dmaengine.h 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022
  1. /*
  2. * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of the GNU General Public License as published by the Free
  6. * Software Foundation; either version 2 of the License, or (at your option)
  7. * any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc., 59
  16. * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17. *
  18. * The full GNU General Public License is included in this distribution in the
  19. * file called COPYING.
  20. */
  21. #ifndef LINUX_DMAENGINE_H
  22. #define LINUX_DMAENGINE_H
  23. #include <linux/device.h>
  24. #include <linux/uio.h>
  25. #include <linux/bug.h>
  26. #include <linux/scatterlist.h>
  27. #include <linux/bitmap.h>
  28. #include <linux/types.h>
  29. #include <asm/page.h>
  30. /**
  31. * typedef dma_cookie_t - an opaque DMA cookie
  32. *
  33. * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
  34. */
  35. typedef s32 dma_cookie_t;
  36. #define DMA_MIN_COOKIE 1
  37. #define DMA_MAX_COOKIE INT_MAX
  38. #define dma_submit_error(cookie) ((cookie) < 0 ? 1 : 0)
  39. /**
  40. * enum dma_status - DMA transaction status
  41. * @DMA_SUCCESS: transaction completed successfully
  42. * @DMA_IN_PROGRESS: transaction not yet processed
  43. * @DMA_PAUSED: transaction is paused
  44. * @DMA_ERROR: transaction failed
  45. */
  46. enum dma_status {
  47. DMA_SUCCESS,
  48. DMA_IN_PROGRESS,
  49. DMA_PAUSED,
  50. DMA_ERROR,
  51. };
  52. /**
  53. * enum dma_transaction_type - DMA transaction types/indexes
  54. *
  55. * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
  56. * automatically set as dma devices are registered.
  57. */
  58. enum dma_transaction_type {
  59. DMA_MEMCPY,
  60. DMA_XOR,
  61. DMA_PQ,
  62. DMA_XOR_VAL,
  63. DMA_PQ_VAL,
  64. DMA_MEMSET,
  65. DMA_INTERRUPT,
  66. DMA_SG,
  67. DMA_PRIVATE,
  68. DMA_ASYNC_TX,
  69. DMA_SLAVE,
  70. DMA_CYCLIC,
  71. DMA_INTERLEAVE,
  72. /* last transaction type for creation of the capabilities mask */
  73. DMA_TX_TYPE_END,
  74. };
  75. /**
  76. * enum dma_transfer_direction - dma transfer mode and direction indicator
  77. * @DMA_MEM_TO_MEM: Async/Memcpy mode
  78. * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
  79. * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
  80. * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
  81. */
  82. enum dma_transfer_direction {
  83. DMA_MEM_TO_MEM,
  84. DMA_MEM_TO_DEV,
  85. DMA_DEV_TO_MEM,
  86. DMA_DEV_TO_DEV,
  87. DMA_TRANS_NONE,
  88. };
  89. /**
  90. * Interleaved Transfer Request
  91. * ----------------------------
  92. * A chunk is collection of contiguous bytes to be transfered.
  93. * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
  94. * ICGs may or maynot change between chunks.
  95. * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
  96. * that when repeated an integral number of times, specifies the transfer.
  97. * A transfer template is specification of a Frame, the number of times
  98. * it is to be repeated and other per-transfer attributes.
  99. *
  100. * Practically, a client driver would have ready a template for each
  101. * type of transfer it is going to need during its lifetime and
  102. * set only 'src_start' and 'dst_start' before submitting the requests.
  103. *
  104. *
  105. * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
  106. * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
  107. *
  108. * == Chunk size
  109. * ... ICG
  110. */
  111. /**
  112. * struct data_chunk - Element of scatter-gather list that makes a frame.
  113. * @size: Number of bytes to read from source.
  114. * size_dst := fn(op, size_src), so doesn't mean much for destination.
  115. * @icg: Number of bytes to jump after last src/dst address of this
  116. * chunk and before first src/dst address for next chunk.
  117. * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
  118. * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
  119. */
  120. struct data_chunk {
  121. size_t size;
  122. size_t icg;
  123. };
  124. /**
  125. * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
  126. * and attributes.
  127. * @src_start: Bus address of source for the first chunk.
  128. * @dst_start: Bus address of destination for the first chunk.
  129. * @dir: Specifies the type of Source and Destination.
  130. * @src_inc: If the source address increments after reading from it.
  131. * @dst_inc: If the destination address increments after writing to it.
  132. * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
  133. * Otherwise, source is read contiguously (icg ignored).
  134. * Ignored if src_inc is false.
  135. * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
  136. * Otherwise, destination is filled contiguously (icg ignored).
  137. * Ignored if dst_inc is false.
  138. * @numf: Number of frames in this template.
  139. * @frame_size: Number of chunks in a frame i.e, size of sgl[].
  140. * @sgl: Array of {chunk,icg} pairs that make up a frame.
  141. */
  142. struct dma_interleaved_template {
  143. dma_addr_t src_start;
  144. dma_addr_t dst_start;
  145. enum dma_transfer_direction dir;
  146. bool src_inc;
  147. bool dst_inc;
  148. bool src_sgl;
  149. bool dst_sgl;
  150. size_t numf;
  151. size_t frame_size;
  152. struct data_chunk sgl[0];
  153. };
  154. /**
  155. * enum dma_ctrl_flags - DMA flags to augment operation preparation,
  156. * control completion, and communicate status.
  157. * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
  158. * this transaction
  159. * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
  160. * acknowledges receipt, i.e. has has a chance to establish any dependency
  161. * chains
  162. * @DMA_COMPL_SKIP_SRC_UNMAP - set to disable dma-unmapping the source buffer(s)
  163. * @DMA_COMPL_SKIP_DEST_UNMAP - set to disable dma-unmapping the destination(s)
  164. * @DMA_COMPL_SRC_UNMAP_SINGLE - set to do the source dma-unmapping as single
  165. * (if not set, do the source dma-unmapping as page)
  166. * @DMA_COMPL_DEST_UNMAP_SINGLE - set to do the destination dma-unmapping as single
  167. * (if not set, do the destination dma-unmapping as page)
  168. * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
  169. * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
  170. * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
  171. * sources that were the result of a previous operation, in the case of a PQ
  172. * operation it continues the calculation with new sources
  173. * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
  174. * on the result of this operation
  175. */
  176. enum dma_ctrl_flags {
  177. DMA_PREP_INTERRUPT = (1 << 0),
  178. DMA_CTRL_ACK = (1 << 1),
  179. DMA_COMPL_SKIP_SRC_UNMAP = (1 << 2),
  180. DMA_COMPL_SKIP_DEST_UNMAP = (1 << 3),
  181. DMA_COMPL_SRC_UNMAP_SINGLE = (1 << 4),
  182. DMA_COMPL_DEST_UNMAP_SINGLE = (1 << 5),
  183. DMA_PREP_PQ_DISABLE_P = (1 << 6),
  184. DMA_PREP_PQ_DISABLE_Q = (1 << 7),
  185. DMA_PREP_CONTINUE = (1 << 8),
  186. DMA_PREP_FENCE = (1 << 9),
  187. };
  188. /**
  189. * enum dma_ctrl_cmd - DMA operations that can optionally be exercised
  190. * on a running channel.
  191. * @DMA_TERMINATE_ALL: terminate all ongoing transfers
  192. * @DMA_PAUSE: pause ongoing transfers
  193. * @DMA_RESUME: resume paused transfer
  194. * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers
  195. * that need to runtime reconfigure the slave channels (as opposed to passing
  196. * configuration data in statically from the platform). An additional
  197. * argument of struct dma_slave_config must be passed in with this
  198. * command.
  199. * @FSLDMA_EXTERNAL_START: this command will put the Freescale DMA controller
  200. * into external start mode.
  201. */
  202. enum dma_ctrl_cmd {
  203. DMA_TERMINATE_ALL,
  204. DMA_PAUSE,
  205. DMA_RESUME,
  206. DMA_SLAVE_CONFIG,
  207. FSLDMA_EXTERNAL_START,
  208. };
  209. /**
  210. * enum sum_check_bits - bit position of pq_check_flags
  211. */
  212. enum sum_check_bits {
  213. SUM_CHECK_P = 0,
  214. SUM_CHECK_Q = 1,
  215. };
  216. /**
  217. * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
  218. * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
  219. * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
  220. */
  221. enum sum_check_flags {
  222. SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
  223. SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
  224. };
  225. /**
  226. * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
  227. * See linux/cpumask.h
  228. */
  229. typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
  230. /**
  231. * struct dma_chan_percpu - the per-CPU part of struct dma_chan
  232. * @memcpy_count: transaction counter
  233. * @bytes_transferred: byte counter
  234. */
  235. struct dma_chan_percpu {
  236. /* stats */
  237. unsigned long memcpy_count;
  238. unsigned long bytes_transferred;
  239. };
  240. /**
  241. * struct dma_chan - devices supply DMA channels, clients use them
  242. * @device: ptr to the dma device who supplies this channel, always !%NULL
  243. * @cookie: last cookie value returned to client
  244. * @completed_cookie: last completed cookie for this channel
  245. * @chan_id: channel ID for sysfs
  246. * @dev: class device for sysfs
  247. * @device_node: used to add this to the device chan list
  248. * @local: per-cpu pointer to a struct dma_chan_percpu
  249. * @client-count: how many clients are using this channel
  250. * @table_count: number of appearances in the mem-to-mem allocation table
  251. * @private: private data for certain client-channel associations
  252. */
  253. struct dma_chan {
  254. struct dma_device *device;
  255. dma_cookie_t cookie;
  256. dma_cookie_t completed_cookie;
  257. /* sysfs */
  258. int chan_id;
  259. struct dma_chan_dev *dev;
  260. struct list_head device_node;
  261. struct dma_chan_percpu __percpu *local;
  262. int client_count;
  263. int table_count;
  264. void *private;
  265. };
  266. /**
  267. * struct dma_chan_dev - relate sysfs device node to backing channel device
  268. * @chan - driver channel device
  269. * @device - sysfs device
  270. * @dev_id - parent dma_device dev_id
  271. * @idr_ref - reference count to gate release of dma_device dev_id
  272. */
  273. struct dma_chan_dev {
  274. struct dma_chan *chan;
  275. struct device device;
  276. int dev_id;
  277. atomic_t *idr_ref;
  278. };
  279. /**
  280. * enum dma_slave_buswidth - defines bus with of the DMA slave
  281. * device, source or target buses
  282. */
  283. enum dma_slave_buswidth {
  284. DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
  285. DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
  286. DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
  287. DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
  288. DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
  289. };
  290. /**
  291. * struct dma_slave_config - dma slave channel runtime config
  292. * @direction: whether the data shall go in or out on this slave
  293. * channel, right now. DMA_TO_DEVICE and DMA_FROM_DEVICE are
  294. * legal values, DMA_BIDIRECTIONAL is not acceptable since we
  295. * need to differentiate source and target addresses.
  296. * @src_addr: this is the physical address where DMA slave data
  297. * should be read (RX), if the source is memory this argument is
  298. * ignored.
  299. * @dst_addr: this is the physical address where DMA slave data
  300. * should be written (TX), if the source is memory this argument
  301. * is ignored.
  302. * @src_addr_width: this is the width in bytes of the source (RX)
  303. * register where DMA data shall be read. If the source
  304. * is memory this may be ignored depending on architecture.
  305. * Legal values: 1, 2, 4, 8.
  306. * @dst_addr_width: same as src_addr_width but for destination
  307. * target (TX) mutatis mutandis.
  308. * @src_maxburst: the maximum number of words (note: words, as in
  309. * units of the src_addr_width member, not bytes) that can be sent
  310. * in one burst to the device. Typically something like half the
  311. * FIFO depth on I/O peripherals so you don't overflow it. This
  312. * may or may not be applicable on memory sources.
  313. * @dst_maxburst: same as src_maxburst but for destination target
  314. * mutatis mutandis.
  315. * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
  316. * with 'true' if peripheral should be flow controller. Direction will be
  317. * selected at Runtime.
  318. * @slave_id: Slave requester id. Only valid for slave channels. The dma
  319. * slave peripheral will have unique id as dma requester which need to be
  320. * pass as slave config.
  321. *
  322. * This struct is passed in as configuration data to a DMA engine
  323. * in order to set up a certain channel for DMA transport at runtime.
  324. * The DMA device/engine has to provide support for an additional
  325. * command in the channel config interface, DMA_SLAVE_CONFIG
  326. * and this struct will then be passed in as an argument to the
  327. * DMA engine device_control() function.
  328. *
  329. * The rationale for adding configuration information to this struct
  330. * is as follows: if it is likely that most DMA slave controllers in
  331. * the world will support the configuration option, then make it
  332. * generic. If not: if it is fixed so that it be sent in static from
  333. * the platform data, then prefer to do that. Else, if it is neither
  334. * fixed at runtime, nor generic enough (such as bus mastership on
  335. * some CPU family and whatnot) then create a custom slave config
  336. * struct and pass that, then make this config a member of that
  337. * struct, if applicable.
  338. */
  339. struct dma_slave_config {
  340. enum dma_transfer_direction direction;
  341. dma_addr_t src_addr;
  342. dma_addr_t dst_addr;
  343. enum dma_slave_buswidth src_addr_width;
  344. enum dma_slave_buswidth dst_addr_width;
  345. u32 src_maxburst;
  346. u32 dst_maxburst;
  347. bool device_fc;
  348. unsigned int slave_id;
  349. };
  350. static inline const char *dma_chan_name(struct dma_chan *chan)
  351. {
  352. return dev_name(&chan->dev->device);
  353. }
  354. void dma_chan_cleanup(struct kref *kref);
  355. /**
  356. * typedef dma_filter_fn - callback filter for dma_request_channel
  357. * @chan: channel to be reviewed
  358. * @filter_param: opaque parameter passed through dma_request_channel
  359. *
  360. * When this optional parameter is specified in a call to dma_request_channel a
  361. * suitable channel is passed to this routine for further dispositioning before
  362. * being returned. Where 'suitable' indicates a non-busy channel that
  363. * satisfies the given capability mask. It returns 'true' to indicate that the
  364. * channel is suitable.
  365. */
  366. typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
  367. typedef void (*dma_async_tx_callback)(void *dma_async_param);
  368. /**
  369. * struct dma_async_tx_descriptor - async transaction descriptor
  370. * ---dma generic offload fields---
  371. * @cookie: tracking cookie for this transaction, set to -EBUSY if
  372. * this tx is sitting on a dependency list
  373. * @flags: flags to augment operation preparation, control completion, and
  374. * communicate status
  375. * @phys: physical address of the descriptor
  376. * @chan: target channel for this operation
  377. * @tx_submit: set the prepared descriptor(s) to be executed by the engine
  378. * @callback: routine to call after this operation is complete
  379. * @callback_param: general parameter to pass to the callback routine
  380. * ---async_tx api specific fields---
  381. * @next: at completion submit this descriptor
  382. * @parent: pointer to the next level up in the dependency chain
  383. * @lock: protect the parent and next pointers
  384. */
  385. struct dma_async_tx_descriptor {
  386. dma_cookie_t cookie;
  387. enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
  388. dma_addr_t phys;
  389. struct dma_chan *chan;
  390. dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
  391. dma_async_tx_callback callback;
  392. void *callback_param;
  393. #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
  394. struct dma_async_tx_descriptor *next;
  395. struct dma_async_tx_descriptor *parent;
  396. spinlock_t lock;
  397. #endif
  398. };
  399. #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
  400. static inline void txd_lock(struct dma_async_tx_descriptor *txd)
  401. {
  402. }
  403. static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
  404. {
  405. }
  406. static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
  407. {
  408. BUG();
  409. }
  410. static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
  411. {
  412. }
  413. static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
  414. {
  415. }
  416. static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
  417. {
  418. return NULL;
  419. }
  420. static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
  421. {
  422. return NULL;
  423. }
  424. #else
  425. static inline void txd_lock(struct dma_async_tx_descriptor *txd)
  426. {
  427. spin_lock_bh(&txd->lock);
  428. }
  429. static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
  430. {
  431. spin_unlock_bh(&txd->lock);
  432. }
  433. static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
  434. {
  435. txd->next = next;
  436. next->parent = txd;
  437. }
  438. static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
  439. {
  440. txd->parent = NULL;
  441. }
  442. static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
  443. {
  444. txd->next = NULL;
  445. }
  446. static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
  447. {
  448. return txd->parent;
  449. }
  450. static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
  451. {
  452. return txd->next;
  453. }
  454. #endif
  455. /**
  456. * struct dma_tx_state - filled in to report the status of
  457. * a transfer.
  458. * @last: last completed DMA cookie
  459. * @used: last issued DMA cookie (i.e. the one in progress)
  460. * @residue: the remaining number of bytes left to transmit
  461. * on the selected transfer for states DMA_IN_PROGRESS and
  462. * DMA_PAUSED if this is implemented in the driver, else 0
  463. */
  464. struct dma_tx_state {
  465. dma_cookie_t last;
  466. dma_cookie_t used;
  467. u32 residue;
  468. };
  469. /**
  470. * struct dma_device - info on the entity supplying DMA services
  471. * @chancnt: how many DMA channels are supported
  472. * @privatecnt: how many DMA channels are requested by dma_request_channel
  473. * @channels: the list of struct dma_chan
  474. * @global_node: list_head for global dma_device_list
  475. * @cap_mask: one or more dma_capability flags
  476. * @max_xor: maximum number of xor sources, 0 if no capability
  477. * @max_pq: maximum number of PQ sources and PQ-continue capability
  478. * @copy_align: alignment shift for memcpy operations
  479. * @xor_align: alignment shift for xor operations
  480. * @pq_align: alignment shift for pq operations
  481. * @fill_align: alignment shift for memset operations
  482. * @dev_id: unique device ID
  483. * @dev: struct device reference for dma mapping api
  484. * @device_alloc_chan_resources: allocate resources and return the
  485. * number of allocated descriptors
  486. * @device_free_chan_resources: release DMA channel's resources
  487. * @device_prep_dma_memcpy: prepares a memcpy operation
  488. * @device_prep_dma_xor: prepares a xor operation
  489. * @device_prep_dma_xor_val: prepares a xor validation operation
  490. * @device_prep_dma_pq: prepares a pq operation
  491. * @device_prep_dma_pq_val: prepares a pqzero_sum operation
  492. * @device_prep_dma_memset: prepares a memset operation
  493. * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
  494. * @device_prep_slave_sg: prepares a slave dma operation
  495. * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
  496. * The function takes a buffer of size buf_len. The callback function will
  497. * be called after period_len bytes have been transferred.
  498. * @device_prep_interleaved_dma: Transfer expression in a generic way.
  499. * @device_control: manipulate all pending operations on a channel, returns
  500. * zero or error code
  501. * @device_tx_status: poll for transaction completion, the optional
  502. * txstate parameter can be supplied with a pointer to get a
  503. * struct with auxiliary transfer status information, otherwise the call
  504. * will just return a simple status code
  505. * @device_issue_pending: push pending transactions to hardware
  506. */
  507. struct dma_device {
  508. unsigned int chancnt;
  509. unsigned int privatecnt;
  510. struct list_head channels;
  511. struct list_head global_node;
  512. dma_cap_mask_t cap_mask;
  513. unsigned short max_xor;
  514. unsigned short max_pq;
  515. u8 copy_align;
  516. u8 xor_align;
  517. u8 pq_align;
  518. u8 fill_align;
  519. #define DMA_HAS_PQ_CONTINUE (1 << 15)
  520. int dev_id;
  521. struct device *dev;
  522. int (*device_alloc_chan_resources)(struct dma_chan *chan);
  523. void (*device_free_chan_resources)(struct dma_chan *chan);
  524. struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
  525. struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
  526. size_t len, unsigned long flags);
  527. struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
  528. struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
  529. unsigned int src_cnt, size_t len, unsigned long flags);
  530. struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
  531. struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
  532. size_t len, enum sum_check_flags *result, unsigned long flags);
  533. struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
  534. struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
  535. unsigned int src_cnt, const unsigned char *scf,
  536. size_t len, unsigned long flags);
  537. struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
  538. struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
  539. unsigned int src_cnt, const unsigned char *scf, size_t len,
  540. enum sum_check_flags *pqres, unsigned long flags);
  541. struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
  542. struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
  543. unsigned long flags);
  544. struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
  545. struct dma_chan *chan, unsigned long flags);
  546. struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
  547. struct dma_chan *chan,
  548. struct scatterlist *dst_sg, unsigned int dst_nents,
  549. struct scatterlist *src_sg, unsigned int src_nents,
  550. unsigned long flags);
  551. struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
  552. struct dma_chan *chan, struct scatterlist *sgl,
  553. unsigned int sg_len, enum dma_transfer_direction direction,
  554. unsigned long flags, void *context);
  555. struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
  556. struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
  557. size_t period_len, enum dma_transfer_direction direction,
  558. unsigned long flags, void *context);
  559. struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
  560. struct dma_chan *chan, struct dma_interleaved_template *xt,
  561. unsigned long flags);
  562. int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  563. unsigned long arg);
  564. enum dma_status (*device_tx_status)(struct dma_chan *chan,
  565. dma_cookie_t cookie,
  566. struct dma_tx_state *txstate);
  567. void (*device_issue_pending)(struct dma_chan *chan);
  568. };
  569. static inline int dmaengine_device_control(struct dma_chan *chan,
  570. enum dma_ctrl_cmd cmd,
  571. unsigned long arg)
  572. {
  573. if (chan->device->device_control)
  574. return chan->device->device_control(chan, cmd, arg);
  575. else
  576. return -ENOSYS;
  577. }
  578. static inline int dmaengine_slave_config(struct dma_chan *chan,
  579. struct dma_slave_config *config)
  580. {
  581. return dmaengine_device_control(chan, DMA_SLAVE_CONFIG,
  582. (unsigned long)config);
  583. }
  584. static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
  585. struct dma_chan *chan, dma_addr_t buf, size_t len,
  586. enum dma_transfer_direction dir, unsigned long flags)
  587. {
  588. struct scatterlist sg;
  589. sg_init_table(&sg, 1);
  590. sg_dma_address(&sg) = buf;
  591. sg_dma_len(&sg) = len;
  592. return chan->device->device_prep_slave_sg(chan, &sg, 1,
  593. dir, flags, NULL);
  594. }
  595. static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
  596. struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
  597. enum dma_transfer_direction dir, unsigned long flags)
  598. {
  599. return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
  600. dir, flags, NULL);
  601. }
  602. #ifdef CONFIG_RAPIDIO_DMA_ENGINE
  603. struct rio_dma_ext;
  604. static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
  605. struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
  606. enum dma_transfer_direction dir, unsigned long flags,
  607. struct rio_dma_ext *rio_ext)
  608. {
  609. return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
  610. dir, flags, rio_ext);
  611. }
  612. #endif
  613. static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
  614. struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
  615. size_t period_len, enum dma_transfer_direction dir,
  616. unsigned long flags)
  617. {
  618. return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
  619. period_len, dir, flags, NULL);
  620. }
  621. static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
  622. struct dma_chan *chan, struct dma_interleaved_template *xt,
  623. unsigned long flags)
  624. {
  625. return chan->device->device_prep_interleaved_dma(chan, xt, flags);
  626. }
  627. static inline int dmaengine_terminate_all(struct dma_chan *chan)
  628. {
  629. return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0);
  630. }
  631. static inline int dmaengine_pause(struct dma_chan *chan)
  632. {
  633. return dmaengine_device_control(chan, DMA_PAUSE, 0);
  634. }
  635. static inline int dmaengine_resume(struct dma_chan *chan)
  636. {
  637. return dmaengine_device_control(chan, DMA_RESUME, 0);
  638. }
  639. static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
  640. dma_cookie_t cookie, struct dma_tx_state *state)
  641. {
  642. return chan->device->device_tx_status(chan, cookie, state);
  643. }
  644. static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
  645. {
  646. return desc->tx_submit(desc);
  647. }
  648. static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
  649. {
  650. size_t mask;
  651. if (!align)
  652. return true;
  653. mask = (1 << align) - 1;
  654. if (mask & (off1 | off2 | len))
  655. return false;
  656. return true;
  657. }
  658. static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
  659. size_t off2, size_t len)
  660. {
  661. return dmaengine_check_align(dev->copy_align, off1, off2, len);
  662. }
  663. static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
  664. size_t off2, size_t len)
  665. {
  666. return dmaengine_check_align(dev->xor_align, off1, off2, len);
  667. }
  668. static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
  669. size_t off2, size_t len)
  670. {
  671. return dmaengine_check_align(dev->pq_align, off1, off2, len);
  672. }
  673. static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
  674. size_t off2, size_t len)
  675. {
  676. return dmaengine_check_align(dev->fill_align, off1, off2, len);
  677. }
  678. static inline void
  679. dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
  680. {
  681. dma->max_pq = maxpq;
  682. if (has_pq_continue)
  683. dma->max_pq |= DMA_HAS_PQ_CONTINUE;
  684. }
  685. static inline bool dmaf_continue(enum dma_ctrl_flags flags)
  686. {
  687. return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
  688. }
  689. static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
  690. {
  691. enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
  692. return (flags & mask) == mask;
  693. }
  694. static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
  695. {
  696. return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
  697. }
  698. static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
  699. {
  700. return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
  701. }
  702. /* dma_maxpq - reduce maxpq in the face of continued operations
  703. * @dma - dma device with PQ capability
  704. * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
  705. *
  706. * When an engine does not support native continuation we need 3 extra
  707. * source slots to reuse P and Q with the following coefficients:
  708. * 1/ {00} * P : remove P from Q', but use it as a source for P'
  709. * 2/ {01} * Q : use Q to continue Q' calculation
  710. * 3/ {00} * Q : subtract Q from P' to cancel (2)
  711. *
  712. * In the case where P is disabled we only need 1 extra source:
  713. * 1/ {01} * Q : use Q to continue Q' calculation
  714. */
  715. static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
  716. {
  717. if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
  718. return dma_dev_to_maxpq(dma);
  719. else if (dmaf_p_disabled_continue(flags))
  720. return dma_dev_to_maxpq(dma) - 1;
  721. else if (dmaf_continue(flags))
  722. return dma_dev_to_maxpq(dma) - 3;
  723. BUG();
  724. }
  725. /* --- public DMA engine API --- */
  726. #ifdef CONFIG_DMA_ENGINE
  727. void dmaengine_get(void);
  728. void dmaengine_put(void);
  729. #else
  730. static inline void dmaengine_get(void)
  731. {
  732. }
  733. static inline void dmaengine_put(void)
  734. {
  735. }
  736. #endif
  737. #ifdef CONFIG_NET_DMA
  738. #define net_dmaengine_get() dmaengine_get()
  739. #define net_dmaengine_put() dmaengine_put()
  740. #else
  741. static inline void net_dmaengine_get(void)
  742. {
  743. }
  744. static inline void net_dmaengine_put(void)
  745. {
  746. }
  747. #endif
  748. #ifdef CONFIG_ASYNC_TX_DMA
  749. #define async_dmaengine_get() dmaengine_get()
  750. #define async_dmaengine_put() dmaengine_put()
  751. #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
  752. #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
  753. #else
  754. #define async_dma_find_channel(type) dma_find_channel(type)
  755. #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
  756. #else
  757. static inline void async_dmaengine_get(void)
  758. {
  759. }
  760. static inline void async_dmaengine_put(void)
  761. {
  762. }
  763. static inline struct dma_chan *
  764. async_dma_find_channel(enum dma_transaction_type type)
  765. {
  766. return NULL;
  767. }
  768. #endif /* CONFIG_ASYNC_TX_DMA */
  769. dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan,
  770. void *dest, void *src, size_t len);
  771. dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan,
  772. struct page *page, unsigned int offset, void *kdata, size_t len);
  773. dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan,
  774. struct page *dest_pg, unsigned int dest_off, struct page *src_pg,
  775. unsigned int src_off, size_t len);
  776. void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
  777. struct dma_chan *chan);
  778. static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
  779. {
  780. tx->flags |= DMA_CTRL_ACK;
  781. }
  782. static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
  783. {
  784. tx->flags &= ~DMA_CTRL_ACK;
  785. }
  786. static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
  787. {
  788. return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
  789. }
  790. #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
  791. static inline void
  792. __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
  793. {
  794. set_bit(tx_type, dstp->bits);
  795. }
  796. #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
  797. static inline void
  798. __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
  799. {
  800. clear_bit(tx_type, dstp->bits);
  801. }
  802. #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
  803. static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
  804. {
  805. bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
  806. }
  807. #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
  808. static inline int
  809. __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
  810. {
  811. return test_bit(tx_type, srcp->bits);
  812. }
  813. #define for_each_dma_cap_mask(cap, mask) \
  814. for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
  815. /**
  816. * dma_async_issue_pending - flush pending transactions to HW
  817. * @chan: target DMA channel
  818. *
  819. * This allows drivers to push copies to HW in batches,
  820. * reducing MMIO writes where possible.
  821. */
  822. static inline void dma_async_issue_pending(struct dma_chan *chan)
  823. {
  824. chan->device->device_issue_pending(chan);
  825. }
  826. /**
  827. * dma_async_is_tx_complete - poll for transaction completion
  828. * @chan: DMA channel
  829. * @cookie: transaction identifier to check status of
  830. * @last: returns last completed cookie, can be NULL
  831. * @used: returns last issued cookie, can be NULL
  832. *
  833. * If @last and @used are passed in, upon return they reflect the driver
  834. * internal state and can be used with dma_async_is_complete() to check
  835. * the status of multiple cookies without re-checking hardware state.
  836. */
  837. static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
  838. dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
  839. {
  840. struct dma_tx_state state;
  841. enum dma_status status;
  842. status = chan->device->device_tx_status(chan, cookie, &state);
  843. if (last)
  844. *last = state.last;
  845. if (used)
  846. *used = state.used;
  847. return status;
  848. }
  849. /**
  850. * dma_async_is_complete - test a cookie against chan state
  851. * @cookie: transaction identifier to test status of
  852. * @last_complete: last know completed transaction
  853. * @last_used: last cookie value handed out
  854. *
  855. * dma_async_is_complete() is used in dma_async_is_tx_complete()
  856. * the test logic is separated for lightweight testing of multiple cookies
  857. */
  858. static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
  859. dma_cookie_t last_complete, dma_cookie_t last_used)
  860. {
  861. if (last_complete <= last_used) {
  862. if ((cookie <= last_complete) || (cookie > last_used))
  863. return DMA_SUCCESS;
  864. } else {
  865. if ((cookie <= last_complete) && (cookie > last_used))
  866. return DMA_SUCCESS;
  867. }
  868. return DMA_IN_PROGRESS;
  869. }
  870. static inline void
  871. dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
  872. {
  873. if (st) {
  874. st->last = last;
  875. st->used = used;
  876. st->residue = residue;
  877. }
  878. }
  879. enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
  880. #ifdef CONFIG_DMA_ENGINE
  881. enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
  882. void dma_issue_pending_all(void);
  883. struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param);
  884. struct dma_chan *dma_request_slave_channel(struct device *dev, char *name);
  885. void dma_release_channel(struct dma_chan *chan);
  886. #else
  887. static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
  888. {
  889. return DMA_SUCCESS;
  890. }
  891. static inline void dma_issue_pending_all(void)
  892. {
  893. }
  894. static inline struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask,
  895. dma_filter_fn fn, void *fn_param)
  896. {
  897. return NULL;
  898. }
  899. static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
  900. char *name)
  901. {
  902. return NULL;
  903. }
  904. static inline void dma_release_channel(struct dma_chan *chan)
  905. {
  906. }
  907. #endif
  908. /* --- DMA device --- */
  909. int dma_async_device_register(struct dma_device *device);
  910. void dma_async_device_unregister(struct dma_device *device);
  911. void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
  912. struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
  913. struct dma_chan *net_dma_find_channel(void);
  914. #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
  915. /* --- Helper iov-locking functions --- */
  916. struct dma_page_list {
  917. char __user *base_address;
  918. int nr_pages;
  919. struct page **pages;
  920. };
  921. struct dma_pinned_list {
  922. int nr_iovecs;
  923. struct dma_page_list page_list[0];
  924. };
  925. struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len);
  926. void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list);
  927. dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov,
  928. struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len);
  929. dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov,
  930. struct dma_pinned_list *pinned_list, struct page *page,
  931. unsigned int offset, size_t len);
  932. #endif /* DMAENGINE_H */