kvm_main.c 60 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "iodev.h"
  18. #include <linux/kvm_host.h>
  19. #include <linux/kvm.h>
  20. #include <linux/module.h>
  21. #include <linux/errno.h>
  22. #include <linux/percpu.h>
  23. #include <linux/gfp.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <linux/bitops.h>
  43. #include <linux/spinlock.h>
  44. #include <asm/processor.h>
  45. #include <asm/io.h>
  46. #include <asm/uaccess.h>
  47. #include <asm/pgtable.h>
  48. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  49. #include "coalesced_mmio.h"
  50. #endif
  51. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  52. #include <linux/pci.h>
  53. #include <linux/interrupt.h>
  54. #include "irq.h"
  55. #endif
  56. MODULE_AUTHOR("Qumranet");
  57. MODULE_LICENSE("GPL");
  58. DEFINE_SPINLOCK(kvm_lock);
  59. LIST_HEAD(vm_list);
  60. static cpumask_var_t cpus_hardware_enabled;
  61. struct kmem_cache *kvm_vcpu_cache;
  62. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  63. static __read_mostly struct preempt_ops kvm_preempt_ops;
  64. struct dentry *kvm_debugfs_dir;
  65. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  66. unsigned long arg);
  67. static bool kvm_rebooting;
  68. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  69. static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
  70. int assigned_dev_id)
  71. {
  72. struct list_head *ptr;
  73. struct kvm_assigned_dev_kernel *match;
  74. list_for_each(ptr, head) {
  75. match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
  76. if (match->assigned_dev_id == assigned_dev_id)
  77. return match;
  78. }
  79. return NULL;
  80. }
  81. static int find_index_from_host_irq(struct kvm_assigned_dev_kernel
  82. *assigned_dev, int irq)
  83. {
  84. int i, index;
  85. struct msix_entry *host_msix_entries;
  86. host_msix_entries = assigned_dev->host_msix_entries;
  87. index = -1;
  88. for (i = 0; i < assigned_dev->entries_nr; i++)
  89. if (irq == host_msix_entries[i].vector) {
  90. index = i;
  91. break;
  92. }
  93. if (index < 0) {
  94. printk(KERN_WARNING "Fail to find correlated MSI-X entry!\n");
  95. return 0;
  96. }
  97. return index;
  98. }
  99. static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
  100. {
  101. struct kvm_assigned_dev_kernel *assigned_dev;
  102. struct kvm *kvm;
  103. int irq, i;
  104. assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
  105. interrupt_work);
  106. kvm = assigned_dev->kvm;
  107. /* This is taken to safely inject irq inside the guest. When
  108. * the interrupt injection (or the ioapic code) uses a
  109. * finer-grained lock, update this
  110. */
  111. mutex_lock(&kvm->lock);
  112. spin_lock_irq(&assigned_dev->assigned_dev_lock);
  113. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
  114. struct kvm_guest_msix_entry *guest_entries =
  115. assigned_dev->guest_msix_entries;
  116. for (i = 0; i < assigned_dev->entries_nr; i++) {
  117. if (!(guest_entries[i].flags &
  118. KVM_ASSIGNED_MSIX_PENDING))
  119. continue;
  120. guest_entries[i].flags &= ~KVM_ASSIGNED_MSIX_PENDING;
  121. kvm_set_irq(assigned_dev->kvm,
  122. assigned_dev->irq_source_id,
  123. guest_entries[i].vector, 1);
  124. irq = assigned_dev->host_msix_entries[i].vector;
  125. if (irq != 0)
  126. enable_irq(irq);
  127. assigned_dev->host_irq_disabled = false;
  128. }
  129. } else {
  130. kvm_set_irq(assigned_dev->kvm, assigned_dev->irq_source_id,
  131. assigned_dev->guest_irq, 1);
  132. if (assigned_dev->irq_requested_type &
  133. KVM_DEV_IRQ_GUEST_MSI) {
  134. enable_irq(assigned_dev->host_irq);
  135. assigned_dev->host_irq_disabled = false;
  136. }
  137. }
  138. spin_unlock_irq(&assigned_dev->assigned_dev_lock);
  139. mutex_unlock(&assigned_dev->kvm->lock);
  140. }
  141. static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
  142. {
  143. unsigned long flags;
  144. struct kvm_assigned_dev_kernel *assigned_dev =
  145. (struct kvm_assigned_dev_kernel *) dev_id;
  146. spin_lock_irqsave(&assigned_dev->assigned_dev_lock, flags);
  147. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
  148. int index = find_index_from_host_irq(assigned_dev, irq);
  149. if (index < 0)
  150. goto out;
  151. assigned_dev->guest_msix_entries[index].flags |=
  152. KVM_ASSIGNED_MSIX_PENDING;
  153. }
  154. schedule_work(&assigned_dev->interrupt_work);
  155. disable_irq_nosync(irq);
  156. assigned_dev->host_irq_disabled = true;
  157. out:
  158. spin_unlock_irqrestore(&assigned_dev->assigned_dev_lock, flags);
  159. return IRQ_HANDLED;
  160. }
  161. /* Ack the irq line for an assigned device */
  162. static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
  163. {
  164. struct kvm_assigned_dev_kernel *dev;
  165. unsigned long flags;
  166. if (kian->gsi == -1)
  167. return;
  168. dev = container_of(kian, struct kvm_assigned_dev_kernel,
  169. ack_notifier);
  170. kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
  171. /* The guest irq may be shared so this ack may be
  172. * from another device.
  173. */
  174. spin_lock_irqsave(&dev->assigned_dev_lock, flags);
  175. if (dev->host_irq_disabled) {
  176. enable_irq(dev->host_irq);
  177. dev->host_irq_disabled = false;
  178. }
  179. spin_unlock_irqrestore(&dev->assigned_dev_lock, flags);
  180. }
  181. static void deassign_guest_irq(struct kvm *kvm,
  182. struct kvm_assigned_dev_kernel *assigned_dev)
  183. {
  184. kvm_unregister_irq_ack_notifier(&assigned_dev->ack_notifier);
  185. assigned_dev->ack_notifier.gsi = -1;
  186. if (assigned_dev->irq_source_id != -1)
  187. kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
  188. assigned_dev->irq_source_id = -1;
  189. assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_GUEST_MASK);
  190. }
  191. /* The function implicit hold kvm->lock mutex due to cancel_work_sync() */
  192. static void deassign_host_irq(struct kvm *kvm,
  193. struct kvm_assigned_dev_kernel *assigned_dev)
  194. {
  195. /*
  196. * In kvm_free_device_irq, cancel_work_sync return true if:
  197. * 1. work is scheduled, and then cancelled.
  198. * 2. work callback is executed.
  199. *
  200. * The first one ensured that the irq is disabled and no more events
  201. * would happen. But for the second one, the irq may be enabled (e.g.
  202. * for MSI). So we disable irq here to prevent further events.
  203. *
  204. * Notice this maybe result in nested disable if the interrupt type is
  205. * INTx, but it's OK for we are going to free it.
  206. *
  207. * If this function is a part of VM destroy, please ensure that till
  208. * now, the kvm state is still legal for probably we also have to wait
  209. * interrupt_work done.
  210. */
  211. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
  212. int i;
  213. for (i = 0; i < assigned_dev->entries_nr; i++)
  214. disable_irq_nosync(assigned_dev->
  215. host_msix_entries[i].vector);
  216. cancel_work_sync(&assigned_dev->interrupt_work);
  217. for (i = 0; i < assigned_dev->entries_nr; i++)
  218. free_irq(assigned_dev->host_msix_entries[i].vector,
  219. (void *)assigned_dev);
  220. assigned_dev->entries_nr = 0;
  221. kfree(assigned_dev->host_msix_entries);
  222. kfree(assigned_dev->guest_msix_entries);
  223. pci_disable_msix(assigned_dev->dev);
  224. } else {
  225. /* Deal with MSI and INTx */
  226. disable_irq_nosync(assigned_dev->host_irq);
  227. cancel_work_sync(&assigned_dev->interrupt_work);
  228. free_irq(assigned_dev->host_irq, (void *)assigned_dev);
  229. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSI)
  230. pci_disable_msi(assigned_dev->dev);
  231. }
  232. assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_HOST_MASK);
  233. }
  234. static int kvm_deassign_irq(struct kvm *kvm,
  235. struct kvm_assigned_dev_kernel *assigned_dev,
  236. unsigned long irq_requested_type)
  237. {
  238. unsigned long guest_irq_type, host_irq_type;
  239. if (!irqchip_in_kernel(kvm))
  240. return -EINVAL;
  241. /* no irq assignment to deassign */
  242. if (!assigned_dev->irq_requested_type)
  243. return -ENXIO;
  244. host_irq_type = irq_requested_type & KVM_DEV_IRQ_HOST_MASK;
  245. guest_irq_type = irq_requested_type & KVM_DEV_IRQ_GUEST_MASK;
  246. if (host_irq_type)
  247. deassign_host_irq(kvm, assigned_dev);
  248. if (guest_irq_type)
  249. deassign_guest_irq(kvm, assigned_dev);
  250. return 0;
  251. }
  252. static void kvm_free_assigned_irq(struct kvm *kvm,
  253. struct kvm_assigned_dev_kernel *assigned_dev)
  254. {
  255. kvm_deassign_irq(kvm, assigned_dev, assigned_dev->irq_requested_type);
  256. }
  257. static void kvm_free_assigned_device(struct kvm *kvm,
  258. struct kvm_assigned_dev_kernel
  259. *assigned_dev)
  260. {
  261. kvm_free_assigned_irq(kvm, assigned_dev);
  262. pci_reset_function(assigned_dev->dev);
  263. pci_release_regions(assigned_dev->dev);
  264. pci_disable_device(assigned_dev->dev);
  265. pci_dev_put(assigned_dev->dev);
  266. list_del(&assigned_dev->list);
  267. kfree(assigned_dev);
  268. }
  269. void kvm_free_all_assigned_devices(struct kvm *kvm)
  270. {
  271. struct list_head *ptr, *ptr2;
  272. struct kvm_assigned_dev_kernel *assigned_dev;
  273. list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
  274. assigned_dev = list_entry(ptr,
  275. struct kvm_assigned_dev_kernel,
  276. list);
  277. kvm_free_assigned_device(kvm, assigned_dev);
  278. }
  279. }
  280. static int assigned_device_enable_host_intx(struct kvm *kvm,
  281. struct kvm_assigned_dev_kernel *dev)
  282. {
  283. dev->host_irq = dev->dev->irq;
  284. /* Even though this is PCI, we don't want to use shared
  285. * interrupts. Sharing host devices with guest-assigned devices
  286. * on the same interrupt line is not a happy situation: there
  287. * are going to be long delays in accepting, acking, etc.
  288. */
  289. if (request_irq(dev->host_irq, kvm_assigned_dev_intr,
  290. 0, "kvm_assigned_intx_device", (void *)dev))
  291. return -EIO;
  292. return 0;
  293. }
  294. #ifdef __KVM_HAVE_MSI
  295. static int assigned_device_enable_host_msi(struct kvm *kvm,
  296. struct kvm_assigned_dev_kernel *dev)
  297. {
  298. int r;
  299. if (!dev->dev->msi_enabled) {
  300. r = pci_enable_msi(dev->dev);
  301. if (r)
  302. return r;
  303. }
  304. dev->host_irq = dev->dev->irq;
  305. if (request_irq(dev->host_irq, kvm_assigned_dev_intr, 0,
  306. "kvm_assigned_msi_device", (void *)dev)) {
  307. pci_disable_msi(dev->dev);
  308. return -EIO;
  309. }
  310. return 0;
  311. }
  312. #endif
  313. #ifdef __KVM_HAVE_MSIX
  314. static int assigned_device_enable_host_msix(struct kvm *kvm,
  315. struct kvm_assigned_dev_kernel *dev)
  316. {
  317. int i, r = -EINVAL;
  318. /* host_msix_entries and guest_msix_entries should have been
  319. * initialized */
  320. if (dev->entries_nr == 0)
  321. return r;
  322. r = pci_enable_msix(dev->dev, dev->host_msix_entries, dev->entries_nr);
  323. if (r)
  324. return r;
  325. for (i = 0; i < dev->entries_nr; i++) {
  326. r = request_irq(dev->host_msix_entries[i].vector,
  327. kvm_assigned_dev_intr, 0,
  328. "kvm_assigned_msix_device",
  329. (void *)dev);
  330. /* FIXME: free requested_irq's on failure */
  331. if (r)
  332. return r;
  333. }
  334. return 0;
  335. }
  336. #endif
  337. static int assigned_device_enable_guest_intx(struct kvm *kvm,
  338. struct kvm_assigned_dev_kernel *dev,
  339. struct kvm_assigned_irq *irq)
  340. {
  341. dev->guest_irq = irq->guest_irq;
  342. dev->ack_notifier.gsi = irq->guest_irq;
  343. return 0;
  344. }
  345. #ifdef __KVM_HAVE_MSI
  346. static int assigned_device_enable_guest_msi(struct kvm *kvm,
  347. struct kvm_assigned_dev_kernel *dev,
  348. struct kvm_assigned_irq *irq)
  349. {
  350. dev->guest_irq = irq->guest_irq;
  351. dev->ack_notifier.gsi = -1;
  352. return 0;
  353. }
  354. #endif
  355. #ifdef __KVM_HAVE_MSIX
  356. static int assigned_device_enable_guest_msix(struct kvm *kvm,
  357. struct kvm_assigned_dev_kernel *dev,
  358. struct kvm_assigned_irq *irq)
  359. {
  360. dev->guest_irq = irq->guest_irq;
  361. dev->ack_notifier.gsi = -1;
  362. return 0;
  363. }
  364. #endif
  365. static int assign_host_irq(struct kvm *kvm,
  366. struct kvm_assigned_dev_kernel *dev,
  367. __u32 host_irq_type)
  368. {
  369. int r = -EEXIST;
  370. if (dev->irq_requested_type & KVM_DEV_IRQ_HOST_MASK)
  371. return r;
  372. switch (host_irq_type) {
  373. case KVM_DEV_IRQ_HOST_INTX:
  374. r = assigned_device_enable_host_intx(kvm, dev);
  375. break;
  376. #ifdef __KVM_HAVE_MSI
  377. case KVM_DEV_IRQ_HOST_MSI:
  378. r = assigned_device_enable_host_msi(kvm, dev);
  379. break;
  380. #endif
  381. #ifdef __KVM_HAVE_MSIX
  382. case KVM_DEV_IRQ_HOST_MSIX:
  383. r = assigned_device_enable_host_msix(kvm, dev);
  384. break;
  385. #endif
  386. default:
  387. r = -EINVAL;
  388. }
  389. if (!r)
  390. dev->irq_requested_type |= host_irq_type;
  391. return r;
  392. }
  393. static int assign_guest_irq(struct kvm *kvm,
  394. struct kvm_assigned_dev_kernel *dev,
  395. struct kvm_assigned_irq *irq,
  396. unsigned long guest_irq_type)
  397. {
  398. int id;
  399. int r = -EEXIST;
  400. if (dev->irq_requested_type & KVM_DEV_IRQ_GUEST_MASK)
  401. return r;
  402. id = kvm_request_irq_source_id(kvm);
  403. if (id < 0)
  404. return id;
  405. dev->irq_source_id = id;
  406. switch (guest_irq_type) {
  407. case KVM_DEV_IRQ_GUEST_INTX:
  408. r = assigned_device_enable_guest_intx(kvm, dev, irq);
  409. break;
  410. #ifdef __KVM_HAVE_MSI
  411. case KVM_DEV_IRQ_GUEST_MSI:
  412. r = assigned_device_enable_guest_msi(kvm, dev, irq);
  413. break;
  414. #endif
  415. #ifdef __KVM_HAVE_MSIX
  416. case KVM_DEV_IRQ_GUEST_MSIX:
  417. r = assigned_device_enable_guest_msix(kvm, dev, irq);
  418. break;
  419. #endif
  420. default:
  421. r = -EINVAL;
  422. }
  423. if (!r) {
  424. dev->irq_requested_type |= guest_irq_type;
  425. kvm_register_irq_ack_notifier(kvm, &dev->ack_notifier);
  426. } else
  427. kvm_free_irq_source_id(kvm, dev->irq_source_id);
  428. return r;
  429. }
  430. /* TODO Deal with KVM_DEV_IRQ_ASSIGNED_MASK_MSIX */
  431. static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
  432. struct kvm_assigned_irq *assigned_irq)
  433. {
  434. int r = -EINVAL;
  435. struct kvm_assigned_dev_kernel *match;
  436. unsigned long host_irq_type, guest_irq_type;
  437. if (!capable(CAP_SYS_RAWIO))
  438. return -EPERM;
  439. if (!irqchip_in_kernel(kvm))
  440. return r;
  441. mutex_lock(&kvm->lock);
  442. r = -ENODEV;
  443. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  444. assigned_irq->assigned_dev_id);
  445. if (!match)
  446. goto out;
  447. host_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_HOST_MASK);
  448. guest_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_GUEST_MASK);
  449. r = -EINVAL;
  450. /* can only assign one type at a time */
  451. if (hweight_long(host_irq_type) > 1)
  452. goto out;
  453. if (hweight_long(guest_irq_type) > 1)
  454. goto out;
  455. if (host_irq_type == 0 && guest_irq_type == 0)
  456. goto out;
  457. r = 0;
  458. if (host_irq_type)
  459. r = assign_host_irq(kvm, match, host_irq_type);
  460. if (r)
  461. goto out;
  462. if (guest_irq_type)
  463. r = assign_guest_irq(kvm, match, assigned_irq, guest_irq_type);
  464. out:
  465. mutex_unlock(&kvm->lock);
  466. return r;
  467. }
  468. static int kvm_vm_ioctl_deassign_dev_irq(struct kvm *kvm,
  469. struct kvm_assigned_irq
  470. *assigned_irq)
  471. {
  472. int r = -ENODEV;
  473. struct kvm_assigned_dev_kernel *match;
  474. mutex_lock(&kvm->lock);
  475. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  476. assigned_irq->assigned_dev_id);
  477. if (!match)
  478. goto out;
  479. r = kvm_deassign_irq(kvm, match, assigned_irq->flags);
  480. out:
  481. mutex_unlock(&kvm->lock);
  482. return r;
  483. }
  484. static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
  485. struct kvm_assigned_pci_dev *assigned_dev)
  486. {
  487. int r = 0;
  488. struct kvm_assigned_dev_kernel *match;
  489. struct pci_dev *dev;
  490. down_read(&kvm->slots_lock);
  491. mutex_lock(&kvm->lock);
  492. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  493. assigned_dev->assigned_dev_id);
  494. if (match) {
  495. /* device already assigned */
  496. r = -EEXIST;
  497. goto out;
  498. }
  499. match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
  500. if (match == NULL) {
  501. printk(KERN_INFO "%s: Couldn't allocate memory\n",
  502. __func__);
  503. r = -ENOMEM;
  504. goto out;
  505. }
  506. dev = pci_get_bus_and_slot(assigned_dev->busnr,
  507. assigned_dev->devfn);
  508. if (!dev) {
  509. printk(KERN_INFO "%s: host device not found\n", __func__);
  510. r = -EINVAL;
  511. goto out_free;
  512. }
  513. if (pci_enable_device(dev)) {
  514. printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
  515. r = -EBUSY;
  516. goto out_put;
  517. }
  518. r = pci_request_regions(dev, "kvm_assigned_device");
  519. if (r) {
  520. printk(KERN_INFO "%s: Could not get access to device regions\n",
  521. __func__);
  522. goto out_disable;
  523. }
  524. pci_reset_function(dev);
  525. match->assigned_dev_id = assigned_dev->assigned_dev_id;
  526. match->host_busnr = assigned_dev->busnr;
  527. match->host_devfn = assigned_dev->devfn;
  528. match->flags = assigned_dev->flags;
  529. match->dev = dev;
  530. spin_lock_init(&match->assigned_dev_lock);
  531. match->irq_source_id = -1;
  532. match->kvm = kvm;
  533. match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq;
  534. INIT_WORK(&match->interrupt_work,
  535. kvm_assigned_dev_interrupt_work_handler);
  536. list_add(&match->list, &kvm->arch.assigned_dev_head);
  537. if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
  538. if (!kvm->arch.iommu_domain) {
  539. r = kvm_iommu_map_guest(kvm);
  540. if (r)
  541. goto out_list_del;
  542. }
  543. r = kvm_assign_device(kvm, match);
  544. if (r)
  545. goto out_list_del;
  546. }
  547. out:
  548. mutex_unlock(&kvm->lock);
  549. up_read(&kvm->slots_lock);
  550. return r;
  551. out_list_del:
  552. list_del(&match->list);
  553. pci_release_regions(dev);
  554. out_disable:
  555. pci_disable_device(dev);
  556. out_put:
  557. pci_dev_put(dev);
  558. out_free:
  559. kfree(match);
  560. mutex_unlock(&kvm->lock);
  561. up_read(&kvm->slots_lock);
  562. return r;
  563. }
  564. #endif
  565. #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
  566. static int kvm_vm_ioctl_deassign_device(struct kvm *kvm,
  567. struct kvm_assigned_pci_dev *assigned_dev)
  568. {
  569. int r = 0;
  570. struct kvm_assigned_dev_kernel *match;
  571. mutex_lock(&kvm->lock);
  572. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  573. assigned_dev->assigned_dev_id);
  574. if (!match) {
  575. printk(KERN_INFO "%s: device hasn't been assigned before, "
  576. "so cannot be deassigned\n", __func__);
  577. r = -EINVAL;
  578. goto out;
  579. }
  580. if (match->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU)
  581. kvm_deassign_device(kvm, match);
  582. kvm_free_assigned_device(kvm, match);
  583. out:
  584. mutex_unlock(&kvm->lock);
  585. return r;
  586. }
  587. #endif
  588. static inline int valid_vcpu(int n)
  589. {
  590. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  591. }
  592. inline int kvm_is_mmio_pfn(pfn_t pfn)
  593. {
  594. if (pfn_valid(pfn)) {
  595. struct page *page = compound_head(pfn_to_page(pfn));
  596. return PageReserved(page);
  597. }
  598. return true;
  599. }
  600. /*
  601. * Switches to specified vcpu, until a matching vcpu_put()
  602. */
  603. void vcpu_load(struct kvm_vcpu *vcpu)
  604. {
  605. int cpu;
  606. mutex_lock(&vcpu->mutex);
  607. cpu = get_cpu();
  608. preempt_notifier_register(&vcpu->preempt_notifier);
  609. kvm_arch_vcpu_load(vcpu, cpu);
  610. put_cpu();
  611. }
  612. void vcpu_put(struct kvm_vcpu *vcpu)
  613. {
  614. preempt_disable();
  615. kvm_arch_vcpu_put(vcpu);
  616. preempt_notifier_unregister(&vcpu->preempt_notifier);
  617. preempt_enable();
  618. mutex_unlock(&vcpu->mutex);
  619. }
  620. static void ack_flush(void *_completed)
  621. {
  622. }
  623. static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
  624. {
  625. int i, cpu, me;
  626. cpumask_var_t cpus;
  627. bool called = true;
  628. struct kvm_vcpu *vcpu;
  629. if (alloc_cpumask_var(&cpus, GFP_ATOMIC))
  630. cpumask_clear(cpus);
  631. me = get_cpu();
  632. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  633. vcpu = kvm->vcpus[i];
  634. if (!vcpu)
  635. continue;
  636. if (test_and_set_bit(req, &vcpu->requests))
  637. continue;
  638. cpu = vcpu->cpu;
  639. if (cpus != NULL && cpu != -1 && cpu != me)
  640. cpumask_set_cpu(cpu, cpus);
  641. }
  642. if (unlikely(cpus == NULL))
  643. smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
  644. else if (!cpumask_empty(cpus))
  645. smp_call_function_many(cpus, ack_flush, NULL, 1);
  646. else
  647. called = false;
  648. put_cpu();
  649. free_cpumask_var(cpus);
  650. return called;
  651. }
  652. void kvm_flush_remote_tlbs(struct kvm *kvm)
  653. {
  654. if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
  655. ++kvm->stat.remote_tlb_flush;
  656. }
  657. void kvm_reload_remote_mmus(struct kvm *kvm)
  658. {
  659. make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
  660. }
  661. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  662. {
  663. struct page *page;
  664. int r;
  665. mutex_init(&vcpu->mutex);
  666. vcpu->cpu = -1;
  667. vcpu->kvm = kvm;
  668. vcpu->vcpu_id = id;
  669. init_waitqueue_head(&vcpu->wq);
  670. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  671. if (!page) {
  672. r = -ENOMEM;
  673. goto fail;
  674. }
  675. vcpu->run = page_address(page);
  676. r = kvm_arch_vcpu_init(vcpu);
  677. if (r < 0)
  678. goto fail_free_run;
  679. return 0;
  680. fail_free_run:
  681. free_page((unsigned long)vcpu->run);
  682. fail:
  683. return r;
  684. }
  685. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  686. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  687. {
  688. kvm_arch_vcpu_uninit(vcpu);
  689. free_page((unsigned long)vcpu->run);
  690. }
  691. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  692. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  693. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  694. {
  695. return container_of(mn, struct kvm, mmu_notifier);
  696. }
  697. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  698. struct mm_struct *mm,
  699. unsigned long address)
  700. {
  701. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  702. int need_tlb_flush;
  703. /*
  704. * When ->invalidate_page runs, the linux pte has been zapped
  705. * already but the page is still allocated until
  706. * ->invalidate_page returns. So if we increase the sequence
  707. * here the kvm page fault will notice if the spte can't be
  708. * established because the page is going to be freed. If
  709. * instead the kvm page fault establishes the spte before
  710. * ->invalidate_page runs, kvm_unmap_hva will release it
  711. * before returning.
  712. *
  713. * The sequence increase only need to be seen at spin_unlock
  714. * time, and not at spin_lock time.
  715. *
  716. * Increasing the sequence after the spin_unlock would be
  717. * unsafe because the kvm page fault could then establish the
  718. * pte after kvm_unmap_hva returned, without noticing the page
  719. * is going to be freed.
  720. */
  721. spin_lock(&kvm->mmu_lock);
  722. kvm->mmu_notifier_seq++;
  723. need_tlb_flush = kvm_unmap_hva(kvm, address);
  724. spin_unlock(&kvm->mmu_lock);
  725. /* we've to flush the tlb before the pages can be freed */
  726. if (need_tlb_flush)
  727. kvm_flush_remote_tlbs(kvm);
  728. }
  729. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  730. struct mm_struct *mm,
  731. unsigned long start,
  732. unsigned long end)
  733. {
  734. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  735. int need_tlb_flush = 0;
  736. spin_lock(&kvm->mmu_lock);
  737. /*
  738. * The count increase must become visible at unlock time as no
  739. * spte can be established without taking the mmu_lock and
  740. * count is also read inside the mmu_lock critical section.
  741. */
  742. kvm->mmu_notifier_count++;
  743. for (; start < end; start += PAGE_SIZE)
  744. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  745. spin_unlock(&kvm->mmu_lock);
  746. /* we've to flush the tlb before the pages can be freed */
  747. if (need_tlb_flush)
  748. kvm_flush_remote_tlbs(kvm);
  749. }
  750. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  751. struct mm_struct *mm,
  752. unsigned long start,
  753. unsigned long end)
  754. {
  755. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  756. spin_lock(&kvm->mmu_lock);
  757. /*
  758. * This sequence increase will notify the kvm page fault that
  759. * the page that is going to be mapped in the spte could have
  760. * been freed.
  761. */
  762. kvm->mmu_notifier_seq++;
  763. /*
  764. * The above sequence increase must be visible before the
  765. * below count decrease but both values are read by the kvm
  766. * page fault under mmu_lock spinlock so we don't need to add
  767. * a smb_wmb() here in between the two.
  768. */
  769. kvm->mmu_notifier_count--;
  770. spin_unlock(&kvm->mmu_lock);
  771. BUG_ON(kvm->mmu_notifier_count < 0);
  772. }
  773. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  774. struct mm_struct *mm,
  775. unsigned long address)
  776. {
  777. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  778. int young;
  779. spin_lock(&kvm->mmu_lock);
  780. young = kvm_age_hva(kvm, address);
  781. spin_unlock(&kvm->mmu_lock);
  782. if (young)
  783. kvm_flush_remote_tlbs(kvm);
  784. return young;
  785. }
  786. static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
  787. struct mm_struct *mm)
  788. {
  789. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  790. kvm_arch_flush_shadow(kvm);
  791. }
  792. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  793. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  794. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  795. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  796. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  797. .release = kvm_mmu_notifier_release,
  798. };
  799. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  800. static struct kvm *kvm_create_vm(void)
  801. {
  802. struct kvm *kvm = kvm_arch_create_vm();
  803. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  804. struct page *page;
  805. #endif
  806. if (IS_ERR(kvm))
  807. goto out;
  808. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  809. INIT_LIST_HEAD(&kvm->irq_routing);
  810. INIT_HLIST_HEAD(&kvm->mask_notifier_list);
  811. #endif
  812. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  813. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  814. if (!page) {
  815. kfree(kvm);
  816. return ERR_PTR(-ENOMEM);
  817. }
  818. kvm->coalesced_mmio_ring =
  819. (struct kvm_coalesced_mmio_ring *)page_address(page);
  820. #endif
  821. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  822. {
  823. int err;
  824. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  825. err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  826. if (err) {
  827. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  828. put_page(page);
  829. #endif
  830. kfree(kvm);
  831. return ERR_PTR(err);
  832. }
  833. }
  834. #endif
  835. kvm->mm = current->mm;
  836. atomic_inc(&kvm->mm->mm_count);
  837. spin_lock_init(&kvm->mmu_lock);
  838. kvm_io_bus_init(&kvm->pio_bus);
  839. mutex_init(&kvm->lock);
  840. kvm_io_bus_init(&kvm->mmio_bus);
  841. init_rwsem(&kvm->slots_lock);
  842. atomic_set(&kvm->users_count, 1);
  843. spin_lock(&kvm_lock);
  844. list_add(&kvm->vm_list, &vm_list);
  845. spin_unlock(&kvm_lock);
  846. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  847. kvm_coalesced_mmio_init(kvm);
  848. #endif
  849. out:
  850. return kvm;
  851. }
  852. /*
  853. * Free any memory in @free but not in @dont.
  854. */
  855. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  856. struct kvm_memory_slot *dont)
  857. {
  858. if (!dont || free->rmap != dont->rmap)
  859. vfree(free->rmap);
  860. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  861. vfree(free->dirty_bitmap);
  862. if (!dont || free->lpage_info != dont->lpage_info)
  863. vfree(free->lpage_info);
  864. free->npages = 0;
  865. free->dirty_bitmap = NULL;
  866. free->rmap = NULL;
  867. free->lpage_info = NULL;
  868. }
  869. void kvm_free_physmem(struct kvm *kvm)
  870. {
  871. int i;
  872. for (i = 0; i < kvm->nmemslots; ++i)
  873. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  874. }
  875. static void kvm_destroy_vm(struct kvm *kvm)
  876. {
  877. struct mm_struct *mm = kvm->mm;
  878. kvm_arch_sync_events(kvm);
  879. spin_lock(&kvm_lock);
  880. list_del(&kvm->vm_list);
  881. spin_unlock(&kvm_lock);
  882. kvm_free_irq_routing(kvm);
  883. kvm_io_bus_destroy(&kvm->pio_bus);
  884. kvm_io_bus_destroy(&kvm->mmio_bus);
  885. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  886. if (kvm->coalesced_mmio_ring != NULL)
  887. free_page((unsigned long)kvm->coalesced_mmio_ring);
  888. #endif
  889. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  890. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  891. #else
  892. kvm_arch_flush_shadow(kvm);
  893. #endif
  894. kvm_arch_destroy_vm(kvm);
  895. mmdrop(mm);
  896. }
  897. void kvm_get_kvm(struct kvm *kvm)
  898. {
  899. atomic_inc(&kvm->users_count);
  900. }
  901. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  902. void kvm_put_kvm(struct kvm *kvm)
  903. {
  904. if (atomic_dec_and_test(&kvm->users_count))
  905. kvm_destroy_vm(kvm);
  906. }
  907. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  908. static int kvm_vm_release(struct inode *inode, struct file *filp)
  909. {
  910. struct kvm *kvm = filp->private_data;
  911. kvm_put_kvm(kvm);
  912. return 0;
  913. }
  914. /*
  915. * Allocate some memory and give it an address in the guest physical address
  916. * space.
  917. *
  918. * Discontiguous memory is allowed, mostly for framebuffers.
  919. *
  920. * Must be called holding mmap_sem for write.
  921. */
  922. int __kvm_set_memory_region(struct kvm *kvm,
  923. struct kvm_userspace_memory_region *mem,
  924. int user_alloc)
  925. {
  926. int r;
  927. gfn_t base_gfn;
  928. unsigned long npages, ugfn;
  929. unsigned long largepages, i;
  930. struct kvm_memory_slot *memslot;
  931. struct kvm_memory_slot old, new;
  932. r = -EINVAL;
  933. /* General sanity checks */
  934. if (mem->memory_size & (PAGE_SIZE - 1))
  935. goto out;
  936. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  937. goto out;
  938. if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
  939. goto out;
  940. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  941. goto out;
  942. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  943. goto out;
  944. memslot = &kvm->memslots[mem->slot];
  945. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  946. npages = mem->memory_size >> PAGE_SHIFT;
  947. if (!npages)
  948. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  949. new = old = *memslot;
  950. new.base_gfn = base_gfn;
  951. new.npages = npages;
  952. new.flags = mem->flags;
  953. /* Disallow changing a memory slot's size. */
  954. r = -EINVAL;
  955. if (npages && old.npages && npages != old.npages)
  956. goto out_free;
  957. /* Check for overlaps */
  958. r = -EEXIST;
  959. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  960. struct kvm_memory_slot *s = &kvm->memslots[i];
  961. if (s == memslot || !s->npages)
  962. continue;
  963. if (!((base_gfn + npages <= s->base_gfn) ||
  964. (base_gfn >= s->base_gfn + s->npages)))
  965. goto out_free;
  966. }
  967. /* Free page dirty bitmap if unneeded */
  968. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  969. new.dirty_bitmap = NULL;
  970. r = -ENOMEM;
  971. /* Allocate if a slot is being created */
  972. #ifndef CONFIG_S390
  973. if (npages && !new.rmap) {
  974. new.rmap = vmalloc(npages * sizeof(struct page *));
  975. if (!new.rmap)
  976. goto out_free;
  977. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  978. new.user_alloc = user_alloc;
  979. /*
  980. * hva_to_rmmap() serialzies with the mmu_lock and to be
  981. * safe it has to ignore memslots with !user_alloc &&
  982. * !userspace_addr.
  983. */
  984. if (user_alloc)
  985. new.userspace_addr = mem->userspace_addr;
  986. else
  987. new.userspace_addr = 0;
  988. }
  989. if (npages && !new.lpage_info) {
  990. largepages = 1 + (base_gfn + npages - 1) / KVM_PAGES_PER_HPAGE;
  991. largepages -= base_gfn / KVM_PAGES_PER_HPAGE;
  992. new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
  993. if (!new.lpage_info)
  994. goto out_free;
  995. memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
  996. if (base_gfn % KVM_PAGES_PER_HPAGE)
  997. new.lpage_info[0].write_count = 1;
  998. if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
  999. new.lpage_info[largepages-1].write_count = 1;
  1000. ugfn = new.userspace_addr >> PAGE_SHIFT;
  1001. /*
  1002. * If the gfn and userspace address are not aligned wrt each
  1003. * other, disable large page support for this slot
  1004. */
  1005. if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE - 1))
  1006. for (i = 0; i < largepages; ++i)
  1007. new.lpage_info[i].write_count = 1;
  1008. }
  1009. /* Allocate page dirty bitmap if needed */
  1010. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  1011. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  1012. new.dirty_bitmap = vmalloc(dirty_bytes);
  1013. if (!new.dirty_bitmap)
  1014. goto out_free;
  1015. memset(new.dirty_bitmap, 0, dirty_bytes);
  1016. if (old.npages)
  1017. kvm_arch_flush_shadow(kvm);
  1018. }
  1019. #endif /* not defined CONFIG_S390 */
  1020. if (!npages)
  1021. kvm_arch_flush_shadow(kvm);
  1022. spin_lock(&kvm->mmu_lock);
  1023. if (mem->slot >= kvm->nmemslots)
  1024. kvm->nmemslots = mem->slot + 1;
  1025. *memslot = new;
  1026. spin_unlock(&kvm->mmu_lock);
  1027. r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
  1028. if (r) {
  1029. spin_lock(&kvm->mmu_lock);
  1030. *memslot = old;
  1031. spin_unlock(&kvm->mmu_lock);
  1032. goto out_free;
  1033. }
  1034. kvm_free_physmem_slot(&old, npages ? &new : NULL);
  1035. /* Slot deletion case: we have to update the current slot */
  1036. spin_lock(&kvm->mmu_lock);
  1037. if (!npages)
  1038. *memslot = old;
  1039. spin_unlock(&kvm->mmu_lock);
  1040. #ifdef CONFIG_DMAR
  1041. /* map the pages in iommu page table */
  1042. r = kvm_iommu_map_pages(kvm, base_gfn, npages);
  1043. if (r)
  1044. goto out;
  1045. #endif
  1046. return 0;
  1047. out_free:
  1048. kvm_free_physmem_slot(&new, &old);
  1049. out:
  1050. return r;
  1051. }
  1052. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  1053. int kvm_set_memory_region(struct kvm *kvm,
  1054. struct kvm_userspace_memory_region *mem,
  1055. int user_alloc)
  1056. {
  1057. int r;
  1058. down_write(&kvm->slots_lock);
  1059. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  1060. up_write(&kvm->slots_lock);
  1061. return r;
  1062. }
  1063. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  1064. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  1065. struct
  1066. kvm_userspace_memory_region *mem,
  1067. int user_alloc)
  1068. {
  1069. if (mem->slot >= KVM_MEMORY_SLOTS)
  1070. return -EINVAL;
  1071. return kvm_set_memory_region(kvm, mem, user_alloc);
  1072. }
  1073. int kvm_get_dirty_log(struct kvm *kvm,
  1074. struct kvm_dirty_log *log, int *is_dirty)
  1075. {
  1076. struct kvm_memory_slot *memslot;
  1077. int r, i;
  1078. int n;
  1079. unsigned long any = 0;
  1080. r = -EINVAL;
  1081. if (log->slot >= KVM_MEMORY_SLOTS)
  1082. goto out;
  1083. memslot = &kvm->memslots[log->slot];
  1084. r = -ENOENT;
  1085. if (!memslot->dirty_bitmap)
  1086. goto out;
  1087. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1088. for (i = 0; !any && i < n/sizeof(long); ++i)
  1089. any = memslot->dirty_bitmap[i];
  1090. r = -EFAULT;
  1091. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  1092. goto out;
  1093. if (any)
  1094. *is_dirty = 1;
  1095. r = 0;
  1096. out:
  1097. return r;
  1098. }
  1099. int is_error_page(struct page *page)
  1100. {
  1101. return page == bad_page;
  1102. }
  1103. EXPORT_SYMBOL_GPL(is_error_page);
  1104. int is_error_pfn(pfn_t pfn)
  1105. {
  1106. return pfn == bad_pfn;
  1107. }
  1108. EXPORT_SYMBOL_GPL(is_error_pfn);
  1109. static inline unsigned long bad_hva(void)
  1110. {
  1111. return PAGE_OFFSET;
  1112. }
  1113. int kvm_is_error_hva(unsigned long addr)
  1114. {
  1115. return addr == bad_hva();
  1116. }
  1117. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  1118. struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
  1119. {
  1120. int i;
  1121. for (i = 0; i < kvm->nmemslots; ++i) {
  1122. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  1123. if (gfn >= memslot->base_gfn
  1124. && gfn < memslot->base_gfn + memslot->npages)
  1125. return memslot;
  1126. }
  1127. return NULL;
  1128. }
  1129. EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
  1130. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  1131. {
  1132. gfn = unalias_gfn(kvm, gfn);
  1133. return gfn_to_memslot_unaliased(kvm, gfn);
  1134. }
  1135. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  1136. {
  1137. int i;
  1138. gfn = unalias_gfn(kvm, gfn);
  1139. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  1140. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  1141. if (gfn >= memslot->base_gfn
  1142. && gfn < memslot->base_gfn + memslot->npages)
  1143. return 1;
  1144. }
  1145. return 0;
  1146. }
  1147. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  1148. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  1149. {
  1150. struct kvm_memory_slot *slot;
  1151. gfn = unalias_gfn(kvm, gfn);
  1152. slot = gfn_to_memslot_unaliased(kvm, gfn);
  1153. if (!slot)
  1154. return bad_hva();
  1155. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  1156. }
  1157. EXPORT_SYMBOL_GPL(gfn_to_hva);
  1158. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  1159. {
  1160. struct page *page[1];
  1161. unsigned long addr;
  1162. int npages;
  1163. pfn_t pfn;
  1164. might_sleep();
  1165. addr = gfn_to_hva(kvm, gfn);
  1166. if (kvm_is_error_hva(addr)) {
  1167. get_page(bad_page);
  1168. return page_to_pfn(bad_page);
  1169. }
  1170. npages = get_user_pages_fast(addr, 1, 1, page);
  1171. if (unlikely(npages != 1)) {
  1172. struct vm_area_struct *vma;
  1173. down_read(&current->mm->mmap_sem);
  1174. vma = find_vma(current->mm, addr);
  1175. if (vma == NULL || addr < vma->vm_start ||
  1176. !(vma->vm_flags & VM_PFNMAP)) {
  1177. up_read(&current->mm->mmap_sem);
  1178. get_page(bad_page);
  1179. return page_to_pfn(bad_page);
  1180. }
  1181. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1182. up_read(&current->mm->mmap_sem);
  1183. BUG_ON(!kvm_is_mmio_pfn(pfn));
  1184. } else
  1185. pfn = page_to_pfn(page[0]);
  1186. return pfn;
  1187. }
  1188. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  1189. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  1190. {
  1191. pfn_t pfn;
  1192. pfn = gfn_to_pfn(kvm, gfn);
  1193. if (!kvm_is_mmio_pfn(pfn))
  1194. return pfn_to_page(pfn);
  1195. WARN_ON(kvm_is_mmio_pfn(pfn));
  1196. get_page(bad_page);
  1197. return bad_page;
  1198. }
  1199. EXPORT_SYMBOL_GPL(gfn_to_page);
  1200. void kvm_release_page_clean(struct page *page)
  1201. {
  1202. kvm_release_pfn_clean(page_to_pfn(page));
  1203. }
  1204. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  1205. void kvm_release_pfn_clean(pfn_t pfn)
  1206. {
  1207. if (!kvm_is_mmio_pfn(pfn))
  1208. put_page(pfn_to_page(pfn));
  1209. }
  1210. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  1211. void kvm_release_page_dirty(struct page *page)
  1212. {
  1213. kvm_release_pfn_dirty(page_to_pfn(page));
  1214. }
  1215. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  1216. void kvm_release_pfn_dirty(pfn_t pfn)
  1217. {
  1218. kvm_set_pfn_dirty(pfn);
  1219. kvm_release_pfn_clean(pfn);
  1220. }
  1221. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  1222. void kvm_set_page_dirty(struct page *page)
  1223. {
  1224. kvm_set_pfn_dirty(page_to_pfn(page));
  1225. }
  1226. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  1227. void kvm_set_pfn_dirty(pfn_t pfn)
  1228. {
  1229. if (!kvm_is_mmio_pfn(pfn)) {
  1230. struct page *page = pfn_to_page(pfn);
  1231. if (!PageReserved(page))
  1232. SetPageDirty(page);
  1233. }
  1234. }
  1235. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  1236. void kvm_set_pfn_accessed(pfn_t pfn)
  1237. {
  1238. if (!kvm_is_mmio_pfn(pfn))
  1239. mark_page_accessed(pfn_to_page(pfn));
  1240. }
  1241. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  1242. void kvm_get_pfn(pfn_t pfn)
  1243. {
  1244. if (!kvm_is_mmio_pfn(pfn))
  1245. get_page(pfn_to_page(pfn));
  1246. }
  1247. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  1248. static int next_segment(unsigned long len, int offset)
  1249. {
  1250. if (len > PAGE_SIZE - offset)
  1251. return PAGE_SIZE - offset;
  1252. else
  1253. return len;
  1254. }
  1255. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  1256. int len)
  1257. {
  1258. int r;
  1259. unsigned long addr;
  1260. addr = gfn_to_hva(kvm, gfn);
  1261. if (kvm_is_error_hva(addr))
  1262. return -EFAULT;
  1263. r = copy_from_user(data, (void __user *)addr + offset, len);
  1264. if (r)
  1265. return -EFAULT;
  1266. return 0;
  1267. }
  1268. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  1269. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  1270. {
  1271. gfn_t gfn = gpa >> PAGE_SHIFT;
  1272. int seg;
  1273. int offset = offset_in_page(gpa);
  1274. int ret;
  1275. while ((seg = next_segment(len, offset)) != 0) {
  1276. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  1277. if (ret < 0)
  1278. return ret;
  1279. offset = 0;
  1280. len -= seg;
  1281. data += seg;
  1282. ++gfn;
  1283. }
  1284. return 0;
  1285. }
  1286. EXPORT_SYMBOL_GPL(kvm_read_guest);
  1287. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  1288. unsigned long len)
  1289. {
  1290. int r;
  1291. unsigned long addr;
  1292. gfn_t gfn = gpa >> PAGE_SHIFT;
  1293. int offset = offset_in_page(gpa);
  1294. addr = gfn_to_hva(kvm, gfn);
  1295. if (kvm_is_error_hva(addr))
  1296. return -EFAULT;
  1297. pagefault_disable();
  1298. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  1299. pagefault_enable();
  1300. if (r)
  1301. return -EFAULT;
  1302. return 0;
  1303. }
  1304. EXPORT_SYMBOL(kvm_read_guest_atomic);
  1305. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  1306. int offset, int len)
  1307. {
  1308. int r;
  1309. unsigned long addr;
  1310. addr = gfn_to_hva(kvm, gfn);
  1311. if (kvm_is_error_hva(addr))
  1312. return -EFAULT;
  1313. r = copy_to_user((void __user *)addr + offset, data, len);
  1314. if (r)
  1315. return -EFAULT;
  1316. mark_page_dirty(kvm, gfn);
  1317. return 0;
  1318. }
  1319. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  1320. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  1321. unsigned long len)
  1322. {
  1323. gfn_t gfn = gpa >> PAGE_SHIFT;
  1324. int seg;
  1325. int offset = offset_in_page(gpa);
  1326. int ret;
  1327. while ((seg = next_segment(len, offset)) != 0) {
  1328. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  1329. if (ret < 0)
  1330. return ret;
  1331. offset = 0;
  1332. len -= seg;
  1333. data += seg;
  1334. ++gfn;
  1335. }
  1336. return 0;
  1337. }
  1338. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  1339. {
  1340. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  1341. }
  1342. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1343. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1344. {
  1345. gfn_t gfn = gpa >> PAGE_SHIFT;
  1346. int seg;
  1347. int offset = offset_in_page(gpa);
  1348. int ret;
  1349. while ((seg = next_segment(len, offset)) != 0) {
  1350. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1351. if (ret < 0)
  1352. return ret;
  1353. offset = 0;
  1354. len -= seg;
  1355. ++gfn;
  1356. }
  1357. return 0;
  1358. }
  1359. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1360. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1361. {
  1362. struct kvm_memory_slot *memslot;
  1363. gfn = unalias_gfn(kvm, gfn);
  1364. memslot = gfn_to_memslot_unaliased(kvm, gfn);
  1365. if (memslot && memslot->dirty_bitmap) {
  1366. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1367. /* avoid RMW */
  1368. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  1369. set_bit(rel_gfn, memslot->dirty_bitmap);
  1370. }
  1371. }
  1372. /*
  1373. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1374. */
  1375. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1376. {
  1377. DEFINE_WAIT(wait);
  1378. for (;;) {
  1379. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1380. if ((kvm_arch_interrupt_allowed(vcpu) &&
  1381. kvm_cpu_has_interrupt(vcpu)) ||
  1382. kvm_arch_vcpu_runnable(vcpu)) {
  1383. set_bit(KVM_REQ_UNHALT, &vcpu->requests);
  1384. break;
  1385. }
  1386. if (kvm_cpu_has_pending_timer(vcpu))
  1387. break;
  1388. if (signal_pending(current))
  1389. break;
  1390. vcpu_put(vcpu);
  1391. schedule();
  1392. vcpu_load(vcpu);
  1393. }
  1394. finish_wait(&vcpu->wq, &wait);
  1395. }
  1396. void kvm_resched(struct kvm_vcpu *vcpu)
  1397. {
  1398. if (!need_resched())
  1399. return;
  1400. cond_resched();
  1401. }
  1402. EXPORT_SYMBOL_GPL(kvm_resched);
  1403. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1404. {
  1405. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1406. struct page *page;
  1407. if (vmf->pgoff == 0)
  1408. page = virt_to_page(vcpu->run);
  1409. #ifdef CONFIG_X86
  1410. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1411. page = virt_to_page(vcpu->arch.pio_data);
  1412. #endif
  1413. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1414. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1415. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1416. #endif
  1417. else
  1418. return VM_FAULT_SIGBUS;
  1419. get_page(page);
  1420. vmf->page = page;
  1421. return 0;
  1422. }
  1423. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  1424. .fault = kvm_vcpu_fault,
  1425. };
  1426. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1427. {
  1428. vma->vm_ops = &kvm_vcpu_vm_ops;
  1429. return 0;
  1430. }
  1431. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1432. {
  1433. struct kvm_vcpu *vcpu = filp->private_data;
  1434. kvm_put_kvm(vcpu->kvm);
  1435. return 0;
  1436. }
  1437. static struct file_operations kvm_vcpu_fops = {
  1438. .release = kvm_vcpu_release,
  1439. .unlocked_ioctl = kvm_vcpu_ioctl,
  1440. .compat_ioctl = kvm_vcpu_ioctl,
  1441. .mmap = kvm_vcpu_mmap,
  1442. };
  1443. /*
  1444. * Allocates an inode for the vcpu.
  1445. */
  1446. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1447. {
  1448. int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
  1449. if (fd < 0)
  1450. kvm_put_kvm(vcpu->kvm);
  1451. return fd;
  1452. }
  1453. /*
  1454. * Creates some virtual cpus. Good luck creating more than one.
  1455. */
  1456. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  1457. {
  1458. int r;
  1459. struct kvm_vcpu *vcpu;
  1460. if (!valid_vcpu(n))
  1461. return -EINVAL;
  1462. vcpu = kvm_arch_vcpu_create(kvm, n);
  1463. if (IS_ERR(vcpu))
  1464. return PTR_ERR(vcpu);
  1465. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1466. r = kvm_arch_vcpu_setup(vcpu);
  1467. if (r)
  1468. return r;
  1469. mutex_lock(&kvm->lock);
  1470. if (kvm->vcpus[n]) {
  1471. r = -EEXIST;
  1472. goto vcpu_destroy;
  1473. }
  1474. kvm->vcpus[n] = vcpu;
  1475. mutex_unlock(&kvm->lock);
  1476. /* Now it's all set up, let userspace reach it */
  1477. kvm_get_kvm(kvm);
  1478. r = create_vcpu_fd(vcpu);
  1479. if (r < 0)
  1480. goto unlink;
  1481. return r;
  1482. unlink:
  1483. mutex_lock(&kvm->lock);
  1484. kvm->vcpus[n] = NULL;
  1485. vcpu_destroy:
  1486. mutex_unlock(&kvm->lock);
  1487. kvm_arch_vcpu_destroy(vcpu);
  1488. return r;
  1489. }
  1490. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1491. {
  1492. if (sigset) {
  1493. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1494. vcpu->sigset_active = 1;
  1495. vcpu->sigset = *sigset;
  1496. } else
  1497. vcpu->sigset_active = 0;
  1498. return 0;
  1499. }
  1500. #ifdef __KVM_HAVE_MSIX
  1501. static int kvm_vm_ioctl_set_msix_nr(struct kvm *kvm,
  1502. struct kvm_assigned_msix_nr *entry_nr)
  1503. {
  1504. int r = 0;
  1505. struct kvm_assigned_dev_kernel *adev;
  1506. mutex_lock(&kvm->lock);
  1507. adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  1508. entry_nr->assigned_dev_id);
  1509. if (!adev) {
  1510. r = -EINVAL;
  1511. goto msix_nr_out;
  1512. }
  1513. if (adev->entries_nr == 0) {
  1514. adev->entries_nr = entry_nr->entry_nr;
  1515. if (adev->entries_nr == 0 ||
  1516. adev->entries_nr >= KVM_MAX_MSIX_PER_DEV) {
  1517. r = -EINVAL;
  1518. goto msix_nr_out;
  1519. }
  1520. adev->host_msix_entries = kzalloc(sizeof(struct msix_entry) *
  1521. entry_nr->entry_nr,
  1522. GFP_KERNEL);
  1523. if (!adev->host_msix_entries) {
  1524. r = -ENOMEM;
  1525. goto msix_nr_out;
  1526. }
  1527. adev->guest_msix_entries = kzalloc(
  1528. sizeof(struct kvm_guest_msix_entry) *
  1529. entry_nr->entry_nr, GFP_KERNEL);
  1530. if (!adev->guest_msix_entries) {
  1531. kfree(adev->host_msix_entries);
  1532. r = -ENOMEM;
  1533. goto msix_nr_out;
  1534. }
  1535. } else /* Not allowed set MSI-X number twice */
  1536. r = -EINVAL;
  1537. msix_nr_out:
  1538. mutex_unlock(&kvm->lock);
  1539. return r;
  1540. }
  1541. static int kvm_vm_ioctl_set_msix_entry(struct kvm *kvm,
  1542. struct kvm_assigned_msix_entry *entry)
  1543. {
  1544. int r = 0, i;
  1545. struct kvm_assigned_dev_kernel *adev;
  1546. mutex_lock(&kvm->lock);
  1547. adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  1548. entry->assigned_dev_id);
  1549. if (!adev) {
  1550. r = -EINVAL;
  1551. goto msix_entry_out;
  1552. }
  1553. for (i = 0; i < adev->entries_nr; i++)
  1554. if (adev->guest_msix_entries[i].vector == 0 ||
  1555. adev->guest_msix_entries[i].entry == entry->entry) {
  1556. adev->guest_msix_entries[i].entry = entry->entry;
  1557. adev->guest_msix_entries[i].vector = entry->gsi;
  1558. adev->host_msix_entries[i].entry = entry->entry;
  1559. break;
  1560. }
  1561. if (i == adev->entries_nr) {
  1562. r = -ENOSPC;
  1563. goto msix_entry_out;
  1564. }
  1565. msix_entry_out:
  1566. mutex_unlock(&kvm->lock);
  1567. return r;
  1568. }
  1569. #endif
  1570. static long kvm_vcpu_ioctl(struct file *filp,
  1571. unsigned int ioctl, unsigned long arg)
  1572. {
  1573. struct kvm_vcpu *vcpu = filp->private_data;
  1574. void __user *argp = (void __user *)arg;
  1575. int r;
  1576. struct kvm_fpu *fpu = NULL;
  1577. struct kvm_sregs *kvm_sregs = NULL;
  1578. if (vcpu->kvm->mm != current->mm)
  1579. return -EIO;
  1580. switch (ioctl) {
  1581. case KVM_RUN:
  1582. r = -EINVAL;
  1583. if (arg)
  1584. goto out;
  1585. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1586. break;
  1587. case KVM_GET_REGS: {
  1588. struct kvm_regs *kvm_regs;
  1589. r = -ENOMEM;
  1590. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1591. if (!kvm_regs)
  1592. goto out;
  1593. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1594. if (r)
  1595. goto out_free1;
  1596. r = -EFAULT;
  1597. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1598. goto out_free1;
  1599. r = 0;
  1600. out_free1:
  1601. kfree(kvm_regs);
  1602. break;
  1603. }
  1604. case KVM_SET_REGS: {
  1605. struct kvm_regs *kvm_regs;
  1606. r = -ENOMEM;
  1607. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1608. if (!kvm_regs)
  1609. goto out;
  1610. r = -EFAULT;
  1611. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  1612. goto out_free2;
  1613. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1614. if (r)
  1615. goto out_free2;
  1616. r = 0;
  1617. out_free2:
  1618. kfree(kvm_regs);
  1619. break;
  1620. }
  1621. case KVM_GET_SREGS: {
  1622. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1623. r = -ENOMEM;
  1624. if (!kvm_sregs)
  1625. goto out;
  1626. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1627. if (r)
  1628. goto out;
  1629. r = -EFAULT;
  1630. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1631. goto out;
  1632. r = 0;
  1633. break;
  1634. }
  1635. case KVM_SET_SREGS: {
  1636. kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1637. r = -ENOMEM;
  1638. if (!kvm_sregs)
  1639. goto out;
  1640. r = -EFAULT;
  1641. if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
  1642. goto out;
  1643. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1644. if (r)
  1645. goto out;
  1646. r = 0;
  1647. break;
  1648. }
  1649. case KVM_GET_MP_STATE: {
  1650. struct kvm_mp_state mp_state;
  1651. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1652. if (r)
  1653. goto out;
  1654. r = -EFAULT;
  1655. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1656. goto out;
  1657. r = 0;
  1658. break;
  1659. }
  1660. case KVM_SET_MP_STATE: {
  1661. struct kvm_mp_state mp_state;
  1662. r = -EFAULT;
  1663. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1664. goto out;
  1665. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1666. if (r)
  1667. goto out;
  1668. r = 0;
  1669. break;
  1670. }
  1671. case KVM_TRANSLATE: {
  1672. struct kvm_translation tr;
  1673. r = -EFAULT;
  1674. if (copy_from_user(&tr, argp, sizeof tr))
  1675. goto out;
  1676. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1677. if (r)
  1678. goto out;
  1679. r = -EFAULT;
  1680. if (copy_to_user(argp, &tr, sizeof tr))
  1681. goto out;
  1682. r = 0;
  1683. break;
  1684. }
  1685. case KVM_SET_GUEST_DEBUG: {
  1686. struct kvm_guest_debug dbg;
  1687. r = -EFAULT;
  1688. if (copy_from_user(&dbg, argp, sizeof dbg))
  1689. goto out;
  1690. r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
  1691. if (r)
  1692. goto out;
  1693. r = 0;
  1694. break;
  1695. }
  1696. case KVM_SET_SIGNAL_MASK: {
  1697. struct kvm_signal_mask __user *sigmask_arg = argp;
  1698. struct kvm_signal_mask kvm_sigmask;
  1699. sigset_t sigset, *p;
  1700. p = NULL;
  1701. if (argp) {
  1702. r = -EFAULT;
  1703. if (copy_from_user(&kvm_sigmask, argp,
  1704. sizeof kvm_sigmask))
  1705. goto out;
  1706. r = -EINVAL;
  1707. if (kvm_sigmask.len != sizeof sigset)
  1708. goto out;
  1709. r = -EFAULT;
  1710. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1711. sizeof sigset))
  1712. goto out;
  1713. p = &sigset;
  1714. }
  1715. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  1716. break;
  1717. }
  1718. case KVM_GET_FPU: {
  1719. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1720. r = -ENOMEM;
  1721. if (!fpu)
  1722. goto out;
  1723. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1724. if (r)
  1725. goto out;
  1726. r = -EFAULT;
  1727. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1728. goto out;
  1729. r = 0;
  1730. break;
  1731. }
  1732. case KVM_SET_FPU: {
  1733. fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1734. r = -ENOMEM;
  1735. if (!fpu)
  1736. goto out;
  1737. r = -EFAULT;
  1738. if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
  1739. goto out;
  1740. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1741. if (r)
  1742. goto out;
  1743. r = 0;
  1744. break;
  1745. }
  1746. default:
  1747. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1748. }
  1749. out:
  1750. kfree(fpu);
  1751. kfree(kvm_sregs);
  1752. return r;
  1753. }
  1754. static long kvm_vm_ioctl(struct file *filp,
  1755. unsigned int ioctl, unsigned long arg)
  1756. {
  1757. struct kvm *kvm = filp->private_data;
  1758. void __user *argp = (void __user *)arg;
  1759. int r;
  1760. if (kvm->mm != current->mm)
  1761. return -EIO;
  1762. switch (ioctl) {
  1763. case KVM_CREATE_VCPU:
  1764. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1765. if (r < 0)
  1766. goto out;
  1767. break;
  1768. case KVM_SET_USER_MEMORY_REGION: {
  1769. struct kvm_userspace_memory_region kvm_userspace_mem;
  1770. r = -EFAULT;
  1771. if (copy_from_user(&kvm_userspace_mem, argp,
  1772. sizeof kvm_userspace_mem))
  1773. goto out;
  1774. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1775. if (r)
  1776. goto out;
  1777. break;
  1778. }
  1779. case KVM_GET_DIRTY_LOG: {
  1780. struct kvm_dirty_log log;
  1781. r = -EFAULT;
  1782. if (copy_from_user(&log, argp, sizeof log))
  1783. goto out;
  1784. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1785. if (r)
  1786. goto out;
  1787. break;
  1788. }
  1789. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1790. case KVM_REGISTER_COALESCED_MMIO: {
  1791. struct kvm_coalesced_mmio_zone zone;
  1792. r = -EFAULT;
  1793. if (copy_from_user(&zone, argp, sizeof zone))
  1794. goto out;
  1795. r = -ENXIO;
  1796. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1797. if (r)
  1798. goto out;
  1799. r = 0;
  1800. break;
  1801. }
  1802. case KVM_UNREGISTER_COALESCED_MMIO: {
  1803. struct kvm_coalesced_mmio_zone zone;
  1804. r = -EFAULT;
  1805. if (copy_from_user(&zone, argp, sizeof zone))
  1806. goto out;
  1807. r = -ENXIO;
  1808. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1809. if (r)
  1810. goto out;
  1811. r = 0;
  1812. break;
  1813. }
  1814. #endif
  1815. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  1816. case KVM_ASSIGN_PCI_DEVICE: {
  1817. struct kvm_assigned_pci_dev assigned_dev;
  1818. r = -EFAULT;
  1819. if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
  1820. goto out;
  1821. r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
  1822. if (r)
  1823. goto out;
  1824. break;
  1825. }
  1826. case KVM_ASSIGN_IRQ: {
  1827. r = -EOPNOTSUPP;
  1828. break;
  1829. }
  1830. #ifdef KVM_CAP_ASSIGN_DEV_IRQ
  1831. case KVM_ASSIGN_DEV_IRQ: {
  1832. struct kvm_assigned_irq assigned_irq;
  1833. r = -EFAULT;
  1834. if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
  1835. goto out;
  1836. r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
  1837. if (r)
  1838. goto out;
  1839. break;
  1840. }
  1841. case KVM_DEASSIGN_DEV_IRQ: {
  1842. struct kvm_assigned_irq assigned_irq;
  1843. r = -EFAULT;
  1844. if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
  1845. goto out;
  1846. r = kvm_vm_ioctl_deassign_dev_irq(kvm, &assigned_irq);
  1847. if (r)
  1848. goto out;
  1849. break;
  1850. }
  1851. #endif
  1852. #endif
  1853. #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
  1854. case KVM_DEASSIGN_PCI_DEVICE: {
  1855. struct kvm_assigned_pci_dev assigned_dev;
  1856. r = -EFAULT;
  1857. if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
  1858. goto out;
  1859. r = kvm_vm_ioctl_deassign_device(kvm, &assigned_dev);
  1860. if (r)
  1861. goto out;
  1862. break;
  1863. }
  1864. #endif
  1865. #ifdef KVM_CAP_IRQ_ROUTING
  1866. case KVM_SET_GSI_ROUTING: {
  1867. struct kvm_irq_routing routing;
  1868. struct kvm_irq_routing __user *urouting;
  1869. struct kvm_irq_routing_entry *entries;
  1870. r = -EFAULT;
  1871. if (copy_from_user(&routing, argp, sizeof(routing)))
  1872. goto out;
  1873. r = -EINVAL;
  1874. if (routing.nr >= KVM_MAX_IRQ_ROUTES)
  1875. goto out;
  1876. if (routing.flags)
  1877. goto out;
  1878. r = -ENOMEM;
  1879. entries = vmalloc(routing.nr * sizeof(*entries));
  1880. if (!entries)
  1881. goto out;
  1882. r = -EFAULT;
  1883. urouting = argp;
  1884. if (copy_from_user(entries, urouting->entries,
  1885. routing.nr * sizeof(*entries)))
  1886. goto out_free_irq_routing;
  1887. r = kvm_set_irq_routing(kvm, entries, routing.nr,
  1888. routing.flags);
  1889. out_free_irq_routing:
  1890. vfree(entries);
  1891. break;
  1892. }
  1893. #ifdef __KVM_HAVE_MSIX
  1894. case KVM_ASSIGN_SET_MSIX_NR: {
  1895. struct kvm_assigned_msix_nr entry_nr;
  1896. r = -EFAULT;
  1897. if (copy_from_user(&entry_nr, argp, sizeof entry_nr))
  1898. goto out;
  1899. r = kvm_vm_ioctl_set_msix_nr(kvm, &entry_nr);
  1900. if (r)
  1901. goto out;
  1902. break;
  1903. }
  1904. case KVM_ASSIGN_SET_MSIX_ENTRY: {
  1905. struct kvm_assigned_msix_entry entry;
  1906. r = -EFAULT;
  1907. if (copy_from_user(&entry, argp, sizeof entry))
  1908. goto out;
  1909. r = kvm_vm_ioctl_set_msix_entry(kvm, &entry);
  1910. if (r)
  1911. goto out;
  1912. break;
  1913. }
  1914. #endif
  1915. #endif /* KVM_CAP_IRQ_ROUTING */
  1916. default:
  1917. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1918. }
  1919. out:
  1920. return r;
  1921. }
  1922. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1923. {
  1924. struct page *page[1];
  1925. unsigned long addr;
  1926. int npages;
  1927. gfn_t gfn = vmf->pgoff;
  1928. struct kvm *kvm = vma->vm_file->private_data;
  1929. addr = gfn_to_hva(kvm, gfn);
  1930. if (kvm_is_error_hva(addr))
  1931. return VM_FAULT_SIGBUS;
  1932. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1933. NULL);
  1934. if (unlikely(npages != 1))
  1935. return VM_FAULT_SIGBUS;
  1936. vmf->page = page[0];
  1937. return 0;
  1938. }
  1939. static struct vm_operations_struct kvm_vm_vm_ops = {
  1940. .fault = kvm_vm_fault,
  1941. };
  1942. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1943. {
  1944. vma->vm_ops = &kvm_vm_vm_ops;
  1945. return 0;
  1946. }
  1947. static struct file_operations kvm_vm_fops = {
  1948. .release = kvm_vm_release,
  1949. .unlocked_ioctl = kvm_vm_ioctl,
  1950. .compat_ioctl = kvm_vm_ioctl,
  1951. .mmap = kvm_vm_mmap,
  1952. };
  1953. static int kvm_dev_ioctl_create_vm(void)
  1954. {
  1955. int fd;
  1956. struct kvm *kvm;
  1957. kvm = kvm_create_vm();
  1958. if (IS_ERR(kvm))
  1959. return PTR_ERR(kvm);
  1960. fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
  1961. if (fd < 0)
  1962. kvm_put_kvm(kvm);
  1963. return fd;
  1964. }
  1965. static long kvm_dev_ioctl_check_extension_generic(long arg)
  1966. {
  1967. switch (arg) {
  1968. case KVM_CAP_USER_MEMORY:
  1969. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  1970. case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
  1971. return 1;
  1972. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  1973. case KVM_CAP_IRQ_ROUTING:
  1974. return KVM_MAX_IRQ_ROUTES;
  1975. #endif
  1976. default:
  1977. break;
  1978. }
  1979. return kvm_dev_ioctl_check_extension(arg);
  1980. }
  1981. static long kvm_dev_ioctl(struct file *filp,
  1982. unsigned int ioctl, unsigned long arg)
  1983. {
  1984. long r = -EINVAL;
  1985. switch (ioctl) {
  1986. case KVM_GET_API_VERSION:
  1987. r = -EINVAL;
  1988. if (arg)
  1989. goto out;
  1990. r = KVM_API_VERSION;
  1991. break;
  1992. case KVM_CREATE_VM:
  1993. r = -EINVAL;
  1994. if (arg)
  1995. goto out;
  1996. r = kvm_dev_ioctl_create_vm();
  1997. break;
  1998. case KVM_CHECK_EXTENSION:
  1999. r = kvm_dev_ioctl_check_extension_generic(arg);
  2000. break;
  2001. case KVM_GET_VCPU_MMAP_SIZE:
  2002. r = -EINVAL;
  2003. if (arg)
  2004. goto out;
  2005. r = PAGE_SIZE; /* struct kvm_run */
  2006. #ifdef CONFIG_X86
  2007. r += PAGE_SIZE; /* pio data page */
  2008. #endif
  2009. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  2010. r += PAGE_SIZE; /* coalesced mmio ring page */
  2011. #endif
  2012. break;
  2013. case KVM_TRACE_ENABLE:
  2014. case KVM_TRACE_PAUSE:
  2015. case KVM_TRACE_DISABLE:
  2016. r = kvm_trace_ioctl(ioctl, arg);
  2017. break;
  2018. default:
  2019. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  2020. }
  2021. out:
  2022. return r;
  2023. }
  2024. static struct file_operations kvm_chardev_ops = {
  2025. .unlocked_ioctl = kvm_dev_ioctl,
  2026. .compat_ioctl = kvm_dev_ioctl,
  2027. };
  2028. static struct miscdevice kvm_dev = {
  2029. KVM_MINOR,
  2030. "kvm",
  2031. &kvm_chardev_ops,
  2032. };
  2033. static void hardware_enable(void *junk)
  2034. {
  2035. int cpu = raw_smp_processor_id();
  2036. if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
  2037. return;
  2038. cpumask_set_cpu(cpu, cpus_hardware_enabled);
  2039. kvm_arch_hardware_enable(NULL);
  2040. }
  2041. static void hardware_disable(void *junk)
  2042. {
  2043. int cpu = raw_smp_processor_id();
  2044. if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
  2045. return;
  2046. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  2047. kvm_arch_hardware_disable(NULL);
  2048. }
  2049. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2050. void *v)
  2051. {
  2052. int cpu = (long)v;
  2053. val &= ~CPU_TASKS_FROZEN;
  2054. switch (val) {
  2055. case CPU_DYING:
  2056. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2057. cpu);
  2058. hardware_disable(NULL);
  2059. break;
  2060. case CPU_UP_CANCELED:
  2061. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2062. cpu);
  2063. smp_call_function_single(cpu, hardware_disable, NULL, 1);
  2064. break;
  2065. case CPU_ONLINE:
  2066. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2067. cpu);
  2068. smp_call_function_single(cpu, hardware_enable, NULL, 1);
  2069. break;
  2070. }
  2071. return NOTIFY_OK;
  2072. }
  2073. asmlinkage void kvm_handle_fault_on_reboot(void)
  2074. {
  2075. if (kvm_rebooting)
  2076. /* spin while reset goes on */
  2077. while (true)
  2078. ;
  2079. /* Fault while not rebooting. We want the trace. */
  2080. BUG();
  2081. }
  2082. EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
  2083. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2084. void *v)
  2085. {
  2086. /*
  2087. * Some (well, at least mine) BIOSes hang on reboot if
  2088. * in vmx root mode.
  2089. *
  2090. * And Intel TXT required VMX off for all cpu when system shutdown.
  2091. */
  2092. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2093. kvm_rebooting = true;
  2094. on_each_cpu(hardware_disable, NULL, 1);
  2095. return NOTIFY_OK;
  2096. }
  2097. static struct notifier_block kvm_reboot_notifier = {
  2098. .notifier_call = kvm_reboot,
  2099. .priority = 0,
  2100. };
  2101. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2102. {
  2103. memset(bus, 0, sizeof(*bus));
  2104. }
  2105. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2106. {
  2107. int i;
  2108. for (i = 0; i < bus->dev_count; i++) {
  2109. struct kvm_io_device *pos = bus->devs[i];
  2110. kvm_iodevice_destructor(pos);
  2111. }
  2112. }
  2113. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
  2114. gpa_t addr, int len, int is_write)
  2115. {
  2116. int i;
  2117. for (i = 0; i < bus->dev_count; i++) {
  2118. struct kvm_io_device *pos = bus->devs[i];
  2119. if (pos->in_range(pos, addr, len, is_write))
  2120. return pos;
  2121. }
  2122. return NULL;
  2123. }
  2124. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  2125. {
  2126. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  2127. bus->devs[bus->dev_count++] = dev;
  2128. }
  2129. static struct notifier_block kvm_cpu_notifier = {
  2130. .notifier_call = kvm_cpu_hotplug,
  2131. .priority = 20, /* must be > scheduler priority */
  2132. };
  2133. static int vm_stat_get(void *_offset, u64 *val)
  2134. {
  2135. unsigned offset = (long)_offset;
  2136. struct kvm *kvm;
  2137. *val = 0;
  2138. spin_lock(&kvm_lock);
  2139. list_for_each_entry(kvm, &vm_list, vm_list)
  2140. *val += *(u32 *)((void *)kvm + offset);
  2141. spin_unlock(&kvm_lock);
  2142. return 0;
  2143. }
  2144. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  2145. static int vcpu_stat_get(void *_offset, u64 *val)
  2146. {
  2147. unsigned offset = (long)_offset;
  2148. struct kvm *kvm;
  2149. struct kvm_vcpu *vcpu;
  2150. int i;
  2151. *val = 0;
  2152. spin_lock(&kvm_lock);
  2153. list_for_each_entry(kvm, &vm_list, vm_list)
  2154. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2155. vcpu = kvm->vcpus[i];
  2156. if (vcpu)
  2157. *val += *(u32 *)((void *)vcpu + offset);
  2158. }
  2159. spin_unlock(&kvm_lock);
  2160. return 0;
  2161. }
  2162. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  2163. static struct file_operations *stat_fops[] = {
  2164. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  2165. [KVM_STAT_VM] = &vm_stat_fops,
  2166. };
  2167. static void kvm_init_debug(void)
  2168. {
  2169. struct kvm_stats_debugfs_item *p;
  2170. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  2171. for (p = debugfs_entries; p->name; ++p)
  2172. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  2173. (void *)(long)p->offset,
  2174. stat_fops[p->kind]);
  2175. }
  2176. static void kvm_exit_debug(void)
  2177. {
  2178. struct kvm_stats_debugfs_item *p;
  2179. for (p = debugfs_entries; p->name; ++p)
  2180. debugfs_remove(p->dentry);
  2181. debugfs_remove(kvm_debugfs_dir);
  2182. }
  2183. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2184. {
  2185. hardware_disable(NULL);
  2186. return 0;
  2187. }
  2188. static int kvm_resume(struct sys_device *dev)
  2189. {
  2190. hardware_enable(NULL);
  2191. return 0;
  2192. }
  2193. static struct sysdev_class kvm_sysdev_class = {
  2194. .name = "kvm",
  2195. .suspend = kvm_suspend,
  2196. .resume = kvm_resume,
  2197. };
  2198. static struct sys_device kvm_sysdev = {
  2199. .id = 0,
  2200. .cls = &kvm_sysdev_class,
  2201. };
  2202. struct page *bad_page;
  2203. pfn_t bad_pfn;
  2204. static inline
  2205. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2206. {
  2207. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2208. }
  2209. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2210. {
  2211. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2212. kvm_arch_vcpu_load(vcpu, cpu);
  2213. }
  2214. static void kvm_sched_out(struct preempt_notifier *pn,
  2215. struct task_struct *next)
  2216. {
  2217. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2218. kvm_arch_vcpu_put(vcpu);
  2219. }
  2220. int kvm_init(void *opaque, unsigned int vcpu_size,
  2221. struct module *module)
  2222. {
  2223. int r;
  2224. int cpu;
  2225. kvm_init_debug();
  2226. r = kvm_arch_init(opaque);
  2227. if (r)
  2228. goto out_fail;
  2229. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2230. if (bad_page == NULL) {
  2231. r = -ENOMEM;
  2232. goto out;
  2233. }
  2234. bad_pfn = page_to_pfn(bad_page);
  2235. if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
  2236. r = -ENOMEM;
  2237. goto out_free_0;
  2238. }
  2239. r = kvm_arch_hardware_setup();
  2240. if (r < 0)
  2241. goto out_free_0a;
  2242. for_each_online_cpu(cpu) {
  2243. smp_call_function_single(cpu,
  2244. kvm_arch_check_processor_compat,
  2245. &r, 1);
  2246. if (r < 0)
  2247. goto out_free_1;
  2248. }
  2249. on_each_cpu(hardware_enable, NULL, 1);
  2250. r = register_cpu_notifier(&kvm_cpu_notifier);
  2251. if (r)
  2252. goto out_free_2;
  2253. register_reboot_notifier(&kvm_reboot_notifier);
  2254. r = sysdev_class_register(&kvm_sysdev_class);
  2255. if (r)
  2256. goto out_free_3;
  2257. r = sysdev_register(&kvm_sysdev);
  2258. if (r)
  2259. goto out_free_4;
  2260. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2261. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  2262. __alignof__(struct kvm_vcpu),
  2263. 0, NULL);
  2264. if (!kvm_vcpu_cache) {
  2265. r = -ENOMEM;
  2266. goto out_free_5;
  2267. }
  2268. kvm_chardev_ops.owner = module;
  2269. kvm_vm_fops.owner = module;
  2270. kvm_vcpu_fops.owner = module;
  2271. r = misc_register(&kvm_dev);
  2272. if (r) {
  2273. printk(KERN_ERR "kvm: misc device register failed\n");
  2274. goto out_free;
  2275. }
  2276. kvm_preempt_ops.sched_in = kvm_sched_in;
  2277. kvm_preempt_ops.sched_out = kvm_sched_out;
  2278. return 0;
  2279. out_free:
  2280. kmem_cache_destroy(kvm_vcpu_cache);
  2281. out_free_5:
  2282. sysdev_unregister(&kvm_sysdev);
  2283. out_free_4:
  2284. sysdev_class_unregister(&kvm_sysdev_class);
  2285. out_free_3:
  2286. unregister_reboot_notifier(&kvm_reboot_notifier);
  2287. unregister_cpu_notifier(&kvm_cpu_notifier);
  2288. out_free_2:
  2289. on_each_cpu(hardware_disable, NULL, 1);
  2290. out_free_1:
  2291. kvm_arch_hardware_unsetup();
  2292. out_free_0a:
  2293. free_cpumask_var(cpus_hardware_enabled);
  2294. out_free_0:
  2295. __free_page(bad_page);
  2296. out:
  2297. kvm_arch_exit();
  2298. kvm_exit_debug();
  2299. out_fail:
  2300. return r;
  2301. }
  2302. EXPORT_SYMBOL_GPL(kvm_init);
  2303. void kvm_exit(void)
  2304. {
  2305. kvm_trace_cleanup();
  2306. misc_deregister(&kvm_dev);
  2307. kmem_cache_destroy(kvm_vcpu_cache);
  2308. sysdev_unregister(&kvm_sysdev);
  2309. sysdev_class_unregister(&kvm_sysdev_class);
  2310. unregister_reboot_notifier(&kvm_reboot_notifier);
  2311. unregister_cpu_notifier(&kvm_cpu_notifier);
  2312. on_each_cpu(hardware_disable, NULL, 1);
  2313. kvm_arch_hardware_unsetup();
  2314. kvm_arch_exit();
  2315. kvm_exit_debug();
  2316. free_cpumask_var(cpus_hardware_enabled);
  2317. __free_page(bad_page);
  2318. }
  2319. EXPORT_SYMBOL_GPL(kvm_exit);