smp.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458
  1. /* smp.c: Sparc64 SMP support.
  2. *
  3. * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
  4. */
  5. #include <linux/module.h>
  6. #include <linux/kernel.h>
  7. #include <linux/sched.h>
  8. #include <linux/mm.h>
  9. #include <linux/pagemap.h>
  10. #include <linux/threads.h>
  11. #include <linux/smp.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/kernel_stat.h>
  14. #include <linux/delay.h>
  15. #include <linux/init.h>
  16. #include <linux/spinlock.h>
  17. #include <linux/fs.h>
  18. #include <linux/seq_file.h>
  19. #include <linux/cache.h>
  20. #include <linux/jiffies.h>
  21. #include <linux/profile.h>
  22. #include <linux/lmb.h>
  23. #include <asm/head.h>
  24. #include <asm/ptrace.h>
  25. #include <asm/atomic.h>
  26. #include <asm/tlbflush.h>
  27. #include <asm/mmu_context.h>
  28. #include <asm/cpudata.h>
  29. #include <asm/hvtramp.h>
  30. #include <asm/io.h>
  31. #include <asm/timer.h>
  32. #include <asm/irq.h>
  33. #include <asm/irq_regs.h>
  34. #include <asm/page.h>
  35. #include <asm/pgtable.h>
  36. #include <asm/oplib.h>
  37. #include <asm/uaccess.h>
  38. #include <asm/timer.h>
  39. #include <asm/starfire.h>
  40. #include <asm/tlb.h>
  41. #include <asm/sections.h>
  42. #include <asm/prom.h>
  43. #include <asm/mdesc.h>
  44. #include <asm/ldc.h>
  45. #include <asm/hypervisor.h>
  46. int sparc64_multi_core __read_mostly;
  47. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_NONE;
  48. cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
  49. DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
  50. cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
  51. { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
  52. EXPORT_SYMBOL(cpu_possible_map);
  53. EXPORT_SYMBOL(cpu_online_map);
  54. EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  55. EXPORT_SYMBOL(cpu_core_map);
  56. static cpumask_t smp_commenced_mask;
  57. void smp_info(struct seq_file *m)
  58. {
  59. int i;
  60. seq_printf(m, "State:\n");
  61. for_each_online_cpu(i)
  62. seq_printf(m, "CPU%d:\t\tonline\n", i);
  63. }
  64. void smp_bogo(struct seq_file *m)
  65. {
  66. int i;
  67. for_each_online_cpu(i)
  68. seq_printf(m,
  69. "Cpu%dClkTck\t: %016lx\n",
  70. i, cpu_data(i).clock_tick);
  71. }
  72. static __cacheline_aligned_in_smp DEFINE_SPINLOCK(call_lock);
  73. extern void setup_sparc64_timer(void);
  74. static volatile unsigned long callin_flag = 0;
  75. void __cpuinit smp_callin(void)
  76. {
  77. int cpuid = hard_smp_processor_id();
  78. __local_per_cpu_offset = __per_cpu_offset(cpuid);
  79. if (tlb_type == hypervisor)
  80. sun4v_ktsb_register();
  81. __flush_tlb_all();
  82. setup_sparc64_timer();
  83. if (cheetah_pcache_forced_on)
  84. cheetah_enable_pcache();
  85. local_irq_enable();
  86. callin_flag = 1;
  87. __asm__ __volatile__("membar #Sync\n\t"
  88. "flush %%g6" : : : "memory");
  89. /* Clear this or we will die instantly when we
  90. * schedule back to this idler...
  91. */
  92. current_thread_info()->new_child = 0;
  93. /* Attach to the address space of init_task. */
  94. atomic_inc(&init_mm.mm_count);
  95. current->active_mm = &init_mm;
  96. while (!cpu_isset(cpuid, smp_commenced_mask))
  97. rmb();
  98. spin_lock(&call_lock);
  99. cpu_set(cpuid, cpu_online_map);
  100. spin_unlock(&call_lock);
  101. /* idle thread is expected to have preempt disabled */
  102. preempt_disable();
  103. }
  104. void cpu_panic(void)
  105. {
  106. printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
  107. panic("SMP bolixed\n");
  108. }
  109. /* This tick register synchronization scheme is taken entirely from
  110. * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
  111. *
  112. * The only change I've made is to rework it so that the master
  113. * initiates the synchonization instead of the slave. -DaveM
  114. */
  115. #define MASTER 0
  116. #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
  117. #define NUM_ROUNDS 64 /* magic value */
  118. #define NUM_ITERS 5 /* likewise */
  119. static DEFINE_SPINLOCK(itc_sync_lock);
  120. static unsigned long go[SLAVE + 1];
  121. #define DEBUG_TICK_SYNC 0
  122. static inline long get_delta (long *rt, long *master)
  123. {
  124. unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
  125. unsigned long tcenter, t0, t1, tm;
  126. unsigned long i;
  127. for (i = 0; i < NUM_ITERS; i++) {
  128. t0 = tick_ops->get_tick();
  129. go[MASTER] = 1;
  130. membar_storeload();
  131. while (!(tm = go[SLAVE]))
  132. rmb();
  133. go[SLAVE] = 0;
  134. wmb();
  135. t1 = tick_ops->get_tick();
  136. if (t1 - t0 < best_t1 - best_t0)
  137. best_t0 = t0, best_t1 = t1, best_tm = tm;
  138. }
  139. *rt = best_t1 - best_t0;
  140. *master = best_tm - best_t0;
  141. /* average best_t0 and best_t1 without overflow: */
  142. tcenter = (best_t0/2 + best_t1/2);
  143. if (best_t0 % 2 + best_t1 % 2 == 2)
  144. tcenter++;
  145. return tcenter - best_tm;
  146. }
  147. void smp_synchronize_tick_client(void)
  148. {
  149. long i, delta, adj, adjust_latency = 0, done = 0;
  150. unsigned long flags, rt, master_time_stamp, bound;
  151. #if DEBUG_TICK_SYNC
  152. struct {
  153. long rt; /* roundtrip time */
  154. long master; /* master's timestamp */
  155. long diff; /* difference between midpoint and master's timestamp */
  156. long lat; /* estimate of itc adjustment latency */
  157. } t[NUM_ROUNDS];
  158. #endif
  159. go[MASTER] = 1;
  160. while (go[MASTER])
  161. rmb();
  162. local_irq_save(flags);
  163. {
  164. for (i = 0; i < NUM_ROUNDS; i++) {
  165. delta = get_delta(&rt, &master_time_stamp);
  166. if (delta == 0) {
  167. done = 1; /* let's lock on to this... */
  168. bound = rt;
  169. }
  170. if (!done) {
  171. if (i > 0) {
  172. adjust_latency += -delta;
  173. adj = -delta + adjust_latency/4;
  174. } else
  175. adj = -delta;
  176. tick_ops->add_tick(adj);
  177. }
  178. #if DEBUG_TICK_SYNC
  179. t[i].rt = rt;
  180. t[i].master = master_time_stamp;
  181. t[i].diff = delta;
  182. t[i].lat = adjust_latency/4;
  183. #endif
  184. }
  185. }
  186. local_irq_restore(flags);
  187. #if DEBUG_TICK_SYNC
  188. for (i = 0; i < NUM_ROUNDS; i++)
  189. printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
  190. t[i].rt, t[i].master, t[i].diff, t[i].lat);
  191. #endif
  192. printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
  193. "(last diff %ld cycles, maxerr %lu cycles)\n",
  194. smp_processor_id(), delta, rt);
  195. }
  196. static void smp_start_sync_tick_client(int cpu);
  197. static void smp_synchronize_one_tick(int cpu)
  198. {
  199. unsigned long flags, i;
  200. go[MASTER] = 0;
  201. smp_start_sync_tick_client(cpu);
  202. /* wait for client to be ready */
  203. while (!go[MASTER])
  204. rmb();
  205. /* now let the client proceed into his loop */
  206. go[MASTER] = 0;
  207. membar_storeload();
  208. spin_lock_irqsave(&itc_sync_lock, flags);
  209. {
  210. for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
  211. while (!go[MASTER])
  212. rmb();
  213. go[MASTER] = 0;
  214. wmb();
  215. go[SLAVE] = tick_ops->get_tick();
  216. membar_storeload();
  217. }
  218. }
  219. spin_unlock_irqrestore(&itc_sync_lock, flags);
  220. }
  221. #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
  222. /* XXX Put this in some common place. XXX */
  223. static unsigned long kimage_addr_to_ra(void *p)
  224. {
  225. unsigned long val = (unsigned long) p;
  226. return kern_base + (val - KERNBASE);
  227. }
  228. static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg)
  229. {
  230. extern unsigned long sparc64_ttable_tl0;
  231. extern unsigned long kern_locked_tte_data;
  232. struct hvtramp_descr *hdesc;
  233. unsigned long trampoline_ra;
  234. struct trap_per_cpu *tb;
  235. u64 tte_vaddr, tte_data;
  236. unsigned long hv_err;
  237. int i;
  238. hdesc = kzalloc(sizeof(*hdesc) +
  239. (sizeof(struct hvtramp_mapping) *
  240. num_kernel_image_mappings - 1),
  241. GFP_KERNEL);
  242. if (!hdesc) {
  243. printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
  244. "hvtramp_descr.\n");
  245. return;
  246. }
  247. hdesc->cpu = cpu;
  248. hdesc->num_mappings = num_kernel_image_mappings;
  249. tb = &trap_block[cpu];
  250. tb->hdesc = hdesc;
  251. hdesc->fault_info_va = (unsigned long) &tb->fault_info;
  252. hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
  253. hdesc->thread_reg = thread_reg;
  254. tte_vaddr = (unsigned long) KERNBASE;
  255. tte_data = kern_locked_tte_data;
  256. for (i = 0; i < hdesc->num_mappings; i++) {
  257. hdesc->maps[i].vaddr = tte_vaddr;
  258. hdesc->maps[i].tte = tte_data;
  259. tte_vaddr += 0x400000;
  260. tte_data += 0x400000;
  261. }
  262. trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
  263. hv_err = sun4v_cpu_start(cpu, trampoline_ra,
  264. kimage_addr_to_ra(&sparc64_ttable_tl0),
  265. __pa(hdesc));
  266. if (hv_err)
  267. printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
  268. "gives error %lu\n", hv_err);
  269. }
  270. #endif
  271. extern unsigned long sparc64_cpu_startup;
  272. /* The OBP cpu startup callback truncates the 3rd arg cookie to
  273. * 32-bits (I think) so to be safe we have it read the pointer
  274. * contained here so we work on >4GB machines. -DaveM
  275. */
  276. static struct thread_info *cpu_new_thread = NULL;
  277. static int __devinit smp_boot_one_cpu(unsigned int cpu)
  278. {
  279. struct trap_per_cpu *tb = &trap_block[cpu];
  280. unsigned long entry =
  281. (unsigned long)(&sparc64_cpu_startup);
  282. unsigned long cookie =
  283. (unsigned long)(&cpu_new_thread);
  284. struct task_struct *p;
  285. int timeout, ret;
  286. p = fork_idle(cpu);
  287. if (IS_ERR(p))
  288. return PTR_ERR(p);
  289. callin_flag = 0;
  290. cpu_new_thread = task_thread_info(p);
  291. if (tlb_type == hypervisor) {
  292. #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
  293. if (ldom_domaining_enabled)
  294. ldom_startcpu_cpuid(cpu,
  295. (unsigned long) cpu_new_thread);
  296. else
  297. #endif
  298. prom_startcpu_cpuid(cpu, entry, cookie);
  299. } else {
  300. struct device_node *dp = of_find_node_by_cpuid(cpu);
  301. prom_startcpu(dp->node, entry, cookie);
  302. }
  303. for (timeout = 0; timeout < 50000; timeout++) {
  304. if (callin_flag)
  305. break;
  306. udelay(100);
  307. }
  308. if (callin_flag) {
  309. ret = 0;
  310. } else {
  311. printk("Processor %d is stuck.\n", cpu);
  312. ret = -ENODEV;
  313. }
  314. cpu_new_thread = NULL;
  315. if (tb->hdesc) {
  316. kfree(tb->hdesc);
  317. tb->hdesc = NULL;
  318. }
  319. return ret;
  320. }
  321. static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
  322. {
  323. u64 result, target;
  324. int stuck, tmp;
  325. if (this_is_starfire) {
  326. /* map to real upaid */
  327. cpu = (((cpu & 0x3c) << 1) |
  328. ((cpu & 0x40) >> 4) |
  329. (cpu & 0x3));
  330. }
  331. target = (cpu << 14) | 0x70;
  332. again:
  333. /* Ok, this is the real Spitfire Errata #54.
  334. * One must read back from a UDB internal register
  335. * after writes to the UDB interrupt dispatch, but
  336. * before the membar Sync for that write.
  337. * So we use the high UDB control register (ASI 0x7f,
  338. * ADDR 0x20) for the dummy read. -DaveM
  339. */
  340. tmp = 0x40;
  341. __asm__ __volatile__(
  342. "wrpr %1, %2, %%pstate\n\t"
  343. "stxa %4, [%0] %3\n\t"
  344. "stxa %5, [%0+%8] %3\n\t"
  345. "add %0, %8, %0\n\t"
  346. "stxa %6, [%0+%8] %3\n\t"
  347. "membar #Sync\n\t"
  348. "stxa %%g0, [%7] %3\n\t"
  349. "membar #Sync\n\t"
  350. "mov 0x20, %%g1\n\t"
  351. "ldxa [%%g1] 0x7f, %%g0\n\t"
  352. "membar #Sync"
  353. : "=r" (tmp)
  354. : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
  355. "r" (data0), "r" (data1), "r" (data2), "r" (target),
  356. "r" (0x10), "0" (tmp)
  357. : "g1");
  358. /* NOTE: PSTATE_IE is still clear. */
  359. stuck = 100000;
  360. do {
  361. __asm__ __volatile__("ldxa [%%g0] %1, %0"
  362. : "=r" (result)
  363. : "i" (ASI_INTR_DISPATCH_STAT));
  364. if (result == 0) {
  365. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  366. : : "r" (pstate));
  367. return;
  368. }
  369. stuck -= 1;
  370. if (stuck == 0)
  371. break;
  372. } while (result & 0x1);
  373. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  374. : : "r" (pstate));
  375. if (stuck == 0) {
  376. printk("CPU[%d]: mondo stuckage result[%016lx]\n",
  377. smp_processor_id(), result);
  378. } else {
  379. udelay(2);
  380. goto again;
  381. }
  382. }
  383. static inline void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
  384. {
  385. u64 pstate;
  386. int i;
  387. __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
  388. for_each_cpu_mask(i, mask)
  389. spitfire_xcall_helper(data0, data1, data2, pstate, i);
  390. }
  391. /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
  392. * packet, but we have no use for that. However we do take advantage of
  393. * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
  394. */
  395. static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
  396. {
  397. u64 pstate, ver, busy_mask;
  398. int nack_busy_id, is_jbus, need_more;
  399. if (cpus_empty(mask))
  400. return;
  401. /* Unfortunately, someone at Sun had the brilliant idea to make the
  402. * busy/nack fields hard-coded by ITID number for this Ultra-III
  403. * derivative processor.
  404. */
  405. __asm__ ("rdpr %%ver, %0" : "=r" (ver));
  406. is_jbus = ((ver >> 32) == __JALAPENO_ID ||
  407. (ver >> 32) == __SERRANO_ID);
  408. __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
  409. retry:
  410. need_more = 0;
  411. __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
  412. : : "r" (pstate), "i" (PSTATE_IE));
  413. /* Setup the dispatch data registers. */
  414. __asm__ __volatile__("stxa %0, [%3] %6\n\t"
  415. "stxa %1, [%4] %6\n\t"
  416. "stxa %2, [%5] %6\n\t"
  417. "membar #Sync\n\t"
  418. : /* no outputs */
  419. : "r" (data0), "r" (data1), "r" (data2),
  420. "r" (0x40), "r" (0x50), "r" (0x60),
  421. "i" (ASI_INTR_W));
  422. nack_busy_id = 0;
  423. busy_mask = 0;
  424. {
  425. int i;
  426. for_each_cpu_mask(i, mask) {
  427. u64 target = (i << 14) | 0x70;
  428. if (is_jbus) {
  429. busy_mask |= (0x1UL << (i * 2));
  430. } else {
  431. target |= (nack_busy_id << 24);
  432. busy_mask |= (0x1UL <<
  433. (nack_busy_id * 2));
  434. }
  435. __asm__ __volatile__(
  436. "stxa %%g0, [%0] %1\n\t"
  437. "membar #Sync\n\t"
  438. : /* no outputs */
  439. : "r" (target), "i" (ASI_INTR_W));
  440. nack_busy_id++;
  441. if (nack_busy_id == 32) {
  442. need_more = 1;
  443. break;
  444. }
  445. }
  446. }
  447. /* Now, poll for completion. */
  448. {
  449. u64 dispatch_stat, nack_mask;
  450. long stuck;
  451. stuck = 100000 * nack_busy_id;
  452. nack_mask = busy_mask << 1;
  453. do {
  454. __asm__ __volatile__("ldxa [%%g0] %1, %0"
  455. : "=r" (dispatch_stat)
  456. : "i" (ASI_INTR_DISPATCH_STAT));
  457. if (!(dispatch_stat & (busy_mask | nack_mask))) {
  458. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  459. : : "r" (pstate));
  460. if (unlikely(need_more)) {
  461. int i, cnt = 0;
  462. for_each_cpu_mask(i, mask) {
  463. cpu_clear(i, mask);
  464. cnt++;
  465. if (cnt == 32)
  466. break;
  467. }
  468. goto retry;
  469. }
  470. return;
  471. }
  472. if (!--stuck)
  473. break;
  474. } while (dispatch_stat & busy_mask);
  475. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  476. : : "r" (pstate));
  477. if (dispatch_stat & busy_mask) {
  478. /* Busy bits will not clear, continue instead
  479. * of freezing up on this cpu.
  480. */
  481. printk("CPU[%d]: mondo stuckage result[%016lx]\n",
  482. smp_processor_id(), dispatch_stat);
  483. } else {
  484. int i, this_busy_nack = 0;
  485. /* Delay some random time with interrupts enabled
  486. * to prevent deadlock.
  487. */
  488. udelay(2 * nack_busy_id);
  489. /* Clear out the mask bits for cpus which did not
  490. * NACK us.
  491. */
  492. for_each_cpu_mask(i, mask) {
  493. u64 check_mask;
  494. if (is_jbus)
  495. check_mask = (0x2UL << (2*i));
  496. else
  497. check_mask = (0x2UL <<
  498. this_busy_nack);
  499. if ((dispatch_stat & check_mask) == 0)
  500. cpu_clear(i, mask);
  501. this_busy_nack += 2;
  502. if (this_busy_nack == 64)
  503. break;
  504. }
  505. goto retry;
  506. }
  507. }
  508. }
  509. /* Multi-cpu list version. */
  510. static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
  511. {
  512. struct trap_per_cpu *tb;
  513. u16 *cpu_list;
  514. u64 *mondo;
  515. cpumask_t error_mask;
  516. unsigned long flags, status;
  517. int cnt, retries, this_cpu, prev_sent, i;
  518. if (cpus_empty(mask))
  519. return;
  520. /* We have to do this whole thing with interrupts fully disabled.
  521. * Otherwise if we send an xcall from interrupt context it will
  522. * corrupt both our mondo block and cpu list state.
  523. *
  524. * One consequence of this is that we cannot use timeout mechanisms
  525. * that depend upon interrupts being delivered locally. So, for
  526. * example, we cannot sample jiffies and expect it to advance.
  527. *
  528. * Fortunately, udelay() uses %stick/%tick so we can use that.
  529. */
  530. local_irq_save(flags);
  531. this_cpu = smp_processor_id();
  532. tb = &trap_block[this_cpu];
  533. mondo = __va(tb->cpu_mondo_block_pa);
  534. mondo[0] = data0;
  535. mondo[1] = data1;
  536. mondo[2] = data2;
  537. wmb();
  538. cpu_list = __va(tb->cpu_list_pa);
  539. /* Setup the initial cpu list. */
  540. cnt = 0;
  541. for_each_cpu_mask(i, mask)
  542. cpu_list[cnt++] = i;
  543. cpus_clear(error_mask);
  544. retries = 0;
  545. prev_sent = 0;
  546. do {
  547. int forward_progress, n_sent;
  548. status = sun4v_cpu_mondo_send(cnt,
  549. tb->cpu_list_pa,
  550. tb->cpu_mondo_block_pa);
  551. /* HV_EOK means all cpus received the xcall, we're done. */
  552. if (likely(status == HV_EOK))
  553. break;
  554. /* First, see if we made any forward progress.
  555. *
  556. * The hypervisor indicates successful sends by setting
  557. * cpu list entries to the value 0xffff.
  558. */
  559. n_sent = 0;
  560. for (i = 0; i < cnt; i++) {
  561. if (likely(cpu_list[i] == 0xffff))
  562. n_sent++;
  563. }
  564. forward_progress = 0;
  565. if (n_sent > prev_sent)
  566. forward_progress = 1;
  567. prev_sent = n_sent;
  568. /* If we get a HV_ECPUERROR, then one or more of the cpus
  569. * in the list are in error state. Use the cpu_state()
  570. * hypervisor call to find out which cpus are in error state.
  571. */
  572. if (unlikely(status == HV_ECPUERROR)) {
  573. for (i = 0; i < cnt; i++) {
  574. long err;
  575. u16 cpu;
  576. cpu = cpu_list[i];
  577. if (cpu == 0xffff)
  578. continue;
  579. err = sun4v_cpu_state(cpu);
  580. if (err >= 0 &&
  581. err == HV_CPU_STATE_ERROR) {
  582. cpu_list[i] = 0xffff;
  583. cpu_set(cpu, error_mask);
  584. }
  585. }
  586. } else if (unlikely(status != HV_EWOULDBLOCK))
  587. goto fatal_mondo_error;
  588. /* Don't bother rewriting the CPU list, just leave the
  589. * 0xffff and non-0xffff entries in there and the
  590. * hypervisor will do the right thing.
  591. *
  592. * Only advance timeout state if we didn't make any
  593. * forward progress.
  594. */
  595. if (unlikely(!forward_progress)) {
  596. if (unlikely(++retries > 10000))
  597. goto fatal_mondo_timeout;
  598. /* Delay a little bit to let other cpus catch up
  599. * on their cpu mondo queue work.
  600. */
  601. udelay(2 * cnt);
  602. }
  603. } while (1);
  604. local_irq_restore(flags);
  605. if (unlikely(!cpus_empty(error_mask)))
  606. goto fatal_mondo_cpu_error;
  607. return;
  608. fatal_mondo_cpu_error:
  609. printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
  610. "were in error state\n",
  611. this_cpu);
  612. printk(KERN_CRIT "CPU[%d]: Error mask [ ", this_cpu);
  613. for_each_cpu_mask(i, error_mask)
  614. printk("%d ", i);
  615. printk("]\n");
  616. return;
  617. fatal_mondo_timeout:
  618. local_irq_restore(flags);
  619. printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
  620. " progress after %d retries.\n",
  621. this_cpu, retries);
  622. goto dump_cpu_list_and_out;
  623. fatal_mondo_error:
  624. local_irq_restore(flags);
  625. printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
  626. this_cpu, status);
  627. printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
  628. "mondo_block_pa(%lx)\n",
  629. this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
  630. dump_cpu_list_and_out:
  631. printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
  632. for (i = 0; i < cnt; i++)
  633. printk("%u ", cpu_list[i]);
  634. printk("]\n");
  635. }
  636. /* Send cross call to all processors mentioned in MASK
  637. * except self.
  638. */
  639. static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
  640. {
  641. u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
  642. int this_cpu = get_cpu();
  643. cpus_and(mask, mask, cpu_online_map);
  644. cpu_clear(this_cpu, mask);
  645. if (tlb_type == spitfire)
  646. spitfire_xcall_deliver(data0, data1, data2, mask);
  647. else if (tlb_type == cheetah || tlb_type == cheetah_plus)
  648. cheetah_xcall_deliver(data0, data1, data2, mask);
  649. else
  650. hypervisor_xcall_deliver(data0, data1, data2, mask);
  651. /* NOTE: Caller runs local copy on master. */
  652. put_cpu();
  653. }
  654. extern unsigned long xcall_sync_tick;
  655. static void smp_start_sync_tick_client(int cpu)
  656. {
  657. cpumask_t mask = cpumask_of_cpu(cpu);
  658. smp_cross_call_masked(&xcall_sync_tick,
  659. 0, 0, 0, mask);
  660. }
  661. /* Send cross call to all processors except self. */
  662. #define smp_cross_call(func, ctx, data1, data2) \
  663. smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
  664. struct call_data_struct {
  665. void (*func) (void *info);
  666. void *info;
  667. atomic_t finished;
  668. int wait;
  669. };
  670. static struct call_data_struct *call_data;
  671. extern unsigned long xcall_call_function;
  672. /**
  673. * smp_call_function(): Run a function on all other CPUs.
  674. * @func: The function to run. This must be fast and non-blocking.
  675. * @info: An arbitrary pointer to pass to the function.
  676. * @nonatomic: currently unused.
  677. * @wait: If true, wait (atomically) until function has completed on other CPUs.
  678. *
  679. * Returns 0 on success, else a negative status code. Does not return until
  680. * remote CPUs are nearly ready to execute <<func>> or are or have executed.
  681. *
  682. * You must not call this function with disabled interrupts or from a
  683. * hardware interrupt handler or from a bottom half handler.
  684. */
  685. static int smp_call_function_mask(void (*func)(void *info), void *info,
  686. int nonatomic, int wait, cpumask_t mask)
  687. {
  688. struct call_data_struct data;
  689. int cpus;
  690. /* Can deadlock when called with interrupts disabled */
  691. WARN_ON(irqs_disabled());
  692. data.func = func;
  693. data.info = info;
  694. atomic_set(&data.finished, 0);
  695. data.wait = wait;
  696. spin_lock(&call_lock);
  697. cpu_clear(smp_processor_id(), mask);
  698. cpus = cpus_weight(mask);
  699. if (!cpus)
  700. goto out_unlock;
  701. call_data = &data;
  702. mb();
  703. smp_cross_call_masked(&xcall_call_function, 0, 0, 0, mask);
  704. /* Wait for response */
  705. while (atomic_read(&data.finished) != cpus)
  706. cpu_relax();
  707. out_unlock:
  708. spin_unlock(&call_lock);
  709. return 0;
  710. }
  711. int smp_call_function(void (*func)(void *info), void *info,
  712. int nonatomic, int wait)
  713. {
  714. return smp_call_function_mask(func, info, nonatomic, wait,
  715. cpu_online_map);
  716. }
  717. void smp_call_function_client(int irq, struct pt_regs *regs)
  718. {
  719. void (*func) (void *info) = call_data->func;
  720. void *info = call_data->info;
  721. clear_softint(1 << irq);
  722. if (call_data->wait) {
  723. /* let initiator proceed only after completion */
  724. func(info);
  725. atomic_inc(&call_data->finished);
  726. } else {
  727. /* let initiator proceed after getting data */
  728. atomic_inc(&call_data->finished);
  729. func(info);
  730. }
  731. }
  732. static void tsb_sync(void *info)
  733. {
  734. struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
  735. struct mm_struct *mm = info;
  736. /* It is not valid to test "currrent->active_mm == mm" here.
  737. *
  738. * The value of "current" is not changed atomically with
  739. * switch_mm(). But that's OK, we just need to check the
  740. * current cpu's trap block PGD physical address.
  741. */
  742. if (tp->pgd_paddr == __pa(mm->pgd))
  743. tsb_context_switch(mm);
  744. }
  745. void smp_tsb_sync(struct mm_struct *mm)
  746. {
  747. smp_call_function_mask(tsb_sync, mm, 0, 1, mm->cpu_vm_mask);
  748. }
  749. extern unsigned long xcall_flush_tlb_mm;
  750. extern unsigned long xcall_flush_tlb_pending;
  751. extern unsigned long xcall_flush_tlb_kernel_range;
  752. extern unsigned long xcall_report_regs;
  753. extern unsigned long xcall_receive_signal;
  754. extern unsigned long xcall_new_mmu_context_version;
  755. #ifdef DCACHE_ALIASING_POSSIBLE
  756. extern unsigned long xcall_flush_dcache_page_cheetah;
  757. #endif
  758. extern unsigned long xcall_flush_dcache_page_spitfire;
  759. #ifdef CONFIG_DEBUG_DCFLUSH
  760. extern atomic_t dcpage_flushes;
  761. extern atomic_t dcpage_flushes_xcall;
  762. #endif
  763. static inline void __local_flush_dcache_page(struct page *page)
  764. {
  765. #ifdef DCACHE_ALIASING_POSSIBLE
  766. __flush_dcache_page(page_address(page),
  767. ((tlb_type == spitfire) &&
  768. page_mapping(page) != NULL));
  769. #else
  770. if (page_mapping(page) != NULL &&
  771. tlb_type == spitfire)
  772. __flush_icache_page(__pa(page_address(page)));
  773. #endif
  774. }
  775. void smp_flush_dcache_page_impl(struct page *page, int cpu)
  776. {
  777. cpumask_t mask = cpumask_of_cpu(cpu);
  778. int this_cpu;
  779. if (tlb_type == hypervisor)
  780. return;
  781. #ifdef CONFIG_DEBUG_DCFLUSH
  782. atomic_inc(&dcpage_flushes);
  783. #endif
  784. this_cpu = get_cpu();
  785. if (cpu == this_cpu) {
  786. __local_flush_dcache_page(page);
  787. } else if (cpu_online(cpu)) {
  788. void *pg_addr = page_address(page);
  789. u64 data0;
  790. if (tlb_type == spitfire) {
  791. data0 =
  792. ((u64)&xcall_flush_dcache_page_spitfire);
  793. if (page_mapping(page) != NULL)
  794. data0 |= ((u64)1 << 32);
  795. spitfire_xcall_deliver(data0,
  796. __pa(pg_addr),
  797. (u64) pg_addr,
  798. mask);
  799. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  800. #ifdef DCACHE_ALIASING_POSSIBLE
  801. data0 =
  802. ((u64)&xcall_flush_dcache_page_cheetah);
  803. cheetah_xcall_deliver(data0,
  804. __pa(pg_addr),
  805. 0, mask);
  806. #endif
  807. }
  808. #ifdef CONFIG_DEBUG_DCFLUSH
  809. atomic_inc(&dcpage_flushes_xcall);
  810. #endif
  811. }
  812. put_cpu();
  813. }
  814. void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
  815. {
  816. void *pg_addr = page_address(page);
  817. cpumask_t mask = cpu_online_map;
  818. u64 data0;
  819. int this_cpu;
  820. if (tlb_type == hypervisor)
  821. return;
  822. this_cpu = get_cpu();
  823. cpu_clear(this_cpu, mask);
  824. #ifdef CONFIG_DEBUG_DCFLUSH
  825. atomic_inc(&dcpage_flushes);
  826. #endif
  827. if (cpus_empty(mask))
  828. goto flush_self;
  829. if (tlb_type == spitfire) {
  830. data0 = ((u64)&xcall_flush_dcache_page_spitfire);
  831. if (page_mapping(page) != NULL)
  832. data0 |= ((u64)1 << 32);
  833. spitfire_xcall_deliver(data0,
  834. __pa(pg_addr),
  835. (u64) pg_addr,
  836. mask);
  837. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  838. #ifdef DCACHE_ALIASING_POSSIBLE
  839. data0 = ((u64)&xcall_flush_dcache_page_cheetah);
  840. cheetah_xcall_deliver(data0,
  841. __pa(pg_addr),
  842. 0, mask);
  843. #endif
  844. }
  845. #ifdef CONFIG_DEBUG_DCFLUSH
  846. atomic_inc(&dcpage_flushes_xcall);
  847. #endif
  848. flush_self:
  849. __local_flush_dcache_page(page);
  850. put_cpu();
  851. }
  852. static void __smp_receive_signal_mask(cpumask_t mask)
  853. {
  854. smp_cross_call_masked(&xcall_receive_signal, 0, 0, 0, mask);
  855. }
  856. void smp_receive_signal(int cpu)
  857. {
  858. cpumask_t mask = cpumask_of_cpu(cpu);
  859. if (cpu_online(cpu))
  860. __smp_receive_signal_mask(mask);
  861. }
  862. void smp_receive_signal_client(int irq, struct pt_regs *regs)
  863. {
  864. clear_softint(1 << irq);
  865. }
  866. void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
  867. {
  868. struct mm_struct *mm;
  869. unsigned long flags;
  870. clear_softint(1 << irq);
  871. /* See if we need to allocate a new TLB context because
  872. * the version of the one we are using is now out of date.
  873. */
  874. mm = current->active_mm;
  875. if (unlikely(!mm || (mm == &init_mm)))
  876. return;
  877. spin_lock_irqsave(&mm->context.lock, flags);
  878. if (unlikely(!CTX_VALID(mm->context)))
  879. get_new_mmu_context(mm);
  880. spin_unlock_irqrestore(&mm->context.lock, flags);
  881. load_secondary_context(mm);
  882. __flush_tlb_mm(CTX_HWBITS(mm->context),
  883. SECONDARY_CONTEXT);
  884. }
  885. void smp_new_mmu_context_version(void)
  886. {
  887. smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
  888. }
  889. void smp_report_regs(void)
  890. {
  891. smp_cross_call(&xcall_report_regs, 0, 0, 0);
  892. }
  893. /* We know that the window frames of the user have been flushed
  894. * to the stack before we get here because all callers of us
  895. * are flush_tlb_*() routines, and these run after flush_cache_*()
  896. * which performs the flushw.
  897. *
  898. * The SMP TLB coherency scheme we use works as follows:
  899. *
  900. * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
  901. * space has (potentially) executed on, this is the heuristic
  902. * we use to avoid doing cross calls.
  903. *
  904. * Also, for flushing from kswapd and also for clones, we
  905. * use cpu_vm_mask as the list of cpus to make run the TLB.
  906. *
  907. * 2) TLB context numbers are shared globally across all processors
  908. * in the system, this allows us to play several games to avoid
  909. * cross calls.
  910. *
  911. * One invariant is that when a cpu switches to a process, and
  912. * that processes tsk->active_mm->cpu_vm_mask does not have the
  913. * current cpu's bit set, that tlb context is flushed locally.
  914. *
  915. * If the address space is non-shared (ie. mm->count == 1) we avoid
  916. * cross calls when we want to flush the currently running process's
  917. * tlb state. This is done by clearing all cpu bits except the current
  918. * processor's in current->active_mm->cpu_vm_mask and performing the
  919. * flush locally only. This will force any subsequent cpus which run
  920. * this task to flush the context from the local tlb if the process
  921. * migrates to another cpu (again).
  922. *
  923. * 3) For shared address spaces (threads) and swapping we bite the
  924. * bullet for most cases and perform the cross call (but only to
  925. * the cpus listed in cpu_vm_mask).
  926. *
  927. * The performance gain from "optimizing" away the cross call for threads is
  928. * questionable (in theory the big win for threads is the massive sharing of
  929. * address space state across processors).
  930. */
  931. /* This currently is only used by the hugetlb arch pre-fault
  932. * hook on UltraSPARC-III+ and later when changing the pagesize
  933. * bits of the context register for an address space.
  934. */
  935. void smp_flush_tlb_mm(struct mm_struct *mm)
  936. {
  937. u32 ctx = CTX_HWBITS(mm->context);
  938. int cpu = get_cpu();
  939. if (atomic_read(&mm->mm_users) == 1) {
  940. mm->cpu_vm_mask = cpumask_of_cpu(cpu);
  941. goto local_flush_and_out;
  942. }
  943. smp_cross_call_masked(&xcall_flush_tlb_mm,
  944. ctx, 0, 0,
  945. mm->cpu_vm_mask);
  946. local_flush_and_out:
  947. __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
  948. put_cpu();
  949. }
  950. void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
  951. {
  952. u32 ctx = CTX_HWBITS(mm->context);
  953. int cpu = get_cpu();
  954. if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
  955. mm->cpu_vm_mask = cpumask_of_cpu(cpu);
  956. else
  957. smp_cross_call_masked(&xcall_flush_tlb_pending,
  958. ctx, nr, (unsigned long) vaddrs,
  959. mm->cpu_vm_mask);
  960. __flush_tlb_pending(ctx, nr, vaddrs);
  961. put_cpu();
  962. }
  963. void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
  964. {
  965. start &= PAGE_MASK;
  966. end = PAGE_ALIGN(end);
  967. if (start != end) {
  968. smp_cross_call(&xcall_flush_tlb_kernel_range,
  969. 0, start, end);
  970. __flush_tlb_kernel_range(start, end);
  971. }
  972. }
  973. /* CPU capture. */
  974. /* #define CAPTURE_DEBUG */
  975. extern unsigned long xcall_capture;
  976. static atomic_t smp_capture_depth = ATOMIC_INIT(0);
  977. static atomic_t smp_capture_registry = ATOMIC_INIT(0);
  978. static unsigned long penguins_are_doing_time;
  979. void smp_capture(void)
  980. {
  981. int result = atomic_add_ret(1, &smp_capture_depth);
  982. if (result == 1) {
  983. int ncpus = num_online_cpus();
  984. #ifdef CAPTURE_DEBUG
  985. printk("CPU[%d]: Sending penguins to jail...",
  986. smp_processor_id());
  987. #endif
  988. penguins_are_doing_time = 1;
  989. membar_storestore_loadstore();
  990. atomic_inc(&smp_capture_registry);
  991. smp_cross_call(&xcall_capture, 0, 0, 0);
  992. while (atomic_read(&smp_capture_registry) != ncpus)
  993. rmb();
  994. #ifdef CAPTURE_DEBUG
  995. printk("done\n");
  996. #endif
  997. }
  998. }
  999. void smp_release(void)
  1000. {
  1001. if (atomic_dec_and_test(&smp_capture_depth)) {
  1002. #ifdef CAPTURE_DEBUG
  1003. printk("CPU[%d]: Giving pardon to "
  1004. "imprisoned penguins\n",
  1005. smp_processor_id());
  1006. #endif
  1007. penguins_are_doing_time = 0;
  1008. membar_storeload_storestore();
  1009. atomic_dec(&smp_capture_registry);
  1010. }
  1011. }
  1012. /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
  1013. * can service tlb flush xcalls...
  1014. */
  1015. extern void prom_world(int);
  1016. void smp_penguin_jailcell(int irq, struct pt_regs *regs)
  1017. {
  1018. clear_softint(1 << irq);
  1019. preempt_disable();
  1020. __asm__ __volatile__("flushw");
  1021. prom_world(1);
  1022. atomic_inc(&smp_capture_registry);
  1023. membar_storeload_storestore();
  1024. while (penguins_are_doing_time)
  1025. rmb();
  1026. atomic_dec(&smp_capture_registry);
  1027. prom_world(0);
  1028. preempt_enable();
  1029. }
  1030. /* /proc/profile writes can call this, don't __init it please. */
  1031. int setup_profiling_timer(unsigned int multiplier)
  1032. {
  1033. return -EINVAL;
  1034. }
  1035. void __init smp_prepare_cpus(unsigned int max_cpus)
  1036. {
  1037. }
  1038. void __devinit smp_prepare_boot_cpu(void)
  1039. {
  1040. }
  1041. void __devinit smp_fill_in_sib_core_maps(void)
  1042. {
  1043. unsigned int i;
  1044. for_each_present_cpu(i) {
  1045. unsigned int j;
  1046. cpus_clear(cpu_core_map[i]);
  1047. if (cpu_data(i).core_id == 0) {
  1048. cpu_set(i, cpu_core_map[i]);
  1049. continue;
  1050. }
  1051. for_each_present_cpu(j) {
  1052. if (cpu_data(i).core_id ==
  1053. cpu_data(j).core_id)
  1054. cpu_set(j, cpu_core_map[i]);
  1055. }
  1056. }
  1057. for_each_present_cpu(i) {
  1058. unsigned int j;
  1059. cpus_clear(per_cpu(cpu_sibling_map, i));
  1060. if (cpu_data(i).proc_id == -1) {
  1061. cpu_set(i, per_cpu(cpu_sibling_map, i));
  1062. continue;
  1063. }
  1064. for_each_present_cpu(j) {
  1065. if (cpu_data(i).proc_id ==
  1066. cpu_data(j).proc_id)
  1067. cpu_set(j, per_cpu(cpu_sibling_map, i));
  1068. }
  1069. }
  1070. }
  1071. int __cpuinit __cpu_up(unsigned int cpu)
  1072. {
  1073. int ret = smp_boot_one_cpu(cpu);
  1074. if (!ret) {
  1075. cpu_set(cpu, smp_commenced_mask);
  1076. while (!cpu_isset(cpu, cpu_online_map))
  1077. mb();
  1078. if (!cpu_isset(cpu, cpu_online_map)) {
  1079. ret = -ENODEV;
  1080. } else {
  1081. /* On SUN4V, writes to %tick and %stick are
  1082. * not allowed.
  1083. */
  1084. if (tlb_type != hypervisor)
  1085. smp_synchronize_one_tick(cpu);
  1086. }
  1087. }
  1088. return ret;
  1089. }
  1090. #ifdef CONFIG_HOTPLUG_CPU
  1091. void cpu_play_dead(void)
  1092. {
  1093. int cpu = smp_processor_id();
  1094. unsigned long pstate;
  1095. idle_task_exit();
  1096. if (tlb_type == hypervisor) {
  1097. struct trap_per_cpu *tb = &trap_block[cpu];
  1098. sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
  1099. tb->cpu_mondo_pa, 0);
  1100. sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
  1101. tb->dev_mondo_pa, 0);
  1102. sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
  1103. tb->resum_mondo_pa, 0);
  1104. sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
  1105. tb->nonresum_mondo_pa, 0);
  1106. }
  1107. cpu_clear(cpu, smp_commenced_mask);
  1108. membar_safe("#Sync");
  1109. local_irq_disable();
  1110. __asm__ __volatile__(
  1111. "rdpr %%pstate, %0\n\t"
  1112. "wrpr %0, %1, %%pstate"
  1113. : "=r" (pstate)
  1114. : "i" (PSTATE_IE));
  1115. while (1)
  1116. barrier();
  1117. }
  1118. int __cpu_disable(void)
  1119. {
  1120. int cpu = smp_processor_id();
  1121. cpuinfo_sparc *c;
  1122. int i;
  1123. for_each_cpu_mask(i, cpu_core_map[cpu])
  1124. cpu_clear(cpu, cpu_core_map[i]);
  1125. cpus_clear(cpu_core_map[cpu]);
  1126. for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
  1127. cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
  1128. cpus_clear(per_cpu(cpu_sibling_map, cpu));
  1129. c = &cpu_data(cpu);
  1130. c->core_id = 0;
  1131. c->proc_id = -1;
  1132. spin_lock(&call_lock);
  1133. cpu_clear(cpu, cpu_online_map);
  1134. spin_unlock(&call_lock);
  1135. smp_wmb();
  1136. /* Make sure no interrupts point to this cpu. */
  1137. fixup_irqs();
  1138. local_irq_enable();
  1139. mdelay(1);
  1140. local_irq_disable();
  1141. return 0;
  1142. }
  1143. void __cpu_die(unsigned int cpu)
  1144. {
  1145. int i;
  1146. for (i = 0; i < 100; i++) {
  1147. smp_rmb();
  1148. if (!cpu_isset(cpu, smp_commenced_mask))
  1149. break;
  1150. msleep(100);
  1151. }
  1152. if (cpu_isset(cpu, smp_commenced_mask)) {
  1153. printk(KERN_ERR "CPU %u didn't die...\n", cpu);
  1154. } else {
  1155. #if defined(CONFIG_SUN_LDOMS)
  1156. unsigned long hv_err;
  1157. int limit = 100;
  1158. do {
  1159. hv_err = sun4v_cpu_stop(cpu);
  1160. if (hv_err == HV_EOK) {
  1161. cpu_clear(cpu, cpu_present_map);
  1162. break;
  1163. }
  1164. } while (--limit > 0);
  1165. if (limit <= 0) {
  1166. printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
  1167. hv_err);
  1168. }
  1169. #endif
  1170. }
  1171. }
  1172. #endif
  1173. void __init smp_cpus_done(unsigned int max_cpus)
  1174. {
  1175. }
  1176. void smp_send_reschedule(int cpu)
  1177. {
  1178. smp_receive_signal(cpu);
  1179. }
  1180. /* This is a nop because we capture all other cpus
  1181. * anyways when making the PROM active.
  1182. */
  1183. void smp_send_stop(void)
  1184. {
  1185. }
  1186. unsigned long __per_cpu_base __read_mostly;
  1187. unsigned long __per_cpu_shift __read_mostly;
  1188. EXPORT_SYMBOL(__per_cpu_base);
  1189. EXPORT_SYMBOL(__per_cpu_shift);
  1190. void __init real_setup_per_cpu_areas(void)
  1191. {
  1192. unsigned long paddr, goal, size, i;
  1193. char *ptr;
  1194. /* Copy section for each CPU (we discard the original) */
  1195. goal = PERCPU_ENOUGH_ROOM;
  1196. __per_cpu_shift = PAGE_SHIFT;
  1197. for (size = PAGE_SIZE; size < goal; size <<= 1UL)
  1198. __per_cpu_shift++;
  1199. paddr = lmb_alloc(size * NR_CPUS, PAGE_SIZE);
  1200. if (!paddr) {
  1201. prom_printf("Cannot allocate per-cpu memory.\n");
  1202. prom_halt();
  1203. }
  1204. ptr = __va(paddr);
  1205. __per_cpu_base = ptr - __per_cpu_start;
  1206. for (i = 0; i < NR_CPUS; i++, ptr += size)
  1207. memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
  1208. /* Setup %g5 for the boot cpu. */
  1209. __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
  1210. }