mmu.h 9.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347
  1. /*
  2. * PowerPC memory management structures
  3. *
  4. * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
  5. * PPC64 rework.
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. #ifndef _PPC64_MMU_H_
  13. #define _PPC64_MMU_H_
  14. #include <linux/config.h>
  15. #include <asm/page.h>
  16. /*
  17. * Segment table
  18. */
  19. #define STE_ESID_V 0x80
  20. #define STE_ESID_KS 0x20
  21. #define STE_ESID_KP 0x10
  22. #define STE_ESID_N 0x08
  23. #define STE_VSID_SHIFT 12
  24. /* Location of cpu0's segment table */
  25. #define STAB0_PAGE 0x9
  26. #define STAB0_PHYS_ADDR (STAB0_PAGE<<PAGE_SHIFT)
  27. #define STAB0_VIRT_ADDR (KERNELBASE+STAB0_PHYS_ADDR)
  28. /*
  29. * SLB
  30. */
  31. #define SLB_NUM_BOLTED 3
  32. #define SLB_CACHE_ENTRIES 8
  33. /* Bits in the SLB ESID word */
  34. #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
  35. /* Bits in the SLB VSID word */
  36. #define SLB_VSID_SHIFT 12
  37. #define SLB_VSID_KS ASM_CONST(0x0000000000000800)
  38. #define SLB_VSID_KP ASM_CONST(0x0000000000000400)
  39. #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
  40. #define SLB_VSID_L ASM_CONST(0x0000000000000100) /* largepage */
  41. #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
  42. #define SLB_VSID_LS ASM_CONST(0x0000000000000070) /* size of largepage */
  43. #define SLB_VSID_KERNEL (SLB_VSID_KP|SLB_VSID_C)
  44. #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS)
  45. /*
  46. * Hash table
  47. */
  48. #define HPTES_PER_GROUP 8
  49. #define HPTE_V_AVPN_SHIFT 7
  50. #define HPTE_V_AVPN ASM_CONST(0xffffffffffffff80)
  51. #define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
  52. #define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
  53. #define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
  54. #define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
  55. #define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
  56. #define HPTE_V_VALID ASM_CONST(0x0000000000000001)
  57. #define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
  58. #define HPTE_R_TS ASM_CONST(0x4000000000000000)
  59. #define HPTE_R_RPN_SHIFT 12
  60. #define HPTE_R_RPN ASM_CONST(0x3ffffffffffff000)
  61. #define HPTE_R_FLAGS ASM_CONST(0x00000000000003ff)
  62. #define HPTE_R_PP ASM_CONST(0x0000000000000003)
  63. /* Values for PP (assumes Ks=0, Kp=1) */
  64. /* pp0 will always be 0 for linux */
  65. #define PP_RWXX 0 /* Supervisor read/write, User none */
  66. #define PP_RWRX 1 /* Supervisor read/write, User read */
  67. #define PP_RWRW 2 /* Supervisor read/write, User read/write */
  68. #define PP_RXRX 3 /* Supervisor read, User read */
  69. #ifndef __ASSEMBLY__
  70. typedef struct {
  71. unsigned long v;
  72. unsigned long r;
  73. } hpte_t;
  74. extern hpte_t *htab_address;
  75. extern unsigned long htab_hash_mask;
  76. static inline unsigned long hpt_hash(unsigned long vpn, int large)
  77. {
  78. unsigned long vsid;
  79. unsigned long page;
  80. if (large) {
  81. vsid = vpn >> 4;
  82. page = vpn & 0xf;
  83. } else {
  84. vsid = vpn >> 16;
  85. page = vpn & 0xffff;
  86. }
  87. return (vsid & 0x7fffffffffUL) ^ page;
  88. }
  89. static inline void __tlbie(unsigned long va, int large)
  90. {
  91. /* clear top 16 bits, non SLS segment */
  92. va &= ~(0xffffULL << 48);
  93. if (large) {
  94. va &= HPAGE_MASK;
  95. asm volatile("tlbie %0,1" : : "r"(va) : "memory");
  96. } else {
  97. va &= PAGE_MASK;
  98. asm volatile("tlbie %0,0" : : "r"(va) : "memory");
  99. }
  100. }
  101. static inline void tlbie(unsigned long va, int large)
  102. {
  103. asm volatile("ptesync": : :"memory");
  104. __tlbie(va, large);
  105. asm volatile("eieio; tlbsync; ptesync": : :"memory");
  106. }
  107. static inline void __tlbiel(unsigned long va)
  108. {
  109. /* clear top 16 bits, non SLS segment */
  110. va &= ~(0xffffULL << 48);
  111. va &= PAGE_MASK;
  112. /*
  113. * Thanks to Alan Modra we are now able to use machine specific
  114. * assembly instructions (like tlbiel) by using the gas -many flag.
  115. * However we have to support older toolchains so for the moment
  116. * we hardwire it.
  117. */
  118. #if 0
  119. asm volatile("tlbiel %0" : : "r"(va) : "memory");
  120. #else
  121. asm volatile(".long 0x7c000224 | (%0 << 11)" : : "r"(va) : "memory");
  122. #endif
  123. }
  124. static inline void tlbiel(unsigned long va)
  125. {
  126. asm volatile("ptesync": : :"memory");
  127. __tlbiel(va);
  128. asm volatile("ptesync": : :"memory");
  129. }
  130. static inline unsigned long slot2va(unsigned long hpte_v, unsigned long slot)
  131. {
  132. unsigned long avpn = HPTE_V_AVPN_VAL(hpte_v);
  133. unsigned long va;
  134. va = avpn << 23;
  135. if (! (hpte_v & HPTE_V_LARGE)) {
  136. unsigned long vpi, pteg;
  137. pteg = slot / HPTES_PER_GROUP;
  138. if (hpte_v & HPTE_V_SECONDARY)
  139. pteg = ~pteg;
  140. vpi = ((va >> 28) ^ pteg) & htab_hash_mask;
  141. va |= vpi << PAGE_SHIFT;
  142. }
  143. return va;
  144. }
  145. /*
  146. * Handle a fault by adding an HPTE. If the address can't be determined
  147. * to be valid via Linux page tables, return 1. If handled return 0
  148. */
  149. extern int __hash_page(unsigned long ea, unsigned long access,
  150. unsigned long vsid, pte_t *ptep, unsigned long trap,
  151. int local);
  152. extern void htab_finish_init(void);
  153. extern void hpte_init_native(void);
  154. extern void hpte_init_lpar(void);
  155. extern void hpte_init_iSeries(void);
  156. extern long pSeries_lpar_hpte_insert(unsigned long hpte_group,
  157. unsigned long va, unsigned long prpn,
  158. unsigned long vflags,
  159. unsigned long rflags);
  160. extern long native_hpte_insert(unsigned long hpte_group, unsigned long va,
  161. unsigned long prpn,
  162. unsigned long vflags, unsigned long rflags);
  163. extern void stabs_alloc(void);
  164. #endif /* __ASSEMBLY__ */
  165. /*
  166. * VSID allocation
  167. *
  168. * We first generate a 36-bit "proto-VSID". For kernel addresses this
  169. * is equal to the ESID, for user addresses it is:
  170. * (context << 15) | (esid & 0x7fff)
  171. *
  172. * The two forms are distinguishable because the top bit is 0 for user
  173. * addresses, whereas the top two bits are 1 for kernel addresses.
  174. * Proto-VSIDs with the top two bits equal to 0b10 are reserved for
  175. * now.
  176. *
  177. * The proto-VSIDs are then scrambled into real VSIDs with the
  178. * multiplicative hash:
  179. *
  180. * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
  181. * where VSID_MULTIPLIER = 268435399 = 0xFFFFFC7
  182. * VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF
  183. *
  184. * This scramble is only well defined for proto-VSIDs below
  185. * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are
  186. * reserved. VSID_MULTIPLIER is prime, so in particular it is
  187. * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
  188. * Because the modulus is 2^n-1 we can compute it efficiently without
  189. * a divide or extra multiply (see below).
  190. *
  191. * This scheme has several advantages over older methods:
  192. *
  193. * - We have VSIDs allocated for every kernel address
  194. * (i.e. everything above 0xC000000000000000), except the very top
  195. * segment, which simplifies several things.
  196. *
  197. * - We allow for 15 significant bits of ESID and 20 bits of
  198. * context for user addresses. i.e. 8T (43 bits) of address space for
  199. * up to 1M contexts (although the page table structure and context
  200. * allocation will need changes to take advantage of this).
  201. *
  202. * - The scramble function gives robust scattering in the hash
  203. * table (at least based on some initial results). The previous
  204. * method was more susceptible to pathological cases giving excessive
  205. * hash collisions.
  206. */
  207. /*
  208. * WARNING - If you change these you must make sure the asm
  209. * implementations in slb_allocate (slb_low.S), do_stab_bolted
  210. * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly.
  211. *
  212. * You'll also need to change the precomputed VSID values in head.S
  213. * which are used by the iSeries firmware.
  214. */
  215. #define VSID_MULTIPLIER ASM_CONST(200730139) /* 28-bit prime */
  216. #define VSID_BITS 36
  217. #define VSID_MODULUS ((1UL<<VSID_BITS)-1)
  218. #define CONTEXT_BITS 19
  219. #define USER_ESID_BITS 16
  220. #define USER_VSID_RANGE (1UL << (USER_ESID_BITS + SID_SHIFT))
  221. /*
  222. * This macro generates asm code to compute the VSID scramble
  223. * function. Used in slb_allocate() and do_stab_bolted. The function
  224. * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
  225. *
  226. * rt = register continaing the proto-VSID and into which the
  227. * VSID will be stored
  228. * rx = scratch register (clobbered)
  229. *
  230. * - rt and rx must be different registers
  231. * - The answer will end up in the low 36 bits of rt. The higher
  232. * bits may contain other garbage, so you may need to mask the
  233. * result.
  234. */
  235. #define ASM_VSID_SCRAMBLE(rt, rx) \
  236. lis rx,VSID_MULTIPLIER@h; \
  237. ori rx,rx,VSID_MULTIPLIER@l; \
  238. mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
  239. \
  240. srdi rx,rt,VSID_BITS; \
  241. clrldi rt,rt,(64-VSID_BITS); \
  242. add rt,rt,rx; /* add high and low bits */ \
  243. /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
  244. * 2^36-1+2^28-1. That in particular means that if r3 >= \
  245. * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
  246. * the bit clear, r3 already has the answer we want, if it \
  247. * doesn't, the answer is the low 36 bits of r3+1. So in all \
  248. * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
  249. addi rx,rt,1; \
  250. srdi rx,rx,VSID_BITS; /* extract 2^36 bit */ \
  251. add rt,rt,rx
  252. #ifndef __ASSEMBLY__
  253. typedef unsigned long mm_context_id_t;
  254. typedef struct {
  255. mm_context_id_t id;
  256. #ifdef CONFIG_HUGETLB_PAGE
  257. u16 htlb_segs; /* bitmask */
  258. #endif
  259. } mm_context_t;
  260. static inline unsigned long vsid_scramble(unsigned long protovsid)
  261. {
  262. #if 0
  263. /* The code below is equivalent to this function for arguments
  264. * < 2^VSID_BITS, which is all this should ever be called
  265. * with. However gcc is not clever enough to compute the
  266. * modulus (2^n-1) without a second multiply. */
  267. return ((protovsid * VSID_MULTIPLIER) % VSID_MODULUS);
  268. #else /* 1 */
  269. unsigned long x;
  270. x = protovsid * VSID_MULTIPLIER;
  271. x = (x >> VSID_BITS) + (x & VSID_MODULUS);
  272. return (x + ((x+1) >> VSID_BITS)) & VSID_MODULUS;
  273. #endif /* 1 */
  274. }
  275. /* This is only valid for addresses >= KERNELBASE */
  276. static inline unsigned long get_kernel_vsid(unsigned long ea)
  277. {
  278. return vsid_scramble(ea >> SID_SHIFT);
  279. }
  280. /* This is only valid for user addresses (which are below 2^41) */
  281. static inline unsigned long get_vsid(unsigned long context, unsigned long ea)
  282. {
  283. return vsid_scramble((context << USER_ESID_BITS)
  284. | (ea >> SID_SHIFT));
  285. }
  286. #define VSID_SCRAMBLE(pvsid) (((pvsid) * VSID_MULTIPLIER) % VSID_MODULUS)
  287. #define KERNEL_VSID(ea) VSID_SCRAMBLE(GET_ESID(ea))
  288. #endif /* __ASSEMBLY */
  289. #endif /* _PPC64_MMU_H_ */