ieee80211_sta.c 118 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196
  1. /*
  2. * BSS client mode implementation
  3. * Copyright 2003, Jouni Malinen <jkmaline@cc.hut.fi>
  4. * Copyright 2004, Instant802 Networks, Inc.
  5. * Copyright 2005, Devicescape Software, Inc.
  6. * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
  7. * Copyright 2007, Michael Wu <flamingice@sourmilk.net>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. */
  13. /* TODO:
  14. * order BSS list by RSSI(?) ("quality of AP")
  15. * scan result table filtering (by capability (privacy, IBSS/BSS, WPA/RSN IE,
  16. * SSID)
  17. */
  18. #include <linux/delay.h>
  19. #include <linux/if_ether.h>
  20. #include <linux/skbuff.h>
  21. #include <linux/netdevice.h>
  22. #include <linux/if_arp.h>
  23. #include <linux/wireless.h>
  24. #include <linux/random.h>
  25. #include <linux/etherdevice.h>
  26. #include <linux/rtnetlink.h>
  27. #include <net/iw_handler.h>
  28. #include <asm/types.h>
  29. #include <net/mac80211.h>
  30. #include "ieee80211_i.h"
  31. #include "ieee80211_rate.h"
  32. #include "ieee80211_led.h"
  33. #include "mesh.h"
  34. #define IEEE80211_AUTH_TIMEOUT (HZ / 5)
  35. #define IEEE80211_AUTH_MAX_TRIES 3
  36. #define IEEE80211_ASSOC_TIMEOUT (HZ / 5)
  37. #define IEEE80211_ASSOC_MAX_TRIES 3
  38. #define IEEE80211_MONITORING_INTERVAL (2 * HZ)
  39. #define IEEE80211_MESH_HOUSEKEEPING_INTERVAL (60 * HZ)
  40. #define IEEE80211_PROBE_INTERVAL (60 * HZ)
  41. #define IEEE80211_RETRY_AUTH_INTERVAL (1 * HZ)
  42. #define IEEE80211_SCAN_INTERVAL (2 * HZ)
  43. #define IEEE80211_SCAN_INTERVAL_SLOW (15 * HZ)
  44. #define IEEE80211_IBSS_JOIN_TIMEOUT (20 * HZ)
  45. #define IEEE80211_PROBE_DELAY (HZ / 33)
  46. #define IEEE80211_CHANNEL_TIME (HZ / 33)
  47. #define IEEE80211_PASSIVE_CHANNEL_TIME (HZ / 5)
  48. #define IEEE80211_SCAN_RESULT_EXPIRE (10 * HZ)
  49. #define IEEE80211_IBSS_MERGE_INTERVAL (30 * HZ)
  50. #define IEEE80211_IBSS_INACTIVITY_LIMIT (60 * HZ)
  51. #define IEEE80211_MESH_PEER_INACTIVITY_LIMIT (1800 * HZ)
  52. #define IEEE80211_IBSS_MAX_STA_ENTRIES 128
  53. #define IEEE80211_FC(type, stype) cpu_to_le16(type | stype)
  54. #define ERP_INFO_USE_PROTECTION BIT(1)
  55. /* mgmt header + 1 byte action code */
  56. #define IEEE80211_MIN_ACTION_SIZE (24 + 1)
  57. #define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002
  58. #define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C
  59. #define IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFA0
  60. #define IEEE80211_DELBA_PARAM_TID_MASK 0xF000
  61. #define IEEE80211_DELBA_PARAM_INITIATOR_MASK 0x0800
  62. /* next values represent the buffer size for A-MPDU frame.
  63. * According to IEEE802.11n spec size varies from 8K to 64K (in powers of 2) */
  64. #define IEEE80211_MIN_AMPDU_BUF 0x8
  65. #define IEEE80211_MAX_AMPDU_BUF 0x40
  66. static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst,
  67. u8 *ssid, size_t ssid_len);
  68. static struct ieee80211_sta_bss *
  69. ieee80211_rx_bss_get(struct net_device *dev, u8 *bssid, int freq,
  70. u8 *ssid, u8 ssid_len);
  71. static void ieee80211_rx_bss_put(struct net_device *dev,
  72. struct ieee80211_sta_bss *bss);
  73. static int ieee80211_sta_find_ibss(struct net_device *dev,
  74. struct ieee80211_if_sta *ifsta);
  75. static int ieee80211_sta_wep_configured(struct net_device *dev);
  76. static int ieee80211_sta_start_scan(struct net_device *dev,
  77. u8 *ssid, size_t ssid_len);
  78. static int ieee80211_sta_config_auth(struct net_device *dev,
  79. struct ieee80211_if_sta *ifsta);
  80. void ieee802_11_parse_elems(u8 *start, size_t len,
  81. struct ieee802_11_elems *elems)
  82. {
  83. size_t left = len;
  84. u8 *pos = start;
  85. memset(elems, 0, sizeof(*elems));
  86. while (left >= 2) {
  87. u8 id, elen;
  88. id = *pos++;
  89. elen = *pos++;
  90. left -= 2;
  91. if (elen > left)
  92. return;
  93. switch (id) {
  94. case WLAN_EID_SSID:
  95. elems->ssid = pos;
  96. elems->ssid_len = elen;
  97. break;
  98. case WLAN_EID_SUPP_RATES:
  99. elems->supp_rates = pos;
  100. elems->supp_rates_len = elen;
  101. break;
  102. case WLAN_EID_FH_PARAMS:
  103. elems->fh_params = pos;
  104. elems->fh_params_len = elen;
  105. break;
  106. case WLAN_EID_DS_PARAMS:
  107. elems->ds_params = pos;
  108. elems->ds_params_len = elen;
  109. break;
  110. case WLAN_EID_CF_PARAMS:
  111. elems->cf_params = pos;
  112. elems->cf_params_len = elen;
  113. break;
  114. case WLAN_EID_TIM:
  115. elems->tim = pos;
  116. elems->tim_len = elen;
  117. break;
  118. case WLAN_EID_IBSS_PARAMS:
  119. elems->ibss_params = pos;
  120. elems->ibss_params_len = elen;
  121. break;
  122. case WLAN_EID_CHALLENGE:
  123. elems->challenge = pos;
  124. elems->challenge_len = elen;
  125. break;
  126. case WLAN_EID_WPA:
  127. if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
  128. pos[2] == 0xf2) {
  129. /* Microsoft OUI (00:50:F2) */
  130. if (pos[3] == 1) {
  131. /* OUI Type 1 - WPA IE */
  132. elems->wpa = pos;
  133. elems->wpa_len = elen;
  134. } else if (elen >= 5 && pos[3] == 2) {
  135. if (pos[4] == 0) {
  136. elems->wmm_info = pos;
  137. elems->wmm_info_len = elen;
  138. } else if (pos[4] == 1) {
  139. elems->wmm_param = pos;
  140. elems->wmm_param_len = elen;
  141. }
  142. }
  143. }
  144. break;
  145. case WLAN_EID_RSN:
  146. elems->rsn = pos;
  147. elems->rsn_len = elen;
  148. break;
  149. case WLAN_EID_ERP_INFO:
  150. elems->erp_info = pos;
  151. elems->erp_info_len = elen;
  152. break;
  153. case WLAN_EID_EXT_SUPP_RATES:
  154. elems->ext_supp_rates = pos;
  155. elems->ext_supp_rates_len = elen;
  156. break;
  157. case WLAN_EID_HT_CAPABILITY:
  158. elems->ht_cap_elem = pos;
  159. elems->ht_cap_elem_len = elen;
  160. break;
  161. case WLAN_EID_HT_EXTRA_INFO:
  162. elems->ht_info_elem = pos;
  163. elems->ht_info_elem_len = elen;
  164. break;
  165. case WLAN_EID_MESH_ID:
  166. elems->mesh_id = pos;
  167. elems->mesh_id_len = elen;
  168. break;
  169. case WLAN_EID_MESH_CONFIG:
  170. elems->mesh_config = pos;
  171. elems->mesh_config_len = elen;
  172. break;
  173. case WLAN_EID_PEER_LINK:
  174. elems->peer_link = pos;
  175. elems->peer_link_len = elen;
  176. break;
  177. case WLAN_EID_PREQ:
  178. elems->preq = pos;
  179. elems->preq_len = elen;
  180. break;
  181. case WLAN_EID_PREP:
  182. elems->prep = pos;
  183. elems->prep_len = elen;
  184. break;
  185. case WLAN_EID_PERR:
  186. elems->perr = pos;
  187. elems->perr_len = elen;
  188. break;
  189. default:
  190. break;
  191. }
  192. left -= elen;
  193. pos += elen;
  194. }
  195. }
  196. static int ecw2cw(int ecw)
  197. {
  198. return (1 << ecw) - 1;
  199. }
  200. static void ieee80211_sta_def_wmm_params(struct net_device *dev,
  201. struct ieee80211_sta_bss *bss,
  202. int ibss)
  203. {
  204. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  205. struct ieee80211_local *local = sdata->local;
  206. int i, have_higher_than_11mbit = 0;
  207. /* cf. IEEE 802.11 9.2.12 */
  208. for (i = 0; i < bss->supp_rates_len; i++)
  209. if ((bss->supp_rates[i] & 0x7f) * 5 > 110)
  210. have_higher_than_11mbit = 1;
  211. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
  212. have_higher_than_11mbit)
  213. sdata->flags |= IEEE80211_SDATA_OPERATING_GMODE;
  214. else
  215. sdata->flags &= ~IEEE80211_SDATA_OPERATING_GMODE;
  216. if (local->ops->conf_tx) {
  217. struct ieee80211_tx_queue_params qparam;
  218. int i;
  219. memset(&qparam, 0, sizeof(qparam));
  220. qparam.aifs = 2;
  221. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
  222. !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE))
  223. qparam.cw_min = 31;
  224. else
  225. qparam.cw_min = 15;
  226. qparam.cw_max = 1023;
  227. qparam.txop = 0;
  228. for (i = IEEE80211_TX_QUEUE_DATA0; i < NUM_TX_DATA_QUEUES; i++)
  229. local->ops->conf_tx(local_to_hw(local),
  230. i + IEEE80211_TX_QUEUE_DATA0,
  231. &qparam);
  232. if (ibss) {
  233. /* IBSS uses different parameters for Beacon sending */
  234. qparam.cw_min++;
  235. qparam.cw_min *= 2;
  236. qparam.cw_min--;
  237. local->ops->conf_tx(local_to_hw(local),
  238. IEEE80211_TX_QUEUE_BEACON, &qparam);
  239. }
  240. }
  241. }
  242. static void ieee80211_sta_wmm_params(struct net_device *dev,
  243. struct ieee80211_if_sta *ifsta,
  244. u8 *wmm_param, size_t wmm_param_len)
  245. {
  246. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  247. struct ieee80211_tx_queue_params params;
  248. size_t left;
  249. int count;
  250. u8 *pos;
  251. if (wmm_param_len < 8 || wmm_param[5] /* version */ != 1)
  252. return;
  253. count = wmm_param[6] & 0x0f;
  254. if (count == ifsta->wmm_last_param_set)
  255. return;
  256. ifsta->wmm_last_param_set = count;
  257. pos = wmm_param + 8;
  258. left = wmm_param_len - 8;
  259. memset(&params, 0, sizeof(params));
  260. if (!local->ops->conf_tx)
  261. return;
  262. local->wmm_acm = 0;
  263. for (; left >= 4; left -= 4, pos += 4) {
  264. int aci = (pos[0] >> 5) & 0x03;
  265. int acm = (pos[0] >> 4) & 0x01;
  266. int queue;
  267. switch (aci) {
  268. case 1:
  269. queue = IEEE80211_TX_QUEUE_DATA3;
  270. if (acm) {
  271. local->wmm_acm |= BIT(0) | BIT(3);
  272. }
  273. break;
  274. case 2:
  275. queue = IEEE80211_TX_QUEUE_DATA1;
  276. if (acm) {
  277. local->wmm_acm |= BIT(4) | BIT(5);
  278. }
  279. break;
  280. case 3:
  281. queue = IEEE80211_TX_QUEUE_DATA0;
  282. if (acm) {
  283. local->wmm_acm |= BIT(6) | BIT(7);
  284. }
  285. break;
  286. case 0:
  287. default:
  288. queue = IEEE80211_TX_QUEUE_DATA2;
  289. if (acm) {
  290. local->wmm_acm |= BIT(1) | BIT(2);
  291. }
  292. break;
  293. }
  294. params.aifs = pos[0] & 0x0f;
  295. params.cw_max = ecw2cw((pos[1] & 0xf0) >> 4);
  296. params.cw_min = ecw2cw(pos[1] & 0x0f);
  297. params.txop = pos[2] | (pos[3] << 8);
  298. #ifdef CONFIG_MAC80211_DEBUG
  299. printk(KERN_DEBUG "%s: WMM queue=%d aci=%d acm=%d aifs=%d "
  300. "cWmin=%d cWmax=%d txop=%d\n",
  301. dev->name, queue, aci, acm, params.aifs, params.cw_min,
  302. params.cw_max, params.txop);
  303. #endif
  304. /* TODO: handle ACM (block TX, fallback to next lowest allowed
  305. * AC for now) */
  306. if (local->ops->conf_tx(local_to_hw(local), queue, &params)) {
  307. printk(KERN_DEBUG "%s: failed to set TX queue "
  308. "parameters for queue %d\n", dev->name, queue);
  309. }
  310. }
  311. }
  312. static u32 ieee80211_handle_erp_ie(struct ieee80211_sub_if_data *sdata,
  313. u8 erp_value)
  314. {
  315. struct ieee80211_bss_conf *bss_conf = &sdata->bss_conf;
  316. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  317. bool use_protection = (erp_value & WLAN_ERP_USE_PROTECTION) != 0;
  318. bool preamble_mode = (erp_value & WLAN_ERP_BARKER_PREAMBLE) != 0;
  319. DECLARE_MAC_BUF(mac);
  320. u32 changed = 0;
  321. if (use_protection != bss_conf->use_cts_prot) {
  322. if (net_ratelimit()) {
  323. printk(KERN_DEBUG "%s: CTS protection %s (BSSID="
  324. "%s)\n",
  325. sdata->dev->name,
  326. use_protection ? "enabled" : "disabled",
  327. print_mac(mac, ifsta->bssid));
  328. }
  329. bss_conf->use_cts_prot = use_protection;
  330. changed |= BSS_CHANGED_ERP_CTS_PROT;
  331. }
  332. if (preamble_mode != bss_conf->use_short_preamble) {
  333. if (net_ratelimit()) {
  334. printk(KERN_DEBUG "%s: switched to %s barker preamble"
  335. " (BSSID=%s)\n",
  336. sdata->dev->name,
  337. (preamble_mode == WLAN_ERP_PREAMBLE_SHORT) ?
  338. "short" : "long",
  339. print_mac(mac, ifsta->bssid));
  340. }
  341. bss_conf->use_short_preamble = preamble_mode;
  342. changed |= BSS_CHANGED_ERP_PREAMBLE;
  343. }
  344. return changed;
  345. }
  346. int ieee80211_ht_cap_ie_to_ht_info(struct ieee80211_ht_cap *ht_cap_ie,
  347. struct ieee80211_ht_info *ht_info)
  348. {
  349. if (ht_info == NULL)
  350. return -EINVAL;
  351. memset(ht_info, 0, sizeof(*ht_info));
  352. if (ht_cap_ie) {
  353. u8 ampdu_info = ht_cap_ie->ampdu_params_info;
  354. ht_info->ht_supported = 1;
  355. ht_info->cap = le16_to_cpu(ht_cap_ie->cap_info);
  356. ht_info->ampdu_factor =
  357. ampdu_info & IEEE80211_HT_CAP_AMPDU_FACTOR;
  358. ht_info->ampdu_density =
  359. (ampdu_info & IEEE80211_HT_CAP_AMPDU_DENSITY) >> 2;
  360. memcpy(ht_info->supp_mcs_set, ht_cap_ie->supp_mcs_set, 16);
  361. } else
  362. ht_info->ht_supported = 0;
  363. return 0;
  364. }
  365. int ieee80211_ht_addt_info_ie_to_ht_bss_info(
  366. struct ieee80211_ht_addt_info *ht_add_info_ie,
  367. struct ieee80211_ht_bss_info *bss_info)
  368. {
  369. if (bss_info == NULL)
  370. return -EINVAL;
  371. memset(bss_info, 0, sizeof(*bss_info));
  372. if (ht_add_info_ie) {
  373. u16 op_mode;
  374. op_mode = le16_to_cpu(ht_add_info_ie->operation_mode);
  375. bss_info->primary_channel = ht_add_info_ie->control_chan;
  376. bss_info->bss_cap = ht_add_info_ie->ht_param;
  377. bss_info->bss_op_mode = (u8)(op_mode & 0xff);
  378. }
  379. return 0;
  380. }
  381. static void ieee80211_sta_send_associnfo(struct net_device *dev,
  382. struct ieee80211_if_sta *ifsta)
  383. {
  384. char *buf;
  385. size_t len;
  386. int i;
  387. union iwreq_data wrqu;
  388. if (!ifsta->assocreq_ies && !ifsta->assocresp_ies)
  389. return;
  390. buf = kmalloc(50 + 2 * (ifsta->assocreq_ies_len +
  391. ifsta->assocresp_ies_len), GFP_KERNEL);
  392. if (!buf)
  393. return;
  394. len = sprintf(buf, "ASSOCINFO(");
  395. if (ifsta->assocreq_ies) {
  396. len += sprintf(buf + len, "ReqIEs=");
  397. for (i = 0; i < ifsta->assocreq_ies_len; i++) {
  398. len += sprintf(buf + len, "%02x",
  399. ifsta->assocreq_ies[i]);
  400. }
  401. }
  402. if (ifsta->assocresp_ies) {
  403. if (ifsta->assocreq_ies)
  404. len += sprintf(buf + len, " ");
  405. len += sprintf(buf + len, "RespIEs=");
  406. for (i = 0; i < ifsta->assocresp_ies_len; i++) {
  407. len += sprintf(buf + len, "%02x",
  408. ifsta->assocresp_ies[i]);
  409. }
  410. }
  411. len += sprintf(buf + len, ")");
  412. if (len > IW_CUSTOM_MAX) {
  413. len = sprintf(buf, "ASSOCRESPIE=");
  414. for (i = 0; i < ifsta->assocresp_ies_len; i++) {
  415. len += sprintf(buf + len, "%02x",
  416. ifsta->assocresp_ies[i]);
  417. }
  418. }
  419. memset(&wrqu, 0, sizeof(wrqu));
  420. wrqu.data.length = len;
  421. wireless_send_event(dev, IWEVCUSTOM, &wrqu, buf);
  422. kfree(buf);
  423. }
  424. static void ieee80211_set_associated(struct net_device *dev,
  425. struct ieee80211_if_sta *ifsta,
  426. bool assoc)
  427. {
  428. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  429. struct ieee80211_local *local = sdata->local;
  430. union iwreq_data wrqu;
  431. u32 changed = BSS_CHANGED_ASSOC;
  432. if (assoc) {
  433. struct ieee80211_sta_bss *bss;
  434. ifsta->flags |= IEEE80211_STA_ASSOCIATED;
  435. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  436. return;
  437. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  438. local->hw.conf.channel->center_freq,
  439. ifsta->ssid, ifsta->ssid_len);
  440. if (bss) {
  441. if (bss->has_erp_value)
  442. changed |= ieee80211_handle_erp_ie(
  443. sdata, bss->erp_value);
  444. ieee80211_rx_bss_put(dev, bss);
  445. }
  446. netif_carrier_on(dev);
  447. ifsta->flags |= IEEE80211_STA_PREV_BSSID_SET;
  448. memcpy(ifsta->prev_bssid, sdata->u.sta.bssid, ETH_ALEN);
  449. memcpy(wrqu.ap_addr.sa_data, sdata->u.sta.bssid, ETH_ALEN);
  450. ieee80211_sta_send_associnfo(dev, ifsta);
  451. } else {
  452. ieee80211_sta_tear_down_BA_sessions(dev, ifsta->bssid);
  453. ifsta->flags &= ~IEEE80211_STA_ASSOCIATED;
  454. netif_carrier_off(dev);
  455. ieee80211_reset_erp_info(dev);
  456. memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
  457. }
  458. wrqu.ap_addr.sa_family = ARPHRD_ETHER;
  459. wireless_send_event(dev, SIOCGIWAP, &wrqu, NULL);
  460. ifsta->last_probe = jiffies;
  461. ieee80211_led_assoc(local, assoc);
  462. sdata->bss_conf.assoc = assoc;
  463. ieee80211_bss_info_change_notify(sdata, changed);
  464. }
  465. static void ieee80211_set_disassoc(struct net_device *dev,
  466. struct ieee80211_if_sta *ifsta, int deauth)
  467. {
  468. if (deauth)
  469. ifsta->auth_tries = 0;
  470. ifsta->assoc_tries = 0;
  471. ieee80211_set_associated(dev, ifsta, 0);
  472. }
  473. void ieee80211_sta_tx(struct net_device *dev, struct sk_buff *skb,
  474. int encrypt)
  475. {
  476. struct ieee80211_sub_if_data *sdata;
  477. struct ieee80211_tx_packet_data *pkt_data;
  478. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  479. skb->dev = sdata->local->mdev;
  480. skb_set_mac_header(skb, 0);
  481. skb_set_network_header(skb, 0);
  482. skb_set_transport_header(skb, 0);
  483. pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
  484. memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data));
  485. pkt_data->ifindex = sdata->dev->ifindex;
  486. if (!encrypt)
  487. pkt_data->flags |= IEEE80211_TXPD_DO_NOT_ENCRYPT;
  488. dev_queue_xmit(skb);
  489. }
  490. static void ieee80211_send_auth(struct net_device *dev,
  491. struct ieee80211_if_sta *ifsta,
  492. int transaction, u8 *extra, size_t extra_len,
  493. int encrypt)
  494. {
  495. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  496. struct sk_buff *skb;
  497. struct ieee80211_mgmt *mgmt;
  498. skb = dev_alloc_skb(local->hw.extra_tx_headroom +
  499. sizeof(*mgmt) + 6 + extra_len);
  500. if (!skb) {
  501. printk(KERN_DEBUG "%s: failed to allocate buffer for auth "
  502. "frame\n", dev->name);
  503. return;
  504. }
  505. skb_reserve(skb, local->hw.extra_tx_headroom);
  506. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24 + 6);
  507. memset(mgmt, 0, 24 + 6);
  508. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  509. IEEE80211_STYPE_AUTH);
  510. if (encrypt)
  511. mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
  512. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  513. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  514. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  515. mgmt->u.auth.auth_alg = cpu_to_le16(ifsta->auth_alg);
  516. mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
  517. ifsta->auth_transaction = transaction + 1;
  518. mgmt->u.auth.status_code = cpu_to_le16(0);
  519. if (extra)
  520. memcpy(skb_put(skb, extra_len), extra, extra_len);
  521. ieee80211_sta_tx(dev, skb, encrypt);
  522. }
  523. static void ieee80211_authenticate(struct net_device *dev,
  524. struct ieee80211_if_sta *ifsta)
  525. {
  526. DECLARE_MAC_BUF(mac);
  527. ifsta->auth_tries++;
  528. if (ifsta->auth_tries > IEEE80211_AUTH_MAX_TRIES) {
  529. printk(KERN_DEBUG "%s: authentication with AP %s"
  530. " timed out\n",
  531. dev->name, print_mac(mac, ifsta->bssid));
  532. ifsta->state = IEEE80211_DISABLED;
  533. return;
  534. }
  535. ifsta->state = IEEE80211_AUTHENTICATE;
  536. printk(KERN_DEBUG "%s: authenticate with AP %s\n",
  537. dev->name, print_mac(mac, ifsta->bssid));
  538. ieee80211_send_auth(dev, ifsta, 1, NULL, 0, 0);
  539. mod_timer(&ifsta->timer, jiffies + IEEE80211_AUTH_TIMEOUT);
  540. }
  541. static void ieee80211_send_assoc(struct net_device *dev,
  542. struct ieee80211_if_sta *ifsta)
  543. {
  544. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  545. struct sk_buff *skb;
  546. struct ieee80211_mgmt *mgmt;
  547. u8 *pos, *ies;
  548. int i, len;
  549. u16 capab;
  550. struct ieee80211_sta_bss *bss;
  551. int wmm = 0;
  552. struct ieee80211_supported_band *sband;
  553. skb = dev_alloc_skb(local->hw.extra_tx_headroom +
  554. sizeof(*mgmt) + 200 + ifsta->extra_ie_len +
  555. ifsta->ssid_len);
  556. if (!skb) {
  557. printk(KERN_DEBUG "%s: failed to allocate buffer for assoc "
  558. "frame\n", dev->name);
  559. return;
  560. }
  561. skb_reserve(skb, local->hw.extra_tx_headroom);
  562. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  563. capab = ifsta->capab;
  564. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ) {
  565. if (!(local->hw.flags & IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE))
  566. capab |= WLAN_CAPABILITY_SHORT_SLOT_TIME;
  567. if (!(local->hw.flags & IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE))
  568. capab |= WLAN_CAPABILITY_SHORT_PREAMBLE;
  569. }
  570. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  571. local->hw.conf.channel->center_freq,
  572. ifsta->ssid, ifsta->ssid_len);
  573. if (bss) {
  574. if (bss->capability & WLAN_CAPABILITY_PRIVACY)
  575. capab |= WLAN_CAPABILITY_PRIVACY;
  576. if (bss->wmm_ie) {
  577. wmm = 1;
  578. }
  579. ieee80211_rx_bss_put(dev, bss);
  580. }
  581. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  582. memset(mgmt, 0, 24);
  583. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  584. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  585. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  586. if (ifsta->flags & IEEE80211_STA_PREV_BSSID_SET) {
  587. skb_put(skb, 10);
  588. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  589. IEEE80211_STYPE_REASSOC_REQ);
  590. mgmt->u.reassoc_req.capab_info = cpu_to_le16(capab);
  591. mgmt->u.reassoc_req.listen_interval = cpu_to_le16(1);
  592. memcpy(mgmt->u.reassoc_req.current_ap, ifsta->prev_bssid,
  593. ETH_ALEN);
  594. } else {
  595. skb_put(skb, 4);
  596. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  597. IEEE80211_STYPE_ASSOC_REQ);
  598. mgmt->u.assoc_req.capab_info = cpu_to_le16(capab);
  599. mgmt->u.assoc_req.listen_interval = cpu_to_le16(1);
  600. }
  601. /* SSID */
  602. ies = pos = skb_put(skb, 2 + ifsta->ssid_len);
  603. *pos++ = WLAN_EID_SSID;
  604. *pos++ = ifsta->ssid_len;
  605. memcpy(pos, ifsta->ssid, ifsta->ssid_len);
  606. len = sband->n_bitrates;
  607. if (len > 8)
  608. len = 8;
  609. pos = skb_put(skb, len + 2);
  610. *pos++ = WLAN_EID_SUPP_RATES;
  611. *pos++ = len;
  612. for (i = 0; i < len; i++) {
  613. int rate = sband->bitrates[i].bitrate;
  614. *pos++ = (u8) (rate / 5);
  615. }
  616. if (sband->n_bitrates > len) {
  617. pos = skb_put(skb, sband->n_bitrates - len + 2);
  618. *pos++ = WLAN_EID_EXT_SUPP_RATES;
  619. *pos++ = sband->n_bitrates - len;
  620. for (i = len; i < sband->n_bitrates; i++) {
  621. int rate = sband->bitrates[i].bitrate;
  622. *pos++ = (u8) (rate / 5);
  623. }
  624. }
  625. if (ifsta->extra_ie) {
  626. pos = skb_put(skb, ifsta->extra_ie_len);
  627. memcpy(pos, ifsta->extra_ie, ifsta->extra_ie_len);
  628. }
  629. if (wmm && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  630. pos = skb_put(skb, 9);
  631. *pos++ = WLAN_EID_VENDOR_SPECIFIC;
  632. *pos++ = 7; /* len */
  633. *pos++ = 0x00; /* Microsoft OUI 00:50:F2 */
  634. *pos++ = 0x50;
  635. *pos++ = 0xf2;
  636. *pos++ = 2; /* WME */
  637. *pos++ = 0; /* WME info */
  638. *pos++ = 1; /* WME ver */
  639. *pos++ = 0;
  640. }
  641. /* wmm support is a must to HT */
  642. if (wmm && sband->ht_info.ht_supported) {
  643. __le16 tmp = cpu_to_le16(sband->ht_info.cap);
  644. pos = skb_put(skb, sizeof(struct ieee80211_ht_cap)+2);
  645. *pos++ = WLAN_EID_HT_CAPABILITY;
  646. *pos++ = sizeof(struct ieee80211_ht_cap);
  647. memset(pos, 0, sizeof(struct ieee80211_ht_cap));
  648. memcpy(pos, &tmp, sizeof(u16));
  649. pos += sizeof(u16);
  650. /* TODO: needs a define here for << 2 */
  651. *pos++ = sband->ht_info.ampdu_factor |
  652. (sband->ht_info.ampdu_density << 2);
  653. memcpy(pos, sband->ht_info.supp_mcs_set, 16);
  654. }
  655. kfree(ifsta->assocreq_ies);
  656. ifsta->assocreq_ies_len = (skb->data + skb->len) - ies;
  657. ifsta->assocreq_ies = kmalloc(ifsta->assocreq_ies_len, GFP_KERNEL);
  658. if (ifsta->assocreq_ies)
  659. memcpy(ifsta->assocreq_ies, ies, ifsta->assocreq_ies_len);
  660. ieee80211_sta_tx(dev, skb, 0);
  661. }
  662. static void ieee80211_send_deauth(struct net_device *dev,
  663. struct ieee80211_if_sta *ifsta, u16 reason)
  664. {
  665. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  666. struct sk_buff *skb;
  667. struct ieee80211_mgmt *mgmt;
  668. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt));
  669. if (!skb) {
  670. printk(KERN_DEBUG "%s: failed to allocate buffer for deauth "
  671. "frame\n", dev->name);
  672. return;
  673. }
  674. skb_reserve(skb, local->hw.extra_tx_headroom);
  675. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  676. memset(mgmt, 0, 24);
  677. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  678. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  679. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  680. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  681. IEEE80211_STYPE_DEAUTH);
  682. skb_put(skb, 2);
  683. mgmt->u.deauth.reason_code = cpu_to_le16(reason);
  684. ieee80211_sta_tx(dev, skb, 0);
  685. }
  686. static void ieee80211_send_disassoc(struct net_device *dev,
  687. struct ieee80211_if_sta *ifsta, u16 reason)
  688. {
  689. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  690. struct sk_buff *skb;
  691. struct ieee80211_mgmt *mgmt;
  692. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt));
  693. if (!skb) {
  694. printk(KERN_DEBUG "%s: failed to allocate buffer for disassoc "
  695. "frame\n", dev->name);
  696. return;
  697. }
  698. skb_reserve(skb, local->hw.extra_tx_headroom);
  699. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  700. memset(mgmt, 0, 24);
  701. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  702. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  703. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  704. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  705. IEEE80211_STYPE_DISASSOC);
  706. skb_put(skb, 2);
  707. mgmt->u.disassoc.reason_code = cpu_to_le16(reason);
  708. ieee80211_sta_tx(dev, skb, 0);
  709. }
  710. static int ieee80211_privacy_mismatch(struct net_device *dev,
  711. struct ieee80211_if_sta *ifsta)
  712. {
  713. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  714. struct ieee80211_sta_bss *bss;
  715. int bss_privacy;
  716. int wep_privacy;
  717. int privacy_invoked;
  718. if (!ifsta || (ifsta->flags & IEEE80211_STA_MIXED_CELL))
  719. return 0;
  720. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  721. local->hw.conf.channel->center_freq,
  722. ifsta->ssid, ifsta->ssid_len);
  723. if (!bss)
  724. return 0;
  725. bss_privacy = !!(bss->capability & WLAN_CAPABILITY_PRIVACY);
  726. wep_privacy = !!ieee80211_sta_wep_configured(dev);
  727. privacy_invoked = !!(ifsta->flags & IEEE80211_STA_PRIVACY_INVOKED);
  728. ieee80211_rx_bss_put(dev, bss);
  729. if ((bss_privacy == wep_privacy) || (bss_privacy == privacy_invoked))
  730. return 0;
  731. return 1;
  732. }
  733. static void ieee80211_associate(struct net_device *dev,
  734. struct ieee80211_if_sta *ifsta)
  735. {
  736. DECLARE_MAC_BUF(mac);
  737. ifsta->assoc_tries++;
  738. if (ifsta->assoc_tries > IEEE80211_ASSOC_MAX_TRIES) {
  739. printk(KERN_DEBUG "%s: association with AP %s"
  740. " timed out\n",
  741. dev->name, print_mac(mac, ifsta->bssid));
  742. ifsta->state = IEEE80211_DISABLED;
  743. return;
  744. }
  745. ifsta->state = IEEE80211_ASSOCIATE;
  746. printk(KERN_DEBUG "%s: associate with AP %s\n",
  747. dev->name, print_mac(mac, ifsta->bssid));
  748. if (ieee80211_privacy_mismatch(dev, ifsta)) {
  749. printk(KERN_DEBUG "%s: mismatch in privacy configuration and "
  750. "mixed-cell disabled - abort association\n", dev->name);
  751. ifsta->state = IEEE80211_DISABLED;
  752. return;
  753. }
  754. ieee80211_send_assoc(dev, ifsta);
  755. mod_timer(&ifsta->timer, jiffies + IEEE80211_ASSOC_TIMEOUT);
  756. }
  757. static void ieee80211_associated(struct net_device *dev,
  758. struct ieee80211_if_sta *ifsta)
  759. {
  760. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  761. struct sta_info *sta;
  762. int disassoc;
  763. DECLARE_MAC_BUF(mac);
  764. /* TODO: start monitoring current AP signal quality and number of
  765. * missed beacons. Scan other channels every now and then and search
  766. * for better APs. */
  767. /* TODO: remove expired BSSes */
  768. ifsta->state = IEEE80211_ASSOCIATED;
  769. rcu_read_lock();
  770. sta = sta_info_get(local, ifsta->bssid);
  771. if (!sta) {
  772. printk(KERN_DEBUG "%s: No STA entry for own AP %s\n",
  773. dev->name, print_mac(mac, ifsta->bssid));
  774. disassoc = 1;
  775. } else {
  776. disassoc = 0;
  777. if (time_after(jiffies,
  778. sta->last_rx + IEEE80211_MONITORING_INTERVAL)) {
  779. if (ifsta->flags & IEEE80211_STA_PROBEREQ_POLL) {
  780. printk(KERN_DEBUG "%s: No ProbeResp from "
  781. "current AP %s - assume out of "
  782. "range\n",
  783. dev->name, print_mac(mac, ifsta->bssid));
  784. disassoc = 1;
  785. sta_info_unlink(&sta);
  786. } else
  787. ieee80211_send_probe_req(dev, ifsta->bssid,
  788. local->scan_ssid,
  789. local->scan_ssid_len);
  790. ifsta->flags ^= IEEE80211_STA_PROBEREQ_POLL;
  791. } else {
  792. ifsta->flags &= ~IEEE80211_STA_PROBEREQ_POLL;
  793. if (time_after(jiffies, ifsta->last_probe +
  794. IEEE80211_PROBE_INTERVAL)) {
  795. ifsta->last_probe = jiffies;
  796. ieee80211_send_probe_req(dev, ifsta->bssid,
  797. ifsta->ssid,
  798. ifsta->ssid_len);
  799. }
  800. }
  801. }
  802. rcu_read_unlock();
  803. if (disassoc && sta) {
  804. synchronize_rcu();
  805. rtnl_lock();
  806. sta_info_destroy(sta);
  807. rtnl_unlock();
  808. }
  809. if (disassoc) {
  810. ifsta->state = IEEE80211_DISABLED;
  811. ieee80211_set_associated(dev, ifsta, 0);
  812. } else {
  813. mod_timer(&ifsta->timer, jiffies +
  814. IEEE80211_MONITORING_INTERVAL);
  815. }
  816. }
  817. static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst,
  818. u8 *ssid, size_t ssid_len)
  819. {
  820. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  821. struct ieee80211_supported_band *sband;
  822. struct sk_buff *skb;
  823. struct ieee80211_mgmt *mgmt;
  824. u8 *pos, *supp_rates, *esupp_rates = NULL;
  825. int i;
  826. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt) + 200);
  827. if (!skb) {
  828. printk(KERN_DEBUG "%s: failed to allocate buffer for probe "
  829. "request\n", dev->name);
  830. return;
  831. }
  832. skb_reserve(skb, local->hw.extra_tx_headroom);
  833. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  834. memset(mgmt, 0, 24);
  835. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  836. IEEE80211_STYPE_PROBE_REQ);
  837. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  838. if (dst) {
  839. memcpy(mgmt->da, dst, ETH_ALEN);
  840. memcpy(mgmt->bssid, dst, ETH_ALEN);
  841. } else {
  842. memset(mgmt->da, 0xff, ETH_ALEN);
  843. memset(mgmt->bssid, 0xff, ETH_ALEN);
  844. }
  845. pos = skb_put(skb, 2 + ssid_len);
  846. *pos++ = WLAN_EID_SSID;
  847. *pos++ = ssid_len;
  848. memcpy(pos, ssid, ssid_len);
  849. supp_rates = skb_put(skb, 2);
  850. supp_rates[0] = WLAN_EID_SUPP_RATES;
  851. supp_rates[1] = 0;
  852. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  853. for (i = 0; i < sband->n_bitrates; i++) {
  854. struct ieee80211_rate *rate = &sband->bitrates[i];
  855. if (esupp_rates) {
  856. pos = skb_put(skb, 1);
  857. esupp_rates[1]++;
  858. } else if (supp_rates[1] == 8) {
  859. esupp_rates = skb_put(skb, 3);
  860. esupp_rates[0] = WLAN_EID_EXT_SUPP_RATES;
  861. esupp_rates[1] = 1;
  862. pos = &esupp_rates[2];
  863. } else {
  864. pos = skb_put(skb, 1);
  865. supp_rates[1]++;
  866. }
  867. *pos = rate->bitrate / 5;
  868. }
  869. ieee80211_sta_tx(dev, skb, 0);
  870. }
  871. static int ieee80211_sta_wep_configured(struct net_device *dev)
  872. {
  873. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  874. if (!sdata || !sdata->default_key ||
  875. sdata->default_key->conf.alg != ALG_WEP)
  876. return 0;
  877. return 1;
  878. }
  879. static void ieee80211_auth_completed(struct net_device *dev,
  880. struct ieee80211_if_sta *ifsta)
  881. {
  882. printk(KERN_DEBUG "%s: authenticated\n", dev->name);
  883. ifsta->flags |= IEEE80211_STA_AUTHENTICATED;
  884. ieee80211_associate(dev, ifsta);
  885. }
  886. static void ieee80211_auth_challenge(struct net_device *dev,
  887. struct ieee80211_if_sta *ifsta,
  888. struct ieee80211_mgmt *mgmt,
  889. size_t len)
  890. {
  891. u8 *pos;
  892. struct ieee802_11_elems elems;
  893. printk(KERN_DEBUG "%s: replying to auth challenge\n", dev->name);
  894. pos = mgmt->u.auth.variable;
  895. ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems);
  896. if (!elems.challenge) {
  897. printk(KERN_DEBUG "%s: no challenge IE in shared key auth "
  898. "frame\n", dev->name);
  899. return;
  900. }
  901. ieee80211_send_auth(dev, ifsta, 3, elems.challenge - 2,
  902. elems.challenge_len + 2, 1);
  903. }
  904. static void ieee80211_send_addba_resp(struct net_device *dev, u8 *da, u16 tid,
  905. u8 dialog_token, u16 status, u16 policy,
  906. u16 buf_size, u16 timeout)
  907. {
  908. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  909. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  910. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  911. struct sk_buff *skb;
  912. struct ieee80211_mgmt *mgmt;
  913. u16 capab;
  914. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  915. sizeof(mgmt->u.action.u.addba_resp));
  916. if (!skb) {
  917. printk(KERN_DEBUG "%s: failed to allocate buffer "
  918. "for addba resp frame\n", dev->name);
  919. return;
  920. }
  921. skb_reserve(skb, local->hw.extra_tx_headroom);
  922. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  923. memset(mgmt, 0, 24);
  924. memcpy(mgmt->da, da, ETH_ALEN);
  925. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  926. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  927. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  928. else
  929. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  930. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  931. IEEE80211_STYPE_ACTION);
  932. skb_put(skb, 1 + sizeof(mgmt->u.action.u.addba_resp));
  933. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  934. mgmt->u.action.u.addba_resp.action_code = WLAN_ACTION_ADDBA_RESP;
  935. mgmt->u.action.u.addba_resp.dialog_token = dialog_token;
  936. capab = (u16)(policy << 1); /* bit 1 aggregation policy */
  937. capab |= (u16)(tid << 2); /* bit 5:2 TID number */
  938. capab |= (u16)(buf_size << 6); /* bit 15:6 max size of aggregation */
  939. mgmt->u.action.u.addba_resp.capab = cpu_to_le16(capab);
  940. mgmt->u.action.u.addba_resp.timeout = cpu_to_le16(timeout);
  941. mgmt->u.action.u.addba_resp.status = cpu_to_le16(status);
  942. ieee80211_sta_tx(dev, skb, 0);
  943. return;
  944. }
  945. void ieee80211_send_addba_request(struct net_device *dev, const u8 *da,
  946. u16 tid, u8 dialog_token, u16 start_seq_num,
  947. u16 agg_size, u16 timeout)
  948. {
  949. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  950. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  951. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  952. struct sk_buff *skb;
  953. struct ieee80211_mgmt *mgmt;
  954. u16 capab;
  955. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  956. sizeof(mgmt->u.action.u.addba_req));
  957. if (!skb) {
  958. printk(KERN_ERR "%s: failed to allocate buffer "
  959. "for addba request frame\n", dev->name);
  960. return;
  961. }
  962. skb_reserve(skb, local->hw.extra_tx_headroom);
  963. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  964. memset(mgmt, 0, 24);
  965. memcpy(mgmt->da, da, ETH_ALEN);
  966. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  967. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  968. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  969. else
  970. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  971. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  972. IEEE80211_STYPE_ACTION);
  973. skb_put(skb, 1 + sizeof(mgmt->u.action.u.addba_req));
  974. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  975. mgmt->u.action.u.addba_req.action_code = WLAN_ACTION_ADDBA_REQ;
  976. mgmt->u.action.u.addba_req.dialog_token = dialog_token;
  977. capab = (u16)(1 << 1); /* bit 1 aggregation policy */
  978. capab |= (u16)(tid << 2); /* bit 5:2 TID number */
  979. capab |= (u16)(agg_size << 6); /* bit 15:6 max size of aggergation */
  980. mgmt->u.action.u.addba_req.capab = cpu_to_le16(capab);
  981. mgmt->u.action.u.addba_req.timeout = cpu_to_le16(timeout);
  982. mgmt->u.action.u.addba_req.start_seq_num =
  983. cpu_to_le16(start_seq_num << 4);
  984. ieee80211_sta_tx(dev, skb, 0);
  985. }
  986. static void ieee80211_sta_process_addba_request(struct net_device *dev,
  987. struct ieee80211_mgmt *mgmt,
  988. size_t len)
  989. {
  990. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  991. struct ieee80211_hw *hw = &local->hw;
  992. struct ieee80211_conf *conf = &hw->conf;
  993. struct sta_info *sta;
  994. struct tid_ampdu_rx *tid_agg_rx;
  995. u16 capab, tid, timeout, ba_policy, buf_size, start_seq_num, status;
  996. u8 dialog_token;
  997. int ret = -EOPNOTSUPP;
  998. DECLARE_MAC_BUF(mac);
  999. rcu_read_lock();
  1000. sta = sta_info_get(local, mgmt->sa);
  1001. if (!sta) {
  1002. rcu_read_unlock();
  1003. return;
  1004. }
  1005. /* extract session parameters from addba request frame */
  1006. dialog_token = mgmt->u.action.u.addba_req.dialog_token;
  1007. timeout = le16_to_cpu(mgmt->u.action.u.addba_req.timeout);
  1008. start_seq_num =
  1009. le16_to_cpu(mgmt->u.action.u.addba_req.start_seq_num) >> 4;
  1010. capab = le16_to_cpu(mgmt->u.action.u.addba_req.capab);
  1011. ba_policy = (capab & IEEE80211_ADDBA_PARAM_POLICY_MASK) >> 1;
  1012. tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2;
  1013. buf_size = (capab & IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK) >> 6;
  1014. status = WLAN_STATUS_REQUEST_DECLINED;
  1015. /* sanity check for incoming parameters:
  1016. * check if configuration can support the BA policy
  1017. * and if buffer size does not exceeds max value */
  1018. if (((ba_policy != 1)
  1019. && (!(conf->ht_conf.cap & IEEE80211_HT_CAP_DELAY_BA)))
  1020. || (buf_size > IEEE80211_MAX_AMPDU_BUF)) {
  1021. status = WLAN_STATUS_INVALID_QOS_PARAM;
  1022. #ifdef CONFIG_MAC80211_HT_DEBUG
  1023. if (net_ratelimit())
  1024. printk(KERN_DEBUG "AddBA Req with bad params from "
  1025. "%s on tid %u. policy %d, buffer size %d\n",
  1026. print_mac(mac, mgmt->sa), tid, ba_policy,
  1027. buf_size);
  1028. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1029. goto end_no_lock;
  1030. }
  1031. /* determine default buffer size */
  1032. if (buf_size == 0) {
  1033. struct ieee80211_supported_band *sband;
  1034. sband = local->hw.wiphy->bands[conf->channel->band];
  1035. buf_size = IEEE80211_MIN_AMPDU_BUF;
  1036. buf_size = buf_size << sband->ht_info.ampdu_factor;
  1037. }
  1038. tid_agg_rx = &sta->ampdu_mlme.tid_rx[tid];
  1039. /* examine state machine */
  1040. spin_lock_bh(&sta->ampdu_mlme.ampdu_rx);
  1041. if (tid_agg_rx->state != HT_AGG_STATE_IDLE) {
  1042. #ifdef CONFIG_MAC80211_HT_DEBUG
  1043. if (net_ratelimit())
  1044. printk(KERN_DEBUG "unexpected AddBA Req from "
  1045. "%s on tid %u\n",
  1046. print_mac(mac, mgmt->sa), tid);
  1047. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1048. goto end;
  1049. }
  1050. /* prepare reordering buffer */
  1051. tid_agg_rx->reorder_buf =
  1052. kmalloc(buf_size * sizeof(struct sk_buf *), GFP_ATOMIC);
  1053. if (!tid_agg_rx->reorder_buf) {
  1054. if (net_ratelimit())
  1055. printk(KERN_ERR "can not allocate reordering buffer "
  1056. "to tid %d\n", tid);
  1057. goto end;
  1058. }
  1059. memset(tid_agg_rx->reorder_buf, 0,
  1060. buf_size * sizeof(struct sk_buf *));
  1061. if (local->ops->ampdu_action)
  1062. ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_RX_START,
  1063. sta->addr, tid, &start_seq_num);
  1064. #ifdef CONFIG_MAC80211_HT_DEBUG
  1065. printk(KERN_DEBUG "Rx A-MPDU on tid %d result %d", tid, ret);
  1066. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1067. if (ret) {
  1068. kfree(tid_agg_rx->reorder_buf);
  1069. goto end;
  1070. }
  1071. /* change state and send addba resp */
  1072. tid_agg_rx->state = HT_AGG_STATE_OPERATIONAL;
  1073. tid_agg_rx->dialog_token = dialog_token;
  1074. tid_agg_rx->ssn = start_seq_num;
  1075. tid_agg_rx->head_seq_num = start_seq_num;
  1076. tid_agg_rx->buf_size = buf_size;
  1077. tid_agg_rx->timeout = timeout;
  1078. tid_agg_rx->stored_mpdu_num = 0;
  1079. status = WLAN_STATUS_SUCCESS;
  1080. end:
  1081. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1082. end_no_lock:
  1083. ieee80211_send_addba_resp(sta->sdata->dev, sta->addr, tid,
  1084. dialog_token, status, 1, buf_size, timeout);
  1085. rcu_read_unlock();
  1086. }
  1087. static void ieee80211_sta_process_addba_resp(struct net_device *dev,
  1088. struct ieee80211_mgmt *mgmt,
  1089. size_t len)
  1090. {
  1091. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1092. struct ieee80211_hw *hw = &local->hw;
  1093. struct sta_info *sta;
  1094. u16 capab;
  1095. u16 tid;
  1096. u8 *state;
  1097. rcu_read_lock();
  1098. sta = sta_info_get(local, mgmt->sa);
  1099. if (!sta) {
  1100. rcu_read_unlock();
  1101. return;
  1102. }
  1103. capab = le16_to_cpu(mgmt->u.action.u.addba_resp.capab);
  1104. tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2;
  1105. state = &sta->ampdu_mlme.tid_tx[tid].state;
  1106. spin_lock_bh(&sta->ampdu_mlme.ampdu_tx);
  1107. if (mgmt->u.action.u.addba_resp.dialog_token !=
  1108. sta->ampdu_mlme.tid_tx[tid].dialog_token) {
  1109. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1110. #ifdef CONFIG_MAC80211_HT_DEBUG
  1111. printk(KERN_DEBUG "wrong addBA response token, tid %d\n", tid);
  1112. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1113. rcu_read_unlock();
  1114. return;
  1115. }
  1116. del_timer_sync(&sta->ampdu_mlme.tid_tx[tid].addba_resp_timer);
  1117. #ifdef CONFIG_MAC80211_HT_DEBUG
  1118. printk(KERN_DEBUG "switched off addBA timer for tid %d \n", tid);
  1119. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1120. if (le16_to_cpu(mgmt->u.action.u.addba_resp.status)
  1121. == WLAN_STATUS_SUCCESS) {
  1122. if (!(*state & HT_ADDBA_REQUESTED_MSK)) {
  1123. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1124. printk(KERN_DEBUG "state not HT_ADDBA_REQUESTED_MSK:"
  1125. "%d\n", *state);
  1126. rcu_read_unlock();
  1127. return;
  1128. }
  1129. if (*state & HT_ADDBA_RECEIVED_MSK)
  1130. printk(KERN_DEBUG "double addBA response\n");
  1131. *state |= HT_ADDBA_RECEIVED_MSK;
  1132. sta->ampdu_mlme.tid_tx[tid].addba_req_num = 0;
  1133. if (*state == HT_AGG_STATE_OPERATIONAL) {
  1134. printk(KERN_DEBUG "Aggregation on for tid %d \n", tid);
  1135. ieee80211_wake_queue(hw, sta->tid_to_tx_q[tid]);
  1136. }
  1137. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1138. printk(KERN_DEBUG "recipient accepted agg: tid %d \n", tid);
  1139. } else {
  1140. printk(KERN_DEBUG "recipient rejected agg: tid %d \n", tid);
  1141. sta->ampdu_mlme.tid_tx[tid].addba_req_num++;
  1142. /* this will allow the state check in stop_BA_session */
  1143. *state = HT_AGG_STATE_OPERATIONAL;
  1144. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1145. ieee80211_stop_tx_ba_session(hw, sta->addr, tid,
  1146. WLAN_BACK_INITIATOR);
  1147. }
  1148. rcu_read_unlock();
  1149. }
  1150. void ieee80211_send_delba(struct net_device *dev, const u8 *da, u16 tid,
  1151. u16 initiator, u16 reason_code)
  1152. {
  1153. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1154. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1155. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  1156. struct sk_buff *skb;
  1157. struct ieee80211_mgmt *mgmt;
  1158. u16 params;
  1159. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  1160. sizeof(mgmt->u.action.u.delba));
  1161. if (!skb) {
  1162. printk(KERN_ERR "%s: failed to allocate buffer "
  1163. "for delba frame\n", dev->name);
  1164. return;
  1165. }
  1166. skb_reserve(skb, local->hw.extra_tx_headroom);
  1167. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  1168. memset(mgmt, 0, 24);
  1169. memcpy(mgmt->da, da, ETH_ALEN);
  1170. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  1171. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  1172. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  1173. else
  1174. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  1175. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  1176. IEEE80211_STYPE_ACTION);
  1177. skb_put(skb, 1 + sizeof(mgmt->u.action.u.delba));
  1178. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  1179. mgmt->u.action.u.delba.action_code = WLAN_ACTION_DELBA;
  1180. params = (u16)(initiator << 11); /* bit 11 initiator */
  1181. params |= (u16)(tid << 12); /* bit 15:12 TID number */
  1182. mgmt->u.action.u.delba.params = cpu_to_le16(params);
  1183. mgmt->u.action.u.delba.reason_code = cpu_to_le16(reason_code);
  1184. ieee80211_sta_tx(dev, skb, 0);
  1185. }
  1186. void ieee80211_sta_stop_rx_ba_session(struct net_device *dev, u8 *ra, u16 tid,
  1187. u16 initiator, u16 reason)
  1188. {
  1189. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1190. struct ieee80211_hw *hw = &local->hw;
  1191. struct sta_info *sta;
  1192. int ret, i;
  1193. rcu_read_lock();
  1194. sta = sta_info_get(local, ra);
  1195. if (!sta) {
  1196. rcu_read_unlock();
  1197. return;
  1198. }
  1199. /* check if TID is in operational state */
  1200. spin_lock_bh(&sta->ampdu_mlme.ampdu_rx);
  1201. if (sta->ampdu_mlme.tid_rx[tid].state
  1202. != HT_AGG_STATE_OPERATIONAL) {
  1203. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1204. rcu_read_unlock();
  1205. return;
  1206. }
  1207. sta->ampdu_mlme.tid_rx[tid].state =
  1208. HT_AGG_STATE_REQ_STOP_BA_MSK |
  1209. (initiator << HT_AGG_STATE_INITIATOR_SHIFT);
  1210. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1211. /* stop HW Rx aggregation. ampdu_action existence
  1212. * already verified in session init so we add the BUG_ON */
  1213. BUG_ON(!local->ops->ampdu_action);
  1214. ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_RX_STOP,
  1215. ra, tid, NULL);
  1216. if (ret)
  1217. printk(KERN_DEBUG "HW problem - can not stop rx "
  1218. "aggergation for tid %d\n", tid);
  1219. /* shutdown timer has not expired */
  1220. if (initiator != WLAN_BACK_TIMER)
  1221. del_timer_sync(&sta->ampdu_mlme.tid_rx[tid].
  1222. session_timer);
  1223. /* check if this is a self generated aggregation halt */
  1224. if (initiator == WLAN_BACK_RECIPIENT || initiator == WLAN_BACK_TIMER)
  1225. ieee80211_send_delba(dev, ra, tid, 0, reason);
  1226. /* free the reordering buffer */
  1227. for (i = 0; i < sta->ampdu_mlme.tid_rx[tid].buf_size; i++) {
  1228. if (sta->ampdu_mlme.tid_rx[tid].reorder_buf[i]) {
  1229. /* release the reordered frames */
  1230. dev_kfree_skb(sta->ampdu_mlme.tid_rx[tid].reorder_buf[i]);
  1231. sta->ampdu_mlme.tid_rx[tid].stored_mpdu_num--;
  1232. sta->ampdu_mlme.tid_rx[tid].reorder_buf[i] = NULL;
  1233. }
  1234. }
  1235. kfree(sta->ampdu_mlme.tid_rx[tid].reorder_buf);
  1236. sta->ampdu_mlme.tid_rx[tid].state = HT_AGG_STATE_IDLE;
  1237. rcu_read_unlock();
  1238. }
  1239. static void ieee80211_sta_process_delba(struct net_device *dev,
  1240. struct ieee80211_mgmt *mgmt, size_t len)
  1241. {
  1242. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1243. struct sta_info *sta;
  1244. u16 tid, params;
  1245. u16 initiator;
  1246. DECLARE_MAC_BUF(mac);
  1247. rcu_read_lock();
  1248. sta = sta_info_get(local, mgmt->sa);
  1249. if (!sta) {
  1250. rcu_read_unlock();
  1251. return;
  1252. }
  1253. params = le16_to_cpu(mgmt->u.action.u.delba.params);
  1254. tid = (params & IEEE80211_DELBA_PARAM_TID_MASK) >> 12;
  1255. initiator = (params & IEEE80211_DELBA_PARAM_INITIATOR_MASK) >> 11;
  1256. #ifdef CONFIG_MAC80211_HT_DEBUG
  1257. if (net_ratelimit())
  1258. printk(KERN_DEBUG "delba from %s (%s) tid %d reason code %d\n",
  1259. print_mac(mac, mgmt->sa),
  1260. initiator ? "initiator" : "recipient", tid,
  1261. mgmt->u.action.u.delba.reason_code);
  1262. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1263. if (initiator == WLAN_BACK_INITIATOR)
  1264. ieee80211_sta_stop_rx_ba_session(dev, sta->addr, tid,
  1265. WLAN_BACK_INITIATOR, 0);
  1266. else { /* WLAN_BACK_RECIPIENT */
  1267. spin_lock_bh(&sta->ampdu_mlme.ampdu_tx);
  1268. sta->ampdu_mlme.tid_tx[tid].state =
  1269. HT_AGG_STATE_OPERATIONAL;
  1270. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1271. ieee80211_stop_tx_ba_session(&local->hw, sta->addr, tid,
  1272. WLAN_BACK_RECIPIENT);
  1273. }
  1274. rcu_read_unlock();
  1275. }
  1276. /*
  1277. * After sending add Block Ack request we activated a timer until
  1278. * add Block Ack response will arrive from the recipient.
  1279. * If this timer expires sta_addba_resp_timer_expired will be executed.
  1280. */
  1281. void sta_addba_resp_timer_expired(unsigned long data)
  1282. {
  1283. /* not an elegant detour, but there is no choice as the timer passes
  1284. * only one argument, and both sta_info and TID are needed, so init
  1285. * flow in sta_info_create gives the TID as data, while the timer_to_id
  1286. * array gives the sta through container_of */
  1287. u16 tid = *(int *)data;
  1288. struct sta_info *temp_sta = container_of((void *)data,
  1289. struct sta_info, timer_to_tid[tid]);
  1290. struct ieee80211_local *local = temp_sta->local;
  1291. struct ieee80211_hw *hw = &local->hw;
  1292. struct sta_info *sta;
  1293. u8 *state;
  1294. rcu_read_lock();
  1295. sta = sta_info_get(local, temp_sta->addr);
  1296. if (!sta) {
  1297. rcu_read_unlock();
  1298. return;
  1299. }
  1300. state = &sta->ampdu_mlme.tid_tx[tid].state;
  1301. /* check if the TID waits for addBA response */
  1302. spin_lock_bh(&sta->ampdu_mlme.ampdu_tx);
  1303. if (!(*state & HT_ADDBA_REQUESTED_MSK)) {
  1304. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1305. *state = HT_AGG_STATE_IDLE;
  1306. printk(KERN_DEBUG "timer expired on tid %d but we are not "
  1307. "expecting addBA response there", tid);
  1308. goto timer_expired_exit;
  1309. }
  1310. printk(KERN_DEBUG "addBA response timer expired on tid %d\n", tid);
  1311. /* go through the state check in stop_BA_session */
  1312. *state = HT_AGG_STATE_OPERATIONAL;
  1313. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1314. ieee80211_stop_tx_ba_session(hw, temp_sta->addr, tid,
  1315. WLAN_BACK_INITIATOR);
  1316. timer_expired_exit:
  1317. rcu_read_unlock();
  1318. }
  1319. /*
  1320. * After accepting the AddBA Request we activated a timer,
  1321. * resetting it after each frame that arrives from the originator.
  1322. * if this timer expires ieee80211_sta_stop_rx_ba_session will be executed.
  1323. */
  1324. void sta_rx_agg_session_timer_expired(unsigned long data)
  1325. {
  1326. /* not an elegant detour, but there is no choice as the timer passes
  1327. * only one argument, and verious sta_info are needed here, so init
  1328. * flow in sta_info_create gives the TID as data, while the timer_to_id
  1329. * array gives the sta through container_of */
  1330. u8 *ptid = (u8 *)data;
  1331. u8 *timer_to_id = ptid - *ptid;
  1332. struct sta_info *sta = container_of(timer_to_id, struct sta_info,
  1333. timer_to_tid[0]);
  1334. printk(KERN_DEBUG "rx session timer expired on tid %d\n", (u16)*ptid);
  1335. ieee80211_sta_stop_rx_ba_session(sta->sdata->dev, sta->addr,
  1336. (u16)*ptid, WLAN_BACK_TIMER,
  1337. WLAN_REASON_QSTA_TIMEOUT);
  1338. }
  1339. void ieee80211_sta_tear_down_BA_sessions(struct net_device *dev, u8 *addr)
  1340. {
  1341. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1342. int i;
  1343. for (i = 0; i < STA_TID_NUM; i++) {
  1344. ieee80211_stop_tx_ba_session(&local->hw, addr, i,
  1345. WLAN_BACK_INITIATOR);
  1346. ieee80211_sta_stop_rx_ba_session(dev, addr, i,
  1347. WLAN_BACK_RECIPIENT,
  1348. WLAN_REASON_QSTA_LEAVE_QBSS);
  1349. }
  1350. }
  1351. static void ieee80211_rx_mgmt_auth(struct net_device *dev,
  1352. struct ieee80211_if_sta *ifsta,
  1353. struct ieee80211_mgmt *mgmt,
  1354. size_t len)
  1355. {
  1356. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1357. u16 auth_alg, auth_transaction, status_code;
  1358. DECLARE_MAC_BUF(mac);
  1359. if (ifsta->state != IEEE80211_AUTHENTICATE &&
  1360. sdata->vif.type != IEEE80211_IF_TYPE_IBSS) {
  1361. printk(KERN_DEBUG "%s: authentication frame received from "
  1362. "%s, but not in authenticate state - ignored\n",
  1363. dev->name, print_mac(mac, mgmt->sa));
  1364. return;
  1365. }
  1366. if (len < 24 + 6) {
  1367. printk(KERN_DEBUG "%s: too short (%zd) authentication frame "
  1368. "received from %s - ignored\n",
  1369. dev->name, len, print_mac(mac, mgmt->sa));
  1370. return;
  1371. }
  1372. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  1373. memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1374. printk(KERN_DEBUG "%s: authentication frame received from "
  1375. "unknown AP (SA=%s BSSID=%s) - "
  1376. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1377. print_mac(mac, mgmt->bssid));
  1378. return;
  1379. }
  1380. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  1381. memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0) {
  1382. printk(KERN_DEBUG "%s: authentication frame received from "
  1383. "unknown BSSID (SA=%s BSSID=%s) - "
  1384. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1385. print_mac(mac, mgmt->bssid));
  1386. return;
  1387. }
  1388. auth_alg = le16_to_cpu(mgmt->u.auth.auth_alg);
  1389. auth_transaction = le16_to_cpu(mgmt->u.auth.auth_transaction);
  1390. status_code = le16_to_cpu(mgmt->u.auth.status_code);
  1391. printk(KERN_DEBUG "%s: RX authentication from %s (alg=%d "
  1392. "transaction=%d status=%d)\n",
  1393. dev->name, print_mac(mac, mgmt->sa), auth_alg,
  1394. auth_transaction, status_code);
  1395. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
  1396. /* IEEE 802.11 standard does not require authentication in IBSS
  1397. * networks and most implementations do not seem to use it.
  1398. * However, try to reply to authentication attempts if someone
  1399. * has actually implemented this.
  1400. * TODO: Could implement shared key authentication. */
  1401. if (auth_alg != WLAN_AUTH_OPEN || auth_transaction != 1) {
  1402. printk(KERN_DEBUG "%s: unexpected IBSS authentication "
  1403. "frame (alg=%d transaction=%d)\n",
  1404. dev->name, auth_alg, auth_transaction);
  1405. return;
  1406. }
  1407. ieee80211_send_auth(dev, ifsta, 2, NULL, 0, 0);
  1408. }
  1409. if (auth_alg != ifsta->auth_alg ||
  1410. auth_transaction != ifsta->auth_transaction) {
  1411. printk(KERN_DEBUG "%s: unexpected authentication frame "
  1412. "(alg=%d transaction=%d)\n",
  1413. dev->name, auth_alg, auth_transaction);
  1414. return;
  1415. }
  1416. if (status_code != WLAN_STATUS_SUCCESS) {
  1417. printk(KERN_DEBUG "%s: AP denied authentication (auth_alg=%d "
  1418. "code=%d)\n", dev->name, ifsta->auth_alg, status_code);
  1419. if (status_code == WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG) {
  1420. u8 algs[3];
  1421. const int num_algs = ARRAY_SIZE(algs);
  1422. int i, pos;
  1423. algs[0] = algs[1] = algs[2] = 0xff;
  1424. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN)
  1425. algs[0] = WLAN_AUTH_OPEN;
  1426. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY)
  1427. algs[1] = WLAN_AUTH_SHARED_KEY;
  1428. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP)
  1429. algs[2] = WLAN_AUTH_LEAP;
  1430. if (ifsta->auth_alg == WLAN_AUTH_OPEN)
  1431. pos = 0;
  1432. else if (ifsta->auth_alg == WLAN_AUTH_SHARED_KEY)
  1433. pos = 1;
  1434. else
  1435. pos = 2;
  1436. for (i = 0; i < num_algs; i++) {
  1437. pos++;
  1438. if (pos >= num_algs)
  1439. pos = 0;
  1440. if (algs[pos] == ifsta->auth_alg ||
  1441. algs[pos] == 0xff)
  1442. continue;
  1443. if (algs[pos] == WLAN_AUTH_SHARED_KEY &&
  1444. !ieee80211_sta_wep_configured(dev))
  1445. continue;
  1446. ifsta->auth_alg = algs[pos];
  1447. printk(KERN_DEBUG "%s: set auth_alg=%d for "
  1448. "next try\n",
  1449. dev->name, ifsta->auth_alg);
  1450. break;
  1451. }
  1452. }
  1453. return;
  1454. }
  1455. switch (ifsta->auth_alg) {
  1456. case WLAN_AUTH_OPEN:
  1457. case WLAN_AUTH_LEAP:
  1458. ieee80211_auth_completed(dev, ifsta);
  1459. break;
  1460. case WLAN_AUTH_SHARED_KEY:
  1461. if (ifsta->auth_transaction == 4)
  1462. ieee80211_auth_completed(dev, ifsta);
  1463. else
  1464. ieee80211_auth_challenge(dev, ifsta, mgmt, len);
  1465. break;
  1466. }
  1467. }
  1468. static void ieee80211_rx_mgmt_deauth(struct net_device *dev,
  1469. struct ieee80211_if_sta *ifsta,
  1470. struct ieee80211_mgmt *mgmt,
  1471. size_t len)
  1472. {
  1473. u16 reason_code;
  1474. DECLARE_MAC_BUF(mac);
  1475. if (len < 24 + 2) {
  1476. printk(KERN_DEBUG "%s: too short (%zd) deauthentication frame "
  1477. "received from %s - ignored\n",
  1478. dev->name, len, print_mac(mac, mgmt->sa));
  1479. return;
  1480. }
  1481. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1482. printk(KERN_DEBUG "%s: deauthentication frame received from "
  1483. "unknown AP (SA=%s BSSID=%s) - "
  1484. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1485. print_mac(mac, mgmt->bssid));
  1486. return;
  1487. }
  1488. reason_code = le16_to_cpu(mgmt->u.deauth.reason_code);
  1489. printk(KERN_DEBUG "%s: RX deauthentication from %s"
  1490. " (reason=%d)\n",
  1491. dev->name, print_mac(mac, mgmt->sa), reason_code);
  1492. if (ifsta->flags & IEEE80211_STA_AUTHENTICATED) {
  1493. printk(KERN_DEBUG "%s: deauthenticated\n", dev->name);
  1494. }
  1495. if (ifsta->state == IEEE80211_AUTHENTICATE ||
  1496. ifsta->state == IEEE80211_ASSOCIATE ||
  1497. ifsta->state == IEEE80211_ASSOCIATED) {
  1498. ifsta->state = IEEE80211_AUTHENTICATE;
  1499. mod_timer(&ifsta->timer, jiffies +
  1500. IEEE80211_RETRY_AUTH_INTERVAL);
  1501. }
  1502. ieee80211_set_disassoc(dev, ifsta, 1);
  1503. ifsta->flags &= ~IEEE80211_STA_AUTHENTICATED;
  1504. }
  1505. static void ieee80211_rx_mgmt_disassoc(struct net_device *dev,
  1506. struct ieee80211_if_sta *ifsta,
  1507. struct ieee80211_mgmt *mgmt,
  1508. size_t len)
  1509. {
  1510. u16 reason_code;
  1511. DECLARE_MAC_BUF(mac);
  1512. if (len < 24 + 2) {
  1513. printk(KERN_DEBUG "%s: too short (%zd) disassociation frame "
  1514. "received from %s - ignored\n",
  1515. dev->name, len, print_mac(mac, mgmt->sa));
  1516. return;
  1517. }
  1518. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1519. printk(KERN_DEBUG "%s: disassociation frame received from "
  1520. "unknown AP (SA=%s BSSID=%s) - "
  1521. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1522. print_mac(mac, mgmt->bssid));
  1523. return;
  1524. }
  1525. reason_code = le16_to_cpu(mgmt->u.disassoc.reason_code);
  1526. printk(KERN_DEBUG "%s: RX disassociation from %s"
  1527. " (reason=%d)\n",
  1528. dev->name, print_mac(mac, mgmt->sa), reason_code);
  1529. if (ifsta->flags & IEEE80211_STA_ASSOCIATED)
  1530. printk(KERN_DEBUG "%s: disassociated\n", dev->name);
  1531. if (ifsta->state == IEEE80211_ASSOCIATED) {
  1532. ifsta->state = IEEE80211_ASSOCIATE;
  1533. mod_timer(&ifsta->timer, jiffies +
  1534. IEEE80211_RETRY_AUTH_INTERVAL);
  1535. }
  1536. ieee80211_set_disassoc(dev, ifsta, 0);
  1537. }
  1538. static void ieee80211_rx_mgmt_assoc_resp(struct ieee80211_sub_if_data *sdata,
  1539. struct ieee80211_if_sta *ifsta,
  1540. struct ieee80211_mgmt *mgmt,
  1541. size_t len,
  1542. int reassoc)
  1543. {
  1544. struct ieee80211_local *local = sdata->local;
  1545. struct net_device *dev = sdata->dev;
  1546. struct ieee80211_supported_band *sband;
  1547. struct sta_info *sta;
  1548. u64 rates, basic_rates;
  1549. u16 capab_info, status_code, aid;
  1550. struct ieee802_11_elems elems;
  1551. struct ieee80211_bss_conf *bss_conf = &sdata->bss_conf;
  1552. u8 *pos;
  1553. int i, j;
  1554. DECLARE_MAC_BUF(mac);
  1555. bool have_higher_than_11mbit = false;
  1556. /* AssocResp and ReassocResp have identical structure, so process both
  1557. * of them in this function. */
  1558. if (ifsta->state != IEEE80211_ASSOCIATE) {
  1559. printk(KERN_DEBUG "%s: association frame received from "
  1560. "%s, but not in associate state - ignored\n",
  1561. dev->name, print_mac(mac, mgmt->sa));
  1562. return;
  1563. }
  1564. if (len < 24 + 6) {
  1565. printk(KERN_DEBUG "%s: too short (%zd) association frame "
  1566. "received from %s - ignored\n",
  1567. dev->name, len, print_mac(mac, mgmt->sa));
  1568. return;
  1569. }
  1570. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1571. printk(KERN_DEBUG "%s: association frame received from "
  1572. "unknown AP (SA=%s BSSID=%s) - "
  1573. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1574. print_mac(mac, mgmt->bssid));
  1575. return;
  1576. }
  1577. capab_info = le16_to_cpu(mgmt->u.assoc_resp.capab_info);
  1578. status_code = le16_to_cpu(mgmt->u.assoc_resp.status_code);
  1579. aid = le16_to_cpu(mgmt->u.assoc_resp.aid);
  1580. printk(KERN_DEBUG "%s: RX %sssocResp from %s (capab=0x%x "
  1581. "status=%d aid=%d)\n",
  1582. dev->name, reassoc ? "Rea" : "A", print_mac(mac, mgmt->sa),
  1583. capab_info, status_code, (u16)(aid & ~(BIT(15) | BIT(14))));
  1584. if (status_code != WLAN_STATUS_SUCCESS) {
  1585. printk(KERN_DEBUG "%s: AP denied association (code=%d)\n",
  1586. dev->name, status_code);
  1587. /* if this was a reassociation, ensure we try a "full"
  1588. * association next time. This works around some broken APs
  1589. * which do not correctly reject reassociation requests. */
  1590. ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET;
  1591. return;
  1592. }
  1593. if ((aid & (BIT(15) | BIT(14))) != (BIT(15) | BIT(14)))
  1594. printk(KERN_DEBUG "%s: invalid aid value %d; bits 15:14 not "
  1595. "set\n", dev->name, aid);
  1596. aid &= ~(BIT(15) | BIT(14));
  1597. pos = mgmt->u.assoc_resp.variable;
  1598. ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems);
  1599. if (!elems.supp_rates) {
  1600. printk(KERN_DEBUG "%s: no SuppRates element in AssocResp\n",
  1601. dev->name);
  1602. return;
  1603. }
  1604. printk(KERN_DEBUG "%s: associated\n", dev->name);
  1605. ifsta->aid = aid;
  1606. ifsta->ap_capab = capab_info;
  1607. kfree(ifsta->assocresp_ies);
  1608. ifsta->assocresp_ies_len = len - (pos - (u8 *) mgmt);
  1609. ifsta->assocresp_ies = kmalloc(ifsta->assocresp_ies_len, GFP_KERNEL);
  1610. if (ifsta->assocresp_ies)
  1611. memcpy(ifsta->assocresp_ies, pos, ifsta->assocresp_ies_len);
  1612. rcu_read_lock();
  1613. /* Add STA entry for the AP */
  1614. sta = sta_info_get(local, ifsta->bssid);
  1615. if (!sta) {
  1616. struct ieee80211_sta_bss *bss;
  1617. int err;
  1618. sta = sta_info_alloc(sdata, ifsta->bssid, GFP_ATOMIC);
  1619. if (!sta) {
  1620. printk(KERN_DEBUG "%s: failed to alloc STA entry for"
  1621. " the AP\n", dev->name);
  1622. rcu_read_unlock();
  1623. return;
  1624. }
  1625. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  1626. local->hw.conf.channel->center_freq,
  1627. ifsta->ssid, ifsta->ssid_len);
  1628. if (bss) {
  1629. sta->last_rssi = bss->rssi;
  1630. sta->last_signal = bss->signal;
  1631. sta->last_noise = bss->noise;
  1632. ieee80211_rx_bss_put(dev, bss);
  1633. }
  1634. err = sta_info_insert(sta);
  1635. if (err) {
  1636. printk(KERN_DEBUG "%s: failed to insert STA entry for"
  1637. " the AP (error %d)\n", dev->name, err);
  1638. sta_info_destroy(sta);
  1639. rcu_read_unlock();
  1640. return;
  1641. }
  1642. }
  1643. /*
  1644. * FIXME: Do we really need to update the sta_info's information here?
  1645. * We already know about the AP (we found it in our list) so it
  1646. * should already be filled with the right info, no?
  1647. * As is stands, all this is racy because typically we assume
  1648. * the information that is filled in here (except flags) doesn't
  1649. * change while a STA structure is alive. As such, it should move
  1650. * to between the sta_info_alloc() and sta_info_insert() above.
  1651. */
  1652. sta->flags |= WLAN_STA_AUTH | WLAN_STA_ASSOC | WLAN_STA_ASSOC_AP |
  1653. WLAN_STA_AUTHORIZED;
  1654. rates = 0;
  1655. basic_rates = 0;
  1656. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  1657. for (i = 0; i < elems.supp_rates_len; i++) {
  1658. int rate = (elems.supp_rates[i] & 0x7f) * 5;
  1659. if (rate > 110)
  1660. have_higher_than_11mbit = true;
  1661. for (j = 0; j < sband->n_bitrates; j++) {
  1662. if (sband->bitrates[j].bitrate == rate)
  1663. rates |= BIT(j);
  1664. if (elems.supp_rates[i] & 0x80)
  1665. basic_rates |= BIT(j);
  1666. }
  1667. }
  1668. for (i = 0; i < elems.ext_supp_rates_len; i++) {
  1669. int rate = (elems.ext_supp_rates[i] & 0x7f) * 5;
  1670. if (rate > 110)
  1671. have_higher_than_11mbit = true;
  1672. for (j = 0; j < sband->n_bitrates; j++) {
  1673. if (sband->bitrates[j].bitrate == rate)
  1674. rates |= BIT(j);
  1675. if (elems.ext_supp_rates[i] & 0x80)
  1676. basic_rates |= BIT(j);
  1677. }
  1678. }
  1679. sta->supp_rates[local->hw.conf.channel->band] = rates;
  1680. sdata->basic_rates = basic_rates;
  1681. /* cf. IEEE 802.11 9.2.12 */
  1682. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
  1683. have_higher_than_11mbit)
  1684. sdata->flags |= IEEE80211_SDATA_OPERATING_GMODE;
  1685. else
  1686. sdata->flags &= ~IEEE80211_SDATA_OPERATING_GMODE;
  1687. if (elems.ht_cap_elem && elems.ht_info_elem && elems.wmm_param &&
  1688. local->ops->conf_ht) {
  1689. struct ieee80211_ht_bss_info bss_info;
  1690. ieee80211_ht_cap_ie_to_ht_info(
  1691. (struct ieee80211_ht_cap *)
  1692. elems.ht_cap_elem, &sta->ht_info);
  1693. ieee80211_ht_addt_info_ie_to_ht_bss_info(
  1694. (struct ieee80211_ht_addt_info *)
  1695. elems.ht_info_elem, &bss_info);
  1696. ieee80211_hw_config_ht(local, 1, &sta->ht_info, &bss_info);
  1697. }
  1698. rate_control_rate_init(sta, local);
  1699. if (elems.wmm_param && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  1700. sta->flags |= WLAN_STA_WME;
  1701. rcu_read_unlock();
  1702. ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param,
  1703. elems.wmm_param_len);
  1704. } else
  1705. rcu_read_unlock();
  1706. /* set AID, ieee80211_set_associated() will tell the driver */
  1707. bss_conf->aid = aid;
  1708. ieee80211_set_associated(dev, ifsta, 1);
  1709. ieee80211_associated(dev, ifsta);
  1710. }
  1711. /* Caller must hold local->sta_bss_lock */
  1712. static void __ieee80211_rx_bss_hash_add(struct net_device *dev,
  1713. struct ieee80211_sta_bss *bss)
  1714. {
  1715. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1716. u8 hash_idx;
  1717. if (bss_mesh_cfg(bss))
  1718. hash_idx = mesh_id_hash(bss_mesh_id(bss),
  1719. bss_mesh_id_len(bss));
  1720. else
  1721. hash_idx = STA_HASH(bss->bssid);
  1722. bss->hnext = local->sta_bss_hash[hash_idx];
  1723. local->sta_bss_hash[hash_idx] = bss;
  1724. }
  1725. /* Caller must hold local->sta_bss_lock */
  1726. static void __ieee80211_rx_bss_hash_del(struct net_device *dev,
  1727. struct ieee80211_sta_bss *bss)
  1728. {
  1729. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1730. struct ieee80211_sta_bss *b, *prev = NULL;
  1731. b = local->sta_bss_hash[STA_HASH(bss->bssid)];
  1732. while (b) {
  1733. if (b == bss) {
  1734. if (!prev)
  1735. local->sta_bss_hash[STA_HASH(bss->bssid)] =
  1736. bss->hnext;
  1737. else
  1738. prev->hnext = bss->hnext;
  1739. break;
  1740. }
  1741. prev = b;
  1742. b = b->hnext;
  1743. }
  1744. }
  1745. static struct ieee80211_sta_bss *
  1746. ieee80211_rx_bss_add(struct net_device *dev, u8 *bssid, int freq,
  1747. u8 *ssid, u8 ssid_len)
  1748. {
  1749. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1750. struct ieee80211_sta_bss *bss;
  1751. bss = kzalloc(sizeof(*bss), GFP_ATOMIC);
  1752. if (!bss)
  1753. return NULL;
  1754. atomic_inc(&bss->users);
  1755. atomic_inc(&bss->users);
  1756. memcpy(bss->bssid, bssid, ETH_ALEN);
  1757. bss->freq = freq;
  1758. if (ssid && ssid_len <= IEEE80211_MAX_SSID_LEN) {
  1759. memcpy(bss->ssid, ssid, ssid_len);
  1760. bss->ssid_len = ssid_len;
  1761. }
  1762. spin_lock_bh(&local->sta_bss_lock);
  1763. /* TODO: order by RSSI? */
  1764. list_add_tail(&bss->list, &local->sta_bss_list);
  1765. __ieee80211_rx_bss_hash_add(dev, bss);
  1766. spin_unlock_bh(&local->sta_bss_lock);
  1767. return bss;
  1768. }
  1769. static struct ieee80211_sta_bss *
  1770. ieee80211_rx_bss_get(struct net_device *dev, u8 *bssid, int freq,
  1771. u8 *ssid, u8 ssid_len)
  1772. {
  1773. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1774. struct ieee80211_sta_bss *bss;
  1775. spin_lock_bh(&local->sta_bss_lock);
  1776. bss = local->sta_bss_hash[STA_HASH(bssid)];
  1777. while (bss) {
  1778. if (!bss_mesh_cfg(bss) &&
  1779. !memcmp(bss->bssid, bssid, ETH_ALEN) &&
  1780. bss->freq == freq &&
  1781. bss->ssid_len == ssid_len &&
  1782. (ssid_len == 0 || !memcmp(bss->ssid, ssid, ssid_len))) {
  1783. atomic_inc(&bss->users);
  1784. break;
  1785. }
  1786. bss = bss->hnext;
  1787. }
  1788. spin_unlock_bh(&local->sta_bss_lock);
  1789. return bss;
  1790. }
  1791. #ifdef CONFIG_MAC80211_MESH
  1792. static struct ieee80211_sta_bss *
  1793. ieee80211_rx_mesh_bss_get(struct net_device *dev, u8 *mesh_id, int mesh_id_len,
  1794. u8 *mesh_cfg, int freq)
  1795. {
  1796. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1797. struct ieee80211_sta_bss *bss;
  1798. spin_lock_bh(&local->sta_bss_lock);
  1799. bss = local->sta_bss_hash[mesh_id_hash(mesh_id, mesh_id_len)];
  1800. while (bss) {
  1801. if (bss_mesh_cfg(bss) &&
  1802. !memcmp(bss_mesh_cfg(bss), mesh_cfg, MESH_CFG_CMP_LEN) &&
  1803. bss->freq == freq &&
  1804. mesh_id_len == bss->mesh_id_len &&
  1805. (mesh_id_len == 0 || !memcmp(bss->mesh_id, mesh_id,
  1806. mesh_id_len))) {
  1807. atomic_inc(&bss->users);
  1808. break;
  1809. }
  1810. bss = bss->hnext;
  1811. }
  1812. spin_unlock_bh(&local->sta_bss_lock);
  1813. return bss;
  1814. }
  1815. static struct ieee80211_sta_bss *
  1816. ieee80211_rx_mesh_bss_add(struct net_device *dev, u8 *mesh_id, int mesh_id_len,
  1817. u8 *mesh_cfg, int freq)
  1818. {
  1819. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1820. struct ieee80211_sta_bss *bss;
  1821. bss = kzalloc(sizeof(*bss), GFP_ATOMIC);
  1822. if (!bss)
  1823. return NULL;
  1824. bss->mesh_cfg = kmalloc(MESH_CFG_CMP_LEN, GFP_ATOMIC);
  1825. if (!bss->mesh_cfg) {
  1826. kfree(bss);
  1827. return NULL;
  1828. }
  1829. if (mesh_id_len && mesh_id_len <= IEEE80211_MAX_MESH_ID_LEN) {
  1830. bss->mesh_id = kmalloc(mesh_id_len, GFP_ATOMIC);
  1831. if (!bss->mesh_id) {
  1832. kfree(bss->mesh_cfg);
  1833. kfree(bss);
  1834. return NULL;
  1835. }
  1836. memcpy(bss->mesh_id, mesh_id, mesh_id_len);
  1837. }
  1838. atomic_inc(&bss->users);
  1839. atomic_inc(&bss->users);
  1840. memcpy(bss->mesh_cfg, mesh_cfg, MESH_CFG_CMP_LEN);
  1841. bss->mesh_id_len = mesh_id_len;
  1842. bss->freq = freq;
  1843. spin_lock_bh(&local->sta_bss_lock);
  1844. /* TODO: order by RSSI? */
  1845. list_add_tail(&bss->list, &local->sta_bss_list);
  1846. __ieee80211_rx_bss_hash_add(dev, bss);
  1847. spin_unlock_bh(&local->sta_bss_lock);
  1848. return bss;
  1849. }
  1850. #endif
  1851. static void ieee80211_rx_bss_free(struct ieee80211_sta_bss *bss)
  1852. {
  1853. kfree(bss->wpa_ie);
  1854. kfree(bss->rsn_ie);
  1855. kfree(bss->wmm_ie);
  1856. kfree(bss->ht_ie);
  1857. kfree(bss_mesh_id(bss));
  1858. kfree(bss_mesh_cfg(bss));
  1859. kfree(bss);
  1860. }
  1861. static void ieee80211_rx_bss_put(struct net_device *dev,
  1862. struct ieee80211_sta_bss *bss)
  1863. {
  1864. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1865. if (!atomic_dec_and_test(&bss->users))
  1866. return;
  1867. spin_lock_bh(&local->sta_bss_lock);
  1868. __ieee80211_rx_bss_hash_del(dev, bss);
  1869. list_del(&bss->list);
  1870. spin_unlock_bh(&local->sta_bss_lock);
  1871. ieee80211_rx_bss_free(bss);
  1872. }
  1873. void ieee80211_rx_bss_list_init(struct net_device *dev)
  1874. {
  1875. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1876. spin_lock_init(&local->sta_bss_lock);
  1877. INIT_LIST_HEAD(&local->sta_bss_list);
  1878. }
  1879. void ieee80211_rx_bss_list_deinit(struct net_device *dev)
  1880. {
  1881. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1882. struct ieee80211_sta_bss *bss, *tmp;
  1883. list_for_each_entry_safe(bss, tmp, &local->sta_bss_list, list)
  1884. ieee80211_rx_bss_put(dev, bss);
  1885. }
  1886. static int ieee80211_sta_join_ibss(struct net_device *dev,
  1887. struct ieee80211_if_sta *ifsta,
  1888. struct ieee80211_sta_bss *bss)
  1889. {
  1890. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1891. int res, rates, i, j;
  1892. struct sk_buff *skb;
  1893. struct ieee80211_mgmt *mgmt;
  1894. struct ieee80211_tx_control control;
  1895. struct rate_selection ratesel;
  1896. u8 *pos;
  1897. struct ieee80211_sub_if_data *sdata;
  1898. struct ieee80211_supported_band *sband;
  1899. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  1900. /* Remove possible STA entries from other IBSS networks. */
  1901. sta_info_flush(local, NULL);
  1902. if (local->ops->reset_tsf) {
  1903. /* Reset own TSF to allow time synchronization work. */
  1904. local->ops->reset_tsf(local_to_hw(local));
  1905. }
  1906. memcpy(ifsta->bssid, bss->bssid, ETH_ALEN);
  1907. res = ieee80211_if_config(dev);
  1908. if (res)
  1909. return res;
  1910. local->hw.conf.beacon_int = bss->beacon_int >= 10 ? bss->beacon_int : 10;
  1911. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1912. sdata->drop_unencrypted = bss->capability &
  1913. WLAN_CAPABILITY_PRIVACY ? 1 : 0;
  1914. res = ieee80211_set_freq(local, bss->freq);
  1915. if (local->oper_channel->flags & IEEE80211_CHAN_NO_IBSS) {
  1916. printk(KERN_DEBUG "%s: IBSS not allowed on frequency "
  1917. "%d MHz\n", dev->name, local->oper_channel->center_freq);
  1918. return -1;
  1919. }
  1920. /* Set beacon template */
  1921. skb = dev_alloc_skb(local->hw.extra_tx_headroom + 400);
  1922. do {
  1923. if (!skb)
  1924. break;
  1925. skb_reserve(skb, local->hw.extra_tx_headroom);
  1926. mgmt = (struct ieee80211_mgmt *)
  1927. skb_put(skb, 24 + sizeof(mgmt->u.beacon));
  1928. memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
  1929. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  1930. IEEE80211_STYPE_BEACON);
  1931. memset(mgmt->da, 0xff, ETH_ALEN);
  1932. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  1933. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  1934. mgmt->u.beacon.beacon_int =
  1935. cpu_to_le16(local->hw.conf.beacon_int);
  1936. mgmt->u.beacon.capab_info = cpu_to_le16(bss->capability);
  1937. pos = skb_put(skb, 2 + ifsta->ssid_len);
  1938. *pos++ = WLAN_EID_SSID;
  1939. *pos++ = ifsta->ssid_len;
  1940. memcpy(pos, ifsta->ssid, ifsta->ssid_len);
  1941. rates = bss->supp_rates_len;
  1942. if (rates > 8)
  1943. rates = 8;
  1944. pos = skb_put(skb, 2 + rates);
  1945. *pos++ = WLAN_EID_SUPP_RATES;
  1946. *pos++ = rates;
  1947. memcpy(pos, bss->supp_rates, rates);
  1948. if (bss->band == IEEE80211_BAND_2GHZ) {
  1949. pos = skb_put(skb, 2 + 1);
  1950. *pos++ = WLAN_EID_DS_PARAMS;
  1951. *pos++ = 1;
  1952. *pos++ = ieee80211_frequency_to_channel(bss->freq);
  1953. }
  1954. pos = skb_put(skb, 2 + 2);
  1955. *pos++ = WLAN_EID_IBSS_PARAMS;
  1956. *pos++ = 2;
  1957. /* FIX: set ATIM window based on scan results */
  1958. *pos++ = 0;
  1959. *pos++ = 0;
  1960. if (bss->supp_rates_len > 8) {
  1961. rates = bss->supp_rates_len - 8;
  1962. pos = skb_put(skb, 2 + rates);
  1963. *pos++ = WLAN_EID_EXT_SUPP_RATES;
  1964. *pos++ = rates;
  1965. memcpy(pos, &bss->supp_rates[8], rates);
  1966. }
  1967. memset(&control, 0, sizeof(control));
  1968. rate_control_get_rate(dev, sband, skb, &ratesel);
  1969. if (!ratesel.rate) {
  1970. printk(KERN_DEBUG "%s: Failed to determine TX rate "
  1971. "for IBSS beacon\n", dev->name);
  1972. break;
  1973. }
  1974. control.vif = &sdata->vif;
  1975. control.tx_rate = ratesel.rate;
  1976. if (sdata->bss_conf.use_short_preamble &&
  1977. ratesel.rate->flags & IEEE80211_RATE_SHORT_PREAMBLE)
  1978. control.flags |= IEEE80211_TXCTL_SHORT_PREAMBLE;
  1979. control.antenna_sel_tx = local->hw.conf.antenna_sel_tx;
  1980. control.flags |= IEEE80211_TXCTL_NO_ACK;
  1981. control.retry_limit = 1;
  1982. ifsta->probe_resp = skb_copy(skb, GFP_ATOMIC);
  1983. if (ifsta->probe_resp) {
  1984. mgmt = (struct ieee80211_mgmt *)
  1985. ifsta->probe_resp->data;
  1986. mgmt->frame_control =
  1987. IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  1988. IEEE80211_STYPE_PROBE_RESP);
  1989. } else {
  1990. printk(KERN_DEBUG "%s: Could not allocate ProbeResp "
  1991. "template for IBSS\n", dev->name);
  1992. }
  1993. if (local->ops->beacon_update &&
  1994. local->ops->beacon_update(local_to_hw(local),
  1995. skb, &control) == 0) {
  1996. printk(KERN_DEBUG "%s: Configured IBSS beacon "
  1997. "template\n", dev->name);
  1998. skb = NULL;
  1999. }
  2000. rates = 0;
  2001. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  2002. for (i = 0; i < bss->supp_rates_len; i++) {
  2003. int bitrate = (bss->supp_rates[i] & 0x7f) * 5;
  2004. for (j = 0; j < sband->n_bitrates; j++)
  2005. if (sband->bitrates[j].bitrate == bitrate)
  2006. rates |= BIT(j);
  2007. }
  2008. ifsta->supp_rates_bits[local->hw.conf.channel->band] = rates;
  2009. ieee80211_sta_def_wmm_params(dev, bss, 1);
  2010. } while (0);
  2011. if (skb) {
  2012. printk(KERN_DEBUG "%s: Failed to configure IBSS beacon "
  2013. "template\n", dev->name);
  2014. dev_kfree_skb(skb);
  2015. }
  2016. ifsta->state = IEEE80211_IBSS_JOINED;
  2017. mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL);
  2018. ieee80211_rx_bss_put(dev, bss);
  2019. return res;
  2020. }
  2021. u64 ieee80211_sta_get_rates(struct ieee80211_local *local,
  2022. struct ieee802_11_elems *elems,
  2023. enum ieee80211_band band)
  2024. {
  2025. struct ieee80211_supported_band *sband;
  2026. struct ieee80211_rate *bitrates;
  2027. size_t num_rates;
  2028. u64 supp_rates;
  2029. int i, j;
  2030. sband = local->hw.wiphy->bands[band];
  2031. if (!sband) {
  2032. WARN_ON(1);
  2033. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  2034. }
  2035. bitrates = sband->bitrates;
  2036. num_rates = sband->n_bitrates;
  2037. supp_rates = 0;
  2038. for (i = 0; i < elems->supp_rates_len +
  2039. elems->ext_supp_rates_len; i++) {
  2040. u8 rate = 0;
  2041. int own_rate;
  2042. if (i < elems->supp_rates_len)
  2043. rate = elems->supp_rates[i];
  2044. else if (elems->ext_supp_rates)
  2045. rate = elems->ext_supp_rates
  2046. [i - elems->supp_rates_len];
  2047. own_rate = 5 * (rate & 0x7f);
  2048. for (j = 0; j < num_rates; j++)
  2049. if (bitrates[j].bitrate == own_rate)
  2050. supp_rates |= BIT(j);
  2051. }
  2052. return supp_rates;
  2053. }
  2054. static void ieee80211_rx_bss_info(struct net_device *dev,
  2055. struct ieee80211_mgmt *mgmt,
  2056. size_t len,
  2057. struct ieee80211_rx_status *rx_status,
  2058. int beacon)
  2059. {
  2060. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2061. struct ieee802_11_elems elems;
  2062. size_t baselen;
  2063. int freq, clen;
  2064. struct ieee80211_sta_bss *bss;
  2065. struct sta_info *sta;
  2066. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2067. u64 beacon_timestamp, rx_timestamp;
  2068. struct ieee80211_channel *channel;
  2069. DECLARE_MAC_BUF(mac);
  2070. DECLARE_MAC_BUF(mac2);
  2071. if (!beacon && memcmp(mgmt->da, dev->dev_addr, ETH_ALEN))
  2072. return; /* ignore ProbeResp to foreign address */
  2073. #if 0
  2074. printk(KERN_DEBUG "%s: RX %s from %s to %s\n",
  2075. dev->name, beacon ? "Beacon" : "Probe Response",
  2076. print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->da));
  2077. #endif
  2078. baselen = (u8 *) mgmt->u.beacon.variable - (u8 *) mgmt;
  2079. if (baselen > len)
  2080. return;
  2081. beacon_timestamp = le64_to_cpu(mgmt->u.beacon.timestamp);
  2082. ieee802_11_parse_elems(mgmt->u.beacon.variable, len - baselen, &elems);
  2083. if (ieee80211_vif_is_mesh(&sdata->vif) && elems.mesh_id &&
  2084. elems.mesh_config && mesh_matches_local(&elems, dev)) {
  2085. u64 rates = ieee80211_sta_get_rates(local, &elems,
  2086. rx_status->band);
  2087. mesh_neighbour_update(mgmt->sa, rates, dev,
  2088. mesh_peer_accepts_plinks(&elems, dev));
  2089. }
  2090. rcu_read_lock();
  2091. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS && elems.supp_rates &&
  2092. memcmp(mgmt->bssid, sdata->u.sta.bssid, ETH_ALEN) == 0 &&
  2093. (sta = sta_info_get(local, mgmt->sa))) {
  2094. u64 prev_rates;
  2095. u64 supp_rates = ieee80211_sta_get_rates(local, &elems,
  2096. rx_status->band);
  2097. prev_rates = sta->supp_rates[rx_status->band];
  2098. sta->supp_rates[rx_status->band] &= supp_rates;
  2099. if (sta->supp_rates[rx_status->band] == 0) {
  2100. /* No matching rates - this should not really happen.
  2101. * Make sure that at least one rate is marked
  2102. * supported to avoid issues with TX rate ctrl. */
  2103. sta->supp_rates[rx_status->band] =
  2104. sdata->u.sta.supp_rates_bits[rx_status->band];
  2105. }
  2106. if (sta->supp_rates[rx_status->band] != prev_rates) {
  2107. printk(KERN_DEBUG "%s: updated supp_rates set for "
  2108. "%s based on beacon info (0x%llx & 0x%llx -> "
  2109. "0x%llx)\n",
  2110. dev->name, print_mac(mac, sta->addr),
  2111. (unsigned long long) prev_rates,
  2112. (unsigned long long) supp_rates,
  2113. (unsigned long long) sta->supp_rates[rx_status->band]);
  2114. }
  2115. }
  2116. rcu_read_unlock();
  2117. if (elems.ds_params && elems.ds_params_len == 1)
  2118. freq = ieee80211_channel_to_frequency(elems.ds_params[0]);
  2119. else
  2120. freq = rx_status->freq;
  2121. channel = ieee80211_get_channel(local->hw.wiphy, freq);
  2122. if (!channel || channel->flags & IEEE80211_CHAN_DISABLED)
  2123. return;
  2124. #ifdef CONFIG_MAC80211_MESH
  2125. if (elems.mesh_config)
  2126. bss = ieee80211_rx_mesh_bss_get(dev, elems.mesh_id,
  2127. elems.mesh_id_len, elems.mesh_config, freq);
  2128. else
  2129. #endif
  2130. bss = ieee80211_rx_bss_get(dev, mgmt->bssid, freq,
  2131. elems.ssid, elems.ssid_len);
  2132. if (!bss) {
  2133. #ifdef CONFIG_MAC80211_MESH
  2134. if (elems.mesh_config)
  2135. bss = ieee80211_rx_mesh_bss_add(dev, elems.mesh_id,
  2136. elems.mesh_id_len, elems.mesh_config, freq);
  2137. else
  2138. #endif
  2139. bss = ieee80211_rx_bss_add(dev, mgmt->bssid, freq,
  2140. elems.ssid, elems.ssid_len);
  2141. if (!bss)
  2142. return;
  2143. } else {
  2144. #if 0
  2145. /* TODO: order by RSSI? */
  2146. spin_lock_bh(&local->sta_bss_lock);
  2147. list_move_tail(&bss->list, &local->sta_bss_list);
  2148. spin_unlock_bh(&local->sta_bss_lock);
  2149. #endif
  2150. }
  2151. bss->band = rx_status->band;
  2152. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  2153. bss->probe_resp && beacon) {
  2154. /* STA mode:
  2155. * Do not allow beacon to override data from Probe Response. */
  2156. ieee80211_rx_bss_put(dev, bss);
  2157. return;
  2158. }
  2159. /* save the ERP value so that it is available at association time */
  2160. if (elems.erp_info && elems.erp_info_len >= 1) {
  2161. bss->erp_value = elems.erp_info[0];
  2162. bss->has_erp_value = 1;
  2163. }
  2164. bss->beacon_int = le16_to_cpu(mgmt->u.beacon.beacon_int);
  2165. bss->capability = le16_to_cpu(mgmt->u.beacon.capab_info);
  2166. bss->supp_rates_len = 0;
  2167. if (elems.supp_rates) {
  2168. clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len;
  2169. if (clen > elems.supp_rates_len)
  2170. clen = elems.supp_rates_len;
  2171. memcpy(&bss->supp_rates[bss->supp_rates_len], elems.supp_rates,
  2172. clen);
  2173. bss->supp_rates_len += clen;
  2174. }
  2175. if (elems.ext_supp_rates) {
  2176. clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len;
  2177. if (clen > elems.ext_supp_rates_len)
  2178. clen = elems.ext_supp_rates_len;
  2179. memcpy(&bss->supp_rates[bss->supp_rates_len],
  2180. elems.ext_supp_rates, clen);
  2181. bss->supp_rates_len += clen;
  2182. }
  2183. if (elems.wpa &&
  2184. (!bss->wpa_ie || bss->wpa_ie_len != elems.wpa_len ||
  2185. memcmp(bss->wpa_ie, elems.wpa, elems.wpa_len))) {
  2186. kfree(bss->wpa_ie);
  2187. bss->wpa_ie = kmalloc(elems.wpa_len + 2, GFP_ATOMIC);
  2188. if (bss->wpa_ie) {
  2189. memcpy(bss->wpa_ie, elems.wpa - 2, elems.wpa_len + 2);
  2190. bss->wpa_ie_len = elems.wpa_len + 2;
  2191. } else
  2192. bss->wpa_ie_len = 0;
  2193. } else if (!elems.wpa && bss->wpa_ie) {
  2194. kfree(bss->wpa_ie);
  2195. bss->wpa_ie = NULL;
  2196. bss->wpa_ie_len = 0;
  2197. }
  2198. if (elems.rsn &&
  2199. (!bss->rsn_ie || bss->rsn_ie_len != elems.rsn_len ||
  2200. memcmp(bss->rsn_ie, elems.rsn, elems.rsn_len))) {
  2201. kfree(bss->rsn_ie);
  2202. bss->rsn_ie = kmalloc(elems.rsn_len + 2, GFP_ATOMIC);
  2203. if (bss->rsn_ie) {
  2204. memcpy(bss->rsn_ie, elems.rsn - 2, elems.rsn_len + 2);
  2205. bss->rsn_ie_len = elems.rsn_len + 2;
  2206. } else
  2207. bss->rsn_ie_len = 0;
  2208. } else if (!elems.rsn && bss->rsn_ie) {
  2209. kfree(bss->rsn_ie);
  2210. bss->rsn_ie = NULL;
  2211. bss->rsn_ie_len = 0;
  2212. }
  2213. if (elems.wmm_param &&
  2214. (!bss->wmm_ie || bss->wmm_ie_len != elems.wmm_param_len ||
  2215. memcmp(bss->wmm_ie, elems.wmm_param, elems.wmm_param_len))) {
  2216. kfree(bss->wmm_ie);
  2217. bss->wmm_ie = kmalloc(elems.wmm_param_len + 2, GFP_ATOMIC);
  2218. if (bss->wmm_ie) {
  2219. memcpy(bss->wmm_ie, elems.wmm_param - 2,
  2220. elems.wmm_param_len + 2);
  2221. bss->wmm_ie_len = elems.wmm_param_len + 2;
  2222. } else
  2223. bss->wmm_ie_len = 0;
  2224. } else if (!elems.wmm_param && bss->wmm_ie) {
  2225. kfree(bss->wmm_ie);
  2226. bss->wmm_ie = NULL;
  2227. bss->wmm_ie_len = 0;
  2228. }
  2229. if (elems.ht_cap_elem &&
  2230. (!bss->ht_ie || bss->ht_ie_len != elems.ht_cap_elem_len ||
  2231. memcmp(bss->ht_ie, elems.ht_cap_elem, elems.ht_cap_elem_len))) {
  2232. kfree(bss->ht_ie);
  2233. bss->ht_ie = kmalloc(elems.ht_cap_elem_len + 2, GFP_ATOMIC);
  2234. if (bss->ht_ie) {
  2235. memcpy(bss->ht_ie, elems.ht_cap_elem - 2,
  2236. elems.ht_cap_elem_len + 2);
  2237. bss->ht_ie_len = elems.ht_cap_elem_len + 2;
  2238. } else
  2239. bss->ht_ie_len = 0;
  2240. } else if (!elems.ht_cap_elem && bss->ht_ie) {
  2241. kfree(bss->ht_ie);
  2242. bss->ht_ie = NULL;
  2243. bss->ht_ie_len = 0;
  2244. }
  2245. bss->timestamp = beacon_timestamp;
  2246. bss->last_update = jiffies;
  2247. bss->rssi = rx_status->ssi;
  2248. bss->signal = rx_status->signal;
  2249. bss->noise = rx_status->noise;
  2250. if (!beacon)
  2251. bss->probe_resp++;
  2252. /* check if we need to merge IBSS */
  2253. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS && beacon &&
  2254. !local->sta_sw_scanning && !local->sta_hw_scanning &&
  2255. bss->capability & WLAN_CAPABILITY_IBSS &&
  2256. bss->freq == local->oper_channel->center_freq &&
  2257. elems.ssid_len == sdata->u.sta.ssid_len &&
  2258. memcmp(elems.ssid, sdata->u.sta.ssid, sdata->u.sta.ssid_len) == 0) {
  2259. if (rx_status->flag & RX_FLAG_TSFT) {
  2260. /* in order for correct IBSS merging we need mactime
  2261. *
  2262. * since mactime is defined as the time the first data
  2263. * symbol of the frame hits the PHY, and the timestamp
  2264. * of the beacon is defined as "the time that the data
  2265. * symbol containing the first bit of the timestamp is
  2266. * transmitted to the PHY plus the transmitting STA’s
  2267. * delays through its local PHY from the MAC-PHY
  2268. * interface to its interface with the WM"
  2269. * (802.11 11.1.2) - equals the time this bit arrives at
  2270. * the receiver - we have to take into account the
  2271. * offset between the two.
  2272. * e.g: at 1 MBit that means mactime is 192 usec earlier
  2273. * (=24 bytes * 8 usecs/byte) than the beacon timestamp.
  2274. */
  2275. int rate = local->hw.wiphy->bands[rx_status->band]->
  2276. bitrates[rx_status->rate_idx].bitrate;
  2277. rx_timestamp = rx_status->mactime + (24 * 8 * 10 / rate);
  2278. } else if (local && local->ops && local->ops->get_tsf)
  2279. /* second best option: get current TSF */
  2280. rx_timestamp = local->ops->get_tsf(local_to_hw(local));
  2281. else
  2282. /* can't merge without knowing the TSF */
  2283. rx_timestamp = -1LLU;
  2284. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2285. printk(KERN_DEBUG "RX beacon SA=%s BSSID="
  2286. "%s TSF=0x%llx BCN=0x%llx diff=%lld @%lu\n",
  2287. print_mac(mac, mgmt->sa),
  2288. print_mac(mac2, mgmt->bssid),
  2289. (unsigned long long)rx_timestamp,
  2290. (unsigned long long)beacon_timestamp,
  2291. (unsigned long long)(rx_timestamp - beacon_timestamp),
  2292. jiffies);
  2293. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2294. if (beacon_timestamp > rx_timestamp) {
  2295. #ifndef CONFIG_MAC80211_IBSS_DEBUG
  2296. if (net_ratelimit())
  2297. #endif
  2298. printk(KERN_DEBUG "%s: beacon TSF higher than "
  2299. "local TSF - IBSS merge with BSSID %s\n",
  2300. dev->name, print_mac(mac, mgmt->bssid));
  2301. ieee80211_sta_join_ibss(dev, &sdata->u.sta, bss);
  2302. ieee80211_ibss_add_sta(dev, NULL,
  2303. mgmt->bssid, mgmt->sa);
  2304. }
  2305. }
  2306. ieee80211_rx_bss_put(dev, bss);
  2307. }
  2308. static void ieee80211_rx_mgmt_probe_resp(struct net_device *dev,
  2309. struct ieee80211_mgmt *mgmt,
  2310. size_t len,
  2311. struct ieee80211_rx_status *rx_status)
  2312. {
  2313. ieee80211_rx_bss_info(dev, mgmt, len, rx_status, 0);
  2314. }
  2315. static void ieee80211_rx_mgmt_beacon(struct net_device *dev,
  2316. struct ieee80211_mgmt *mgmt,
  2317. size_t len,
  2318. struct ieee80211_rx_status *rx_status)
  2319. {
  2320. struct ieee80211_sub_if_data *sdata;
  2321. struct ieee80211_if_sta *ifsta;
  2322. size_t baselen;
  2323. struct ieee802_11_elems elems;
  2324. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2325. struct ieee80211_conf *conf = &local->hw.conf;
  2326. u32 changed = 0;
  2327. ieee80211_rx_bss_info(dev, mgmt, len, rx_status, 1);
  2328. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2329. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  2330. return;
  2331. ifsta = &sdata->u.sta;
  2332. if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED) ||
  2333. memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0)
  2334. return;
  2335. /* Process beacon from the current BSS */
  2336. baselen = (u8 *) mgmt->u.beacon.variable - (u8 *) mgmt;
  2337. if (baselen > len)
  2338. return;
  2339. ieee802_11_parse_elems(mgmt->u.beacon.variable, len - baselen, &elems);
  2340. if (elems.erp_info && elems.erp_info_len >= 1)
  2341. changed |= ieee80211_handle_erp_ie(sdata, elems.erp_info[0]);
  2342. if (elems.ht_cap_elem && elems.ht_info_elem &&
  2343. elems.wmm_param && local->ops->conf_ht &&
  2344. conf->flags & IEEE80211_CONF_SUPPORT_HT_MODE) {
  2345. struct ieee80211_ht_bss_info bss_info;
  2346. ieee80211_ht_addt_info_ie_to_ht_bss_info(
  2347. (struct ieee80211_ht_addt_info *)
  2348. elems.ht_info_elem, &bss_info);
  2349. /* check if AP changed bss inforamation */
  2350. if ((conf->ht_bss_conf.primary_channel !=
  2351. bss_info.primary_channel) ||
  2352. (conf->ht_bss_conf.bss_cap != bss_info.bss_cap) ||
  2353. (conf->ht_bss_conf.bss_op_mode != bss_info.bss_op_mode))
  2354. ieee80211_hw_config_ht(local, 1, &conf->ht_conf,
  2355. &bss_info);
  2356. }
  2357. if (elems.wmm_param && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  2358. ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param,
  2359. elems.wmm_param_len);
  2360. }
  2361. ieee80211_bss_info_change_notify(sdata, changed);
  2362. }
  2363. static void ieee80211_rx_mgmt_probe_req(struct net_device *dev,
  2364. struct ieee80211_if_sta *ifsta,
  2365. struct ieee80211_mgmt *mgmt,
  2366. size_t len,
  2367. struct ieee80211_rx_status *rx_status)
  2368. {
  2369. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2370. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2371. int tx_last_beacon;
  2372. struct sk_buff *skb;
  2373. struct ieee80211_mgmt *resp;
  2374. u8 *pos, *end;
  2375. DECLARE_MAC_BUF(mac);
  2376. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2377. DECLARE_MAC_BUF(mac2);
  2378. DECLARE_MAC_BUF(mac3);
  2379. #endif
  2380. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS ||
  2381. ifsta->state != IEEE80211_IBSS_JOINED ||
  2382. len < 24 + 2 || !ifsta->probe_resp)
  2383. return;
  2384. if (local->ops->tx_last_beacon)
  2385. tx_last_beacon = local->ops->tx_last_beacon(local_to_hw(local));
  2386. else
  2387. tx_last_beacon = 1;
  2388. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2389. printk(KERN_DEBUG "%s: RX ProbeReq SA=%s DA=%s BSSID="
  2390. "%s (tx_last_beacon=%d)\n",
  2391. dev->name, print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->da),
  2392. print_mac(mac3, mgmt->bssid), tx_last_beacon);
  2393. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2394. if (!tx_last_beacon)
  2395. return;
  2396. if (memcmp(mgmt->bssid, ifsta->bssid, ETH_ALEN) != 0 &&
  2397. memcmp(mgmt->bssid, "\xff\xff\xff\xff\xff\xff", ETH_ALEN) != 0)
  2398. return;
  2399. end = ((u8 *) mgmt) + len;
  2400. pos = mgmt->u.probe_req.variable;
  2401. if (pos[0] != WLAN_EID_SSID ||
  2402. pos + 2 + pos[1] > end) {
  2403. if (net_ratelimit()) {
  2404. printk(KERN_DEBUG "%s: Invalid SSID IE in ProbeReq "
  2405. "from %s\n",
  2406. dev->name, print_mac(mac, mgmt->sa));
  2407. }
  2408. return;
  2409. }
  2410. if (pos[1] != 0 &&
  2411. (pos[1] != ifsta->ssid_len ||
  2412. memcmp(pos + 2, ifsta->ssid, ifsta->ssid_len) != 0)) {
  2413. /* Ignore ProbeReq for foreign SSID */
  2414. return;
  2415. }
  2416. /* Reply with ProbeResp */
  2417. skb = skb_copy(ifsta->probe_resp, GFP_KERNEL);
  2418. if (!skb)
  2419. return;
  2420. resp = (struct ieee80211_mgmt *) skb->data;
  2421. memcpy(resp->da, mgmt->sa, ETH_ALEN);
  2422. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2423. printk(KERN_DEBUG "%s: Sending ProbeResp to %s\n",
  2424. dev->name, print_mac(mac, resp->da));
  2425. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2426. ieee80211_sta_tx(dev, skb, 0);
  2427. }
  2428. static void ieee80211_rx_mgmt_action(struct net_device *dev,
  2429. struct ieee80211_if_sta *ifsta,
  2430. struct ieee80211_mgmt *mgmt,
  2431. size_t len,
  2432. struct ieee80211_rx_status *rx_status)
  2433. {
  2434. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2435. if (len < IEEE80211_MIN_ACTION_SIZE)
  2436. return;
  2437. switch (mgmt->u.action.category) {
  2438. case WLAN_CATEGORY_BACK:
  2439. switch (mgmt->u.action.u.addba_req.action_code) {
  2440. case WLAN_ACTION_ADDBA_REQ:
  2441. if (len < (IEEE80211_MIN_ACTION_SIZE +
  2442. sizeof(mgmt->u.action.u.addba_req)))
  2443. break;
  2444. ieee80211_sta_process_addba_request(dev, mgmt, len);
  2445. break;
  2446. case WLAN_ACTION_ADDBA_RESP:
  2447. if (len < (IEEE80211_MIN_ACTION_SIZE +
  2448. sizeof(mgmt->u.action.u.addba_resp)))
  2449. break;
  2450. ieee80211_sta_process_addba_resp(dev, mgmt, len);
  2451. break;
  2452. case WLAN_ACTION_DELBA:
  2453. if (len < (IEEE80211_MIN_ACTION_SIZE +
  2454. sizeof(mgmt->u.action.u.delba)))
  2455. break;
  2456. ieee80211_sta_process_delba(dev, mgmt, len);
  2457. break;
  2458. default:
  2459. if (net_ratelimit())
  2460. printk(KERN_DEBUG "%s: Rx unknown A-MPDU action\n",
  2461. dev->name);
  2462. break;
  2463. }
  2464. break;
  2465. case PLINK_CATEGORY:
  2466. if (ieee80211_vif_is_mesh(&sdata->vif))
  2467. mesh_rx_plink_frame(dev, mgmt, len, rx_status);
  2468. break;
  2469. case MESH_PATH_SEL_CATEGORY:
  2470. if (ieee80211_vif_is_mesh(&sdata->vif))
  2471. mesh_rx_path_sel_frame(dev, mgmt, len);
  2472. break;
  2473. default:
  2474. if (net_ratelimit())
  2475. printk(KERN_DEBUG "%s: Rx unknown action frame - "
  2476. "category=%d\n", dev->name, mgmt->u.action.category);
  2477. break;
  2478. }
  2479. }
  2480. void ieee80211_sta_rx_mgmt(struct net_device *dev, struct sk_buff *skb,
  2481. struct ieee80211_rx_status *rx_status)
  2482. {
  2483. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2484. struct ieee80211_sub_if_data *sdata;
  2485. struct ieee80211_if_sta *ifsta;
  2486. struct ieee80211_mgmt *mgmt;
  2487. u16 fc;
  2488. if (skb->len < 24)
  2489. goto fail;
  2490. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2491. ifsta = &sdata->u.sta;
  2492. mgmt = (struct ieee80211_mgmt *) skb->data;
  2493. fc = le16_to_cpu(mgmt->frame_control);
  2494. switch (fc & IEEE80211_FCTL_STYPE) {
  2495. case IEEE80211_STYPE_PROBE_REQ:
  2496. case IEEE80211_STYPE_PROBE_RESP:
  2497. case IEEE80211_STYPE_BEACON:
  2498. case IEEE80211_STYPE_ACTION:
  2499. memcpy(skb->cb, rx_status, sizeof(*rx_status));
  2500. case IEEE80211_STYPE_AUTH:
  2501. case IEEE80211_STYPE_ASSOC_RESP:
  2502. case IEEE80211_STYPE_REASSOC_RESP:
  2503. case IEEE80211_STYPE_DEAUTH:
  2504. case IEEE80211_STYPE_DISASSOC:
  2505. skb_queue_tail(&ifsta->skb_queue, skb);
  2506. queue_work(local->hw.workqueue, &ifsta->work);
  2507. return;
  2508. default:
  2509. printk(KERN_DEBUG "%s: received unknown management frame - "
  2510. "stype=%d\n", dev->name,
  2511. (fc & IEEE80211_FCTL_STYPE) >> 4);
  2512. break;
  2513. }
  2514. fail:
  2515. kfree_skb(skb);
  2516. }
  2517. static void ieee80211_sta_rx_queued_mgmt(struct net_device *dev,
  2518. struct sk_buff *skb)
  2519. {
  2520. struct ieee80211_rx_status *rx_status;
  2521. struct ieee80211_sub_if_data *sdata;
  2522. struct ieee80211_if_sta *ifsta;
  2523. struct ieee80211_mgmt *mgmt;
  2524. u16 fc;
  2525. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2526. ifsta = &sdata->u.sta;
  2527. rx_status = (struct ieee80211_rx_status *) skb->cb;
  2528. mgmt = (struct ieee80211_mgmt *) skb->data;
  2529. fc = le16_to_cpu(mgmt->frame_control);
  2530. switch (fc & IEEE80211_FCTL_STYPE) {
  2531. case IEEE80211_STYPE_PROBE_REQ:
  2532. ieee80211_rx_mgmt_probe_req(dev, ifsta, mgmt, skb->len,
  2533. rx_status);
  2534. break;
  2535. case IEEE80211_STYPE_PROBE_RESP:
  2536. ieee80211_rx_mgmt_probe_resp(dev, mgmt, skb->len, rx_status);
  2537. break;
  2538. case IEEE80211_STYPE_BEACON:
  2539. ieee80211_rx_mgmt_beacon(dev, mgmt, skb->len, rx_status);
  2540. break;
  2541. case IEEE80211_STYPE_AUTH:
  2542. ieee80211_rx_mgmt_auth(dev, ifsta, mgmt, skb->len);
  2543. break;
  2544. case IEEE80211_STYPE_ASSOC_RESP:
  2545. ieee80211_rx_mgmt_assoc_resp(sdata, ifsta, mgmt, skb->len, 0);
  2546. break;
  2547. case IEEE80211_STYPE_REASSOC_RESP:
  2548. ieee80211_rx_mgmt_assoc_resp(sdata, ifsta, mgmt, skb->len, 1);
  2549. break;
  2550. case IEEE80211_STYPE_DEAUTH:
  2551. ieee80211_rx_mgmt_deauth(dev, ifsta, mgmt, skb->len);
  2552. break;
  2553. case IEEE80211_STYPE_DISASSOC:
  2554. ieee80211_rx_mgmt_disassoc(dev, ifsta, mgmt, skb->len);
  2555. break;
  2556. case IEEE80211_STYPE_ACTION:
  2557. ieee80211_rx_mgmt_action(dev, ifsta, mgmt, skb->len, rx_status);
  2558. break;
  2559. }
  2560. kfree_skb(skb);
  2561. }
  2562. ieee80211_rx_result
  2563. ieee80211_sta_rx_scan(struct net_device *dev, struct sk_buff *skb,
  2564. struct ieee80211_rx_status *rx_status)
  2565. {
  2566. struct ieee80211_mgmt *mgmt;
  2567. u16 fc;
  2568. if (skb->len < 2)
  2569. return RX_DROP_UNUSABLE;
  2570. mgmt = (struct ieee80211_mgmt *) skb->data;
  2571. fc = le16_to_cpu(mgmt->frame_control);
  2572. if ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
  2573. return RX_CONTINUE;
  2574. if (skb->len < 24)
  2575. return RX_DROP_MONITOR;
  2576. if ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) {
  2577. if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP) {
  2578. ieee80211_rx_mgmt_probe_resp(dev, mgmt,
  2579. skb->len, rx_status);
  2580. dev_kfree_skb(skb);
  2581. return RX_QUEUED;
  2582. } else if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_BEACON) {
  2583. ieee80211_rx_mgmt_beacon(dev, mgmt, skb->len,
  2584. rx_status);
  2585. dev_kfree_skb(skb);
  2586. return RX_QUEUED;
  2587. }
  2588. }
  2589. return RX_CONTINUE;
  2590. }
  2591. static int ieee80211_sta_active_ibss(struct net_device *dev)
  2592. {
  2593. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2594. int active = 0;
  2595. struct sta_info *sta;
  2596. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2597. rcu_read_lock();
  2598. list_for_each_entry_rcu(sta, &local->sta_list, list) {
  2599. if (sta->sdata == sdata &&
  2600. time_after(sta->last_rx + IEEE80211_IBSS_MERGE_INTERVAL,
  2601. jiffies)) {
  2602. active++;
  2603. break;
  2604. }
  2605. }
  2606. rcu_read_unlock();
  2607. return active;
  2608. }
  2609. static void ieee80211_sta_expire(struct net_device *dev, unsigned long exp_time)
  2610. {
  2611. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2612. struct sta_info *sta, *tmp;
  2613. LIST_HEAD(tmp_list);
  2614. DECLARE_MAC_BUF(mac);
  2615. unsigned long flags;
  2616. spin_lock_irqsave(&local->sta_lock, flags);
  2617. list_for_each_entry_safe(sta, tmp, &local->sta_list, list)
  2618. if (time_after(jiffies, sta->last_rx + exp_time)) {
  2619. printk(KERN_DEBUG "%s: expiring inactive STA %s\n",
  2620. dev->name, print_mac(mac, sta->addr));
  2621. sta_info_unlink(&sta);
  2622. if (sta)
  2623. list_add(&sta->list, &tmp_list);
  2624. }
  2625. spin_unlock_irqrestore(&local->sta_lock, flags);
  2626. synchronize_rcu();
  2627. rtnl_lock();
  2628. list_for_each_entry_safe(sta, tmp, &tmp_list, list)
  2629. sta_info_destroy(sta);
  2630. rtnl_unlock();
  2631. }
  2632. static void ieee80211_sta_merge_ibss(struct net_device *dev,
  2633. struct ieee80211_if_sta *ifsta)
  2634. {
  2635. mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL);
  2636. ieee80211_sta_expire(dev, IEEE80211_IBSS_INACTIVITY_LIMIT);
  2637. if (ieee80211_sta_active_ibss(dev))
  2638. return;
  2639. printk(KERN_DEBUG "%s: No active IBSS STAs - trying to scan for other "
  2640. "IBSS networks with same SSID (merge)\n", dev->name);
  2641. ieee80211_sta_req_scan(dev, ifsta->ssid, ifsta->ssid_len);
  2642. }
  2643. #ifdef CONFIG_MAC80211_MESH
  2644. static void ieee80211_mesh_housekeeping(struct net_device *dev,
  2645. struct ieee80211_if_sta *ifsta)
  2646. {
  2647. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2648. bool free_plinks;
  2649. ieee80211_sta_expire(dev, IEEE80211_MESH_PEER_INACTIVITY_LIMIT);
  2650. mesh_path_expire(dev);
  2651. free_plinks = mesh_plink_availables(sdata);
  2652. if (free_plinks != sdata->u.sta.accepting_plinks)
  2653. ieee80211_if_config_beacon(dev);
  2654. mod_timer(&ifsta->timer, jiffies +
  2655. IEEE80211_MESH_HOUSEKEEPING_INTERVAL);
  2656. }
  2657. void ieee80211_start_mesh(struct net_device *dev)
  2658. {
  2659. struct ieee80211_if_sta *ifsta;
  2660. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2661. ifsta = &sdata->u.sta;
  2662. ifsta->state = IEEE80211_MESH_UP;
  2663. ieee80211_sta_timer((unsigned long)sdata);
  2664. }
  2665. #endif
  2666. void ieee80211_sta_timer(unsigned long data)
  2667. {
  2668. struct ieee80211_sub_if_data *sdata =
  2669. (struct ieee80211_sub_if_data *) data;
  2670. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  2671. struct ieee80211_local *local = wdev_priv(&sdata->wdev);
  2672. set_bit(IEEE80211_STA_REQ_RUN, &ifsta->request);
  2673. queue_work(local->hw.workqueue, &ifsta->work);
  2674. }
  2675. void ieee80211_sta_work(struct work_struct *work)
  2676. {
  2677. struct ieee80211_sub_if_data *sdata =
  2678. container_of(work, struct ieee80211_sub_if_data, u.sta.work);
  2679. struct net_device *dev = sdata->dev;
  2680. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2681. struct ieee80211_if_sta *ifsta;
  2682. struct sk_buff *skb;
  2683. if (!netif_running(dev))
  2684. return;
  2685. if (local->sta_sw_scanning || local->sta_hw_scanning)
  2686. return;
  2687. if (sdata->vif.type != IEEE80211_IF_TYPE_STA &&
  2688. sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  2689. sdata->vif.type != IEEE80211_IF_TYPE_MESH_POINT) {
  2690. printk(KERN_DEBUG "%s: ieee80211_sta_work: non-STA interface "
  2691. "(type=%d)\n", dev->name, sdata->vif.type);
  2692. return;
  2693. }
  2694. ifsta = &sdata->u.sta;
  2695. while ((skb = skb_dequeue(&ifsta->skb_queue)))
  2696. ieee80211_sta_rx_queued_mgmt(dev, skb);
  2697. #ifdef CONFIG_MAC80211_MESH
  2698. if (ifsta->preq_queue_len &&
  2699. time_after(jiffies,
  2700. ifsta->last_preq + msecs_to_jiffies(ifsta->mshcfg.dot11MeshHWMPpreqMinInterval)))
  2701. mesh_path_start_discovery(dev);
  2702. #endif
  2703. if (ifsta->state != IEEE80211_AUTHENTICATE &&
  2704. ifsta->state != IEEE80211_ASSOCIATE &&
  2705. test_and_clear_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request)) {
  2706. if (ifsta->scan_ssid_len)
  2707. ieee80211_sta_start_scan(dev, ifsta->scan_ssid, ifsta->scan_ssid_len);
  2708. else
  2709. ieee80211_sta_start_scan(dev, NULL, 0);
  2710. return;
  2711. }
  2712. if (test_and_clear_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request)) {
  2713. if (ieee80211_sta_config_auth(dev, ifsta))
  2714. return;
  2715. clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request);
  2716. } else if (!test_and_clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request))
  2717. return;
  2718. switch (ifsta->state) {
  2719. case IEEE80211_DISABLED:
  2720. break;
  2721. case IEEE80211_AUTHENTICATE:
  2722. ieee80211_authenticate(dev, ifsta);
  2723. break;
  2724. case IEEE80211_ASSOCIATE:
  2725. ieee80211_associate(dev, ifsta);
  2726. break;
  2727. case IEEE80211_ASSOCIATED:
  2728. ieee80211_associated(dev, ifsta);
  2729. break;
  2730. case IEEE80211_IBSS_SEARCH:
  2731. ieee80211_sta_find_ibss(dev, ifsta);
  2732. break;
  2733. case IEEE80211_IBSS_JOINED:
  2734. ieee80211_sta_merge_ibss(dev, ifsta);
  2735. break;
  2736. #ifdef CONFIG_MAC80211_MESH
  2737. case IEEE80211_MESH_UP:
  2738. ieee80211_mesh_housekeeping(dev, ifsta);
  2739. break;
  2740. #endif
  2741. default:
  2742. printk(KERN_DEBUG "ieee80211_sta_work: Unknown state %d\n",
  2743. ifsta->state);
  2744. break;
  2745. }
  2746. if (ieee80211_privacy_mismatch(dev, ifsta)) {
  2747. printk(KERN_DEBUG "%s: privacy configuration mismatch and "
  2748. "mixed-cell disabled - disassociate\n", dev->name);
  2749. ieee80211_send_disassoc(dev, ifsta, WLAN_REASON_UNSPECIFIED);
  2750. ieee80211_set_disassoc(dev, ifsta, 0);
  2751. }
  2752. }
  2753. static void ieee80211_sta_reset_auth(struct net_device *dev,
  2754. struct ieee80211_if_sta *ifsta)
  2755. {
  2756. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2757. if (local->ops->reset_tsf) {
  2758. /* Reset own TSF to allow time synchronization work. */
  2759. local->ops->reset_tsf(local_to_hw(local));
  2760. }
  2761. ifsta->wmm_last_param_set = -1; /* allow any WMM update */
  2762. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN)
  2763. ifsta->auth_alg = WLAN_AUTH_OPEN;
  2764. else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY)
  2765. ifsta->auth_alg = WLAN_AUTH_SHARED_KEY;
  2766. else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP)
  2767. ifsta->auth_alg = WLAN_AUTH_LEAP;
  2768. else
  2769. ifsta->auth_alg = WLAN_AUTH_OPEN;
  2770. printk(KERN_DEBUG "%s: Initial auth_alg=%d\n", dev->name,
  2771. ifsta->auth_alg);
  2772. ifsta->auth_transaction = -1;
  2773. ifsta->flags &= ~IEEE80211_STA_ASSOCIATED;
  2774. ifsta->auth_tries = ifsta->assoc_tries = 0;
  2775. netif_carrier_off(dev);
  2776. }
  2777. void ieee80211_sta_req_auth(struct net_device *dev,
  2778. struct ieee80211_if_sta *ifsta)
  2779. {
  2780. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2781. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2782. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  2783. return;
  2784. if ((ifsta->flags & (IEEE80211_STA_BSSID_SET |
  2785. IEEE80211_STA_AUTO_BSSID_SEL)) &&
  2786. (ifsta->flags & (IEEE80211_STA_SSID_SET |
  2787. IEEE80211_STA_AUTO_SSID_SEL))) {
  2788. set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request);
  2789. queue_work(local->hw.workqueue, &ifsta->work);
  2790. }
  2791. }
  2792. static int ieee80211_sta_match_ssid(struct ieee80211_if_sta *ifsta,
  2793. const char *ssid, int ssid_len)
  2794. {
  2795. int tmp, hidden_ssid;
  2796. if (ssid_len == ifsta->ssid_len &&
  2797. !memcmp(ifsta->ssid, ssid, ssid_len))
  2798. return 1;
  2799. if (ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL)
  2800. return 0;
  2801. hidden_ssid = 1;
  2802. tmp = ssid_len;
  2803. while (tmp--) {
  2804. if (ssid[tmp] != '\0') {
  2805. hidden_ssid = 0;
  2806. break;
  2807. }
  2808. }
  2809. if (hidden_ssid && ifsta->ssid_len == ssid_len)
  2810. return 1;
  2811. if (ssid_len == 1 && ssid[0] == ' ')
  2812. return 1;
  2813. return 0;
  2814. }
  2815. static int ieee80211_sta_config_auth(struct net_device *dev,
  2816. struct ieee80211_if_sta *ifsta)
  2817. {
  2818. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2819. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2820. struct ieee80211_sta_bss *bss, *selected = NULL;
  2821. int top_rssi = 0, freq;
  2822. if (!(ifsta->flags & (IEEE80211_STA_AUTO_SSID_SEL |
  2823. IEEE80211_STA_AUTO_BSSID_SEL | IEEE80211_STA_AUTO_CHANNEL_SEL))) {
  2824. ifsta->state = IEEE80211_AUTHENTICATE;
  2825. ieee80211_sta_reset_auth(dev, ifsta);
  2826. return 0;
  2827. }
  2828. spin_lock_bh(&local->sta_bss_lock);
  2829. freq = local->oper_channel->center_freq;
  2830. list_for_each_entry(bss, &local->sta_bss_list, list) {
  2831. if (!(bss->capability & WLAN_CAPABILITY_ESS))
  2832. continue;
  2833. if (!!(bss->capability & WLAN_CAPABILITY_PRIVACY) ^
  2834. !!sdata->default_key)
  2835. continue;
  2836. if (!(ifsta->flags & IEEE80211_STA_AUTO_CHANNEL_SEL) &&
  2837. bss->freq != freq)
  2838. continue;
  2839. if (!(ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL) &&
  2840. memcmp(bss->bssid, ifsta->bssid, ETH_ALEN))
  2841. continue;
  2842. if (!(ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL) &&
  2843. !ieee80211_sta_match_ssid(ifsta, bss->ssid, bss->ssid_len))
  2844. continue;
  2845. if (!selected || top_rssi < bss->rssi) {
  2846. selected = bss;
  2847. top_rssi = bss->rssi;
  2848. }
  2849. }
  2850. if (selected)
  2851. atomic_inc(&selected->users);
  2852. spin_unlock_bh(&local->sta_bss_lock);
  2853. if (selected) {
  2854. ieee80211_set_freq(local, selected->freq);
  2855. if (!(ifsta->flags & IEEE80211_STA_SSID_SET))
  2856. ieee80211_sta_set_ssid(dev, selected->ssid,
  2857. selected->ssid_len);
  2858. ieee80211_sta_set_bssid(dev, selected->bssid);
  2859. ieee80211_sta_def_wmm_params(dev, selected, 0);
  2860. ieee80211_rx_bss_put(dev, selected);
  2861. ifsta->state = IEEE80211_AUTHENTICATE;
  2862. ieee80211_sta_reset_auth(dev, ifsta);
  2863. return 0;
  2864. } else {
  2865. if (ifsta->state != IEEE80211_AUTHENTICATE) {
  2866. if (ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL)
  2867. ieee80211_sta_start_scan(dev, NULL, 0);
  2868. else
  2869. ieee80211_sta_start_scan(dev, ifsta->ssid,
  2870. ifsta->ssid_len);
  2871. ifsta->state = IEEE80211_AUTHENTICATE;
  2872. set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request);
  2873. } else
  2874. ifsta->state = IEEE80211_DISABLED;
  2875. }
  2876. return -1;
  2877. }
  2878. static int ieee80211_sta_create_ibss(struct net_device *dev,
  2879. struct ieee80211_if_sta *ifsta)
  2880. {
  2881. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2882. struct ieee80211_sta_bss *bss;
  2883. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2884. struct ieee80211_supported_band *sband;
  2885. u8 bssid[ETH_ALEN], *pos;
  2886. int i;
  2887. DECLARE_MAC_BUF(mac);
  2888. #if 0
  2889. /* Easier testing, use fixed BSSID. */
  2890. memset(bssid, 0xfe, ETH_ALEN);
  2891. #else
  2892. /* Generate random, not broadcast, locally administered BSSID. Mix in
  2893. * own MAC address to make sure that devices that do not have proper
  2894. * random number generator get different BSSID. */
  2895. get_random_bytes(bssid, ETH_ALEN);
  2896. for (i = 0; i < ETH_ALEN; i++)
  2897. bssid[i] ^= dev->dev_addr[i];
  2898. bssid[0] &= ~0x01;
  2899. bssid[0] |= 0x02;
  2900. #endif
  2901. printk(KERN_DEBUG "%s: Creating new IBSS network, BSSID %s\n",
  2902. dev->name, print_mac(mac, bssid));
  2903. bss = ieee80211_rx_bss_add(dev, bssid,
  2904. local->hw.conf.channel->center_freq,
  2905. sdata->u.sta.ssid, sdata->u.sta.ssid_len);
  2906. if (!bss)
  2907. return -ENOMEM;
  2908. bss->band = local->hw.conf.channel->band;
  2909. sband = local->hw.wiphy->bands[bss->band];
  2910. if (local->hw.conf.beacon_int == 0)
  2911. local->hw.conf.beacon_int = 10000;
  2912. bss->beacon_int = local->hw.conf.beacon_int;
  2913. bss->last_update = jiffies;
  2914. bss->capability = WLAN_CAPABILITY_IBSS;
  2915. if (sdata->default_key) {
  2916. bss->capability |= WLAN_CAPABILITY_PRIVACY;
  2917. } else
  2918. sdata->drop_unencrypted = 0;
  2919. bss->supp_rates_len = sband->n_bitrates;
  2920. pos = bss->supp_rates;
  2921. for (i = 0; i < sband->n_bitrates; i++) {
  2922. int rate = sband->bitrates[i].bitrate;
  2923. *pos++ = (u8) (rate / 5);
  2924. }
  2925. return ieee80211_sta_join_ibss(dev, ifsta, bss);
  2926. }
  2927. static int ieee80211_sta_find_ibss(struct net_device *dev,
  2928. struct ieee80211_if_sta *ifsta)
  2929. {
  2930. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2931. struct ieee80211_sta_bss *bss;
  2932. int found = 0;
  2933. u8 bssid[ETH_ALEN];
  2934. int active_ibss;
  2935. DECLARE_MAC_BUF(mac);
  2936. DECLARE_MAC_BUF(mac2);
  2937. if (ifsta->ssid_len == 0)
  2938. return -EINVAL;
  2939. active_ibss = ieee80211_sta_active_ibss(dev);
  2940. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2941. printk(KERN_DEBUG "%s: sta_find_ibss (active_ibss=%d)\n",
  2942. dev->name, active_ibss);
  2943. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2944. spin_lock_bh(&local->sta_bss_lock);
  2945. list_for_each_entry(bss, &local->sta_bss_list, list) {
  2946. if (ifsta->ssid_len != bss->ssid_len ||
  2947. memcmp(ifsta->ssid, bss->ssid, bss->ssid_len) != 0
  2948. || !(bss->capability & WLAN_CAPABILITY_IBSS))
  2949. continue;
  2950. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2951. printk(KERN_DEBUG " bssid=%s found\n",
  2952. print_mac(mac, bss->bssid));
  2953. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2954. memcpy(bssid, bss->bssid, ETH_ALEN);
  2955. found = 1;
  2956. if (active_ibss || memcmp(bssid, ifsta->bssid, ETH_ALEN) != 0)
  2957. break;
  2958. }
  2959. spin_unlock_bh(&local->sta_bss_lock);
  2960. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2961. printk(KERN_DEBUG " sta_find_ibss: selected %s current "
  2962. "%s\n", print_mac(mac, bssid), print_mac(mac2, ifsta->bssid));
  2963. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2964. if (found && memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0 &&
  2965. (bss = ieee80211_rx_bss_get(dev, bssid,
  2966. local->hw.conf.channel->center_freq,
  2967. ifsta->ssid, ifsta->ssid_len))) {
  2968. printk(KERN_DEBUG "%s: Selected IBSS BSSID %s"
  2969. " based on configured SSID\n",
  2970. dev->name, print_mac(mac, bssid));
  2971. return ieee80211_sta_join_ibss(dev, ifsta, bss);
  2972. }
  2973. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2974. printk(KERN_DEBUG " did not try to join ibss\n");
  2975. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2976. /* Selected IBSS not found in current scan results - try to scan */
  2977. if (ifsta->state == IEEE80211_IBSS_JOINED &&
  2978. !ieee80211_sta_active_ibss(dev)) {
  2979. mod_timer(&ifsta->timer, jiffies +
  2980. IEEE80211_IBSS_MERGE_INTERVAL);
  2981. } else if (time_after(jiffies, local->last_scan_completed +
  2982. IEEE80211_SCAN_INTERVAL)) {
  2983. printk(KERN_DEBUG "%s: Trigger new scan to find an IBSS to "
  2984. "join\n", dev->name);
  2985. return ieee80211_sta_req_scan(dev, ifsta->ssid,
  2986. ifsta->ssid_len);
  2987. } else if (ifsta->state != IEEE80211_IBSS_JOINED) {
  2988. int interval = IEEE80211_SCAN_INTERVAL;
  2989. if (time_after(jiffies, ifsta->ibss_join_req +
  2990. IEEE80211_IBSS_JOIN_TIMEOUT)) {
  2991. if ((ifsta->flags & IEEE80211_STA_CREATE_IBSS) &&
  2992. (!(local->oper_channel->flags &
  2993. IEEE80211_CHAN_NO_IBSS)))
  2994. return ieee80211_sta_create_ibss(dev, ifsta);
  2995. if (ifsta->flags & IEEE80211_STA_CREATE_IBSS) {
  2996. printk(KERN_DEBUG "%s: IBSS not allowed on"
  2997. " %d MHz\n", dev->name,
  2998. local->hw.conf.channel->center_freq);
  2999. }
  3000. /* No IBSS found - decrease scan interval and continue
  3001. * scanning. */
  3002. interval = IEEE80211_SCAN_INTERVAL_SLOW;
  3003. }
  3004. ifsta->state = IEEE80211_IBSS_SEARCH;
  3005. mod_timer(&ifsta->timer, jiffies + interval);
  3006. return 0;
  3007. }
  3008. return 0;
  3009. }
  3010. int ieee80211_sta_set_ssid(struct net_device *dev, char *ssid, size_t len)
  3011. {
  3012. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3013. struct ieee80211_if_sta *ifsta;
  3014. if (len > IEEE80211_MAX_SSID_LEN)
  3015. return -EINVAL;
  3016. ifsta = &sdata->u.sta;
  3017. if (ifsta->ssid_len != len || memcmp(ifsta->ssid, ssid, len) != 0)
  3018. ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET;
  3019. memcpy(ifsta->ssid, ssid, len);
  3020. memset(ifsta->ssid + len, 0, IEEE80211_MAX_SSID_LEN - len);
  3021. ifsta->ssid_len = len;
  3022. if (len)
  3023. ifsta->flags |= IEEE80211_STA_SSID_SET;
  3024. else
  3025. ifsta->flags &= ~IEEE80211_STA_SSID_SET;
  3026. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS &&
  3027. !(ifsta->flags & IEEE80211_STA_BSSID_SET)) {
  3028. ifsta->ibss_join_req = jiffies;
  3029. ifsta->state = IEEE80211_IBSS_SEARCH;
  3030. return ieee80211_sta_find_ibss(dev, ifsta);
  3031. }
  3032. return 0;
  3033. }
  3034. int ieee80211_sta_get_ssid(struct net_device *dev, char *ssid, size_t *len)
  3035. {
  3036. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3037. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3038. memcpy(ssid, ifsta->ssid, ifsta->ssid_len);
  3039. *len = ifsta->ssid_len;
  3040. return 0;
  3041. }
  3042. int ieee80211_sta_set_bssid(struct net_device *dev, u8 *bssid)
  3043. {
  3044. struct ieee80211_sub_if_data *sdata;
  3045. struct ieee80211_if_sta *ifsta;
  3046. int res;
  3047. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3048. ifsta = &sdata->u.sta;
  3049. if (memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0) {
  3050. memcpy(ifsta->bssid, bssid, ETH_ALEN);
  3051. res = ieee80211_if_config(dev);
  3052. if (res) {
  3053. printk(KERN_DEBUG "%s: Failed to config new BSSID to "
  3054. "the low-level driver\n", dev->name);
  3055. return res;
  3056. }
  3057. }
  3058. if (is_valid_ether_addr(bssid))
  3059. ifsta->flags |= IEEE80211_STA_BSSID_SET;
  3060. else
  3061. ifsta->flags &= ~IEEE80211_STA_BSSID_SET;
  3062. return 0;
  3063. }
  3064. static void ieee80211_send_nullfunc(struct ieee80211_local *local,
  3065. struct ieee80211_sub_if_data *sdata,
  3066. int powersave)
  3067. {
  3068. struct sk_buff *skb;
  3069. struct ieee80211_hdr *nullfunc;
  3070. u16 fc;
  3071. skb = dev_alloc_skb(local->hw.extra_tx_headroom + 24);
  3072. if (!skb) {
  3073. printk(KERN_DEBUG "%s: failed to allocate buffer for nullfunc "
  3074. "frame\n", sdata->dev->name);
  3075. return;
  3076. }
  3077. skb_reserve(skb, local->hw.extra_tx_headroom);
  3078. nullfunc = (struct ieee80211_hdr *) skb_put(skb, 24);
  3079. memset(nullfunc, 0, 24);
  3080. fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC |
  3081. IEEE80211_FCTL_TODS;
  3082. if (powersave)
  3083. fc |= IEEE80211_FCTL_PM;
  3084. nullfunc->frame_control = cpu_to_le16(fc);
  3085. memcpy(nullfunc->addr1, sdata->u.sta.bssid, ETH_ALEN);
  3086. memcpy(nullfunc->addr2, sdata->dev->dev_addr, ETH_ALEN);
  3087. memcpy(nullfunc->addr3, sdata->u.sta.bssid, ETH_ALEN);
  3088. ieee80211_sta_tx(sdata->dev, skb, 0);
  3089. }
  3090. static void ieee80211_restart_sta_timer(struct ieee80211_sub_if_data *sdata)
  3091. {
  3092. if (sdata->vif.type == IEEE80211_IF_TYPE_STA ||
  3093. ieee80211_vif_is_mesh(&sdata->vif))
  3094. ieee80211_sta_timer((unsigned long)sdata);
  3095. }
  3096. void ieee80211_scan_completed(struct ieee80211_hw *hw)
  3097. {
  3098. struct ieee80211_local *local = hw_to_local(hw);
  3099. struct net_device *dev = local->scan_dev;
  3100. struct ieee80211_sub_if_data *sdata;
  3101. union iwreq_data wrqu;
  3102. local->last_scan_completed = jiffies;
  3103. memset(&wrqu, 0, sizeof(wrqu));
  3104. wireless_send_event(dev, SIOCGIWSCAN, &wrqu, NULL);
  3105. if (local->sta_hw_scanning) {
  3106. local->sta_hw_scanning = 0;
  3107. if (ieee80211_hw_config(local))
  3108. printk(KERN_DEBUG "%s: failed to restore operational "
  3109. "channel after scan\n", dev->name);
  3110. /* Restart STA timer for HW scan case */
  3111. rcu_read_lock();
  3112. list_for_each_entry_rcu(sdata, &local->interfaces, list)
  3113. ieee80211_restart_sta_timer(sdata);
  3114. rcu_read_unlock();
  3115. goto done;
  3116. }
  3117. local->sta_sw_scanning = 0;
  3118. if (ieee80211_hw_config(local))
  3119. printk(KERN_DEBUG "%s: failed to restore operational "
  3120. "channel after scan\n", dev->name);
  3121. netif_tx_lock_bh(local->mdev);
  3122. local->filter_flags &= ~FIF_BCN_PRBRESP_PROMISC;
  3123. local->ops->configure_filter(local_to_hw(local),
  3124. FIF_BCN_PRBRESP_PROMISC,
  3125. &local->filter_flags,
  3126. local->mdev->mc_count,
  3127. local->mdev->mc_list);
  3128. netif_tx_unlock_bh(local->mdev);
  3129. rcu_read_lock();
  3130. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  3131. /* No need to wake the master device. */
  3132. if (sdata->dev == local->mdev)
  3133. continue;
  3134. /* Tell AP we're back */
  3135. if (sdata->vif.type == IEEE80211_IF_TYPE_STA &&
  3136. sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED)
  3137. ieee80211_send_nullfunc(local, sdata, 0);
  3138. ieee80211_restart_sta_timer(sdata);
  3139. netif_wake_queue(sdata->dev);
  3140. }
  3141. rcu_read_unlock();
  3142. done:
  3143. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3144. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
  3145. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3146. if (!(ifsta->flags & IEEE80211_STA_BSSID_SET) ||
  3147. (!ifsta->state == IEEE80211_IBSS_JOINED &&
  3148. !ieee80211_sta_active_ibss(dev)))
  3149. ieee80211_sta_find_ibss(dev, ifsta);
  3150. }
  3151. }
  3152. EXPORT_SYMBOL(ieee80211_scan_completed);
  3153. void ieee80211_sta_scan_work(struct work_struct *work)
  3154. {
  3155. struct ieee80211_local *local =
  3156. container_of(work, struct ieee80211_local, scan_work.work);
  3157. struct net_device *dev = local->scan_dev;
  3158. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3159. struct ieee80211_supported_band *sband;
  3160. struct ieee80211_channel *chan;
  3161. int skip;
  3162. unsigned long next_delay = 0;
  3163. if (!local->sta_sw_scanning)
  3164. return;
  3165. switch (local->scan_state) {
  3166. case SCAN_SET_CHANNEL:
  3167. /*
  3168. * Get current scan band. scan_band may be IEEE80211_NUM_BANDS
  3169. * after we successfully scanned the last channel of the last
  3170. * band (and the last band is supported by the hw)
  3171. */
  3172. if (local->scan_band < IEEE80211_NUM_BANDS)
  3173. sband = local->hw.wiphy->bands[local->scan_band];
  3174. else
  3175. sband = NULL;
  3176. /*
  3177. * If we are at an unsupported band and have more bands
  3178. * left to scan, advance to the next supported one.
  3179. */
  3180. while (!sband && local->scan_band < IEEE80211_NUM_BANDS - 1) {
  3181. local->scan_band++;
  3182. sband = local->hw.wiphy->bands[local->scan_band];
  3183. local->scan_channel_idx = 0;
  3184. }
  3185. /* if no more bands/channels left, complete scan */
  3186. if (!sband || local->scan_channel_idx >= sband->n_channels) {
  3187. ieee80211_scan_completed(local_to_hw(local));
  3188. return;
  3189. }
  3190. skip = 0;
  3191. chan = &sband->channels[local->scan_channel_idx];
  3192. if (chan->flags & IEEE80211_CHAN_DISABLED ||
  3193. (sdata->vif.type == IEEE80211_IF_TYPE_IBSS &&
  3194. chan->flags & IEEE80211_CHAN_NO_IBSS))
  3195. skip = 1;
  3196. if (!skip) {
  3197. local->scan_channel = chan;
  3198. if (ieee80211_hw_config(local)) {
  3199. printk(KERN_DEBUG "%s: failed to set freq to "
  3200. "%d MHz for scan\n", dev->name,
  3201. chan->center_freq);
  3202. skip = 1;
  3203. }
  3204. }
  3205. /* advance state machine to next channel/band */
  3206. local->scan_channel_idx++;
  3207. if (local->scan_channel_idx >= sband->n_channels) {
  3208. /*
  3209. * scan_band may end up == IEEE80211_NUM_BANDS, but
  3210. * we'll catch that case above and complete the scan
  3211. * if that is the case.
  3212. */
  3213. local->scan_band++;
  3214. local->scan_channel_idx = 0;
  3215. }
  3216. if (skip)
  3217. break;
  3218. next_delay = IEEE80211_PROBE_DELAY +
  3219. usecs_to_jiffies(local->hw.channel_change_time);
  3220. local->scan_state = SCAN_SEND_PROBE;
  3221. break;
  3222. case SCAN_SEND_PROBE:
  3223. next_delay = IEEE80211_PASSIVE_CHANNEL_TIME;
  3224. local->scan_state = SCAN_SET_CHANNEL;
  3225. if (local->scan_channel->flags & IEEE80211_CHAN_PASSIVE_SCAN)
  3226. break;
  3227. ieee80211_send_probe_req(dev, NULL, local->scan_ssid,
  3228. local->scan_ssid_len);
  3229. next_delay = IEEE80211_CHANNEL_TIME;
  3230. break;
  3231. }
  3232. if (local->sta_sw_scanning)
  3233. queue_delayed_work(local->hw.workqueue, &local->scan_work,
  3234. next_delay);
  3235. }
  3236. static int ieee80211_sta_start_scan(struct net_device *dev,
  3237. u8 *ssid, size_t ssid_len)
  3238. {
  3239. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3240. struct ieee80211_sub_if_data *sdata;
  3241. if (ssid_len > IEEE80211_MAX_SSID_LEN)
  3242. return -EINVAL;
  3243. /* MLME-SCAN.request (page 118) page 144 (11.1.3.1)
  3244. * BSSType: INFRASTRUCTURE, INDEPENDENT, ANY_BSS
  3245. * BSSID: MACAddress
  3246. * SSID
  3247. * ScanType: ACTIVE, PASSIVE
  3248. * ProbeDelay: delay (in microseconds) to be used prior to transmitting
  3249. * a Probe frame during active scanning
  3250. * ChannelList
  3251. * MinChannelTime (>= ProbeDelay), in TU
  3252. * MaxChannelTime: (>= MinChannelTime), in TU
  3253. */
  3254. /* MLME-SCAN.confirm
  3255. * BSSDescriptionSet
  3256. * ResultCode: SUCCESS, INVALID_PARAMETERS
  3257. */
  3258. if (local->sta_sw_scanning || local->sta_hw_scanning) {
  3259. if (local->scan_dev == dev)
  3260. return 0;
  3261. return -EBUSY;
  3262. }
  3263. if (local->ops->hw_scan) {
  3264. int rc = local->ops->hw_scan(local_to_hw(local),
  3265. ssid, ssid_len);
  3266. if (!rc) {
  3267. local->sta_hw_scanning = 1;
  3268. local->scan_dev = dev;
  3269. }
  3270. return rc;
  3271. }
  3272. local->sta_sw_scanning = 1;
  3273. rcu_read_lock();
  3274. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  3275. /* Don't stop the master interface, otherwise we can't transmit
  3276. * probes! */
  3277. if (sdata->dev == local->mdev)
  3278. continue;
  3279. netif_stop_queue(sdata->dev);
  3280. if (sdata->vif.type == IEEE80211_IF_TYPE_STA &&
  3281. (sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED))
  3282. ieee80211_send_nullfunc(local, sdata, 1);
  3283. }
  3284. rcu_read_unlock();
  3285. if (ssid) {
  3286. local->scan_ssid_len = ssid_len;
  3287. memcpy(local->scan_ssid, ssid, ssid_len);
  3288. } else
  3289. local->scan_ssid_len = 0;
  3290. local->scan_state = SCAN_SET_CHANNEL;
  3291. local->scan_channel_idx = 0;
  3292. local->scan_band = IEEE80211_BAND_2GHZ;
  3293. local->scan_dev = dev;
  3294. netif_tx_lock_bh(local->mdev);
  3295. local->filter_flags |= FIF_BCN_PRBRESP_PROMISC;
  3296. local->ops->configure_filter(local_to_hw(local),
  3297. FIF_BCN_PRBRESP_PROMISC,
  3298. &local->filter_flags,
  3299. local->mdev->mc_count,
  3300. local->mdev->mc_list);
  3301. netif_tx_unlock_bh(local->mdev);
  3302. /* TODO: start scan as soon as all nullfunc frames are ACKed */
  3303. queue_delayed_work(local->hw.workqueue, &local->scan_work,
  3304. IEEE80211_CHANNEL_TIME);
  3305. return 0;
  3306. }
  3307. int ieee80211_sta_req_scan(struct net_device *dev, u8 *ssid, size_t ssid_len)
  3308. {
  3309. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3310. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3311. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3312. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  3313. return ieee80211_sta_start_scan(dev, ssid, ssid_len);
  3314. if (local->sta_sw_scanning || local->sta_hw_scanning) {
  3315. if (local->scan_dev == dev)
  3316. return 0;
  3317. return -EBUSY;
  3318. }
  3319. ifsta->scan_ssid_len = ssid_len;
  3320. if (ssid_len)
  3321. memcpy(ifsta->scan_ssid, ssid, ssid_len);
  3322. set_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request);
  3323. queue_work(local->hw.workqueue, &ifsta->work);
  3324. return 0;
  3325. }
  3326. static char *
  3327. ieee80211_sta_scan_result(struct net_device *dev,
  3328. struct ieee80211_sta_bss *bss,
  3329. char *current_ev, char *end_buf)
  3330. {
  3331. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3332. struct iw_event iwe;
  3333. if (time_after(jiffies,
  3334. bss->last_update + IEEE80211_SCAN_RESULT_EXPIRE))
  3335. return current_ev;
  3336. memset(&iwe, 0, sizeof(iwe));
  3337. iwe.cmd = SIOCGIWAP;
  3338. iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
  3339. memcpy(iwe.u.ap_addr.sa_data, bss->bssid, ETH_ALEN);
  3340. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3341. IW_EV_ADDR_LEN);
  3342. memset(&iwe, 0, sizeof(iwe));
  3343. iwe.cmd = SIOCGIWESSID;
  3344. if (bss_mesh_cfg(bss)) {
  3345. iwe.u.data.length = bss_mesh_id_len(bss);
  3346. iwe.u.data.flags = 1;
  3347. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3348. bss_mesh_id(bss));
  3349. } else {
  3350. iwe.u.data.length = bss->ssid_len;
  3351. iwe.u.data.flags = 1;
  3352. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3353. bss->ssid);
  3354. }
  3355. if (bss->capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS)
  3356. || bss_mesh_cfg(bss)) {
  3357. memset(&iwe, 0, sizeof(iwe));
  3358. iwe.cmd = SIOCGIWMODE;
  3359. if (bss_mesh_cfg(bss))
  3360. iwe.u.mode = IW_MODE_MESH;
  3361. else if (bss->capability & WLAN_CAPABILITY_ESS)
  3362. iwe.u.mode = IW_MODE_MASTER;
  3363. else
  3364. iwe.u.mode = IW_MODE_ADHOC;
  3365. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3366. IW_EV_UINT_LEN);
  3367. }
  3368. memset(&iwe, 0, sizeof(iwe));
  3369. iwe.cmd = SIOCGIWFREQ;
  3370. iwe.u.freq.m = bss->freq;
  3371. iwe.u.freq.e = 6;
  3372. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3373. IW_EV_FREQ_LEN);
  3374. memset(&iwe, 0, sizeof(iwe));
  3375. iwe.cmd = SIOCGIWFREQ;
  3376. iwe.u.freq.m = ieee80211_frequency_to_channel(bss->freq);
  3377. iwe.u.freq.e = 0;
  3378. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3379. IW_EV_FREQ_LEN);
  3380. memset(&iwe, 0, sizeof(iwe));
  3381. iwe.cmd = IWEVQUAL;
  3382. iwe.u.qual.qual = bss->signal;
  3383. iwe.u.qual.level = bss->rssi;
  3384. iwe.u.qual.noise = bss->noise;
  3385. iwe.u.qual.updated = local->wstats_flags;
  3386. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3387. IW_EV_QUAL_LEN);
  3388. memset(&iwe, 0, sizeof(iwe));
  3389. iwe.cmd = SIOCGIWENCODE;
  3390. if (bss->capability & WLAN_CAPABILITY_PRIVACY)
  3391. iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
  3392. else
  3393. iwe.u.data.flags = IW_ENCODE_DISABLED;
  3394. iwe.u.data.length = 0;
  3395. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe, "");
  3396. if (bss && bss->wpa_ie) {
  3397. memset(&iwe, 0, sizeof(iwe));
  3398. iwe.cmd = IWEVGENIE;
  3399. iwe.u.data.length = bss->wpa_ie_len;
  3400. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3401. bss->wpa_ie);
  3402. }
  3403. if (bss && bss->rsn_ie) {
  3404. memset(&iwe, 0, sizeof(iwe));
  3405. iwe.cmd = IWEVGENIE;
  3406. iwe.u.data.length = bss->rsn_ie_len;
  3407. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3408. bss->rsn_ie);
  3409. }
  3410. if (bss && bss->supp_rates_len > 0) {
  3411. /* display all supported rates in readable format */
  3412. char *p = current_ev + IW_EV_LCP_LEN;
  3413. int i;
  3414. memset(&iwe, 0, sizeof(iwe));
  3415. iwe.cmd = SIOCGIWRATE;
  3416. /* Those two flags are ignored... */
  3417. iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
  3418. for (i = 0; i < bss->supp_rates_len; i++) {
  3419. iwe.u.bitrate.value = ((bss->supp_rates[i] &
  3420. 0x7f) * 500000);
  3421. p = iwe_stream_add_value(current_ev, p,
  3422. end_buf, &iwe, IW_EV_PARAM_LEN);
  3423. }
  3424. current_ev = p;
  3425. }
  3426. if (bss) {
  3427. char *buf;
  3428. buf = kmalloc(30, GFP_ATOMIC);
  3429. if (buf) {
  3430. memset(&iwe, 0, sizeof(iwe));
  3431. iwe.cmd = IWEVCUSTOM;
  3432. sprintf(buf, "tsf=%016llx", (unsigned long long)(bss->timestamp));
  3433. iwe.u.data.length = strlen(buf);
  3434. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3435. &iwe, buf);
  3436. kfree(buf);
  3437. }
  3438. }
  3439. if (bss_mesh_cfg(bss)) {
  3440. char *buf;
  3441. u8 *cfg = bss_mesh_cfg(bss);
  3442. buf = kmalloc(50, GFP_ATOMIC);
  3443. if (buf) {
  3444. memset(&iwe, 0, sizeof(iwe));
  3445. iwe.cmd = IWEVCUSTOM;
  3446. sprintf(buf, "Mesh network (version %d)", cfg[0]);
  3447. iwe.u.data.length = strlen(buf);
  3448. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3449. &iwe, buf);
  3450. sprintf(buf, "Path Selection Protocol ID: "
  3451. "0x%02X%02X%02X%02X", cfg[1], cfg[2], cfg[3],
  3452. cfg[4]);
  3453. iwe.u.data.length = strlen(buf);
  3454. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3455. &iwe, buf);
  3456. sprintf(buf, "Path Selection Metric ID: "
  3457. "0x%02X%02X%02X%02X", cfg[5], cfg[6], cfg[7],
  3458. cfg[8]);
  3459. iwe.u.data.length = strlen(buf);
  3460. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3461. &iwe, buf);
  3462. sprintf(buf, "Congestion Control Mode ID: "
  3463. "0x%02X%02X%02X%02X", cfg[9], cfg[10],
  3464. cfg[11], cfg[12]);
  3465. iwe.u.data.length = strlen(buf);
  3466. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3467. &iwe, buf);
  3468. sprintf(buf, "Channel Precedence: "
  3469. "0x%02X%02X%02X%02X", cfg[13], cfg[14],
  3470. cfg[15], cfg[16]);
  3471. iwe.u.data.length = strlen(buf);
  3472. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3473. &iwe, buf);
  3474. kfree(buf);
  3475. }
  3476. }
  3477. return current_ev;
  3478. }
  3479. int ieee80211_sta_scan_results(struct net_device *dev, char *buf, size_t len)
  3480. {
  3481. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3482. char *current_ev = buf;
  3483. char *end_buf = buf + len;
  3484. struct ieee80211_sta_bss *bss;
  3485. spin_lock_bh(&local->sta_bss_lock);
  3486. list_for_each_entry(bss, &local->sta_bss_list, list) {
  3487. if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
  3488. spin_unlock_bh(&local->sta_bss_lock);
  3489. return -E2BIG;
  3490. }
  3491. current_ev = ieee80211_sta_scan_result(dev, bss, current_ev,
  3492. end_buf);
  3493. }
  3494. spin_unlock_bh(&local->sta_bss_lock);
  3495. return current_ev - buf;
  3496. }
  3497. int ieee80211_sta_set_extra_ie(struct net_device *dev, char *ie, size_t len)
  3498. {
  3499. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3500. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3501. kfree(ifsta->extra_ie);
  3502. if (len == 0) {
  3503. ifsta->extra_ie = NULL;
  3504. ifsta->extra_ie_len = 0;
  3505. return 0;
  3506. }
  3507. ifsta->extra_ie = kmalloc(len, GFP_KERNEL);
  3508. if (!ifsta->extra_ie) {
  3509. ifsta->extra_ie_len = 0;
  3510. return -ENOMEM;
  3511. }
  3512. memcpy(ifsta->extra_ie, ie, len);
  3513. ifsta->extra_ie_len = len;
  3514. return 0;
  3515. }
  3516. struct sta_info * ieee80211_ibss_add_sta(struct net_device *dev,
  3517. struct sk_buff *skb, u8 *bssid,
  3518. u8 *addr)
  3519. {
  3520. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3521. struct sta_info *sta;
  3522. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3523. DECLARE_MAC_BUF(mac);
  3524. /* TODO: Could consider removing the least recently used entry and
  3525. * allow new one to be added. */
  3526. if (local->num_sta >= IEEE80211_IBSS_MAX_STA_ENTRIES) {
  3527. if (net_ratelimit()) {
  3528. printk(KERN_DEBUG "%s: No room for a new IBSS STA "
  3529. "entry %s\n", dev->name, print_mac(mac, addr));
  3530. }
  3531. return NULL;
  3532. }
  3533. printk(KERN_DEBUG "%s: Adding new IBSS station %s (dev=%s)\n",
  3534. wiphy_name(local->hw.wiphy), print_mac(mac, addr), dev->name);
  3535. sta = sta_info_alloc(sdata, addr, GFP_ATOMIC);
  3536. if (!sta)
  3537. return NULL;
  3538. sta->flags |= WLAN_STA_AUTHORIZED;
  3539. sta->supp_rates[local->hw.conf.channel->band] =
  3540. sdata->u.sta.supp_rates_bits[local->hw.conf.channel->band];
  3541. rate_control_rate_init(sta, local);
  3542. if (sta_info_insert(sta)) {
  3543. sta_info_destroy(sta);
  3544. return NULL;
  3545. }
  3546. return sta;
  3547. }
  3548. int ieee80211_sta_deauthenticate(struct net_device *dev, u16 reason)
  3549. {
  3550. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3551. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3552. printk(KERN_DEBUG "%s: deauthenticate(reason=%d)\n",
  3553. dev->name, reason);
  3554. if (sdata->vif.type != IEEE80211_IF_TYPE_STA &&
  3555. sdata->vif.type != IEEE80211_IF_TYPE_IBSS)
  3556. return -EINVAL;
  3557. ieee80211_send_deauth(dev, ifsta, reason);
  3558. ieee80211_set_disassoc(dev, ifsta, 1);
  3559. return 0;
  3560. }
  3561. int ieee80211_sta_disassociate(struct net_device *dev, u16 reason)
  3562. {
  3563. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3564. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3565. printk(KERN_DEBUG "%s: disassociate(reason=%d)\n",
  3566. dev->name, reason);
  3567. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  3568. return -EINVAL;
  3569. if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED))
  3570. return -1;
  3571. ieee80211_send_disassoc(dev, ifsta, reason);
  3572. ieee80211_set_disassoc(dev, ifsta, 0);
  3573. return 0;
  3574. }