sched.c 224 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/reciprocal_div.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/bootmem.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <asm/tlb.h>
  73. #include <asm/irq_regs.h>
  74. /*
  75. * Scheduler clock - returns current time in nanosec units.
  76. * This is default implementation.
  77. * Architectures and sub-architectures can override this.
  78. */
  79. unsigned long long __attribute__((weak)) sched_clock(void)
  80. {
  81. return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
  82. }
  83. /*
  84. * Convert user-nice values [ -20 ... 0 ... 19 ]
  85. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  86. * and back.
  87. */
  88. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  89. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  90. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  91. /*
  92. * 'User priority' is the nice value converted to something we
  93. * can work with better when scaling various scheduler parameters,
  94. * it's a [ 0 ... 39 ] range.
  95. */
  96. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  97. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  98. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  99. /*
  100. * Helpers for converting nanosecond timing to jiffy resolution
  101. */
  102. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  103. #define NICE_0_LOAD SCHED_LOAD_SCALE
  104. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  105. /*
  106. * These are the 'tuning knobs' of the scheduler:
  107. *
  108. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  109. * Timeslices get refilled after they expire.
  110. */
  111. #define DEF_TIMESLICE (100 * HZ / 1000)
  112. /*
  113. * single value that denotes runtime == period, ie unlimited time.
  114. */
  115. #define RUNTIME_INF ((u64)~0ULL)
  116. #ifdef CONFIG_SMP
  117. /*
  118. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  119. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  120. */
  121. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  122. {
  123. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  124. }
  125. /*
  126. * Each time a sched group cpu_power is changed,
  127. * we must compute its reciprocal value
  128. */
  129. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  130. {
  131. sg->__cpu_power += val;
  132. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  133. }
  134. #endif
  135. static inline int rt_policy(int policy)
  136. {
  137. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  138. return 1;
  139. return 0;
  140. }
  141. static inline int task_has_rt_policy(struct task_struct *p)
  142. {
  143. return rt_policy(p->policy);
  144. }
  145. /*
  146. * This is the priority-queue data structure of the RT scheduling class:
  147. */
  148. struct rt_prio_array {
  149. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  150. struct list_head queue[MAX_RT_PRIO];
  151. };
  152. struct rt_bandwidth {
  153. /* nests inside the rq lock: */
  154. spinlock_t rt_runtime_lock;
  155. ktime_t rt_period;
  156. u64 rt_runtime;
  157. struct hrtimer rt_period_timer;
  158. };
  159. static struct rt_bandwidth def_rt_bandwidth;
  160. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  161. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  162. {
  163. struct rt_bandwidth *rt_b =
  164. container_of(timer, struct rt_bandwidth, rt_period_timer);
  165. ktime_t now;
  166. int overrun;
  167. int idle = 0;
  168. for (;;) {
  169. now = hrtimer_cb_get_time(timer);
  170. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  171. if (!overrun)
  172. break;
  173. idle = do_sched_rt_period_timer(rt_b, overrun);
  174. }
  175. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  176. }
  177. static
  178. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  179. {
  180. rt_b->rt_period = ns_to_ktime(period);
  181. rt_b->rt_runtime = runtime;
  182. spin_lock_init(&rt_b->rt_runtime_lock);
  183. hrtimer_init(&rt_b->rt_period_timer,
  184. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  185. rt_b->rt_period_timer.function = sched_rt_period_timer;
  186. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  187. }
  188. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  189. {
  190. ktime_t now;
  191. if (rt_b->rt_runtime == RUNTIME_INF)
  192. return;
  193. if (hrtimer_active(&rt_b->rt_period_timer))
  194. return;
  195. spin_lock(&rt_b->rt_runtime_lock);
  196. for (;;) {
  197. if (hrtimer_active(&rt_b->rt_period_timer))
  198. break;
  199. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  200. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  201. hrtimer_start(&rt_b->rt_period_timer,
  202. rt_b->rt_period_timer.expires,
  203. HRTIMER_MODE_ABS);
  204. }
  205. spin_unlock(&rt_b->rt_runtime_lock);
  206. }
  207. #ifdef CONFIG_RT_GROUP_SCHED
  208. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  209. {
  210. hrtimer_cancel(&rt_b->rt_period_timer);
  211. }
  212. #endif
  213. #ifdef CONFIG_GROUP_SCHED
  214. #include <linux/cgroup.h>
  215. struct cfs_rq;
  216. static LIST_HEAD(task_groups);
  217. /* task group related information */
  218. struct task_group {
  219. #ifdef CONFIG_CGROUP_SCHED
  220. struct cgroup_subsys_state css;
  221. #endif
  222. #ifdef CONFIG_FAIR_GROUP_SCHED
  223. /* schedulable entities of this group on each cpu */
  224. struct sched_entity **se;
  225. /* runqueue "owned" by this group on each cpu */
  226. struct cfs_rq **cfs_rq;
  227. unsigned long shares;
  228. #endif
  229. #ifdef CONFIG_RT_GROUP_SCHED
  230. struct sched_rt_entity **rt_se;
  231. struct rt_rq **rt_rq;
  232. struct rt_bandwidth rt_bandwidth;
  233. #endif
  234. struct rcu_head rcu;
  235. struct list_head list;
  236. struct task_group *parent;
  237. struct list_head siblings;
  238. struct list_head children;
  239. };
  240. #ifdef CONFIG_USER_SCHED
  241. /*
  242. * Root task group.
  243. * Every UID task group (including init_task_group aka UID-0) will
  244. * be a child to this group.
  245. */
  246. struct task_group root_task_group;
  247. #ifdef CONFIG_FAIR_GROUP_SCHED
  248. /* Default task group's sched entity on each cpu */
  249. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  250. /* Default task group's cfs_rq on each cpu */
  251. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  252. #endif
  253. #ifdef CONFIG_RT_GROUP_SCHED
  254. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  255. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  256. #endif
  257. #else
  258. #define root_task_group init_task_group
  259. #endif
  260. /* task_group_lock serializes add/remove of task groups and also changes to
  261. * a task group's cpu shares.
  262. */
  263. static DEFINE_SPINLOCK(task_group_lock);
  264. /* doms_cur_mutex serializes access to doms_cur[] array */
  265. static DEFINE_MUTEX(doms_cur_mutex);
  266. #ifdef CONFIG_FAIR_GROUP_SCHED
  267. #ifdef CONFIG_USER_SCHED
  268. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  269. #else
  270. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  271. #endif
  272. #define MIN_SHARES 2
  273. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  274. #endif
  275. /* Default task group.
  276. * Every task in system belong to this group at bootup.
  277. */
  278. struct task_group init_task_group;
  279. /* return group to which a task belongs */
  280. static inline struct task_group *task_group(struct task_struct *p)
  281. {
  282. struct task_group *tg;
  283. #ifdef CONFIG_USER_SCHED
  284. tg = p->user->tg;
  285. #elif defined(CONFIG_CGROUP_SCHED)
  286. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  287. struct task_group, css);
  288. #else
  289. tg = &init_task_group;
  290. #endif
  291. return tg;
  292. }
  293. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  294. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  295. {
  296. #ifdef CONFIG_FAIR_GROUP_SCHED
  297. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  298. p->se.parent = task_group(p)->se[cpu];
  299. #endif
  300. #ifdef CONFIG_RT_GROUP_SCHED
  301. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  302. p->rt.parent = task_group(p)->rt_se[cpu];
  303. #endif
  304. }
  305. static inline void lock_doms_cur(void)
  306. {
  307. mutex_lock(&doms_cur_mutex);
  308. }
  309. static inline void unlock_doms_cur(void)
  310. {
  311. mutex_unlock(&doms_cur_mutex);
  312. }
  313. #else
  314. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  315. static inline void lock_doms_cur(void) { }
  316. static inline void unlock_doms_cur(void) { }
  317. #endif /* CONFIG_GROUP_SCHED */
  318. /* CFS-related fields in a runqueue */
  319. struct cfs_rq {
  320. struct load_weight load;
  321. unsigned long nr_running;
  322. u64 exec_clock;
  323. u64 min_vruntime;
  324. struct rb_root tasks_timeline;
  325. struct rb_node *rb_leftmost;
  326. struct list_head tasks;
  327. struct list_head *balance_iterator;
  328. /*
  329. * 'curr' points to currently running entity on this cfs_rq.
  330. * It is set to NULL otherwise (i.e when none are currently running).
  331. */
  332. struct sched_entity *curr, *next;
  333. unsigned long nr_spread_over;
  334. #ifdef CONFIG_FAIR_GROUP_SCHED
  335. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  336. /*
  337. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  338. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  339. * (like users, containers etc.)
  340. *
  341. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  342. * list is used during load balance.
  343. */
  344. struct list_head leaf_cfs_rq_list;
  345. struct task_group *tg; /* group that "owns" this runqueue */
  346. #ifdef CONFIG_SMP
  347. unsigned long task_weight;
  348. unsigned long shares;
  349. /*
  350. * We need space to build a sched_domain wide view of the full task
  351. * group tree, in order to avoid depending on dynamic memory allocation
  352. * during the load balancing we place this in the per cpu task group
  353. * hierarchy. This limits the load balancing to one instance per cpu,
  354. * but more should not be needed anyway.
  355. */
  356. struct aggregate_struct {
  357. /*
  358. * load = weight(cpus) * f(tg)
  359. *
  360. * Where f(tg) is the recursive weight fraction assigned to
  361. * this group.
  362. */
  363. unsigned long load;
  364. /*
  365. * part of the group weight distributed to this span.
  366. */
  367. unsigned long shares;
  368. /*
  369. * The sum of all runqueue weights within this span.
  370. */
  371. unsigned long rq_weight;
  372. /*
  373. * Weight contributed by tasks; this is the part we can
  374. * influence by moving tasks around.
  375. */
  376. unsigned long task_weight;
  377. } aggregate;
  378. #endif
  379. #endif
  380. };
  381. /* Real-Time classes' related field in a runqueue: */
  382. struct rt_rq {
  383. struct rt_prio_array active;
  384. unsigned long rt_nr_running;
  385. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  386. int highest_prio; /* highest queued rt task prio */
  387. #endif
  388. #ifdef CONFIG_SMP
  389. unsigned long rt_nr_migratory;
  390. int overloaded;
  391. #endif
  392. int rt_throttled;
  393. u64 rt_time;
  394. u64 rt_runtime;
  395. /* Nests inside the rq lock: */
  396. spinlock_t rt_runtime_lock;
  397. #ifdef CONFIG_RT_GROUP_SCHED
  398. unsigned long rt_nr_boosted;
  399. struct rq *rq;
  400. struct list_head leaf_rt_rq_list;
  401. struct task_group *tg;
  402. struct sched_rt_entity *rt_se;
  403. #endif
  404. };
  405. #ifdef CONFIG_SMP
  406. /*
  407. * We add the notion of a root-domain which will be used to define per-domain
  408. * variables. Each exclusive cpuset essentially defines an island domain by
  409. * fully partitioning the member cpus from any other cpuset. Whenever a new
  410. * exclusive cpuset is created, we also create and attach a new root-domain
  411. * object.
  412. *
  413. */
  414. struct root_domain {
  415. atomic_t refcount;
  416. cpumask_t span;
  417. cpumask_t online;
  418. /*
  419. * The "RT overload" flag: it gets set if a CPU has more than
  420. * one runnable RT task.
  421. */
  422. cpumask_t rto_mask;
  423. atomic_t rto_count;
  424. };
  425. /*
  426. * By default the system creates a single root-domain with all cpus as
  427. * members (mimicking the global state we have today).
  428. */
  429. static struct root_domain def_root_domain;
  430. #endif
  431. /*
  432. * This is the main, per-CPU runqueue data structure.
  433. *
  434. * Locking rule: those places that want to lock multiple runqueues
  435. * (such as the load balancing or the thread migration code), lock
  436. * acquire operations must be ordered by ascending &runqueue.
  437. */
  438. struct rq {
  439. /* runqueue lock: */
  440. spinlock_t lock;
  441. /*
  442. * nr_running and cpu_load should be in the same cacheline because
  443. * remote CPUs use both these fields when doing load calculation.
  444. */
  445. unsigned long nr_running;
  446. #define CPU_LOAD_IDX_MAX 5
  447. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  448. unsigned char idle_at_tick;
  449. #ifdef CONFIG_NO_HZ
  450. unsigned long last_tick_seen;
  451. unsigned char in_nohz_recently;
  452. #endif
  453. /* capture load from *all* tasks on this cpu: */
  454. struct load_weight load;
  455. unsigned long nr_load_updates;
  456. u64 nr_switches;
  457. struct cfs_rq cfs;
  458. struct rt_rq rt;
  459. #ifdef CONFIG_FAIR_GROUP_SCHED
  460. /* list of leaf cfs_rq on this cpu: */
  461. struct list_head leaf_cfs_rq_list;
  462. #endif
  463. #ifdef CONFIG_RT_GROUP_SCHED
  464. struct list_head leaf_rt_rq_list;
  465. #endif
  466. /*
  467. * This is part of a global counter where only the total sum
  468. * over all CPUs matters. A task can increase this counter on
  469. * one CPU and if it got migrated afterwards it may decrease
  470. * it on another CPU. Always updated under the runqueue lock:
  471. */
  472. unsigned long nr_uninterruptible;
  473. struct task_struct *curr, *idle;
  474. unsigned long next_balance;
  475. struct mm_struct *prev_mm;
  476. u64 clock, prev_clock_raw;
  477. s64 clock_max_delta;
  478. unsigned int clock_warps, clock_overflows, clock_underflows;
  479. u64 idle_clock;
  480. unsigned int clock_deep_idle_events;
  481. u64 tick_timestamp;
  482. atomic_t nr_iowait;
  483. #ifdef CONFIG_SMP
  484. struct root_domain *rd;
  485. struct sched_domain *sd;
  486. /* For active balancing */
  487. int active_balance;
  488. int push_cpu;
  489. /* cpu of this runqueue: */
  490. int cpu;
  491. struct task_struct *migration_thread;
  492. struct list_head migration_queue;
  493. #endif
  494. #ifdef CONFIG_SCHED_HRTICK
  495. unsigned long hrtick_flags;
  496. ktime_t hrtick_expire;
  497. struct hrtimer hrtick_timer;
  498. #endif
  499. #ifdef CONFIG_SCHEDSTATS
  500. /* latency stats */
  501. struct sched_info rq_sched_info;
  502. /* sys_sched_yield() stats */
  503. unsigned int yld_exp_empty;
  504. unsigned int yld_act_empty;
  505. unsigned int yld_both_empty;
  506. unsigned int yld_count;
  507. /* schedule() stats */
  508. unsigned int sched_switch;
  509. unsigned int sched_count;
  510. unsigned int sched_goidle;
  511. /* try_to_wake_up() stats */
  512. unsigned int ttwu_count;
  513. unsigned int ttwu_local;
  514. /* BKL stats */
  515. unsigned int bkl_count;
  516. #endif
  517. struct lock_class_key rq_lock_key;
  518. };
  519. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  520. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  521. {
  522. rq->curr->sched_class->check_preempt_curr(rq, p);
  523. }
  524. static inline int cpu_of(struct rq *rq)
  525. {
  526. #ifdef CONFIG_SMP
  527. return rq->cpu;
  528. #else
  529. return 0;
  530. #endif
  531. }
  532. #ifdef CONFIG_NO_HZ
  533. static inline bool nohz_on(int cpu)
  534. {
  535. return tick_get_tick_sched(cpu)->nohz_mode != NOHZ_MODE_INACTIVE;
  536. }
  537. static inline u64 max_skipped_ticks(struct rq *rq)
  538. {
  539. return nohz_on(cpu_of(rq)) ? jiffies - rq->last_tick_seen + 2 : 1;
  540. }
  541. static inline void update_last_tick_seen(struct rq *rq)
  542. {
  543. rq->last_tick_seen = jiffies;
  544. }
  545. #else
  546. static inline u64 max_skipped_ticks(struct rq *rq)
  547. {
  548. return 1;
  549. }
  550. static inline void update_last_tick_seen(struct rq *rq)
  551. {
  552. }
  553. #endif
  554. /*
  555. * Update the per-runqueue clock, as finegrained as the platform can give
  556. * us, but without assuming monotonicity, etc.:
  557. */
  558. static void __update_rq_clock(struct rq *rq)
  559. {
  560. u64 prev_raw = rq->prev_clock_raw;
  561. u64 now = sched_clock();
  562. s64 delta = now - prev_raw;
  563. u64 clock = rq->clock;
  564. #ifdef CONFIG_SCHED_DEBUG
  565. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  566. #endif
  567. /*
  568. * Protect against sched_clock() occasionally going backwards:
  569. */
  570. if (unlikely(delta < 0)) {
  571. clock++;
  572. rq->clock_warps++;
  573. } else {
  574. /*
  575. * Catch too large forward jumps too:
  576. */
  577. u64 max_jump = max_skipped_ticks(rq) * TICK_NSEC;
  578. u64 max_time = rq->tick_timestamp + max_jump;
  579. if (unlikely(clock + delta > max_time)) {
  580. if (clock < max_time)
  581. clock = max_time;
  582. else
  583. clock++;
  584. rq->clock_overflows++;
  585. } else {
  586. if (unlikely(delta > rq->clock_max_delta))
  587. rq->clock_max_delta = delta;
  588. clock += delta;
  589. }
  590. }
  591. rq->prev_clock_raw = now;
  592. rq->clock = clock;
  593. }
  594. static void update_rq_clock(struct rq *rq)
  595. {
  596. if (likely(smp_processor_id() == cpu_of(rq)))
  597. __update_rq_clock(rq);
  598. }
  599. /*
  600. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  601. * See detach_destroy_domains: synchronize_sched for details.
  602. *
  603. * The domain tree of any CPU may only be accessed from within
  604. * preempt-disabled sections.
  605. */
  606. #define for_each_domain(cpu, __sd) \
  607. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  608. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  609. #define this_rq() (&__get_cpu_var(runqueues))
  610. #define task_rq(p) cpu_rq(task_cpu(p))
  611. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  612. /*
  613. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  614. */
  615. #ifdef CONFIG_SCHED_DEBUG
  616. # define const_debug __read_mostly
  617. #else
  618. # define const_debug static const
  619. #endif
  620. /*
  621. * Debugging: various feature bits
  622. */
  623. #define SCHED_FEAT(name, enabled) \
  624. __SCHED_FEAT_##name ,
  625. enum {
  626. #include "sched_features.h"
  627. };
  628. #undef SCHED_FEAT
  629. #define SCHED_FEAT(name, enabled) \
  630. (1UL << __SCHED_FEAT_##name) * enabled |
  631. const_debug unsigned int sysctl_sched_features =
  632. #include "sched_features.h"
  633. 0;
  634. #undef SCHED_FEAT
  635. #ifdef CONFIG_SCHED_DEBUG
  636. #define SCHED_FEAT(name, enabled) \
  637. #name ,
  638. __read_mostly char *sched_feat_names[] = {
  639. #include "sched_features.h"
  640. NULL
  641. };
  642. #undef SCHED_FEAT
  643. int sched_feat_open(struct inode *inode, struct file *filp)
  644. {
  645. filp->private_data = inode->i_private;
  646. return 0;
  647. }
  648. static ssize_t
  649. sched_feat_read(struct file *filp, char __user *ubuf,
  650. size_t cnt, loff_t *ppos)
  651. {
  652. char *buf;
  653. int r = 0;
  654. int len = 0;
  655. int i;
  656. for (i = 0; sched_feat_names[i]; i++) {
  657. len += strlen(sched_feat_names[i]);
  658. len += 4;
  659. }
  660. buf = kmalloc(len + 2, GFP_KERNEL);
  661. if (!buf)
  662. return -ENOMEM;
  663. for (i = 0; sched_feat_names[i]; i++) {
  664. if (sysctl_sched_features & (1UL << i))
  665. r += sprintf(buf + r, "%s ", sched_feat_names[i]);
  666. else
  667. r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
  668. }
  669. r += sprintf(buf + r, "\n");
  670. WARN_ON(r >= len + 2);
  671. r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
  672. kfree(buf);
  673. return r;
  674. }
  675. static ssize_t
  676. sched_feat_write(struct file *filp, const char __user *ubuf,
  677. size_t cnt, loff_t *ppos)
  678. {
  679. char buf[64];
  680. char *cmp = buf;
  681. int neg = 0;
  682. int i;
  683. if (cnt > 63)
  684. cnt = 63;
  685. if (copy_from_user(&buf, ubuf, cnt))
  686. return -EFAULT;
  687. buf[cnt] = 0;
  688. if (strncmp(buf, "NO_", 3) == 0) {
  689. neg = 1;
  690. cmp += 3;
  691. }
  692. for (i = 0; sched_feat_names[i]; i++) {
  693. int len = strlen(sched_feat_names[i]);
  694. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  695. if (neg)
  696. sysctl_sched_features &= ~(1UL << i);
  697. else
  698. sysctl_sched_features |= (1UL << i);
  699. break;
  700. }
  701. }
  702. if (!sched_feat_names[i])
  703. return -EINVAL;
  704. filp->f_pos += cnt;
  705. return cnt;
  706. }
  707. static struct file_operations sched_feat_fops = {
  708. .open = sched_feat_open,
  709. .read = sched_feat_read,
  710. .write = sched_feat_write,
  711. };
  712. static __init int sched_init_debug(void)
  713. {
  714. debugfs_create_file("sched_features", 0644, NULL, NULL,
  715. &sched_feat_fops);
  716. return 0;
  717. }
  718. late_initcall(sched_init_debug);
  719. #endif
  720. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  721. /*
  722. * Number of tasks to iterate in a single balance run.
  723. * Limited because this is done with IRQs disabled.
  724. */
  725. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  726. /*
  727. * period over which we measure -rt task cpu usage in us.
  728. * default: 1s
  729. */
  730. unsigned int sysctl_sched_rt_period = 1000000;
  731. static __read_mostly int scheduler_running;
  732. /*
  733. * part of the period that we allow rt tasks to run in us.
  734. * default: 0.95s
  735. */
  736. int sysctl_sched_rt_runtime = 950000;
  737. static inline u64 global_rt_period(void)
  738. {
  739. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  740. }
  741. static inline u64 global_rt_runtime(void)
  742. {
  743. if (sysctl_sched_rt_period < 0)
  744. return RUNTIME_INF;
  745. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  746. }
  747. static const unsigned long long time_sync_thresh = 100000;
  748. static DEFINE_PER_CPU(unsigned long long, time_offset);
  749. static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
  750. /*
  751. * Global lock which we take every now and then to synchronize
  752. * the CPUs time. This method is not warp-safe, but it's good
  753. * enough to synchronize slowly diverging time sources and thus
  754. * it's good enough for tracing:
  755. */
  756. static DEFINE_SPINLOCK(time_sync_lock);
  757. static unsigned long long prev_global_time;
  758. static unsigned long long __sync_cpu_clock(cycles_t time, int cpu)
  759. {
  760. unsigned long flags;
  761. spin_lock_irqsave(&time_sync_lock, flags);
  762. if (time < prev_global_time) {
  763. per_cpu(time_offset, cpu) += prev_global_time - time;
  764. time = prev_global_time;
  765. } else {
  766. prev_global_time = time;
  767. }
  768. spin_unlock_irqrestore(&time_sync_lock, flags);
  769. return time;
  770. }
  771. static unsigned long long __cpu_clock(int cpu)
  772. {
  773. unsigned long long now;
  774. unsigned long flags;
  775. struct rq *rq;
  776. /*
  777. * Only call sched_clock() if the scheduler has already been
  778. * initialized (some code might call cpu_clock() very early):
  779. */
  780. if (unlikely(!scheduler_running))
  781. return 0;
  782. local_irq_save(flags);
  783. rq = cpu_rq(cpu);
  784. update_rq_clock(rq);
  785. now = rq->clock;
  786. local_irq_restore(flags);
  787. return now;
  788. }
  789. /*
  790. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  791. * clock constructed from sched_clock():
  792. */
  793. unsigned long long cpu_clock(int cpu)
  794. {
  795. unsigned long long prev_cpu_time, time, delta_time;
  796. prev_cpu_time = per_cpu(prev_cpu_time, cpu);
  797. time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
  798. delta_time = time-prev_cpu_time;
  799. if (unlikely(delta_time > time_sync_thresh))
  800. time = __sync_cpu_clock(time, cpu);
  801. return time;
  802. }
  803. EXPORT_SYMBOL_GPL(cpu_clock);
  804. #ifndef prepare_arch_switch
  805. # define prepare_arch_switch(next) do { } while (0)
  806. #endif
  807. #ifndef finish_arch_switch
  808. # define finish_arch_switch(prev) do { } while (0)
  809. #endif
  810. static inline int task_current(struct rq *rq, struct task_struct *p)
  811. {
  812. return rq->curr == p;
  813. }
  814. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  815. static inline int task_running(struct rq *rq, struct task_struct *p)
  816. {
  817. return task_current(rq, p);
  818. }
  819. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  820. {
  821. }
  822. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  823. {
  824. #ifdef CONFIG_DEBUG_SPINLOCK
  825. /* this is a valid case when another task releases the spinlock */
  826. rq->lock.owner = current;
  827. #endif
  828. /*
  829. * If we are tracking spinlock dependencies then we have to
  830. * fix up the runqueue lock - which gets 'carried over' from
  831. * prev into current:
  832. */
  833. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  834. spin_unlock_irq(&rq->lock);
  835. }
  836. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  837. static inline int task_running(struct rq *rq, struct task_struct *p)
  838. {
  839. #ifdef CONFIG_SMP
  840. return p->oncpu;
  841. #else
  842. return task_current(rq, p);
  843. #endif
  844. }
  845. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  846. {
  847. #ifdef CONFIG_SMP
  848. /*
  849. * We can optimise this out completely for !SMP, because the
  850. * SMP rebalancing from interrupt is the only thing that cares
  851. * here.
  852. */
  853. next->oncpu = 1;
  854. #endif
  855. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  856. spin_unlock_irq(&rq->lock);
  857. #else
  858. spin_unlock(&rq->lock);
  859. #endif
  860. }
  861. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  862. {
  863. #ifdef CONFIG_SMP
  864. /*
  865. * After ->oncpu is cleared, the task can be moved to a different CPU.
  866. * We must ensure this doesn't happen until the switch is completely
  867. * finished.
  868. */
  869. smp_wmb();
  870. prev->oncpu = 0;
  871. #endif
  872. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  873. local_irq_enable();
  874. #endif
  875. }
  876. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  877. /*
  878. * __task_rq_lock - lock the runqueue a given task resides on.
  879. * Must be called interrupts disabled.
  880. */
  881. static inline struct rq *__task_rq_lock(struct task_struct *p)
  882. __acquires(rq->lock)
  883. {
  884. for (;;) {
  885. struct rq *rq = task_rq(p);
  886. spin_lock(&rq->lock);
  887. if (likely(rq == task_rq(p)))
  888. return rq;
  889. spin_unlock(&rq->lock);
  890. }
  891. }
  892. /*
  893. * task_rq_lock - lock the runqueue a given task resides on and disable
  894. * interrupts. Note the ordering: we can safely lookup the task_rq without
  895. * explicitly disabling preemption.
  896. */
  897. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  898. __acquires(rq->lock)
  899. {
  900. struct rq *rq;
  901. for (;;) {
  902. local_irq_save(*flags);
  903. rq = task_rq(p);
  904. spin_lock(&rq->lock);
  905. if (likely(rq == task_rq(p)))
  906. return rq;
  907. spin_unlock_irqrestore(&rq->lock, *flags);
  908. }
  909. }
  910. static void __task_rq_unlock(struct rq *rq)
  911. __releases(rq->lock)
  912. {
  913. spin_unlock(&rq->lock);
  914. }
  915. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  916. __releases(rq->lock)
  917. {
  918. spin_unlock_irqrestore(&rq->lock, *flags);
  919. }
  920. /*
  921. * this_rq_lock - lock this runqueue and disable interrupts.
  922. */
  923. static struct rq *this_rq_lock(void)
  924. __acquires(rq->lock)
  925. {
  926. struct rq *rq;
  927. local_irq_disable();
  928. rq = this_rq();
  929. spin_lock(&rq->lock);
  930. return rq;
  931. }
  932. /*
  933. * We are going deep-idle (irqs are disabled):
  934. */
  935. void sched_clock_idle_sleep_event(void)
  936. {
  937. struct rq *rq = cpu_rq(smp_processor_id());
  938. spin_lock(&rq->lock);
  939. __update_rq_clock(rq);
  940. spin_unlock(&rq->lock);
  941. rq->clock_deep_idle_events++;
  942. }
  943. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  944. /*
  945. * We just idled delta nanoseconds (called with irqs disabled):
  946. */
  947. void sched_clock_idle_wakeup_event(u64 delta_ns)
  948. {
  949. struct rq *rq = cpu_rq(smp_processor_id());
  950. u64 now = sched_clock();
  951. rq->idle_clock += delta_ns;
  952. /*
  953. * Override the previous timestamp and ignore all
  954. * sched_clock() deltas that occured while we idled,
  955. * and use the PM-provided delta_ns to advance the
  956. * rq clock:
  957. */
  958. spin_lock(&rq->lock);
  959. rq->prev_clock_raw = now;
  960. rq->clock += delta_ns;
  961. spin_unlock(&rq->lock);
  962. touch_softlockup_watchdog();
  963. }
  964. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  965. static void __resched_task(struct task_struct *p, int tif_bit);
  966. static inline void resched_task(struct task_struct *p)
  967. {
  968. __resched_task(p, TIF_NEED_RESCHED);
  969. }
  970. #ifdef CONFIG_SCHED_HRTICK
  971. /*
  972. * Use HR-timers to deliver accurate preemption points.
  973. *
  974. * Its all a bit involved since we cannot program an hrt while holding the
  975. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  976. * reschedule event.
  977. *
  978. * When we get rescheduled we reprogram the hrtick_timer outside of the
  979. * rq->lock.
  980. */
  981. static inline void resched_hrt(struct task_struct *p)
  982. {
  983. __resched_task(p, TIF_HRTICK_RESCHED);
  984. }
  985. static inline void resched_rq(struct rq *rq)
  986. {
  987. unsigned long flags;
  988. spin_lock_irqsave(&rq->lock, flags);
  989. resched_task(rq->curr);
  990. spin_unlock_irqrestore(&rq->lock, flags);
  991. }
  992. enum {
  993. HRTICK_SET, /* re-programm hrtick_timer */
  994. HRTICK_RESET, /* not a new slice */
  995. };
  996. /*
  997. * Use hrtick when:
  998. * - enabled by features
  999. * - hrtimer is actually high res
  1000. */
  1001. static inline int hrtick_enabled(struct rq *rq)
  1002. {
  1003. if (!sched_feat(HRTICK))
  1004. return 0;
  1005. return hrtimer_is_hres_active(&rq->hrtick_timer);
  1006. }
  1007. /*
  1008. * Called to set the hrtick timer state.
  1009. *
  1010. * called with rq->lock held and irqs disabled
  1011. */
  1012. static void hrtick_start(struct rq *rq, u64 delay, int reset)
  1013. {
  1014. assert_spin_locked(&rq->lock);
  1015. /*
  1016. * preempt at: now + delay
  1017. */
  1018. rq->hrtick_expire =
  1019. ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
  1020. /*
  1021. * indicate we need to program the timer
  1022. */
  1023. __set_bit(HRTICK_SET, &rq->hrtick_flags);
  1024. if (reset)
  1025. __set_bit(HRTICK_RESET, &rq->hrtick_flags);
  1026. /*
  1027. * New slices are called from the schedule path and don't need a
  1028. * forced reschedule.
  1029. */
  1030. if (reset)
  1031. resched_hrt(rq->curr);
  1032. }
  1033. static void hrtick_clear(struct rq *rq)
  1034. {
  1035. if (hrtimer_active(&rq->hrtick_timer))
  1036. hrtimer_cancel(&rq->hrtick_timer);
  1037. }
  1038. /*
  1039. * Update the timer from the possible pending state.
  1040. */
  1041. static void hrtick_set(struct rq *rq)
  1042. {
  1043. ktime_t time;
  1044. int set, reset;
  1045. unsigned long flags;
  1046. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  1047. spin_lock_irqsave(&rq->lock, flags);
  1048. set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
  1049. reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
  1050. time = rq->hrtick_expire;
  1051. clear_thread_flag(TIF_HRTICK_RESCHED);
  1052. spin_unlock_irqrestore(&rq->lock, flags);
  1053. if (set) {
  1054. hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
  1055. if (reset && !hrtimer_active(&rq->hrtick_timer))
  1056. resched_rq(rq);
  1057. } else
  1058. hrtick_clear(rq);
  1059. }
  1060. /*
  1061. * High-resolution timer tick.
  1062. * Runs from hardirq context with interrupts disabled.
  1063. */
  1064. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  1065. {
  1066. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  1067. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  1068. spin_lock(&rq->lock);
  1069. __update_rq_clock(rq);
  1070. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  1071. spin_unlock(&rq->lock);
  1072. return HRTIMER_NORESTART;
  1073. }
  1074. static inline void init_rq_hrtick(struct rq *rq)
  1075. {
  1076. rq->hrtick_flags = 0;
  1077. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1078. rq->hrtick_timer.function = hrtick;
  1079. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  1080. }
  1081. void hrtick_resched(void)
  1082. {
  1083. struct rq *rq;
  1084. unsigned long flags;
  1085. if (!test_thread_flag(TIF_HRTICK_RESCHED))
  1086. return;
  1087. local_irq_save(flags);
  1088. rq = cpu_rq(smp_processor_id());
  1089. hrtick_set(rq);
  1090. local_irq_restore(flags);
  1091. }
  1092. #else
  1093. static inline void hrtick_clear(struct rq *rq)
  1094. {
  1095. }
  1096. static inline void hrtick_set(struct rq *rq)
  1097. {
  1098. }
  1099. static inline void init_rq_hrtick(struct rq *rq)
  1100. {
  1101. }
  1102. void hrtick_resched(void)
  1103. {
  1104. }
  1105. #endif
  1106. /*
  1107. * resched_task - mark a task 'to be rescheduled now'.
  1108. *
  1109. * On UP this means the setting of the need_resched flag, on SMP it
  1110. * might also involve a cross-CPU call to trigger the scheduler on
  1111. * the target CPU.
  1112. */
  1113. #ifdef CONFIG_SMP
  1114. #ifndef tsk_is_polling
  1115. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1116. #endif
  1117. static void __resched_task(struct task_struct *p, int tif_bit)
  1118. {
  1119. int cpu;
  1120. assert_spin_locked(&task_rq(p)->lock);
  1121. if (unlikely(test_tsk_thread_flag(p, tif_bit)))
  1122. return;
  1123. set_tsk_thread_flag(p, tif_bit);
  1124. cpu = task_cpu(p);
  1125. if (cpu == smp_processor_id())
  1126. return;
  1127. /* NEED_RESCHED must be visible before we test polling */
  1128. smp_mb();
  1129. if (!tsk_is_polling(p))
  1130. smp_send_reschedule(cpu);
  1131. }
  1132. static void resched_cpu(int cpu)
  1133. {
  1134. struct rq *rq = cpu_rq(cpu);
  1135. unsigned long flags;
  1136. if (!spin_trylock_irqsave(&rq->lock, flags))
  1137. return;
  1138. resched_task(cpu_curr(cpu));
  1139. spin_unlock_irqrestore(&rq->lock, flags);
  1140. }
  1141. #ifdef CONFIG_NO_HZ
  1142. /*
  1143. * When add_timer_on() enqueues a timer into the timer wheel of an
  1144. * idle CPU then this timer might expire before the next timer event
  1145. * which is scheduled to wake up that CPU. In case of a completely
  1146. * idle system the next event might even be infinite time into the
  1147. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1148. * leaves the inner idle loop so the newly added timer is taken into
  1149. * account when the CPU goes back to idle and evaluates the timer
  1150. * wheel for the next timer event.
  1151. */
  1152. void wake_up_idle_cpu(int cpu)
  1153. {
  1154. struct rq *rq = cpu_rq(cpu);
  1155. if (cpu == smp_processor_id())
  1156. return;
  1157. /*
  1158. * This is safe, as this function is called with the timer
  1159. * wheel base lock of (cpu) held. When the CPU is on the way
  1160. * to idle and has not yet set rq->curr to idle then it will
  1161. * be serialized on the timer wheel base lock and take the new
  1162. * timer into account automatically.
  1163. */
  1164. if (rq->curr != rq->idle)
  1165. return;
  1166. /*
  1167. * We can set TIF_RESCHED on the idle task of the other CPU
  1168. * lockless. The worst case is that the other CPU runs the
  1169. * idle task through an additional NOOP schedule()
  1170. */
  1171. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1172. /* NEED_RESCHED must be visible before we test polling */
  1173. smp_mb();
  1174. if (!tsk_is_polling(rq->idle))
  1175. smp_send_reschedule(cpu);
  1176. }
  1177. #endif
  1178. #else
  1179. static void __resched_task(struct task_struct *p, int tif_bit)
  1180. {
  1181. assert_spin_locked(&task_rq(p)->lock);
  1182. set_tsk_thread_flag(p, tif_bit);
  1183. }
  1184. #endif
  1185. #if BITS_PER_LONG == 32
  1186. # define WMULT_CONST (~0UL)
  1187. #else
  1188. # define WMULT_CONST (1UL << 32)
  1189. #endif
  1190. #define WMULT_SHIFT 32
  1191. /*
  1192. * Shift right and round:
  1193. */
  1194. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1195. /*
  1196. * delta *= weight / lw
  1197. */
  1198. static unsigned long
  1199. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1200. struct load_weight *lw)
  1201. {
  1202. u64 tmp;
  1203. if (unlikely(!lw->inv_weight))
  1204. lw->inv_weight = (WMULT_CONST-lw->weight/2) / (lw->weight+1);
  1205. tmp = (u64)delta_exec * weight;
  1206. /*
  1207. * Check whether we'd overflow the 64-bit multiplication:
  1208. */
  1209. if (unlikely(tmp > WMULT_CONST))
  1210. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1211. WMULT_SHIFT/2);
  1212. else
  1213. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1214. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1215. }
  1216. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1217. {
  1218. lw->weight += inc;
  1219. lw->inv_weight = 0;
  1220. }
  1221. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1222. {
  1223. lw->weight -= dec;
  1224. lw->inv_weight = 0;
  1225. }
  1226. /*
  1227. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1228. * of tasks with abnormal "nice" values across CPUs the contribution that
  1229. * each task makes to its run queue's load is weighted according to its
  1230. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1231. * scaled version of the new time slice allocation that they receive on time
  1232. * slice expiry etc.
  1233. */
  1234. #define WEIGHT_IDLEPRIO 2
  1235. #define WMULT_IDLEPRIO (1 << 31)
  1236. /*
  1237. * Nice levels are multiplicative, with a gentle 10% change for every
  1238. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1239. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1240. * that remained on nice 0.
  1241. *
  1242. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1243. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1244. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1245. * If a task goes up by ~10% and another task goes down by ~10% then
  1246. * the relative distance between them is ~25%.)
  1247. */
  1248. static const int prio_to_weight[40] = {
  1249. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1250. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1251. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1252. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1253. /* 0 */ 1024, 820, 655, 526, 423,
  1254. /* 5 */ 335, 272, 215, 172, 137,
  1255. /* 10 */ 110, 87, 70, 56, 45,
  1256. /* 15 */ 36, 29, 23, 18, 15,
  1257. };
  1258. /*
  1259. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1260. *
  1261. * In cases where the weight does not change often, we can use the
  1262. * precalculated inverse to speed up arithmetics by turning divisions
  1263. * into multiplications:
  1264. */
  1265. static const u32 prio_to_wmult[40] = {
  1266. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1267. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1268. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1269. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1270. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1271. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1272. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1273. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1274. };
  1275. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1276. /*
  1277. * runqueue iterator, to support SMP load-balancing between different
  1278. * scheduling classes, without having to expose their internal data
  1279. * structures to the load-balancing proper:
  1280. */
  1281. struct rq_iterator {
  1282. void *arg;
  1283. struct task_struct *(*start)(void *);
  1284. struct task_struct *(*next)(void *);
  1285. };
  1286. #ifdef CONFIG_SMP
  1287. static unsigned long
  1288. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1289. unsigned long max_load_move, struct sched_domain *sd,
  1290. enum cpu_idle_type idle, int *all_pinned,
  1291. int *this_best_prio, struct rq_iterator *iterator);
  1292. static int
  1293. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1294. struct sched_domain *sd, enum cpu_idle_type idle,
  1295. struct rq_iterator *iterator);
  1296. #endif
  1297. #ifdef CONFIG_CGROUP_CPUACCT
  1298. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1299. #else
  1300. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1301. #endif
  1302. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1303. {
  1304. update_load_add(&rq->load, load);
  1305. }
  1306. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1307. {
  1308. update_load_sub(&rq->load, load);
  1309. }
  1310. #ifdef CONFIG_SMP
  1311. static unsigned long source_load(int cpu, int type);
  1312. static unsigned long target_load(int cpu, int type);
  1313. static unsigned long cpu_avg_load_per_task(int cpu);
  1314. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1315. #ifdef CONFIG_FAIR_GROUP_SCHED
  1316. /*
  1317. * Group load balancing.
  1318. *
  1319. * We calculate a few balance domain wide aggregate numbers; load and weight.
  1320. * Given the pictures below, and assuming each item has equal weight:
  1321. *
  1322. * root 1 - thread
  1323. * / | \ A - group
  1324. * A 1 B
  1325. * /|\ / \
  1326. * C 2 D 3 4
  1327. * | |
  1328. * 5 6
  1329. *
  1330. * load:
  1331. * A and B get 1/3-rd of the total load. C and D get 1/3-rd of A's 1/3-rd,
  1332. * which equals 1/9-th of the total load.
  1333. *
  1334. * shares:
  1335. * The weight of this group on the selected cpus.
  1336. *
  1337. * rq_weight:
  1338. * Direct sum of all the cpu's their rq weight, e.g. A would get 3 while
  1339. * B would get 2.
  1340. *
  1341. * task_weight:
  1342. * Part of the rq_weight contributed by tasks; all groups except B would
  1343. * get 1, B gets 2.
  1344. */
  1345. static inline struct aggregate_struct *
  1346. aggregate(struct task_group *tg, struct sched_domain *sd)
  1347. {
  1348. return &tg->cfs_rq[sd->first_cpu]->aggregate;
  1349. }
  1350. typedef void (*aggregate_func)(struct task_group *, struct sched_domain *);
  1351. /*
  1352. * Iterate the full tree, calling @down when first entering a node and @up when
  1353. * leaving it for the final time.
  1354. */
  1355. static
  1356. void aggregate_walk_tree(aggregate_func down, aggregate_func up,
  1357. struct sched_domain *sd)
  1358. {
  1359. struct task_group *parent, *child;
  1360. rcu_read_lock();
  1361. parent = &root_task_group;
  1362. down:
  1363. (*down)(parent, sd);
  1364. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1365. parent = child;
  1366. goto down;
  1367. up:
  1368. continue;
  1369. }
  1370. (*up)(parent, sd);
  1371. child = parent;
  1372. parent = parent->parent;
  1373. if (parent)
  1374. goto up;
  1375. rcu_read_unlock();
  1376. }
  1377. /*
  1378. * Calculate the aggregate runqueue weight.
  1379. */
  1380. static
  1381. void aggregate_group_weight(struct task_group *tg, struct sched_domain *sd)
  1382. {
  1383. unsigned long rq_weight = 0;
  1384. unsigned long task_weight = 0;
  1385. int i;
  1386. for_each_cpu_mask(i, sd->span) {
  1387. rq_weight += tg->cfs_rq[i]->load.weight;
  1388. task_weight += tg->cfs_rq[i]->task_weight;
  1389. }
  1390. aggregate(tg, sd)->rq_weight = rq_weight;
  1391. aggregate(tg, sd)->task_weight = task_weight;
  1392. }
  1393. /*
  1394. * Redistribute tg->shares amongst all tg->cfs_rq[]s.
  1395. */
  1396. static void __aggregate_redistribute_shares(struct task_group *tg)
  1397. {
  1398. int i, max_cpu = smp_processor_id();
  1399. unsigned long rq_weight = 0;
  1400. unsigned long shares, max_shares = 0, shares_rem = tg->shares;
  1401. for_each_possible_cpu(i)
  1402. rq_weight += tg->cfs_rq[i]->load.weight;
  1403. for_each_possible_cpu(i) {
  1404. /*
  1405. * divide shares proportional to the rq_weights.
  1406. */
  1407. shares = tg->shares * tg->cfs_rq[i]->load.weight;
  1408. shares /= rq_weight + 1;
  1409. tg->cfs_rq[i]->shares = shares;
  1410. if (shares > max_shares) {
  1411. max_shares = shares;
  1412. max_cpu = i;
  1413. }
  1414. shares_rem -= shares;
  1415. }
  1416. /*
  1417. * Ensure it all adds up to tg->shares; we can loose a few
  1418. * due to rounding down when computing the per-cpu shares.
  1419. */
  1420. if (shares_rem)
  1421. tg->cfs_rq[max_cpu]->shares += shares_rem;
  1422. }
  1423. /*
  1424. * Compute the weight of this group on the given cpus.
  1425. */
  1426. static
  1427. void aggregate_group_shares(struct task_group *tg, struct sched_domain *sd)
  1428. {
  1429. unsigned long shares = 0;
  1430. int i;
  1431. again:
  1432. for_each_cpu_mask(i, sd->span)
  1433. shares += tg->cfs_rq[i]->shares;
  1434. /*
  1435. * When the span doesn't have any shares assigned, but does have
  1436. * tasks to run do a machine wide rebalance (should be rare).
  1437. */
  1438. if (unlikely(!shares && aggregate(tg, sd)->rq_weight)) {
  1439. __aggregate_redistribute_shares(tg);
  1440. goto again;
  1441. }
  1442. aggregate(tg, sd)->shares = shares;
  1443. }
  1444. /*
  1445. * Compute the load fraction assigned to this group, relies on the aggregate
  1446. * weight and this group's parent's load, i.e. top-down.
  1447. */
  1448. static
  1449. void aggregate_group_load(struct task_group *tg, struct sched_domain *sd)
  1450. {
  1451. unsigned long load;
  1452. if (!tg->parent) {
  1453. int i;
  1454. load = 0;
  1455. for_each_cpu_mask(i, sd->span)
  1456. load += cpu_rq(i)->load.weight;
  1457. } else {
  1458. load = aggregate(tg->parent, sd)->load;
  1459. /*
  1460. * shares is our weight in the parent's rq so
  1461. * shares/parent->rq_weight gives our fraction of the load
  1462. */
  1463. load *= aggregate(tg, sd)->shares;
  1464. load /= aggregate(tg->parent, sd)->rq_weight + 1;
  1465. }
  1466. aggregate(tg, sd)->load = load;
  1467. }
  1468. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1469. /*
  1470. * Calculate and set the cpu's group shares.
  1471. */
  1472. static void
  1473. __update_group_shares_cpu(struct task_group *tg, struct sched_domain *sd,
  1474. int tcpu)
  1475. {
  1476. int boost = 0;
  1477. unsigned long shares;
  1478. unsigned long rq_weight;
  1479. if (!tg->se[tcpu])
  1480. return;
  1481. rq_weight = tg->cfs_rq[tcpu]->load.weight;
  1482. /*
  1483. * If there are currently no tasks on the cpu pretend there is one of
  1484. * average load so that when a new task gets to run here it will not
  1485. * get delayed by group starvation.
  1486. */
  1487. if (!rq_weight) {
  1488. boost = 1;
  1489. rq_weight = NICE_0_LOAD;
  1490. }
  1491. /*
  1492. * \Sum shares * rq_weight
  1493. * shares = -----------------------
  1494. * \Sum rq_weight
  1495. *
  1496. */
  1497. shares = aggregate(tg, sd)->shares * rq_weight;
  1498. shares /= aggregate(tg, sd)->rq_weight + 1;
  1499. /*
  1500. * record the actual number of shares, not the boosted amount.
  1501. */
  1502. tg->cfs_rq[tcpu]->shares = boost ? 0 : shares;
  1503. if (shares < MIN_SHARES)
  1504. shares = MIN_SHARES;
  1505. __set_se_shares(tg->se[tcpu], shares);
  1506. }
  1507. /*
  1508. * Re-adjust the weights on the cpu the task came from and on the cpu the
  1509. * task went to.
  1510. */
  1511. static void
  1512. __move_group_shares(struct task_group *tg, struct sched_domain *sd,
  1513. int scpu, int dcpu)
  1514. {
  1515. unsigned long shares;
  1516. shares = tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
  1517. __update_group_shares_cpu(tg, sd, scpu);
  1518. __update_group_shares_cpu(tg, sd, dcpu);
  1519. /*
  1520. * ensure we never loose shares due to rounding errors in the
  1521. * above redistribution.
  1522. */
  1523. shares -= tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
  1524. if (shares)
  1525. tg->cfs_rq[dcpu]->shares += shares;
  1526. }
  1527. /*
  1528. * Because changing a group's shares changes the weight of the super-group
  1529. * we need to walk up the tree and change all shares until we hit the root.
  1530. */
  1531. static void
  1532. move_group_shares(struct task_group *tg, struct sched_domain *sd,
  1533. int scpu, int dcpu)
  1534. {
  1535. while (tg) {
  1536. __move_group_shares(tg, sd, scpu, dcpu);
  1537. tg = tg->parent;
  1538. }
  1539. }
  1540. static
  1541. void aggregate_group_set_shares(struct task_group *tg, struct sched_domain *sd)
  1542. {
  1543. unsigned long shares = aggregate(tg, sd)->shares;
  1544. int i;
  1545. for_each_cpu_mask(i, sd->span) {
  1546. struct rq *rq = cpu_rq(i);
  1547. unsigned long flags;
  1548. spin_lock_irqsave(&rq->lock, flags);
  1549. __update_group_shares_cpu(tg, sd, i);
  1550. spin_unlock_irqrestore(&rq->lock, flags);
  1551. }
  1552. aggregate_group_shares(tg, sd);
  1553. /*
  1554. * ensure we never loose shares due to rounding errors in the
  1555. * above redistribution.
  1556. */
  1557. shares -= aggregate(tg, sd)->shares;
  1558. if (shares) {
  1559. tg->cfs_rq[sd->first_cpu]->shares += shares;
  1560. aggregate(tg, sd)->shares += shares;
  1561. }
  1562. }
  1563. /*
  1564. * Calculate the accumulative weight and recursive load of each task group
  1565. * while walking down the tree.
  1566. */
  1567. static
  1568. void aggregate_get_down(struct task_group *tg, struct sched_domain *sd)
  1569. {
  1570. aggregate_group_weight(tg, sd);
  1571. aggregate_group_shares(tg, sd);
  1572. aggregate_group_load(tg, sd);
  1573. }
  1574. /*
  1575. * Rebalance the cpu shares while walking back up the tree.
  1576. */
  1577. static
  1578. void aggregate_get_up(struct task_group *tg, struct sched_domain *sd)
  1579. {
  1580. aggregate_group_set_shares(tg, sd);
  1581. }
  1582. static DEFINE_PER_CPU(spinlock_t, aggregate_lock);
  1583. static void __init init_aggregate(void)
  1584. {
  1585. int i;
  1586. for_each_possible_cpu(i)
  1587. spin_lock_init(&per_cpu(aggregate_lock, i));
  1588. }
  1589. static int get_aggregate(struct sched_domain *sd)
  1590. {
  1591. if (!spin_trylock(&per_cpu(aggregate_lock, sd->first_cpu)))
  1592. return 0;
  1593. aggregate_walk_tree(aggregate_get_down, aggregate_get_up, sd);
  1594. return 1;
  1595. }
  1596. static void put_aggregate(struct sched_domain *sd)
  1597. {
  1598. spin_unlock(&per_cpu(aggregate_lock, sd->first_cpu));
  1599. }
  1600. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1601. {
  1602. cfs_rq->shares = shares;
  1603. }
  1604. #else
  1605. static inline void init_aggregate(void)
  1606. {
  1607. }
  1608. static inline int get_aggregate(struct sched_domain *sd)
  1609. {
  1610. return 0;
  1611. }
  1612. static inline void put_aggregate(struct sched_domain *sd)
  1613. {
  1614. }
  1615. #endif
  1616. #else /* CONFIG_SMP */
  1617. #ifdef CONFIG_FAIR_GROUP_SCHED
  1618. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1619. {
  1620. }
  1621. #endif
  1622. #endif /* CONFIG_SMP */
  1623. #include "sched_stats.h"
  1624. #include "sched_idletask.c"
  1625. #include "sched_fair.c"
  1626. #include "sched_rt.c"
  1627. #ifdef CONFIG_SCHED_DEBUG
  1628. # include "sched_debug.c"
  1629. #endif
  1630. #define sched_class_highest (&rt_sched_class)
  1631. static void inc_nr_running(struct rq *rq)
  1632. {
  1633. rq->nr_running++;
  1634. }
  1635. static void dec_nr_running(struct rq *rq)
  1636. {
  1637. rq->nr_running--;
  1638. }
  1639. static void set_load_weight(struct task_struct *p)
  1640. {
  1641. if (task_has_rt_policy(p)) {
  1642. p->se.load.weight = prio_to_weight[0] * 2;
  1643. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1644. return;
  1645. }
  1646. /*
  1647. * SCHED_IDLE tasks get minimal weight:
  1648. */
  1649. if (p->policy == SCHED_IDLE) {
  1650. p->se.load.weight = WEIGHT_IDLEPRIO;
  1651. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1652. return;
  1653. }
  1654. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1655. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1656. }
  1657. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1658. {
  1659. sched_info_queued(p);
  1660. p->sched_class->enqueue_task(rq, p, wakeup);
  1661. p->se.on_rq = 1;
  1662. }
  1663. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1664. {
  1665. p->sched_class->dequeue_task(rq, p, sleep);
  1666. p->se.on_rq = 0;
  1667. }
  1668. /*
  1669. * __normal_prio - return the priority that is based on the static prio
  1670. */
  1671. static inline int __normal_prio(struct task_struct *p)
  1672. {
  1673. return p->static_prio;
  1674. }
  1675. /*
  1676. * Calculate the expected normal priority: i.e. priority
  1677. * without taking RT-inheritance into account. Might be
  1678. * boosted by interactivity modifiers. Changes upon fork,
  1679. * setprio syscalls, and whenever the interactivity
  1680. * estimator recalculates.
  1681. */
  1682. static inline int normal_prio(struct task_struct *p)
  1683. {
  1684. int prio;
  1685. if (task_has_rt_policy(p))
  1686. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1687. else
  1688. prio = __normal_prio(p);
  1689. return prio;
  1690. }
  1691. /*
  1692. * Calculate the current priority, i.e. the priority
  1693. * taken into account by the scheduler. This value might
  1694. * be boosted by RT tasks, or might be boosted by
  1695. * interactivity modifiers. Will be RT if the task got
  1696. * RT-boosted. If not then it returns p->normal_prio.
  1697. */
  1698. static int effective_prio(struct task_struct *p)
  1699. {
  1700. p->normal_prio = normal_prio(p);
  1701. /*
  1702. * If we are RT tasks or we were boosted to RT priority,
  1703. * keep the priority unchanged. Otherwise, update priority
  1704. * to the normal priority:
  1705. */
  1706. if (!rt_prio(p->prio))
  1707. return p->normal_prio;
  1708. return p->prio;
  1709. }
  1710. /*
  1711. * activate_task - move a task to the runqueue.
  1712. */
  1713. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1714. {
  1715. if (task_contributes_to_load(p))
  1716. rq->nr_uninterruptible--;
  1717. enqueue_task(rq, p, wakeup);
  1718. inc_nr_running(rq);
  1719. }
  1720. /*
  1721. * deactivate_task - remove a task from the runqueue.
  1722. */
  1723. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1724. {
  1725. if (task_contributes_to_load(p))
  1726. rq->nr_uninterruptible++;
  1727. dequeue_task(rq, p, sleep);
  1728. dec_nr_running(rq);
  1729. }
  1730. /**
  1731. * task_curr - is this task currently executing on a CPU?
  1732. * @p: the task in question.
  1733. */
  1734. inline int task_curr(const struct task_struct *p)
  1735. {
  1736. return cpu_curr(task_cpu(p)) == p;
  1737. }
  1738. /* Used instead of source_load when we know the type == 0 */
  1739. unsigned long weighted_cpuload(const int cpu)
  1740. {
  1741. return cpu_rq(cpu)->load.weight;
  1742. }
  1743. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1744. {
  1745. set_task_rq(p, cpu);
  1746. #ifdef CONFIG_SMP
  1747. /*
  1748. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1749. * successfuly executed on another CPU. We must ensure that updates of
  1750. * per-task data have been completed by this moment.
  1751. */
  1752. smp_wmb();
  1753. task_thread_info(p)->cpu = cpu;
  1754. #endif
  1755. }
  1756. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1757. const struct sched_class *prev_class,
  1758. int oldprio, int running)
  1759. {
  1760. if (prev_class != p->sched_class) {
  1761. if (prev_class->switched_from)
  1762. prev_class->switched_from(rq, p, running);
  1763. p->sched_class->switched_to(rq, p, running);
  1764. } else
  1765. p->sched_class->prio_changed(rq, p, oldprio, running);
  1766. }
  1767. #ifdef CONFIG_SMP
  1768. /*
  1769. * Is this task likely cache-hot:
  1770. */
  1771. static int
  1772. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1773. {
  1774. s64 delta;
  1775. /*
  1776. * Buddy candidates are cache hot:
  1777. */
  1778. if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
  1779. return 1;
  1780. if (p->sched_class != &fair_sched_class)
  1781. return 0;
  1782. if (sysctl_sched_migration_cost == -1)
  1783. return 1;
  1784. if (sysctl_sched_migration_cost == 0)
  1785. return 0;
  1786. delta = now - p->se.exec_start;
  1787. return delta < (s64)sysctl_sched_migration_cost;
  1788. }
  1789. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1790. {
  1791. int old_cpu = task_cpu(p);
  1792. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1793. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1794. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1795. u64 clock_offset;
  1796. clock_offset = old_rq->clock - new_rq->clock;
  1797. #ifdef CONFIG_SCHEDSTATS
  1798. if (p->se.wait_start)
  1799. p->se.wait_start -= clock_offset;
  1800. if (p->se.sleep_start)
  1801. p->se.sleep_start -= clock_offset;
  1802. if (p->se.block_start)
  1803. p->se.block_start -= clock_offset;
  1804. if (old_cpu != new_cpu) {
  1805. schedstat_inc(p, se.nr_migrations);
  1806. if (task_hot(p, old_rq->clock, NULL))
  1807. schedstat_inc(p, se.nr_forced2_migrations);
  1808. }
  1809. #endif
  1810. p->se.vruntime -= old_cfsrq->min_vruntime -
  1811. new_cfsrq->min_vruntime;
  1812. __set_task_cpu(p, new_cpu);
  1813. }
  1814. struct migration_req {
  1815. struct list_head list;
  1816. struct task_struct *task;
  1817. int dest_cpu;
  1818. struct completion done;
  1819. };
  1820. /*
  1821. * The task's runqueue lock must be held.
  1822. * Returns true if you have to wait for migration thread.
  1823. */
  1824. static int
  1825. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1826. {
  1827. struct rq *rq = task_rq(p);
  1828. /*
  1829. * If the task is not on a runqueue (and not running), then
  1830. * it is sufficient to simply update the task's cpu field.
  1831. */
  1832. if (!p->se.on_rq && !task_running(rq, p)) {
  1833. set_task_cpu(p, dest_cpu);
  1834. return 0;
  1835. }
  1836. init_completion(&req->done);
  1837. req->task = p;
  1838. req->dest_cpu = dest_cpu;
  1839. list_add(&req->list, &rq->migration_queue);
  1840. return 1;
  1841. }
  1842. /*
  1843. * wait_task_inactive - wait for a thread to unschedule.
  1844. *
  1845. * The caller must ensure that the task *will* unschedule sometime soon,
  1846. * else this function might spin for a *long* time. This function can't
  1847. * be called with interrupts off, or it may introduce deadlock with
  1848. * smp_call_function() if an IPI is sent by the same process we are
  1849. * waiting to become inactive.
  1850. */
  1851. void wait_task_inactive(struct task_struct *p)
  1852. {
  1853. unsigned long flags;
  1854. int running, on_rq;
  1855. struct rq *rq;
  1856. for (;;) {
  1857. /*
  1858. * We do the initial early heuristics without holding
  1859. * any task-queue locks at all. We'll only try to get
  1860. * the runqueue lock when things look like they will
  1861. * work out!
  1862. */
  1863. rq = task_rq(p);
  1864. /*
  1865. * If the task is actively running on another CPU
  1866. * still, just relax and busy-wait without holding
  1867. * any locks.
  1868. *
  1869. * NOTE! Since we don't hold any locks, it's not
  1870. * even sure that "rq" stays as the right runqueue!
  1871. * But we don't care, since "task_running()" will
  1872. * return false if the runqueue has changed and p
  1873. * is actually now running somewhere else!
  1874. */
  1875. while (task_running(rq, p))
  1876. cpu_relax();
  1877. /*
  1878. * Ok, time to look more closely! We need the rq
  1879. * lock now, to be *sure*. If we're wrong, we'll
  1880. * just go back and repeat.
  1881. */
  1882. rq = task_rq_lock(p, &flags);
  1883. running = task_running(rq, p);
  1884. on_rq = p->se.on_rq;
  1885. task_rq_unlock(rq, &flags);
  1886. /*
  1887. * Was it really running after all now that we
  1888. * checked with the proper locks actually held?
  1889. *
  1890. * Oops. Go back and try again..
  1891. */
  1892. if (unlikely(running)) {
  1893. cpu_relax();
  1894. continue;
  1895. }
  1896. /*
  1897. * It's not enough that it's not actively running,
  1898. * it must be off the runqueue _entirely_, and not
  1899. * preempted!
  1900. *
  1901. * So if it wa still runnable (but just not actively
  1902. * running right now), it's preempted, and we should
  1903. * yield - it could be a while.
  1904. */
  1905. if (unlikely(on_rq)) {
  1906. schedule_timeout_uninterruptible(1);
  1907. continue;
  1908. }
  1909. /*
  1910. * Ahh, all good. It wasn't running, and it wasn't
  1911. * runnable, which means that it will never become
  1912. * running in the future either. We're all done!
  1913. */
  1914. break;
  1915. }
  1916. }
  1917. /***
  1918. * kick_process - kick a running thread to enter/exit the kernel
  1919. * @p: the to-be-kicked thread
  1920. *
  1921. * Cause a process which is running on another CPU to enter
  1922. * kernel-mode, without any delay. (to get signals handled.)
  1923. *
  1924. * NOTE: this function doesnt have to take the runqueue lock,
  1925. * because all it wants to ensure is that the remote task enters
  1926. * the kernel. If the IPI races and the task has been migrated
  1927. * to another CPU then no harm is done and the purpose has been
  1928. * achieved as well.
  1929. */
  1930. void kick_process(struct task_struct *p)
  1931. {
  1932. int cpu;
  1933. preempt_disable();
  1934. cpu = task_cpu(p);
  1935. if ((cpu != smp_processor_id()) && task_curr(p))
  1936. smp_send_reschedule(cpu);
  1937. preempt_enable();
  1938. }
  1939. /*
  1940. * Return a low guess at the load of a migration-source cpu weighted
  1941. * according to the scheduling class and "nice" value.
  1942. *
  1943. * We want to under-estimate the load of migration sources, to
  1944. * balance conservatively.
  1945. */
  1946. static unsigned long source_load(int cpu, int type)
  1947. {
  1948. struct rq *rq = cpu_rq(cpu);
  1949. unsigned long total = weighted_cpuload(cpu);
  1950. if (type == 0)
  1951. return total;
  1952. return min(rq->cpu_load[type-1], total);
  1953. }
  1954. /*
  1955. * Return a high guess at the load of a migration-target cpu weighted
  1956. * according to the scheduling class and "nice" value.
  1957. */
  1958. static unsigned long target_load(int cpu, int type)
  1959. {
  1960. struct rq *rq = cpu_rq(cpu);
  1961. unsigned long total = weighted_cpuload(cpu);
  1962. if (type == 0)
  1963. return total;
  1964. return max(rq->cpu_load[type-1], total);
  1965. }
  1966. /*
  1967. * Return the average load per task on the cpu's run queue
  1968. */
  1969. static unsigned long cpu_avg_load_per_task(int cpu)
  1970. {
  1971. struct rq *rq = cpu_rq(cpu);
  1972. unsigned long total = weighted_cpuload(cpu);
  1973. unsigned long n = rq->nr_running;
  1974. return n ? total / n : SCHED_LOAD_SCALE;
  1975. }
  1976. /*
  1977. * find_idlest_group finds and returns the least busy CPU group within the
  1978. * domain.
  1979. */
  1980. static struct sched_group *
  1981. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1982. {
  1983. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1984. unsigned long min_load = ULONG_MAX, this_load = 0;
  1985. int load_idx = sd->forkexec_idx;
  1986. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1987. do {
  1988. unsigned long load, avg_load;
  1989. int local_group;
  1990. int i;
  1991. /* Skip over this group if it has no CPUs allowed */
  1992. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1993. continue;
  1994. local_group = cpu_isset(this_cpu, group->cpumask);
  1995. /* Tally up the load of all CPUs in the group */
  1996. avg_load = 0;
  1997. for_each_cpu_mask(i, group->cpumask) {
  1998. /* Bias balancing toward cpus of our domain */
  1999. if (local_group)
  2000. load = source_load(i, load_idx);
  2001. else
  2002. load = target_load(i, load_idx);
  2003. avg_load += load;
  2004. }
  2005. /* Adjust by relative CPU power of the group */
  2006. avg_load = sg_div_cpu_power(group,
  2007. avg_load * SCHED_LOAD_SCALE);
  2008. if (local_group) {
  2009. this_load = avg_load;
  2010. this = group;
  2011. } else if (avg_load < min_load) {
  2012. min_load = avg_load;
  2013. idlest = group;
  2014. }
  2015. } while (group = group->next, group != sd->groups);
  2016. if (!idlest || 100*this_load < imbalance*min_load)
  2017. return NULL;
  2018. return idlest;
  2019. }
  2020. /*
  2021. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  2022. */
  2023. static int
  2024. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
  2025. cpumask_t *tmp)
  2026. {
  2027. unsigned long load, min_load = ULONG_MAX;
  2028. int idlest = -1;
  2029. int i;
  2030. /* Traverse only the allowed CPUs */
  2031. cpus_and(*tmp, group->cpumask, p->cpus_allowed);
  2032. for_each_cpu_mask(i, *tmp) {
  2033. load = weighted_cpuload(i);
  2034. if (load < min_load || (load == min_load && i == this_cpu)) {
  2035. min_load = load;
  2036. idlest = i;
  2037. }
  2038. }
  2039. return idlest;
  2040. }
  2041. /*
  2042. * sched_balance_self: balance the current task (running on cpu) in domains
  2043. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  2044. * SD_BALANCE_EXEC.
  2045. *
  2046. * Balance, ie. select the least loaded group.
  2047. *
  2048. * Returns the target CPU number, or the same CPU if no balancing is needed.
  2049. *
  2050. * preempt must be disabled.
  2051. */
  2052. static int sched_balance_self(int cpu, int flag)
  2053. {
  2054. struct task_struct *t = current;
  2055. struct sched_domain *tmp, *sd = NULL;
  2056. for_each_domain(cpu, tmp) {
  2057. /*
  2058. * If power savings logic is enabled for a domain, stop there.
  2059. */
  2060. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  2061. break;
  2062. if (tmp->flags & flag)
  2063. sd = tmp;
  2064. }
  2065. while (sd) {
  2066. cpumask_t span, tmpmask;
  2067. struct sched_group *group;
  2068. int new_cpu, weight;
  2069. if (!(sd->flags & flag)) {
  2070. sd = sd->child;
  2071. continue;
  2072. }
  2073. span = sd->span;
  2074. group = find_idlest_group(sd, t, cpu);
  2075. if (!group) {
  2076. sd = sd->child;
  2077. continue;
  2078. }
  2079. new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
  2080. if (new_cpu == -1 || new_cpu == cpu) {
  2081. /* Now try balancing at a lower domain level of cpu */
  2082. sd = sd->child;
  2083. continue;
  2084. }
  2085. /* Now try balancing at a lower domain level of new_cpu */
  2086. cpu = new_cpu;
  2087. sd = NULL;
  2088. weight = cpus_weight(span);
  2089. for_each_domain(cpu, tmp) {
  2090. if (weight <= cpus_weight(tmp->span))
  2091. break;
  2092. if (tmp->flags & flag)
  2093. sd = tmp;
  2094. }
  2095. /* while loop will break here if sd == NULL */
  2096. }
  2097. return cpu;
  2098. }
  2099. #endif /* CONFIG_SMP */
  2100. /***
  2101. * try_to_wake_up - wake up a thread
  2102. * @p: the to-be-woken-up thread
  2103. * @state: the mask of task states that can be woken
  2104. * @sync: do a synchronous wakeup?
  2105. *
  2106. * Put it on the run-queue if it's not already there. The "current"
  2107. * thread is always on the run-queue (except when the actual
  2108. * re-schedule is in progress), and as such you're allowed to do
  2109. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2110. * runnable without the overhead of this.
  2111. *
  2112. * returns failure only if the task is already active.
  2113. */
  2114. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  2115. {
  2116. int cpu, orig_cpu, this_cpu, success = 0;
  2117. unsigned long flags;
  2118. long old_state;
  2119. struct rq *rq;
  2120. if (!sched_feat(SYNC_WAKEUPS))
  2121. sync = 0;
  2122. smp_wmb();
  2123. rq = task_rq_lock(p, &flags);
  2124. old_state = p->state;
  2125. if (!(old_state & state))
  2126. goto out;
  2127. if (p->se.on_rq)
  2128. goto out_running;
  2129. cpu = task_cpu(p);
  2130. orig_cpu = cpu;
  2131. this_cpu = smp_processor_id();
  2132. #ifdef CONFIG_SMP
  2133. if (unlikely(task_running(rq, p)))
  2134. goto out_activate;
  2135. cpu = p->sched_class->select_task_rq(p, sync);
  2136. if (cpu != orig_cpu) {
  2137. set_task_cpu(p, cpu);
  2138. task_rq_unlock(rq, &flags);
  2139. /* might preempt at this point */
  2140. rq = task_rq_lock(p, &flags);
  2141. old_state = p->state;
  2142. if (!(old_state & state))
  2143. goto out;
  2144. if (p->se.on_rq)
  2145. goto out_running;
  2146. this_cpu = smp_processor_id();
  2147. cpu = task_cpu(p);
  2148. }
  2149. #ifdef CONFIG_SCHEDSTATS
  2150. schedstat_inc(rq, ttwu_count);
  2151. if (cpu == this_cpu)
  2152. schedstat_inc(rq, ttwu_local);
  2153. else {
  2154. struct sched_domain *sd;
  2155. for_each_domain(this_cpu, sd) {
  2156. if (cpu_isset(cpu, sd->span)) {
  2157. schedstat_inc(sd, ttwu_wake_remote);
  2158. break;
  2159. }
  2160. }
  2161. }
  2162. #endif
  2163. out_activate:
  2164. #endif /* CONFIG_SMP */
  2165. schedstat_inc(p, se.nr_wakeups);
  2166. if (sync)
  2167. schedstat_inc(p, se.nr_wakeups_sync);
  2168. if (orig_cpu != cpu)
  2169. schedstat_inc(p, se.nr_wakeups_migrate);
  2170. if (cpu == this_cpu)
  2171. schedstat_inc(p, se.nr_wakeups_local);
  2172. else
  2173. schedstat_inc(p, se.nr_wakeups_remote);
  2174. update_rq_clock(rq);
  2175. activate_task(rq, p, 1);
  2176. success = 1;
  2177. out_running:
  2178. check_preempt_curr(rq, p);
  2179. p->state = TASK_RUNNING;
  2180. #ifdef CONFIG_SMP
  2181. if (p->sched_class->task_wake_up)
  2182. p->sched_class->task_wake_up(rq, p);
  2183. #endif
  2184. out:
  2185. task_rq_unlock(rq, &flags);
  2186. return success;
  2187. }
  2188. int wake_up_process(struct task_struct *p)
  2189. {
  2190. return try_to_wake_up(p, TASK_ALL, 0);
  2191. }
  2192. EXPORT_SYMBOL(wake_up_process);
  2193. int wake_up_state(struct task_struct *p, unsigned int state)
  2194. {
  2195. return try_to_wake_up(p, state, 0);
  2196. }
  2197. /*
  2198. * Perform scheduler related setup for a newly forked process p.
  2199. * p is forked by current.
  2200. *
  2201. * __sched_fork() is basic setup used by init_idle() too:
  2202. */
  2203. static void __sched_fork(struct task_struct *p)
  2204. {
  2205. p->se.exec_start = 0;
  2206. p->se.sum_exec_runtime = 0;
  2207. p->se.prev_sum_exec_runtime = 0;
  2208. p->se.last_wakeup = 0;
  2209. p->se.avg_overlap = 0;
  2210. #ifdef CONFIG_SCHEDSTATS
  2211. p->se.wait_start = 0;
  2212. p->se.sum_sleep_runtime = 0;
  2213. p->se.sleep_start = 0;
  2214. p->se.block_start = 0;
  2215. p->se.sleep_max = 0;
  2216. p->se.block_max = 0;
  2217. p->se.exec_max = 0;
  2218. p->se.slice_max = 0;
  2219. p->se.wait_max = 0;
  2220. #endif
  2221. INIT_LIST_HEAD(&p->rt.run_list);
  2222. p->se.on_rq = 0;
  2223. INIT_LIST_HEAD(&p->se.group_node);
  2224. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2225. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2226. #endif
  2227. /*
  2228. * We mark the process as running here, but have not actually
  2229. * inserted it onto the runqueue yet. This guarantees that
  2230. * nobody will actually run it, and a signal or other external
  2231. * event cannot wake it up and insert it on the runqueue either.
  2232. */
  2233. p->state = TASK_RUNNING;
  2234. }
  2235. /*
  2236. * fork()/clone()-time setup:
  2237. */
  2238. void sched_fork(struct task_struct *p, int clone_flags)
  2239. {
  2240. int cpu = get_cpu();
  2241. __sched_fork(p);
  2242. #ifdef CONFIG_SMP
  2243. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2244. #endif
  2245. set_task_cpu(p, cpu);
  2246. /*
  2247. * Make sure we do not leak PI boosting priority to the child:
  2248. */
  2249. p->prio = current->normal_prio;
  2250. if (!rt_prio(p->prio))
  2251. p->sched_class = &fair_sched_class;
  2252. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2253. if (likely(sched_info_on()))
  2254. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2255. #endif
  2256. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2257. p->oncpu = 0;
  2258. #endif
  2259. #ifdef CONFIG_PREEMPT
  2260. /* Want to start with kernel preemption disabled. */
  2261. task_thread_info(p)->preempt_count = 1;
  2262. #endif
  2263. put_cpu();
  2264. }
  2265. /*
  2266. * wake_up_new_task - wake up a newly created task for the first time.
  2267. *
  2268. * This function will do some initial scheduler statistics housekeeping
  2269. * that must be done for every newly created context, then puts the task
  2270. * on the runqueue and wakes it.
  2271. */
  2272. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2273. {
  2274. unsigned long flags;
  2275. struct rq *rq;
  2276. rq = task_rq_lock(p, &flags);
  2277. BUG_ON(p->state != TASK_RUNNING);
  2278. update_rq_clock(rq);
  2279. p->prio = effective_prio(p);
  2280. if (!p->sched_class->task_new || !current->se.on_rq) {
  2281. activate_task(rq, p, 0);
  2282. } else {
  2283. /*
  2284. * Let the scheduling class do new task startup
  2285. * management (if any):
  2286. */
  2287. p->sched_class->task_new(rq, p);
  2288. inc_nr_running(rq);
  2289. }
  2290. check_preempt_curr(rq, p);
  2291. #ifdef CONFIG_SMP
  2292. if (p->sched_class->task_wake_up)
  2293. p->sched_class->task_wake_up(rq, p);
  2294. #endif
  2295. task_rq_unlock(rq, &flags);
  2296. }
  2297. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2298. /**
  2299. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  2300. * @notifier: notifier struct to register
  2301. */
  2302. void preempt_notifier_register(struct preempt_notifier *notifier)
  2303. {
  2304. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2305. }
  2306. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2307. /**
  2308. * preempt_notifier_unregister - no longer interested in preemption notifications
  2309. * @notifier: notifier struct to unregister
  2310. *
  2311. * This is safe to call from within a preemption notifier.
  2312. */
  2313. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2314. {
  2315. hlist_del(&notifier->link);
  2316. }
  2317. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2318. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2319. {
  2320. struct preempt_notifier *notifier;
  2321. struct hlist_node *node;
  2322. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2323. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2324. }
  2325. static void
  2326. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2327. struct task_struct *next)
  2328. {
  2329. struct preempt_notifier *notifier;
  2330. struct hlist_node *node;
  2331. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2332. notifier->ops->sched_out(notifier, next);
  2333. }
  2334. #else
  2335. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2336. {
  2337. }
  2338. static void
  2339. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2340. struct task_struct *next)
  2341. {
  2342. }
  2343. #endif
  2344. /**
  2345. * prepare_task_switch - prepare to switch tasks
  2346. * @rq: the runqueue preparing to switch
  2347. * @prev: the current task that is being switched out
  2348. * @next: the task we are going to switch to.
  2349. *
  2350. * This is called with the rq lock held and interrupts off. It must
  2351. * be paired with a subsequent finish_task_switch after the context
  2352. * switch.
  2353. *
  2354. * prepare_task_switch sets up locking and calls architecture specific
  2355. * hooks.
  2356. */
  2357. static inline void
  2358. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2359. struct task_struct *next)
  2360. {
  2361. fire_sched_out_preempt_notifiers(prev, next);
  2362. prepare_lock_switch(rq, next);
  2363. prepare_arch_switch(next);
  2364. }
  2365. /**
  2366. * finish_task_switch - clean up after a task-switch
  2367. * @rq: runqueue associated with task-switch
  2368. * @prev: the thread we just switched away from.
  2369. *
  2370. * finish_task_switch must be called after the context switch, paired
  2371. * with a prepare_task_switch call before the context switch.
  2372. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2373. * and do any other architecture-specific cleanup actions.
  2374. *
  2375. * Note that we may have delayed dropping an mm in context_switch(). If
  2376. * so, we finish that here outside of the runqueue lock. (Doing it
  2377. * with the lock held can cause deadlocks; see schedule() for
  2378. * details.)
  2379. */
  2380. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2381. __releases(rq->lock)
  2382. {
  2383. struct mm_struct *mm = rq->prev_mm;
  2384. long prev_state;
  2385. rq->prev_mm = NULL;
  2386. /*
  2387. * A task struct has one reference for the use as "current".
  2388. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2389. * schedule one last time. The schedule call will never return, and
  2390. * the scheduled task must drop that reference.
  2391. * The test for TASK_DEAD must occur while the runqueue locks are
  2392. * still held, otherwise prev could be scheduled on another cpu, die
  2393. * there before we look at prev->state, and then the reference would
  2394. * be dropped twice.
  2395. * Manfred Spraul <manfred@colorfullife.com>
  2396. */
  2397. prev_state = prev->state;
  2398. finish_arch_switch(prev);
  2399. finish_lock_switch(rq, prev);
  2400. #ifdef CONFIG_SMP
  2401. if (current->sched_class->post_schedule)
  2402. current->sched_class->post_schedule(rq);
  2403. #endif
  2404. fire_sched_in_preempt_notifiers(current);
  2405. if (mm)
  2406. mmdrop(mm);
  2407. if (unlikely(prev_state == TASK_DEAD)) {
  2408. /*
  2409. * Remove function-return probe instances associated with this
  2410. * task and put them back on the free list.
  2411. */
  2412. kprobe_flush_task(prev);
  2413. put_task_struct(prev);
  2414. }
  2415. }
  2416. /**
  2417. * schedule_tail - first thing a freshly forked thread must call.
  2418. * @prev: the thread we just switched away from.
  2419. */
  2420. asmlinkage void schedule_tail(struct task_struct *prev)
  2421. __releases(rq->lock)
  2422. {
  2423. struct rq *rq = this_rq();
  2424. finish_task_switch(rq, prev);
  2425. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2426. /* In this case, finish_task_switch does not reenable preemption */
  2427. preempt_enable();
  2428. #endif
  2429. if (current->set_child_tid)
  2430. put_user(task_pid_vnr(current), current->set_child_tid);
  2431. }
  2432. /*
  2433. * context_switch - switch to the new MM and the new
  2434. * thread's register state.
  2435. */
  2436. static inline void
  2437. context_switch(struct rq *rq, struct task_struct *prev,
  2438. struct task_struct *next)
  2439. {
  2440. struct mm_struct *mm, *oldmm;
  2441. prepare_task_switch(rq, prev, next);
  2442. mm = next->mm;
  2443. oldmm = prev->active_mm;
  2444. /*
  2445. * For paravirt, this is coupled with an exit in switch_to to
  2446. * combine the page table reload and the switch backend into
  2447. * one hypercall.
  2448. */
  2449. arch_enter_lazy_cpu_mode();
  2450. if (unlikely(!mm)) {
  2451. next->active_mm = oldmm;
  2452. atomic_inc(&oldmm->mm_count);
  2453. enter_lazy_tlb(oldmm, next);
  2454. } else
  2455. switch_mm(oldmm, mm, next);
  2456. if (unlikely(!prev->mm)) {
  2457. prev->active_mm = NULL;
  2458. rq->prev_mm = oldmm;
  2459. }
  2460. /*
  2461. * Since the runqueue lock will be released by the next
  2462. * task (which is an invalid locking op but in the case
  2463. * of the scheduler it's an obvious special-case), so we
  2464. * do an early lockdep release here:
  2465. */
  2466. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2467. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2468. #endif
  2469. /* Here we just switch the register state and the stack. */
  2470. switch_to(prev, next, prev);
  2471. barrier();
  2472. /*
  2473. * this_rq must be evaluated again because prev may have moved
  2474. * CPUs since it called schedule(), thus the 'rq' on its stack
  2475. * frame will be invalid.
  2476. */
  2477. finish_task_switch(this_rq(), prev);
  2478. }
  2479. /*
  2480. * nr_running, nr_uninterruptible and nr_context_switches:
  2481. *
  2482. * externally visible scheduler statistics: current number of runnable
  2483. * threads, current number of uninterruptible-sleeping threads, total
  2484. * number of context switches performed since bootup.
  2485. */
  2486. unsigned long nr_running(void)
  2487. {
  2488. unsigned long i, sum = 0;
  2489. for_each_online_cpu(i)
  2490. sum += cpu_rq(i)->nr_running;
  2491. return sum;
  2492. }
  2493. unsigned long nr_uninterruptible(void)
  2494. {
  2495. unsigned long i, sum = 0;
  2496. for_each_possible_cpu(i)
  2497. sum += cpu_rq(i)->nr_uninterruptible;
  2498. /*
  2499. * Since we read the counters lockless, it might be slightly
  2500. * inaccurate. Do not allow it to go below zero though:
  2501. */
  2502. if (unlikely((long)sum < 0))
  2503. sum = 0;
  2504. return sum;
  2505. }
  2506. unsigned long long nr_context_switches(void)
  2507. {
  2508. int i;
  2509. unsigned long long sum = 0;
  2510. for_each_possible_cpu(i)
  2511. sum += cpu_rq(i)->nr_switches;
  2512. return sum;
  2513. }
  2514. unsigned long nr_iowait(void)
  2515. {
  2516. unsigned long i, sum = 0;
  2517. for_each_possible_cpu(i)
  2518. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2519. return sum;
  2520. }
  2521. unsigned long nr_active(void)
  2522. {
  2523. unsigned long i, running = 0, uninterruptible = 0;
  2524. for_each_online_cpu(i) {
  2525. running += cpu_rq(i)->nr_running;
  2526. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2527. }
  2528. if (unlikely((long)uninterruptible < 0))
  2529. uninterruptible = 0;
  2530. return running + uninterruptible;
  2531. }
  2532. /*
  2533. * Update rq->cpu_load[] statistics. This function is usually called every
  2534. * scheduler tick (TICK_NSEC).
  2535. */
  2536. static void update_cpu_load(struct rq *this_rq)
  2537. {
  2538. unsigned long this_load = this_rq->load.weight;
  2539. int i, scale;
  2540. this_rq->nr_load_updates++;
  2541. /* Update our load: */
  2542. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2543. unsigned long old_load, new_load;
  2544. /* scale is effectively 1 << i now, and >> i divides by scale */
  2545. old_load = this_rq->cpu_load[i];
  2546. new_load = this_load;
  2547. /*
  2548. * Round up the averaging division if load is increasing. This
  2549. * prevents us from getting stuck on 9 if the load is 10, for
  2550. * example.
  2551. */
  2552. if (new_load > old_load)
  2553. new_load += scale-1;
  2554. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2555. }
  2556. }
  2557. #ifdef CONFIG_SMP
  2558. /*
  2559. * double_rq_lock - safely lock two runqueues
  2560. *
  2561. * Note this does not disable interrupts like task_rq_lock,
  2562. * you need to do so manually before calling.
  2563. */
  2564. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2565. __acquires(rq1->lock)
  2566. __acquires(rq2->lock)
  2567. {
  2568. BUG_ON(!irqs_disabled());
  2569. if (rq1 == rq2) {
  2570. spin_lock(&rq1->lock);
  2571. __acquire(rq2->lock); /* Fake it out ;) */
  2572. } else {
  2573. if (rq1 < rq2) {
  2574. spin_lock(&rq1->lock);
  2575. spin_lock(&rq2->lock);
  2576. } else {
  2577. spin_lock(&rq2->lock);
  2578. spin_lock(&rq1->lock);
  2579. }
  2580. }
  2581. update_rq_clock(rq1);
  2582. update_rq_clock(rq2);
  2583. }
  2584. /*
  2585. * double_rq_unlock - safely unlock two runqueues
  2586. *
  2587. * Note this does not restore interrupts like task_rq_unlock,
  2588. * you need to do so manually after calling.
  2589. */
  2590. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2591. __releases(rq1->lock)
  2592. __releases(rq2->lock)
  2593. {
  2594. spin_unlock(&rq1->lock);
  2595. if (rq1 != rq2)
  2596. spin_unlock(&rq2->lock);
  2597. else
  2598. __release(rq2->lock);
  2599. }
  2600. /*
  2601. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2602. */
  2603. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2604. __releases(this_rq->lock)
  2605. __acquires(busiest->lock)
  2606. __acquires(this_rq->lock)
  2607. {
  2608. int ret = 0;
  2609. if (unlikely(!irqs_disabled())) {
  2610. /* printk() doesn't work good under rq->lock */
  2611. spin_unlock(&this_rq->lock);
  2612. BUG_ON(1);
  2613. }
  2614. if (unlikely(!spin_trylock(&busiest->lock))) {
  2615. if (busiest < this_rq) {
  2616. spin_unlock(&this_rq->lock);
  2617. spin_lock(&busiest->lock);
  2618. spin_lock(&this_rq->lock);
  2619. ret = 1;
  2620. } else
  2621. spin_lock(&busiest->lock);
  2622. }
  2623. return ret;
  2624. }
  2625. /*
  2626. * If dest_cpu is allowed for this process, migrate the task to it.
  2627. * This is accomplished by forcing the cpu_allowed mask to only
  2628. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2629. * the cpu_allowed mask is restored.
  2630. */
  2631. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2632. {
  2633. struct migration_req req;
  2634. unsigned long flags;
  2635. struct rq *rq;
  2636. rq = task_rq_lock(p, &flags);
  2637. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2638. || unlikely(cpu_is_offline(dest_cpu)))
  2639. goto out;
  2640. /* force the process onto the specified CPU */
  2641. if (migrate_task(p, dest_cpu, &req)) {
  2642. /* Need to wait for migration thread (might exit: take ref). */
  2643. struct task_struct *mt = rq->migration_thread;
  2644. get_task_struct(mt);
  2645. task_rq_unlock(rq, &flags);
  2646. wake_up_process(mt);
  2647. put_task_struct(mt);
  2648. wait_for_completion(&req.done);
  2649. return;
  2650. }
  2651. out:
  2652. task_rq_unlock(rq, &flags);
  2653. }
  2654. /*
  2655. * sched_exec - execve() is a valuable balancing opportunity, because at
  2656. * this point the task has the smallest effective memory and cache footprint.
  2657. */
  2658. void sched_exec(void)
  2659. {
  2660. int new_cpu, this_cpu = get_cpu();
  2661. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2662. put_cpu();
  2663. if (new_cpu != this_cpu)
  2664. sched_migrate_task(current, new_cpu);
  2665. }
  2666. /*
  2667. * pull_task - move a task from a remote runqueue to the local runqueue.
  2668. * Both runqueues must be locked.
  2669. */
  2670. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2671. struct rq *this_rq, int this_cpu)
  2672. {
  2673. deactivate_task(src_rq, p, 0);
  2674. set_task_cpu(p, this_cpu);
  2675. activate_task(this_rq, p, 0);
  2676. /*
  2677. * Note that idle threads have a prio of MAX_PRIO, for this test
  2678. * to be always true for them.
  2679. */
  2680. check_preempt_curr(this_rq, p);
  2681. }
  2682. /*
  2683. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2684. */
  2685. static
  2686. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2687. struct sched_domain *sd, enum cpu_idle_type idle,
  2688. int *all_pinned)
  2689. {
  2690. /*
  2691. * We do not migrate tasks that are:
  2692. * 1) running (obviously), or
  2693. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2694. * 3) are cache-hot on their current CPU.
  2695. */
  2696. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2697. schedstat_inc(p, se.nr_failed_migrations_affine);
  2698. return 0;
  2699. }
  2700. *all_pinned = 0;
  2701. if (task_running(rq, p)) {
  2702. schedstat_inc(p, se.nr_failed_migrations_running);
  2703. return 0;
  2704. }
  2705. /*
  2706. * Aggressive migration if:
  2707. * 1) task is cache cold, or
  2708. * 2) too many balance attempts have failed.
  2709. */
  2710. if (!task_hot(p, rq->clock, sd) ||
  2711. sd->nr_balance_failed > sd->cache_nice_tries) {
  2712. #ifdef CONFIG_SCHEDSTATS
  2713. if (task_hot(p, rq->clock, sd)) {
  2714. schedstat_inc(sd, lb_hot_gained[idle]);
  2715. schedstat_inc(p, se.nr_forced_migrations);
  2716. }
  2717. #endif
  2718. return 1;
  2719. }
  2720. if (task_hot(p, rq->clock, sd)) {
  2721. schedstat_inc(p, se.nr_failed_migrations_hot);
  2722. return 0;
  2723. }
  2724. return 1;
  2725. }
  2726. static unsigned long
  2727. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2728. unsigned long max_load_move, struct sched_domain *sd,
  2729. enum cpu_idle_type idle, int *all_pinned,
  2730. int *this_best_prio, struct rq_iterator *iterator)
  2731. {
  2732. int loops = 0, pulled = 0, pinned = 0, skip_for_load;
  2733. struct task_struct *p;
  2734. long rem_load_move = max_load_move;
  2735. if (max_load_move == 0)
  2736. goto out;
  2737. pinned = 1;
  2738. /*
  2739. * Start the load-balancing iterator:
  2740. */
  2741. p = iterator->start(iterator->arg);
  2742. next:
  2743. if (!p || loops++ > sysctl_sched_nr_migrate)
  2744. goto out;
  2745. /*
  2746. * To help distribute high priority tasks across CPUs we don't
  2747. * skip a task if it will be the highest priority task (i.e. smallest
  2748. * prio value) on its new queue regardless of its load weight
  2749. */
  2750. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  2751. SCHED_LOAD_SCALE_FUZZ;
  2752. if ((skip_for_load && p->prio >= *this_best_prio) ||
  2753. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2754. p = iterator->next(iterator->arg);
  2755. goto next;
  2756. }
  2757. pull_task(busiest, p, this_rq, this_cpu);
  2758. pulled++;
  2759. rem_load_move -= p->se.load.weight;
  2760. /*
  2761. * We only want to steal up to the prescribed amount of weighted load.
  2762. */
  2763. if (rem_load_move > 0) {
  2764. if (p->prio < *this_best_prio)
  2765. *this_best_prio = p->prio;
  2766. p = iterator->next(iterator->arg);
  2767. goto next;
  2768. }
  2769. out:
  2770. /*
  2771. * Right now, this is one of only two places pull_task() is called,
  2772. * so we can safely collect pull_task() stats here rather than
  2773. * inside pull_task().
  2774. */
  2775. schedstat_add(sd, lb_gained[idle], pulled);
  2776. if (all_pinned)
  2777. *all_pinned = pinned;
  2778. return max_load_move - rem_load_move;
  2779. }
  2780. /*
  2781. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2782. * this_rq, as part of a balancing operation within domain "sd".
  2783. * Returns 1 if successful and 0 otherwise.
  2784. *
  2785. * Called with both runqueues locked.
  2786. */
  2787. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2788. unsigned long max_load_move,
  2789. struct sched_domain *sd, enum cpu_idle_type idle,
  2790. int *all_pinned)
  2791. {
  2792. const struct sched_class *class = sched_class_highest;
  2793. unsigned long total_load_moved = 0;
  2794. int this_best_prio = this_rq->curr->prio;
  2795. do {
  2796. total_load_moved +=
  2797. class->load_balance(this_rq, this_cpu, busiest,
  2798. max_load_move - total_load_moved,
  2799. sd, idle, all_pinned, &this_best_prio);
  2800. class = class->next;
  2801. } while (class && max_load_move > total_load_moved);
  2802. return total_load_moved > 0;
  2803. }
  2804. static int
  2805. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2806. struct sched_domain *sd, enum cpu_idle_type idle,
  2807. struct rq_iterator *iterator)
  2808. {
  2809. struct task_struct *p = iterator->start(iterator->arg);
  2810. int pinned = 0;
  2811. while (p) {
  2812. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2813. pull_task(busiest, p, this_rq, this_cpu);
  2814. /*
  2815. * Right now, this is only the second place pull_task()
  2816. * is called, so we can safely collect pull_task()
  2817. * stats here rather than inside pull_task().
  2818. */
  2819. schedstat_inc(sd, lb_gained[idle]);
  2820. return 1;
  2821. }
  2822. p = iterator->next(iterator->arg);
  2823. }
  2824. return 0;
  2825. }
  2826. /*
  2827. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2828. * part of active balancing operations within "domain".
  2829. * Returns 1 if successful and 0 otherwise.
  2830. *
  2831. * Called with both runqueues locked.
  2832. */
  2833. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2834. struct sched_domain *sd, enum cpu_idle_type idle)
  2835. {
  2836. const struct sched_class *class;
  2837. for (class = sched_class_highest; class; class = class->next)
  2838. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2839. return 1;
  2840. return 0;
  2841. }
  2842. /*
  2843. * find_busiest_group finds and returns the busiest CPU group within the
  2844. * domain. It calculates and returns the amount of weighted load which
  2845. * should be moved to restore balance via the imbalance parameter.
  2846. */
  2847. static struct sched_group *
  2848. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2849. unsigned long *imbalance, enum cpu_idle_type idle,
  2850. int *sd_idle, const cpumask_t *cpus, int *balance)
  2851. {
  2852. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2853. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2854. unsigned long max_pull;
  2855. unsigned long busiest_load_per_task, busiest_nr_running;
  2856. unsigned long this_load_per_task, this_nr_running;
  2857. int load_idx, group_imb = 0;
  2858. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2859. int power_savings_balance = 1;
  2860. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2861. unsigned long min_nr_running = ULONG_MAX;
  2862. struct sched_group *group_min = NULL, *group_leader = NULL;
  2863. #endif
  2864. max_load = this_load = total_load = total_pwr = 0;
  2865. busiest_load_per_task = busiest_nr_running = 0;
  2866. this_load_per_task = this_nr_running = 0;
  2867. if (idle == CPU_NOT_IDLE)
  2868. load_idx = sd->busy_idx;
  2869. else if (idle == CPU_NEWLY_IDLE)
  2870. load_idx = sd->newidle_idx;
  2871. else
  2872. load_idx = sd->idle_idx;
  2873. do {
  2874. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2875. int local_group;
  2876. int i;
  2877. int __group_imb = 0;
  2878. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2879. unsigned long sum_nr_running, sum_weighted_load;
  2880. local_group = cpu_isset(this_cpu, group->cpumask);
  2881. if (local_group)
  2882. balance_cpu = first_cpu(group->cpumask);
  2883. /* Tally up the load of all CPUs in the group */
  2884. sum_weighted_load = sum_nr_running = avg_load = 0;
  2885. max_cpu_load = 0;
  2886. min_cpu_load = ~0UL;
  2887. for_each_cpu_mask(i, group->cpumask) {
  2888. struct rq *rq;
  2889. if (!cpu_isset(i, *cpus))
  2890. continue;
  2891. rq = cpu_rq(i);
  2892. if (*sd_idle && rq->nr_running)
  2893. *sd_idle = 0;
  2894. /* Bias balancing toward cpus of our domain */
  2895. if (local_group) {
  2896. if (idle_cpu(i) && !first_idle_cpu) {
  2897. first_idle_cpu = 1;
  2898. balance_cpu = i;
  2899. }
  2900. load = target_load(i, load_idx);
  2901. } else {
  2902. load = source_load(i, load_idx);
  2903. if (load > max_cpu_load)
  2904. max_cpu_load = load;
  2905. if (min_cpu_load > load)
  2906. min_cpu_load = load;
  2907. }
  2908. avg_load += load;
  2909. sum_nr_running += rq->nr_running;
  2910. sum_weighted_load += weighted_cpuload(i);
  2911. }
  2912. /*
  2913. * First idle cpu or the first cpu(busiest) in this sched group
  2914. * is eligible for doing load balancing at this and above
  2915. * domains. In the newly idle case, we will allow all the cpu's
  2916. * to do the newly idle load balance.
  2917. */
  2918. if (idle != CPU_NEWLY_IDLE && local_group &&
  2919. balance_cpu != this_cpu && balance) {
  2920. *balance = 0;
  2921. goto ret;
  2922. }
  2923. total_load += avg_load;
  2924. total_pwr += group->__cpu_power;
  2925. /* Adjust by relative CPU power of the group */
  2926. avg_load = sg_div_cpu_power(group,
  2927. avg_load * SCHED_LOAD_SCALE);
  2928. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2929. __group_imb = 1;
  2930. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2931. if (local_group) {
  2932. this_load = avg_load;
  2933. this = group;
  2934. this_nr_running = sum_nr_running;
  2935. this_load_per_task = sum_weighted_load;
  2936. } else if (avg_load > max_load &&
  2937. (sum_nr_running > group_capacity || __group_imb)) {
  2938. max_load = avg_load;
  2939. busiest = group;
  2940. busiest_nr_running = sum_nr_running;
  2941. busiest_load_per_task = sum_weighted_load;
  2942. group_imb = __group_imb;
  2943. }
  2944. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2945. /*
  2946. * Busy processors will not participate in power savings
  2947. * balance.
  2948. */
  2949. if (idle == CPU_NOT_IDLE ||
  2950. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2951. goto group_next;
  2952. /*
  2953. * If the local group is idle or completely loaded
  2954. * no need to do power savings balance at this domain
  2955. */
  2956. if (local_group && (this_nr_running >= group_capacity ||
  2957. !this_nr_running))
  2958. power_savings_balance = 0;
  2959. /*
  2960. * If a group is already running at full capacity or idle,
  2961. * don't include that group in power savings calculations
  2962. */
  2963. if (!power_savings_balance || sum_nr_running >= group_capacity
  2964. || !sum_nr_running)
  2965. goto group_next;
  2966. /*
  2967. * Calculate the group which has the least non-idle load.
  2968. * This is the group from where we need to pick up the load
  2969. * for saving power
  2970. */
  2971. if ((sum_nr_running < min_nr_running) ||
  2972. (sum_nr_running == min_nr_running &&
  2973. first_cpu(group->cpumask) <
  2974. first_cpu(group_min->cpumask))) {
  2975. group_min = group;
  2976. min_nr_running = sum_nr_running;
  2977. min_load_per_task = sum_weighted_load /
  2978. sum_nr_running;
  2979. }
  2980. /*
  2981. * Calculate the group which is almost near its
  2982. * capacity but still has some space to pick up some load
  2983. * from other group and save more power
  2984. */
  2985. if (sum_nr_running <= group_capacity - 1) {
  2986. if (sum_nr_running > leader_nr_running ||
  2987. (sum_nr_running == leader_nr_running &&
  2988. first_cpu(group->cpumask) >
  2989. first_cpu(group_leader->cpumask))) {
  2990. group_leader = group;
  2991. leader_nr_running = sum_nr_running;
  2992. }
  2993. }
  2994. group_next:
  2995. #endif
  2996. group = group->next;
  2997. } while (group != sd->groups);
  2998. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2999. goto out_balanced;
  3000. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  3001. if (this_load >= avg_load ||
  3002. 100*max_load <= sd->imbalance_pct*this_load)
  3003. goto out_balanced;
  3004. busiest_load_per_task /= busiest_nr_running;
  3005. if (group_imb)
  3006. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  3007. /*
  3008. * We're trying to get all the cpus to the average_load, so we don't
  3009. * want to push ourselves above the average load, nor do we wish to
  3010. * reduce the max loaded cpu below the average load, as either of these
  3011. * actions would just result in more rebalancing later, and ping-pong
  3012. * tasks around. Thus we look for the minimum possible imbalance.
  3013. * Negative imbalances (*we* are more loaded than anyone else) will
  3014. * be counted as no imbalance for these purposes -- we can't fix that
  3015. * by pulling tasks to us. Be careful of negative numbers as they'll
  3016. * appear as very large values with unsigned longs.
  3017. */
  3018. if (max_load <= busiest_load_per_task)
  3019. goto out_balanced;
  3020. /*
  3021. * In the presence of smp nice balancing, certain scenarios can have
  3022. * max load less than avg load(as we skip the groups at or below
  3023. * its cpu_power, while calculating max_load..)
  3024. */
  3025. if (max_load < avg_load) {
  3026. *imbalance = 0;
  3027. goto small_imbalance;
  3028. }
  3029. /* Don't want to pull so many tasks that a group would go idle */
  3030. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  3031. /* How much load to actually move to equalise the imbalance */
  3032. *imbalance = min(max_pull * busiest->__cpu_power,
  3033. (avg_load - this_load) * this->__cpu_power)
  3034. / SCHED_LOAD_SCALE;
  3035. /*
  3036. * if *imbalance is less than the average load per runnable task
  3037. * there is no gaurantee that any tasks will be moved so we'll have
  3038. * a think about bumping its value to force at least one task to be
  3039. * moved
  3040. */
  3041. if (*imbalance < busiest_load_per_task) {
  3042. unsigned long tmp, pwr_now, pwr_move;
  3043. unsigned int imbn;
  3044. small_imbalance:
  3045. pwr_move = pwr_now = 0;
  3046. imbn = 2;
  3047. if (this_nr_running) {
  3048. this_load_per_task /= this_nr_running;
  3049. if (busiest_load_per_task > this_load_per_task)
  3050. imbn = 1;
  3051. } else
  3052. this_load_per_task = SCHED_LOAD_SCALE;
  3053. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  3054. busiest_load_per_task * imbn) {
  3055. *imbalance = busiest_load_per_task;
  3056. return busiest;
  3057. }
  3058. /*
  3059. * OK, we don't have enough imbalance to justify moving tasks,
  3060. * however we may be able to increase total CPU power used by
  3061. * moving them.
  3062. */
  3063. pwr_now += busiest->__cpu_power *
  3064. min(busiest_load_per_task, max_load);
  3065. pwr_now += this->__cpu_power *
  3066. min(this_load_per_task, this_load);
  3067. pwr_now /= SCHED_LOAD_SCALE;
  3068. /* Amount of load we'd subtract */
  3069. tmp = sg_div_cpu_power(busiest,
  3070. busiest_load_per_task * SCHED_LOAD_SCALE);
  3071. if (max_load > tmp)
  3072. pwr_move += busiest->__cpu_power *
  3073. min(busiest_load_per_task, max_load - tmp);
  3074. /* Amount of load we'd add */
  3075. if (max_load * busiest->__cpu_power <
  3076. busiest_load_per_task * SCHED_LOAD_SCALE)
  3077. tmp = sg_div_cpu_power(this,
  3078. max_load * busiest->__cpu_power);
  3079. else
  3080. tmp = sg_div_cpu_power(this,
  3081. busiest_load_per_task * SCHED_LOAD_SCALE);
  3082. pwr_move += this->__cpu_power *
  3083. min(this_load_per_task, this_load + tmp);
  3084. pwr_move /= SCHED_LOAD_SCALE;
  3085. /* Move if we gain throughput */
  3086. if (pwr_move > pwr_now)
  3087. *imbalance = busiest_load_per_task;
  3088. }
  3089. return busiest;
  3090. out_balanced:
  3091. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3092. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  3093. goto ret;
  3094. if (this == group_leader && group_leader != group_min) {
  3095. *imbalance = min_load_per_task;
  3096. return group_min;
  3097. }
  3098. #endif
  3099. ret:
  3100. *imbalance = 0;
  3101. return NULL;
  3102. }
  3103. /*
  3104. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3105. */
  3106. static struct rq *
  3107. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  3108. unsigned long imbalance, const cpumask_t *cpus)
  3109. {
  3110. struct rq *busiest = NULL, *rq;
  3111. unsigned long max_load = 0;
  3112. int i;
  3113. for_each_cpu_mask(i, group->cpumask) {
  3114. unsigned long wl;
  3115. if (!cpu_isset(i, *cpus))
  3116. continue;
  3117. rq = cpu_rq(i);
  3118. wl = weighted_cpuload(i);
  3119. if (rq->nr_running == 1 && wl > imbalance)
  3120. continue;
  3121. if (wl > max_load) {
  3122. max_load = wl;
  3123. busiest = rq;
  3124. }
  3125. }
  3126. return busiest;
  3127. }
  3128. /*
  3129. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3130. * so long as it is large enough.
  3131. */
  3132. #define MAX_PINNED_INTERVAL 512
  3133. /*
  3134. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3135. * tasks if there is an imbalance.
  3136. */
  3137. static int load_balance(int this_cpu, struct rq *this_rq,
  3138. struct sched_domain *sd, enum cpu_idle_type idle,
  3139. int *balance, cpumask_t *cpus)
  3140. {
  3141. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3142. struct sched_group *group;
  3143. unsigned long imbalance;
  3144. struct rq *busiest;
  3145. unsigned long flags;
  3146. int unlock_aggregate;
  3147. cpus_setall(*cpus);
  3148. unlock_aggregate = get_aggregate(sd);
  3149. /*
  3150. * When power savings policy is enabled for the parent domain, idle
  3151. * sibling can pick up load irrespective of busy siblings. In this case,
  3152. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3153. * portraying it as CPU_NOT_IDLE.
  3154. */
  3155. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3156. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3157. sd_idle = 1;
  3158. schedstat_inc(sd, lb_count[idle]);
  3159. redo:
  3160. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3161. cpus, balance);
  3162. if (*balance == 0)
  3163. goto out_balanced;
  3164. if (!group) {
  3165. schedstat_inc(sd, lb_nobusyg[idle]);
  3166. goto out_balanced;
  3167. }
  3168. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3169. if (!busiest) {
  3170. schedstat_inc(sd, lb_nobusyq[idle]);
  3171. goto out_balanced;
  3172. }
  3173. BUG_ON(busiest == this_rq);
  3174. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3175. ld_moved = 0;
  3176. if (busiest->nr_running > 1) {
  3177. /*
  3178. * Attempt to move tasks. If find_busiest_group has found
  3179. * an imbalance but busiest->nr_running <= 1, the group is
  3180. * still unbalanced. ld_moved simply stays zero, so it is
  3181. * correctly treated as an imbalance.
  3182. */
  3183. local_irq_save(flags);
  3184. double_rq_lock(this_rq, busiest);
  3185. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3186. imbalance, sd, idle, &all_pinned);
  3187. double_rq_unlock(this_rq, busiest);
  3188. local_irq_restore(flags);
  3189. /*
  3190. * some other cpu did the load balance for us.
  3191. */
  3192. if (ld_moved && this_cpu != smp_processor_id())
  3193. resched_cpu(this_cpu);
  3194. /* All tasks on this runqueue were pinned by CPU affinity */
  3195. if (unlikely(all_pinned)) {
  3196. cpu_clear(cpu_of(busiest), *cpus);
  3197. if (!cpus_empty(*cpus))
  3198. goto redo;
  3199. goto out_balanced;
  3200. }
  3201. }
  3202. if (!ld_moved) {
  3203. schedstat_inc(sd, lb_failed[idle]);
  3204. sd->nr_balance_failed++;
  3205. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3206. spin_lock_irqsave(&busiest->lock, flags);
  3207. /* don't kick the migration_thread, if the curr
  3208. * task on busiest cpu can't be moved to this_cpu
  3209. */
  3210. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  3211. spin_unlock_irqrestore(&busiest->lock, flags);
  3212. all_pinned = 1;
  3213. goto out_one_pinned;
  3214. }
  3215. if (!busiest->active_balance) {
  3216. busiest->active_balance = 1;
  3217. busiest->push_cpu = this_cpu;
  3218. active_balance = 1;
  3219. }
  3220. spin_unlock_irqrestore(&busiest->lock, flags);
  3221. if (active_balance)
  3222. wake_up_process(busiest->migration_thread);
  3223. /*
  3224. * We've kicked active balancing, reset the failure
  3225. * counter.
  3226. */
  3227. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3228. }
  3229. } else
  3230. sd->nr_balance_failed = 0;
  3231. if (likely(!active_balance)) {
  3232. /* We were unbalanced, so reset the balancing interval */
  3233. sd->balance_interval = sd->min_interval;
  3234. } else {
  3235. /*
  3236. * If we've begun active balancing, start to back off. This
  3237. * case may not be covered by the all_pinned logic if there
  3238. * is only 1 task on the busy runqueue (because we don't call
  3239. * move_tasks).
  3240. */
  3241. if (sd->balance_interval < sd->max_interval)
  3242. sd->balance_interval *= 2;
  3243. }
  3244. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3245. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3246. ld_moved = -1;
  3247. goto out;
  3248. out_balanced:
  3249. schedstat_inc(sd, lb_balanced[idle]);
  3250. sd->nr_balance_failed = 0;
  3251. out_one_pinned:
  3252. /* tune up the balancing interval */
  3253. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3254. (sd->balance_interval < sd->max_interval))
  3255. sd->balance_interval *= 2;
  3256. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3257. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3258. ld_moved = -1;
  3259. else
  3260. ld_moved = 0;
  3261. out:
  3262. if (unlock_aggregate)
  3263. put_aggregate(sd);
  3264. return ld_moved;
  3265. }
  3266. /*
  3267. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3268. * tasks if there is an imbalance.
  3269. *
  3270. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3271. * this_rq is locked.
  3272. */
  3273. static int
  3274. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  3275. cpumask_t *cpus)
  3276. {
  3277. struct sched_group *group;
  3278. struct rq *busiest = NULL;
  3279. unsigned long imbalance;
  3280. int ld_moved = 0;
  3281. int sd_idle = 0;
  3282. int all_pinned = 0;
  3283. cpus_setall(*cpus);
  3284. /*
  3285. * When power savings policy is enabled for the parent domain, idle
  3286. * sibling can pick up load irrespective of busy siblings. In this case,
  3287. * let the state of idle sibling percolate up as IDLE, instead of
  3288. * portraying it as CPU_NOT_IDLE.
  3289. */
  3290. if (sd->flags & SD_SHARE_CPUPOWER &&
  3291. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3292. sd_idle = 1;
  3293. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3294. redo:
  3295. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3296. &sd_idle, cpus, NULL);
  3297. if (!group) {
  3298. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3299. goto out_balanced;
  3300. }
  3301. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3302. if (!busiest) {
  3303. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3304. goto out_balanced;
  3305. }
  3306. BUG_ON(busiest == this_rq);
  3307. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3308. ld_moved = 0;
  3309. if (busiest->nr_running > 1) {
  3310. /* Attempt to move tasks */
  3311. double_lock_balance(this_rq, busiest);
  3312. /* this_rq->clock is already updated */
  3313. update_rq_clock(busiest);
  3314. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3315. imbalance, sd, CPU_NEWLY_IDLE,
  3316. &all_pinned);
  3317. spin_unlock(&busiest->lock);
  3318. if (unlikely(all_pinned)) {
  3319. cpu_clear(cpu_of(busiest), *cpus);
  3320. if (!cpus_empty(*cpus))
  3321. goto redo;
  3322. }
  3323. }
  3324. if (!ld_moved) {
  3325. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3326. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3327. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3328. return -1;
  3329. } else
  3330. sd->nr_balance_failed = 0;
  3331. return ld_moved;
  3332. out_balanced:
  3333. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3334. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3335. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3336. return -1;
  3337. sd->nr_balance_failed = 0;
  3338. return 0;
  3339. }
  3340. /*
  3341. * idle_balance is called by schedule() if this_cpu is about to become
  3342. * idle. Attempts to pull tasks from other CPUs.
  3343. */
  3344. static void idle_balance(int this_cpu, struct rq *this_rq)
  3345. {
  3346. struct sched_domain *sd;
  3347. int pulled_task = -1;
  3348. unsigned long next_balance = jiffies + HZ;
  3349. cpumask_t tmpmask;
  3350. for_each_domain(this_cpu, sd) {
  3351. unsigned long interval;
  3352. if (!(sd->flags & SD_LOAD_BALANCE))
  3353. continue;
  3354. if (sd->flags & SD_BALANCE_NEWIDLE)
  3355. /* If we've pulled tasks over stop searching: */
  3356. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3357. sd, &tmpmask);
  3358. interval = msecs_to_jiffies(sd->balance_interval);
  3359. if (time_after(next_balance, sd->last_balance + interval))
  3360. next_balance = sd->last_balance + interval;
  3361. if (pulled_task)
  3362. break;
  3363. }
  3364. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3365. /*
  3366. * We are going idle. next_balance may be set based on
  3367. * a busy processor. So reset next_balance.
  3368. */
  3369. this_rq->next_balance = next_balance;
  3370. }
  3371. }
  3372. /*
  3373. * active_load_balance is run by migration threads. It pushes running tasks
  3374. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3375. * running on each physical CPU where possible, and avoids physical /
  3376. * logical imbalances.
  3377. *
  3378. * Called with busiest_rq locked.
  3379. */
  3380. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3381. {
  3382. int target_cpu = busiest_rq->push_cpu;
  3383. struct sched_domain *sd;
  3384. struct rq *target_rq;
  3385. /* Is there any task to move? */
  3386. if (busiest_rq->nr_running <= 1)
  3387. return;
  3388. target_rq = cpu_rq(target_cpu);
  3389. /*
  3390. * This condition is "impossible", if it occurs
  3391. * we need to fix it. Originally reported by
  3392. * Bjorn Helgaas on a 128-cpu setup.
  3393. */
  3394. BUG_ON(busiest_rq == target_rq);
  3395. /* move a task from busiest_rq to target_rq */
  3396. double_lock_balance(busiest_rq, target_rq);
  3397. update_rq_clock(busiest_rq);
  3398. update_rq_clock(target_rq);
  3399. /* Search for an sd spanning us and the target CPU. */
  3400. for_each_domain(target_cpu, sd) {
  3401. if ((sd->flags & SD_LOAD_BALANCE) &&
  3402. cpu_isset(busiest_cpu, sd->span))
  3403. break;
  3404. }
  3405. if (likely(sd)) {
  3406. schedstat_inc(sd, alb_count);
  3407. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3408. sd, CPU_IDLE))
  3409. schedstat_inc(sd, alb_pushed);
  3410. else
  3411. schedstat_inc(sd, alb_failed);
  3412. }
  3413. spin_unlock(&target_rq->lock);
  3414. }
  3415. #ifdef CONFIG_NO_HZ
  3416. static struct {
  3417. atomic_t load_balancer;
  3418. cpumask_t cpu_mask;
  3419. } nohz ____cacheline_aligned = {
  3420. .load_balancer = ATOMIC_INIT(-1),
  3421. .cpu_mask = CPU_MASK_NONE,
  3422. };
  3423. /*
  3424. * This routine will try to nominate the ilb (idle load balancing)
  3425. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3426. * load balancing on behalf of all those cpus. If all the cpus in the system
  3427. * go into this tickless mode, then there will be no ilb owner (as there is
  3428. * no need for one) and all the cpus will sleep till the next wakeup event
  3429. * arrives...
  3430. *
  3431. * For the ilb owner, tick is not stopped. And this tick will be used
  3432. * for idle load balancing. ilb owner will still be part of
  3433. * nohz.cpu_mask..
  3434. *
  3435. * While stopping the tick, this cpu will become the ilb owner if there
  3436. * is no other owner. And will be the owner till that cpu becomes busy
  3437. * or if all cpus in the system stop their ticks at which point
  3438. * there is no need for ilb owner.
  3439. *
  3440. * When the ilb owner becomes busy, it nominates another owner, during the
  3441. * next busy scheduler_tick()
  3442. */
  3443. int select_nohz_load_balancer(int stop_tick)
  3444. {
  3445. int cpu = smp_processor_id();
  3446. if (stop_tick) {
  3447. cpu_set(cpu, nohz.cpu_mask);
  3448. cpu_rq(cpu)->in_nohz_recently = 1;
  3449. /*
  3450. * If we are going offline and still the leader, give up!
  3451. */
  3452. if (cpu_is_offline(cpu) &&
  3453. atomic_read(&nohz.load_balancer) == cpu) {
  3454. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3455. BUG();
  3456. return 0;
  3457. }
  3458. /* time for ilb owner also to sleep */
  3459. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3460. if (atomic_read(&nohz.load_balancer) == cpu)
  3461. atomic_set(&nohz.load_balancer, -1);
  3462. return 0;
  3463. }
  3464. if (atomic_read(&nohz.load_balancer) == -1) {
  3465. /* make me the ilb owner */
  3466. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3467. return 1;
  3468. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3469. return 1;
  3470. } else {
  3471. if (!cpu_isset(cpu, nohz.cpu_mask))
  3472. return 0;
  3473. cpu_clear(cpu, nohz.cpu_mask);
  3474. if (atomic_read(&nohz.load_balancer) == cpu)
  3475. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3476. BUG();
  3477. }
  3478. return 0;
  3479. }
  3480. #endif
  3481. static DEFINE_SPINLOCK(balancing);
  3482. /*
  3483. * It checks each scheduling domain to see if it is due to be balanced,
  3484. * and initiates a balancing operation if so.
  3485. *
  3486. * Balancing parameters are set up in arch_init_sched_domains.
  3487. */
  3488. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3489. {
  3490. int balance = 1;
  3491. struct rq *rq = cpu_rq(cpu);
  3492. unsigned long interval;
  3493. struct sched_domain *sd;
  3494. /* Earliest time when we have to do rebalance again */
  3495. unsigned long next_balance = jiffies + 60*HZ;
  3496. int update_next_balance = 0;
  3497. cpumask_t tmp;
  3498. for_each_domain(cpu, sd) {
  3499. if (!(sd->flags & SD_LOAD_BALANCE))
  3500. continue;
  3501. interval = sd->balance_interval;
  3502. if (idle != CPU_IDLE)
  3503. interval *= sd->busy_factor;
  3504. /* scale ms to jiffies */
  3505. interval = msecs_to_jiffies(interval);
  3506. if (unlikely(!interval))
  3507. interval = 1;
  3508. if (interval > HZ*NR_CPUS/10)
  3509. interval = HZ*NR_CPUS/10;
  3510. if (sd->flags & SD_SERIALIZE) {
  3511. if (!spin_trylock(&balancing))
  3512. goto out;
  3513. }
  3514. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3515. if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
  3516. /*
  3517. * We've pulled tasks over so either we're no
  3518. * longer idle, or one of our SMT siblings is
  3519. * not idle.
  3520. */
  3521. idle = CPU_NOT_IDLE;
  3522. }
  3523. sd->last_balance = jiffies;
  3524. }
  3525. if (sd->flags & SD_SERIALIZE)
  3526. spin_unlock(&balancing);
  3527. out:
  3528. if (time_after(next_balance, sd->last_balance + interval)) {
  3529. next_balance = sd->last_balance + interval;
  3530. update_next_balance = 1;
  3531. }
  3532. /*
  3533. * Stop the load balance at this level. There is another
  3534. * CPU in our sched group which is doing load balancing more
  3535. * actively.
  3536. */
  3537. if (!balance)
  3538. break;
  3539. }
  3540. /*
  3541. * next_balance will be updated only when there is a need.
  3542. * When the cpu is attached to null domain for ex, it will not be
  3543. * updated.
  3544. */
  3545. if (likely(update_next_balance))
  3546. rq->next_balance = next_balance;
  3547. }
  3548. /*
  3549. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3550. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3551. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3552. */
  3553. static void run_rebalance_domains(struct softirq_action *h)
  3554. {
  3555. int this_cpu = smp_processor_id();
  3556. struct rq *this_rq = cpu_rq(this_cpu);
  3557. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3558. CPU_IDLE : CPU_NOT_IDLE;
  3559. rebalance_domains(this_cpu, idle);
  3560. #ifdef CONFIG_NO_HZ
  3561. /*
  3562. * If this cpu is the owner for idle load balancing, then do the
  3563. * balancing on behalf of the other idle cpus whose ticks are
  3564. * stopped.
  3565. */
  3566. if (this_rq->idle_at_tick &&
  3567. atomic_read(&nohz.load_balancer) == this_cpu) {
  3568. cpumask_t cpus = nohz.cpu_mask;
  3569. struct rq *rq;
  3570. int balance_cpu;
  3571. cpu_clear(this_cpu, cpus);
  3572. for_each_cpu_mask(balance_cpu, cpus) {
  3573. /*
  3574. * If this cpu gets work to do, stop the load balancing
  3575. * work being done for other cpus. Next load
  3576. * balancing owner will pick it up.
  3577. */
  3578. if (need_resched())
  3579. break;
  3580. rebalance_domains(balance_cpu, CPU_IDLE);
  3581. rq = cpu_rq(balance_cpu);
  3582. if (time_after(this_rq->next_balance, rq->next_balance))
  3583. this_rq->next_balance = rq->next_balance;
  3584. }
  3585. }
  3586. #endif
  3587. }
  3588. /*
  3589. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3590. *
  3591. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3592. * idle load balancing owner or decide to stop the periodic load balancing,
  3593. * if the whole system is idle.
  3594. */
  3595. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3596. {
  3597. #ifdef CONFIG_NO_HZ
  3598. /*
  3599. * If we were in the nohz mode recently and busy at the current
  3600. * scheduler tick, then check if we need to nominate new idle
  3601. * load balancer.
  3602. */
  3603. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3604. rq->in_nohz_recently = 0;
  3605. if (atomic_read(&nohz.load_balancer) == cpu) {
  3606. cpu_clear(cpu, nohz.cpu_mask);
  3607. atomic_set(&nohz.load_balancer, -1);
  3608. }
  3609. if (atomic_read(&nohz.load_balancer) == -1) {
  3610. /*
  3611. * simple selection for now: Nominate the
  3612. * first cpu in the nohz list to be the next
  3613. * ilb owner.
  3614. *
  3615. * TBD: Traverse the sched domains and nominate
  3616. * the nearest cpu in the nohz.cpu_mask.
  3617. */
  3618. int ilb = first_cpu(nohz.cpu_mask);
  3619. if (ilb < nr_cpu_ids)
  3620. resched_cpu(ilb);
  3621. }
  3622. }
  3623. /*
  3624. * If this cpu is idle and doing idle load balancing for all the
  3625. * cpus with ticks stopped, is it time for that to stop?
  3626. */
  3627. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3628. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3629. resched_cpu(cpu);
  3630. return;
  3631. }
  3632. /*
  3633. * If this cpu is idle and the idle load balancing is done by
  3634. * someone else, then no need raise the SCHED_SOFTIRQ
  3635. */
  3636. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3637. cpu_isset(cpu, nohz.cpu_mask))
  3638. return;
  3639. #endif
  3640. if (time_after_eq(jiffies, rq->next_balance))
  3641. raise_softirq(SCHED_SOFTIRQ);
  3642. }
  3643. #else /* CONFIG_SMP */
  3644. /*
  3645. * on UP we do not need to balance between CPUs:
  3646. */
  3647. static inline void idle_balance(int cpu, struct rq *rq)
  3648. {
  3649. }
  3650. #endif
  3651. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3652. EXPORT_PER_CPU_SYMBOL(kstat);
  3653. /*
  3654. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  3655. * that have not yet been banked in case the task is currently running.
  3656. */
  3657. unsigned long long task_sched_runtime(struct task_struct *p)
  3658. {
  3659. unsigned long flags;
  3660. u64 ns, delta_exec;
  3661. struct rq *rq;
  3662. rq = task_rq_lock(p, &flags);
  3663. ns = p->se.sum_exec_runtime;
  3664. if (task_current(rq, p)) {
  3665. update_rq_clock(rq);
  3666. delta_exec = rq->clock - p->se.exec_start;
  3667. if ((s64)delta_exec > 0)
  3668. ns += delta_exec;
  3669. }
  3670. task_rq_unlock(rq, &flags);
  3671. return ns;
  3672. }
  3673. /*
  3674. * Account user cpu time to a process.
  3675. * @p: the process that the cpu time gets accounted to
  3676. * @cputime: the cpu time spent in user space since the last update
  3677. */
  3678. void account_user_time(struct task_struct *p, cputime_t cputime)
  3679. {
  3680. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3681. cputime64_t tmp;
  3682. p->utime = cputime_add(p->utime, cputime);
  3683. /* Add user time to cpustat. */
  3684. tmp = cputime_to_cputime64(cputime);
  3685. if (TASK_NICE(p) > 0)
  3686. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3687. else
  3688. cpustat->user = cputime64_add(cpustat->user, tmp);
  3689. }
  3690. /*
  3691. * Account guest cpu time to a process.
  3692. * @p: the process that the cpu time gets accounted to
  3693. * @cputime: the cpu time spent in virtual machine since the last update
  3694. */
  3695. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3696. {
  3697. cputime64_t tmp;
  3698. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3699. tmp = cputime_to_cputime64(cputime);
  3700. p->utime = cputime_add(p->utime, cputime);
  3701. p->gtime = cputime_add(p->gtime, cputime);
  3702. cpustat->user = cputime64_add(cpustat->user, tmp);
  3703. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3704. }
  3705. /*
  3706. * Account scaled user cpu time to a process.
  3707. * @p: the process that the cpu time gets accounted to
  3708. * @cputime: the cpu time spent in user space since the last update
  3709. */
  3710. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3711. {
  3712. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3713. }
  3714. /*
  3715. * Account system cpu time to a process.
  3716. * @p: the process that the cpu time gets accounted to
  3717. * @hardirq_offset: the offset to subtract from hardirq_count()
  3718. * @cputime: the cpu time spent in kernel space since the last update
  3719. */
  3720. void account_system_time(struct task_struct *p, int hardirq_offset,
  3721. cputime_t cputime)
  3722. {
  3723. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3724. struct rq *rq = this_rq();
  3725. cputime64_t tmp;
  3726. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
  3727. return account_guest_time(p, cputime);
  3728. p->stime = cputime_add(p->stime, cputime);
  3729. /* Add system time to cpustat. */
  3730. tmp = cputime_to_cputime64(cputime);
  3731. if (hardirq_count() - hardirq_offset)
  3732. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3733. else if (softirq_count())
  3734. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3735. else if (p != rq->idle)
  3736. cpustat->system = cputime64_add(cpustat->system, tmp);
  3737. else if (atomic_read(&rq->nr_iowait) > 0)
  3738. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3739. else
  3740. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3741. /* Account for system time used */
  3742. acct_update_integrals(p);
  3743. }
  3744. /*
  3745. * Account scaled system cpu time to a process.
  3746. * @p: the process that the cpu time gets accounted to
  3747. * @hardirq_offset: the offset to subtract from hardirq_count()
  3748. * @cputime: the cpu time spent in kernel space since the last update
  3749. */
  3750. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3751. {
  3752. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3753. }
  3754. /*
  3755. * Account for involuntary wait time.
  3756. * @p: the process from which the cpu time has been stolen
  3757. * @steal: the cpu time spent in involuntary wait
  3758. */
  3759. void account_steal_time(struct task_struct *p, cputime_t steal)
  3760. {
  3761. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3762. cputime64_t tmp = cputime_to_cputime64(steal);
  3763. struct rq *rq = this_rq();
  3764. if (p == rq->idle) {
  3765. p->stime = cputime_add(p->stime, steal);
  3766. if (atomic_read(&rq->nr_iowait) > 0)
  3767. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3768. else
  3769. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3770. } else
  3771. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3772. }
  3773. /*
  3774. * This function gets called by the timer code, with HZ frequency.
  3775. * We call it with interrupts disabled.
  3776. *
  3777. * It also gets called by the fork code, when changing the parent's
  3778. * timeslices.
  3779. */
  3780. void scheduler_tick(void)
  3781. {
  3782. int cpu = smp_processor_id();
  3783. struct rq *rq = cpu_rq(cpu);
  3784. struct task_struct *curr = rq->curr;
  3785. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  3786. spin_lock(&rq->lock);
  3787. __update_rq_clock(rq);
  3788. /*
  3789. * Let rq->clock advance by at least TICK_NSEC:
  3790. */
  3791. if (unlikely(rq->clock < next_tick)) {
  3792. rq->clock = next_tick;
  3793. rq->clock_underflows++;
  3794. }
  3795. rq->tick_timestamp = rq->clock;
  3796. update_last_tick_seen(rq);
  3797. update_cpu_load(rq);
  3798. curr->sched_class->task_tick(rq, curr, 0);
  3799. spin_unlock(&rq->lock);
  3800. #ifdef CONFIG_SMP
  3801. rq->idle_at_tick = idle_cpu(cpu);
  3802. trigger_load_balance(rq, cpu);
  3803. #endif
  3804. }
  3805. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3806. void __kprobes add_preempt_count(int val)
  3807. {
  3808. /*
  3809. * Underflow?
  3810. */
  3811. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3812. return;
  3813. preempt_count() += val;
  3814. /*
  3815. * Spinlock count overflowing soon?
  3816. */
  3817. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3818. PREEMPT_MASK - 10);
  3819. }
  3820. EXPORT_SYMBOL(add_preempt_count);
  3821. void __kprobes sub_preempt_count(int val)
  3822. {
  3823. /*
  3824. * Underflow?
  3825. */
  3826. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3827. return;
  3828. /*
  3829. * Is the spinlock portion underflowing?
  3830. */
  3831. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3832. !(preempt_count() & PREEMPT_MASK)))
  3833. return;
  3834. preempt_count() -= val;
  3835. }
  3836. EXPORT_SYMBOL(sub_preempt_count);
  3837. #endif
  3838. /*
  3839. * Print scheduling while atomic bug:
  3840. */
  3841. static noinline void __schedule_bug(struct task_struct *prev)
  3842. {
  3843. struct pt_regs *regs = get_irq_regs();
  3844. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3845. prev->comm, prev->pid, preempt_count());
  3846. debug_show_held_locks(prev);
  3847. if (irqs_disabled())
  3848. print_irqtrace_events(prev);
  3849. if (regs)
  3850. show_regs(regs);
  3851. else
  3852. dump_stack();
  3853. }
  3854. /*
  3855. * Various schedule()-time debugging checks and statistics:
  3856. */
  3857. static inline void schedule_debug(struct task_struct *prev)
  3858. {
  3859. /*
  3860. * Test if we are atomic. Since do_exit() needs to call into
  3861. * schedule() atomically, we ignore that path for now.
  3862. * Otherwise, whine if we are scheduling when we should not be.
  3863. */
  3864. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  3865. __schedule_bug(prev);
  3866. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3867. schedstat_inc(this_rq(), sched_count);
  3868. #ifdef CONFIG_SCHEDSTATS
  3869. if (unlikely(prev->lock_depth >= 0)) {
  3870. schedstat_inc(this_rq(), bkl_count);
  3871. schedstat_inc(prev, sched_info.bkl_count);
  3872. }
  3873. #endif
  3874. }
  3875. /*
  3876. * Pick up the highest-prio task:
  3877. */
  3878. static inline struct task_struct *
  3879. pick_next_task(struct rq *rq, struct task_struct *prev)
  3880. {
  3881. const struct sched_class *class;
  3882. struct task_struct *p;
  3883. /*
  3884. * Optimization: we know that if all tasks are in
  3885. * the fair class we can call that function directly:
  3886. */
  3887. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3888. p = fair_sched_class.pick_next_task(rq);
  3889. if (likely(p))
  3890. return p;
  3891. }
  3892. class = sched_class_highest;
  3893. for ( ; ; ) {
  3894. p = class->pick_next_task(rq);
  3895. if (p)
  3896. return p;
  3897. /*
  3898. * Will never be NULL as the idle class always
  3899. * returns a non-NULL p:
  3900. */
  3901. class = class->next;
  3902. }
  3903. }
  3904. /*
  3905. * schedule() is the main scheduler function.
  3906. */
  3907. asmlinkage void __sched schedule(void)
  3908. {
  3909. struct task_struct *prev, *next;
  3910. unsigned long *switch_count;
  3911. struct rq *rq;
  3912. int cpu;
  3913. need_resched:
  3914. preempt_disable();
  3915. cpu = smp_processor_id();
  3916. rq = cpu_rq(cpu);
  3917. rcu_qsctr_inc(cpu);
  3918. prev = rq->curr;
  3919. switch_count = &prev->nivcsw;
  3920. release_kernel_lock(prev);
  3921. need_resched_nonpreemptible:
  3922. schedule_debug(prev);
  3923. hrtick_clear(rq);
  3924. /*
  3925. * Do the rq-clock update outside the rq lock:
  3926. */
  3927. local_irq_disable();
  3928. __update_rq_clock(rq);
  3929. spin_lock(&rq->lock);
  3930. clear_tsk_need_resched(prev);
  3931. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3932. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3933. signal_pending(prev))) {
  3934. prev->state = TASK_RUNNING;
  3935. } else {
  3936. deactivate_task(rq, prev, 1);
  3937. }
  3938. switch_count = &prev->nvcsw;
  3939. }
  3940. #ifdef CONFIG_SMP
  3941. if (prev->sched_class->pre_schedule)
  3942. prev->sched_class->pre_schedule(rq, prev);
  3943. #endif
  3944. if (unlikely(!rq->nr_running))
  3945. idle_balance(cpu, rq);
  3946. prev->sched_class->put_prev_task(rq, prev);
  3947. next = pick_next_task(rq, prev);
  3948. sched_info_switch(prev, next);
  3949. if (likely(prev != next)) {
  3950. rq->nr_switches++;
  3951. rq->curr = next;
  3952. ++*switch_count;
  3953. context_switch(rq, prev, next); /* unlocks the rq */
  3954. /*
  3955. * the context switch might have flipped the stack from under
  3956. * us, hence refresh the local variables.
  3957. */
  3958. cpu = smp_processor_id();
  3959. rq = cpu_rq(cpu);
  3960. } else
  3961. spin_unlock_irq(&rq->lock);
  3962. hrtick_set(rq);
  3963. if (unlikely(reacquire_kernel_lock(current) < 0))
  3964. goto need_resched_nonpreemptible;
  3965. preempt_enable_no_resched();
  3966. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3967. goto need_resched;
  3968. }
  3969. EXPORT_SYMBOL(schedule);
  3970. #ifdef CONFIG_PREEMPT
  3971. /*
  3972. * this is the entry point to schedule() from in-kernel preemption
  3973. * off of preempt_enable. Kernel preemptions off return from interrupt
  3974. * occur there and call schedule directly.
  3975. */
  3976. asmlinkage void __sched preempt_schedule(void)
  3977. {
  3978. struct thread_info *ti = current_thread_info();
  3979. struct task_struct *task = current;
  3980. int saved_lock_depth;
  3981. /*
  3982. * If there is a non-zero preempt_count or interrupts are disabled,
  3983. * we do not want to preempt the current task. Just return..
  3984. */
  3985. if (likely(ti->preempt_count || irqs_disabled()))
  3986. return;
  3987. do {
  3988. add_preempt_count(PREEMPT_ACTIVE);
  3989. /*
  3990. * We keep the big kernel semaphore locked, but we
  3991. * clear ->lock_depth so that schedule() doesnt
  3992. * auto-release the semaphore:
  3993. */
  3994. saved_lock_depth = task->lock_depth;
  3995. task->lock_depth = -1;
  3996. schedule();
  3997. task->lock_depth = saved_lock_depth;
  3998. sub_preempt_count(PREEMPT_ACTIVE);
  3999. /*
  4000. * Check again in case we missed a preemption opportunity
  4001. * between schedule and now.
  4002. */
  4003. barrier();
  4004. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  4005. }
  4006. EXPORT_SYMBOL(preempt_schedule);
  4007. /*
  4008. * this is the entry point to schedule() from kernel preemption
  4009. * off of irq context.
  4010. * Note, that this is called and return with irqs disabled. This will
  4011. * protect us against recursive calling from irq.
  4012. */
  4013. asmlinkage void __sched preempt_schedule_irq(void)
  4014. {
  4015. struct thread_info *ti = current_thread_info();
  4016. struct task_struct *task = current;
  4017. int saved_lock_depth;
  4018. /* Catch callers which need to be fixed */
  4019. BUG_ON(ti->preempt_count || !irqs_disabled());
  4020. do {
  4021. add_preempt_count(PREEMPT_ACTIVE);
  4022. /*
  4023. * We keep the big kernel semaphore locked, but we
  4024. * clear ->lock_depth so that schedule() doesnt
  4025. * auto-release the semaphore:
  4026. */
  4027. saved_lock_depth = task->lock_depth;
  4028. task->lock_depth = -1;
  4029. local_irq_enable();
  4030. schedule();
  4031. local_irq_disable();
  4032. task->lock_depth = saved_lock_depth;
  4033. sub_preempt_count(PREEMPT_ACTIVE);
  4034. /*
  4035. * Check again in case we missed a preemption opportunity
  4036. * between schedule and now.
  4037. */
  4038. barrier();
  4039. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  4040. }
  4041. #endif /* CONFIG_PREEMPT */
  4042. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  4043. void *key)
  4044. {
  4045. return try_to_wake_up(curr->private, mode, sync);
  4046. }
  4047. EXPORT_SYMBOL(default_wake_function);
  4048. /*
  4049. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4050. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4051. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4052. *
  4053. * There are circumstances in which we can try to wake a task which has already
  4054. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4055. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4056. */
  4057. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4058. int nr_exclusive, int sync, void *key)
  4059. {
  4060. wait_queue_t *curr, *next;
  4061. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4062. unsigned flags = curr->flags;
  4063. if (curr->func(curr, mode, sync, key) &&
  4064. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4065. break;
  4066. }
  4067. }
  4068. /**
  4069. * __wake_up - wake up threads blocked on a waitqueue.
  4070. * @q: the waitqueue
  4071. * @mode: which threads
  4072. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4073. * @key: is directly passed to the wakeup function
  4074. */
  4075. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4076. int nr_exclusive, void *key)
  4077. {
  4078. unsigned long flags;
  4079. spin_lock_irqsave(&q->lock, flags);
  4080. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4081. spin_unlock_irqrestore(&q->lock, flags);
  4082. }
  4083. EXPORT_SYMBOL(__wake_up);
  4084. /*
  4085. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4086. */
  4087. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4088. {
  4089. __wake_up_common(q, mode, 1, 0, NULL);
  4090. }
  4091. /**
  4092. * __wake_up_sync - wake up threads blocked on a waitqueue.
  4093. * @q: the waitqueue
  4094. * @mode: which threads
  4095. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4096. *
  4097. * The sync wakeup differs that the waker knows that it will schedule
  4098. * away soon, so while the target thread will be woken up, it will not
  4099. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4100. * with each other. This can prevent needless bouncing between CPUs.
  4101. *
  4102. * On UP it can prevent extra preemption.
  4103. */
  4104. void
  4105. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4106. {
  4107. unsigned long flags;
  4108. int sync = 1;
  4109. if (unlikely(!q))
  4110. return;
  4111. if (unlikely(!nr_exclusive))
  4112. sync = 0;
  4113. spin_lock_irqsave(&q->lock, flags);
  4114. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  4115. spin_unlock_irqrestore(&q->lock, flags);
  4116. }
  4117. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4118. void complete(struct completion *x)
  4119. {
  4120. unsigned long flags;
  4121. spin_lock_irqsave(&x->wait.lock, flags);
  4122. x->done++;
  4123. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4124. spin_unlock_irqrestore(&x->wait.lock, flags);
  4125. }
  4126. EXPORT_SYMBOL(complete);
  4127. void complete_all(struct completion *x)
  4128. {
  4129. unsigned long flags;
  4130. spin_lock_irqsave(&x->wait.lock, flags);
  4131. x->done += UINT_MAX/2;
  4132. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4133. spin_unlock_irqrestore(&x->wait.lock, flags);
  4134. }
  4135. EXPORT_SYMBOL(complete_all);
  4136. static inline long __sched
  4137. do_wait_for_common(struct completion *x, long timeout, int state)
  4138. {
  4139. if (!x->done) {
  4140. DECLARE_WAITQUEUE(wait, current);
  4141. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4142. __add_wait_queue_tail(&x->wait, &wait);
  4143. do {
  4144. if ((state == TASK_INTERRUPTIBLE &&
  4145. signal_pending(current)) ||
  4146. (state == TASK_KILLABLE &&
  4147. fatal_signal_pending(current))) {
  4148. __remove_wait_queue(&x->wait, &wait);
  4149. return -ERESTARTSYS;
  4150. }
  4151. __set_current_state(state);
  4152. spin_unlock_irq(&x->wait.lock);
  4153. timeout = schedule_timeout(timeout);
  4154. spin_lock_irq(&x->wait.lock);
  4155. if (!timeout) {
  4156. __remove_wait_queue(&x->wait, &wait);
  4157. return timeout;
  4158. }
  4159. } while (!x->done);
  4160. __remove_wait_queue(&x->wait, &wait);
  4161. }
  4162. x->done--;
  4163. return timeout;
  4164. }
  4165. static long __sched
  4166. wait_for_common(struct completion *x, long timeout, int state)
  4167. {
  4168. might_sleep();
  4169. spin_lock_irq(&x->wait.lock);
  4170. timeout = do_wait_for_common(x, timeout, state);
  4171. spin_unlock_irq(&x->wait.lock);
  4172. return timeout;
  4173. }
  4174. void __sched wait_for_completion(struct completion *x)
  4175. {
  4176. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4177. }
  4178. EXPORT_SYMBOL(wait_for_completion);
  4179. unsigned long __sched
  4180. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4181. {
  4182. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4183. }
  4184. EXPORT_SYMBOL(wait_for_completion_timeout);
  4185. int __sched wait_for_completion_interruptible(struct completion *x)
  4186. {
  4187. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4188. if (t == -ERESTARTSYS)
  4189. return t;
  4190. return 0;
  4191. }
  4192. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4193. unsigned long __sched
  4194. wait_for_completion_interruptible_timeout(struct completion *x,
  4195. unsigned long timeout)
  4196. {
  4197. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4198. }
  4199. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4200. int __sched wait_for_completion_killable(struct completion *x)
  4201. {
  4202. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4203. if (t == -ERESTARTSYS)
  4204. return t;
  4205. return 0;
  4206. }
  4207. EXPORT_SYMBOL(wait_for_completion_killable);
  4208. static long __sched
  4209. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4210. {
  4211. unsigned long flags;
  4212. wait_queue_t wait;
  4213. init_waitqueue_entry(&wait, current);
  4214. __set_current_state(state);
  4215. spin_lock_irqsave(&q->lock, flags);
  4216. __add_wait_queue(q, &wait);
  4217. spin_unlock(&q->lock);
  4218. timeout = schedule_timeout(timeout);
  4219. spin_lock_irq(&q->lock);
  4220. __remove_wait_queue(q, &wait);
  4221. spin_unlock_irqrestore(&q->lock, flags);
  4222. return timeout;
  4223. }
  4224. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4225. {
  4226. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4227. }
  4228. EXPORT_SYMBOL(interruptible_sleep_on);
  4229. long __sched
  4230. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4231. {
  4232. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4233. }
  4234. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4235. void __sched sleep_on(wait_queue_head_t *q)
  4236. {
  4237. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4238. }
  4239. EXPORT_SYMBOL(sleep_on);
  4240. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4241. {
  4242. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4243. }
  4244. EXPORT_SYMBOL(sleep_on_timeout);
  4245. #ifdef CONFIG_RT_MUTEXES
  4246. /*
  4247. * rt_mutex_setprio - set the current priority of a task
  4248. * @p: task
  4249. * @prio: prio value (kernel-internal form)
  4250. *
  4251. * This function changes the 'effective' priority of a task. It does
  4252. * not touch ->normal_prio like __setscheduler().
  4253. *
  4254. * Used by the rt_mutex code to implement priority inheritance logic.
  4255. */
  4256. void rt_mutex_setprio(struct task_struct *p, int prio)
  4257. {
  4258. unsigned long flags;
  4259. int oldprio, on_rq, running;
  4260. struct rq *rq;
  4261. const struct sched_class *prev_class = p->sched_class;
  4262. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4263. rq = task_rq_lock(p, &flags);
  4264. update_rq_clock(rq);
  4265. oldprio = p->prio;
  4266. on_rq = p->se.on_rq;
  4267. running = task_current(rq, p);
  4268. if (on_rq)
  4269. dequeue_task(rq, p, 0);
  4270. if (running)
  4271. p->sched_class->put_prev_task(rq, p);
  4272. if (rt_prio(prio))
  4273. p->sched_class = &rt_sched_class;
  4274. else
  4275. p->sched_class = &fair_sched_class;
  4276. p->prio = prio;
  4277. if (running)
  4278. p->sched_class->set_curr_task(rq);
  4279. if (on_rq) {
  4280. enqueue_task(rq, p, 0);
  4281. check_class_changed(rq, p, prev_class, oldprio, running);
  4282. }
  4283. task_rq_unlock(rq, &flags);
  4284. }
  4285. #endif
  4286. void set_user_nice(struct task_struct *p, long nice)
  4287. {
  4288. int old_prio, delta, on_rq;
  4289. unsigned long flags;
  4290. struct rq *rq;
  4291. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4292. return;
  4293. /*
  4294. * We have to be careful, if called from sys_setpriority(),
  4295. * the task might be in the middle of scheduling on another CPU.
  4296. */
  4297. rq = task_rq_lock(p, &flags);
  4298. update_rq_clock(rq);
  4299. /*
  4300. * The RT priorities are set via sched_setscheduler(), but we still
  4301. * allow the 'normal' nice value to be set - but as expected
  4302. * it wont have any effect on scheduling until the task is
  4303. * SCHED_FIFO/SCHED_RR:
  4304. */
  4305. if (task_has_rt_policy(p)) {
  4306. p->static_prio = NICE_TO_PRIO(nice);
  4307. goto out_unlock;
  4308. }
  4309. on_rq = p->se.on_rq;
  4310. if (on_rq)
  4311. dequeue_task(rq, p, 0);
  4312. p->static_prio = NICE_TO_PRIO(nice);
  4313. set_load_weight(p);
  4314. old_prio = p->prio;
  4315. p->prio = effective_prio(p);
  4316. delta = p->prio - old_prio;
  4317. if (on_rq) {
  4318. enqueue_task(rq, p, 0);
  4319. /*
  4320. * If the task increased its priority or is running and
  4321. * lowered its priority, then reschedule its CPU:
  4322. */
  4323. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4324. resched_task(rq->curr);
  4325. }
  4326. out_unlock:
  4327. task_rq_unlock(rq, &flags);
  4328. }
  4329. EXPORT_SYMBOL(set_user_nice);
  4330. /*
  4331. * can_nice - check if a task can reduce its nice value
  4332. * @p: task
  4333. * @nice: nice value
  4334. */
  4335. int can_nice(const struct task_struct *p, const int nice)
  4336. {
  4337. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4338. int nice_rlim = 20 - nice;
  4339. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4340. capable(CAP_SYS_NICE));
  4341. }
  4342. #ifdef __ARCH_WANT_SYS_NICE
  4343. /*
  4344. * sys_nice - change the priority of the current process.
  4345. * @increment: priority increment
  4346. *
  4347. * sys_setpriority is a more generic, but much slower function that
  4348. * does similar things.
  4349. */
  4350. asmlinkage long sys_nice(int increment)
  4351. {
  4352. long nice, retval;
  4353. /*
  4354. * Setpriority might change our priority at the same moment.
  4355. * We don't have to worry. Conceptually one call occurs first
  4356. * and we have a single winner.
  4357. */
  4358. if (increment < -40)
  4359. increment = -40;
  4360. if (increment > 40)
  4361. increment = 40;
  4362. nice = PRIO_TO_NICE(current->static_prio) + increment;
  4363. if (nice < -20)
  4364. nice = -20;
  4365. if (nice > 19)
  4366. nice = 19;
  4367. if (increment < 0 && !can_nice(current, nice))
  4368. return -EPERM;
  4369. retval = security_task_setnice(current, nice);
  4370. if (retval)
  4371. return retval;
  4372. set_user_nice(current, nice);
  4373. return 0;
  4374. }
  4375. #endif
  4376. /**
  4377. * task_prio - return the priority value of a given task.
  4378. * @p: the task in question.
  4379. *
  4380. * This is the priority value as seen by users in /proc.
  4381. * RT tasks are offset by -200. Normal tasks are centered
  4382. * around 0, value goes from -16 to +15.
  4383. */
  4384. int task_prio(const struct task_struct *p)
  4385. {
  4386. return p->prio - MAX_RT_PRIO;
  4387. }
  4388. /**
  4389. * task_nice - return the nice value of a given task.
  4390. * @p: the task in question.
  4391. */
  4392. int task_nice(const struct task_struct *p)
  4393. {
  4394. return TASK_NICE(p);
  4395. }
  4396. EXPORT_SYMBOL(task_nice);
  4397. /**
  4398. * idle_cpu - is a given cpu idle currently?
  4399. * @cpu: the processor in question.
  4400. */
  4401. int idle_cpu(int cpu)
  4402. {
  4403. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4404. }
  4405. /**
  4406. * idle_task - return the idle task for a given cpu.
  4407. * @cpu: the processor in question.
  4408. */
  4409. struct task_struct *idle_task(int cpu)
  4410. {
  4411. return cpu_rq(cpu)->idle;
  4412. }
  4413. /**
  4414. * find_process_by_pid - find a process with a matching PID value.
  4415. * @pid: the pid in question.
  4416. */
  4417. static struct task_struct *find_process_by_pid(pid_t pid)
  4418. {
  4419. return pid ? find_task_by_vpid(pid) : current;
  4420. }
  4421. /* Actually do priority change: must hold rq lock. */
  4422. static void
  4423. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4424. {
  4425. BUG_ON(p->se.on_rq);
  4426. p->policy = policy;
  4427. switch (p->policy) {
  4428. case SCHED_NORMAL:
  4429. case SCHED_BATCH:
  4430. case SCHED_IDLE:
  4431. p->sched_class = &fair_sched_class;
  4432. break;
  4433. case SCHED_FIFO:
  4434. case SCHED_RR:
  4435. p->sched_class = &rt_sched_class;
  4436. break;
  4437. }
  4438. p->rt_priority = prio;
  4439. p->normal_prio = normal_prio(p);
  4440. /* we are holding p->pi_lock already */
  4441. p->prio = rt_mutex_getprio(p);
  4442. set_load_weight(p);
  4443. }
  4444. /**
  4445. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4446. * @p: the task in question.
  4447. * @policy: new policy.
  4448. * @param: structure containing the new RT priority.
  4449. *
  4450. * NOTE that the task may be already dead.
  4451. */
  4452. int sched_setscheduler(struct task_struct *p, int policy,
  4453. struct sched_param *param)
  4454. {
  4455. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4456. unsigned long flags;
  4457. const struct sched_class *prev_class = p->sched_class;
  4458. struct rq *rq;
  4459. /* may grab non-irq protected spin_locks */
  4460. BUG_ON(in_interrupt());
  4461. recheck:
  4462. /* double check policy once rq lock held */
  4463. if (policy < 0)
  4464. policy = oldpolicy = p->policy;
  4465. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4466. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4467. policy != SCHED_IDLE)
  4468. return -EINVAL;
  4469. /*
  4470. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4471. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4472. * SCHED_BATCH and SCHED_IDLE is 0.
  4473. */
  4474. if (param->sched_priority < 0 ||
  4475. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4476. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4477. return -EINVAL;
  4478. if (rt_policy(policy) != (param->sched_priority != 0))
  4479. return -EINVAL;
  4480. /*
  4481. * Allow unprivileged RT tasks to decrease priority:
  4482. */
  4483. if (!capable(CAP_SYS_NICE)) {
  4484. if (rt_policy(policy)) {
  4485. unsigned long rlim_rtprio;
  4486. if (!lock_task_sighand(p, &flags))
  4487. return -ESRCH;
  4488. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4489. unlock_task_sighand(p, &flags);
  4490. /* can't set/change the rt policy */
  4491. if (policy != p->policy && !rlim_rtprio)
  4492. return -EPERM;
  4493. /* can't increase priority */
  4494. if (param->sched_priority > p->rt_priority &&
  4495. param->sched_priority > rlim_rtprio)
  4496. return -EPERM;
  4497. }
  4498. /*
  4499. * Like positive nice levels, dont allow tasks to
  4500. * move out of SCHED_IDLE either:
  4501. */
  4502. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4503. return -EPERM;
  4504. /* can't change other user's priorities */
  4505. if ((current->euid != p->euid) &&
  4506. (current->euid != p->uid))
  4507. return -EPERM;
  4508. }
  4509. #ifdef CONFIG_RT_GROUP_SCHED
  4510. /*
  4511. * Do not allow realtime tasks into groups that have no runtime
  4512. * assigned.
  4513. */
  4514. if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
  4515. return -EPERM;
  4516. #endif
  4517. retval = security_task_setscheduler(p, policy, param);
  4518. if (retval)
  4519. return retval;
  4520. /*
  4521. * make sure no PI-waiters arrive (or leave) while we are
  4522. * changing the priority of the task:
  4523. */
  4524. spin_lock_irqsave(&p->pi_lock, flags);
  4525. /*
  4526. * To be able to change p->policy safely, the apropriate
  4527. * runqueue lock must be held.
  4528. */
  4529. rq = __task_rq_lock(p);
  4530. /* recheck policy now with rq lock held */
  4531. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4532. policy = oldpolicy = -1;
  4533. __task_rq_unlock(rq);
  4534. spin_unlock_irqrestore(&p->pi_lock, flags);
  4535. goto recheck;
  4536. }
  4537. update_rq_clock(rq);
  4538. on_rq = p->se.on_rq;
  4539. running = task_current(rq, p);
  4540. if (on_rq)
  4541. deactivate_task(rq, p, 0);
  4542. if (running)
  4543. p->sched_class->put_prev_task(rq, p);
  4544. oldprio = p->prio;
  4545. __setscheduler(rq, p, policy, param->sched_priority);
  4546. if (running)
  4547. p->sched_class->set_curr_task(rq);
  4548. if (on_rq) {
  4549. activate_task(rq, p, 0);
  4550. check_class_changed(rq, p, prev_class, oldprio, running);
  4551. }
  4552. __task_rq_unlock(rq);
  4553. spin_unlock_irqrestore(&p->pi_lock, flags);
  4554. rt_mutex_adjust_pi(p);
  4555. return 0;
  4556. }
  4557. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4558. static int
  4559. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4560. {
  4561. struct sched_param lparam;
  4562. struct task_struct *p;
  4563. int retval;
  4564. if (!param || pid < 0)
  4565. return -EINVAL;
  4566. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4567. return -EFAULT;
  4568. rcu_read_lock();
  4569. retval = -ESRCH;
  4570. p = find_process_by_pid(pid);
  4571. if (p != NULL)
  4572. retval = sched_setscheduler(p, policy, &lparam);
  4573. rcu_read_unlock();
  4574. return retval;
  4575. }
  4576. /**
  4577. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4578. * @pid: the pid in question.
  4579. * @policy: new policy.
  4580. * @param: structure containing the new RT priority.
  4581. */
  4582. asmlinkage long
  4583. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4584. {
  4585. /* negative values for policy are not valid */
  4586. if (policy < 0)
  4587. return -EINVAL;
  4588. return do_sched_setscheduler(pid, policy, param);
  4589. }
  4590. /**
  4591. * sys_sched_setparam - set/change the RT priority of a thread
  4592. * @pid: the pid in question.
  4593. * @param: structure containing the new RT priority.
  4594. */
  4595. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4596. {
  4597. return do_sched_setscheduler(pid, -1, param);
  4598. }
  4599. /**
  4600. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4601. * @pid: the pid in question.
  4602. */
  4603. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4604. {
  4605. struct task_struct *p;
  4606. int retval;
  4607. if (pid < 0)
  4608. return -EINVAL;
  4609. retval = -ESRCH;
  4610. read_lock(&tasklist_lock);
  4611. p = find_process_by_pid(pid);
  4612. if (p) {
  4613. retval = security_task_getscheduler(p);
  4614. if (!retval)
  4615. retval = p->policy;
  4616. }
  4617. read_unlock(&tasklist_lock);
  4618. return retval;
  4619. }
  4620. /**
  4621. * sys_sched_getscheduler - get the RT priority of a thread
  4622. * @pid: the pid in question.
  4623. * @param: structure containing the RT priority.
  4624. */
  4625. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4626. {
  4627. struct sched_param lp;
  4628. struct task_struct *p;
  4629. int retval;
  4630. if (!param || pid < 0)
  4631. return -EINVAL;
  4632. read_lock(&tasklist_lock);
  4633. p = find_process_by_pid(pid);
  4634. retval = -ESRCH;
  4635. if (!p)
  4636. goto out_unlock;
  4637. retval = security_task_getscheduler(p);
  4638. if (retval)
  4639. goto out_unlock;
  4640. lp.sched_priority = p->rt_priority;
  4641. read_unlock(&tasklist_lock);
  4642. /*
  4643. * This one might sleep, we cannot do it with a spinlock held ...
  4644. */
  4645. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4646. return retval;
  4647. out_unlock:
  4648. read_unlock(&tasklist_lock);
  4649. return retval;
  4650. }
  4651. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4652. {
  4653. cpumask_t cpus_allowed;
  4654. cpumask_t new_mask = *in_mask;
  4655. struct task_struct *p;
  4656. int retval;
  4657. get_online_cpus();
  4658. read_lock(&tasklist_lock);
  4659. p = find_process_by_pid(pid);
  4660. if (!p) {
  4661. read_unlock(&tasklist_lock);
  4662. put_online_cpus();
  4663. return -ESRCH;
  4664. }
  4665. /*
  4666. * It is not safe to call set_cpus_allowed with the
  4667. * tasklist_lock held. We will bump the task_struct's
  4668. * usage count and then drop tasklist_lock.
  4669. */
  4670. get_task_struct(p);
  4671. read_unlock(&tasklist_lock);
  4672. retval = -EPERM;
  4673. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4674. !capable(CAP_SYS_NICE))
  4675. goto out_unlock;
  4676. retval = security_task_setscheduler(p, 0, NULL);
  4677. if (retval)
  4678. goto out_unlock;
  4679. cpuset_cpus_allowed(p, &cpus_allowed);
  4680. cpus_and(new_mask, new_mask, cpus_allowed);
  4681. again:
  4682. retval = set_cpus_allowed_ptr(p, &new_mask);
  4683. if (!retval) {
  4684. cpuset_cpus_allowed(p, &cpus_allowed);
  4685. if (!cpus_subset(new_mask, cpus_allowed)) {
  4686. /*
  4687. * We must have raced with a concurrent cpuset
  4688. * update. Just reset the cpus_allowed to the
  4689. * cpuset's cpus_allowed
  4690. */
  4691. new_mask = cpus_allowed;
  4692. goto again;
  4693. }
  4694. }
  4695. out_unlock:
  4696. put_task_struct(p);
  4697. put_online_cpus();
  4698. return retval;
  4699. }
  4700. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4701. cpumask_t *new_mask)
  4702. {
  4703. if (len < sizeof(cpumask_t)) {
  4704. memset(new_mask, 0, sizeof(cpumask_t));
  4705. } else if (len > sizeof(cpumask_t)) {
  4706. len = sizeof(cpumask_t);
  4707. }
  4708. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4709. }
  4710. /**
  4711. * sys_sched_setaffinity - set the cpu affinity of a process
  4712. * @pid: pid of the process
  4713. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4714. * @user_mask_ptr: user-space pointer to the new cpu mask
  4715. */
  4716. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4717. unsigned long __user *user_mask_ptr)
  4718. {
  4719. cpumask_t new_mask;
  4720. int retval;
  4721. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4722. if (retval)
  4723. return retval;
  4724. return sched_setaffinity(pid, &new_mask);
  4725. }
  4726. /*
  4727. * Represents all cpu's present in the system
  4728. * In systems capable of hotplug, this map could dynamically grow
  4729. * as new cpu's are detected in the system via any platform specific
  4730. * method, such as ACPI for e.g.
  4731. */
  4732. cpumask_t cpu_present_map __read_mostly;
  4733. EXPORT_SYMBOL(cpu_present_map);
  4734. #ifndef CONFIG_SMP
  4735. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  4736. EXPORT_SYMBOL(cpu_online_map);
  4737. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  4738. EXPORT_SYMBOL(cpu_possible_map);
  4739. #endif
  4740. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4741. {
  4742. struct task_struct *p;
  4743. int retval;
  4744. get_online_cpus();
  4745. read_lock(&tasklist_lock);
  4746. retval = -ESRCH;
  4747. p = find_process_by_pid(pid);
  4748. if (!p)
  4749. goto out_unlock;
  4750. retval = security_task_getscheduler(p);
  4751. if (retval)
  4752. goto out_unlock;
  4753. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4754. out_unlock:
  4755. read_unlock(&tasklist_lock);
  4756. put_online_cpus();
  4757. return retval;
  4758. }
  4759. /**
  4760. * sys_sched_getaffinity - get the cpu affinity of a process
  4761. * @pid: pid of the process
  4762. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4763. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4764. */
  4765. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4766. unsigned long __user *user_mask_ptr)
  4767. {
  4768. int ret;
  4769. cpumask_t mask;
  4770. if (len < sizeof(cpumask_t))
  4771. return -EINVAL;
  4772. ret = sched_getaffinity(pid, &mask);
  4773. if (ret < 0)
  4774. return ret;
  4775. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4776. return -EFAULT;
  4777. return sizeof(cpumask_t);
  4778. }
  4779. /**
  4780. * sys_sched_yield - yield the current processor to other threads.
  4781. *
  4782. * This function yields the current CPU to other tasks. If there are no
  4783. * other threads running on this CPU then this function will return.
  4784. */
  4785. asmlinkage long sys_sched_yield(void)
  4786. {
  4787. struct rq *rq = this_rq_lock();
  4788. schedstat_inc(rq, yld_count);
  4789. current->sched_class->yield_task(rq);
  4790. /*
  4791. * Since we are going to call schedule() anyway, there's
  4792. * no need to preempt or enable interrupts:
  4793. */
  4794. __release(rq->lock);
  4795. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4796. _raw_spin_unlock(&rq->lock);
  4797. preempt_enable_no_resched();
  4798. schedule();
  4799. return 0;
  4800. }
  4801. static void __cond_resched(void)
  4802. {
  4803. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4804. __might_sleep(__FILE__, __LINE__);
  4805. #endif
  4806. /*
  4807. * The BKS might be reacquired before we have dropped
  4808. * PREEMPT_ACTIVE, which could trigger a second
  4809. * cond_resched() call.
  4810. */
  4811. do {
  4812. add_preempt_count(PREEMPT_ACTIVE);
  4813. schedule();
  4814. sub_preempt_count(PREEMPT_ACTIVE);
  4815. } while (need_resched());
  4816. }
  4817. #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
  4818. int __sched _cond_resched(void)
  4819. {
  4820. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4821. system_state == SYSTEM_RUNNING) {
  4822. __cond_resched();
  4823. return 1;
  4824. }
  4825. return 0;
  4826. }
  4827. EXPORT_SYMBOL(_cond_resched);
  4828. #endif
  4829. /*
  4830. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4831. * call schedule, and on return reacquire the lock.
  4832. *
  4833. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4834. * operations here to prevent schedule() from being called twice (once via
  4835. * spin_unlock(), once by hand).
  4836. */
  4837. int cond_resched_lock(spinlock_t *lock)
  4838. {
  4839. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4840. int ret = 0;
  4841. if (spin_needbreak(lock) || resched) {
  4842. spin_unlock(lock);
  4843. if (resched && need_resched())
  4844. __cond_resched();
  4845. else
  4846. cpu_relax();
  4847. ret = 1;
  4848. spin_lock(lock);
  4849. }
  4850. return ret;
  4851. }
  4852. EXPORT_SYMBOL(cond_resched_lock);
  4853. int __sched cond_resched_softirq(void)
  4854. {
  4855. BUG_ON(!in_softirq());
  4856. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4857. local_bh_enable();
  4858. __cond_resched();
  4859. local_bh_disable();
  4860. return 1;
  4861. }
  4862. return 0;
  4863. }
  4864. EXPORT_SYMBOL(cond_resched_softirq);
  4865. /**
  4866. * yield - yield the current processor to other threads.
  4867. *
  4868. * This is a shortcut for kernel-space yielding - it marks the
  4869. * thread runnable and calls sys_sched_yield().
  4870. */
  4871. void __sched yield(void)
  4872. {
  4873. set_current_state(TASK_RUNNING);
  4874. sys_sched_yield();
  4875. }
  4876. EXPORT_SYMBOL(yield);
  4877. /*
  4878. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4879. * that process accounting knows that this is a task in IO wait state.
  4880. *
  4881. * But don't do that if it is a deliberate, throttling IO wait (this task
  4882. * has set its backing_dev_info: the queue against which it should throttle)
  4883. */
  4884. void __sched io_schedule(void)
  4885. {
  4886. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4887. delayacct_blkio_start();
  4888. atomic_inc(&rq->nr_iowait);
  4889. schedule();
  4890. atomic_dec(&rq->nr_iowait);
  4891. delayacct_blkio_end();
  4892. }
  4893. EXPORT_SYMBOL(io_schedule);
  4894. long __sched io_schedule_timeout(long timeout)
  4895. {
  4896. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4897. long ret;
  4898. delayacct_blkio_start();
  4899. atomic_inc(&rq->nr_iowait);
  4900. ret = schedule_timeout(timeout);
  4901. atomic_dec(&rq->nr_iowait);
  4902. delayacct_blkio_end();
  4903. return ret;
  4904. }
  4905. /**
  4906. * sys_sched_get_priority_max - return maximum RT priority.
  4907. * @policy: scheduling class.
  4908. *
  4909. * this syscall returns the maximum rt_priority that can be used
  4910. * by a given scheduling class.
  4911. */
  4912. asmlinkage long sys_sched_get_priority_max(int policy)
  4913. {
  4914. int ret = -EINVAL;
  4915. switch (policy) {
  4916. case SCHED_FIFO:
  4917. case SCHED_RR:
  4918. ret = MAX_USER_RT_PRIO-1;
  4919. break;
  4920. case SCHED_NORMAL:
  4921. case SCHED_BATCH:
  4922. case SCHED_IDLE:
  4923. ret = 0;
  4924. break;
  4925. }
  4926. return ret;
  4927. }
  4928. /**
  4929. * sys_sched_get_priority_min - return minimum RT priority.
  4930. * @policy: scheduling class.
  4931. *
  4932. * this syscall returns the minimum rt_priority that can be used
  4933. * by a given scheduling class.
  4934. */
  4935. asmlinkage long sys_sched_get_priority_min(int policy)
  4936. {
  4937. int ret = -EINVAL;
  4938. switch (policy) {
  4939. case SCHED_FIFO:
  4940. case SCHED_RR:
  4941. ret = 1;
  4942. break;
  4943. case SCHED_NORMAL:
  4944. case SCHED_BATCH:
  4945. case SCHED_IDLE:
  4946. ret = 0;
  4947. }
  4948. return ret;
  4949. }
  4950. /**
  4951. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4952. * @pid: pid of the process.
  4953. * @interval: userspace pointer to the timeslice value.
  4954. *
  4955. * this syscall writes the default timeslice value of a given process
  4956. * into the user-space timespec buffer. A value of '0' means infinity.
  4957. */
  4958. asmlinkage
  4959. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4960. {
  4961. struct task_struct *p;
  4962. unsigned int time_slice;
  4963. int retval;
  4964. struct timespec t;
  4965. if (pid < 0)
  4966. return -EINVAL;
  4967. retval = -ESRCH;
  4968. read_lock(&tasklist_lock);
  4969. p = find_process_by_pid(pid);
  4970. if (!p)
  4971. goto out_unlock;
  4972. retval = security_task_getscheduler(p);
  4973. if (retval)
  4974. goto out_unlock;
  4975. /*
  4976. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4977. * tasks that are on an otherwise idle runqueue:
  4978. */
  4979. time_slice = 0;
  4980. if (p->policy == SCHED_RR) {
  4981. time_slice = DEF_TIMESLICE;
  4982. } else if (p->policy != SCHED_FIFO) {
  4983. struct sched_entity *se = &p->se;
  4984. unsigned long flags;
  4985. struct rq *rq;
  4986. rq = task_rq_lock(p, &flags);
  4987. if (rq->cfs.load.weight)
  4988. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4989. task_rq_unlock(rq, &flags);
  4990. }
  4991. read_unlock(&tasklist_lock);
  4992. jiffies_to_timespec(time_slice, &t);
  4993. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4994. return retval;
  4995. out_unlock:
  4996. read_unlock(&tasklist_lock);
  4997. return retval;
  4998. }
  4999. static const char stat_nam[] = "RSDTtZX";
  5000. void sched_show_task(struct task_struct *p)
  5001. {
  5002. unsigned long free = 0;
  5003. unsigned state;
  5004. state = p->state ? __ffs(p->state) + 1 : 0;
  5005. printk(KERN_INFO "%-13.13s %c", p->comm,
  5006. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5007. #if BITS_PER_LONG == 32
  5008. if (state == TASK_RUNNING)
  5009. printk(KERN_CONT " running ");
  5010. else
  5011. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  5012. #else
  5013. if (state == TASK_RUNNING)
  5014. printk(KERN_CONT " running task ");
  5015. else
  5016. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  5017. #endif
  5018. #ifdef CONFIG_DEBUG_STACK_USAGE
  5019. {
  5020. unsigned long *n = end_of_stack(p);
  5021. while (!*n)
  5022. n++;
  5023. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  5024. }
  5025. #endif
  5026. printk(KERN_CONT "%5lu %5d %6d\n", free,
  5027. task_pid_nr(p), task_pid_nr(p->real_parent));
  5028. show_stack(p, NULL);
  5029. }
  5030. void show_state_filter(unsigned long state_filter)
  5031. {
  5032. struct task_struct *g, *p;
  5033. #if BITS_PER_LONG == 32
  5034. printk(KERN_INFO
  5035. " task PC stack pid father\n");
  5036. #else
  5037. printk(KERN_INFO
  5038. " task PC stack pid father\n");
  5039. #endif
  5040. read_lock(&tasklist_lock);
  5041. do_each_thread(g, p) {
  5042. /*
  5043. * reset the NMI-timeout, listing all files on a slow
  5044. * console might take alot of time:
  5045. */
  5046. touch_nmi_watchdog();
  5047. if (!state_filter || (p->state & state_filter))
  5048. sched_show_task(p);
  5049. } while_each_thread(g, p);
  5050. touch_all_softlockup_watchdogs();
  5051. #ifdef CONFIG_SCHED_DEBUG
  5052. sysrq_sched_debug_show();
  5053. #endif
  5054. read_unlock(&tasklist_lock);
  5055. /*
  5056. * Only show locks if all tasks are dumped:
  5057. */
  5058. if (state_filter == -1)
  5059. debug_show_all_locks();
  5060. }
  5061. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5062. {
  5063. idle->sched_class = &idle_sched_class;
  5064. }
  5065. /**
  5066. * init_idle - set up an idle thread for a given CPU
  5067. * @idle: task in question
  5068. * @cpu: cpu the idle task belongs to
  5069. *
  5070. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5071. * flag, to make booting more robust.
  5072. */
  5073. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5074. {
  5075. struct rq *rq = cpu_rq(cpu);
  5076. unsigned long flags;
  5077. __sched_fork(idle);
  5078. idle->se.exec_start = sched_clock();
  5079. idle->prio = idle->normal_prio = MAX_PRIO;
  5080. idle->cpus_allowed = cpumask_of_cpu(cpu);
  5081. __set_task_cpu(idle, cpu);
  5082. spin_lock_irqsave(&rq->lock, flags);
  5083. rq->curr = rq->idle = idle;
  5084. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5085. idle->oncpu = 1;
  5086. #endif
  5087. spin_unlock_irqrestore(&rq->lock, flags);
  5088. /* Set the preempt count _outside_ the spinlocks! */
  5089. task_thread_info(idle)->preempt_count = 0;
  5090. /*
  5091. * The idle tasks have their own, simple scheduling class:
  5092. */
  5093. idle->sched_class = &idle_sched_class;
  5094. }
  5095. /*
  5096. * In a system that switches off the HZ timer nohz_cpu_mask
  5097. * indicates which cpus entered this state. This is used
  5098. * in the rcu update to wait only for active cpus. For system
  5099. * which do not switch off the HZ timer nohz_cpu_mask should
  5100. * always be CPU_MASK_NONE.
  5101. */
  5102. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  5103. /*
  5104. * Increase the granularity value when there are more CPUs,
  5105. * because with more CPUs the 'effective latency' as visible
  5106. * to users decreases. But the relationship is not linear,
  5107. * so pick a second-best guess by going with the log2 of the
  5108. * number of CPUs.
  5109. *
  5110. * This idea comes from the SD scheduler of Con Kolivas:
  5111. */
  5112. static inline void sched_init_granularity(void)
  5113. {
  5114. unsigned int factor = 1 + ilog2(num_online_cpus());
  5115. const unsigned long limit = 200000000;
  5116. sysctl_sched_min_granularity *= factor;
  5117. if (sysctl_sched_min_granularity > limit)
  5118. sysctl_sched_min_granularity = limit;
  5119. sysctl_sched_latency *= factor;
  5120. if (sysctl_sched_latency > limit)
  5121. sysctl_sched_latency = limit;
  5122. sysctl_sched_wakeup_granularity *= factor;
  5123. }
  5124. #ifdef CONFIG_SMP
  5125. /*
  5126. * This is how migration works:
  5127. *
  5128. * 1) we queue a struct migration_req structure in the source CPU's
  5129. * runqueue and wake up that CPU's migration thread.
  5130. * 2) we down() the locked semaphore => thread blocks.
  5131. * 3) migration thread wakes up (implicitly it forces the migrated
  5132. * thread off the CPU)
  5133. * 4) it gets the migration request and checks whether the migrated
  5134. * task is still in the wrong runqueue.
  5135. * 5) if it's in the wrong runqueue then the migration thread removes
  5136. * it and puts it into the right queue.
  5137. * 6) migration thread up()s the semaphore.
  5138. * 7) we wake up and the migration is done.
  5139. */
  5140. /*
  5141. * Change a given task's CPU affinity. Migrate the thread to a
  5142. * proper CPU and schedule it away if the CPU it's executing on
  5143. * is removed from the allowed bitmask.
  5144. *
  5145. * NOTE: the caller must have a valid reference to the task, the
  5146. * task must not exit() & deallocate itself prematurely. The
  5147. * call is not atomic; no spinlocks may be held.
  5148. */
  5149. int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
  5150. {
  5151. struct migration_req req;
  5152. unsigned long flags;
  5153. struct rq *rq;
  5154. int ret = 0;
  5155. rq = task_rq_lock(p, &flags);
  5156. if (!cpus_intersects(*new_mask, cpu_online_map)) {
  5157. ret = -EINVAL;
  5158. goto out;
  5159. }
  5160. if (p->sched_class->set_cpus_allowed)
  5161. p->sched_class->set_cpus_allowed(p, new_mask);
  5162. else {
  5163. p->cpus_allowed = *new_mask;
  5164. p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
  5165. }
  5166. /* Can the task run on the task's current CPU? If so, we're done */
  5167. if (cpu_isset(task_cpu(p), *new_mask))
  5168. goto out;
  5169. if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
  5170. /* Need help from migration thread: drop lock and wait. */
  5171. task_rq_unlock(rq, &flags);
  5172. wake_up_process(rq->migration_thread);
  5173. wait_for_completion(&req.done);
  5174. tlb_migrate_finish(p->mm);
  5175. return 0;
  5176. }
  5177. out:
  5178. task_rq_unlock(rq, &flags);
  5179. return ret;
  5180. }
  5181. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5182. /*
  5183. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5184. * this because either it can't run here any more (set_cpus_allowed()
  5185. * away from this CPU, or CPU going down), or because we're
  5186. * attempting to rebalance this task on exec (sched_exec).
  5187. *
  5188. * So we race with normal scheduler movements, but that's OK, as long
  5189. * as the task is no longer on this CPU.
  5190. *
  5191. * Returns non-zero if task was successfully migrated.
  5192. */
  5193. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5194. {
  5195. struct rq *rq_dest, *rq_src;
  5196. int ret = 0, on_rq;
  5197. if (unlikely(cpu_is_offline(dest_cpu)))
  5198. return ret;
  5199. rq_src = cpu_rq(src_cpu);
  5200. rq_dest = cpu_rq(dest_cpu);
  5201. double_rq_lock(rq_src, rq_dest);
  5202. /* Already moved. */
  5203. if (task_cpu(p) != src_cpu)
  5204. goto out;
  5205. /* Affinity changed (again). */
  5206. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  5207. goto out;
  5208. on_rq = p->se.on_rq;
  5209. if (on_rq)
  5210. deactivate_task(rq_src, p, 0);
  5211. set_task_cpu(p, dest_cpu);
  5212. if (on_rq) {
  5213. activate_task(rq_dest, p, 0);
  5214. check_preempt_curr(rq_dest, p);
  5215. }
  5216. ret = 1;
  5217. out:
  5218. double_rq_unlock(rq_src, rq_dest);
  5219. return ret;
  5220. }
  5221. /*
  5222. * migration_thread - this is a highprio system thread that performs
  5223. * thread migration by bumping thread off CPU then 'pushing' onto
  5224. * another runqueue.
  5225. */
  5226. static int migration_thread(void *data)
  5227. {
  5228. int cpu = (long)data;
  5229. struct rq *rq;
  5230. rq = cpu_rq(cpu);
  5231. BUG_ON(rq->migration_thread != current);
  5232. set_current_state(TASK_INTERRUPTIBLE);
  5233. while (!kthread_should_stop()) {
  5234. struct migration_req *req;
  5235. struct list_head *head;
  5236. spin_lock_irq(&rq->lock);
  5237. if (cpu_is_offline(cpu)) {
  5238. spin_unlock_irq(&rq->lock);
  5239. goto wait_to_die;
  5240. }
  5241. if (rq->active_balance) {
  5242. active_load_balance(rq, cpu);
  5243. rq->active_balance = 0;
  5244. }
  5245. head = &rq->migration_queue;
  5246. if (list_empty(head)) {
  5247. spin_unlock_irq(&rq->lock);
  5248. schedule();
  5249. set_current_state(TASK_INTERRUPTIBLE);
  5250. continue;
  5251. }
  5252. req = list_entry(head->next, struct migration_req, list);
  5253. list_del_init(head->next);
  5254. spin_unlock(&rq->lock);
  5255. __migrate_task(req->task, cpu, req->dest_cpu);
  5256. local_irq_enable();
  5257. complete(&req->done);
  5258. }
  5259. __set_current_state(TASK_RUNNING);
  5260. return 0;
  5261. wait_to_die:
  5262. /* Wait for kthread_stop */
  5263. set_current_state(TASK_INTERRUPTIBLE);
  5264. while (!kthread_should_stop()) {
  5265. schedule();
  5266. set_current_state(TASK_INTERRUPTIBLE);
  5267. }
  5268. __set_current_state(TASK_RUNNING);
  5269. return 0;
  5270. }
  5271. #ifdef CONFIG_HOTPLUG_CPU
  5272. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5273. {
  5274. int ret;
  5275. local_irq_disable();
  5276. ret = __migrate_task(p, src_cpu, dest_cpu);
  5277. local_irq_enable();
  5278. return ret;
  5279. }
  5280. /*
  5281. * Figure out where task on dead CPU should go, use force if necessary.
  5282. * NOTE: interrupts should be disabled by the caller
  5283. */
  5284. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5285. {
  5286. unsigned long flags;
  5287. cpumask_t mask;
  5288. struct rq *rq;
  5289. int dest_cpu;
  5290. do {
  5291. /* On same node? */
  5292. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  5293. cpus_and(mask, mask, p->cpus_allowed);
  5294. dest_cpu = any_online_cpu(mask);
  5295. /* On any allowed CPU? */
  5296. if (dest_cpu >= nr_cpu_ids)
  5297. dest_cpu = any_online_cpu(p->cpus_allowed);
  5298. /* No more Mr. Nice Guy. */
  5299. if (dest_cpu >= nr_cpu_ids) {
  5300. cpumask_t cpus_allowed;
  5301. cpuset_cpus_allowed_locked(p, &cpus_allowed);
  5302. /*
  5303. * Try to stay on the same cpuset, where the
  5304. * current cpuset may be a subset of all cpus.
  5305. * The cpuset_cpus_allowed_locked() variant of
  5306. * cpuset_cpus_allowed() will not block. It must be
  5307. * called within calls to cpuset_lock/cpuset_unlock.
  5308. */
  5309. rq = task_rq_lock(p, &flags);
  5310. p->cpus_allowed = cpus_allowed;
  5311. dest_cpu = any_online_cpu(p->cpus_allowed);
  5312. task_rq_unlock(rq, &flags);
  5313. /*
  5314. * Don't tell them about moving exiting tasks or
  5315. * kernel threads (both mm NULL), since they never
  5316. * leave kernel.
  5317. */
  5318. if (p->mm && printk_ratelimit()) {
  5319. printk(KERN_INFO "process %d (%s) no "
  5320. "longer affine to cpu%d\n",
  5321. task_pid_nr(p), p->comm, dead_cpu);
  5322. }
  5323. }
  5324. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  5325. }
  5326. /*
  5327. * While a dead CPU has no uninterruptible tasks queued at this point,
  5328. * it might still have a nonzero ->nr_uninterruptible counter, because
  5329. * for performance reasons the counter is not stricly tracking tasks to
  5330. * their home CPUs. So we just add the counter to another CPU's counter,
  5331. * to keep the global sum constant after CPU-down:
  5332. */
  5333. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5334. {
  5335. struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
  5336. unsigned long flags;
  5337. local_irq_save(flags);
  5338. double_rq_lock(rq_src, rq_dest);
  5339. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5340. rq_src->nr_uninterruptible = 0;
  5341. double_rq_unlock(rq_src, rq_dest);
  5342. local_irq_restore(flags);
  5343. }
  5344. /* Run through task list and migrate tasks from the dead cpu. */
  5345. static void migrate_live_tasks(int src_cpu)
  5346. {
  5347. struct task_struct *p, *t;
  5348. read_lock(&tasklist_lock);
  5349. do_each_thread(t, p) {
  5350. if (p == current)
  5351. continue;
  5352. if (task_cpu(p) == src_cpu)
  5353. move_task_off_dead_cpu(src_cpu, p);
  5354. } while_each_thread(t, p);
  5355. read_unlock(&tasklist_lock);
  5356. }
  5357. /*
  5358. * Schedules idle task to be the next runnable task on current CPU.
  5359. * It does so by boosting its priority to highest possible.
  5360. * Used by CPU offline code.
  5361. */
  5362. void sched_idle_next(void)
  5363. {
  5364. int this_cpu = smp_processor_id();
  5365. struct rq *rq = cpu_rq(this_cpu);
  5366. struct task_struct *p = rq->idle;
  5367. unsigned long flags;
  5368. /* cpu has to be offline */
  5369. BUG_ON(cpu_online(this_cpu));
  5370. /*
  5371. * Strictly not necessary since rest of the CPUs are stopped by now
  5372. * and interrupts disabled on the current cpu.
  5373. */
  5374. spin_lock_irqsave(&rq->lock, flags);
  5375. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5376. update_rq_clock(rq);
  5377. activate_task(rq, p, 0);
  5378. spin_unlock_irqrestore(&rq->lock, flags);
  5379. }
  5380. /*
  5381. * Ensures that the idle task is using init_mm right before its cpu goes
  5382. * offline.
  5383. */
  5384. void idle_task_exit(void)
  5385. {
  5386. struct mm_struct *mm = current->active_mm;
  5387. BUG_ON(cpu_online(smp_processor_id()));
  5388. if (mm != &init_mm)
  5389. switch_mm(mm, &init_mm, current);
  5390. mmdrop(mm);
  5391. }
  5392. /* called under rq->lock with disabled interrupts */
  5393. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5394. {
  5395. struct rq *rq = cpu_rq(dead_cpu);
  5396. /* Must be exiting, otherwise would be on tasklist. */
  5397. BUG_ON(!p->exit_state);
  5398. /* Cannot have done final schedule yet: would have vanished. */
  5399. BUG_ON(p->state == TASK_DEAD);
  5400. get_task_struct(p);
  5401. /*
  5402. * Drop lock around migration; if someone else moves it,
  5403. * that's OK. No task can be added to this CPU, so iteration is
  5404. * fine.
  5405. */
  5406. spin_unlock_irq(&rq->lock);
  5407. move_task_off_dead_cpu(dead_cpu, p);
  5408. spin_lock_irq(&rq->lock);
  5409. put_task_struct(p);
  5410. }
  5411. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5412. static void migrate_dead_tasks(unsigned int dead_cpu)
  5413. {
  5414. struct rq *rq = cpu_rq(dead_cpu);
  5415. struct task_struct *next;
  5416. for ( ; ; ) {
  5417. if (!rq->nr_running)
  5418. break;
  5419. update_rq_clock(rq);
  5420. next = pick_next_task(rq, rq->curr);
  5421. if (!next)
  5422. break;
  5423. migrate_dead(dead_cpu, next);
  5424. }
  5425. }
  5426. #endif /* CONFIG_HOTPLUG_CPU */
  5427. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5428. static struct ctl_table sd_ctl_dir[] = {
  5429. {
  5430. .procname = "sched_domain",
  5431. .mode = 0555,
  5432. },
  5433. {0, },
  5434. };
  5435. static struct ctl_table sd_ctl_root[] = {
  5436. {
  5437. .ctl_name = CTL_KERN,
  5438. .procname = "kernel",
  5439. .mode = 0555,
  5440. .child = sd_ctl_dir,
  5441. },
  5442. {0, },
  5443. };
  5444. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5445. {
  5446. struct ctl_table *entry =
  5447. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5448. return entry;
  5449. }
  5450. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5451. {
  5452. struct ctl_table *entry;
  5453. /*
  5454. * In the intermediate directories, both the child directory and
  5455. * procname are dynamically allocated and could fail but the mode
  5456. * will always be set. In the lowest directory the names are
  5457. * static strings and all have proc handlers.
  5458. */
  5459. for (entry = *tablep; entry->mode; entry++) {
  5460. if (entry->child)
  5461. sd_free_ctl_entry(&entry->child);
  5462. if (entry->proc_handler == NULL)
  5463. kfree(entry->procname);
  5464. }
  5465. kfree(*tablep);
  5466. *tablep = NULL;
  5467. }
  5468. static void
  5469. set_table_entry(struct ctl_table *entry,
  5470. const char *procname, void *data, int maxlen,
  5471. mode_t mode, proc_handler *proc_handler)
  5472. {
  5473. entry->procname = procname;
  5474. entry->data = data;
  5475. entry->maxlen = maxlen;
  5476. entry->mode = mode;
  5477. entry->proc_handler = proc_handler;
  5478. }
  5479. static struct ctl_table *
  5480. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5481. {
  5482. struct ctl_table *table = sd_alloc_ctl_entry(12);
  5483. if (table == NULL)
  5484. return NULL;
  5485. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5486. sizeof(long), 0644, proc_doulongvec_minmax);
  5487. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5488. sizeof(long), 0644, proc_doulongvec_minmax);
  5489. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5490. sizeof(int), 0644, proc_dointvec_minmax);
  5491. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5492. sizeof(int), 0644, proc_dointvec_minmax);
  5493. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5494. sizeof(int), 0644, proc_dointvec_minmax);
  5495. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5496. sizeof(int), 0644, proc_dointvec_minmax);
  5497. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5498. sizeof(int), 0644, proc_dointvec_minmax);
  5499. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5500. sizeof(int), 0644, proc_dointvec_minmax);
  5501. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5502. sizeof(int), 0644, proc_dointvec_minmax);
  5503. set_table_entry(&table[9], "cache_nice_tries",
  5504. &sd->cache_nice_tries,
  5505. sizeof(int), 0644, proc_dointvec_minmax);
  5506. set_table_entry(&table[10], "flags", &sd->flags,
  5507. sizeof(int), 0644, proc_dointvec_minmax);
  5508. /* &table[11] is terminator */
  5509. return table;
  5510. }
  5511. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5512. {
  5513. struct ctl_table *entry, *table;
  5514. struct sched_domain *sd;
  5515. int domain_num = 0, i;
  5516. char buf[32];
  5517. for_each_domain(cpu, sd)
  5518. domain_num++;
  5519. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5520. if (table == NULL)
  5521. return NULL;
  5522. i = 0;
  5523. for_each_domain(cpu, sd) {
  5524. snprintf(buf, 32, "domain%d", i);
  5525. entry->procname = kstrdup(buf, GFP_KERNEL);
  5526. entry->mode = 0555;
  5527. entry->child = sd_alloc_ctl_domain_table(sd);
  5528. entry++;
  5529. i++;
  5530. }
  5531. return table;
  5532. }
  5533. static struct ctl_table_header *sd_sysctl_header;
  5534. static void register_sched_domain_sysctl(void)
  5535. {
  5536. int i, cpu_num = num_online_cpus();
  5537. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5538. char buf[32];
  5539. WARN_ON(sd_ctl_dir[0].child);
  5540. sd_ctl_dir[0].child = entry;
  5541. if (entry == NULL)
  5542. return;
  5543. for_each_online_cpu(i) {
  5544. snprintf(buf, 32, "cpu%d", i);
  5545. entry->procname = kstrdup(buf, GFP_KERNEL);
  5546. entry->mode = 0555;
  5547. entry->child = sd_alloc_ctl_cpu_table(i);
  5548. entry++;
  5549. }
  5550. WARN_ON(sd_sysctl_header);
  5551. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5552. }
  5553. /* may be called multiple times per register */
  5554. static void unregister_sched_domain_sysctl(void)
  5555. {
  5556. if (sd_sysctl_header)
  5557. unregister_sysctl_table(sd_sysctl_header);
  5558. sd_sysctl_header = NULL;
  5559. if (sd_ctl_dir[0].child)
  5560. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5561. }
  5562. #else
  5563. static void register_sched_domain_sysctl(void)
  5564. {
  5565. }
  5566. static void unregister_sched_domain_sysctl(void)
  5567. {
  5568. }
  5569. #endif
  5570. /*
  5571. * migration_call - callback that gets triggered when a CPU is added.
  5572. * Here we can start up the necessary migration thread for the new CPU.
  5573. */
  5574. static int __cpuinit
  5575. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5576. {
  5577. struct task_struct *p;
  5578. int cpu = (long)hcpu;
  5579. unsigned long flags;
  5580. struct rq *rq;
  5581. switch (action) {
  5582. case CPU_UP_PREPARE:
  5583. case CPU_UP_PREPARE_FROZEN:
  5584. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5585. if (IS_ERR(p))
  5586. return NOTIFY_BAD;
  5587. kthread_bind(p, cpu);
  5588. /* Must be high prio: stop_machine expects to yield to it. */
  5589. rq = task_rq_lock(p, &flags);
  5590. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5591. task_rq_unlock(rq, &flags);
  5592. cpu_rq(cpu)->migration_thread = p;
  5593. break;
  5594. case CPU_ONLINE:
  5595. case CPU_ONLINE_FROZEN:
  5596. /* Strictly unnecessary, as first user will wake it. */
  5597. wake_up_process(cpu_rq(cpu)->migration_thread);
  5598. /* Update our root-domain */
  5599. rq = cpu_rq(cpu);
  5600. spin_lock_irqsave(&rq->lock, flags);
  5601. if (rq->rd) {
  5602. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5603. cpu_set(cpu, rq->rd->online);
  5604. }
  5605. spin_unlock_irqrestore(&rq->lock, flags);
  5606. break;
  5607. #ifdef CONFIG_HOTPLUG_CPU
  5608. case CPU_UP_CANCELED:
  5609. case CPU_UP_CANCELED_FROZEN:
  5610. if (!cpu_rq(cpu)->migration_thread)
  5611. break;
  5612. /* Unbind it from offline cpu so it can run. Fall thru. */
  5613. kthread_bind(cpu_rq(cpu)->migration_thread,
  5614. any_online_cpu(cpu_online_map));
  5615. kthread_stop(cpu_rq(cpu)->migration_thread);
  5616. cpu_rq(cpu)->migration_thread = NULL;
  5617. break;
  5618. case CPU_DEAD:
  5619. case CPU_DEAD_FROZEN:
  5620. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5621. migrate_live_tasks(cpu);
  5622. rq = cpu_rq(cpu);
  5623. kthread_stop(rq->migration_thread);
  5624. rq->migration_thread = NULL;
  5625. /* Idle task back to normal (off runqueue, low prio) */
  5626. spin_lock_irq(&rq->lock);
  5627. update_rq_clock(rq);
  5628. deactivate_task(rq, rq->idle, 0);
  5629. rq->idle->static_prio = MAX_PRIO;
  5630. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5631. rq->idle->sched_class = &idle_sched_class;
  5632. migrate_dead_tasks(cpu);
  5633. spin_unlock_irq(&rq->lock);
  5634. cpuset_unlock();
  5635. migrate_nr_uninterruptible(rq);
  5636. BUG_ON(rq->nr_running != 0);
  5637. /*
  5638. * No need to migrate the tasks: it was best-effort if
  5639. * they didn't take sched_hotcpu_mutex. Just wake up
  5640. * the requestors.
  5641. */
  5642. spin_lock_irq(&rq->lock);
  5643. while (!list_empty(&rq->migration_queue)) {
  5644. struct migration_req *req;
  5645. req = list_entry(rq->migration_queue.next,
  5646. struct migration_req, list);
  5647. list_del_init(&req->list);
  5648. complete(&req->done);
  5649. }
  5650. spin_unlock_irq(&rq->lock);
  5651. break;
  5652. case CPU_DYING:
  5653. case CPU_DYING_FROZEN:
  5654. /* Update our root-domain */
  5655. rq = cpu_rq(cpu);
  5656. spin_lock_irqsave(&rq->lock, flags);
  5657. if (rq->rd) {
  5658. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5659. cpu_clear(cpu, rq->rd->online);
  5660. }
  5661. spin_unlock_irqrestore(&rq->lock, flags);
  5662. break;
  5663. #endif
  5664. }
  5665. return NOTIFY_OK;
  5666. }
  5667. /* Register at highest priority so that task migration (migrate_all_tasks)
  5668. * happens before everything else.
  5669. */
  5670. static struct notifier_block __cpuinitdata migration_notifier = {
  5671. .notifier_call = migration_call,
  5672. .priority = 10
  5673. };
  5674. void __init migration_init(void)
  5675. {
  5676. void *cpu = (void *)(long)smp_processor_id();
  5677. int err;
  5678. /* Start one for the boot CPU: */
  5679. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5680. BUG_ON(err == NOTIFY_BAD);
  5681. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5682. register_cpu_notifier(&migration_notifier);
  5683. }
  5684. #endif
  5685. #ifdef CONFIG_SMP
  5686. #ifdef CONFIG_SCHED_DEBUG
  5687. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5688. cpumask_t *groupmask)
  5689. {
  5690. struct sched_group *group = sd->groups;
  5691. char str[256];
  5692. cpulist_scnprintf(str, sizeof(str), sd->span);
  5693. cpus_clear(*groupmask);
  5694. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5695. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5696. printk("does not load-balance\n");
  5697. if (sd->parent)
  5698. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5699. " has parent");
  5700. return -1;
  5701. }
  5702. printk(KERN_CONT "span %s\n", str);
  5703. if (!cpu_isset(cpu, sd->span)) {
  5704. printk(KERN_ERR "ERROR: domain->span does not contain "
  5705. "CPU%d\n", cpu);
  5706. }
  5707. if (!cpu_isset(cpu, group->cpumask)) {
  5708. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5709. " CPU%d\n", cpu);
  5710. }
  5711. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5712. do {
  5713. if (!group) {
  5714. printk("\n");
  5715. printk(KERN_ERR "ERROR: group is NULL\n");
  5716. break;
  5717. }
  5718. if (!group->__cpu_power) {
  5719. printk(KERN_CONT "\n");
  5720. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5721. "set\n");
  5722. break;
  5723. }
  5724. if (!cpus_weight(group->cpumask)) {
  5725. printk(KERN_CONT "\n");
  5726. printk(KERN_ERR "ERROR: empty group\n");
  5727. break;
  5728. }
  5729. if (cpus_intersects(*groupmask, group->cpumask)) {
  5730. printk(KERN_CONT "\n");
  5731. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5732. break;
  5733. }
  5734. cpus_or(*groupmask, *groupmask, group->cpumask);
  5735. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5736. printk(KERN_CONT " %s", str);
  5737. group = group->next;
  5738. } while (group != sd->groups);
  5739. printk(KERN_CONT "\n");
  5740. if (!cpus_equal(sd->span, *groupmask))
  5741. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5742. if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
  5743. printk(KERN_ERR "ERROR: parent span is not a superset "
  5744. "of domain->span\n");
  5745. return 0;
  5746. }
  5747. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5748. {
  5749. cpumask_t *groupmask;
  5750. int level = 0;
  5751. if (!sd) {
  5752. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5753. return;
  5754. }
  5755. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5756. groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5757. if (!groupmask) {
  5758. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5759. return;
  5760. }
  5761. for (;;) {
  5762. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5763. break;
  5764. level++;
  5765. sd = sd->parent;
  5766. if (!sd)
  5767. break;
  5768. }
  5769. kfree(groupmask);
  5770. }
  5771. #else
  5772. # define sched_domain_debug(sd, cpu) do { } while (0)
  5773. #endif
  5774. static int sd_degenerate(struct sched_domain *sd)
  5775. {
  5776. if (cpus_weight(sd->span) == 1)
  5777. return 1;
  5778. /* Following flags need at least 2 groups */
  5779. if (sd->flags & (SD_LOAD_BALANCE |
  5780. SD_BALANCE_NEWIDLE |
  5781. SD_BALANCE_FORK |
  5782. SD_BALANCE_EXEC |
  5783. SD_SHARE_CPUPOWER |
  5784. SD_SHARE_PKG_RESOURCES)) {
  5785. if (sd->groups != sd->groups->next)
  5786. return 0;
  5787. }
  5788. /* Following flags don't use groups */
  5789. if (sd->flags & (SD_WAKE_IDLE |
  5790. SD_WAKE_AFFINE |
  5791. SD_WAKE_BALANCE))
  5792. return 0;
  5793. return 1;
  5794. }
  5795. static int
  5796. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5797. {
  5798. unsigned long cflags = sd->flags, pflags = parent->flags;
  5799. if (sd_degenerate(parent))
  5800. return 1;
  5801. if (!cpus_equal(sd->span, parent->span))
  5802. return 0;
  5803. /* Does parent contain flags not in child? */
  5804. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5805. if (cflags & SD_WAKE_AFFINE)
  5806. pflags &= ~SD_WAKE_BALANCE;
  5807. /* Flags needing groups don't count if only 1 group in parent */
  5808. if (parent->groups == parent->groups->next) {
  5809. pflags &= ~(SD_LOAD_BALANCE |
  5810. SD_BALANCE_NEWIDLE |
  5811. SD_BALANCE_FORK |
  5812. SD_BALANCE_EXEC |
  5813. SD_SHARE_CPUPOWER |
  5814. SD_SHARE_PKG_RESOURCES);
  5815. }
  5816. if (~cflags & pflags)
  5817. return 0;
  5818. return 1;
  5819. }
  5820. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5821. {
  5822. unsigned long flags;
  5823. const struct sched_class *class;
  5824. spin_lock_irqsave(&rq->lock, flags);
  5825. if (rq->rd) {
  5826. struct root_domain *old_rd = rq->rd;
  5827. for (class = sched_class_highest; class; class = class->next) {
  5828. if (class->leave_domain)
  5829. class->leave_domain(rq);
  5830. }
  5831. cpu_clear(rq->cpu, old_rd->span);
  5832. cpu_clear(rq->cpu, old_rd->online);
  5833. if (atomic_dec_and_test(&old_rd->refcount))
  5834. kfree(old_rd);
  5835. }
  5836. atomic_inc(&rd->refcount);
  5837. rq->rd = rd;
  5838. cpu_set(rq->cpu, rd->span);
  5839. if (cpu_isset(rq->cpu, cpu_online_map))
  5840. cpu_set(rq->cpu, rd->online);
  5841. for (class = sched_class_highest; class; class = class->next) {
  5842. if (class->join_domain)
  5843. class->join_domain(rq);
  5844. }
  5845. spin_unlock_irqrestore(&rq->lock, flags);
  5846. }
  5847. static void init_rootdomain(struct root_domain *rd)
  5848. {
  5849. memset(rd, 0, sizeof(*rd));
  5850. cpus_clear(rd->span);
  5851. cpus_clear(rd->online);
  5852. }
  5853. static void init_defrootdomain(void)
  5854. {
  5855. init_rootdomain(&def_root_domain);
  5856. atomic_set(&def_root_domain.refcount, 1);
  5857. }
  5858. static struct root_domain *alloc_rootdomain(void)
  5859. {
  5860. struct root_domain *rd;
  5861. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5862. if (!rd)
  5863. return NULL;
  5864. init_rootdomain(rd);
  5865. return rd;
  5866. }
  5867. /*
  5868. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5869. * hold the hotplug lock.
  5870. */
  5871. static void
  5872. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5873. {
  5874. struct rq *rq = cpu_rq(cpu);
  5875. struct sched_domain *tmp;
  5876. /* Remove the sched domains which do not contribute to scheduling. */
  5877. for (tmp = sd; tmp; tmp = tmp->parent) {
  5878. struct sched_domain *parent = tmp->parent;
  5879. if (!parent)
  5880. break;
  5881. if (sd_parent_degenerate(tmp, parent)) {
  5882. tmp->parent = parent->parent;
  5883. if (parent->parent)
  5884. parent->parent->child = tmp;
  5885. }
  5886. }
  5887. if (sd && sd_degenerate(sd)) {
  5888. sd = sd->parent;
  5889. if (sd)
  5890. sd->child = NULL;
  5891. }
  5892. sched_domain_debug(sd, cpu);
  5893. rq_attach_root(rq, rd);
  5894. rcu_assign_pointer(rq->sd, sd);
  5895. }
  5896. /* cpus with isolated domains */
  5897. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5898. /* Setup the mask of cpus configured for isolated domains */
  5899. static int __init isolated_cpu_setup(char *str)
  5900. {
  5901. int ints[NR_CPUS], i;
  5902. str = get_options(str, ARRAY_SIZE(ints), ints);
  5903. cpus_clear(cpu_isolated_map);
  5904. for (i = 1; i <= ints[0]; i++)
  5905. if (ints[i] < NR_CPUS)
  5906. cpu_set(ints[i], cpu_isolated_map);
  5907. return 1;
  5908. }
  5909. __setup("isolcpus=", isolated_cpu_setup);
  5910. /*
  5911. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5912. * to a function which identifies what group(along with sched group) a CPU
  5913. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5914. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5915. *
  5916. * init_sched_build_groups will build a circular linked list of the groups
  5917. * covered by the given span, and will set each group's ->cpumask correctly,
  5918. * and ->cpu_power to 0.
  5919. */
  5920. static void
  5921. init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
  5922. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5923. struct sched_group **sg,
  5924. cpumask_t *tmpmask),
  5925. cpumask_t *covered, cpumask_t *tmpmask)
  5926. {
  5927. struct sched_group *first = NULL, *last = NULL;
  5928. int i;
  5929. cpus_clear(*covered);
  5930. for_each_cpu_mask(i, *span) {
  5931. struct sched_group *sg;
  5932. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5933. int j;
  5934. if (cpu_isset(i, *covered))
  5935. continue;
  5936. cpus_clear(sg->cpumask);
  5937. sg->__cpu_power = 0;
  5938. for_each_cpu_mask(j, *span) {
  5939. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5940. continue;
  5941. cpu_set(j, *covered);
  5942. cpu_set(j, sg->cpumask);
  5943. }
  5944. if (!first)
  5945. first = sg;
  5946. if (last)
  5947. last->next = sg;
  5948. last = sg;
  5949. }
  5950. last->next = first;
  5951. }
  5952. #define SD_NODES_PER_DOMAIN 16
  5953. #ifdef CONFIG_NUMA
  5954. /**
  5955. * find_next_best_node - find the next node to include in a sched_domain
  5956. * @node: node whose sched_domain we're building
  5957. * @used_nodes: nodes already in the sched_domain
  5958. *
  5959. * Find the next node to include in a given scheduling domain. Simply
  5960. * finds the closest node not already in the @used_nodes map.
  5961. *
  5962. * Should use nodemask_t.
  5963. */
  5964. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5965. {
  5966. int i, n, val, min_val, best_node = 0;
  5967. min_val = INT_MAX;
  5968. for (i = 0; i < MAX_NUMNODES; i++) {
  5969. /* Start at @node */
  5970. n = (node + i) % MAX_NUMNODES;
  5971. if (!nr_cpus_node(n))
  5972. continue;
  5973. /* Skip already used nodes */
  5974. if (node_isset(n, *used_nodes))
  5975. continue;
  5976. /* Simple min distance search */
  5977. val = node_distance(node, n);
  5978. if (val < min_val) {
  5979. min_val = val;
  5980. best_node = n;
  5981. }
  5982. }
  5983. node_set(best_node, *used_nodes);
  5984. return best_node;
  5985. }
  5986. /**
  5987. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5988. * @node: node whose cpumask we're constructing
  5989. * @span: resulting cpumask
  5990. *
  5991. * Given a node, construct a good cpumask for its sched_domain to span. It
  5992. * should be one that prevents unnecessary balancing, but also spreads tasks
  5993. * out optimally.
  5994. */
  5995. static void sched_domain_node_span(int node, cpumask_t *span)
  5996. {
  5997. nodemask_t used_nodes;
  5998. node_to_cpumask_ptr(nodemask, node);
  5999. int i;
  6000. cpus_clear(*span);
  6001. nodes_clear(used_nodes);
  6002. cpus_or(*span, *span, *nodemask);
  6003. node_set(node, used_nodes);
  6004. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6005. int next_node = find_next_best_node(node, &used_nodes);
  6006. node_to_cpumask_ptr_next(nodemask, next_node);
  6007. cpus_or(*span, *span, *nodemask);
  6008. }
  6009. }
  6010. #endif
  6011. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6012. /*
  6013. * SMT sched-domains:
  6014. */
  6015. #ifdef CONFIG_SCHED_SMT
  6016. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  6017. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  6018. static int
  6019. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6020. cpumask_t *unused)
  6021. {
  6022. if (sg)
  6023. *sg = &per_cpu(sched_group_cpus, cpu);
  6024. return cpu;
  6025. }
  6026. #endif
  6027. /*
  6028. * multi-core sched-domains:
  6029. */
  6030. #ifdef CONFIG_SCHED_MC
  6031. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  6032. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  6033. #endif
  6034. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  6035. static int
  6036. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6037. cpumask_t *mask)
  6038. {
  6039. int group;
  6040. *mask = per_cpu(cpu_sibling_map, cpu);
  6041. cpus_and(*mask, *mask, *cpu_map);
  6042. group = first_cpu(*mask);
  6043. if (sg)
  6044. *sg = &per_cpu(sched_group_core, group);
  6045. return group;
  6046. }
  6047. #elif defined(CONFIG_SCHED_MC)
  6048. static int
  6049. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6050. cpumask_t *unused)
  6051. {
  6052. if (sg)
  6053. *sg = &per_cpu(sched_group_core, cpu);
  6054. return cpu;
  6055. }
  6056. #endif
  6057. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  6058. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  6059. static int
  6060. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6061. cpumask_t *mask)
  6062. {
  6063. int group;
  6064. #ifdef CONFIG_SCHED_MC
  6065. *mask = cpu_coregroup_map(cpu);
  6066. cpus_and(*mask, *mask, *cpu_map);
  6067. group = first_cpu(*mask);
  6068. #elif defined(CONFIG_SCHED_SMT)
  6069. *mask = per_cpu(cpu_sibling_map, cpu);
  6070. cpus_and(*mask, *mask, *cpu_map);
  6071. group = first_cpu(*mask);
  6072. #else
  6073. group = cpu;
  6074. #endif
  6075. if (sg)
  6076. *sg = &per_cpu(sched_group_phys, group);
  6077. return group;
  6078. }
  6079. #ifdef CONFIG_NUMA
  6080. /*
  6081. * The init_sched_build_groups can't handle what we want to do with node
  6082. * groups, so roll our own. Now each node has its own list of groups which
  6083. * gets dynamically allocated.
  6084. */
  6085. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  6086. static struct sched_group ***sched_group_nodes_bycpu;
  6087. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  6088. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  6089. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  6090. struct sched_group **sg, cpumask_t *nodemask)
  6091. {
  6092. int group;
  6093. *nodemask = node_to_cpumask(cpu_to_node(cpu));
  6094. cpus_and(*nodemask, *nodemask, *cpu_map);
  6095. group = first_cpu(*nodemask);
  6096. if (sg)
  6097. *sg = &per_cpu(sched_group_allnodes, group);
  6098. return group;
  6099. }
  6100. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6101. {
  6102. struct sched_group *sg = group_head;
  6103. int j;
  6104. if (!sg)
  6105. return;
  6106. do {
  6107. for_each_cpu_mask(j, sg->cpumask) {
  6108. struct sched_domain *sd;
  6109. sd = &per_cpu(phys_domains, j);
  6110. if (j != first_cpu(sd->groups->cpumask)) {
  6111. /*
  6112. * Only add "power" once for each
  6113. * physical package.
  6114. */
  6115. continue;
  6116. }
  6117. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  6118. }
  6119. sg = sg->next;
  6120. } while (sg != group_head);
  6121. }
  6122. #endif
  6123. #ifdef CONFIG_NUMA
  6124. /* Free memory allocated for various sched_group structures */
  6125. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6126. {
  6127. int cpu, i;
  6128. for_each_cpu_mask(cpu, *cpu_map) {
  6129. struct sched_group **sched_group_nodes
  6130. = sched_group_nodes_bycpu[cpu];
  6131. if (!sched_group_nodes)
  6132. continue;
  6133. for (i = 0; i < MAX_NUMNODES; i++) {
  6134. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6135. *nodemask = node_to_cpumask(i);
  6136. cpus_and(*nodemask, *nodemask, *cpu_map);
  6137. if (cpus_empty(*nodemask))
  6138. continue;
  6139. if (sg == NULL)
  6140. continue;
  6141. sg = sg->next;
  6142. next_sg:
  6143. oldsg = sg;
  6144. sg = sg->next;
  6145. kfree(oldsg);
  6146. if (oldsg != sched_group_nodes[i])
  6147. goto next_sg;
  6148. }
  6149. kfree(sched_group_nodes);
  6150. sched_group_nodes_bycpu[cpu] = NULL;
  6151. }
  6152. }
  6153. #else
  6154. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6155. {
  6156. }
  6157. #endif
  6158. /*
  6159. * Initialize sched groups cpu_power.
  6160. *
  6161. * cpu_power indicates the capacity of sched group, which is used while
  6162. * distributing the load between different sched groups in a sched domain.
  6163. * Typically cpu_power for all the groups in a sched domain will be same unless
  6164. * there are asymmetries in the topology. If there are asymmetries, group
  6165. * having more cpu_power will pickup more load compared to the group having
  6166. * less cpu_power.
  6167. *
  6168. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6169. * the maximum number of tasks a group can handle in the presence of other idle
  6170. * or lightly loaded groups in the same sched domain.
  6171. */
  6172. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6173. {
  6174. struct sched_domain *child;
  6175. struct sched_group *group;
  6176. WARN_ON(!sd || !sd->groups);
  6177. if (cpu != first_cpu(sd->groups->cpumask))
  6178. return;
  6179. child = sd->child;
  6180. sd->groups->__cpu_power = 0;
  6181. /*
  6182. * For perf policy, if the groups in child domain share resources
  6183. * (for example cores sharing some portions of the cache hierarchy
  6184. * or SMT), then set this domain groups cpu_power such that each group
  6185. * can handle only one task, when there are other idle groups in the
  6186. * same sched domain.
  6187. */
  6188. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6189. (child->flags &
  6190. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6191. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6192. return;
  6193. }
  6194. /*
  6195. * add cpu_power of each child group to this groups cpu_power
  6196. */
  6197. group = child->groups;
  6198. do {
  6199. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6200. group = group->next;
  6201. } while (group != child->groups);
  6202. }
  6203. /*
  6204. * Initializers for schedule domains
  6205. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6206. */
  6207. #define SD_INIT(sd, type) sd_init_##type(sd)
  6208. #define SD_INIT_FUNC(type) \
  6209. static noinline void sd_init_##type(struct sched_domain *sd) \
  6210. { \
  6211. memset(sd, 0, sizeof(*sd)); \
  6212. *sd = SD_##type##_INIT; \
  6213. sd->level = SD_LV_##type; \
  6214. }
  6215. SD_INIT_FUNC(CPU)
  6216. #ifdef CONFIG_NUMA
  6217. SD_INIT_FUNC(ALLNODES)
  6218. SD_INIT_FUNC(NODE)
  6219. #endif
  6220. #ifdef CONFIG_SCHED_SMT
  6221. SD_INIT_FUNC(SIBLING)
  6222. #endif
  6223. #ifdef CONFIG_SCHED_MC
  6224. SD_INIT_FUNC(MC)
  6225. #endif
  6226. /*
  6227. * To minimize stack usage kmalloc room for cpumasks and share the
  6228. * space as the usage in build_sched_domains() dictates. Used only
  6229. * if the amount of space is significant.
  6230. */
  6231. struct allmasks {
  6232. cpumask_t tmpmask; /* make this one first */
  6233. union {
  6234. cpumask_t nodemask;
  6235. cpumask_t this_sibling_map;
  6236. cpumask_t this_core_map;
  6237. };
  6238. cpumask_t send_covered;
  6239. #ifdef CONFIG_NUMA
  6240. cpumask_t domainspan;
  6241. cpumask_t covered;
  6242. cpumask_t notcovered;
  6243. #endif
  6244. };
  6245. #if NR_CPUS > 128
  6246. #define SCHED_CPUMASK_ALLOC 1
  6247. #define SCHED_CPUMASK_FREE(v) kfree(v)
  6248. #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
  6249. #else
  6250. #define SCHED_CPUMASK_ALLOC 0
  6251. #define SCHED_CPUMASK_FREE(v)
  6252. #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
  6253. #endif
  6254. #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
  6255. ((unsigned long)(a) + offsetof(struct allmasks, v))
  6256. static int default_relax_domain_level = -1;
  6257. static int __init setup_relax_domain_level(char *str)
  6258. {
  6259. default_relax_domain_level = simple_strtoul(str, NULL, 0);
  6260. return 1;
  6261. }
  6262. __setup("relax_domain_level=", setup_relax_domain_level);
  6263. static void set_domain_attribute(struct sched_domain *sd,
  6264. struct sched_domain_attr *attr)
  6265. {
  6266. int request;
  6267. if (!attr || attr->relax_domain_level < 0) {
  6268. if (default_relax_domain_level < 0)
  6269. return;
  6270. else
  6271. request = default_relax_domain_level;
  6272. } else
  6273. request = attr->relax_domain_level;
  6274. if (request < sd->level) {
  6275. /* turn off idle balance on this domain */
  6276. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6277. } else {
  6278. /* turn on idle balance on this domain */
  6279. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6280. }
  6281. }
  6282. /*
  6283. * Build sched domains for a given set of cpus and attach the sched domains
  6284. * to the individual cpus
  6285. */
  6286. static int __build_sched_domains(const cpumask_t *cpu_map,
  6287. struct sched_domain_attr *attr)
  6288. {
  6289. int i;
  6290. struct root_domain *rd;
  6291. SCHED_CPUMASK_DECLARE(allmasks);
  6292. cpumask_t *tmpmask;
  6293. #ifdef CONFIG_NUMA
  6294. struct sched_group **sched_group_nodes = NULL;
  6295. int sd_allnodes = 0;
  6296. /*
  6297. * Allocate the per-node list of sched groups
  6298. */
  6299. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  6300. GFP_KERNEL);
  6301. if (!sched_group_nodes) {
  6302. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6303. return -ENOMEM;
  6304. }
  6305. #endif
  6306. rd = alloc_rootdomain();
  6307. if (!rd) {
  6308. printk(KERN_WARNING "Cannot alloc root domain\n");
  6309. #ifdef CONFIG_NUMA
  6310. kfree(sched_group_nodes);
  6311. #endif
  6312. return -ENOMEM;
  6313. }
  6314. #if SCHED_CPUMASK_ALLOC
  6315. /* get space for all scratch cpumask variables */
  6316. allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
  6317. if (!allmasks) {
  6318. printk(KERN_WARNING "Cannot alloc cpumask array\n");
  6319. kfree(rd);
  6320. #ifdef CONFIG_NUMA
  6321. kfree(sched_group_nodes);
  6322. #endif
  6323. return -ENOMEM;
  6324. }
  6325. #endif
  6326. tmpmask = (cpumask_t *)allmasks;
  6327. #ifdef CONFIG_NUMA
  6328. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  6329. #endif
  6330. /*
  6331. * Set up domains for cpus specified by the cpu_map.
  6332. */
  6333. for_each_cpu_mask(i, *cpu_map) {
  6334. struct sched_domain *sd = NULL, *p;
  6335. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6336. *nodemask = node_to_cpumask(cpu_to_node(i));
  6337. cpus_and(*nodemask, *nodemask, *cpu_map);
  6338. #ifdef CONFIG_NUMA
  6339. if (cpus_weight(*cpu_map) >
  6340. SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
  6341. sd = &per_cpu(allnodes_domains, i);
  6342. SD_INIT(sd, ALLNODES);
  6343. set_domain_attribute(sd, attr);
  6344. sd->span = *cpu_map;
  6345. sd->first_cpu = first_cpu(sd->span);
  6346. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6347. p = sd;
  6348. sd_allnodes = 1;
  6349. } else
  6350. p = NULL;
  6351. sd = &per_cpu(node_domains, i);
  6352. SD_INIT(sd, NODE);
  6353. set_domain_attribute(sd, attr);
  6354. sched_domain_node_span(cpu_to_node(i), &sd->span);
  6355. sd->first_cpu = first_cpu(sd->span);
  6356. sd->parent = p;
  6357. if (p)
  6358. p->child = sd;
  6359. cpus_and(sd->span, sd->span, *cpu_map);
  6360. #endif
  6361. p = sd;
  6362. sd = &per_cpu(phys_domains, i);
  6363. SD_INIT(sd, CPU);
  6364. set_domain_attribute(sd, attr);
  6365. sd->span = *nodemask;
  6366. sd->first_cpu = first_cpu(sd->span);
  6367. sd->parent = p;
  6368. if (p)
  6369. p->child = sd;
  6370. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6371. #ifdef CONFIG_SCHED_MC
  6372. p = sd;
  6373. sd = &per_cpu(core_domains, i);
  6374. SD_INIT(sd, MC);
  6375. set_domain_attribute(sd, attr);
  6376. sd->span = cpu_coregroup_map(i);
  6377. sd->first_cpu = first_cpu(sd->span);
  6378. cpus_and(sd->span, sd->span, *cpu_map);
  6379. sd->parent = p;
  6380. p->child = sd;
  6381. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6382. #endif
  6383. #ifdef CONFIG_SCHED_SMT
  6384. p = sd;
  6385. sd = &per_cpu(cpu_domains, i);
  6386. SD_INIT(sd, SIBLING);
  6387. set_domain_attribute(sd, attr);
  6388. sd->span = per_cpu(cpu_sibling_map, i);
  6389. sd->first_cpu = first_cpu(sd->span);
  6390. cpus_and(sd->span, sd->span, *cpu_map);
  6391. sd->parent = p;
  6392. p->child = sd;
  6393. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6394. #endif
  6395. }
  6396. #ifdef CONFIG_SCHED_SMT
  6397. /* Set up CPU (sibling) groups */
  6398. for_each_cpu_mask(i, *cpu_map) {
  6399. SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
  6400. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6401. *this_sibling_map = per_cpu(cpu_sibling_map, i);
  6402. cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
  6403. if (i != first_cpu(*this_sibling_map))
  6404. continue;
  6405. init_sched_build_groups(this_sibling_map, cpu_map,
  6406. &cpu_to_cpu_group,
  6407. send_covered, tmpmask);
  6408. }
  6409. #endif
  6410. #ifdef CONFIG_SCHED_MC
  6411. /* Set up multi-core groups */
  6412. for_each_cpu_mask(i, *cpu_map) {
  6413. SCHED_CPUMASK_VAR(this_core_map, allmasks);
  6414. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6415. *this_core_map = cpu_coregroup_map(i);
  6416. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  6417. if (i != first_cpu(*this_core_map))
  6418. continue;
  6419. init_sched_build_groups(this_core_map, cpu_map,
  6420. &cpu_to_core_group,
  6421. send_covered, tmpmask);
  6422. }
  6423. #endif
  6424. /* Set up physical groups */
  6425. for (i = 0; i < MAX_NUMNODES; i++) {
  6426. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6427. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6428. *nodemask = node_to_cpumask(i);
  6429. cpus_and(*nodemask, *nodemask, *cpu_map);
  6430. if (cpus_empty(*nodemask))
  6431. continue;
  6432. init_sched_build_groups(nodemask, cpu_map,
  6433. &cpu_to_phys_group,
  6434. send_covered, tmpmask);
  6435. }
  6436. #ifdef CONFIG_NUMA
  6437. /* Set up node groups */
  6438. if (sd_allnodes) {
  6439. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6440. init_sched_build_groups(cpu_map, cpu_map,
  6441. &cpu_to_allnodes_group,
  6442. send_covered, tmpmask);
  6443. }
  6444. for (i = 0; i < MAX_NUMNODES; i++) {
  6445. /* Set up node groups */
  6446. struct sched_group *sg, *prev;
  6447. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6448. SCHED_CPUMASK_VAR(domainspan, allmasks);
  6449. SCHED_CPUMASK_VAR(covered, allmasks);
  6450. int j;
  6451. *nodemask = node_to_cpumask(i);
  6452. cpus_clear(*covered);
  6453. cpus_and(*nodemask, *nodemask, *cpu_map);
  6454. if (cpus_empty(*nodemask)) {
  6455. sched_group_nodes[i] = NULL;
  6456. continue;
  6457. }
  6458. sched_domain_node_span(i, domainspan);
  6459. cpus_and(*domainspan, *domainspan, *cpu_map);
  6460. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  6461. if (!sg) {
  6462. printk(KERN_WARNING "Can not alloc domain group for "
  6463. "node %d\n", i);
  6464. goto error;
  6465. }
  6466. sched_group_nodes[i] = sg;
  6467. for_each_cpu_mask(j, *nodemask) {
  6468. struct sched_domain *sd;
  6469. sd = &per_cpu(node_domains, j);
  6470. sd->groups = sg;
  6471. }
  6472. sg->__cpu_power = 0;
  6473. sg->cpumask = *nodemask;
  6474. sg->next = sg;
  6475. cpus_or(*covered, *covered, *nodemask);
  6476. prev = sg;
  6477. for (j = 0; j < MAX_NUMNODES; j++) {
  6478. SCHED_CPUMASK_VAR(notcovered, allmasks);
  6479. int n = (i + j) % MAX_NUMNODES;
  6480. node_to_cpumask_ptr(pnodemask, n);
  6481. cpus_complement(*notcovered, *covered);
  6482. cpus_and(*tmpmask, *notcovered, *cpu_map);
  6483. cpus_and(*tmpmask, *tmpmask, *domainspan);
  6484. if (cpus_empty(*tmpmask))
  6485. break;
  6486. cpus_and(*tmpmask, *tmpmask, *pnodemask);
  6487. if (cpus_empty(*tmpmask))
  6488. continue;
  6489. sg = kmalloc_node(sizeof(struct sched_group),
  6490. GFP_KERNEL, i);
  6491. if (!sg) {
  6492. printk(KERN_WARNING
  6493. "Can not alloc domain group for node %d\n", j);
  6494. goto error;
  6495. }
  6496. sg->__cpu_power = 0;
  6497. sg->cpumask = *tmpmask;
  6498. sg->next = prev->next;
  6499. cpus_or(*covered, *covered, *tmpmask);
  6500. prev->next = sg;
  6501. prev = sg;
  6502. }
  6503. }
  6504. #endif
  6505. /* Calculate CPU power for physical packages and nodes */
  6506. #ifdef CONFIG_SCHED_SMT
  6507. for_each_cpu_mask(i, *cpu_map) {
  6508. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  6509. init_sched_groups_power(i, sd);
  6510. }
  6511. #endif
  6512. #ifdef CONFIG_SCHED_MC
  6513. for_each_cpu_mask(i, *cpu_map) {
  6514. struct sched_domain *sd = &per_cpu(core_domains, i);
  6515. init_sched_groups_power(i, sd);
  6516. }
  6517. #endif
  6518. for_each_cpu_mask(i, *cpu_map) {
  6519. struct sched_domain *sd = &per_cpu(phys_domains, i);
  6520. init_sched_groups_power(i, sd);
  6521. }
  6522. #ifdef CONFIG_NUMA
  6523. for (i = 0; i < MAX_NUMNODES; i++)
  6524. init_numa_sched_groups_power(sched_group_nodes[i]);
  6525. if (sd_allnodes) {
  6526. struct sched_group *sg;
  6527. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
  6528. tmpmask);
  6529. init_numa_sched_groups_power(sg);
  6530. }
  6531. #endif
  6532. /* Attach the domains */
  6533. for_each_cpu_mask(i, *cpu_map) {
  6534. struct sched_domain *sd;
  6535. #ifdef CONFIG_SCHED_SMT
  6536. sd = &per_cpu(cpu_domains, i);
  6537. #elif defined(CONFIG_SCHED_MC)
  6538. sd = &per_cpu(core_domains, i);
  6539. #else
  6540. sd = &per_cpu(phys_domains, i);
  6541. #endif
  6542. cpu_attach_domain(sd, rd, i);
  6543. }
  6544. SCHED_CPUMASK_FREE((void *)allmasks);
  6545. return 0;
  6546. #ifdef CONFIG_NUMA
  6547. error:
  6548. free_sched_groups(cpu_map, tmpmask);
  6549. SCHED_CPUMASK_FREE((void *)allmasks);
  6550. return -ENOMEM;
  6551. #endif
  6552. }
  6553. static int build_sched_domains(const cpumask_t *cpu_map)
  6554. {
  6555. return __build_sched_domains(cpu_map, NULL);
  6556. }
  6557. static cpumask_t *doms_cur; /* current sched domains */
  6558. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6559. static struct sched_domain_attr *dattr_cur; /* attribues of custom domains
  6560. in 'doms_cur' */
  6561. /*
  6562. * Special case: If a kmalloc of a doms_cur partition (array of
  6563. * cpumask_t) fails, then fallback to a single sched domain,
  6564. * as determined by the single cpumask_t fallback_doms.
  6565. */
  6566. static cpumask_t fallback_doms;
  6567. void __attribute__((weak)) arch_update_cpu_topology(void)
  6568. {
  6569. }
  6570. /*
  6571. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6572. * For now this just excludes isolated cpus, but could be used to
  6573. * exclude other special cases in the future.
  6574. */
  6575. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6576. {
  6577. int err;
  6578. arch_update_cpu_topology();
  6579. ndoms_cur = 1;
  6580. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6581. if (!doms_cur)
  6582. doms_cur = &fallback_doms;
  6583. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  6584. dattr_cur = NULL;
  6585. err = build_sched_domains(doms_cur);
  6586. register_sched_domain_sysctl();
  6587. return err;
  6588. }
  6589. static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
  6590. cpumask_t *tmpmask)
  6591. {
  6592. free_sched_groups(cpu_map, tmpmask);
  6593. }
  6594. /*
  6595. * Detach sched domains from a group of cpus specified in cpu_map
  6596. * These cpus will now be attached to the NULL domain
  6597. */
  6598. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6599. {
  6600. cpumask_t tmpmask;
  6601. int i;
  6602. unregister_sched_domain_sysctl();
  6603. for_each_cpu_mask(i, *cpu_map)
  6604. cpu_attach_domain(NULL, &def_root_domain, i);
  6605. synchronize_sched();
  6606. arch_destroy_sched_domains(cpu_map, &tmpmask);
  6607. }
  6608. /* handle null as "default" */
  6609. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6610. struct sched_domain_attr *new, int idx_new)
  6611. {
  6612. struct sched_domain_attr tmp;
  6613. /* fast path */
  6614. if (!new && !cur)
  6615. return 1;
  6616. tmp = SD_ATTR_INIT;
  6617. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6618. new ? (new + idx_new) : &tmp,
  6619. sizeof(struct sched_domain_attr));
  6620. }
  6621. /*
  6622. * Partition sched domains as specified by the 'ndoms_new'
  6623. * cpumasks in the array doms_new[] of cpumasks. This compares
  6624. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6625. * It destroys each deleted domain and builds each new domain.
  6626. *
  6627. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6628. * The masks don't intersect (don't overlap.) We should setup one
  6629. * sched domain for each mask. CPUs not in any of the cpumasks will
  6630. * not be load balanced. If the same cpumask appears both in the
  6631. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6632. * it as it is.
  6633. *
  6634. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6635. * ownership of it and will kfree it when done with it. If the caller
  6636. * failed the kmalloc call, then it can pass in doms_new == NULL,
  6637. * and partition_sched_domains() will fallback to the single partition
  6638. * 'fallback_doms'.
  6639. *
  6640. * Call with hotplug lock held
  6641. */
  6642. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
  6643. struct sched_domain_attr *dattr_new)
  6644. {
  6645. int i, j;
  6646. lock_doms_cur();
  6647. /* always unregister in case we don't destroy any domains */
  6648. unregister_sched_domain_sysctl();
  6649. if (doms_new == NULL) {
  6650. ndoms_new = 1;
  6651. doms_new = &fallback_doms;
  6652. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6653. dattr_new = NULL;
  6654. }
  6655. /* Destroy deleted domains */
  6656. for (i = 0; i < ndoms_cur; i++) {
  6657. for (j = 0; j < ndoms_new; j++) {
  6658. if (cpus_equal(doms_cur[i], doms_new[j])
  6659. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6660. goto match1;
  6661. }
  6662. /* no match - a current sched domain not in new doms_new[] */
  6663. detach_destroy_domains(doms_cur + i);
  6664. match1:
  6665. ;
  6666. }
  6667. /* Build new domains */
  6668. for (i = 0; i < ndoms_new; i++) {
  6669. for (j = 0; j < ndoms_cur; j++) {
  6670. if (cpus_equal(doms_new[i], doms_cur[j])
  6671. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6672. goto match2;
  6673. }
  6674. /* no match - add a new doms_new */
  6675. __build_sched_domains(doms_new + i,
  6676. dattr_new ? dattr_new + i : NULL);
  6677. match2:
  6678. ;
  6679. }
  6680. /* Remember the new sched domains */
  6681. if (doms_cur != &fallback_doms)
  6682. kfree(doms_cur);
  6683. kfree(dattr_cur); /* kfree(NULL) is safe */
  6684. doms_cur = doms_new;
  6685. dattr_cur = dattr_new;
  6686. ndoms_cur = ndoms_new;
  6687. register_sched_domain_sysctl();
  6688. unlock_doms_cur();
  6689. }
  6690. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6691. int arch_reinit_sched_domains(void)
  6692. {
  6693. int err;
  6694. get_online_cpus();
  6695. detach_destroy_domains(&cpu_online_map);
  6696. err = arch_init_sched_domains(&cpu_online_map);
  6697. put_online_cpus();
  6698. return err;
  6699. }
  6700. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6701. {
  6702. int ret;
  6703. if (buf[0] != '0' && buf[0] != '1')
  6704. return -EINVAL;
  6705. if (smt)
  6706. sched_smt_power_savings = (buf[0] == '1');
  6707. else
  6708. sched_mc_power_savings = (buf[0] == '1');
  6709. ret = arch_reinit_sched_domains();
  6710. return ret ? ret : count;
  6711. }
  6712. #ifdef CONFIG_SCHED_MC
  6713. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  6714. {
  6715. return sprintf(page, "%u\n", sched_mc_power_savings);
  6716. }
  6717. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  6718. const char *buf, size_t count)
  6719. {
  6720. return sched_power_savings_store(buf, count, 0);
  6721. }
  6722. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  6723. sched_mc_power_savings_store);
  6724. #endif
  6725. #ifdef CONFIG_SCHED_SMT
  6726. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  6727. {
  6728. return sprintf(page, "%u\n", sched_smt_power_savings);
  6729. }
  6730. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  6731. const char *buf, size_t count)
  6732. {
  6733. return sched_power_savings_store(buf, count, 1);
  6734. }
  6735. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  6736. sched_smt_power_savings_store);
  6737. #endif
  6738. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6739. {
  6740. int err = 0;
  6741. #ifdef CONFIG_SCHED_SMT
  6742. if (smt_capable())
  6743. err = sysfs_create_file(&cls->kset.kobj,
  6744. &attr_sched_smt_power_savings.attr);
  6745. #endif
  6746. #ifdef CONFIG_SCHED_MC
  6747. if (!err && mc_capable())
  6748. err = sysfs_create_file(&cls->kset.kobj,
  6749. &attr_sched_mc_power_savings.attr);
  6750. #endif
  6751. return err;
  6752. }
  6753. #endif
  6754. /*
  6755. * Force a reinitialization of the sched domains hierarchy. The domains
  6756. * and groups cannot be updated in place without racing with the balancing
  6757. * code, so we temporarily attach all running cpus to the NULL domain
  6758. * which will prevent rebalancing while the sched domains are recalculated.
  6759. */
  6760. static int update_sched_domains(struct notifier_block *nfb,
  6761. unsigned long action, void *hcpu)
  6762. {
  6763. switch (action) {
  6764. case CPU_UP_PREPARE:
  6765. case CPU_UP_PREPARE_FROZEN:
  6766. case CPU_DOWN_PREPARE:
  6767. case CPU_DOWN_PREPARE_FROZEN:
  6768. detach_destroy_domains(&cpu_online_map);
  6769. return NOTIFY_OK;
  6770. case CPU_UP_CANCELED:
  6771. case CPU_UP_CANCELED_FROZEN:
  6772. case CPU_DOWN_FAILED:
  6773. case CPU_DOWN_FAILED_FROZEN:
  6774. case CPU_ONLINE:
  6775. case CPU_ONLINE_FROZEN:
  6776. case CPU_DEAD:
  6777. case CPU_DEAD_FROZEN:
  6778. /*
  6779. * Fall through and re-initialise the domains.
  6780. */
  6781. break;
  6782. default:
  6783. return NOTIFY_DONE;
  6784. }
  6785. /* The hotplug lock is already held by cpu_up/cpu_down */
  6786. arch_init_sched_domains(&cpu_online_map);
  6787. return NOTIFY_OK;
  6788. }
  6789. void __init sched_init_smp(void)
  6790. {
  6791. cpumask_t non_isolated_cpus;
  6792. #if defined(CONFIG_NUMA)
  6793. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6794. GFP_KERNEL);
  6795. BUG_ON(sched_group_nodes_bycpu == NULL);
  6796. #endif
  6797. get_online_cpus();
  6798. arch_init_sched_domains(&cpu_online_map);
  6799. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6800. if (cpus_empty(non_isolated_cpus))
  6801. cpu_set(smp_processor_id(), non_isolated_cpus);
  6802. put_online_cpus();
  6803. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6804. hotcpu_notifier(update_sched_domains, 0);
  6805. /* Move init over to a non-isolated CPU */
  6806. if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
  6807. BUG();
  6808. sched_init_granularity();
  6809. }
  6810. #else
  6811. void __init sched_init_smp(void)
  6812. {
  6813. #if defined(CONFIG_NUMA)
  6814. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6815. GFP_KERNEL);
  6816. BUG_ON(sched_group_nodes_bycpu == NULL);
  6817. #endif
  6818. sched_init_granularity();
  6819. }
  6820. #endif /* CONFIG_SMP */
  6821. int in_sched_functions(unsigned long addr)
  6822. {
  6823. return in_lock_functions(addr) ||
  6824. (addr >= (unsigned long)__sched_text_start
  6825. && addr < (unsigned long)__sched_text_end);
  6826. }
  6827. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6828. {
  6829. cfs_rq->tasks_timeline = RB_ROOT;
  6830. INIT_LIST_HEAD(&cfs_rq->tasks);
  6831. #ifdef CONFIG_FAIR_GROUP_SCHED
  6832. cfs_rq->rq = rq;
  6833. #endif
  6834. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6835. }
  6836. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6837. {
  6838. struct rt_prio_array *array;
  6839. int i;
  6840. array = &rt_rq->active;
  6841. for (i = 0; i < MAX_RT_PRIO; i++) {
  6842. INIT_LIST_HEAD(array->queue + i);
  6843. __clear_bit(i, array->bitmap);
  6844. }
  6845. /* delimiter for bitsearch: */
  6846. __set_bit(MAX_RT_PRIO, array->bitmap);
  6847. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6848. rt_rq->highest_prio = MAX_RT_PRIO;
  6849. #endif
  6850. #ifdef CONFIG_SMP
  6851. rt_rq->rt_nr_migratory = 0;
  6852. rt_rq->overloaded = 0;
  6853. #endif
  6854. rt_rq->rt_time = 0;
  6855. rt_rq->rt_throttled = 0;
  6856. rt_rq->rt_runtime = 0;
  6857. spin_lock_init(&rt_rq->rt_runtime_lock);
  6858. #ifdef CONFIG_RT_GROUP_SCHED
  6859. rt_rq->rt_nr_boosted = 0;
  6860. rt_rq->rq = rq;
  6861. #endif
  6862. }
  6863. #ifdef CONFIG_FAIR_GROUP_SCHED
  6864. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6865. struct sched_entity *se, int cpu, int add,
  6866. struct sched_entity *parent)
  6867. {
  6868. struct rq *rq = cpu_rq(cpu);
  6869. tg->cfs_rq[cpu] = cfs_rq;
  6870. init_cfs_rq(cfs_rq, rq);
  6871. cfs_rq->tg = tg;
  6872. if (add)
  6873. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6874. tg->se[cpu] = se;
  6875. /* se could be NULL for init_task_group */
  6876. if (!se)
  6877. return;
  6878. if (!parent)
  6879. se->cfs_rq = &rq->cfs;
  6880. else
  6881. se->cfs_rq = parent->my_q;
  6882. se->my_q = cfs_rq;
  6883. se->load.weight = tg->shares;
  6884. se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
  6885. se->parent = parent;
  6886. }
  6887. #endif
  6888. #ifdef CONFIG_RT_GROUP_SCHED
  6889. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6890. struct sched_rt_entity *rt_se, int cpu, int add,
  6891. struct sched_rt_entity *parent)
  6892. {
  6893. struct rq *rq = cpu_rq(cpu);
  6894. tg->rt_rq[cpu] = rt_rq;
  6895. init_rt_rq(rt_rq, rq);
  6896. rt_rq->tg = tg;
  6897. rt_rq->rt_se = rt_se;
  6898. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6899. if (add)
  6900. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6901. tg->rt_se[cpu] = rt_se;
  6902. if (!rt_se)
  6903. return;
  6904. if (!parent)
  6905. rt_se->rt_rq = &rq->rt;
  6906. else
  6907. rt_se->rt_rq = parent->my_q;
  6908. rt_se->rt_rq = &rq->rt;
  6909. rt_se->my_q = rt_rq;
  6910. rt_se->parent = parent;
  6911. INIT_LIST_HEAD(&rt_se->run_list);
  6912. }
  6913. #endif
  6914. void __init sched_init(void)
  6915. {
  6916. int i, j;
  6917. unsigned long alloc_size = 0, ptr;
  6918. #ifdef CONFIG_FAIR_GROUP_SCHED
  6919. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6920. #endif
  6921. #ifdef CONFIG_RT_GROUP_SCHED
  6922. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6923. #endif
  6924. #ifdef CONFIG_USER_SCHED
  6925. alloc_size *= 2;
  6926. #endif
  6927. /*
  6928. * As sched_init() is called before page_alloc is setup,
  6929. * we use alloc_bootmem().
  6930. */
  6931. if (alloc_size) {
  6932. ptr = (unsigned long)alloc_bootmem_low(alloc_size);
  6933. #ifdef CONFIG_FAIR_GROUP_SCHED
  6934. init_task_group.se = (struct sched_entity **)ptr;
  6935. ptr += nr_cpu_ids * sizeof(void **);
  6936. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6937. ptr += nr_cpu_ids * sizeof(void **);
  6938. #ifdef CONFIG_USER_SCHED
  6939. root_task_group.se = (struct sched_entity **)ptr;
  6940. ptr += nr_cpu_ids * sizeof(void **);
  6941. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6942. ptr += nr_cpu_ids * sizeof(void **);
  6943. #endif
  6944. #endif
  6945. #ifdef CONFIG_RT_GROUP_SCHED
  6946. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6947. ptr += nr_cpu_ids * sizeof(void **);
  6948. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6949. ptr += nr_cpu_ids * sizeof(void **);
  6950. #ifdef CONFIG_USER_SCHED
  6951. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6952. ptr += nr_cpu_ids * sizeof(void **);
  6953. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6954. ptr += nr_cpu_ids * sizeof(void **);
  6955. #endif
  6956. #endif
  6957. }
  6958. #ifdef CONFIG_SMP
  6959. init_aggregate();
  6960. init_defrootdomain();
  6961. #endif
  6962. init_rt_bandwidth(&def_rt_bandwidth,
  6963. global_rt_period(), global_rt_runtime());
  6964. #ifdef CONFIG_RT_GROUP_SCHED
  6965. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6966. global_rt_period(), global_rt_runtime());
  6967. #ifdef CONFIG_USER_SCHED
  6968. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6969. global_rt_period(), RUNTIME_INF);
  6970. #endif
  6971. #endif
  6972. #ifdef CONFIG_GROUP_SCHED
  6973. list_add(&init_task_group.list, &task_groups);
  6974. INIT_LIST_HEAD(&init_task_group.children);
  6975. #ifdef CONFIG_USER_SCHED
  6976. INIT_LIST_HEAD(&root_task_group.children);
  6977. init_task_group.parent = &root_task_group;
  6978. list_add(&init_task_group.siblings, &root_task_group.children);
  6979. #endif
  6980. #endif
  6981. for_each_possible_cpu(i) {
  6982. struct rq *rq;
  6983. rq = cpu_rq(i);
  6984. spin_lock_init(&rq->lock);
  6985. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  6986. rq->nr_running = 0;
  6987. rq->clock = 1;
  6988. update_last_tick_seen(rq);
  6989. init_cfs_rq(&rq->cfs, rq);
  6990. init_rt_rq(&rq->rt, rq);
  6991. #ifdef CONFIG_FAIR_GROUP_SCHED
  6992. init_task_group.shares = init_task_group_load;
  6993. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6994. #ifdef CONFIG_CGROUP_SCHED
  6995. /*
  6996. * How much cpu bandwidth does init_task_group get?
  6997. *
  6998. * In case of task-groups formed thr' the cgroup filesystem, it
  6999. * gets 100% of the cpu resources in the system. This overall
  7000. * system cpu resource is divided among the tasks of
  7001. * init_task_group and its child task-groups in a fair manner,
  7002. * based on each entity's (task or task-group's) weight
  7003. * (se->load.weight).
  7004. *
  7005. * In other words, if init_task_group has 10 tasks of weight
  7006. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7007. * then A0's share of the cpu resource is:
  7008. *
  7009. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7010. *
  7011. * We achieve this by letting init_task_group's tasks sit
  7012. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  7013. */
  7014. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  7015. #elif defined CONFIG_USER_SCHED
  7016. root_task_group.shares = NICE_0_LOAD;
  7017. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  7018. /*
  7019. * In case of task-groups formed thr' the user id of tasks,
  7020. * init_task_group represents tasks belonging to root user.
  7021. * Hence it forms a sibling of all subsequent groups formed.
  7022. * In this case, init_task_group gets only a fraction of overall
  7023. * system cpu resource, based on the weight assigned to root
  7024. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  7025. * by letting tasks of init_task_group sit in a separate cfs_rq
  7026. * (init_cfs_rq) and having one entity represent this group of
  7027. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  7028. */
  7029. init_tg_cfs_entry(&init_task_group,
  7030. &per_cpu(init_cfs_rq, i),
  7031. &per_cpu(init_sched_entity, i), i, 1,
  7032. root_task_group.se[i]);
  7033. #endif
  7034. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7035. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7036. #ifdef CONFIG_RT_GROUP_SCHED
  7037. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7038. #ifdef CONFIG_CGROUP_SCHED
  7039. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  7040. #elif defined CONFIG_USER_SCHED
  7041. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  7042. init_tg_rt_entry(&init_task_group,
  7043. &per_cpu(init_rt_rq, i),
  7044. &per_cpu(init_sched_rt_entity, i), i, 1,
  7045. root_task_group.rt_se[i]);
  7046. #endif
  7047. #endif
  7048. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7049. rq->cpu_load[j] = 0;
  7050. #ifdef CONFIG_SMP
  7051. rq->sd = NULL;
  7052. rq->rd = NULL;
  7053. rq->active_balance = 0;
  7054. rq->next_balance = jiffies;
  7055. rq->push_cpu = 0;
  7056. rq->cpu = i;
  7057. rq->migration_thread = NULL;
  7058. INIT_LIST_HEAD(&rq->migration_queue);
  7059. rq_attach_root(rq, &def_root_domain);
  7060. #endif
  7061. init_rq_hrtick(rq);
  7062. atomic_set(&rq->nr_iowait, 0);
  7063. }
  7064. set_load_weight(&init_task);
  7065. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7066. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7067. #endif
  7068. #ifdef CONFIG_SMP
  7069. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  7070. #endif
  7071. #ifdef CONFIG_RT_MUTEXES
  7072. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  7073. #endif
  7074. /*
  7075. * The boot idle thread does lazy MMU switching as well:
  7076. */
  7077. atomic_inc(&init_mm.mm_count);
  7078. enter_lazy_tlb(&init_mm, current);
  7079. /*
  7080. * Make us the idle thread. Technically, schedule() should not be
  7081. * called from this thread, however somewhere below it might be,
  7082. * but because we are the idle thread, we just pick up running again
  7083. * when this runqueue becomes "idle".
  7084. */
  7085. init_idle(current, smp_processor_id());
  7086. /*
  7087. * During early bootup we pretend to be a normal task:
  7088. */
  7089. current->sched_class = &fair_sched_class;
  7090. scheduler_running = 1;
  7091. }
  7092. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7093. void __might_sleep(char *file, int line)
  7094. {
  7095. #ifdef in_atomic
  7096. static unsigned long prev_jiffy; /* ratelimiting */
  7097. if ((in_atomic() || irqs_disabled()) &&
  7098. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  7099. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7100. return;
  7101. prev_jiffy = jiffies;
  7102. printk(KERN_ERR "BUG: sleeping function called from invalid"
  7103. " context at %s:%d\n", file, line);
  7104. printk("in_atomic():%d, irqs_disabled():%d\n",
  7105. in_atomic(), irqs_disabled());
  7106. debug_show_held_locks(current);
  7107. if (irqs_disabled())
  7108. print_irqtrace_events(current);
  7109. dump_stack();
  7110. }
  7111. #endif
  7112. }
  7113. EXPORT_SYMBOL(__might_sleep);
  7114. #endif
  7115. #ifdef CONFIG_MAGIC_SYSRQ
  7116. static void normalize_task(struct rq *rq, struct task_struct *p)
  7117. {
  7118. int on_rq;
  7119. update_rq_clock(rq);
  7120. on_rq = p->se.on_rq;
  7121. if (on_rq)
  7122. deactivate_task(rq, p, 0);
  7123. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7124. if (on_rq) {
  7125. activate_task(rq, p, 0);
  7126. resched_task(rq->curr);
  7127. }
  7128. }
  7129. void normalize_rt_tasks(void)
  7130. {
  7131. struct task_struct *g, *p;
  7132. unsigned long flags;
  7133. struct rq *rq;
  7134. read_lock_irqsave(&tasklist_lock, flags);
  7135. do_each_thread(g, p) {
  7136. /*
  7137. * Only normalize user tasks:
  7138. */
  7139. if (!p->mm)
  7140. continue;
  7141. p->se.exec_start = 0;
  7142. #ifdef CONFIG_SCHEDSTATS
  7143. p->se.wait_start = 0;
  7144. p->se.sleep_start = 0;
  7145. p->se.block_start = 0;
  7146. #endif
  7147. task_rq(p)->clock = 0;
  7148. if (!rt_task(p)) {
  7149. /*
  7150. * Renice negative nice level userspace
  7151. * tasks back to 0:
  7152. */
  7153. if (TASK_NICE(p) < 0 && p->mm)
  7154. set_user_nice(p, 0);
  7155. continue;
  7156. }
  7157. spin_lock(&p->pi_lock);
  7158. rq = __task_rq_lock(p);
  7159. normalize_task(rq, p);
  7160. __task_rq_unlock(rq);
  7161. spin_unlock(&p->pi_lock);
  7162. } while_each_thread(g, p);
  7163. read_unlock_irqrestore(&tasklist_lock, flags);
  7164. }
  7165. #endif /* CONFIG_MAGIC_SYSRQ */
  7166. #ifdef CONFIG_IA64
  7167. /*
  7168. * These functions are only useful for the IA64 MCA handling.
  7169. *
  7170. * They can only be called when the whole system has been
  7171. * stopped - every CPU needs to be quiescent, and no scheduling
  7172. * activity can take place. Using them for anything else would
  7173. * be a serious bug, and as a result, they aren't even visible
  7174. * under any other configuration.
  7175. */
  7176. /**
  7177. * curr_task - return the current task for a given cpu.
  7178. * @cpu: the processor in question.
  7179. *
  7180. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7181. */
  7182. struct task_struct *curr_task(int cpu)
  7183. {
  7184. return cpu_curr(cpu);
  7185. }
  7186. /**
  7187. * set_curr_task - set the current task for a given cpu.
  7188. * @cpu: the processor in question.
  7189. * @p: the task pointer to set.
  7190. *
  7191. * Description: This function must only be used when non-maskable interrupts
  7192. * are serviced on a separate stack. It allows the architecture to switch the
  7193. * notion of the current task on a cpu in a non-blocking manner. This function
  7194. * must be called with all CPU's synchronized, and interrupts disabled, the
  7195. * and caller must save the original value of the current task (see
  7196. * curr_task() above) and restore that value before reenabling interrupts and
  7197. * re-starting the system.
  7198. *
  7199. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7200. */
  7201. void set_curr_task(int cpu, struct task_struct *p)
  7202. {
  7203. cpu_curr(cpu) = p;
  7204. }
  7205. #endif
  7206. #ifdef CONFIG_FAIR_GROUP_SCHED
  7207. static void free_fair_sched_group(struct task_group *tg)
  7208. {
  7209. int i;
  7210. for_each_possible_cpu(i) {
  7211. if (tg->cfs_rq)
  7212. kfree(tg->cfs_rq[i]);
  7213. if (tg->se)
  7214. kfree(tg->se[i]);
  7215. }
  7216. kfree(tg->cfs_rq);
  7217. kfree(tg->se);
  7218. }
  7219. static
  7220. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7221. {
  7222. struct cfs_rq *cfs_rq;
  7223. struct sched_entity *se, *parent_se;
  7224. struct rq *rq;
  7225. int i;
  7226. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7227. if (!tg->cfs_rq)
  7228. goto err;
  7229. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7230. if (!tg->se)
  7231. goto err;
  7232. tg->shares = NICE_0_LOAD;
  7233. for_each_possible_cpu(i) {
  7234. rq = cpu_rq(i);
  7235. cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
  7236. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7237. if (!cfs_rq)
  7238. goto err;
  7239. se = kmalloc_node(sizeof(struct sched_entity),
  7240. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7241. if (!se)
  7242. goto err;
  7243. parent_se = parent ? parent->se[i] : NULL;
  7244. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
  7245. }
  7246. return 1;
  7247. err:
  7248. return 0;
  7249. }
  7250. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7251. {
  7252. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7253. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7254. }
  7255. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7256. {
  7257. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7258. }
  7259. #else
  7260. static inline void free_fair_sched_group(struct task_group *tg)
  7261. {
  7262. }
  7263. static inline
  7264. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7265. {
  7266. return 1;
  7267. }
  7268. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7269. {
  7270. }
  7271. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7272. {
  7273. }
  7274. #endif
  7275. #ifdef CONFIG_RT_GROUP_SCHED
  7276. static void free_rt_sched_group(struct task_group *tg)
  7277. {
  7278. int i;
  7279. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7280. for_each_possible_cpu(i) {
  7281. if (tg->rt_rq)
  7282. kfree(tg->rt_rq[i]);
  7283. if (tg->rt_se)
  7284. kfree(tg->rt_se[i]);
  7285. }
  7286. kfree(tg->rt_rq);
  7287. kfree(tg->rt_se);
  7288. }
  7289. static
  7290. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7291. {
  7292. struct rt_rq *rt_rq;
  7293. struct sched_rt_entity *rt_se, *parent_se;
  7294. struct rq *rq;
  7295. int i;
  7296. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7297. if (!tg->rt_rq)
  7298. goto err;
  7299. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7300. if (!tg->rt_se)
  7301. goto err;
  7302. init_rt_bandwidth(&tg->rt_bandwidth,
  7303. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7304. for_each_possible_cpu(i) {
  7305. rq = cpu_rq(i);
  7306. rt_rq = kmalloc_node(sizeof(struct rt_rq),
  7307. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7308. if (!rt_rq)
  7309. goto err;
  7310. rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
  7311. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7312. if (!rt_se)
  7313. goto err;
  7314. parent_se = parent ? parent->rt_se[i] : NULL;
  7315. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
  7316. }
  7317. return 1;
  7318. err:
  7319. return 0;
  7320. }
  7321. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7322. {
  7323. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7324. &cpu_rq(cpu)->leaf_rt_rq_list);
  7325. }
  7326. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7327. {
  7328. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7329. }
  7330. #else
  7331. static inline void free_rt_sched_group(struct task_group *tg)
  7332. {
  7333. }
  7334. static inline
  7335. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7336. {
  7337. return 1;
  7338. }
  7339. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7340. {
  7341. }
  7342. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7343. {
  7344. }
  7345. #endif
  7346. #ifdef CONFIG_GROUP_SCHED
  7347. static void free_sched_group(struct task_group *tg)
  7348. {
  7349. free_fair_sched_group(tg);
  7350. free_rt_sched_group(tg);
  7351. kfree(tg);
  7352. }
  7353. /* allocate runqueue etc for a new task group */
  7354. struct task_group *sched_create_group(struct task_group *parent)
  7355. {
  7356. struct task_group *tg;
  7357. unsigned long flags;
  7358. int i;
  7359. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7360. if (!tg)
  7361. return ERR_PTR(-ENOMEM);
  7362. if (!alloc_fair_sched_group(tg, parent))
  7363. goto err;
  7364. if (!alloc_rt_sched_group(tg, parent))
  7365. goto err;
  7366. spin_lock_irqsave(&task_group_lock, flags);
  7367. for_each_possible_cpu(i) {
  7368. register_fair_sched_group(tg, i);
  7369. register_rt_sched_group(tg, i);
  7370. }
  7371. list_add_rcu(&tg->list, &task_groups);
  7372. WARN_ON(!parent); /* root should already exist */
  7373. tg->parent = parent;
  7374. list_add_rcu(&tg->siblings, &parent->children);
  7375. INIT_LIST_HEAD(&tg->children);
  7376. spin_unlock_irqrestore(&task_group_lock, flags);
  7377. return tg;
  7378. err:
  7379. free_sched_group(tg);
  7380. return ERR_PTR(-ENOMEM);
  7381. }
  7382. /* rcu callback to free various structures associated with a task group */
  7383. static void free_sched_group_rcu(struct rcu_head *rhp)
  7384. {
  7385. /* now it should be safe to free those cfs_rqs */
  7386. free_sched_group(container_of(rhp, struct task_group, rcu));
  7387. }
  7388. /* Destroy runqueue etc associated with a task group */
  7389. void sched_destroy_group(struct task_group *tg)
  7390. {
  7391. unsigned long flags;
  7392. int i;
  7393. spin_lock_irqsave(&task_group_lock, flags);
  7394. for_each_possible_cpu(i) {
  7395. unregister_fair_sched_group(tg, i);
  7396. unregister_rt_sched_group(tg, i);
  7397. }
  7398. list_del_rcu(&tg->list);
  7399. list_del_rcu(&tg->siblings);
  7400. spin_unlock_irqrestore(&task_group_lock, flags);
  7401. /* wait for possible concurrent references to cfs_rqs complete */
  7402. call_rcu(&tg->rcu, free_sched_group_rcu);
  7403. }
  7404. /* change task's runqueue when it moves between groups.
  7405. * The caller of this function should have put the task in its new group
  7406. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7407. * reflect its new group.
  7408. */
  7409. void sched_move_task(struct task_struct *tsk)
  7410. {
  7411. int on_rq, running;
  7412. unsigned long flags;
  7413. struct rq *rq;
  7414. rq = task_rq_lock(tsk, &flags);
  7415. update_rq_clock(rq);
  7416. running = task_current(rq, tsk);
  7417. on_rq = tsk->se.on_rq;
  7418. if (on_rq)
  7419. dequeue_task(rq, tsk, 0);
  7420. if (unlikely(running))
  7421. tsk->sched_class->put_prev_task(rq, tsk);
  7422. set_task_rq(tsk, task_cpu(tsk));
  7423. #ifdef CONFIG_FAIR_GROUP_SCHED
  7424. if (tsk->sched_class->moved_group)
  7425. tsk->sched_class->moved_group(tsk);
  7426. #endif
  7427. if (unlikely(running))
  7428. tsk->sched_class->set_curr_task(rq);
  7429. if (on_rq)
  7430. enqueue_task(rq, tsk, 0);
  7431. task_rq_unlock(rq, &flags);
  7432. }
  7433. #endif
  7434. #ifdef CONFIG_FAIR_GROUP_SCHED
  7435. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7436. {
  7437. struct cfs_rq *cfs_rq = se->cfs_rq;
  7438. int on_rq;
  7439. on_rq = se->on_rq;
  7440. if (on_rq)
  7441. dequeue_entity(cfs_rq, se, 0);
  7442. se->load.weight = shares;
  7443. se->load.inv_weight = div64_64((1ULL<<32), shares);
  7444. if (on_rq)
  7445. enqueue_entity(cfs_rq, se, 0);
  7446. }
  7447. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7448. {
  7449. struct cfs_rq *cfs_rq = se->cfs_rq;
  7450. struct rq *rq = cfs_rq->rq;
  7451. unsigned long flags;
  7452. spin_lock_irqsave(&rq->lock, flags);
  7453. __set_se_shares(se, shares);
  7454. spin_unlock_irqrestore(&rq->lock, flags);
  7455. }
  7456. static DEFINE_MUTEX(shares_mutex);
  7457. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7458. {
  7459. int i;
  7460. unsigned long flags;
  7461. /*
  7462. * We can't change the weight of the root cgroup.
  7463. */
  7464. if (!tg->se[0])
  7465. return -EINVAL;
  7466. /*
  7467. * A weight of 0 or 1 can cause arithmetics problems.
  7468. * (The default weight is 1024 - so there's no practical
  7469. * limitation from this.)
  7470. */
  7471. if (shares < MIN_SHARES)
  7472. shares = MIN_SHARES;
  7473. mutex_lock(&shares_mutex);
  7474. if (tg->shares == shares)
  7475. goto done;
  7476. spin_lock_irqsave(&task_group_lock, flags);
  7477. for_each_possible_cpu(i)
  7478. unregister_fair_sched_group(tg, i);
  7479. list_del_rcu(&tg->siblings);
  7480. spin_unlock_irqrestore(&task_group_lock, flags);
  7481. /* wait for any ongoing reference to this group to finish */
  7482. synchronize_sched();
  7483. /*
  7484. * Now we are free to modify the group's share on each cpu
  7485. * w/o tripping rebalance_share or load_balance_fair.
  7486. */
  7487. tg->shares = shares;
  7488. for_each_possible_cpu(i) {
  7489. /*
  7490. * force a rebalance
  7491. */
  7492. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7493. set_se_shares(tg->se[i], shares/nr_cpu_ids);
  7494. }
  7495. /*
  7496. * Enable load balance activity on this group, by inserting it back on
  7497. * each cpu's rq->leaf_cfs_rq_list.
  7498. */
  7499. spin_lock_irqsave(&task_group_lock, flags);
  7500. for_each_possible_cpu(i)
  7501. register_fair_sched_group(tg, i);
  7502. list_add_rcu(&tg->siblings, &tg->parent->children);
  7503. spin_unlock_irqrestore(&task_group_lock, flags);
  7504. done:
  7505. mutex_unlock(&shares_mutex);
  7506. return 0;
  7507. }
  7508. unsigned long sched_group_shares(struct task_group *tg)
  7509. {
  7510. return tg->shares;
  7511. }
  7512. #endif
  7513. #ifdef CONFIG_RT_GROUP_SCHED
  7514. /*
  7515. * Ensure that the real time constraints are schedulable.
  7516. */
  7517. static DEFINE_MUTEX(rt_constraints_mutex);
  7518. static unsigned long to_ratio(u64 period, u64 runtime)
  7519. {
  7520. if (runtime == RUNTIME_INF)
  7521. return 1ULL << 16;
  7522. return div64_64(runtime << 16, period);
  7523. }
  7524. #ifdef CONFIG_CGROUP_SCHED
  7525. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7526. {
  7527. struct task_group *tgi, *parent = tg->parent;
  7528. unsigned long total = 0;
  7529. if (!parent) {
  7530. if (global_rt_period() < period)
  7531. return 0;
  7532. return to_ratio(period, runtime) <
  7533. to_ratio(global_rt_period(), global_rt_runtime());
  7534. }
  7535. if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
  7536. return 0;
  7537. rcu_read_lock();
  7538. list_for_each_entry_rcu(tgi, &parent->children, siblings) {
  7539. if (tgi == tg)
  7540. continue;
  7541. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7542. tgi->rt_bandwidth.rt_runtime);
  7543. }
  7544. rcu_read_unlock();
  7545. return total + to_ratio(period, runtime) <
  7546. to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
  7547. parent->rt_bandwidth.rt_runtime);
  7548. }
  7549. #elif defined CONFIG_USER_SCHED
  7550. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7551. {
  7552. struct task_group *tgi;
  7553. unsigned long total = 0;
  7554. unsigned long global_ratio =
  7555. to_ratio(global_rt_period(), global_rt_runtime());
  7556. rcu_read_lock();
  7557. list_for_each_entry_rcu(tgi, &task_groups, list) {
  7558. if (tgi == tg)
  7559. continue;
  7560. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7561. tgi->rt_bandwidth.rt_runtime);
  7562. }
  7563. rcu_read_unlock();
  7564. return total + to_ratio(period, runtime) < global_ratio;
  7565. }
  7566. #endif
  7567. /* Must be called with tasklist_lock held */
  7568. static inline int tg_has_rt_tasks(struct task_group *tg)
  7569. {
  7570. struct task_struct *g, *p;
  7571. do_each_thread(g, p) {
  7572. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7573. return 1;
  7574. } while_each_thread(g, p);
  7575. return 0;
  7576. }
  7577. static int tg_set_bandwidth(struct task_group *tg,
  7578. u64 rt_period, u64 rt_runtime)
  7579. {
  7580. int i, err = 0;
  7581. mutex_lock(&rt_constraints_mutex);
  7582. read_lock(&tasklist_lock);
  7583. if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
  7584. err = -EBUSY;
  7585. goto unlock;
  7586. }
  7587. if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
  7588. err = -EINVAL;
  7589. goto unlock;
  7590. }
  7591. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7592. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7593. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7594. for_each_possible_cpu(i) {
  7595. struct rt_rq *rt_rq = tg->rt_rq[i];
  7596. spin_lock(&rt_rq->rt_runtime_lock);
  7597. rt_rq->rt_runtime = rt_runtime;
  7598. spin_unlock(&rt_rq->rt_runtime_lock);
  7599. }
  7600. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7601. unlock:
  7602. read_unlock(&tasklist_lock);
  7603. mutex_unlock(&rt_constraints_mutex);
  7604. return err;
  7605. }
  7606. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7607. {
  7608. u64 rt_runtime, rt_period;
  7609. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7610. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7611. if (rt_runtime_us < 0)
  7612. rt_runtime = RUNTIME_INF;
  7613. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7614. }
  7615. long sched_group_rt_runtime(struct task_group *tg)
  7616. {
  7617. u64 rt_runtime_us;
  7618. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7619. return -1;
  7620. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7621. do_div(rt_runtime_us, NSEC_PER_USEC);
  7622. return rt_runtime_us;
  7623. }
  7624. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7625. {
  7626. u64 rt_runtime, rt_period;
  7627. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7628. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7629. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7630. }
  7631. long sched_group_rt_period(struct task_group *tg)
  7632. {
  7633. u64 rt_period_us;
  7634. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7635. do_div(rt_period_us, NSEC_PER_USEC);
  7636. return rt_period_us;
  7637. }
  7638. static int sched_rt_global_constraints(void)
  7639. {
  7640. int ret = 0;
  7641. mutex_lock(&rt_constraints_mutex);
  7642. if (!__rt_schedulable(NULL, 1, 0))
  7643. ret = -EINVAL;
  7644. mutex_unlock(&rt_constraints_mutex);
  7645. return ret;
  7646. }
  7647. #else
  7648. static int sched_rt_global_constraints(void)
  7649. {
  7650. unsigned long flags;
  7651. int i;
  7652. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7653. for_each_possible_cpu(i) {
  7654. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7655. spin_lock(&rt_rq->rt_runtime_lock);
  7656. rt_rq->rt_runtime = global_rt_runtime();
  7657. spin_unlock(&rt_rq->rt_runtime_lock);
  7658. }
  7659. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7660. return 0;
  7661. }
  7662. #endif
  7663. int sched_rt_handler(struct ctl_table *table, int write,
  7664. struct file *filp, void __user *buffer, size_t *lenp,
  7665. loff_t *ppos)
  7666. {
  7667. int ret;
  7668. int old_period, old_runtime;
  7669. static DEFINE_MUTEX(mutex);
  7670. mutex_lock(&mutex);
  7671. old_period = sysctl_sched_rt_period;
  7672. old_runtime = sysctl_sched_rt_runtime;
  7673. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7674. if (!ret && write) {
  7675. ret = sched_rt_global_constraints();
  7676. if (ret) {
  7677. sysctl_sched_rt_period = old_period;
  7678. sysctl_sched_rt_runtime = old_runtime;
  7679. } else {
  7680. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7681. def_rt_bandwidth.rt_period =
  7682. ns_to_ktime(global_rt_period());
  7683. }
  7684. }
  7685. mutex_unlock(&mutex);
  7686. return ret;
  7687. }
  7688. #ifdef CONFIG_CGROUP_SCHED
  7689. /* return corresponding task_group object of a cgroup */
  7690. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7691. {
  7692. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7693. struct task_group, css);
  7694. }
  7695. static struct cgroup_subsys_state *
  7696. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7697. {
  7698. struct task_group *tg, *parent;
  7699. if (!cgrp->parent) {
  7700. /* This is early initialization for the top cgroup */
  7701. init_task_group.css.cgroup = cgrp;
  7702. return &init_task_group.css;
  7703. }
  7704. parent = cgroup_tg(cgrp->parent);
  7705. tg = sched_create_group(parent);
  7706. if (IS_ERR(tg))
  7707. return ERR_PTR(-ENOMEM);
  7708. /* Bind the cgroup to task_group object we just created */
  7709. tg->css.cgroup = cgrp;
  7710. return &tg->css;
  7711. }
  7712. static void
  7713. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7714. {
  7715. struct task_group *tg = cgroup_tg(cgrp);
  7716. sched_destroy_group(tg);
  7717. }
  7718. static int
  7719. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7720. struct task_struct *tsk)
  7721. {
  7722. #ifdef CONFIG_RT_GROUP_SCHED
  7723. /* Don't accept realtime tasks when there is no way for them to run */
  7724. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7725. return -EINVAL;
  7726. #else
  7727. /* We don't support RT-tasks being in separate groups */
  7728. if (tsk->sched_class != &fair_sched_class)
  7729. return -EINVAL;
  7730. #endif
  7731. return 0;
  7732. }
  7733. static void
  7734. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7735. struct cgroup *old_cont, struct task_struct *tsk)
  7736. {
  7737. sched_move_task(tsk);
  7738. }
  7739. #ifdef CONFIG_FAIR_GROUP_SCHED
  7740. static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7741. u64 shareval)
  7742. {
  7743. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7744. }
  7745. static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7746. {
  7747. struct task_group *tg = cgroup_tg(cgrp);
  7748. return (u64) tg->shares;
  7749. }
  7750. #endif
  7751. #ifdef CONFIG_RT_GROUP_SCHED
  7752. static ssize_t cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7753. struct file *file,
  7754. const char __user *userbuf,
  7755. size_t nbytes, loff_t *unused_ppos)
  7756. {
  7757. char buffer[64];
  7758. int retval = 0;
  7759. s64 val;
  7760. char *end;
  7761. if (!nbytes)
  7762. return -EINVAL;
  7763. if (nbytes >= sizeof(buffer))
  7764. return -E2BIG;
  7765. if (copy_from_user(buffer, userbuf, nbytes))
  7766. return -EFAULT;
  7767. buffer[nbytes] = 0; /* nul-terminate */
  7768. /* strip newline if necessary */
  7769. if (nbytes && (buffer[nbytes-1] == '\n'))
  7770. buffer[nbytes-1] = 0;
  7771. val = simple_strtoll(buffer, &end, 0);
  7772. if (*end)
  7773. return -EINVAL;
  7774. /* Pass to subsystem */
  7775. retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7776. if (!retval)
  7777. retval = nbytes;
  7778. return retval;
  7779. }
  7780. static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
  7781. struct file *file,
  7782. char __user *buf, size_t nbytes,
  7783. loff_t *ppos)
  7784. {
  7785. char tmp[64];
  7786. long val = sched_group_rt_runtime(cgroup_tg(cgrp));
  7787. int len = sprintf(tmp, "%ld\n", val);
  7788. return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
  7789. }
  7790. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7791. u64 rt_period_us)
  7792. {
  7793. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7794. }
  7795. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7796. {
  7797. return sched_group_rt_period(cgroup_tg(cgrp));
  7798. }
  7799. #endif
  7800. static struct cftype cpu_files[] = {
  7801. #ifdef CONFIG_FAIR_GROUP_SCHED
  7802. {
  7803. .name = "shares",
  7804. .read_uint = cpu_shares_read_uint,
  7805. .write_uint = cpu_shares_write_uint,
  7806. },
  7807. #endif
  7808. #ifdef CONFIG_RT_GROUP_SCHED
  7809. {
  7810. .name = "rt_runtime_us",
  7811. .read = cpu_rt_runtime_read,
  7812. .write = cpu_rt_runtime_write,
  7813. },
  7814. {
  7815. .name = "rt_period_us",
  7816. .read_uint = cpu_rt_period_read_uint,
  7817. .write_uint = cpu_rt_period_write_uint,
  7818. },
  7819. #endif
  7820. };
  7821. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7822. {
  7823. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7824. }
  7825. struct cgroup_subsys cpu_cgroup_subsys = {
  7826. .name = "cpu",
  7827. .create = cpu_cgroup_create,
  7828. .destroy = cpu_cgroup_destroy,
  7829. .can_attach = cpu_cgroup_can_attach,
  7830. .attach = cpu_cgroup_attach,
  7831. .populate = cpu_cgroup_populate,
  7832. .subsys_id = cpu_cgroup_subsys_id,
  7833. .early_init = 1,
  7834. };
  7835. #endif /* CONFIG_CGROUP_SCHED */
  7836. #ifdef CONFIG_CGROUP_CPUACCT
  7837. /*
  7838. * CPU accounting code for task groups.
  7839. *
  7840. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7841. * (balbir@in.ibm.com).
  7842. */
  7843. /* track cpu usage of a group of tasks */
  7844. struct cpuacct {
  7845. struct cgroup_subsys_state css;
  7846. /* cpuusage holds pointer to a u64-type object on every cpu */
  7847. u64 *cpuusage;
  7848. };
  7849. struct cgroup_subsys cpuacct_subsys;
  7850. /* return cpu accounting group corresponding to this container */
  7851. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7852. {
  7853. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7854. struct cpuacct, css);
  7855. }
  7856. /* return cpu accounting group to which this task belongs */
  7857. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7858. {
  7859. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7860. struct cpuacct, css);
  7861. }
  7862. /* create a new cpu accounting group */
  7863. static struct cgroup_subsys_state *cpuacct_create(
  7864. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7865. {
  7866. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7867. if (!ca)
  7868. return ERR_PTR(-ENOMEM);
  7869. ca->cpuusage = alloc_percpu(u64);
  7870. if (!ca->cpuusage) {
  7871. kfree(ca);
  7872. return ERR_PTR(-ENOMEM);
  7873. }
  7874. return &ca->css;
  7875. }
  7876. /* destroy an existing cpu accounting group */
  7877. static void
  7878. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7879. {
  7880. struct cpuacct *ca = cgroup_ca(cgrp);
  7881. free_percpu(ca->cpuusage);
  7882. kfree(ca);
  7883. }
  7884. /* return total cpu usage (in nanoseconds) of a group */
  7885. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7886. {
  7887. struct cpuacct *ca = cgroup_ca(cgrp);
  7888. u64 totalcpuusage = 0;
  7889. int i;
  7890. for_each_possible_cpu(i) {
  7891. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7892. /*
  7893. * Take rq->lock to make 64-bit addition safe on 32-bit
  7894. * platforms.
  7895. */
  7896. spin_lock_irq(&cpu_rq(i)->lock);
  7897. totalcpuusage += *cpuusage;
  7898. spin_unlock_irq(&cpu_rq(i)->lock);
  7899. }
  7900. return totalcpuusage;
  7901. }
  7902. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7903. u64 reset)
  7904. {
  7905. struct cpuacct *ca = cgroup_ca(cgrp);
  7906. int err = 0;
  7907. int i;
  7908. if (reset) {
  7909. err = -EINVAL;
  7910. goto out;
  7911. }
  7912. for_each_possible_cpu(i) {
  7913. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7914. spin_lock_irq(&cpu_rq(i)->lock);
  7915. *cpuusage = 0;
  7916. spin_unlock_irq(&cpu_rq(i)->lock);
  7917. }
  7918. out:
  7919. return err;
  7920. }
  7921. static struct cftype files[] = {
  7922. {
  7923. .name = "usage",
  7924. .read_uint = cpuusage_read,
  7925. .write_uint = cpuusage_write,
  7926. },
  7927. };
  7928. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7929. {
  7930. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7931. }
  7932. /*
  7933. * charge this task's execution time to its accounting group.
  7934. *
  7935. * called with rq->lock held.
  7936. */
  7937. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7938. {
  7939. struct cpuacct *ca;
  7940. if (!cpuacct_subsys.active)
  7941. return;
  7942. ca = task_ca(tsk);
  7943. if (ca) {
  7944. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  7945. *cpuusage += cputime;
  7946. }
  7947. }
  7948. struct cgroup_subsys cpuacct_subsys = {
  7949. .name = "cpuacct",
  7950. .create = cpuacct_create,
  7951. .destroy = cpuacct_destroy,
  7952. .populate = cpuacct_populate,
  7953. .subsys_id = cpuacct_subsys_id,
  7954. };
  7955. #endif /* CONFIG_CGROUP_CPUACCT */