smp.c 9.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430
  1. /* smp.c: Sparc SMP support.
  2. *
  3. * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
  4. * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  5. * Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org)
  6. */
  7. #include <asm/head.h>
  8. #include <linux/kernel.h>
  9. #include <linux/sched.h>
  10. #include <linux/threads.h>
  11. #include <linux/smp.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/kernel_stat.h>
  14. #include <linux/init.h>
  15. #include <linux/spinlock.h>
  16. #include <linux/mm.h>
  17. #include <linux/fs.h>
  18. #include <linux/seq_file.h>
  19. #include <linux/cache.h>
  20. #include <linux/delay.h>
  21. #include <asm/ptrace.h>
  22. #include <asm/atomic.h>
  23. #include <asm/irq.h>
  24. #include <asm/page.h>
  25. #include <asm/pgalloc.h>
  26. #include <asm/pgtable.h>
  27. #include <asm/oplib.h>
  28. #include <asm/cacheflush.h>
  29. #include <asm/tlbflush.h>
  30. #include <asm/cpudata.h>
  31. #include "irq.h"
  32. int smp_num_cpus = 1;
  33. volatile unsigned long cpu_callin_map[NR_CPUS] __initdata = {0,};
  34. unsigned char boot_cpu_id = 0;
  35. unsigned char boot_cpu_id4 = 0; /* boot_cpu_id << 2 */
  36. int smp_activated = 0;
  37. volatile int __cpu_number_map[NR_CPUS];
  38. volatile int __cpu_logical_map[NR_CPUS];
  39. cpumask_t cpu_online_map = CPU_MASK_NONE;
  40. cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
  41. cpumask_t smp_commenced_mask = CPU_MASK_NONE;
  42. /* The only guaranteed locking primitive available on all Sparc
  43. * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically
  44. * places the current byte at the effective address into dest_reg and
  45. * places 0xff there afterwards. Pretty lame locking primitive
  46. * compared to the Alpha and the Intel no? Most Sparcs have 'swap'
  47. * instruction which is much better...
  48. */
  49. /* Used to make bitops atomic */
  50. unsigned char bitops_spinlock = 0;
  51. void __cpuinit smp_store_cpu_info(int id)
  52. {
  53. int cpu_node;
  54. cpu_data(id).udelay_val = loops_per_jiffy;
  55. cpu_find_by_mid(id, &cpu_node);
  56. cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
  57. "clock-frequency", 0);
  58. cpu_data(id).prom_node = cpu_node;
  59. cpu_data(id).mid = cpu_get_hwmid(cpu_node);
  60. if (cpu_data(id).mid < 0)
  61. panic("No MID found for CPU%d at node 0x%08d", id, cpu_node);
  62. }
  63. void __init smp_cpus_done(unsigned int max_cpus)
  64. {
  65. extern void smp4m_smp_done(void);
  66. extern void smp4d_smp_done(void);
  67. unsigned long bogosum = 0;
  68. int cpu, num;
  69. for (cpu = 0, num = 0; cpu < NR_CPUS; cpu++)
  70. if (cpu_online(cpu)) {
  71. num++;
  72. bogosum += cpu_data(cpu).udelay_val;
  73. }
  74. printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
  75. num, bogosum/(500000/HZ),
  76. (bogosum/(5000/HZ))%100);
  77. switch(sparc_cpu_model) {
  78. case sun4:
  79. printk("SUN4\n");
  80. BUG();
  81. break;
  82. case sun4c:
  83. printk("SUN4C\n");
  84. BUG();
  85. break;
  86. case sun4m:
  87. smp4m_smp_done();
  88. break;
  89. case sun4d:
  90. smp4d_smp_done();
  91. break;
  92. case sun4e:
  93. printk("SUN4E\n");
  94. BUG();
  95. break;
  96. case sun4u:
  97. printk("SUN4U\n");
  98. BUG();
  99. break;
  100. default:
  101. printk("UNKNOWN!\n");
  102. BUG();
  103. break;
  104. };
  105. }
  106. void cpu_panic(void)
  107. {
  108. printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
  109. panic("SMP bolixed\n");
  110. }
  111. struct linux_prom_registers smp_penguin_ctable __initdata = { 0 };
  112. void smp_send_reschedule(int cpu)
  113. {
  114. /* See sparc64 */
  115. }
  116. void smp_send_stop(void)
  117. {
  118. }
  119. void smp_flush_cache_all(void)
  120. {
  121. xc0((smpfunc_t) BTFIXUP_CALL(local_flush_cache_all));
  122. local_flush_cache_all();
  123. }
  124. void smp_flush_tlb_all(void)
  125. {
  126. xc0((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_all));
  127. local_flush_tlb_all();
  128. }
  129. void smp_flush_cache_mm(struct mm_struct *mm)
  130. {
  131. if(mm->context != NO_CONTEXT) {
  132. cpumask_t cpu_mask = mm->cpu_vm_mask;
  133. cpu_clear(smp_processor_id(), cpu_mask);
  134. if (!cpus_empty(cpu_mask))
  135. xc1((smpfunc_t) BTFIXUP_CALL(local_flush_cache_mm), (unsigned long) mm);
  136. local_flush_cache_mm(mm);
  137. }
  138. }
  139. void smp_flush_tlb_mm(struct mm_struct *mm)
  140. {
  141. if(mm->context != NO_CONTEXT) {
  142. cpumask_t cpu_mask = mm->cpu_vm_mask;
  143. cpu_clear(smp_processor_id(), cpu_mask);
  144. if (!cpus_empty(cpu_mask)) {
  145. xc1((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_mm), (unsigned long) mm);
  146. if(atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
  147. mm->cpu_vm_mask = cpumask_of_cpu(smp_processor_id());
  148. }
  149. local_flush_tlb_mm(mm);
  150. }
  151. }
  152. void smp_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
  153. unsigned long end)
  154. {
  155. struct mm_struct *mm = vma->vm_mm;
  156. if (mm->context != NO_CONTEXT) {
  157. cpumask_t cpu_mask = mm->cpu_vm_mask;
  158. cpu_clear(smp_processor_id(), cpu_mask);
  159. if (!cpus_empty(cpu_mask))
  160. xc3((smpfunc_t) BTFIXUP_CALL(local_flush_cache_range), (unsigned long) vma, start, end);
  161. local_flush_cache_range(vma, start, end);
  162. }
  163. }
  164. void smp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
  165. unsigned long end)
  166. {
  167. struct mm_struct *mm = vma->vm_mm;
  168. if (mm->context != NO_CONTEXT) {
  169. cpumask_t cpu_mask = mm->cpu_vm_mask;
  170. cpu_clear(smp_processor_id(), cpu_mask);
  171. if (!cpus_empty(cpu_mask))
  172. xc3((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_range), (unsigned long) vma, start, end);
  173. local_flush_tlb_range(vma, start, end);
  174. }
  175. }
  176. void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
  177. {
  178. struct mm_struct *mm = vma->vm_mm;
  179. if(mm->context != NO_CONTEXT) {
  180. cpumask_t cpu_mask = mm->cpu_vm_mask;
  181. cpu_clear(smp_processor_id(), cpu_mask);
  182. if (!cpus_empty(cpu_mask))
  183. xc2((smpfunc_t) BTFIXUP_CALL(local_flush_cache_page), (unsigned long) vma, page);
  184. local_flush_cache_page(vma, page);
  185. }
  186. }
  187. void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
  188. {
  189. struct mm_struct *mm = vma->vm_mm;
  190. if(mm->context != NO_CONTEXT) {
  191. cpumask_t cpu_mask = mm->cpu_vm_mask;
  192. cpu_clear(smp_processor_id(), cpu_mask);
  193. if (!cpus_empty(cpu_mask))
  194. xc2((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_page), (unsigned long) vma, page);
  195. local_flush_tlb_page(vma, page);
  196. }
  197. }
  198. void smp_reschedule_irq(void)
  199. {
  200. set_need_resched();
  201. }
  202. void smp_flush_page_to_ram(unsigned long page)
  203. {
  204. /* Current theory is that those who call this are the one's
  205. * who have just dirtied their cache with the pages contents
  206. * in kernel space, therefore we only run this on local cpu.
  207. *
  208. * XXX This experiment failed, research further... -DaveM
  209. */
  210. #if 1
  211. xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_to_ram), page);
  212. #endif
  213. local_flush_page_to_ram(page);
  214. }
  215. void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
  216. {
  217. cpumask_t cpu_mask = mm->cpu_vm_mask;
  218. cpu_clear(smp_processor_id(), cpu_mask);
  219. if (!cpus_empty(cpu_mask))
  220. xc2((smpfunc_t) BTFIXUP_CALL(local_flush_sig_insns), (unsigned long) mm, insn_addr);
  221. local_flush_sig_insns(mm, insn_addr);
  222. }
  223. extern unsigned int lvl14_resolution;
  224. /* /proc/profile writes can call this, don't __init it please. */
  225. static DEFINE_SPINLOCK(prof_setup_lock);
  226. int setup_profiling_timer(unsigned int multiplier)
  227. {
  228. int i;
  229. unsigned long flags;
  230. /* Prevent level14 ticker IRQ flooding. */
  231. if((!multiplier) || (lvl14_resolution / multiplier) < 500)
  232. return -EINVAL;
  233. spin_lock_irqsave(&prof_setup_lock, flags);
  234. for_each_possible_cpu(i) {
  235. load_profile_irq(i, lvl14_resolution / multiplier);
  236. prof_multiplier(i) = multiplier;
  237. }
  238. spin_unlock_irqrestore(&prof_setup_lock, flags);
  239. return 0;
  240. }
  241. void __init smp_prepare_cpus(unsigned int max_cpus)
  242. {
  243. extern void __init smp4m_boot_cpus(void);
  244. extern void __init smp4d_boot_cpus(void);
  245. int i, cpuid, extra;
  246. printk("Entering SMP Mode...\n");
  247. extra = 0;
  248. for (i = 0; !cpu_find_by_instance(i, NULL, &cpuid); i++) {
  249. if (cpuid >= NR_CPUS)
  250. extra++;
  251. }
  252. /* i = number of cpus */
  253. if (extra && max_cpus > i - extra)
  254. printk("Warning: NR_CPUS is too low to start all cpus\n");
  255. smp_store_cpu_info(boot_cpu_id);
  256. switch(sparc_cpu_model) {
  257. case sun4:
  258. printk("SUN4\n");
  259. BUG();
  260. break;
  261. case sun4c:
  262. printk("SUN4C\n");
  263. BUG();
  264. break;
  265. case sun4m:
  266. smp4m_boot_cpus();
  267. break;
  268. case sun4d:
  269. smp4d_boot_cpus();
  270. break;
  271. case sun4e:
  272. printk("SUN4E\n");
  273. BUG();
  274. break;
  275. case sun4u:
  276. printk("SUN4U\n");
  277. BUG();
  278. break;
  279. default:
  280. printk("UNKNOWN!\n");
  281. BUG();
  282. break;
  283. };
  284. }
  285. /* Set this up early so that things like the scheduler can init
  286. * properly. We use the same cpu mask for both the present and
  287. * possible cpu map.
  288. */
  289. void __init smp_setup_cpu_possible_map(void)
  290. {
  291. int instance, mid;
  292. instance = 0;
  293. while (!cpu_find_by_instance(instance, NULL, &mid)) {
  294. if (mid < NR_CPUS) {
  295. cpu_set(mid, phys_cpu_present_map);
  296. cpu_set(mid, cpu_present_map);
  297. }
  298. instance++;
  299. }
  300. }
  301. void __init smp_prepare_boot_cpu(void)
  302. {
  303. int cpuid = hard_smp_processor_id();
  304. if (cpuid >= NR_CPUS) {
  305. prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
  306. prom_halt();
  307. }
  308. if (cpuid != 0)
  309. printk("boot cpu id != 0, this could work but is untested\n");
  310. current_thread_info()->cpu = cpuid;
  311. cpu_set(cpuid, cpu_online_map);
  312. cpu_set(cpuid, phys_cpu_present_map);
  313. }
  314. int __cpuinit __cpu_up(unsigned int cpu)
  315. {
  316. extern int __cpuinit smp4m_boot_one_cpu(int);
  317. extern int __cpuinit smp4d_boot_one_cpu(int);
  318. int ret=0;
  319. switch(sparc_cpu_model) {
  320. case sun4:
  321. printk("SUN4\n");
  322. BUG();
  323. break;
  324. case sun4c:
  325. printk("SUN4C\n");
  326. BUG();
  327. break;
  328. case sun4m:
  329. ret = smp4m_boot_one_cpu(cpu);
  330. break;
  331. case sun4d:
  332. ret = smp4d_boot_one_cpu(cpu);
  333. break;
  334. case sun4e:
  335. printk("SUN4E\n");
  336. BUG();
  337. break;
  338. case sun4u:
  339. printk("SUN4U\n");
  340. BUG();
  341. break;
  342. default:
  343. printk("UNKNOWN!\n");
  344. BUG();
  345. break;
  346. };
  347. if (!ret) {
  348. cpu_set(cpu, smp_commenced_mask);
  349. while (!cpu_online(cpu))
  350. mb();
  351. }
  352. return ret;
  353. }
  354. void smp_bogo(struct seq_file *m)
  355. {
  356. int i;
  357. for_each_online_cpu(i) {
  358. seq_printf(m,
  359. "Cpu%dBogo\t: %lu.%02lu\n",
  360. i,
  361. cpu_data(i).udelay_val/(500000/HZ),
  362. (cpu_data(i).udelay_val/(5000/HZ))%100);
  363. }
  364. }
  365. void smp_info(struct seq_file *m)
  366. {
  367. int i;
  368. seq_printf(m, "State:\n");
  369. for_each_online_cpu(i)
  370. seq_printf(m, "CPU%d\t\t: online\n", i);
  371. }