = parent;
  7482. if (parent)
  7483. parent->child = sd;
  7484. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  7485. return sd;
  7486. }
  7487. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  7488. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7489. struct sched_domain *parent, int i)
  7490. {
  7491. struct sched_domain *sd = parent;
  7492. #ifdef CONFIG_SCHED_MC
  7493. sd = &per_cpu(core_domains, i).sd;
  7494. SD_INIT(sd, MC);
  7495. set_domain_attribute(sd, attr);
  7496. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  7497. sd->parent = parent;
  7498. parent->child = sd;
  7499. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  7500. #endif
  7501. return sd;
  7502. }
  7503. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  7504. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7505. struct sched_domain *parent, int i)
  7506. {
  7507. struct sched_domain *sd = parent;
  7508. #ifdef CONFIG_SCHED_SMT
  7509. sd = &per_cpu(cpu_domains, i).sd;
  7510. SD_INIT(sd, SIBLING);
  7511. set_domain_attribute(sd, attr);
  7512. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  7513. sd->parent = parent;
  7514. parent->child = sd;
  7515. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  7516. #endif
  7517. return sd;
  7518. }
  7519. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  7520. const struct cpumask *cpu_map, int cpu)
  7521. {
  7522. switch (l) {
  7523. #ifdef CONFIG_SCHED_SMT
  7524. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  7525. cpumask_and(d->this_sibling_map, cpu_map,
  7526. topology_thread_cpumask(cpu));
  7527. if (cpu == cpumask_first(d->this_sibling_map))
  7528. init_sched_build_groups(d->this_sibling_map, cpu_map,
  7529. &cpu_to_cpu_group,
  7530. d->send_covered, d->tmpmask);
  7531. break;
  7532. #endif
  7533. #ifdef CONFIG_SCHED_MC
  7534. case SD_LV_MC: /* set up multi-core groups */
  7535. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  7536. if (cpu == cpumask_first(d->this_core_map))
  7537. init_sched_build_groups(d->this_core_map, cpu_map,
  7538. &cpu_to_core_group,
  7539. d->send_covered, d->tmpmask);
  7540. break;
  7541. #endif
  7542. case SD_LV_CPU: /* set up physical groups */
  7543. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  7544. if (!cpumask_empty(d->nodemask))
  7545. init_sched_build_groups(d->nodemask, cpu_map,
  7546. &cpu_to_phys_group,
  7547. d->send_covered, d->tmpmask);
  7548. break;
  7549. #ifdef CONFIG_NUMA
  7550. case SD_LV_ALLNODES:
  7551. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  7552. d->send_covered, d->tmpmask);
  7553. break;
  7554. #endif
  7555. default:
  7556. break;
  7557. }
  7558. }
  7559. /*
  7560. * Build sched domains for a given set of cpus and attach the sched domains
  7561. * to the individual cpus
  7562. */
  7563. static int __build_sched_domains(const struct cpumask *cpu_map,
  7564. struct sched_domain_attr *attr)
  7565. {
  7566. enum s_alloc alloc_state = sa_none;
  7567. struct s_data d;
  7568. struct sched_domain *sd;
  7569. int i;
  7570. #ifdef CONFIG_NUMA
  7571. d.sd_allnodes = 0;
  7572. #endif
  7573. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  7574. if (alloc_state != sa_rootdomain)
  7575. goto error;
  7576. alloc_state = sa_sched_groups;
  7577. /*
  7578. * Set up domains for cpus specified by the cpu_map.
  7579. */
  7580. for_each_cpu(i, cpu_map) {
  7581. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  7582. cpu_map);
  7583. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  7584. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  7585. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  7586. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  7587. }
  7588. for_each_cpu(i, cpu_map) {
  7589. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  7590. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  7591. }
  7592. /* Set up physical groups */
  7593. for (i = 0; i < nr_node_ids; i++)
  7594. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  7595. #ifdef CONFIG_NUMA
  7596. /* Set up node groups */
  7597. if (d.sd_allnodes)
  7598. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  7599. for (i = 0; i < nr_node_ids; i++)
  7600. if (build_numa_sched_groups(&d, cpu_map, i))
  7601. goto error;
  7602. #endif
  7603. /* Calculate CPU power for physical packages and nodes */
  7604. #ifdef CONFIG_SCHED_SMT
  7605. for_each_cpu(i, cpu_map) {
  7606. sd = &per_cpu(cpu_domains, i).sd;
  7607. init_sched_groups_power(i, sd);
  7608. }
  7609. #endif
  7610. #ifdef CONFIG_SCHED_MC
  7611. for_each_cpu(i, cpu_map) {
  7612. sd = &per_cpu(core_domains, i).sd;
  7613. init_sched_groups_power(i, sd);
  7614. }
  7615. #endif
  7616. for_each_cpu(i, cpu_map) {
  7617. sd = &per_cpu(phys_domains, i).sd;
  7618. init_sched_groups_power(i, sd);
  7619. }
  7620. #ifdef CONFIG_NUMA
  7621. for (i = 0; i < nr_node_ids; i++)
  7622. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  7623. if (d.sd_allnodes) {
  7624. struct sched_group *sg;
  7625. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  7626. d.tmpmask);
  7627. init_numa_sched_groups_power(sg);
  7628. }
  7629. #endif
  7630. /* Attach the domains */
  7631. for_each_cpu(i, cpu_map) {
  7632. #ifdef CONFIG_SCHED_SMT
  7633. sd = &per_cpu(cpu_domains, i).sd;
  7634. #elif defined(CONFIG_SCHED_MC)
  7635. sd = &per_cpu(core_domains, i).sd;
  7636. #else
  7637. sd = &per_cpu(phys_domains, i).sd;
  7638. #endif
  7639. cpu_attach_domain(sd, d.rd, i);
  7640. }
  7641. d.sched_group_nodes = NULL; /* don't free this we still need it */
  7642. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  7643. return 0;
  7644. error:
  7645. __free_domain_allocs(&d, alloc_state, cpu_map);
  7646. return -ENOMEM;
  7647. }
  7648. static int build_sched_domains(const struct cpumask *cpu_map)
  7649. {
  7650. return __build_sched_domains(cpu_map, NULL);
  7651. }
  7652. static cpumask_var_t *doms_cur; /* current sched domains */
  7653. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  7654. static struct sched_domain_attr *dattr_cur;
  7655. /* attribues of custom domains in 'doms_cur' */
  7656. /*
  7657. * Special case: If a kmalloc of a doms_cur partition (array of
  7658. * cpumask) fails, then fallback to a single sched domain,
  7659. * as determined by the single cpumask fallback_doms.
  7660. */
  7661. static cpumask_var_t fallback_doms;
  7662. /*
  7663. * arch_update_cpu_topology lets virtualized architectures update the
  7664. * cpu core maps. It is supposed to return 1 if the topology changed
  7665. * or 0 if it stayed the same.
  7666. */
  7667. int __attribute__((weak)) arch_update_cpu_topology(void)
  7668. {
  7669. return 0;
  7670. }
  7671. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  7672. {
  7673. int i;
  7674. cpumask_var_t *doms;
  7675. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  7676. if (!doms)
  7677. return NULL;
  7678. for (i = 0; i < ndoms; i++) {
  7679. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  7680. free_sched_domains(doms, i);
  7681. return NULL;
  7682. }
  7683. }
  7684. return doms;
  7685. }
  7686. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  7687. {
  7688. unsigned int i;
  7689. for (i = 0; i < ndoms; i++)
  7690. free_cpumask_var(doms[i]);
  7691. kfree(doms);
  7692. }
  7693. /*
  7694. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  7695. * For now this just excludes isolated cpus, but could be used to
  7696. * exclude other special cases in the future.
  7697. */
  7698. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  7699. {
  7700. int err;
  7701. arch_update_cpu_topology();
  7702. ndoms_cur = 1;
  7703. doms_cur = alloc_sched_domains(ndoms_cur);
  7704. if (!doms_cur)
  7705. doms_cur = &fallback_doms;
  7706. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  7707. dattr_cur = NULL;
  7708. err = build_sched_domains(doms_cur[0]);
  7709. register_sched_domain_sysctl();
  7710. return err;
  7711. }
  7712. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  7713. struct cpumask *tmpmask)
  7714. {
  7715. free_sched_groups(cpu_map, tmpmask);
  7716. }
  7717. /*
  7718. * Detach sched domains from a group of cpus specified in cpu_map
  7719. * These cpus will now be attached to the NULL domain
  7720. */
  7721. static void detach_destroy_domains(const struct cpumask *cpu_map)
  7722. {
  7723. /* Save because hotplug lock held. */
  7724. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  7725. int i;
  7726. for_each_cpu(i, cpu_map)
  7727. cpu_attach_domain(NULL, &def_root_domain, i);
  7728. synchronize_sched();
  7729. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  7730. }
  7731. /* handle null as "default" */
  7732. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  7733. struct sched_domain_attr *new, int idx_new)
  7734. {
  7735. struct sched_domain_attr tmp;
  7736. /* fast path */
  7737. if (!new && !cur)
  7738. return 1;
  7739. tmp = SD_ATTR_INIT;
  7740. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  7741. new ? (new + idx_new) : &tmp,
  7742. sizeof(struct sched_domain_attr));
  7743. }
  7744. /*
  7745. * Partition sched domains as specified by the 'ndoms_new'
  7746. * cpumasks in the array doms_new[] of cpumasks. This compares
  7747. * doms_new[] to the current sched domain partitioning, doms_cur[].
  7748. * It destroys each deleted domain and builds each new domain.
  7749. *
  7750. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  7751. * The masks don't intersect (don't overlap.) We should setup one
  7752. * sched domain for each mask. CPUs not in any of the cpumasks will
  7753. * not be load balanced. If the same cpumask appears both in the
  7754. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  7755. * it as it is.
  7756. *
  7757. * The passed in 'doms_new' should be allocated using
  7758. * alloc_sched_domains. This routine takes ownership of it and will
  7759. * free_sched_domains it when done with it. If the caller failed the
  7760. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  7761. * and partition_sched_domains() will fallback to the single partition
  7762. * 'fallback_doms', it also forces the domains to be rebuilt.
  7763. *
  7764. * If doms_new == NULL it will be replaced with cpu_online_mask.
  7765. * ndoms_new == 0 is a special case for destroying existing domains,
  7766. * and it will not create the default domain.
  7767. *
  7768. * Call with hotplug lock held
  7769. */
  7770. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  7771. struct sched_domain_attr *dattr_new)
  7772. {
  7773. int i, j, n;
  7774. int new_topology;
  7775. mutex_lock(&sched_domains_mutex);
  7776. /* always unregister in case we don't destroy any domains */
  7777. unregister_sched_domain_sysctl();
  7778. /* Let architecture update cpu core mappings. */
  7779. new_topology = arch_update_cpu_topology();
  7780. n = doms_new ? ndoms_new : 0;
  7781. /* Destroy deleted domains */
  7782. for (i = 0; i < ndoms_cur; i++) {
  7783. for (j = 0; j < n && !new_topology; j++) {
  7784. if (cpumask_equal(doms_cur[i], doms_new[j])
  7785. && dattrs_equal(dattr_cur, i, dattr_new, j))
  7786. goto match1;
  7787. }
  7788. /* no match - a current sched domain not in new doms_new[] */
  7789. detach_destroy_domains(doms_cur[i]);
  7790. match1:
  7791. ;
  7792. }
  7793. if (doms_new == NULL) {
  7794. ndoms_cur = 0;
  7795. doms_new = &fallback_doms;
  7796. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  7797. WARN_ON_ONCE(dattr_new);
  7798. }
  7799. /* Build new domains */
  7800. for (i = 0; i < ndoms_new; i++) {
  7801. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  7802. if (cpumask_equal(doms_new[i], doms_cur[j])
  7803. && dattrs_equal(dattr_new, i, dattr_cur, j))
  7804. goto match2;
  7805. }
  7806. /* no match - add a new doms_new */
  7807. __build_sched_domains(doms_new[i],
  7808. dattr_new ? dattr_new + i : NULL);
  7809. match2:
  7810. ;
  7811. }
  7812. /* Remember the new sched domains */
  7813. if (doms_cur != &fallback_doms)
  7814. free_sched_domains(doms_cur, ndoms_cur);
  7815. kfree(dattr_cur); /* kfree(NULL) is safe */
  7816. doms_cur = doms_new;
  7817. dattr_cur = dattr_new;
  7818. ndoms_cur = ndoms_new;
  7819. register_sched_domain_sysctl();
  7820. mutex_unlock(&sched_domains_mutex);
  7821. }
  7822. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  7823. static void arch_reinit_sched_domains(void)
  7824. {
  7825. get_online_cpus();
  7826. /* Destroy domains first to force the rebuild */
  7827. partition_sched_domains(0, NULL, NULL);
  7828. rebuild_sched_domains();
  7829. put_online_cpus();
  7830. }
  7831. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  7832. {
  7833. unsigned int level = 0;
  7834. if (sscanf(buf, "%u", &level) != 1)
  7835. return -EINVAL;
  7836. /*
  7837. * level is always be positive so don't check for
  7838. * level < POWERSAVINGS_BALANCE_NONE which is 0
  7839. * What happens on 0 or 1 byte write,
  7840. * need to check for count as well?
  7841. */
  7842. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  7843. return -EINVAL;
  7844. if (smt)
  7845. sched_smt_power_savings = level;
  7846. else
  7847. sched_mc_power_savings = level;
  7848. arch_reinit_sched_domains();
  7849. return count;
  7850. }
  7851. #ifdef CONFIG_SCHED_MC
  7852. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  7853. char *page)
  7854. {
  7855. return sprintf(page, "%u\n", sched_mc_power_savings);
  7856. }
  7857. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  7858. const char *buf, size_t count)
  7859. {
  7860. return sched_power_savings_store(buf, count, 0);
  7861. }
  7862. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  7863. sched_mc_power_savings_show,
  7864. sched_mc_power_savings_store);
  7865. #endif
  7866. #ifdef CONFIG_SCHED_SMT
  7867. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  7868. char *page)
  7869. {
  7870. return sprintf(page, "%u\n", sched_smt_power_savings);
  7871. }
  7872. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  7873. const char *buf, size_t count)
  7874. {
  7875. return sched_power_savings_store(buf, count, 1);
  7876. }
  7877. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  7878. sched_smt_power_savings_show,
  7879. sched_smt_power_savings_store);
  7880. #endif
  7881. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  7882. {
  7883. int err = 0;
  7884. #ifdef CONFIG_SCHED_SMT
  7885. if (smt_capable())
  7886. err = sysfs_create_file(&cls->kset.kobj,
  7887. &attr_sched_smt_power_savings.attr);
  7888. #endif
  7889. #ifdef CONFIG_SCHED_MC
  7890. if (!err && mc_capable())
  7891. err = sysfs_create_file(&cls->kset.kobj,
  7892. &attr_sched_mc_power_savings.attr);
  7893. #endif
  7894. return err;
  7895. }
  7896. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  7897. #ifndef CONFIG_CPUSETS
  7898. /*
  7899. * Add online and remove offline CPUs from the scheduler domains.
  7900. * When cpusets are enabled they take over this function.
  7901. */
  7902. static int update_sched_domains(struct notifier_block *nfb,
  7903. unsigned long action, void *hcpu)
  7904. {
  7905. switch (action) {
  7906. case CPU_ONLINE:
  7907. case CPU_ONLINE_FROZEN:
  7908. case CPU_DOWN_PREPARE:
  7909. case CPU_DOWN_PREPARE_FROZEN:
  7910. case CPU_DOWN_FAILED:
  7911. case CPU_DOWN_FAILED_FROZEN:
  7912. partition_sched_domains(1, NULL, NULL);
  7913. return NOTIFY_OK;
  7914. default:
  7915. return NOTIFY_DONE;
  7916. }
  7917. }
  7918. #endif
  7919. static int update_runtime(struct notifier_block *nfb,
  7920. unsigned long action, void *hcpu)
  7921. {
  7922. int cpu = (int)(long)hcpu;
  7923. switch (action) {
  7924. case CPU_DOWN_PREPARE:
  7925. case CPU_DOWN_PREPARE_FROZEN:
  7926. disable_runtime(cpu_rq(cpu));
  7927. return NOTIFY_OK;
  7928. case CPU_DOWN_FAILED:
  7929. case CPU_DOWN_FAILED_FROZEN:
  7930. case CPU_ONLINE:
  7931. case CPU_ONLINE_FROZEN:
  7932. enable_runtime(cpu_rq(cpu));
  7933. return NOTIFY_OK;
  7934. default:
  7935. return NOTIFY_DONE;
  7936. }
  7937. }
  7938. void __init sched_init_smp(void)
  7939. {
  7940. cpumask_var_t non_isolated_cpus;
  7941. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  7942. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  7943. #if defined(CONFIG_NUMA)
  7944. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  7945. GFP_KERNEL);
  7946. BUG_ON(sched_group_nodes_bycpu == NULL);
  7947. #endif
  7948. get_online_cpus();
  7949. mutex_lock(&sched_domains_mutex);
  7950. arch_init_sched_domains(cpu_active_mask);
  7951. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  7952. if (cpumask_empty(non_isolated_cpus))
  7953. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  7954. mutex_unlock(&sched_domains_mutex);
  7955. put_online_cpus();
  7956. #ifndef CONFIG_CPUSETS
  7957. /* XXX: Theoretical race here - CPU may be hotplugged now */
  7958. hotcpu_notifier(update_sched_domains, 0);
  7959. #endif
  7960. /* RT runtime code needs to handle some hotplug events */
  7961. hotcpu_notifier(update_runtime, 0);
  7962. init_hrtick();
  7963. /* Move init over to a non-isolated CPU */
  7964. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  7965. BUG();
  7966. sched_init_granularity();
  7967. free_cpumask_var(non_isolated_cpus);
  7968. init_sched_rt_class();
  7969. }
  7970. #else
  7971. void __init sched_init_smp(void)
  7972. {
  7973. sched_init_granularity();
  7974. }
  7975. #endif /* CONFIG_SMP */
  7976. const_debug unsigned int sysctl_timer_migration = 1;
  7977. int in_sched_functions(unsigned long addr)
  7978. {
  7979. return in_lock_functions(addr) ||
  7980. (addr >= (unsigned long)__sched_text_start
  7981. && addr < (unsigned long)__sched_text_end);
  7982. }
  7983. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  7984. {
  7985. cfs_rq->tasks_timeline = RB_ROOT;
  7986. INIT_LIST_HEAD(&cfs_rq->tasks);
  7987. #ifdef CONFIG_FAIR_GROUP_SCHED
  7988. cfs_rq->rq = rq;
  7989. #endif
  7990. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  7991. }
  7992. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  7993. {
  7994. struct rt_prio_array *array;
  7995. int i;
  7996. array = &rt_rq->active;
  7997. for (i = 0; i < MAX_RT_PRIO; i++) {
  7998. INIT_LIST_HEAD(array->queue + i);
  7999. __clear_bit(i, array->bitmap);
  8000. }
  8001. /* delimiter for bitsearch: */
  8002. __set_bit(MAX_RT_PRIO, array->bitmap);
  8003. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  8004. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  8005. #ifdef CONFIG_SMP
  8006. rt_rq->highest_prio.next = MAX_RT_PRIO;
  8007. #endif
  8008. #endif
  8009. #ifdef CONFIG_SMP
  8010. rt_rq->rt_nr_migratory = 0;
  8011. rt_rq->overloaded = 0;
  8012. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  8013. #endif
  8014. rt_rq->rt_time = 0;
  8015. rt_rq->rt_throttled = 0;
  8016. rt_rq->rt_runtime = 0;
  8017. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  8018. #ifdef CONFIG_RT_GROUP_SCHED
  8019. rt_rq->rt_nr_boosted = 0;
  8020. rt_rq->rq = rq;
  8021. #endif
  8022. }
  8023. #ifdef CONFIG_FAIR_GROUP_SCHED
  8024. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  8025. struct sched_entity *se, int cpu, int add,
  8026. struct sched_entity *parent)
  8027. {
  8028. struct rq *rq = cpu_rq(cpu);
  8029. tg->cfs_rq[cpu] = cfs_rq;
  8030. init_cfs_rq(cfs_rq, rq);
  8031. cfs_rq->tg = tg;
  8032. if (add)
  8033. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  8034. tg->se[cpu] = se;
  8035. /* se could be NULL for init_task_group */
  8036. if (!se)
  8037. return;
  8038. if (!parent)
  8039. se->cfs_rq = &rq->cfs;
  8040. else
  8041. se->cfs_rq = parent->my_q;
  8042. se->my_q = cfs_rq;
  8043. se->load.weight = tg->shares;
  8044. se->load.inv_weight = 0;
  8045. se->parent = parent;
  8046. }
  8047. #endif
  8048. #ifdef CONFIG_RT_GROUP_SCHED
  8049. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  8050. struct sched_rt_entity *rt_se, int cpu, int add,
  8051. struct sched_rt_entity *parent)
  8052. {
  8053. struct rq *rq = cpu_rq(cpu);
  8054. tg->rt_rq[cpu] = rt_rq;
  8055. init_rt_rq(rt_rq, rq);
  8056. rt_rq->tg = tg;
  8057. rt_rq->rt_se = rt_se;
  8058. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  8059. if (add)
  8060. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  8061. tg->rt_se[cpu] = rt_se;
  8062. if (!rt_se)
  8063. return;
  8064. if (!parent)
  8065. rt_se->rt_rq = &rq->rt;
  8066. else
  8067. rt_se->rt_rq = parent->my_q;
  8068. rt_se->my_q = rt_rq;
  8069. rt_se->parent = parent;
  8070. INIT_LIST_HEAD(&rt_se->run_list);
  8071. }
  8072. #endif
  8073. void __init sched_init(void)
  8074. {
  8075. int i, j;
  8076. unsigned long alloc_size = 0, ptr;
  8077. #ifdef CONFIG_FAIR_GROUP_SCHED
  8078. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  8079. #endif
  8080. #ifdef CONFIG_RT_GROUP_SCHED
  8081. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  8082. #endif
  8083. #ifdef CONFIG_USER_SCHED
  8084. alloc_size *= 2;
  8085. #endif
  8086. #ifdef CONFIG_CPUMASK_OFFSTACK
  8087. alloc_size += num_possible_cpus() * cpumask_size();
  8088. #endif
  8089. if (alloc_size) {
  8090. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  8091. #ifdef CONFIG_FAIR_GROUP_SCHED
  8092. init_task_group.se = (struct sched_entity **)ptr;
  8093. ptr += nr_cpu_ids * sizeof(void **);
  8094. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  8095. ptr += nr_cpu_ids * sizeof(void **);
  8096. #ifdef CONFIG_USER_SCHED
  8097. root_task_group.se = (struct sched_entity **)ptr;
  8098. ptr += nr_cpu_ids * sizeof(void **);
  8099. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  8100. ptr += nr_cpu_ids * sizeof(void **);
  8101. #endif /* CONFIG_USER_SCHED */
  8102. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8103. #ifdef CONFIG_RT_GROUP_SCHED
  8104. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  8105. ptr += nr_cpu_ids * sizeof(void **);
  8106. init_task_group.rt_rq = (struct rt_rq **)ptr;
  8107. ptr += nr_cpu_ids * sizeof(void **);
  8108. #ifdef CONFIG_USER_SCHED
  8109. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  8110. ptr += nr_cpu_ids * sizeof(void **);
  8111. root_task_group.rt_rq = (struct rt_rq **)ptr;
  8112. ptr += nr_cpu_ids * sizeof(void **);
  8113. #endif /* CONFIG_USER_SCHED */
  8114. #endif /* CONFIG_RT_GROUP_SCHED */
  8115. #ifdef CONFIG_CPUMASK_OFFSTACK
  8116. for_each_possible_cpu(i) {
  8117. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  8118. ptr += cpumask_size();
  8119. }
  8120. #endif /* CONFIG_CPUMASK_OFFSTACK */
  8121. }
  8122. #ifdef CONFIG_SMP
  8123. init_defrootdomain();
  8124. #endif
  8125. init_rt_bandwidth(&def_rt_bandwidth,
  8126. global_rt_period(), global_rt_runtime());
  8127. #ifdef CONFIG_RT_GROUP_SCHED
  8128. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  8129. global_rt_period(), global_rt_runtime());
  8130. #ifdef CONFIG_USER_SCHED
  8131. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  8132. global_rt_period(), RUNTIME_INF);
  8133. #endif /* CONFIG_USER_SCHED */
  8134. #endif /* CONFIG_RT_GROUP_SCHED */
  8135. #ifdef CONFIG_GROUP_SCHED
  8136. list_add(&init_task_group.list, &task_groups);
  8137. INIT_LIST_HEAD(&init_task_group.children);
  8138. #ifdef CONFIG_USER_SCHED
  8139. INIT_LIST_HEAD(&root_task_group.children);
  8140. init_task_group.parent = &root_task_group;
  8141. list_add(&init_task_group.siblings, &root_task_group.children);
  8142. #endif /* CONFIG_USER_SCHED */
  8143. #endif /* CONFIG_GROUP_SCHED */
  8144. #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
  8145. update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
  8146. __alignof__(unsigned long));
  8147. #endif
  8148. for_each_possible_cpu(i) {
  8149. struct rq *rq;
  8150. rq = cpu_rq(i);
  8151. raw_spin_lock_init(&rq->lock);
  8152. rq->nr_running = 0;
  8153. rq->calc_load_active = 0;
  8154. rq->calc_load_update = jiffies + LOAD_FREQ;
  8155. init_cfs_rq(&rq->cfs, rq);
  8156. init_rt_rq(&rq->rt, rq);
  8157. #ifdef CONFIG_FAIR_GROUP_SCHED
  8158. init_task_group.shares = init_task_group_load;
  8159. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  8160. #ifdef CONFIG_CGROUP_SCHED
  8161. /*
  8162. * How much cpu bandwidth does init_task_group get?
  8163. *
  8164. * In case of task-groups formed thr' the cgroup filesystem, it
  8165. * gets 100% of the cpu resources in the system. This overall
  8166. * system cpu resource is divided among the tasks of
  8167. * init_task_group and its child task-groups in a fair manner,
  8168. * based on each entity's (task or task-group's) weight
  8169. * (se->load.weight).
  8170. *
  8171. * In other words, if init_task_group has 10 tasks of weight
  8172. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  8173. * then A0's share of the cpu resource is:
  8174. *
  8175. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  8176. *
  8177. * We achieve this by letting init_task_group's tasks sit
  8178. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  8179. */
  8180. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  8181. #elif defined CONFIG_USER_SCHED
  8182. root_task_group.shares = NICE_0_LOAD;
  8183. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  8184. /*
  8185. * In case of task-groups formed thr' the user id of tasks,
  8186. * init_task_group represents tasks belonging to root user.
  8187. * Hence it forms a sibling of all subsequent groups formed.
  8188. * In this case, init_task_group gets only a fraction of overall
  8189. * system cpu resource, based on the weight assigned to root
  8190. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  8191. * by letting tasks of init_task_group sit in a separate cfs_rq
  8192. * (init_tg_cfs_rq) and having one entity represent this group of
  8193. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  8194. */
  8195. init_tg_cfs_entry(&init_task_group,
  8196. &per_cpu(init_tg_cfs_rq, i),
  8197. &per_cpu(init_sched_entity, i), i, 1,
  8198. root_task_group.se[i]);
  8199. #endif
  8200. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8201. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  8202. #ifdef CONFIG_RT_GROUP_SCHED
  8203. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  8204. #ifdef CONFIG_CGROUP_SCHED
  8205. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  8206. #elif defined CONFIG_USER_SCHED
  8207. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  8208. init_tg_rt_entry(&init_task_group,
  8209. &per_cpu(init_rt_rq_var, i),
  8210. &per_cpu(init_sched_rt_entity, i), i, 1,
  8211. root_task_group.rt_se[i]);
  8212. #endif
  8213. #endif
  8214. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  8215. rq->cpu_load[j] = 0;
  8216. #ifdef CONFIG_SMP
  8217. rq->sd = NULL;
  8218. rq->rd = NULL;
  8219. rq->post_schedule = 0;
  8220. rq->active_balance = 0;
  8221. rq->next_balance = jiffies;
  8222. rq->push_cpu = 0;
  8223. rq->cpu = i;
  8224. rq->online = 0;
  8225. rq->migration_thread = NULL;
  8226. rq->idle_stamp = 0;
  8227. rq->avg_idle = 2*sysctl_sched_migration_cost;
  8228. INIT_LIST_HEAD(&rq->migration_queue);
  8229. rq_attach_root(rq, &def_root_domain);
  8230. #endif
  8231. init_rq_hrtick(rq);
  8232. atomic_set(&rq->nr_iowait, 0);
  8233. }
  8234. set_load_weight(&init_task);
  8235. #ifdef CONFIG_PREEMPT_NOTIFIERS
  8236. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  8237. #endif
  8238. #ifdef CONFIG_SMP
  8239. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  8240. #endif
  8241. #ifdef CONFIG_RT_MUTEXES
  8242. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  8243. #endif
  8244. /*
  8245. * The boot idle thread does lazy MMU switching as well:
  8246. */
  8247. atomic_inc(&init_mm.mm_count);
  8248. enter_lazy_tlb(&init_mm, current);
  8249. /*
  8250. * Make us the idle thread. Technically, schedule() should not be
  8251. * called from this thread, however somewhere below it might be,
  8252. * but because we are the idle thread, we just pick up running again
  8253. * when this runqueue becomes "idle".
  8254. */
  8255. init_idle(current, smp_processor_id());
  8256. calc_load_update = jiffies + LOAD_FREQ;
  8257. /*
  8258. * During early bootup we pretend to be a normal task:
  8259. */
  8260. current->sched_class = &fair_sched_class;
  8261. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  8262. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  8263. #ifdef CONFIG_SMP
  8264. #ifdef CONFIG_NO_HZ
  8265. zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
  8266. alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
  8267. #endif
  8268. /* May be allocated at isolcpus cmdline parse time */
  8269. if (cpu_isolated_map == NULL)
  8270. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  8271. #endif /* SMP */
  8272. perf_event_init();
  8273. scheduler_running = 1;
  8274. }
  8275. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  8276. static inline int preempt_count_equals(int preempt_offset)
  8277. {
  8278. int nested = preempt_count() & ~PREEMPT_ACTIVE;
  8279. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  8280. }
  8281. void __might_sleep(char *file, int line, int preempt_offset)
  8282. {
  8283. #ifdef in_atomic
  8284. static unsigned long prev_jiffy; /* ratelimiting */
  8285. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  8286. system_state != SYSTEM_RUNNING || oops_in_progress)
  8287. return;
  8288. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  8289. return;
  8290. prev_jiffy = jiffies;
  8291. pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
  8292. file, line);
  8293. pr_err("in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  8294. in_atomic(), irqs_disabled(),
  8295. current->pid, current->comm);
  8296. debug_show_held_locks(current);
  8297. if (irqs_disabled())
  8298. print_irqtrace_events(current);
  8299. dump_stack();
  8300. #endif
  8301. }
  8302. EXPORT_SYMBOL(__might_sleep);
  8303. #endif
  8304. #ifdef CONFIG_MAGIC_SYSRQ
  8305. static void normalize_task(struct rq *rq, struct task_struct *p)
  8306. {
  8307. int on_rq;
  8308. update_rq_clock(rq);
  8309. on_rq = p->se.on_rq;
  8310. if (on_rq)
  8311. deactivate_task(rq, p, 0);
  8312. __setscheduler(rq, p, SCHED_NORMAL, 0);
  8313. if (on_rq) {
  8314. activate_task(rq, p, 0);
  8315. resched_task(rq->curr);
  8316. }
  8317. }
  8318. void normalize_rt_tasks(void)
  8319. {
  8320. struct task_struct *g, *p;
  8321. unsigned long flags;
  8322. struct rq *rq;
  8323. read_lock_irqsave(&tasklist_lock, flags);
  8324. do_each_thread(g, p) {
  8325. /*
  8326. * Only normalize user tasks:
  8327. */
  8328. if (!p->mm)
  8329. continue;
  8330. p->se.exec_start = 0;
  8331. #ifdef CONFIG_SCHEDSTATS
  8332. p->se.wait_start = 0;
  8333. p->se.sleep_start = 0;
  8334. p->se.block_start = 0;
  8335. #endif
  8336. if (!rt_task(p)) {
  8337. /*
  8338. * Renice negative nice level userspace
  8339. * tasks back to 0:
  8340. */
  8341. if (TASK_NICE(p) < 0 && p->mm)
  8342. set_user_nice(p, 0);
  8343. continue;
  8344. }
  8345. raw_spin_lock(&p->pi_lock);
  8346. rq = __task_rq_lock(p);
  8347. normalize_task(rq, p);
  8348. __task_rq_unlock(rq);
  8349. raw_spin_unlock(&p->pi_lock);
  8350. } while_each_thread(g, p);
  8351. read_unlock_irqrestore(&tasklist_lock, flags);
  8352. }
  8353. #endif /* CONFIG_MAGIC_SYSRQ */
  8354. #ifdef CONFIG_IA64
  8355. /*
  8356. * These functions are only useful for the IA64 MCA handling.
  8357. *
  8358. * They can only be called when the whole system has been
  8359. * stopped - every CPU needs to be quiescent, and no scheduling
  8360. * activity can take place. Using them for anything else would
  8361. * be a serious bug, and as a result, they aren't even visible
  8362. * under any other configuration.
  8363. */
  8364. /**
  8365. * curr_task - return the current task for a given cpu.
  8366. * @cpu: the processor in question.
  8367. *
  8368. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8369. */
  8370. struct task_struct *curr_task(int cpu)
  8371. {
  8372. return cpu_curr(cpu);
  8373. }
  8374. /**
  8375. * set_curr_task - set the current task for a given cpu.
  8376. * @cpu: the processor in question.
  8377. * @p: the task pointer to set.
  8378. *
  8379. * Description: This function must only be used when non-maskable interrupts
  8380. * are serviced on a separate stack. It allows the architecture to switch the
  8381. * notion of the current task on a cpu in a non-blocking manner. This function
  8382. * must be called with all CPU's synchronized, and interrupts disabled, the
  8383. * and caller must save the original value of the current task (see
  8384. * curr_task() above) and restore that value before reenabling interrupts and
  8385. * re-starting the system.
  8386. *
  8387. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8388. */
  8389. void set_curr_task(int cpu, struct task_struct *p)
  8390. {
  8391. cpu_curr(cpu) = p;
  8392. }
  8393. #endif
  8394. #ifdef CONFIG_FAIR_GROUP_SCHED
  8395. static void free_fair_sched_group(struct task_group *tg)
  8396. {
  8397. int i;
  8398. for_each_possible_cpu(i) {
  8399. if (tg->cfs_rq)
  8400. kfree(tg->cfs_rq[i]);
  8401. if (tg->se)
  8402. kfree(tg->se[i]);
  8403. }
  8404. kfree(tg->cfs_rq);
  8405. kfree(tg->se);
  8406. }
  8407. static
  8408. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8409. {
  8410. struct cfs_rq *cfs_rq;
  8411. struct sched_entity *se;
  8412. struct rq *rq;
  8413. int i;
  8414. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  8415. if (!tg->cfs_rq)
  8416. goto err;
  8417. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  8418. if (!tg->se)
  8419. goto err;
  8420. tg->shares = NICE_0_LOAD;
  8421. for_each_possible_cpu(i) {
  8422. rq = cpu_rq(i);
  8423. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  8424. GFP_KERNEL, cpu_to_node(i));
  8425. if (!cfs_rq)
  8426. goto err;
  8427. se = kzalloc_node(sizeof(struct sched_entity),
  8428. GFP_KERNEL, cpu_to_node(i));
  8429. if (!se)
  8430. goto err_free_rq;
  8431. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  8432. }
  8433. return 1;
  8434. err_free_rq:
  8435. kfree(cfs_rq);
  8436. err:
  8437. return 0;
  8438. }
  8439. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8440. {
  8441. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  8442. &cpu_rq(cpu)->leaf_cfs_rq_list);
  8443. }
  8444. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8445. {
  8446. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  8447. }
  8448. #else /* !CONFG_FAIR_GROUP_SCHED */
  8449. static inline void free_fair_sched_group(struct task_group *tg)
  8450. {
  8451. }
  8452. static inline
  8453. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8454. {
  8455. return 1;
  8456. }
  8457. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8458. {
  8459. }
  8460. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8461. {
  8462. }
  8463. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8464. #ifdef CONFIG_RT_GROUP_SCHED
  8465. static void free_rt_sched_group(struct task_group *tg)
  8466. {
  8467. int i;
  8468. destroy_rt_bandwidth(&tg->rt_bandwidth);
  8469. for_each_possible_cpu(i) {
  8470. if (tg->rt_rq)
  8471. kfree(tg->rt_rq[i]);
  8472. if (tg->rt_se)
  8473. kfree(tg->rt_se[i]);
  8474. }
  8475. kfree(tg->rt_rq);
  8476. kfree(tg->rt_se);
  8477. }
  8478. static
  8479. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8480. {
  8481. struct rt_rq *rt_rq;
  8482. struct sched_rt_entity *rt_se;
  8483. struct rq *rq;
  8484. int i;
  8485. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  8486. if (!tg->rt_rq)
  8487. goto err;
  8488. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  8489. if (!tg->rt_se)
  8490. goto err;
  8491. init_rt_bandwidth(&tg->rt_bandwidth,
  8492. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  8493. for_each_possible_cpu(i) {
  8494. rq = cpu_rq(i);
  8495. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  8496. GFP_KERNEL, cpu_to_node(i));
  8497. if (!rt_rq)
  8498. goto err;
  8499. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  8500. GFP_KERNEL, cpu_to_node(i));
  8501. if (!rt_se)
  8502. goto err_free_rq;
  8503. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  8504. }
  8505. return 1;
  8506. err_free_rq:
  8507. kfree(rt_rq);
  8508. err:
  8509. return 0;
  8510. }
  8511. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8512. {
  8513. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  8514. &cpu_rq(cpu)->leaf_rt_rq_list);
  8515. }
  8516. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8517. {
  8518. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  8519. }
  8520. #else /* !CONFIG_RT_GROUP_SCHED */
  8521. static inline void free_rt_sched_group(struct task_group *tg)
  8522. {
  8523. }
  8524. static inline
  8525. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8526. {
  8527. return 1;
  8528. }
  8529. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8530. {
  8531. }
  8532. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8533. {
  8534. }
  8535. #endif /* CONFIG_RT_GROUP_SCHED */
  8536. #ifdef CONFIG_GROUP_SCHED
  8537. static void free_sched_group(struct task_group *tg)
  8538. {
  8539. free_fair_sched_group(tg);
  8540. free_rt_sched_group(tg);
  8541. kfree(tg);
  8542. }
  8543. /* allocate runqueue etc for a new task group */
  8544. struct task_group *sched_create_group(struct task_group *parent)
  8545. {
  8546. struct task_group *tg;
  8547. unsigned long flags;
  8548. int i;
  8549. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  8550. if (!tg)
  8551. return ERR_PTR(-ENOMEM);
  8552. if (!alloc_fair_sched_group(tg, parent))
  8553. goto err;
  8554. if (!alloc_rt_sched_group(tg, parent))
  8555. goto err;
  8556. spin_lock_irqsave(&task_group_lock, flags);
  8557. for_each_possible_cpu(i) {
  8558. register_fair_sched_group(tg, i);
  8559. register_rt_sched_group(tg, i);
  8560. }
  8561. list_add_rcu(&tg->list, &task_groups);
  8562. WARN_ON(!parent); /* root should already exist */
  8563. tg->parent = parent;
  8564. INIT_LIST_HEAD(&tg->children);
  8565. list_add_rcu(&tg->siblings, &parent->children);
  8566. spin_unlock_irqrestore(&task_group_lock, flags);
  8567. return tg;
  8568. err:
  8569. free_sched_group(tg);
  8570. return ERR_PTR(-ENOMEM);
  8571. }
  8572. /* rcu callback to free various structures associated with a task group */
  8573. static void free_sched_group_rcu(struct rcu_head *rhp)
  8574. {
  8575. /* now it should be safe to free those cfs_rqs */
  8576. free_sched_group(container_of(rhp, struct task_group, rcu));
  8577. }
  8578. /* Destroy runqueue etc associated with a task group */
  8579. void sched_destroy_group(struct task_group *tg)
  8580. {
  8581. unsigned long flags;
  8582. int i;
  8583. spin_lock_irqsave(&task_group_lock, flags);
  8584. for_each_possible_cpu(i) {
  8585. unregister_fair_sched_group(tg, i);
  8586. unregister_rt_sched_group(tg, i);
  8587. }
  8588. list_del_rcu(&tg->list);
  8589. list_del_rcu(&tg->siblings);
  8590. spin_unlock_irqrestore(&task_group_lock, flags);
  8591. /* wait for possible concurrent references to cfs_rqs complete */
  8592. call_rcu(&tg->rcu, free_sched_group_rcu);
  8593. }
  8594. /* change task's runqueue when it moves between groups.
  8595. * The caller of this function should have put the task in its new group
  8596. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  8597. * reflect its new group.
  8598. */
  8599. void sched_move_task(struct task_struct *tsk)
  8600. {
  8601. int on_rq, running;
  8602. unsigned long flags;
  8603. struct rq *rq;
  8604. rq = task_rq_lock(tsk, &flags);
  8605. update_rq_clock(rq);
  8606. running = task_current(rq, tsk);
  8607. on_rq = tsk->se.on_rq;
  8608. if (on_rq)
  8609. dequeue_task(rq, tsk, 0);
  8610. if (unlikely(running))
  8611. tsk->sched_class->put_prev_task(rq, tsk);
  8612. set_task_rq(tsk, task_cpu(tsk));
  8613. #ifdef CONFIG_FAIR_GROUP_SCHED
  8614. if (tsk->sched_class->moved_group)
  8615. tsk->sched_class->moved_group(tsk);
  8616. #endif
  8617. if (unlikely(running))
  8618. tsk->sched_class->set_curr_task(rq);
  8619. if (on_rq)
  8620. enqueue_task(rq, tsk, 0);
  8621. task_rq_unlock(rq, &flags);
  8622. }
  8623. #endif /* CONFIG_GROUP_SCHED */
  8624. #ifdef CONFIG_FAIR_GROUP_SCHED
  8625. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  8626. {
  8627. struct cfs_rq *cfs_rq = se->cfs_rq;
  8628. int on_rq;
  8629. on_rq = se->on_rq;
  8630. if (on_rq)
  8631. dequeue_entity(cfs_rq, se, 0);
  8632. se->load.weight = shares;
  8633. se->load.inv_weight = 0;
  8634. if (on_rq)
  8635. enqueue_entity(cfs_rq, se, 0);
  8636. }
  8637. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  8638. {
  8639. struct cfs_rq *cfs_rq = se->cfs_rq;
  8640. struct rq *rq = cfs_rq->rq;
  8641. unsigned long flags;
  8642. raw_spin_lock_irqsave(&rq->lock, flags);
  8643. __set_se_shares(se, shares);
  8644. raw_spin_unlock_irqrestore(&rq->lock, flags);
  8645. }
  8646. static DEFINE_MUTEX(shares_mutex);
  8647. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  8648. {
  8649. int i;
  8650. unsigned long flags;
  8651. /*
  8652. * We can't change the weight of the root cgroup.
  8653. */
  8654. if (!tg->se[0])
  8655. return -EINVAL;
  8656. if (shares < MIN_SHARES)
  8657. shares = MIN_SHARES;
  8658. else if (shares > MAX_SHARES)
  8659. shares = MAX_SHARES;
  8660. mutex_lock(&shares_mutex);
  8661. if (tg->shares == shares)
  8662. goto done;
  8663. spin_lock_irqsave(&task_group_lock, flags);
  8664. for_each_possible_cpu(i)
  8665. unregister_fair_sched_group(tg, i);
  8666. list_del_rcu(&tg->siblings);
  8667. spin_unlock_irqrestore(&task_group_lock, flags);
  8668. /* wait for any ongoing reference to this group to finish */
  8669. synchronize_sched();
  8670. /*
  8671. * Now we are free to modify the group's share on each cpu
  8672. * w/o tripping rebalance_share or load_balance_fair.
  8673. */
  8674. tg->shares = shares;
  8675. for_each_possible_cpu(i) {
  8676. /*
  8677. * force a rebalance
  8678. */
  8679. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  8680. set_se_shares(tg->se[i], shares);
  8681. }
  8682. /*
  8683. * Enable load balance activity on this group, by inserting it back on
  8684. * each cpu's rq->leaf_cfs_rq_list.
  8685. */
  8686. spin_lock_irqsave(&task_group_lock, flags);
  8687. for_each_possible_cpu(i)
  8688. register_fair_sched_group(tg, i);
  8689. list_add_rcu(&tg->siblings, &tg->parent->children);
  8690. spin_unlock_irqrestore(&task_group_lock, flags);
  8691. done:
  8692. mutex_unlock(&shares_mutex);
  8693. return 0;
  8694. }
  8695. unsigned long sched_group_shares(struct task_group *tg)
  8696. {
  8697. return tg->shares;
  8698. }
  8699. #endif
  8700. #ifdef CONFIG_RT_GROUP_SCHED
  8701. /*
  8702. * Ensure that the real time constraints are schedulable.
  8703. */
  8704. static DEFINE_MUTEX(rt_constraints_mutex);
  8705. static unsigned long to_ratio(u64 period, u64 runtime)
  8706. {
  8707. if (runtime == RUNTIME_INF)
  8708. return 1ULL << 20;
  8709. return div64_u64(runtime << 20, period);
  8710. }
  8711. /* Must be called with tasklist_lock held */
  8712. static inline int tg_has_rt_tasks(struct task_group *tg)
  8713. {
  8714. struct task_struct *g, *p;
  8715. do_each_thread(g, p) {
  8716. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  8717. return 1;
  8718. } while_each_thread(g, p);
  8719. return 0;
  8720. }
  8721. struct rt_schedulable_data {
  8722. struct task_group *tg;
  8723. u64 rt_period;
  8724. u64 rt_runtime;
  8725. };
  8726. static int tg_schedulable(struct task_group *tg, void *data)
  8727. {
  8728. struct rt_schedulable_data *d = data;
  8729. struct task_group *child;
  8730. unsigned long total, sum = 0;
  8731. u64 period, runtime;
  8732. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8733. runtime = tg->rt_bandwidth.rt_runtime;
  8734. if (tg == d->tg) {
  8735. period = d->rt_period;
  8736. runtime = d->rt_runtime;
  8737. }
  8738. #ifdef CONFIG_USER_SCHED
  8739. if (tg == &root_task_group) {
  8740. period = global_rt_period();
  8741. runtime = global_rt_runtime();
  8742. }
  8743. #endif
  8744. /*
  8745. * Cannot have more runtime than the period.
  8746. */
  8747. if (runtime > period && runtime != RUNTIME_INF)
  8748. return -EINVAL;
  8749. /*
  8750. * Ensure we don't starve existing RT tasks.
  8751. */
  8752. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  8753. return -EBUSY;
  8754. total = to_ratio(period, runtime);
  8755. /*
  8756. * Nobody can have more than the global setting allows.
  8757. */
  8758. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  8759. return -EINVAL;
  8760. /*
  8761. * The sum of our children's runtime should not exceed our own.
  8762. */
  8763. list_for_each_entry_rcu(child, &tg->children, siblings) {
  8764. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  8765. runtime = child->rt_bandwidth.rt_runtime;
  8766. if (child == d->tg) {
  8767. period = d->rt_period;
  8768. runtime = d->rt_runtime;
  8769. }
  8770. sum += to_ratio(period, runtime);
  8771. }
  8772. if (sum > total)
  8773. return -EINVAL;
  8774. return 0;
  8775. }
  8776. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  8777. {
  8778. struct rt_schedulable_data data = {
  8779. .tg = tg,
  8780. .rt_period = period,
  8781. .rt_runtime = runtime,
  8782. };
  8783. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  8784. }
  8785. static int tg_set_bandwidth(struct task_group *tg,
  8786. u64 rt_period, u64 rt_runtime)
  8787. {
  8788. int i, err = 0;
  8789. mutex_lock(&rt_constraints_mutex);
  8790. read_lock(&tasklist_lock);
  8791. err = __rt_schedulable(tg, rt_period, rt_runtime);
  8792. if (err)
  8793. goto unlock;
  8794. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8795. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  8796. tg->rt_bandwidth.rt_runtime = rt_runtime;
  8797. for_each_possible_cpu(i) {
  8798. struct rt_rq *rt_rq = tg->rt_rq[i];
  8799. raw_spin_lock(&rt_rq->rt_runtime_lock);
  8800. rt_rq->rt_runtime = rt_runtime;
  8801. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  8802. }
  8803. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8804. unlock:
  8805. read_unlock(&tasklist_lock);
  8806. mutex_unlock(&rt_constraints_mutex);
  8807. return err;
  8808. }
  8809. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  8810. {
  8811. u64 rt_runtime, rt_period;
  8812. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8813. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  8814. if (rt_runtime_us < 0)
  8815. rt_runtime = RUNTIME_INF;
  8816. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8817. }
  8818. long sched_group_rt_runtime(struct task_group *tg)
  8819. {
  8820. u64 rt_runtime_us;
  8821. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  8822. return -1;
  8823. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  8824. do_div(rt_runtime_us, NSEC_PER_USEC);
  8825. return rt_runtime_us;
  8826. }
  8827. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  8828. {
  8829. u64 rt_runtime, rt_period;
  8830. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  8831. rt_runtime = tg->rt_bandwidth.rt_runtime;
  8832. if (rt_period == 0)
  8833. return -EINVAL;
  8834. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8835. }
  8836. long sched_group_rt_period(struct task_group *tg)
  8837. {
  8838. u64 rt_period_us;
  8839. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8840. do_div(rt_period_us, NSEC_PER_USEC);
  8841. return rt_period_us;
  8842. }
  8843. static int sched_rt_global_constraints(void)
  8844. {
  8845. u64 runtime, period;
  8846. int ret = 0;
  8847. if (sysctl_sched_rt_period <= 0)
  8848. return -EINVAL;
  8849. runtime = global_rt_runtime();
  8850. period = global_rt_period();
  8851. /*
  8852. * Sanity check on the sysctl variables.
  8853. */
  8854. if (runtime > period && runtime != RUNTIME_INF)
  8855. return -EINVAL;
  8856. mutex_lock(&rt_constraints_mutex);
  8857. read_lock(&tasklist_lock);
  8858. ret = __rt_schedulable(NULL, 0, 0);
  8859. read_unlock(&tasklist_lock);
  8860. mutex_unlock(&rt_constraints_mutex);
  8861. return ret;
  8862. }
  8863. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  8864. {
  8865. /* Don't accept realtime tasks when there is no way for them to run */
  8866. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  8867. return 0;
  8868. return 1;
  8869. }
  8870. #else /* !CONFIG_RT_GROUP_SCHED */
  8871. static int sched_rt_global_constraints(void)
  8872. {
  8873. unsigned long flags;
  8874. int i;
  8875. if (sysctl_sched_rt_period <= 0)
  8876. return -EINVAL;
  8877. /*
  8878. * There's always some RT tasks in the root group
  8879. * -- migration, kstopmachine etc..
  8880. */
  8881. if (sysctl_sched_rt_runtime == 0)
  8882. return -EBUSY;
  8883. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  8884. for_each_possible_cpu(i) {
  8885. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  8886. raw_spin_lock(&rt_rq->rt_runtime_lock);
  8887. rt_rq->rt_runtime = global_rt_runtime();
  8888. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  8889. }
  8890. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  8891. return 0;
  8892. }
  8893. #endif /* CONFIG_RT_GROUP_SCHED */
  8894. int sched_rt_handler(struct ctl_table *table, int write,
  8895. void __user *buffer, size_t *lenp,
  8896. loff_t *ppos)
  8897. {
  8898. int ret;
  8899. int old_period, old_runtime;
  8900. static DEFINE_MUTEX(mutex);
  8901. mutex_lock(&mutex);
  8902. old_period = sysctl_sched_rt_period;
  8903. old_runtime = sysctl_sched_rt_runtime;
  8904. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  8905. if (!ret && write) {
  8906. ret = sched_rt_global_constraints();
  8907. if (ret) {
  8908. sysctl_sched_rt_period = old_period;
  8909. sysctl_sched_rt_runtime = old_runtime;
  8910. } else {
  8911. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  8912. def_rt_bandwidth.rt_period =
  8913. ns_to_ktime(global_rt_period());
  8914. }
  8915. }
  8916. mutex_unlock(&mutex);
  8917. return ret;
  8918. }
  8919. #ifdef CONFIG_CGROUP_SCHED
  8920. /* return corresponding task_group object of a cgroup */
  8921. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  8922. {
  8923. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  8924. struct task_group, css);
  8925. }
  8926. static struct cgroup_subsys_state *
  8927. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8928. {
  8929. struct task_group *tg, *parent;
  8930. if (!cgrp->parent) {
  8931. /* This is early initialization for the top cgroup */
  8932. return &init_task_group.css;
  8933. }
  8934. parent = cgroup_tg(cgrp->parent);
  8935. tg = sched_create_group(parent);
  8936. if (IS_ERR(tg))
  8937. return ERR_PTR(-ENOMEM);
  8938. return &tg->css;
  8939. }
  8940. static void
  8941. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8942. {
  8943. struct task_group *tg = cgroup_tg(cgrp);
  8944. sched_destroy_group(tg);
  8945. }
  8946. static int
  8947. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  8948. {
  8949. #ifdef CONFIG_RT_GROUP_SCHED
  8950. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  8951. return -EINVAL;
  8952. #else
  8953. /* We don't support RT-tasks being in separate groups */
  8954. if (tsk->sched_class != &fair_sched_class)
  8955. return -EINVAL;
  8956. #endif
  8957. return 0;
  8958. }
  8959. static int
  8960. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8961. struct task_struct *tsk, bool threadgroup)
  8962. {
  8963. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  8964. if (retval)
  8965. return retval;
  8966. if (threadgroup) {
  8967. struct task_struct *c;
  8968. rcu_read_lock();
  8969. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  8970. retval = cpu_cgroup_can_attach_task(cgrp, c);
  8971. if (retval) {
  8972. rcu_read_unlock();
  8973. return retval;
  8974. }
  8975. }
  8976. rcu_read_unlock();
  8977. }
  8978. return 0;
  8979. }
  8980. static void
  8981. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8982. struct cgroup *old_cont, struct task_struct *tsk,
  8983. bool threadgroup)
  8984. {
  8985. sched_move_task(tsk);
  8986. if (threadgroup) {
  8987. struct task_struct *c;
  8988. rcu_read_lock();
  8989. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  8990. sched_move_task(c);
  8991. }
  8992. rcu_read_unlock();
  8993. }
  8994. }
  8995. #ifdef CONFIG_FAIR_GROUP_SCHED
  8996. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  8997. u64 shareval)
  8998. {
  8999. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  9000. }
  9001. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  9002. {
  9003. struct task_group *tg = cgroup_tg(cgrp);
  9004. return (u64) tg->shares;
  9005. }
  9006. #endif /* CONFIG_FAIR_GROUP_SCHED */
  9007. #ifdef CONFIG_RT_GROUP_SCHED
  9008. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  9009. s64 val)
  9010. {
  9011. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  9012. }
  9013. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  9014. {
  9015. return sched_group_rt_runtime(cgroup_tg(cgrp));
  9016. }
  9017. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  9018. u64 rt_period_us)
  9019. {
  9020. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  9021. }
  9022. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  9023. {
  9024. return sched_group_rt_period(cgroup_tg(cgrp));
  9025. }
  9026. #endif /* CONFIG_RT_GROUP_SCHED */
  9027. static struct cftype cpu_files[] = {
  9028. #ifdef CONFIG_FAIR_GROUP_SCHED
  9029. {
  9030. .name = "shares",
  9031. .read_u64 = cpu_shares_read_u64,
  9032. .write_u64 = cpu_shares_write_u64,
  9033. },
  9034. #endif
  9035. #ifdef CONFIG_RT_GROUP_SCHED
  9036. {
  9037. .name = "rt_runtime_us",
  9038. .read_s64 = cpu_rt_runtime_read,
  9039. .write_s64 = cpu_rt_runtime_write,
  9040. },
  9041. {
  9042. .name = "rt_period_us",
  9043. .read_u64 = cpu_rt_period_read_uint,
  9044. .write_u64 = cpu_rt_period_write_uint,
  9045. },
  9046. #endif
  9047. };
  9048. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  9049. {
  9050. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  9051. }
  9052. struct cgroup_subsys cpu_cgroup_subsys = {
  9053. .name = "cpu",
  9054. .create = cpu_cgroup_create,
  9055. .destroy = cpu_cgroup_destroy,
  9056. .can_attach = cpu_cgroup_can_attach,
  9057. .attach = cpu_cgroup_attach,
  9058. .populate = cpu_cgroup_populate,
  9059. .subsys_id = cpu_cgroup_subsys_id,
  9060. .early_init = 1,
  9061. };
  9062. #endif /* CONFIG_CGROUP_SCHED */
  9063. #ifdef CONFIG_CGROUP_CPUACCT
  9064. /*
  9065. * CPU accounting code for task groups.
  9066. *
  9067. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  9068. * (balbir@in.ibm.com).
  9069. */
  9070. /* track cpu usage of a group of tasks and its child groups */
  9071. struct cpuacct {
  9072. struct cgroup_subsys_state css;
  9073. /* cpuusage holds pointer to a u64-type object on every cpu */
  9074. u64 *cpuusage;
  9075. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  9076. struct cpuacct *parent;
  9077. };
  9078. struct cgroup_subsys cpuacct_subsys;
  9079. /* return cpu accounting group corresponding to this container */
  9080. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  9081. {
  9082. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  9083. struct cpuacct, css);
  9084. }
  9085. /* return cpu accounting group to which this task belongs */
  9086. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  9087. {
  9088. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  9089. struct cpuacct, css);
  9090. }
  9091. /* create a new cpu accounting group */
  9092. static struct cgroup_subsys_state *cpuacct_create(
  9093. struct cgroup_subsys *ss, struct cgroup *cgrp)
  9094. {
  9095. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  9096. int i;
  9097. if (!ca)
  9098. goto out;
  9099. ca->cpuusage = alloc_percpu(u64);
  9100. if (!ca->cpuusage)
  9101. goto out_free_ca;
  9102. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  9103. if (percpu_counter_init(&ca->cpustat[i], 0))
  9104. goto out_free_counters;
  9105. if (cgrp->parent)
  9106. ca->parent = cgroup_ca(cgrp->parent);
  9107. return &ca->css;
  9108. out_free_counters:
  9109. while (--i >= 0)
  9110. percpu_counter_destroy(&ca->cpustat[i]);
  9111. free_percpu(ca->cpuusage);
  9112. out_free_ca:
  9113. kfree(ca);
  9114. out:
  9115. return ERR_PTR(-ENOMEM);
  9116. }
  9117. /* destroy an existing cpu accounting group */
  9118. static void
  9119. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  9120. {
  9121. struct cpuacct *ca = cgroup_ca(cgrp);
  9122. int i;
  9123. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  9124. percpu_counter_destroy(&ca->cpustat[i]);
  9125. free_percpu(ca->cpuusage);
  9126. kfree(ca);
  9127. }
  9128. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  9129. {
  9130. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9131. u64 data;
  9132. #ifndef CONFIG_64BIT
  9133. /*
  9134. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  9135. */
  9136. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  9137. data = *cpuusage;
  9138. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  9139. #else
  9140. data = *cpuusage;
  9141. #endif
  9142. return data;
  9143. }
  9144. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  9145. {
  9146. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9147. #ifndef CONFIG_64BIT
  9148. /*
  9149. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  9150. */
  9151. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  9152. *cpuusage = val;
  9153. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  9154. #else
  9155. *cpuusage = val;
  9156. #endif
  9157. }
  9158. /* return total cpu usage (in nanoseconds) of a group */
  9159. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  9160. {
  9161. struct cpuacct *ca = cgroup_ca(cgrp);
  9162. u64 totalcpuusage = 0;
  9163. int i;
  9164. for_each_present_cpu(i)
  9165. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  9166. return totalcpuusage;
  9167. }
  9168. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  9169. u64 reset)
  9170. {
  9171. struct cpuacct *ca = cgroup_ca(cgrp);
  9172. int err = 0;
  9173. int i;
  9174. if (reset) {
  9175. err = -EINVAL;
  9176. goto out;
  9177. }
  9178. for_each_present_cpu(i)
  9179. cpuacct_cpuusage_write(ca, i, 0);
  9180. out:
  9181. return err;
  9182. }
  9183. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  9184. struct seq_file *m)
  9185. {
  9186. struct cpuacct *ca = cgroup_ca(cgroup);
  9187. u64 percpu;
  9188. int i;
  9189. for_each_present_cpu(i) {
  9190. percpu = cpuacct_cpuusage_read(ca, i);
  9191. seq_printf(m, "%llu ", (unsigned long long) percpu);
  9192. }
  9193. seq_printf(m, "\n");
  9194. return 0;
  9195. }
  9196. static const char *cpuacct_stat_desc[] = {
  9197. [CPUACCT_STAT_USER] = "user",
  9198. [CPUACCT_STAT_SYSTEM] = "system",
  9199. };
  9200. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  9201. struct cgroup_map_cb *cb)
  9202. {
  9203. struct cpuacct *ca = cgroup_ca(cgrp);
  9204. int i;
  9205. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  9206. s64 val = percpu_counter_read(&ca->cpustat[i]);
  9207. val = cputime64_to_clock_t(val);
  9208. cb->fill(cb, cpuacct_stat_desc[i], val);
  9209. }
  9210. return 0;
  9211. }
  9212. static struct cftype files[] = {
  9213. {
  9214. .name = "usage",
  9215. .read_u64 = cpuusage_read,
  9216. .write_u64 = cpuusage_write,
  9217. },
  9218. {
  9219. .name = "usage_percpu",
  9220. .read_seq_string = cpuacct_percpu_seq_read,
  9221. },
  9222. {
  9223. .name = "stat",
  9224. .read_map = cpuacct_stats_show,
  9225. },
  9226. };
  9227. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  9228. {
  9229. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  9230. }
  9231. /*
  9232. * charge this task's execution time to its accounting group.
  9233. *
  9234. * called with rq->lock held.
  9235. */
  9236. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  9237. {
  9238. struct cpuacct *ca;
  9239. int cpu;
  9240. if (unlikely(!cpuacct_subsys.active))
  9241. return;
  9242. cpu = task_cpu(tsk);
  9243. rcu_read_lock();
  9244. ca = task_ca(tsk);
  9245. for (; ca; ca = ca->parent) {
  9246. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9247. *cpuusage += cputime;
  9248. }
  9249. rcu_read_unlock();
  9250. }
  9251. /*
  9252. * Charge the system/user time to the task's accounting group.
  9253. */
  9254. static void cpuacct_update_stats(struct task_struct *tsk,
  9255. enum cpuacct_stat_index idx, cputime_t val)
  9256. {
  9257. struct cpuacct *ca;
  9258. if (unlikely(!cpuacct_subsys.active))
  9259. return;
  9260. rcu_read_lock();
  9261. ca = task_ca(tsk);
  9262. do {
  9263. percpu_counter_add(&ca->cpustat[idx], val);
  9264. ca = ca->parent;
  9265. } while (ca);
  9266. rcu_read_unlock();
  9267. }
  9268. struct cgroup_subsys cpuacct_subsys = {
  9269. .name = "cpuacct",
  9270. .create = cpuacct_create,
  9271. .destroy = cpuacct_destroy,
  9272. .populate = cpuacct_populate,
  9273. .subsys_id = cpuacct_subsys_id,
  9274. };
  9275. #endif /* CONFIG_CGROUP_CPUACCT */
  9276. #ifndef CONFIG_SMP
  9277. int rcu_expedited_torture_stats(char *page)
  9278. {
  9279. return 0;
  9280. }
  9281. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  9282. void synchronize_sched_expedited(void)
  9283. {
  9284. }
  9285. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  9286. #else /* #ifndef CONFIG_SMP */
  9287. static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
  9288. static DEFINE_MUTEX(rcu_sched_expedited_mutex);
  9289. #define RCU_EXPEDITED_STATE_POST -2
  9290. #define RCU_EXPEDITED_STATE_IDLE -1
  9291. static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  9292. int rcu_expedited_torture_stats(char *page)
  9293. {
  9294. int cnt = 0;
  9295. int cpu;
  9296. cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
  9297. for_each_online_cpu(cpu) {
  9298. cnt += sprintf(&page[cnt], " %d:%d",
  9299. cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
  9300. }
  9301. cnt += sprintf(&page[cnt], "\n");
  9302. return cnt;
  9303. }
  9304. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  9305. static long synchronize_sched_expedited_count;
  9306. /*
  9307. * Wait for an rcu-sched grace period to elapse, but use "big hammer"
  9308. * approach to force grace period to end quickly. This consumes
  9309. * significant time on all CPUs, and is thus not recommended for
  9310. * any sort of common-case code.
  9311. *
  9312. * Note that it is illegal to call this function while holding any
  9313. * lock that is acquired by a CPU-hotplug notifier. Failing to
  9314. * observe this restriction will result in deadlock.
  9315. */
  9316. void synchronize_sched_expedited(void)
  9317. {
  9318. int cpu;
  9319. unsigned long flags;
  9320. bool need_full_sync = 0;
  9321. struct rq *rq;
  9322. struct migration_req *req;
  9323. long snap;
  9324. int trycount = 0;
  9325. smp_mb(); /* ensure prior mod happens before capturing snap. */
  9326. snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
  9327. get_online_cpus();
  9328. while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
  9329. put_online_cpus();
  9330. if (trycount++ < 10)
  9331. udelay(trycount * num_online_cpus());
  9332. else {
  9333. synchronize_sched();
  9334. return;
  9335. }
  9336. if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
  9337. smp_mb(); /* ensure test happens before caller kfree */
  9338. return;
  9339. }
  9340. get_online_cpus();
  9341. }
  9342. rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
  9343. for_each_online_cpu(cpu) {
  9344. rq = cpu_rq(cpu);
  9345. req = &per_cpu(rcu_migration_req, cpu);
  9346. init_completion(&req->done);
  9347. req->task = NULL;
  9348. req->dest_cpu = RCU_MIGRATION_NEED_QS;
  9349. raw_spin_lock_irqsave(&rq->lock, flags);
  9350. list_add(&req->list, &rq->migration_queue);
  9351. raw_spin_unlock_irqrestore(&rq->lock, flags);
  9352. wake_up_process(rq->migration_thread);
  9353. }
  9354. for_each_online_cpu(cpu) {
  9355. rcu_expedited_state = cpu;
  9356. req = &per_cpu(rcu_migration_req, cpu);
  9357. rq = cpu_rq(cpu);
  9358. wait_for_completion(&req->done);
  9359. raw_spin_lock_irqsave(&rq->lock, flags);
  9360. if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
  9361. need_full_sync = 1;
  9362. req->dest_cpu = RCU_MIGRATION_IDLE;
  9363. raw_spin_unlock_irqrestore(&rq->lock, flags);
  9364. }
  9365. rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  9366. synchronize_sched_expedited_count++;
  9367. mutex_unlock(&rcu_sched_expedited_mutex);
  9368. put_online_cpus();
  9369. if (need_full_sync)
  9370. synchronize_sched();
  9371. }
  9372. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  9373. #endif /* #else #ifndef CONFIG_SMP */