ieee1394_transactions.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605
  1. /*
  2. * IEEE 1394 for Linux
  3. *
  4. * Transaction support.
  5. *
  6. * Copyright (C) 1999 Andreas E. Bombe
  7. *
  8. * This code is licensed under the GPL. See the file COPYING in the root
  9. * directory of the kernel sources for details.
  10. */
  11. #include <linux/sched.h>
  12. #include <linux/bitops.h>
  13. #include <linux/smp_lock.h>
  14. #include <linux/interrupt.h>
  15. #include <asm/errno.h>
  16. #include "ieee1394.h"
  17. #include "ieee1394_types.h"
  18. #include "hosts.h"
  19. #include "ieee1394_core.h"
  20. #include "highlevel.h"
  21. #include "nodemgr.h"
  22. #include "ieee1394_transactions.h"
  23. #define PREP_ASYNC_HEAD_ADDRESS(tc) \
  24. packet->tcode = tc; \
  25. packet->header[0] = (packet->node_id << 16) | (packet->tlabel << 10) \
  26. | (1 << 8) | (tc << 4); \
  27. packet->header[1] = (packet->host->node_id << 16) | (addr >> 32); \
  28. packet->header[2] = addr & 0xffffffff
  29. static void fill_async_readquad(struct hpsb_packet *packet, u64 addr)
  30. {
  31. PREP_ASYNC_HEAD_ADDRESS(TCODE_READQ);
  32. packet->header_size = 12;
  33. packet->data_size = 0;
  34. packet->expect_response = 1;
  35. }
  36. static void fill_async_readblock(struct hpsb_packet *packet, u64 addr, int length)
  37. {
  38. PREP_ASYNC_HEAD_ADDRESS(TCODE_READB);
  39. packet->header[3] = length << 16;
  40. packet->header_size = 16;
  41. packet->data_size = 0;
  42. packet->expect_response = 1;
  43. }
  44. static void fill_async_writequad(struct hpsb_packet *packet, u64 addr, quadlet_t data)
  45. {
  46. PREP_ASYNC_HEAD_ADDRESS(TCODE_WRITEQ);
  47. packet->header[3] = data;
  48. packet->header_size = 16;
  49. packet->data_size = 0;
  50. packet->expect_response = 1;
  51. }
  52. static void fill_async_writeblock(struct hpsb_packet *packet, u64 addr, int length)
  53. {
  54. PREP_ASYNC_HEAD_ADDRESS(TCODE_WRITEB);
  55. packet->header[3] = length << 16;
  56. packet->header_size = 16;
  57. packet->expect_response = 1;
  58. packet->data_size = length + (length % 4 ? 4 - (length % 4) : 0);
  59. }
  60. static void fill_async_lock(struct hpsb_packet *packet, u64 addr, int extcode,
  61. int length)
  62. {
  63. PREP_ASYNC_HEAD_ADDRESS(TCODE_LOCK_REQUEST);
  64. packet->header[3] = (length << 16) | extcode;
  65. packet->header_size = 16;
  66. packet->data_size = length;
  67. packet->expect_response = 1;
  68. }
  69. static void fill_iso_packet(struct hpsb_packet *packet, int length, int channel,
  70. int tag, int sync)
  71. {
  72. packet->header[0] = (length << 16) | (tag << 14) | (channel << 8)
  73. | (TCODE_ISO_DATA << 4) | sync;
  74. packet->header_size = 4;
  75. packet->data_size = length;
  76. packet->type = hpsb_iso;
  77. packet->tcode = TCODE_ISO_DATA;
  78. }
  79. static void fill_phy_packet(struct hpsb_packet *packet, quadlet_t data)
  80. {
  81. packet->header[0] = data;
  82. packet->header[1] = ~data;
  83. packet->header_size = 8;
  84. packet->data_size = 0;
  85. packet->expect_response = 0;
  86. packet->type = hpsb_raw; /* No CRC added */
  87. packet->speed_code = IEEE1394_SPEED_100; /* Force speed to be 100Mbps */
  88. }
  89. static void fill_async_stream_packet(struct hpsb_packet *packet, int length,
  90. int channel, int tag, int sync)
  91. {
  92. packet->header[0] = (length << 16) | (tag << 14) | (channel << 8)
  93. | (TCODE_STREAM_DATA << 4) | sync;
  94. packet->header_size = 4;
  95. packet->data_size = length;
  96. packet->type = hpsb_async;
  97. packet->tcode = TCODE_ISO_DATA;
  98. }
  99. /**
  100. * hpsb_get_tlabel - allocate a transaction label
  101. * @packet: the packet who's tlabel/tpool we set
  102. *
  103. * Every asynchronous transaction on the 1394 bus needs a transaction
  104. * label to match the response to the request. This label has to be
  105. * different from any other transaction label in an outstanding request to
  106. * the same node to make matching possible without ambiguity.
  107. *
  108. * There are 64 different tlabels, so an allocated tlabel has to be freed
  109. * with hpsb_free_tlabel() after the transaction is complete (unless it's
  110. * reused again for the same target node).
  111. *
  112. * Return value: Zero on success, otherwise non-zero. A non-zero return
  113. * generally means there are no available tlabels. If this is called out
  114. * of interrupt or atomic context, then it will sleep until can return a
  115. * tlabel.
  116. */
  117. int hpsb_get_tlabel(struct hpsb_packet *packet)
  118. {
  119. unsigned long flags;
  120. struct hpsb_tlabel_pool *tp;
  121. tp = &packet->host->tpool[packet->node_id & NODE_MASK];
  122. if (irqs_disabled() || in_atomic()) {
  123. if (down_trylock(&tp->count))
  124. return 1;
  125. } else {
  126. down(&tp->count);
  127. }
  128. spin_lock_irqsave(&tp->lock, flags);
  129. packet->tlabel = find_next_zero_bit(tp->pool, 64, tp->next);
  130. if (packet->tlabel > 63)
  131. packet->tlabel = find_first_zero_bit(tp->pool, 64);
  132. tp->next = (packet->tlabel + 1) % 64;
  133. /* Should _never_ happen */
  134. BUG_ON(test_and_set_bit(packet->tlabel, tp->pool));
  135. tp->allocations++;
  136. spin_unlock_irqrestore(&tp->lock, flags);
  137. return 0;
  138. }
  139. /**
  140. * hpsb_free_tlabel - free an allocated transaction label
  141. * @packet: packet whos tlabel/tpool needs to be cleared
  142. *
  143. * Frees the transaction label allocated with hpsb_get_tlabel(). The
  144. * tlabel has to be freed after the transaction is complete (i.e. response
  145. * was received for a split transaction or packet was sent for a unified
  146. * transaction).
  147. *
  148. * A tlabel must not be freed twice.
  149. */
  150. void hpsb_free_tlabel(struct hpsb_packet *packet)
  151. {
  152. unsigned long flags;
  153. struct hpsb_tlabel_pool *tp;
  154. tp = &packet->host->tpool[packet->node_id & NODE_MASK];
  155. BUG_ON(packet->tlabel > 63 || packet->tlabel < 0);
  156. spin_lock_irqsave(&tp->lock, flags);
  157. BUG_ON(!test_and_clear_bit(packet->tlabel, tp->pool));
  158. spin_unlock_irqrestore(&tp->lock, flags);
  159. up(&tp->count);
  160. }
  161. int hpsb_packet_success(struct hpsb_packet *packet)
  162. {
  163. switch (packet->ack_code) {
  164. case ACK_PENDING:
  165. switch ((packet->header[1] >> 12) & 0xf) {
  166. case RCODE_COMPLETE:
  167. return 0;
  168. case RCODE_CONFLICT_ERROR:
  169. return -EAGAIN;
  170. case RCODE_DATA_ERROR:
  171. return -EREMOTEIO;
  172. case RCODE_TYPE_ERROR:
  173. return -EACCES;
  174. case RCODE_ADDRESS_ERROR:
  175. return -EINVAL;
  176. default:
  177. HPSB_ERR("received reserved rcode %d from node %d",
  178. (packet->header[1] >> 12) & 0xf,
  179. packet->node_id);
  180. return -EAGAIN;
  181. }
  182. HPSB_PANIC("reached unreachable code 1 in %s", __FUNCTION__);
  183. case ACK_BUSY_X:
  184. case ACK_BUSY_A:
  185. case ACK_BUSY_B:
  186. return -EBUSY;
  187. case ACK_TYPE_ERROR:
  188. return -EACCES;
  189. case ACK_COMPLETE:
  190. if (packet->tcode == TCODE_WRITEQ
  191. || packet->tcode == TCODE_WRITEB) {
  192. return 0;
  193. } else {
  194. HPSB_ERR("impossible ack_complete from node %d "
  195. "(tcode %d)", packet->node_id, packet->tcode);
  196. return -EAGAIN;
  197. }
  198. case ACK_DATA_ERROR:
  199. if (packet->tcode == TCODE_WRITEB
  200. || packet->tcode == TCODE_LOCK_REQUEST) {
  201. return -EAGAIN;
  202. } else {
  203. HPSB_ERR("impossible ack_data_error from node %d "
  204. "(tcode %d)", packet->node_id, packet->tcode);
  205. return -EAGAIN;
  206. }
  207. case ACK_ADDRESS_ERROR:
  208. return -EINVAL;
  209. case ACK_TARDY:
  210. case ACK_CONFLICT_ERROR:
  211. case ACKX_NONE:
  212. case ACKX_SEND_ERROR:
  213. case ACKX_ABORTED:
  214. case ACKX_TIMEOUT:
  215. /* error while sending */
  216. return -EAGAIN;
  217. default:
  218. HPSB_ERR("got invalid ack %d from node %d (tcode %d)",
  219. packet->ack_code, packet->node_id, packet->tcode);
  220. return -EAGAIN;
  221. }
  222. HPSB_PANIC("reached unreachable code 2 in %s", __FUNCTION__);
  223. }
  224. struct hpsb_packet *hpsb_make_readpacket(struct hpsb_host *host, nodeid_t node,
  225. u64 addr, size_t length)
  226. {
  227. struct hpsb_packet *packet;
  228. if (length == 0)
  229. return NULL;
  230. packet = hpsb_alloc_packet(length);
  231. if (!packet)
  232. return NULL;
  233. packet->host = host;
  234. packet->node_id = node;
  235. if (hpsb_get_tlabel(packet)) {
  236. hpsb_free_packet(packet);
  237. return NULL;
  238. }
  239. if (length == 4)
  240. fill_async_readquad(packet, addr);
  241. else
  242. fill_async_readblock(packet, addr, length);
  243. return packet;
  244. }
  245. struct hpsb_packet *hpsb_make_writepacket (struct hpsb_host *host, nodeid_t node,
  246. u64 addr, quadlet_t *buffer, size_t length)
  247. {
  248. struct hpsb_packet *packet;
  249. if (length == 0)
  250. return NULL;
  251. packet = hpsb_alloc_packet(length);
  252. if (!packet)
  253. return NULL;
  254. if (length % 4) { /* zero padding bytes */
  255. packet->data[length >> 2] = 0;
  256. }
  257. packet->host = host;
  258. packet->node_id = node;
  259. if (hpsb_get_tlabel(packet)) {
  260. hpsb_free_packet(packet);
  261. return NULL;
  262. }
  263. if (length == 4) {
  264. fill_async_writequad(packet, addr, buffer ? *buffer : 0);
  265. } else {
  266. fill_async_writeblock(packet, addr, length);
  267. if (buffer)
  268. memcpy(packet->data, buffer, length);
  269. }
  270. return packet;
  271. }
  272. struct hpsb_packet *hpsb_make_streampacket(struct hpsb_host *host, u8 *buffer, int length,
  273. int channel, int tag, int sync)
  274. {
  275. struct hpsb_packet *packet;
  276. if (length == 0)
  277. return NULL;
  278. packet = hpsb_alloc_packet(length);
  279. if (!packet)
  280. return NULL;
  281. if (length % 4) { /* zero padding bytes */
  282. packet->data[length >> 2] = 0;
  283. }
  284. packet->host = host;
  285. if (hpsb_get_tlabel(packet)) {
  286. hpsb_free_packet(packet);
  287. return NULL;
  288. }
  289. fill_async_stream_packet(packet, length, channel, tag, sync);
  290. if (buffer)
  291. memcpy(packet->data, buffer, length);
  292. return packet;
  293. }
  294. struct hpsb_packet *hpsb_make_lockpacket(struct hpsb_host *host, nodeid_t node,
  295. u64 addr, int extcode, quadlet_t *data,
  296. quadlet_t arg)
  297. {
  298. struct hpsb_packet *p;
  299. u32 length;
  300. p = hpsb_alloc_packet(8);
  301. if (!p) return NULL;
  302. p->host = host;
  303. p->node_id = node;
  304. if (hpsb_get_tlabel(p)) {
  305. hpsb_free_packet(p);
  306. return NULL;
  307. }
  308. switch (extcode) {
  309. case EXTCODE_FETCH_ADD:
  310. case EXTCODE_LITTLE_ADD:
  311. length = 4;
  312. if (data)
  313. p->data[0] = *data;
  314. break;
  315. default:
  316. length = 8;
  317. if (data) {
  318. p->data[0] = arg;
  319. p->data[1] = *data;
  320. }
  321. break;
  322. }
  323. fill_async_lock(p, addr, extcode, length);
  324. return p;
  325. }
  326. struct hpsb_packet *hpsb_make_lock64packet(struct hpsb_host *host, nodeid_t node,
  327. u64 addr, int extcode, octlet_t *data,
  328. octlet_t arg)
  329. {
  330. struct hpsb_packet *p;
  331. u32 length;
  332. p = hpsb_alloc_packet(16);
  333. if (!p) return NULL;
  334. p->host = host;
  335. p->node_id = node;
  336. if (hpsb_get_tlabel(p)) {
  337. hpsb_free_packet(p);
  338. return NULL;
  339. }
  340. switch (extcode) {
  341. case EXTCODE_FETCH_ADD:
  342. case EXTCODE_LITTLE_ADD:
  343. length = 8;
  344. if (data) {
  345. p->data[0] = *data >> 32;
  346. p->data[1] = *data & 0xffffffff;
  347. }
  348. break;
  349. default:
  350. length = 16;
  351. if (data) {
  352. p->data[0] = arg >> 32;
  353. p->data[1] = arg & 0xffffffff;
  354. p->data[2] = *data >> 32;
  355. p->data[3] = *data & 0xffffffff;
  356. }
  357. break;
  358. }
  359. fill_async_lock(p, addr, extcode, length);
  360. return p;
  361. }
  362. struct hpsb_packet *hpsb_make_phypacket(struct hpsb_host *host,
  363. quadlet_t data)
  364. {
  365. struct hpsb_packet *p;
  366. p = hpsb_alloc_packet(0);
  367. if (!p) return NULL;
  368. p->host = host;
  369. fill_phy_packet(p, data);
  370. return p;
  371. }
  372. struct hpsb_packet *hpsb_make_isopacket(struct hpsb_host *host,
  373. int length, int channel,
  374. int tag, int sync)
  375. {
  376. struct hpsb_packet *p;
  377. p = hpsb_alloc_packet(length);
  378. if (!p) return NULL;
  379. p->host = host;
  380. fill_iso_packet(p, length, channel, tag, sync);
  381. p->generation = get_hpsb_generation(host);
  382. return p;
  383. }
  384. /*
  385. * FIXME - these functions should probably read from / write to user space to
  386. * avoid in kernel buffers for user space callers
  387. */
  388. int hpsb_read(struct hpsb_host *host, nodeid_t node, unsigned int generation,
  389. u64 addr, quadlet_t *buffer, size_t length)
  390. {
  391. struct hpsb_packet *packet;
  392. int retval = 0;
  393. if (length == 0)
  394. return -EINVAL;
  395. BUG_ON(in_interrupt()); // We can't be called in an interrupt, yet
  396. packet = hpsb_make_readpacket(host, node, addr, length);
  397. if (!packet) {
  398. return -ENOMEM;
  399. }
  400. packet->generation = generation;
  401. retval = hpsb_send_packet_and_wait(packet);
  402. if (retval < 0)
  403. goto hpsb_read_fail;
  404. retval = hpsb_packet_success(packet);
  405. if (retval == 0) {
  406. if (length == 4) {
  407. *buffer = packet->header[3];
  408. } else {
  409. memcpy(buffer, packet->data, length);
  410. }
  411. }
  412. hpsb_read_fail:
  413. hpsb_free_tlabel(packet);
  414. hpsb_free_packet(packet);
  415. return retval;
  416. }
  417. int hpsb_write(struct hpsb_host *host, nodeid_t node, unsigned int generation,
  418. u64 addr, quadlet_t *buffer, size_t length)
  419. {
  420. struct hpsb_packet *packet;
  421. int retval;
  422. if (length == 0)
  423. return -EINVAL;
  424. BUG_ON(in_interrupt()); // We can't be called in an interrupt, yet
  425. packet = hpsb_make_writepacket (host, node, addr, buffer, length);
  426. if (!packet)
  427. return -ENOMEM;
  428. packet->generation = generation;
  429. retval = hpsb_send_packet_and_wait(packet);
  430. if (retval < 0)
  431. goto hpsb_write_fail;
  432. retval = hpsb_packet_success(packet);
  433. hpsb_write_fail:
  434. hpsb_free_tlabel(packet);
  435. hpsb_free_packet(packet);
  436. return retval;
  437. }
  438. #if 0
  439. int hpsb_lock(struct hpsb_host *host, nodeid_t node, unsigned int generation,
  440. u64 addr, int extcode, quadlet_t *data, quadlet_t arg)
  441. {
  442. struct hpsb_packet *packet;
  443. int retval = 0;
  444. BUG_ON(in_interrupt()); // We can't be called in an interrupt, yet
  445. packet = hpsb_make_lockpacket(host, node, addr, extcode, data, arg);
  446. if (!packet)
  447. return -ENOMEM;
  448. packet->generation = generation;
  449. retval = hpsb_send_packet_and_wait(packet);
  450. if (retval < 0)
  451. goto hpsb_lock_fail;
  452. retval = hpsb_packet_success(packet);
  453. if (retval == 0) {
  454. *data = packet->data[0];
  455. }
  456. hpsb_lock_fail:
  457. hpsb_free_tlabel(packet);
  458. hpsb_free_packet(packet);
  459. return retval;
  460. }
  461. int hpsb_send_gasp(struct hpsb_host *host, int channel, unsigned int generation,
  462. quadlet_t *buffer, size_t length, u32 specifier_id,
  463. unsigned int version)
  464. {
  465. struct hpsb_packet *packet;
  466. int retval = 0;
  467. u16 specifier_id_hi = (specifier_id & 0x00ffff00) >> 8;
  468. u8 specifier_id_lo = specifier_id & 0xff;
  469. HPSB_VERBOSE("Send GASP: channel = %d, length = %Zd", channel, length);
  470. length += 8;
  471. packet = hpsb_make_streampacket(host, NULL, length, channel, 3, 0);
  472. if (!packet)
  473. return -ENOMEM;
  474. packet->data[0] = cpu_to_be32((host->node_id << 16) | specifier_id_hi);
  475. packet->data[1] = cpu_to_be32((specifier_id_lo << 24) | (version & 0x00ffffff));
  476. memcpy(&(packet->data[2]), buffer, length - 8);
  477. packet->generation = generation;
  478. packet->no_waiter = 1;
  479. retval = hpsb_send_packet(packet);
  480. if (retval < 0)
  481. hpsb_free_packet(packet);
  482. return retval;
  483. }
  484. #endif /* 0 */