ste_dma40.c 96 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760
  1. /*
  2. * Copyright (C) Ericsson AB 2007-2008
  3. * Copyright (C) ST-Ericsson SA 2008-2010
  4. * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
  5. * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
  6. * License terms: GNU General Public License (GPL) version 2
  7. */
  8. #include <linux/dma-mapping.h>
  9. #include <linux/kernel.h>
  10. #include <linux/slab.h>
  11. #include <linux/export.h>
  12. #include <linux/dmaengine.h>
  13. #include <linux/platform_device.h>
  14. #include <linux/clk.h>
  15. #include <linux/delay.h>
  16. #include <linux/log2.h>
  17. #include <linux/pm.h>
  18. #include <linux/pm_runtime.h>
  19. #include <linux/err.h>
  20. #include <linux/of.h>
  21. #include <linux/of_dma.h>
  22. #include <linux/amba/bus.h>
  23. #include <linux/regulator/consumer.h>
  24. #include <linux/platform_data/dma-ste-dma40.h>
  25. #include "dmaengine.h"
  26. #include "ste_dma40_ll.h"
  27. #define D40_NAME "dma40"
  28. #define D40_PHY_CHAN -1
  29. /* For masking out/in 2 bit channel positions */
  30. #define D40_CHAN_POS(chan) (2 * (chan / 2))
  31. #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  32. /* Maximum iterations taken before giving up suspending a channel */
  33. #define D40_SUSPEND_MAX_IT 500
  34. /* Milliseconds */
  35. #define DMA40_AUTOSUSPEND_DELAY 100
  36. /* Hardware requirement on LCLA alignment */
  37. #define LCLA_ALIGNMENT 0x40000
  38. /* Max number of links per event group */
  39. #define D40_LCLA_LINK_PER_EVENT_GRP 128
  40. #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  41. /* Max number of logical channels per physical channel */
  42. #define D40_MAX_LOG_CHAN_PER_PHY 32
  43. /* Attempts before giving up to trying to get pages that are aligned */
  44. #define MAX_LCLA_ALLOC_ATTEMPTS 256
  45. /* Bit markings for allocation map */
  46. #define D40_ALLOC_FREE BIT(31)
  47. #define D40_ALLOC_PHY BIT(30)
  48. #define D40_ALLOC_LOG_FREE 0
  49. #define D40_MEMCPY_MAX_CHANS 8
  50. /* Reserved event lines for memcpy only. */
  51. #define DB8500_DMA_MEMCPY_EV_0 51
  52. #define DB8500_DMA_MEMCPY_EV_1 56
  53. #define DB8500_DMA_MEMCPY_EV_2 57
  54. #define DB8500_DMA_MEMCPY_EV_3 58
  55. #define DB8500_DMA_MEMCPY_EV_4 59
  56. #define DB8500_DMA_MEMCPY_EV_5 60
  57. static int dma40_memcpy_channels[] = {
  58. DB8500_DMA_MEMCPY_EV_0,
  59. DB8500_DMA_MEMCPY_EV_1,
  60. DB8500_DMA_MEMCPY_EV_2,
  61. DB8500_DMA_MEMCPY_EV_3,
  62. DB8500_DMA_MEMCPY_EV_4,
  63. DB8500_DMA_MEMCPY_EV_5,
  64. };
  65. /* Default configuration for physcial memcpy */
  66. static struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
  67. .mode = STEDMA40_MODE_PHYSICAL,
  68. .dir = DMA_MEM_TO_MEM,
  69. .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
  70. .src_info.psize = STEDMA40_PSIZE_PHY_1,
  71. .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
  72. .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
  73. .dst_info.psize = STEDMA40_PSIZE_PHY_1,
  74. .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
  75. };
  76. /* Default configuration for logical memcpy */
  77. static struct stedma40_chan_cfg dma40_memcpy_conf_log = {
  78. .mode = STEDMA40_MODE_LOGICAL,
  79. .dir = DMA_MEM_TO_MEM,
  80. .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
  81. .src_info.psize = STEDMA40_PSIZE_LOG_1,
  82. .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
  83. .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
  84. .dst_info.psize = STEDMA40_PSIZE_LOG_1,
  85. .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
  86. };
  87. /**
  88. * enum 40_command - The different commands and/or statuses.
  89. *
  90. * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
  91. * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
  92. * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
  93. * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
  94. */
  95. enum d40_command {
  96. D40_DMA_STOP = 0,
  97. D40_DMA_RUN = 1,
  98. D40_DMA_SUSPEND_REQ = 2,
  99. D40_DMA_SUSPENDED = 3
  100. };
  101. /*
  102. * enum d40_events - The different Event Enables for the event lines.
  103. *
  104. * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
  105. * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
  106. * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
  107. * @D40_ROUND_EVENTLINE: Status check for event line.
  108. */
  109. enum d40_events {
  110. D40_DEACTIVATE_EVENTLINE = 0,
  111. D40_ACTIVATE_EVENTLINE = 1,
  112. D40_SUSPEND_REQ_EVENTLINE = 2,
  113. D40_ROUND_EVENTLINE = 3
  114. };
  115. /*
  116. * These are the registers that has to be saved and later restored
  117. * when the DMA hw is powered off.
  118. * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
  119. */
  120. static u32 d40_backup_regs[] = {
  121. D40_DREG_LCPA,
  122. D40_DREG_LCLA,
  123. D40_DREG_PRMSE,
  124. D40_DREG_PRMSO,
  125. D40_DREG_PRMOE,
  126. D40_DREG_PRMOO,
  127. };
  128. #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
  129. /*
  130. * since 9540 and 8540 has the same HW revision
  131. * use v4a for 9540 or ealier
  132. * use v4b for 8540 or later
  133. * HW revision:
  134. * DB8500ed has revision 0
  135. * DB8500v1 has revision 2
  136. * DB8500v2 has revision 3
  137. * AP9540v1 has revision 4
  138. * DB8540v1 has revision 4
  139. * TODO: Check if all these registers have to be saved/restored on dma40 v4a
  140. */
  141. static u32 d40_backup_regs_v4a[] = {
  142. D40_DREG_PSEG1,
  143. D40_DREG_PSEG2,
  144. D40_DREG_PSEG3,
  145. D40_DREG_PSEG4,
  146. D40_DREG_PCEG1,
  147. D40_DREG_PCEG2,
  148. D40_DREG_PCEG3,
  149. D40_DREG_PCEG4,
  150. D40_DREG_RSEG1,
  151. D40_DREG_RSEG2,
  152. D40_DREG_RSEG3,
  153. D40_DREG_RSEG4,
  154. D40_DREG_RCEG1,
  155. D40_DREG_RCEG2,
  156. D40_DREG_RCEG3,
  157. D40_DREG_RCEG4,
  158. };
  159. #define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
  160. static u32 d40_backup_regs_v4b[] = {
  161. D40_DREG_CPSEG1,
  162. D40_DREG_CPSEG2,
  163. D40_DREG_CPSEG3,
  164. D40_DREG_CPSEG4,
  165. D40_DREG_CPSEG5,
  166. D40_DREG_CPCEG1,
  167. D40_DREG_CPCEG2,
  168. D40_DREG_CPCEG3,
  169. D40_DREG_CPCEG4,
  170. D40_DREG_CPCEG5,
  171. D40_DREG_CRSEG1,
  172. D40_DREG_CRSEG2,
  173. D40_DREG_CRSEG3,
  174. D40_DREG_CRSEG4,
  175. D40_DREG_CRSEG5,
  176. D40_DREG_CRCEG1,
  177. D40_DREG_CRCEG2,
  178. D40_DREG_CRCEG3,
  179. D40_DREG_CRCEG4,
  180. D40_DREG_CRCEG5,
  181. };
  182. #define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
  183. static u32 d40_backup_regs_chan[] = {
  184. D40_CHAN_REG_SSCFG,
  185. D40_CHAN_REG_SSELT,
  186. D40_CHAN_REG_SSPTR,
  187. D40_CHAN_REG_SSLNK,
  188. D40_CHAN_REG_SDCFG,
  189. D40_CHAN_REG_SDELT,
  190. D40_CHAN_REG_SDPTR,
  191. D40_CHAN_REG_SDLNK,
  192. };
  193. #define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
  194. BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
  195. /**
  196. * struct d40_interrupt_lookup - lookup table for interrupt handler
  197. *
  198. * @src: Interrupt mask register.
  199. * @clr: Interrupt clear register.
  200. * @is_error: true if this is an error interrupt.
  201. * @offset: start delta in the lookup_log_chans in d40_base. If equals to
  202. * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
  203. */
  204. struct d40_interrupt_lookup {
  205. u32 src;
  206. u32 clr;
  207. bool is_error;
  208. int offset;
  209. };
  210. static struct d40_interrupt_lookup il_v4a[] = {
  211. {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
  212. {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
  213. {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
  214. {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
  215. {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
  216. {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
  217. {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
  218. {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
  219. {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
  220. {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
  221. };
  222. static struct d40_interrupt_lookup il_v4b[] = {
  223. {D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false, 0},
  224. {D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
  225. {D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
  226. {D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
  227. {D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
  228. {D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true, 0},
  229. {D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true, 32},
  230. {D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true, 64},
  231. {D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true, 96},
  232. {D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true, 128},
  233. {D40_DREG_CPCTIS, D40_DREG_CPCICR, false, D40_PHY_CHAN},
  234. {D40_DREG_CPCEIS, D40_DREG_CPCICR, true, D40_PHY_CHAN},
  235. };
  236. /**
  237. * struct d40_reg_val - simple lookup struct
  238. *
  239. * @reg: The register.
  240. * @val: The value that belongs to the register in reg.
  241. */
  242. struct d40_reg_val {
  243. unsigned int reg;
  244. unsigned int val;
  245. };
  246. static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
  247. /* Clock every part of the DMA block from start */
  248. { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
  249. /* Interrupts on all logical channels */
  250. { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
  251. { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
  252. { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
  253. { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
  254. { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
  255. { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
  256. { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
  257. { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
  258. { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
  259. { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
  260. { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
  261. { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
  262. };
  263. static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
  264. /* Clock every part of the DMA block from start */
  265. { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
  266. /* Interrupts on all logical channels */
  267. { .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
  268. { .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
  269. { .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
  270. { .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
  271. { .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
  272. { .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
  273. { .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
  274. { .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
  275. { .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
  276. { .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
  277. { .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
  278. { .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
  279. { .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
  280. { .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
  281. { .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
  282. };
  283. /**
  284. * struct d40_lli_pool - Structure for keeping LLIs in memory
  285. *
  286. * @base: Pointer to memory area when the pre_alloc_lli's are not large
  287. * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
  288. * pre_alloc_lli is used.
  289. * @dma_addr: DMA address, if mapped
  290. * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
  291. * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
  292. * one buffer to one buffer.
  293. */
  294. struct d40_lli_pool {
  295. void *base;
  296. int size;
  297. dma_addr_t dma_addr;
  298. /* Space for dst and src, plus an extra for padding */
  299. u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
  300. };
  301. /**
  302. * struct d40_desc - A descriptor is one DMA job.
  303. *
  304. * @lli_phy: LLI settings for physical channel. Both src and dst=
  305. * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
  306. * lli_len equals one.
  307. * @lli_log: Same as above but for logical channels.
  308. * @lli_pool: The pool with two entries pre-allocated.
  309. * @lli_len: Number of llis of current descriptor.
  310. * @lli_current: Number of transferred llis.
  311. * @lcla_alloc: Number of LCLA entries allocated.
  312. * @txd: DMA engine struct. Used for among other things for communication
  313. * during a transfer.
  314. * @node: List entry.
  315. * @is_in_client_list: true if the client owns this descriptor.
  316. * @cyclic: true if this is a cyclic job
  317. *
  318. * This descriptor is used for both logical and physical transfers.
  319. */
  320. struct d40_desc {
  321. /* LLI physical */
  322. struct d40_phy_lli_bidir lli_phy;
  323. /* LLI logical */
  324. struct d40_log_lli_bidir lli_log;
  325. struct d40_lli_pool lli_pool;
  326. int lli_len;
  327. int lli_current;
  328. int lcla_alloc;
  329. struct dma_async_tx_descriptor txd;
  330. struct list_head node;
  331. bool is_in_client_list;
  332. bool cyclic;
  333. };
  334. /**
  335. * struct d40_lcla_pool - LCLA pool settings and data.
  336. *
  337. * @base: The virtual address of LCLA. 18 bit aligned.
  338. * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
  339. * This pointer is only there for clean-up on error.
  340. * @pages: The number of pages needed for all physical channels.
  341. * Only used later for clean-up on error
  342. * @lock: Lock to protect the content in this struct.
  343. * @alloc_map: big map over which LCLA entry is own by which job.
  344. */
  345. struct d40_lcla_pool {
  346. void *base;
  347. dma_addr_t dma_addr;
  348. void *base_unaligned;
  349. int pages;
  350. spinlock_t lock;
  351. struct d40_desc **alloc_map;
  352. };
  353. /**
  354. * struct d40_phy_res - struct for handling eventlines mapped to physical
  355. * channels.
  356. *
  357. * @lock: A lock protection this entity.
  358. * @reserved: True if used by secure world or otherwise.
  359. * @num: The physical channel number of this entity.
  360. * @allocated_src: Bit mapped to show which src event line's are mapped to
  361. * this physical channel. Can also be free or physically allocated.
  362. * @allocated_dst: Same as for src but is dst.
  363. * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
  364. * event line number.
  365. * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
  366. */
  367. struct d40_phy_res {
  368. spinlock_t lock;
  369. bool reserved;
  370. int num;
  371. u32 allocated_src;
  372. u32 allocated_dst;
  373. bool use_soft_lli;
  374. };
  375. struct d40_base;
  376. /**
  377. * struct d40_chan - Struct that describes a channel.
  378. *
  379. * @lock: A spinlock to protect this struct.
  380. * @log_num: The logical number, if any of this channel.
  381. * @pending_tx: The number of pending transfers. Used between interrupt handler
  382. * and tasklet.
  383. * @busy: Set to true when transfer is ongoing on this channel.
  384. * @phy_chan: Pointer to physical channel which this instance runs on. If this
  385. * point is NULL, then the channel is not allocated.
  386. * @chan: DMA engine handle.
  387. * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
  388. * transfer and call client callback.
  389. * @client: Cliented owned descriptor list.
  390. * @pending_queue: Submitted jobs, to be issued by issue_pending()
  391. * @active: Active descriptor.
  392. * @done: Completed jobs
  393. * @queue: Queued jobs.
  394. * @prepare_queue: Prepared jobs.
  395. * @dma_cfg: The client configuration of this dma channel.
  396. * @configured: whether the dma_cfg configuration is valid
  397. * @base: Pointer to the device instance struct.
  398. * @src_def_cfg: Default cfg register setting for src.
  399. * @dst_def_cfg: Default cfg register setting for dst.
  400. * @log_def: Default logical channel settings.
  401. * @lcpa: Pointer to dst and src lcpa settings.
  402. * @runtime_addr: runtime configured address.
  403. * @runtime_direction: runtime configured direction.
  404. *
  405. * This struct can either "be" a logical or a physical channel.
  406. */
  407. struct d40_chan {
  408. spinlock_t lock;
  409. int log_num;
  410. int pending_tx;
  411. bool busy;
  412. struct d40_phy_res *phy_chan;
  413. struct dma_chan chan;
  414. struct tasklet_struct tasklet;
  415. struct list_head client;
  416. struct list_head pending_queue;
  417. struct list_head active;
  418. struct list_head done;
  419. struct list_head queue;
  420. struct list_head prepare_queue;
  421. struct stedma40_chan_cfg dma_cfg;
  422. bool configured;
  423. struct d40_base *base;
  424. /* Default register configurations */
  425. u32 src_def_cfg;
  426. u32 dst_def_cfg;
  427. struct d40_def_lcsp log_def;
  428. struct d40_log_lli_full *lcpa;
  429. /* Runtime reconfiguration */
  430. dma_addr_t runtime_addr;
  431. enum dma_transfer_direction runtime_direction;
  432. };
  433. /**
  434. * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
  435. * controller
  436. *
  437. * @backup: the pointer to the registers address array for backup
  438. * @backup_size: the size of the registers address array for backup
  439. * @realtime_en: the realtime enable register
  440. * @realtime_clear: the realtime clear register
  441. * @high_prio_en: the high priority enable register
  442. * @high_prio_clear: the high priority clear register
  443. * @interrupt_en: the interrupt enable register
  444. * @interrupt_clear: the interrupt clear register
  445. * @il: the pointer to struct d40_interrupt_lookup
  446. * @il_size: the size of d40_interrupt_lookup array
  447. * @init_reg: the pointer to the struct d40_reg_val
  448. * @init_reg_size: the size of d40_reg_val array
  449. */
  450. struct d40_gen_dmac {
  451. u32 *backup;
  452. u32 backup_size;
  453. u32 realtime_en;
  454. u32 realtime_clear;
  455. u32 high_prio_en;
  456. u32 high_prio_clear;
  457. u32 interrupt_en;
  458. u32 interrupt_clear;
  459. struct d40_interrupt_lookup *il;
  460. u32 il_size;
  461. struct d40_reg_val *init_reg;
  462. u32 init_reg_size;
  463. };
  464. /**
  465. * struct d40_base - The big global struct, one for each probe'd instance.
  466. *
  467. * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
  468. * @execmd_lock: Lock for execute command usage since several channels share
  469. * the same physical register.
  470. * @dev: The device structure.
  471. * @virtbase: The virtual base address of the DMA's register.
  472. * @rev: silicon revision detected.
  473. * @clk: Pointer to the DMA clock structure.
  474. * @phy_start: Physical memory start of the DMA registers.
  475. * @phy_size: Size of the DMA register map.
  476. * @irq: The IRQ number.
  477. * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
  478. * transfers).
  479. * @num_phy_chans: The number of physical channels. Read from HW. This
  480. * is the number of available channels for this driver, not counting "Secure
  481. * mode" allocated physical channels.
  482. * @num_log_chans: The number of logical channels. Calculated from
  483. * num_phy_chans.
  484. * @dma_both: dma_device channels that can do both memcpy and slave transfers.
  485. * @dma_slave: dma_device channels that can do only do slave transfers.
  486. * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
  487. * @phy_chans: Room for all possible physical channels in system.
  488. * @log_chans: Room for all possible logical channels in system.
  489. * @lookup_log_chans: Used to map interrupt number to logical channel. Points
  490. * to log_chans entries.
  491. * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
  492. * to phy_chans entries.
  493. * @plat_data: Pointer to provided platform_data which is the driver
  494. * configuration.
  495. * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
  496. * @phy_res: Vector containing all physical channels.
  497. * @lcla_pool: lcla pool settings and data.
  498. * @lcpa_base: The virtual mapped address of LCPA.
  499. * @phy_lcpa: The physical address of the LCPA.
  500. * @lcpa_size: The size of the LCPA area.
  501. * @desc_slab: cache for descriptors.
  502. * @reg_val_backup: Here the values of some hardware registers are stored
  503. * before the DMA is powered off. They are restored when the power is back on.
  504. * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
  505. * later
  506. * @reg_val_backup_chan: Backup data for standard channel parameter registers.
  507. * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
  508. * @initialized: true if the dma has been initialized
  509. * @gen_dmac: the struct for generic registers values to represent u8500/8540
  510. * DMA controller
  511. */
  512. struct d40_base {
  513. spinlock_t interrupt_lock;
  514. spinlock_t execmd_lock;
  515. struct device *dev;
  516. void __iomem *virtbase;
  517. u8 rev:4;
  518. struct clk *clk;
  519. phys_addr_t phy_start;
  520. resource_size_t phy_size;
  521. int irq;
  522. int num_memcpy_chans;
  523. int num_phy_chans;
  524. int num_log_chans;
  525. struct device_dma_parameters dma_parms;
  526. struct dma_device dma_both;
  527. struct dma_device dma_slave;
  528. struct dma_device dma_memcpy;
  529. struct d40_chan *phy_chans;
  530. struct d40_chan *log_chans;
  531. struct d40_chan **lookup_log_chans;
  532. struct d40_chan **lookup_phy_chans;
  533. struct stedma40_platform_data *plat_data;
  534. struct regulator *lcpa_regulator;
  535. /* Physical half channels */
  536. struct d40_phy_res *phy_res;
  537. struct d40_lcla_pool lcla_pool;
  538. void *lcpa_base;
  539. dma_addr_t phy_lcpa;
  540. resource_size_t lcpa_size;
  541. struct kmem_cache *desc_slab;
  542. u32 reg_val_backup[BACKUP_REGS_SZ];
  543. u32 reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
  544. u32 *reg_val_backup_chan;
  545. u16 gcc_pwr_off_mask;
  546. bool initialized;
  547. struct d40_gen_dmac gen_dmac;
  548. };
  549. static struct device *chan2dev(struct d40_chan *d40c)
  550. {
  551. return &d40c->chan.dev->device;
  552. }
  553. static bool chan_is_physical(struct d40_chan *chan)
  554. {
  555. return chan->log_num == D40_PHY_CHAN;
  556. }
  557. static bool chan_is_logical(struct d40_chan *chan)
  558. {
  559. return !chan_is_physical(chan);
  560. }
  561. static void __iomem *chan_base(struct d40_chan *chan)
  562. {
  563. return chan->base->virtbase + D40_DREG_PCBASE +
  564. chan->phy_chan->num * D40_DREG_PCDELTA;
  565. }
  566. #define d40_err(dev, format, arg...) \
  567. dev_err(dev, "[%s] " format, __func__, ## arg)
  568. #define chan_err(d40c, format, arg...) \
  569. d40_err(chan2dev(d40c), format, ## arg)
  570. static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
  571. int lli_len)
  572. {
  573. bool is_log = chan_is_logical(d40c);
  574. u32 align;
  575. void *base;
  576. if (is_log)
  577. align = sizeof(struct d40_log_lli);
  578. else
  579. align = sizeof(struct d40_phy_lli);
  580. if (lli_len == 1) {
  581. base = d40d->lli_pool.pre_alloc_lli;
  582. d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
  583. d40d->lli_pool.base = NULL;
  584. } else {
  585. d40d->lli_pool.size = lli_len * 2 * align;
  586. base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
  587. d40d->lli_pool.base = base;
  588. if (d40d->lli_pool.base == NULL)
  589. return -ENOMEM;
  590. }
  591. if (is_log) {
  592. d40d->lli_log.src = PTR_ALIGN(base, align);
  593. d40d->lli_log.dst = d40d->lli_log.src + lli_len;
  594. d40d->lli_pool.dma_addr = 0;
  595. } else {
  596. d40d->lli_phy.src = PTR_ALIGN(base, align);
  597. d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
  598. d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
  599. d40d->lli_phy.src,
  600. d40d->lli_pool.size,
  601. DMA_TO_DEVICE);
  602. if (dma_mapping_error(d40c->base->dev,
  603. d40d->lli_pool.dma_addr)) {
  604. kfree(d40d->lli_pool.base);
  605. d40d->lli_pool.base = NULL;
  606. d40d->lli_pool.dma_addr = 0;
  607. return -ENOMEM;
  608. }
  609. }
  610. return 0;
  611. }
  612. static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
  613. {
  614. if (d40d->lli_pool.dma_addr)
  615. dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
  616. d40d->lli_pool.size, DMA_TO_DEVICE);
  617. kfree(d40d->lli_pool.base);
  618. d40d->lli_pool.base = NULL;
  619. d40d->lli_pool.size = 0;
  620. d40d->lli_log.src = NULL;
  621. d40d->lli_log.dst = NULL;
  622. d40d->lli_phy.src = NULL;
  623. d40d->lli_phy.dst = NULL;
  624. }
  625. static int d40_lcla_alloc_one(struct d40_chan *d40c,
  626. struct d40_desc *d40d)
  627. {
  628. unsigned long flags;
  629. int i;
  630. int ret = -EINVAL;
  631. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  632. /*
  633. * Allocate both src and dst at the same time, therefore the half
  634. * start on 1 since 0 can't be used since zero is used as end marker.
  635. */
  636. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  637. int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
  638. if (!d40c->base->lcla_pool.alloc_map[idx]) {
  639. d40c->base->lcla_pool.alloc_map[idx] = d40d;
  640. d40d->lcla_alloc++;
  641. ret = i;
  642. break;
  643. }
  644. }
  645. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  646. return ret;
  647. }
  648. static int d40_lcla_free_all(struct d40_chan *d40c,
  649. struct d40_desc *d40d)
  650. {
  651. unsigned long flags;
  652. int i;
  653. int ret = -EINVAL;
  654. if (chan_is_physical(d40c))
  655. return 0;
  656. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  657. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  658. int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
  659. if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
  660. d40c->base->lcla_pool.alloc_map[idx] = NULL;
  661. d40d->lcla_alloc--;
  662. if (d40d->lcla_alloc == 0) {
  663. ret = 0;
  664. break;
  665. }
  666. }
  667. }
  668. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  669. return ret;
  670. }
  671. static void d40_desc_remove(struct d40_desc *d40d)
  672. {
  673. list_del(&d40d->node);
  674. }
  675. static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
  676. {
  677. struct d40_desc *desc = NULL;
  678. if (!list_empty(&d40c->client)) {
  679. struct d40_desc *d;
  680. struct d40_desc *_d;
  681. list_for_each_entry_safe(d, _d, &d40c->client, node) {
  682. if (async_tx_test_ack(&d->txd)) {
  683. d40_desc_remove(d);
  684. desc = d;
  685. memset(desc, 0, sizeof(*desc));
  686. break;
  687. }
  688. }
  689. }
  690. if (!desc)
  691. desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
  692. if (desc)
  693. INIT_LIST_HEAD(&desc->node);
  694. return desc;
  695. }
  696. static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
  697. {
  698. d40_pool_lli_free(d40c, d40d);
  699. d40_lcla_free_all(d40c, d40d);
  700. kmem_cache_free(d40c->base->desc_slab, d40d);
  701. }
  702. static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
  703. {
  704. list_add_tail(&desc->node, &d40c->active);
  705. }
  706. static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
  707. {
  708. struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
  709. struct d40_phy_lli *lli_src = desc->lli_phy.src;
  710. void __iomem *base = chan_base(chan);
  711. writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
  712. writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
  713. writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
  714. writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
  715. writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
  716. writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
  717. writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
  718. writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
  719. }
  720. static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
  721. {
  722. list_add_tail(&desc->node, &d40c->done);
  723. }
  724. static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
  725. {
  726. struct d40_lcla_pool *pool = &chan->base->lcla_pool;
  727. struct d40_log_lli_bidir *lli = &desc->lli_log;
  728. int lli_current = desc->lli_current;
  729. int lli_len = desc->lli_len;
  730. bool cyclic = desc->cyclic;
  731. int curr_lcla = -EINVAL;
  732. int first_lcla = 0;
  733. bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
  734. bool linkback;
  735. /*
  736. * We may have partially running cyclic transfers, in case we did't get
  737. * enough LCLA entries.
  738. */
  739. linkback = cyclic && lli_current == 0;
  740. /*
  741. * For linkback, we need one LCLA even with only one link, because we
  742. * can't link back to the one in LCPA space
  743. */
  744. if (linkback || (lli_len - lli_current > 1)) {
  745. /*
  746. * If the channel is expected to use only soft_lli don't
  747. * allocate a lcla. This is to avoid a HW issue that exists
  748. * in some controller during a peripheral to memory transfer
  749. * that uses linked lists.
  750. */
  751. if (!(chan->phy_chan->use_soft_lli &&
  752. chan->dma_cfg.dir == DMA_DEV_TO_MEM))
  753. curr_lcla = d40_lcla_alloc_one(chan, desc);
  754. first_lcla = curr_lcla;
  755. }
  756. /*
  757. * For linkback, we normally load the LCPA in the loop since we need to
  758. * link it to the second LCLA and not the first. However, if we
  759. * couldn't even get a first LCLA, then we have to run in LCPA and
  760. * reload manually.
  761. */
  762. if (!linkback || curr_lcla == -EINVAL) {
  763. unsigned int flags = 0;
  764. if (curr_lcla == -EINVAL)
  765. flags |= LLI_TERM_INT;
  766. d40_log_lli_lcpa_write(chan->lcpa,
  767. &lli->dst[lli_current],
  768. &lli->src[lli_current],
  769. curr_lcla,
  770. flags);
  771. lli_current++;
  772. }
  773. if (curr_lcla < 0)
  774. goto out;
  775. for (; lli_current < lli_len; lli_current++) {
  776. unsigned int lcla_offset = chan->phy_chan->num * 1024 +
  777. 8 * curr_lcla * 2;
  778. struct d40_log_lli *lcla = pool->base + lcla_offset;
  779. unsigned int flags = 0;
  780. int next_lcla;
  781. if (lli_current + 1 < lli_len)
  782. next_lcla = d40_lcla_alloc_one(chan, desc);
  783. else
  784. next_lcla = linkback ? first_lcla : -EINVAL;
  785. if (cyclic || next_lcla == -EINVAL)
  786. flags |= LLI_TERM_INT;
  787. if (linkback && curr_lcla == first_lcla) {
  788. /* First link goes in both LCPA and LCLA */
  789. d40_log_lli_lcpa_write(chan->lcpa,
  790. &lli->dst[lli_current],
  791. &lli->src[lli_current],
  792. next_lcla, flags);
  793. }
  794. /*
  795. * One unused LCLA in the cyclic case if the very first
  796. * next_lcla fails...
  797. */
  798. d40_log_lli_lcla_write(lcla,
  799. &lli->dst[lli_current],
  800. &lli->src[lli_current],
  801. next_lcla, flags);
  802. /*
  803. * Cache maintenance is not needed if lcla is
  804. * mapped in esram
  805. */
  806. if (!use_esram_lcla) {
  807. dma_sync_single_range_for_device(chan->base->dev,
  808. pool->dma_addr, lcla_offset,
  809. 2 * sizeof(struct d40_log_lli),
  810. DMA_TO_DEVICE);
  811. }
  812. curr_lcla = next_lcla;
  813. if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
  814. lli_current++;
  815. break;
  816. }
  817. }
  818. out:
  819. desc->lli_current = lli_current;
  820. }
  821. static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
  822. {
  823. if (chan_is_physical(d40c)) {
  824. d40_phy_lli_load(d40c, d40d);
  825. d40d->lli_current = d40d->lli_len;
  826. } else
  827. d40_log_lli_to_lcxa(d40c, d40d);
  828. }
  829. static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
  830. {
  831. struct d40_desc *d;
  832. if (list_empty(&d40c->active))
  833. return NULL;
  834. d = list_first_entry(&d40c->active,
  835. struct d40_desc,
  836. node);
  837. return d;
  838. }
  839. /* remove desc from current queue and add it to the pending_queue */
  840. static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
  841. {
  842. d40_desc_remove(desc);
  843. desc->is_in_client_list = false;
  844. list_add_tail(&desc->node, &d40c->pending_queue);
  845. }
  846. static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
  847. {
  848. struct d40_desc *d;
  849. if (list_empty(&d40c->pending_queue))
  850. return NULL;
  851. d = list_first_entry(&d40c->pending_queue,
  852. struct d40_desc,
  853. node);
  854. return d;
  855. }
  856. static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
  857. {
  858. struct d40_desc *d;
  859. if (list_empty(&d40c->queue))
  860. return NULL;
  861. d = list_first_entry(&d40c->queue,
  862. struct d40_desc,
  863. node);
  864. return d;
  865. }
  866. static struct d40_desc *d40_first_done(struct d40_chan *d40c)
  867. {
  868. if (list_empty(&d40c->done))
  869. return NULL;
  870. return list_first_entry(&d40c->done, struct d40_desc, node);
  871. }
  872. static int d40_psize_2_burst_size(bool is_log, int psize)
  873. {
  874. if (is_log) {
  875. if (psize == STEDMA40_PSIZE_LOG_1)
  876. return 1;
  877. } else {
  878. if (psize == STEDMA40_PSIZE_PHY_1)
  879. return 1;
  880. }
  881. return 2 << psize;
  882. }
  883. /*
  884. * The dma only supports transmitting packages up to
  885. * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
  886. *
  887. * Calculate the total number of dma elements required to send the entire sg list.
  888. */
  889. static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
  890. {
  891. int dmalen;
  892. u32 max_w = max(data_width1, data_width2);
  893. u32 min_w = min(data_width1, data_width2);
  894. u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w);
  895. if (seg_max > STEDMA40_MAX_SEG_SIZE)
  896. seg_max -= max_w;
  897. if (!IS_ALIGNED(size, max_w))
  898. return -EINVAL;
  899. if (size <= seg_max)
  900. dmalen = 1;
  901. else {
  902. dmalen = size / seg_max;
  903. if (dmalen * seg_max < size)
  904. dmalen++;
  905. }
  906. return dmalen;
  907. }
  908. static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
  909. u32 data_width1, u32 data_width2)
  910. {
  911. struct scatterlist *sg;
  912. int i;
  913. int len = 0;
  914. int ret;
  915. for_each_sg(sgl, sg, sg_len, i) {
  916. ret = d40_size_2_dmalen(sg_dma_len(sg),
  917. data_width1, data_width2);
  918. if (ret < 0)
  919. return ret;
  920. len += ret;
  921. }
  922. return len;
  923. }
  924. #ifdef CONFIG_PM
  925. static void dma40_backup(void __iomem *baseaddr, u32 *backup,
  926. u32 *regaddr, int num, bool save)
  927. {
  928. int i;
  929. for (i = 0; i < num; i++) {
  930. void __iomem *addr = baseaddr + regaddr[i];
  931. if (save)
  932. backup[i] = readl_relaxed(addr);
  933. else
  934. writel_relaxed(backup[i], addr);
  935. }
  936. }
  937. static void d40_save_restore_registers(struct d40_base *base, bool save)
  938. {
  939. int i;
  940. /* Save/Restore channel specific registers */
  941. for (i = 0; i < base->num_phy_chans; i++) {
  942. void __iomem *addr;
  943. int idx;
  944. if (base->phy_res[i].reserved)
  945. continue;
  946. addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
  947. idx = i * ARRAY_SIZE(d40_backup_regs_chan);
  948. dma40_backup(addr, &base->reg_val_backup_chan[idx],
  949. d40_backup_regs_chan,
  950. ARRAY_SIZE(d40_backup_regs_chan),
  951. save);
  952. }
  953. /* Save/Restore global registers */
  954. dma40_backup(base->virtbase, base->reg_val_backup,
  955. d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
  956. save);
  957. /* Save/Restore registers only existing on dma40 v3 and later */
  958. if (base->gen_dmac.backup)
  959. dma40_backup(base->virtbase, base->reg_val_backup_v4,
  960. base->gen_dmac.backup,
  961. base->gen_dmac.backup_size,
  962. save);
  963. }
  964. #else
  965. static void d40_save_restore_registers(struct d40_base *base, bool save)
  966. {
  967. }
  968. #endif
  969. static int __d40_execute_command_phy(struct d40_chan *d40c,
  970. enum d40_command command)
  971. {
  972. u32 status;
  973. int i;
  974. void __iomem *active_reg;
  975. int ret = 0;
  976. unsigned long flags;
  977. u32 wmask;
  978. if (command == D40_DMA_STOP) {
  979. ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
  980. if (ret)
  981. return ret;
  982. }
  983. spin_lock_irqsave(&d40c->base->execmd_lock, flags);
  984. if (d40c->phy_chan->num % 2 == 0)
  985. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  986. else
  987. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  988. if (command == D40_DMA_SUSPEND_REQ) {
  989. status = (readl(active_reg) &
  990. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  991. D40_CHAN_POS(d40c->phy_chan->num);
  992. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  993. goto done;
  994. }
  995. wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
  996. writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
  997. active_reg);
  998. if (command == D40_DMA_SUSPEND_REQ) {
  999. for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
  1000. status = (readl(active_reg) &
  1001. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  1002. D40_CHAN_POS(d40c->phy_chan->num);
  1003. cpu_relax();
  1004. /*
  1005. * Reduce the number of bus accesses while
  1006. * waiting for the DMA to suspend.
  1007. */
  1008. udelay(3);
  1009. if (status == D40_DMA_STOP ||
  1010. status == D40_DMA_SUSPENDED)
  1011. break;
  1012. }
  1013. if (i == D40_SUSPEND_MAX_IT) {
  1014. chan_err(d40c,
  1015. "unable to suspend the chl %d (log: %d) status %x\n",
  1016. d40c->phy_chan->num, d40c->log_num,
  1017. status);
  1018. dump_stack();
  1019. ret = -EBUSY;
  1020. }
  1021. }
  1022. done:
  1023. spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
  1024. return ret;
  1025. }
  1026. static void d40_term_all(struct d40_chan *d40c)
  1027. {
  1028. struct d40_desc *d40d;
  1029. struct d40_desc *_d;
  1030. /* Release completed descriptors */
  1031. while ((d40d = d40_first_done(d40c))) {
  1032. d40_desc_remove(d40d);
  1033. d40_desc_free(d40c, d40d);
  1034. }
  1035. /* Release active descriptors */
  1036. while ((d40d = d40_first_active_get(d40c))) {
  1037. d40_desc_remove(d40d);
  1038. d40_desc_free(d40c, d40d);
  1039. }
  1040. /* Release queued descriptors waiting for transfer */
  1041. while ((d40d = d40_first_queued(d40c))) {
  1042. d40_desc_remove(d40d);
  1043. d40_desc_free(d40c, d40d);
  1044. }
  1045. /* Release pending descriptors */
  1046. while ((d40d = d40_first_pending(d40c))) {
  1047. d40_desc_remove(d40d);
  1048. d40_desc_free(d40c, d40d);
  1049. }
  1050. /* Release client owned descriptors */
  1051. if (!list_empty(&d40c->client))
  1052. list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
  1053. d40_desc_remove(d40d);
  1054. d40_desc_free(d40c, d40d);
  1055. }
  1056. /* Release descriptors in prepare queue */
  1057. if (!list_empty(&d40c->prepare_queue))
  1058. list_for_each_entry_safe(d40d, _d,
  1059. &d40c->prepare_queue, node) {
  1060. d40_desc_remove(d40d);
  1061. d40_desc_free(d40c, d40d);
  1062. }
  1063. d40c->pending_tx = 0;
  1064. }
  1065. static void __d40_config_set_event(struct d40_chan *d40c,
  1066. enum d40_events event_type, u32 event,
  1067. int reg)
  1068. {
  1069. void __iomem *addr = chan_base(d40c) + reg;
  1070. int tries;
  1071. u32 status;
  1072. switch (event_type) {
  1073. case D40_DEACTIVATE_EVENTLINE:
  1074. writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
  1075. | ~D40_EVENTLINE_MASK(event), addr);
  1076. break;
  1077. case D40_SUSPEND_REQ_EVENTLINE:
  1078. status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
  1079. D40_EVENTLINE_POS(event);
  1080. if (status == D40_DEACTIVATE_EVENTLINE ||
  1081. status == D40_SUSPEND_REQ_EVENTLINE)
  1082. break;
  1083. writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
  1084. | ~D40_EVENTLINE_MASK(event), addr);
  1085. for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
  1086. status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
  1087. D40_EVENTLINE_POS(event);
  1088. cpu_relax();
  1089. /*
  1090. * Reduce the number of bus accesses while
  1091. * waiting for the DMA to suspend.
  1092. */
  1093. udelay(3);
  1094. if (status == D40_DEACTIVATE_EVENTLINE)
  1095. break;
  1096. }
  1097. if (tries == D40_SUSPEND_MAX_IT) {
  1098. chan_err(d40c,
  1099. "unable to stop the event_line chl %d (log: %d)"
  1100. "status %x\n", d40c->phy_chan->num,
  1101. d40c->log_num, status);
  1102. }
  1103. break;
  1104. case D40_ACTIVATE_EVENTLINE:
  1105. /*
  1106. * The hardware sometimes doesn't register the enable when src and dst
  1107. * event lines are active on the same logical channel. Retry to ensure
  1108. * it does. Usually only one retry is sufficient.
  1109. */
  1110. tries = 100;
  1111. while (--tries) {
  1112. writel((D40_ACTIVATE_EVENTLINE <<
  1113. D40_EVENTLINE_POS(event)) |
  1114. ~D40_EVENTLINE_MASK(event), addr);
  1115. if (readl(addr) & D40_EVENTLINE_MASK(event))
  1116. break;
  1117. }
  1118. if (tries != 99)
  1119. dev_dbg(chan2dev(d40c),
  1120. "[%s] workaround enable S%cLNK (%d tries)\n",
  1121. __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
  1122. 100 - tries);
  1123. WARN_ON(!tries);
  1124. break;
  1125. case D40_ROUND_EVENTLINE:
  1126. BUG();
  1127. break;
  1128. }
  1129. }
  1130. static void d40_config_set_event(struct d40_chan *d40c,
  1131. enum d40_events event_type)
  1132. {
  1133. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
  1134. /* Enable event line connected to device (or memcpy) */
  1135. if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
  1136. (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
  1137. __d40_config_set_event(d40c, event_type, event,
  1138. D40_CHAN_REG_SSLNK);
  1139. if (d40c->dma_cfg.dir != DMA_DEV_TO_MEM)
  1140. __d40_config_set_event(d40c, event_type, event,
  1141. D40_CHAN_REG_SDLNK);
  1142. }
  1143. static u32 d40_chan_has_events(struct d40_chan *d40c)
  1144. {
  1145. void __iomem *chanbase = chan_base(d40c);
  1146. u32 val;
  1147. val = readl(chanbase + D40_CHAN_REG_SSLNK);
  1148. val |= readl(chanbase + D40_CHAN_REG_SDLNK);
  1149. return val;
  1150. }
  1151. static int
  1152. __d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
  1153. {
  1154. unsigned long flags;
  1155. int ret = 0;
  1156. u32 active_status;
  1157. void __iomem *active_reg;
  1158. if (d40c->phy_chan->num % 2 == 0)
  1159. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  1160. else
  1161. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  1162. spin_lock_irqsave(&d40c->phy_chan->lock, flags);
  1163. switch (command) {
  1164. case D40_DMA_STOP:
  1165. case D40_DMA_SUSPEND_REQ:
  1166. active_status = (readl(active_reg) &
  1167. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  1168. D40_CHAN_POS(d40c->phy_chan->num);
  1169. if (active_status == D40_DMA_RUN)
  1170. d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
  1171. else
  1172. d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
  1173. if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
  1174. ret = __d40_execute_command_phy(d40c, command);
  1175. break;
  1176. case D40_DMA_RUN:
  1177. d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
  1178. ret = __d40_execute_command_phy(d40c, command);
  1179. break;
  1180. case D40_DMA_SUSPENDED:
  1181. BUG();
  1182. break;
  1183. }
  1184. spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
  1185. return ret;
  1186. }
  1187. static int d40_channel_execute_command(struct d40_chan *d40c,
  1188. enum d40_command command)
  1189. {
  1190. if (chan_is_logical(d40c))
  1191. return __d40_execute_command_log(d40c, command);
  1192. else
  1193. return __d40_execute_command_phy(d40c, command);
  1194. }
  1195. static u32 d40_get_prmo(struct d40_chan *d40c)
  1196. {
  1197. static const unsigned int phy_map[] = {
  1198. [STEDMA40_PCHAN_BASIC_MODE]
  1199. = D40_DREG_PRMO_PCHAN_BASIC,
  1200. [STEDMA40_PCHAN_MODULO_MODE]
  1201. = D40_DREG_PRMO_PCHAN_MODULO,
  1202. [STEDMA40_PCHAN_DOUBLE_DST_MODE]
  1203. = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
  1204. };
  1205. static const unsigned int log_map[] = {
  1206. [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
  1207. = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
  1208. [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
  1209. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
  1210. [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
  1211. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
  1212. };
  1213. if (chan_is_physical(d40c))
  1214. return phy_map[d40c->dma_cfg.mode_opt];
  1215. else
  1216. return log_map[d40c->dma_cfg.mode_opt];
  1217. }
  1218. static void d40_config_write(struct d40_chan *d40c)
  1219. {
  1220. u32 addr_base;
  1221. u32 var;
  1222. /* Odd addresses are even addresses + 4 */
  1223. addr_base = (d40c->phy_chan->num % 2) * 4;
  1224. /* Setup channel mode to logical or physical */
  1225. var = ((u32)(chan_is_logical(d40c)) + 1) <<
  1226. D40_CHAN_POS(d40c->phy_chan->num);
  1227. writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
  1228. /* Setup operational mode option register */
  1229. var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
  1230. writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
  1231. if (chan_is_logical(d40c)) {
  1232. int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
  1233. & D40_SREG_ELEM_LOG_LIDX_MASK;
  1234. void __iomem *chanbase = chan_base(d40c);
  1235. /* Set default config for CFG reg */
  1236. writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
  1237. writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
  1238. /* Set LIDX for lcla */
  1239. writel(lidx, chanbase + D40_CHAN_REG_SSELT);
  1240. writel(lidx, chanbase + D40_CHAN_REG_SDELT);
  1241. /* Clear LNK which will be used by d40_chan_has_events() */
  1242. writel(0, chanbase + D40_CHAN_REG_SSLNK);
  1243. writel(0, chanbase + D40_CHAN_REG_SDLNK);
  1244. }
  1245. }
  1246. static u32 d40_residue(struct d40_chan *d40c)
  1247. {
  1248. u32 num_elt;
  1249. if (chan_is_logical(d40c))
  1250. num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
  1251. >> D40_MEM_LCSP2_ECNT_POS;
  1252. else {
  1253. u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
  1254. num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
  1255. >> D40_SREG_ELEM_PHY_ECNT_POS;
  1256. }
  1257. return num_elt * d40c->dma_cfg.dst_info.data_width;
  1258. }
  1259. static bool d40_tx_is_linked(struct d40_chan *d40c)
  1260. {
  1261. bool is_link;
  1262. if (chan_is_logical(d40c))
  1263. is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
  1264. else
  1265. is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
  1266. & D40_SREG_LNK_PHYS_LNK_MASK;
  1267. return is_link;
  1268. }
  1269. static int d40_pause(struct d40_chan *d40c)
  1270. {
  1271. int res = 0;
  1272. unsigned long flags;
  1273. if (!d40c->busy)
  1274. return 0;
  1275. pm_runtime_get_sync(d40c->base->dev);
  1276. spin_lock_irqsave(&d40c->lock, flags);
  1277. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  1278. pm_runtime_mark_last_busy(d40c->base->dev);
  1279. pm_runtime_put_autosuspend(d40c->base->dev);
  1280. spin_unlock_irqrestore(&d40c->lock, flags);
  1281. return res;
  1282. }
  1283. static int d40_resume(struct d40_chan *d40c)
  1284. {
  1285. int res = 0;
  1286. unsigned long flags;
  1287. if (!d40c->busy)
  1288. return 0;
  1289. spin_lock_irqsave(&d40c->lock, flags);
  1290. pm_runtime_get_sync(d40c->base->dev);
  1291. /* If bytes left to transfer or linked tx resume job */
  1292. if (d40_residue(d40c) || d40_tx_is_linked(d40c))
  1293. res = d40_channel_execute_command(d40c, D40_DMA_RUN);
  1294. pm_runtime_mark_last_busy(d40c->base->dev);
  1295. pm_runtime_put_autosuspend(d40c->base->dev);
  1296. spin_unlock_irqrestore(&d40c->lock, flags);
  1297. return res;
  1298. }
  1299. static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
  1300. {
  1301. struct d40_chan *d40c = container_of(tx->chan,
  1302. struct d40_chan,
  1303. chan);
  1304. struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
  1305. unsigned long flags;
  1306. dma_cookie_t cookie;
  1307. spin_lock_irqsave(&d40c->lock, flags);
  1308. cookie = dma_cookie_assign(tx);
  1309. d40_desc_queue(d40c, d40d);
  1310. spin_unlock_irqrestore(&d40c->lock, flags);
  1311. return cookie;
  1312. }
  1313. static int d40_start(struct d40_chan *d40c)
  1314. {
  1315. return d40_channel_execute_command(d40c, D40_DMA_RUN);
  1316. }
  1317. static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
  1318. {
  1319. struct d40_desc *d40d;
  1320. int err;
  1321. /* Start queued jobs, if any */
  1322. d40d = d40_first_queued(d40c);
  1323. if (d40d != NULL) {
  1324. if (!d40c->busy) {
  1325. d40c->busy = true;
  1326. pm_runtime_get_sync(d40c->base->dev);
  1327. }
  1328. /* Remove from queue */
  1329. d40_desc_remove(d40d);
  1330. /* Add to active queue */
  1331. d40_desc_submit(d40c, d40d);
  1332. /* Initiate DMA job */
  1333. d40_desc_load(d40c, d40d);
  1334. /* Start dma job */
  1335. err = d40_start(d40c);
  1336. if (err)
  1337. return NULL;
  1338. }
  1339. return d40d;
  1340. }
  1341. /* called from interrupt context */
  1342. static void dma_tc_handle(struct d40_chan *d40c)
  1343. {
  1344. struct d40_desc *d40d;
  1345. /* Get first active entry from list */
  1346. d40d = d40_first_active_get(d40c);
  1347. if (d40d == NULL)
  1348. return;
  1349. if (d40d->cyclic) {
  1350. /*
  1351. * If this was a paritially loaded list, we need to reloaded
  1352. * it, and only when the list is completed. We need to check
  1353. * for done because the interrupt will hit for every link, and
  1354. * not just the last one.
  1355. */
  1356. if (d40d->lli_current < d40d->lli_len
  1357. && !d40_tx_is_linked(d40c)
  1358. && !d40_residue(d40c)) {
  1359. d40_lcla_free_all(d40c, d40d);
  1360. d40_desc_load(d40c, d40d);
  1361. (void) d40_start(d40c);
  1362. if (d40d->lli_current == d40d->lli_len)
  1363. d40d->lli_current = 0;
  1364. }
  1365. } else {
  1366. d40_lcla_free_all(d40c, d40d);
  1367. if (d40d->lli_current < d40d->lli_len) {
  1368. d40_desc_load(d40c, d40d);
  1369. /* Start dma job */
  1370. (void) d40_start(d40c);
  1371. return;
  1372. }
  1373. if (d40_queue_start(d40c) == NULL) {
  1374. d40c->busy = false;
  1375. pm_runtime_mark_last_busy(d40c->base->dev);
  1376. pm_runtime_put_autosuspend(d40c->base->dev);
  1377. }
  1378. d40_desc_remove(d40d);
  1379. d40_desc_done(d40c, d40d);
  1380. }
  1381. d40c->pending_tx++;
  1382. tasklet_schedule(&d40c->tasklet);
  1383. }
  1384. static void dma_tasklet(unsigned long data)
  1385. {
  1386. struct d40_chan *d40c = (struct d40_chan *) data;
  1387. struct d40_desc *d40d;
  1388. unsigned long flags;
  1389. dma_async_tx_callback callback;
  1390. void *callback_param;
  1391. spin_lock_irqsave(&d40c->lock, flags);
  1392. /* Get first entry from the done list */
  1393. d40d = d40_first_done(d40c);
  1394. if (d40d == NULL) {
  1395. /* Check if we have reached here for cyclic job */
  1396. d40d = d40_first_active_get(d40c);
  1397. if (d40d == NULL || !d40d->cyclic)
  1398. goto err;
  1399. }
  1400. if (!d40d->cyclic)
  1401. dma_cookie_complete(&d40d->txd);
  1402. /*
  1403. * If terminating a channel pending_tx is set to zero.
  1404. * This prevents any finished active jobs to return to the client.
  1405. */
  1406. if (d40c->pending_tx == 0) {
  1407. spin_unlock_irqrestore(&d40c->lock, flags);
  1408. return;
  1409. }
  1410. /* Callback to client */
  1411. callback = d40d->txd.callback;
  1412. callback_param = d40d->txd.callback_param;
  1413. if (!d40d->cyclic) {
  1414. if (async_tx_test_ack(&d40d->txd)) {
  1415. d40_desc_remove(d40d);
  1416. d40_desc_free(d40c, d40d);
  1417. } else if (!d40d->is_in_client_list) {
  1418. d40_desc_remove(d40d);
  1419. d40_lcla_free_all(d40c, d40d);
  1420. list_add_tail(&d40d->node, &d40c->client);
  1421. d40d->is_in_client_list = true;
  1422. }
  1423. }
  1424. d40c->pending_tx--;
  1425. if (d40c->pending_tx)
  1426. tasklet_schedule(&d40c->tasklet);
  1427. spin_unlock_irqrestore(&d40c->lock, flags);
  1428. if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
  1429. callback(callback_param);
  1430. return;
  1431. err:
  1432. /* Rescue manouver if receiving double interrupts */
  1433. if (d40c->pending_tx > 0)
  1434. d40c->pending_tx--;
  1435. spin_unlock_irqrestore(&d40c->lock, flags);
  1436. }
  1437. static irqreturn_t d40_handle_interrupt(int irq, void *data)
  1438. {
  1439. int i;
  1440. u32 idx;
  1441. u32 row;
  1442. long chan = -1;
  1443. struct d40_chan *d40c;
  1444. unsigned long flags;
  1445. struct d40_base *base = data;
  1446. u32 regs[base->gen_dmac.il_size];
  1447. struct d40_interrupt_lookup *il = base->gen_dmac.il;
  1448. u32 il_size = base->gen_dmac.il_size;
  1449. spin_lock_irqsave(&base->interrupt_lock, flags);
  1450. /* Read interrupt status of both logical and physical channels */
  1451. for (i = 0; i < il_size; i++)
  1452. regs[i] = readl(base->virtbase + il[i].src);
  1453. for (;;) {
  1454. chan = find_next_bit((unsigned long *)regs,
  1455. BITS_PER_LONG * il_size, chan + 1);
  1456. /* No more set bits found? */
  1457. if (chan == BITS_PER_LONG * il_size)
  1458. break;
  1459. row = chan / BITS_PER_LONG;
  1460. idx = chan & (BITS_PER_LONG - 1);
  1461. if (il[row].offset == D40_PHY_CHAN)
  1462. d40c = base->lookup_phy_chans[idx];
  1463. else
  1464. d40c = base->lookup_log_chans[il[row].offset + idx];
  1465. if (!d40c) {
  1466. /*
  1467. * No error because this can happen if something else
  1468. * in the system is using the channel.
  1469. */
  1470. continue;
  1471. }
  1472. /* ACK interrupt */
  1473. writel(BIT(idx), base->virtbase + il[row].clr);
  1474. spin_lock(&d40c->lock);
  1475. if (!il[row].is_error)
  1476. dma_tc_handle(d40c);
  1477. else
  1478. d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
  1479. chan, il[row].offset, idx);
  1480. spin_unlock(&d40c->lock);
  1481. }
  1482. spin_unlock_irqrestore(&base->interrupt_lock, flags);
  1483. return IRQ_HANDLED;
  1484. }
  1485. static int d40_validate_conf(struct d40_chan *d40c,
  1486. struct stedma40_chan_cfg *conf)
  1487. {
  1488. int res = 0;
  1489. bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
  1490. if (!conf->dir) {
  1491. chan_err(d40c, "Invalid direction.\n");
  1492. res = -EINVAL;
  1493. }
  1494. if ((is_log && conf->dev_type > d40c->base->num_log_chans) ||
  1495. (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
  1496. (conf->dev_type < 0)) {
  1497. chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
  1498. res = -EINVAL;
  1499. }
  1500. if (conf->dir == DMA_DEV_TO_DEV) {
  1501. /*
  1502. * DMAC HW supports it. Will be added to this driver,
  1503. * in case any dma client requires it.
  1504. */
  1505. chan_err(d40c, "periph to periph not supported\n");
  1506. res = -EINVAL;
  1507. }
  1508. if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
  1509. conf->src_info.data_width !=
  1510. d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
  1511. conf->dst_info.data_width) {
  1512. /*
  1513. * The DMAC hardware only supports
  1514. * src (burst x width) == dst (burst x width)
  1515. */
  1516. chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
  1517. res = -EINVAL;
  1518. }
  1519. return res;
  1520. }
  1521. static bool d40_alloc_mask_set(struct d40_phy_res *phy,
  1522. bool is_src, int log_event_line, bool is_log,
  1523. bool *first_user)
  1524. {
  1525. unsigned long flags;
  1526. spin_lock_irqsave(&phy->lock, flags);
  1527. *first_user = ((phy->allocated_src | phy->allocated_dst)
  1528. == D40_ALLOC_FREE);
  1529. if (!is_log) {
  1530. /* Physical interrupts are masked per physical full channel */
  1531. if (phy->allocated_src == D40_ALLOC_FREE &&
  1532. phy->allocated_dst == D40_ALLOC_FREE) {
  1533. phy->allocated_dst = D40_ALLOC_PHY;
  1534. phy->allocated_src = D40_ALLOC_PHY;
  1535. goto found;
  1536. } else
  1537. goto not_found;
  1538. }
  1539. /* Logical channel */
  1540. if (is_src) {
  1541. if (phy->allocated_src == D40_ALLOC_PHY)
  1542. goto not_found;
  1543. if (phy->allocated_src == D40_ALLOC_FREE)
  1544. phy->allocated_src = D40_ALLOC_LOG_FREE;
  1545. if (!(phy->allocated_src & BIT(log_event_line))) {
  1546. phy->allocated_src |= BIT(log_event_line);
  1547. goto found;
  1548. } else
  1549. goto not_found;
  1550. } else {
  1551. if (phy->allocated_dst == D40_ALLOC_PHY)
  1552. goto not_found;
  1553. if (phy->allocated_dst == D40_ALLOC_FREE)
  1554. phy->allocated_dst = D40_ALLOC_LOG_FREE;
  1555. if (!(phy->allocated_dst & BIT(log_event_line))) {
  1556. phy->allocated_dst |= BIT(log_event_line);
  1557. goto found;
  1558. } else
  1559. goto not_found;
  1560. }
  1561. not_found:
  1562. spin_unlock_irqrestore(&phy->lock, flags);
  1563. return false;
  1564. found:
  1565. spin_unlock_irqrestore(&phy->lock, flags);
  1566. return true;
  1567. }
  1568. static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
  1569. int log_event_line)
  1570. {
  1571. unsigned long flags;
  1572. bool is_free = false;
  1573. spin_lock_irqsave(&phy->lock, flags);
  1574. if (!log_event_line) {
  1575. phy->allocated_dst = D40_ALLOC_FREE;
  1576. phy->allocated_src = D40_ALLOC_FREE;
  1577. is_free = true;
  1578. goto out;
  1579. }
  1580. /* Logical channel */
  1581. if (is_src) {
  1582. phy->allocated_src &= ~BIT(log_event_line);
  1583. if (phy->allocated_src == D40_ALLOC_LOG_FREE)
  1584. phy->allocated_src = D40_ALLOC_FREE;
  1585. } else {
  1586. phy->allocated_dst &= ~BIT(log_event_line);
  1587. if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
  1588. phy->allocated_dst = D40_ALLOC_FREE;
  1589. }
  1590. is_free = ((phy->allocated_src | phy->allocated_dst) ==
  1591. D40_ALLOC_FREE);
  1592. out:
  1593. spin_unlock_irqrestore(&phy->lock, flags);
  1594. return is_free;
  1595. }
  1596. static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
  1597. {
  1598. int dev_type = d40c->dma_cfg.dev_type;
  1599. int event_group;
  1600. int event_line;
  1601. struct d40_phy_res *phys;
  1602. int i;
  1603. int j;
  1604. int log_num;
  1605. int num_phy_chans;
  1606. bool is_src;
  1607. bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
  1608. phys = d40c->base->phy_res;
  1609. num_phy_chans = d40c->base->num_phy_chans;
  1610. if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
  1611. log_num = 2 * dev_type;
  1612. is_src = true;
  1613. } else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
  1614. d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
  1615. /* dst event lines are used for logical memcpy */
  1616. log_num = 2 * dev_type + 1;
  1617. is_src = false;
  1618. } else
  1619. return -EINVAL;
  1620. event_group = D40_TYPE_TO_GROUP(dev_type);
  1621. event_line = D40_TYPE_TO_EVENT(dev_type);
  1622. if (!is_log) {
  1623. if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
  1624. /* Find physical half channel */
  1625. if (d40c->dma_cfg.use_fixed_channel) {
  1626. i = d40c->dma_cfg.phy_channel;
  1627. if (d40_alloc_mask_set(&phys[i], is_src,
  1628. 0, is_log,
  1629. first_phy_user))
  1630. goto found_phy;
  1631. } else {
  1632. for (i = 0; i < num_phy_chans; i++) {
  1633. if (d40_alloc_mask_set(&phys[i], is_src,
  1634. 0, is_log,
  1635. first_phy_user))
  1636. goto found_phy;
  1637. }
  1638. }
  1639. } else
  1640. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1641. int phy_num = j + event_group * 2;
  1642. for (i = phy_num; i < phy_num + 2; i++) {
  1643. if (d40_alloc_mask_set(&phys[i],
  1644. is_src,
  1645. 0,
  1646. is_log,
  1647. first_phy_user))
  1648. goto found_phy;
  1649. }
  1650. }
  1651. return -EINVAL;
  1652. found_phy:
  1653. d40c->phy_chan = &phys[i];
  1654. d40c->log_num = D40_PHY_CHAN;
  1655. goto out;
  1656. }
  1657. if (dev_type == -1)
  1658. return -EINVAL;
  1659. /* Find logical channel */
  1660. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1661. int phy_num = j + event_group * 2;
  1662. if (d40c->dma_cfg.use_fixed_channel) {
  1663. i = d40c->dma_cfg.phy_channel;
  1664. if ((i != phy_num) && (i != phy_num + 1)) {
  1665. dev_err(chan2dev(d40c),
  1666. "invalid fixed phy channel %d\n", i);
  1667. return -EINVAL;
  1668. }
  1669. if (d40_alloc_mask_set(&phys[i], is_src, event_line,
  1670. is_log, first_phy_user))
  1671. goto found_log;
  1672. dev_err(chan2dev(d40c),
  1673. "could not allocate fixed phy channel %d\n", i);
  1674. return -EINVAL;
  1675. }
  1676. /*
  1677. * Spread logical channels across all available physical rather
  1678. * than pack every logical channel at the first available phy
  1679. * channels.
  1680. */
  1681. if (is_src) {
  1682. for (i = phy_num; i < phy_num + 2; i++) {
  1683. if (d40_alloc_mask_set(&phys[i], is_src,
  1684. event_line, is_log,
  1685. first_phy_user))
  1686. goto found_log;
  1687. }
  1688. } else {
  1689. for (i = phy_num + 1; i >= phy_num; i--) {
  1690. if (d40_alloc_mask_set(&phys[i], is_src,
  1691. event_line, is_log,
  1692. first_phy_user))
  1693. goto found_log;
  1694. }
  1695. }
  1696. }
  1697. return -EINVAL;
  1698. found_log:
  1699. d40c->phy_chan = &phys[i];
  1700. d40c->log_num = log_num;
  1701. out:
  1702. if (is_log)
  1703. d40c->base->lookup_log_chans[d40c->log_num] = d40c;
  1704. else
  1705. d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
  1706. return 0;
  1707. }
  1708. static int d40_config_memcpy(struct d40_chan *d40c)
  1709. {
  1710. dma_cap_mask_t cap = d40c->chan.device->cap_mask;
  1711. if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
  1712. d40c->dma_cfg = dma40_memcpy_conf_log;
  1713. d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
  1714. d40_log_cfg(&d40c->dma_cfg,
  1715. &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  1716. } else if (dma_has_cap(DMA_MEMCPY, cap) &&
  1717. dma_has_cap(DMA_SLAVE, cap)) {
  1718. d40c->dma_cfg = dma40_memcpy_conf_phy;
  1719. /* Generate interrrupt at end of transfer or relink. */
  1720. d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS);
  1721. /* Generate interrupt on error. */
  1722. d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
  1723. d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
  1724. } else {
  1725. chan_err(d40c, "No memcpy\n");
  1726. return -EINVAL;
  1727. }
  1728. return 0;
  1729. }
  1730. static int d40_free_dma(struct d40_chan *d40c)
  1731. {
  1732. int res = 0;
  1733. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
  1734. struct d40_phy_res *phy = d40c->phy_chan;
  1735. bool is_src;
  1736. /* Terminate all queued and active transfers */
  1737. d40_term_all(d40c);
  1738. if (phy == NULL) {
  1739. chan_err(d40c, "phy == null\n");
  1740. return -EINVAL;
  1741. }
  1742. if (phy->allocated_src == D40_ALLOC_FREE &&
  1743. phy->allocated_dst == D40_ALLOC_FREE) {
  1744. chan_err(d40c, "channel already free\n");
  1745. return -EINVAL;
  1746. }
  1747. if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
  1748. d40c->dma_cfg.dir == DMA_MEM_TO_MEM)
  1749. is_src = false;
  1750. else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
  1751. is_src = true;
  1752. else {
  1753. chan_err(d40c, "Unknown direction\n");
  1754. return -EINVAL;
  1755. }
  1756. pm_runtime_get_sync(d40c->base->dev);
  1757. res = d40_channel_execute_command(d40c, D40_DMA_STOP);
  1758. if (res) {
  1759. chan_err(d40c, "stop failed\n");
  1760. goto out;
  1761. }
  1762. d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
  1763. if (chan_is_logical(d40c))
  1764. d40c->base->lookup_log_chans[d40c->log_num] = NULL;
  1765. else
  1766. d40c->base->lookup_phy_chans[phy->num] = NULL;
  1767. if (d40c->busy) {
  1768. pm_runtime_mark_last_busy(d40c->base->dev);
  1769. pm_runtime_put_autosuspend(d40c->base->dev);
  1770. }
  1771. d40c->busy = false;
  1772. d40c->phy_chan = NULL;
  1773. d40c->configured = false;
  1774. out:
  1775. pm_runtime_mark_last_busy(d40c->base->dev);
  1776. pm_runtime_put_autosuspend(d40c->base->dev);
  1777. return res;
  1778. }
  1779. static bool d40_is_paused(struct d40_chan *d40c)
  1780. {
  1781. void __iomem *chanbase = chan_base(d40c);
  1782. bool is_paused = false;
  1783. unsigned long flags;
  1784. void __iomem *active_reg;
  1785. u32 status;
  1786. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
  1787. spin_lock_irqsave(&d40c->lock, flags);
  1788. if (chan_is_physical(d40c)) {
  1789. if (d40c->phy_chan->num % 2 == 0)
  1790. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  1791. else
  1792. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  1793. status = (readl(active_reg) &
  1794. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  1795. D40_CHAN_POS(d40c->phy_chan->num);
  1796. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  1797. is_paused = true;
  1798. goto _exit;
  1799. }
  1800. if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
  1801. d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
  1802. status = readl(chanbase + D40_CHAN_REG_SDLNK);
  1803. } else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
  1804. status = readl(chanbase + D40_CHAN_REG_SSLNK);
  1805. } else {
  1806. chan_err(d40c, "Unknown direction\n");
  1807. goto _exit;
  1808. }
  1809. status = (status & D40_EVENTLINE_MASK(event)) >>
  1810. D40_EVENTLINE_POS(event);
  1811. if (status != D40_DMA_RUN)
  1812. is_paused = true;
  1813. _exit:
  1814. spin_unlock_irqrestore(&d40c->lock, flags);
  1815. return is_paused;
  1816. }
  1817. static u32 stedma40_residue(struct dma_chan *chan)
  1818. {
  1819. struct d40_chan *d40c =
  1820. container_of(chan, struct d40_chan, chan);
  1821. u32 bytes_left;
  1822. unsigned long flags;
  1823. spin_lock_irqsave(&d40c->lock, flags);
  1824. bytes_left = d40_residue(d40c);
  1825. spin_unlock_irqrestore(&d40c->lock, flags);
  1826. return bytes_left;
  1827. }
  1828. static int
  1829. d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
  1830. struct scatterlist *sg_src, struct scatterlist *sg_dst,
  1831. unsigned int sg_len, dma_addr_t src_dev_addr,
  1832. dma_addr_t dst_dev_addr)
  1833. {
  1834. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1835. struct stedma40_half_channel_info *src_info = &cfg->src_info;
  1836. struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
  1837. int ret;
  1838. ret = d40_log_sg_to_lli(sg_src, sg_len,
  1839. src_dev_addr,
  1840. desc->lli_log.src,
  1841. chan->log_def.lcsp1,
  1842. src_info->data_width,
  1843. dst_info->data_width);
  1844. ret = d40_log_sg_to_lli(sg_dst, sg_len,
  1845. dst_dev_addr,
  1846. desc->lli_log.dst,
  1847. chan->log_def.lcsp3,
  1848. dst_info->data_width,
  1849. src_info->data_width);
  1850. return ret < 0 ? ret : 0;
  1851. }
  1852. static int
  1853. d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
  1854. struct scatterlist *sg_src, struct scatterlist *sg_dst,
  1855. unsigned int sg_len, dma_addr_t src_dev_addr,
  1856. dma_addr_t dst_dev_addr)
  1857. {
  1858. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1859. struct stedma40_half_channel_info *src_info = &cfg->src_info;
  1860. struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
  1861. unsigned long flags = 0;
  1862. int ret;
  1863. if (desc->cyclic)
  1864. flags |= LLI_CYCLIC | LLI_TERM_INT;
  1865. ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
  1866. desc->lli_phy.src,
  1867. virt_to_phys(desc->lli_phy.src),
  1868. chan->src_def_cfg,
  1869. src_info, dst_info, flags);
  1870. ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
  1871. desc->lli_phy.dst,
  1872. virt_to_phys(desc->lli_phy.dst),
  1873. chan->dst_def_cfg,
  1874. dst_info, src_info, flags);
  1875. dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
  1876. desc->lli_pool.size, DMA_TO_DEVICE);
  1877. return ret < 0 ? ret : 0;
  1878. }
  1879. static struct d40_desc *
  1880. d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
  1881. unsigned int sg_len, unsigned long dma_flags)
  1882. {
  1883. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1884. struct d40_desc *desc;
  1885. int ret;
  1886. desc = d40_desc_get(chan);
  1887. if (!desc)
  1888. return NULL;
  1889. desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
  1890. cfg->dst_info.data_width);
  1891. if (desc->lli_len < 0) {
  1892. chan_err(chan, "Unaligned size\n");
  1893. goto err;
  1894. }
  1895. ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
  1896. if (ret < 0) {
  1897. chan_err(chan, "Could not allocate lli\n");
  1898. goto err;
  1899. }
  1900. desc->lli_current = 0;
  1901. desc->txd.flags = dma_flags;
  1902. desc->txd.tx_submit = d40_tx_submit;
  1903. dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
  1904. return desc;
  1905. err:
  1906. d40_desc_free(chan, desc);
  1907. return NULL;
  1908. }
  1909. static struct dma_async_tx_descriptor *
  1910. d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
  1911. struct scatterlist *sg_dst, unsigned int sg_len,
  1912. enum dma_transfer_direction direction, unsigned long dma_flags)
  1913. {
  1914. struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
  1915. dma_addr_t src_dev_addr = 0;
  1916. dma_addr_t dst_dev_addr = 0;
  1917. struct d40_desc *desc;
  1918. unsigned long flags;
  1919. int ret;
  1920. if (!chan->phy_chan) {
  1921. chan_err(chan, "Cannot prepare unallocated channel\n");
  1922. return NULL;
  1923. }
  1924. spin_lock_irqsave(&chan->lock, flags);
  1925. desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
  1926. if (desc == NULL)
  1927. goto err;
  1928. if (sg_next(&sg_src[sg_len - 1]) == sg_src)
  1929. desc->cyclic = true;
  1930. if (direction == DMA_DEV_TO_MEM)
  1931. src_dev_addr = chan->runtime_addr;
  1932. else if (direction == DMA_MEM_TO_DEV)
  1933. dst_dev_addr = chan->runtime_addr;
  1934. if (chan_is_logical(chan))
  1935. ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
  1936. sg_len, src_dev_addr, dst_dev_addr);
  1937. else
  1938. ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
  1939. sg_len, src_dev_addr, dst_dev_addr);
  1940. if (ret) {
  1941. chan_err(chan, "Failed to prepare %s sg job: %d\n",
  1942. chan_is_logical(chan) ? "log" : "phy", ret);
  1943. goto err;
  1944. }
  1945. /*
  1946. * add descriptor to the prepare queue in order to be able
  1947. * to free them later in terminate_all
  1948. */
  1949. list_add_tail(&desc->node, &chan->prepare_queue);
  1950. spin_unlock_irqrestore(&chan->lock, flags);
  1951. return &desc->txd;
  1952. err:
  1953. if (desc)
  1954. d40_desc_free(chan, desc);
  1955. spin_unlock_irqrestore(&chan->lock, flags);
  1956. return NULL;
  1957. }
  1958. bool stedma40_filter(struct dma_chan *chan, void *data)
  1959. {
  1960. struct stedma40_chan_cfg *info = data;
  1961. struct d40_chan *d40c =
  1962. container_of(chan, struct d40_chan, chan);
  1963. int err;
  1964. if (data) {
  1965. err = d40_validate_conf(d40c, info);
  1966. if (!err)
  1967. d40c->dma_cfg = *info;
  1968. } else
  1969. err = d40_config_memcpy(d40c);
  1970. if (!err)
  1971. d40c->configured = true;
  1972. return err == 0;
  1973. }
  1974. EXPORT_SYMBOL(stedma40_filter);
  1975. static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
  1976. {
  1977. bool realtime = d40c->dma_cfg.realtime;
  1978. bool highprio = d40c->dma_cfg.high_priority;
  1979. u32 rtreg;
  1980. u32 event = D40_TYPE_TO_EVENT(dev_type);
  1981. u32 group = D40_TYPE_TO_GROUP(dev_type);
  1982. u32 bit = BIT(event);
  1983. u32 prioreg;
  1984. struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
  1985. rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
  1986. /*
  1987. * Due to a hardware bug, in some cases a logical channel triggered by
  1988. * a high priority destination event line can generate extra packet
  1989. * transactions.
  1990. *
  1991. * The workaround is to not set the high priority level for the
  1992. * destination event lines that trigger logical channels.
  1993. */
  1994. if (!src && chan_is_logical(d40c))
  1995. highprio = false;
  1996. prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
  1997. /* Destination event lines are stored in the upper halfword */
  1998. if (!src)
  1999. bit <<= 16;
  2000. writel(bit, d40c->base->virtbase + prioreg + group * 4);
  2001. writel(bit, d40c->base->virtbase + rtreg + group * 4);
  2002. }
  2003. static void d40_set_prio_realtime(struct d40_chan *d40c)
  2004. {
  2005. if (d40c->base->rev < 3)
  2006. return;
  2007. if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
  2008. (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
  2009. __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
  2010. if ((d40c->dma_cfg.dir == DMA_MEM_TO_DEV) ||
  2011. (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
  2012. __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
  2013. }
  2014. #define D40_DT_FLAGS_MODE(flags) ((flags >> 0) & 0x1)
  2015. #define D40_DT_FLAGS_DIR(flags) ((flags >> 1) & 0x1)
  2016. #define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
  2017. #define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
  2018. static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec,
  2019. struct of_dma *ofdma)
  2020. {
  2021. struct stedma40_chan_cfg cfg;
  2022. dma_cap_mask_t cap;
  2023. u32 flags;
  2024. memset(&cfg, 0, sizeof(struct stedma40_chan_cfg));
  2025. dma_cap_zero(cap);
  2026. dma_cap_set(DMA_SLAVE, cap);
  2027. cfg.dev_type = dma_spec->args[0];
  2028. flags = dma_spec->args[2];
  2029. switch (D40_DT_FLAGS_MODE(flags)) {
  2030. case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break;
  2031. case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break;
  2032. }
  2033. switch (D40_DT_FLAGS_DIR(flags)) {
  2034. case 0:
  2035. cfg.dir = DMA_MEM_TO_DEV;
  2036. cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
  2037. break;
  2038. case 1:
  2039. cfg.dir = DMA_DEV_TO_MEM;
  2040. cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
  2041. break;
  2042. }
  2043. if (D40_DT_FLAGS_FIXED_CHAN(flags)) {
  2044. cfg.phy_channel = dma_spec->args[1];
  2045. cfg.use_fixed_channel = true;
  2046. }
  2047. return dma_request_channel(cap, stedma40_filter, &cfg);
  2048. }
  2049. /* DMA ENGINE functions */
  2050. static int d40_alloc_chan_resources(struct dma_chan *chan)
  2051. {
  2052. int err;
  2053. unsigned long flags;
  2054. struct d40_chan *d40c =
  2055. container_of(chan, struct d40_chan, chan);
  2056. bool is_free_phy;
  2057. spin_lock_irqsave(&d40c->lock, flags);
  2058. dma_cookie_init(chan);
  2059. /* If no dma configuration is set use default configuration (memcpy) */
  2060. if (!d40c->configured) {
  2061. err = d40_config_memcpy(d40c);
  2062. if (err) {
  2063. chan_err(d40c, "Failed to configure memcpy channel\n");
  2064. goto fail;
  2065. }
  2066. }
  2067. err = d40_allocate_channel(d40c, &is_free_phy);
  2068. if (err) {
  2069. chan_err(d40c, "Failed to allocate channel\n");
  2070. d40c->configured = false;
  2071. goto fail;
  2072. }
  2073. pm_runtime_get_sync(d40c->base->dev);
  2074. d40_set_prio_realtime(d40c);
  2075. if (chan_is_logical(d40c)) {
  2076. if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
  2077. d40c->lcpa = d40c->base->lcpa_base +
  2078. d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
  2079. else
  2080. d40c->lcpa = d40c->base->lcpa_base +
  2081. d40c->dma_cfg.dev_type *
  2082. D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
  2083. /* Unmask the Global Interrupt Mask. */
  2084. d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
  2085. d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
  2086. }
  2087. dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
  2088. chan_is_logical(d40c) ? "logical" : "physical",
  2089. d40c->phy_chan->num,
  2090. d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
  2091. /*
  2092. * Only write channel configuration to the DMA if the physical
  2093. * resource is free. In case of multiple logical channels
  2094. * on the same physical resource, only the first write is necessary.
  2095. */
  2096. if (is_free_phy)
  2097. d40_config_write(d40c);
  2098. fail:
  2099. pm_runtime_mark_last_busy(d40c->base->dev);
  2100. pm_runtime_put_autosuspend(d40c->base->dev);
  2101. spin_unlock_irqrestore(&d40c->lock, flags);
  2102. return err;
  2103. }
  2104. static void d40_free_chan_resources(struct dma_chan *chan)
  2105. {
  2106. struct d40_chan *d40c =
  2107. container_of(chan, struct d40_chan, chan);
  2108. int err;
  2109. unsigned long flags;
  2110. if (d40c->phy_chan == NULL) {
  2111. chan_err(d40c, "Cannot free unallocated channel\n");
  2112. return;
  2113. }
  2114. spin_lock_irqsave(&d40c->lock, flags);
  2115. err = d40_free_dma(d40c);
  2116. if (err)
  2117. chan_err(d40c, "Failed to free channel\n");
  2118. spin_unlock_irqrestore(&d40c->lock, flags);
  2119. }
  2120. static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
  2121. dma_addr_t dst,
  2122. dma_addr_t src,
  2123. size_t size,
  2124. unsigned long dma_flags)
  2125. {
  2126. struct scatterlist dst_sg;
  2127. struct scatterlist src_sg;
  2128. sg_init_table(&dst_sg, 1);
  2129. sg_init_table(&src_sg, 1);
  2130. sg_dma_address(&dst_sg) = dst;
  2131. sg_dma_address(&src_sg) = src;
  2132. sg_dma_len(&dst_sg) = size;
  2133. sg_dma_len(&src_sg) = size;
  2134. return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
  2135. }
  2136. static struct dma_async_tx_descriptor *
  2137. d40_prep_memcpy_sg(struct dma_chan *chan,
  2138. struct scatterlist *dst_sg, unsigned int dst_nents,
  2139. struct scatterlist *src_sg, unsigned int src_nents,
  2140. unsigned long dma_flags)
  2141. {
  2142. if (dst_nents != src_nents)
  2143. return NULL;
  2144. return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
  2145. }
  2146. static struct dma_async_tx_descriptor *
  2147. d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
  2148. unsigned int sg_len, enum dma_transfer_direction direction,
  2149. unsigned long dma_flags, void *context)
  2150. {
  2151. if (!is_slave_direction(direction))
  2152. return NULL;
  2153. return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
  2154. }
  2155. static struct dma_async_tx_descriptor *
  2156. dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
  2157. size_t buf_len, size_t period_len,
  2158. enum dma_transfer_direction direction, unsigned long flags,
  2159. void *context)
  2160. {
  2161. unsigned int periods = buf_len / period_len;
  2162. struct dma_async_tx_descriptor *txd;
  2163. struct scatterlist *sg;
  2164. int i;
  2165. sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
  2166. if (!sg)
  2167. return NULL;
  2168. for (i = 0; i < periods; i++) {
  2169. sg_dma_address(&sg[i]) = dma_addr;
  2170. sg_dma_len(&sg[i]) = period_len;
  2171. dma_addr += period_len;
  2172. }
  2173. sg[periods].offset = 0;
  2174. sg_dma_len(&sg[periods]) = 0;
  2175. sg[periods].page_link =
  2176. ((unsigned long)sg | 0x01) & ~0x02;
  2177. txd = d40_prep_sg(chan, sg, sg, periods, direction,
  2178. DMA_PREP_INTERRUPT);
  2179. kfree(sg);
  2180. return txd;
  2181. }
  2182. static enum dma_status d40_tx_status(struct dma_chan *chan,
  2183. dma_cookie_t cookie,
  2184. struct dma_tx_state *txstate)
  2185. {
  2186. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2187. enum dma_status ret;
  2188. if (d40c->phy_chan == NULL) {
  2189. chan_err(d40c, "Cannot read status of unallocated channel\n");
  2190. return -EINVAL;
  2191. }
  2192. ret = dma_cookie_status(chan, cookie, txstate);
  2193. if (ret != DMA_COMPLETE)
  2194. dma_set_residue(txstate, stedma40_residue(chan));
  2195. if (d40_is_paused(d40c))
  2196. ret = DMA_PAUSED;
  2197. return ret;
  2198. }
  2199. static void d40_issue_pending(struct dma_chan *chan)
  2200. {
  2201. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2202. unsigned long flags;
  2203. if (d40c->phy_chan == NULL) {
  2204. chan_err(d40c, "Channel is not allocated!\n");
  2205. return;
  2206. }
  2207. spin_lock_irqsave(&d40c->lock, flags);
  2208. list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
  2209. /* Busy means that queued jobs are already being processed */
  2210. if (!d40c->busy)
  2211. (void) d40_queue_start(d40c);
  2212. spin_unlock_irqrestore(&d40c->lock, flags);
  2213. }
  2214. static void d40_terminate_all(struct dma_chan *chan)
  2215. {
  2216. unsigned long flags;
  2217. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2218. int ret;
  2219. spin_lock_irqsave(&d40c->lock, flags);
  2220. pm_runtime_get_sync(d40c->base->dev);
  2221. ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
  2222. if (ret)
  2223. chan_err(d40c, "Failed to stop channel\n");
  2224. d40_term_all(d40c);
  2225. pm_runtime_mark_last_busy(d40c->base->dev);
  2226. pm_runtime_put_autosuspend(d40c->base->dev);
  2227. if (d40c->busy) {
  2228. pm_runtime_mark_last_busy(d40c->base->dev);
  2229. pm_runtime_put_autosuspend(d40c->base->dev);
  2230. }
  2231. d40c->busy = false;
  2232. spin_unlock_irqrestore(&d40c->lock, flags);
  2233. }
  2234. static int
  2235. dma40_config_to_halfchannel(struct d40_chan *d40c,
  2236. struct stedma40_half_channel_info *info,
  2237. u32 maxburst)
  2238. {
  2239. int psize;
  2240. if (chan_is_logical(d40c)) {
  2241. if (maxburst >= 16)
  2242. psize = STEDMA40_PSIZE_LOG_16;
  2243. else if (maxburst >= 8)
  2244. psize = STEDMA40_PSIZE_LOG_8;
  2245. else if (maxburst >= 4)
  2246. psize = STEDMA40_PSIZE_LOG_4;
  2247. else
  2248. psize = STEDMA40_PSIZE_LOG_1;
  2249. } else {
  2250. if (maxburst >= 16)
  2251. psize = STEDMA40_PSIZE_PHY_16;
  2252. else if (maxburst >= 8)
  2253. psize = STEDMA40_PSIZE_PHY_8;
  2254. else if (maxburst >= 4)
  2255. psize = STEDMA40_PSIZE_PHY_4;
  2256. else
  2257. psize = STEDMA40_PSIZE_PHY_1;
  2258. }
  2259. info->psize = psize;
  2260. info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  2261. return 0;
  2262. }
  2263. /* Runtime reconfiguration extension */
  2264. static int d40_set_runtime_config(struct dma_chan *chan,
  2265. struct dma_slave_config *config)
  2266. {
  2267. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2268. struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
  2269. enum dma_slave_buswidth src_addr_width, dst_addr_width;
  2270. dma_addr_t config_addr;
  2271. u32 src_maxburst, dst_maxburst;
  2272. int ret;
  2273. src_addr_width = config->src_addr_width;
  2274. src_maxburst = config->src_maxburst;
  2275. dst_addr_width = config->dst_addr_width;
  2276. dst_maxburst = config->dst_maxburst;
  2277. if (config->direction == DMA_DEV_TO_MEM) {
  2278. config_addr = config->src_addr;
  2279. if (cfg->dir != DMA_DEV_TO_MEM)
  2280. dev_dbg(d40c->base->dev,
  2281. "channel was not configured for peripheral "
  2282. "to memory transfer (%d) overriding\n",
  2283. cfg->dir);
  2284. cfg->dir = DMA_DEV_TO_MEM;
  2285. /* Configure the memory side */
  2286. if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
  2287. dst_addr_width = src_addr_width;
  2288. if (dst_maxburst == 0)
  2289. dst_maxburst = src_maxburst;
  2290. } else if (config->direction == DMA_MEM_TO_DEV) {
  2291. config_addr = config->dst_addr;
  2292. if (cfg->dir != DMA_MEM_TO_DEV)
  2293. dev_dbg(d40c->base->dev,
  2294. "channel was not configured for memory "
  2295. "to peripheral transfer (%d) overriding\n",
  2296. cfg->dir);
  2297. cfg->dir = DMA_MEM_TO_DEV;
  2298. /* Configure the memory side */
  2299. if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
  2300. src_addr_width = dst_addr_width;
  2301. if (src_maxburst == 0)
  2302. src_maxburst = dst_maxburst;
  2303. } else {
  2304. dev_err(d40c->base->dev,
  2305. "unrecognized channel direction %d\n",
  2306. config->direction);
  2307. return -EINVAL;
  2308. }
  2309. if (config_addr <= 0) {
  2310. dev_err(d40c->base->dev, "no address supplied\n");
  2311. return -EINVAL;
  2312. }
  2313. if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
  2314. dev_err(d40c->base->dev,
  2315. "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
  2316. src_maxburst,
  2317. src_addr_width,
  2318. dst_maxburst,
  2319. dst_addr_width);
  2320. return -EINVAL;
  2321. }
  2322. if (src_maxburst > 16) {
  2323. src_maxburst = 16;
  2324. dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
  2325. } else if (dst_maxburst > 16) {
  2326. dst_maxburst = 16;
  2327. src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
  2328. }
  2329. /* Only valid widths are; 1, 2, 4 and 8. */
  2330. if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
  2331. src_addr_width > DMA_SLAVE_BUSWIDTH_8_BYTES ||
  2332. dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
  2333. dst_addr_width > DMA_SLAVE_BUSWIDTH_8_BYTES ||
  2334. !is_power_of_2(src_addr_width) ||
  2335. !is_power_of_2(dst_addr_width))
  2336. return -EINVAL;
  2337. cfg->src_info.data_width = src_addr_width;
  2338. cfg->dst_info.data_width = dst_addr_width;
  2339. ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
  2340. src_maxburst);
  2341. if (ret)
  2342. return ret;
  2343. ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
  2344. dst_maxburst);
  2345. if (ret)
  2346. return ret;
  2347. /* Fill in register values */
  2348. if (chan_is_logical(d40c))
  2349. d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  2350. else
  2351. d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg);
  2352. /* These settings will take precedence later */
  2353. d40c->runtime_addr = config_addr;
  2354. d40c->runtime_direction = config->direction;
  2355. dev_dbg(d40c->base->dev,
  2356. "configured channel %s for %s, data width %d/%d, "
  2357. "maxburst %d/%d elements, LE, no flow control\n",
  2358. dma_chan_name(chan),
  2359. (config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
  2360. src_addr_width, dst_addr_width,
  2361. src_maxburst, dst_maxburst);
  2362. return 0;
  2363. }
  2364. static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  2365. unsigned long arg)
  2366. {
  2367. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2368. if (d40c->phy_chan == NULL) {
  2369. chan_err(d40c, "Channel is not allocated!\n");
  2370. return -EINVAL;
  2371. }
  2372. switch (cmd) {
  2373. case DMA_TERMINATE_ALL:
  2374. d40_terminate_all(chan);
  2375. return 0;
  2376. case DMA_PAUSE:
  2377. return d40_pause(d40c);
  2378. case DMA_RESUME:
  2379. return d40_resume(d40c);
  2380. case DMA_SLAVE_CONFIG:
  2381. return d40_set_runtime_config(chan,
  2382. (struct dma_slave_config *) arg);
  2383. default:
  2384. break;
  2385. }
  2386. /* Other commands are unimplemented */
  2387. return -ENXIO;
  2388. }
  2389. /* Initialization functions */
  2390. static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
  2391. struct d40_chan *chans, int offset,
  2392. int num_chans)
  2393. {
  2394. int i = 0;
  2395. struct d40_chan *d40c;
  2396. INIT_LIST_HEAD(&dma->channels);
  2397. for (i = offset; i < offset + num_chans; i++) {
  2398. d40c = &chans[i];
  2399. d40c->base = base;
  2400. d40c->chan.device = dma;
  2401. spin_lock_init(&d40c->lock);
  2402. d40c->log_num = D40_PHY_CHAN;
  2403. INIT_LIST_HEAD(&d40c->done);
  2404. INIT_LIST_HEAD(&d40c->active);
  2405. INIT_LIST_HEAD(&d40c->queue);
  2406. INIT_LIST_HEAD(&d40c->pending_queue);
  2407. INIT_LIST_HEAD(&d40c->client);
  2408. INIT_LIST_HEAD(&d40c->prepare_queue);
  2409. tasklet_init(&d40c->tasklet, dma_tasklet,
  2410. (unsigned long) d40c);
  2411. list_add_tail(&d40c->chan.device_node,
  2412. &dma->channels);
  2413. }
  2414. }
  2415. static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
  2416. {
  2417. if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
  2418. dev->device_prep_slave_sg = d40_prep_slave_sg;
  2419. if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
  2420. dev->device_prep_dma_memcpy = d40_prep_memcpy;
  2421. /*
  2422. * This controller can only access address at even
  2423. * 32bit boundaries, i.e. 2^2
  2424. */
  2425. dev->copy_align = 2;
  2426. }
  2427. if (dma_has_cap(DMA_SG, dev->cap_mask))
  2428. dev->device_prep_dma_sg = d40_prep_memcpy_sg;
  2429. if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
  2430. dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
  2431. dev->device_alloc_chan_resources = d40_alloc_chan_resources;
  2432. dev->device_free_chan_resources = d40_free_chan_resources;
  2433. dev->device_issue_pending = d40_issue_pending;
  2434. dev->device_tx_status = d40_tx_status;
  2435. dev->device_control = d40_control;
  2436. dev->dev = base->dev;
  2437. }
  2438. static int __init d40_dmaengine_init(struct d40_base *base,
  2439. int num_reserved_chans)
  2440. {
  2441. int err ;
  2442. d40_chan_init(base, &base->dma_slave, base->log_chans,
  2443. 0, base->num_log_chans);
  2444. dma_cap_zero(base->dma_slave.cap_mask);
  2445. dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
  2446. dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
  2447. d40_ops_init(base, &base->dma_slave);
  2448. err = dma_async_device_register(&base->dma_slave);
  2449. if (err) {
  2450. d40_err(base->dev, "Failed to register slave channels\n");
  2451. goto failure1;
  2452. }
  2453. d40_chan_init(base, &base->dma_memcpy, base->log_chans,
  2454. base->num_log_chans, base->num_memcpy_chans);
  2455. dma_cap_zero(base->dma_memcpy.cap_mask);
  2456. dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
  2457. dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
  2458. d40_ops_init(base, &base->dma_memcpy);
  2459. err = dma_async_device_register(&base->dma_memcpy);
  2460. if (err) {
  2461. d40_err(base->dev,
  2462. "Failed to regsiter memcpy only channels\n");
  2463. goto failure2;
  2464. }
  2465. d40_chan_init(base, &base->dma_both, base->phy_chans,
  2466. 0, num_reserved_chans);
  2467. dma_cap_zero(base->dma_both.cap_mask);
  2468. dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
  2469. dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
  2470. dma_cap_set(DMA_SG, base->dma_both.cap_mask);
  2471. dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
  2472. d40_ops_init(base, &base->dma_both);
  2473. err = dma_async_device_register(&base->dma_both);
  2474. if (err) {
  2475. d40_err(base->dev,
  2476. "Failed to register logical and physical capable channels\n");
  2477. goto failure3;
  2478. }
  2479. return 0;
  2480. failure3:
  2481. dma_async_device_unregister(&base->dma_memcpy);
  2482. failure2:
  2483. dma_async_device_unregister(&base->dma_slave);
  2484. failure1:
  2485. return err;
  2486. }
  2487. /* Suspend resume functionality */
  2488. #ifdef CONFIG_PM
  2489. static int dma40_pm_suspend(struct device *dev)
  2490. {
  2491. struct platform_device *pdev = to_platform_device(dev);
  2492. struct d40_base *base = platform_get_drvdata(pdev);
  2493. int ret = 0;
  2494. if (base->lcpa_regulator)
  2495. ret = regulator_disable(base->lcpa_regulator);
  2496. return ret;
  2497. }
  2498. static int dma40_runtime_suspend(struct device *dev)
  2499. {
  2500. struct platform_device *pdev = to_platform_device(dev);
  2501. struct d40_base *base = platform_get_drvdata(pdev);
  2502. d40_save_restore_registers(base, true);
  2503. /* Don't disable/enable clocks for v1 due to HW bugs */
  2504. if (base->rev != 1)
  2505. writel_relaxed(base->gcc_pwr_off_mask,
  2506. base->virtbase + D40_DREG_GCC);
  2507. return 0;
  2508. }
  2509. static int dma40_runtime_resume(struct device *dev)
  2510. {
  2511. struct platform_device *pdev = to_platform_device(dev);
  2512. struct d40_base *base = platform_get_drvdata(pdev);
  2513. if (base->initialized)
  2514. d40_save_restore_registers(base, false);
  2515. writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
  2516. base->virtbase + D40_DREG_GCC);
  2517. return 0;
  2518. }
  2519. static int dma40_resume(struct device *dev)
  2520. {
  2521. struct platform_device *pdev = to_platform_device(dev);
  2522. struct d40_base *base = platform_get_drvdata(pdev);
  2523. int ret = 0;
  2524. if (base->lcpa_regulator)
  2525. ret = regulator_enable(base->lcpa_regulator);
  2526. return ret;
  2527. }
  2528. static const struct dev_pm_ops dma40_pm_ops = {
  2529. .suspend = dma40_pm_suspend,
  2530. .runtime_suspend = dma40_runtime_suspend,
  2531. .runtime_resume = dma40_runtime_resume,
  2532. .resume = dma40_resume,
  2533. };
  2534. #define DMA40_PM_OPS (&dma40_pm_ops)
  2535. #else
  2536. #define DMA40_PM_OPS NULL
  2537. #endif
  2538. /* Initialization functions. */
  2539. static int __init d40_phy_res_init(struct d40_base *base)
  2540. {
  2541. int i;
  2542. int num_phy_chans_avail = 0;
  2543. u32 val[2];
  2544. int odd_even_bit = -2;
  2545. int gcc = D40_DREG_GCC_ENA;
  2546. val[0] = readl(base->virtbase + D40_DREG_PRSME);
  2547. val[1] = readl(base->virtbase + D40_DREG_PRSMO);
  2548. for (i = 0; i < base->num_phy_chans; i++) {
  2549. base->phy_res[i].num = i;
  2550. odd_even_bit += 2 * ((i % 2) == 0);
  2551. if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
  2552. /* Mark security only channels as occupied */
  2553. base->phy_res[i].allocated_src = D40_ALLOC_PHY;
  2554. base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
  2555. base->phy_res[i].reserved = true;
  2556. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
  2557. D40_DREG_GCC_SRC);
  2558. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
  2559. D40_DREG_GCC_DST);
  2560. } else {
  2561. base->phy_res[i].allocated_src = D40_ALLOC_FREE;
  2562. base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
  2563. base->phy_res[i].reserved = false;
  2564. num_phy_chans_avail++;
  2565. }
  2566. spin_lock_init(&base->phy_res[i].lock);
  2567. }
  2568. /* Mark disabled channels as occupied */
  2569. for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
  2570. int chan = base->plat_data->disabled_channels[i];
  2571. base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
  2572. base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
  2573. base->phy_res[chan].reserved = true;
  2574. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
  2575. D40_DREG_GCC_SRC);
  2576. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
  2577. D40_DREG_GCC_DST);
  2578. num_phy_chans_avail--;
  2579. }
  2580. /* Mark soft_lli channels */
  2581. for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
  2582. int chan = base->plat_data->soft_lli_chans[i];
  2583. base->phy_res[chan].use_soft_lli = true;
  2584. }
  2585. dev_info(base->dev, "%d of %d physical DMA channels available\n",
  2586. num_phy_chans_avail, base->num_phy_chans);
  2587. /* Verify settings extended vs standard */
  2588. val[0] = readl(base->virtbase + D40_DREG_PRTYP);
  2589. for (i = 0; i < base->num_phy_chans; i++) {
  2590. if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
  2591. (val[0] & 0x3) != 1)
  2592. dev_info(base->dev,
  2593. "[%s] INFO: channel %d is misconfigured (%d)\n",
  2594. __func__, i, val[0] & 0x3);
  2595. val[0] = val[0] >> 2;
  2596. }
  2597. /*
  2598. * To keep things simple, Enable all clocks initially.
  2599. * The clocks will get managed later post channel allocation.
  2600. * The clocks for the event lines on which reserved channels exists
  2601. * are not managed here.
  2602. */
  2603. writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
  2604. base->gcc_pwr_off_mask = gcc;
  2605. return num_phy_chans_avail;
  2606. }
  2607. static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
  2608. {
  2609. struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
  2610. struct clk *clk = NULL;
  2611. void __iomem *virtbase = NULL;
  2612. struct resource *res = NULL;
  2613. struct d40_base *base = NULL;
  2614. int num_log_chans = 0;
  2615. int num_phy_chans;
  2616. int num_memcpy_chans;
  2617. int clk_ret = -EINVAL;
  2618. int i;
  2619. u32 pid;
  2620. u32 cid;
  2621. u8 rev;
  2622. clk = clk_get(&pdev->dev, NULL);
  2623. if (IS_ERR(clk)) {
  2624. d40_err(&pdev->dev, "No matching clock found\n");
  2625. goto failure;
  2626. }
  2627. clk_ret = clk_prepare_enable(clk);
  2628. if (clk_ret) {
  2629. d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
  2630. goto failure;
  2631. }
  2632. /* Get IO for DMAC base address */
  2633. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
  2634. if (!res)
  2635. goto failure;
  2636. if (request_mem_region(res->start, resource_size(res),
  2637. D40_NAME " I/O base") == NULL)
  2638. goto failure;
  2639. virtbase = ioremap(res->start, resource_size(res));
  2640. if (!virtbase)
  2641. goto failure;
  2642. /* This is just a regular AMBA PrimeCell ID actually */
  2643. for (pid = 0, i = 0; i < 4; i++)
  2644. pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
  2645. & 255) << (i * 8);
  2646. for (cid = 0, i = 0; i < 4; i++)
  2647. cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
  2648. & 255) << (i * 8);
  2649. if (cid != AMBA_CID) {
  2650. d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
  2651. goto failure;
  2652. }
  2653. if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
  2654. d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
  2655. AMBA_MANF_BITS(pid),
  2656. AMBA_VENDOR_ST);
  2657. goto failure;
  2658. }
  2659. /*
  2660. * HW revision:
  2661. * DB8500ed has revision 0
  2662. * ? has revision 1
  2663. * DB8500v1 has revision 2
  2664. * DB8500v2 has revision 3
  2665. * AP9540v1 has revision 4
  2666. * DB8540v1 has revision 4
  2667. */
  2668. rev = AMBA_REV_BITS(pid);
  2669. if (rev < 2) {
  2670. d40_err(&pdev->dev, "hardware revision: %d is not supported", rev);
  2671. goto failure;
  2672. }
  2673. /* The number of physical channels on this HW */
  2674. if (plat_data->num_of_phy_chans)
  2675. num_phy_chans = plat_data->num_of_phy_chans;
  2676. else
  2677. num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
  2678. /* The number of channels used for memcpy */
  2679. if (plat_data->num_of_memcpy_chans)
  2680. num_memcpy_chans = plat_data->num_of_memcpy_chans;
  2681. else
  2682. num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels);
  2683. num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;
  2684. dev_info(&pdev->dev,
  2685. "hardware rev: %d @ %pa with %d physical and %d logical channels\n",
  2686. rev, &res->start, num_phy_chans, num_log_chans);
  2687. base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
  2688. (num_phy_chans + num_log_chans + num_memcpy_chans) *
  2689. sizeof(struct d40_chan), GFP_KERNEL);
  2690. if (base == NULL) {
  2691. d40_err(&pdev->dev, "Out of memory\n");
  2692. goto failure;
  2693. }
  2694. base->rev = rev;
  2695. base->clk = clk;
  2696. base->num_memcpy_chans = num_memcpy_chans;
  2697. base->num_phy_chans = num_phy_chans;
  2698. base->num_log_chans = num_log_chans;
  2699. base->phy_start = res->start;
  2700. base->phy_size = resource_size(res);
  2701. base->virtbase = virtbase;
  2702. base->plat_data = plat_data;
  2703. base->dev = &pdev->dev;
  2704. base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
  2705. base->log_chans = &base->phy_chans[num_phy_chans];
  2706. if (base->plat_data->num_of_phy_chans == 14) {
  2707. base->gen_dmac.backup = d40_backup_regs_v4b;
  2708. base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
  2709. base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
  2710. base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
  2711. base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
  2712. base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
  2713. base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
  2714. base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
  2715. base->gen_dmac.il = il_v4b;
  2716. base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
  2717. base->gen_dmac.init_reg = dma_init_reg_v4b;
  2718. base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
  2719. } else {
  2720. if (base->rev >= 3) {
  2721. base->gen_dmac.backup = d40_backup_regs_v4a;
  2722. base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
  2723. }
  2724. base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
  2725. base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
  2726. base->gen_dmac.realtime_en = D40_DREG_RSEG1;
  2727. base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
  2728. base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
  2729. base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
  2730. base->gen_dmac.il = il_v4a;
  2731. base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
  2732. base->gen_dmac.init_reg = dma_init_reg_v4a;
  2733. base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
  2734. }
  2735. base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
  2736. GFP_KERNEL);
  2737. if (!base->phy_res)
  2738. goto failure;
  2739. base->lookup_phy_chans = kzalloc(num_phy_chans *
  2740. sizeof(struct d40_chan *),
  2741. GFP_KERNEL);
  2742. if (!base->lookup_phy_chans)
  2743. goto failure;
  2744. base->lookup_log_chans = kzalloc(num_log_chans *
  2745. sizeof(struct d40_chan *),
  2746. GFP_KERNEL);
  2747. if (!base->lookup_log_chans)
  2748. goto failure;
  2749. base->reg_val_backup_chan = kmalloc(base->num_phy_chans *
  2750. sizeof(d40_backup_regs_chan),
  2751. GFP_KERNEL);
  2752. if (!base->reg_val_backup_chan)
  2753. goto failure;
  2754. base->lcla_pool.alloc_map =
  2755. kzalloc(num_phy_chans * sizeof(struct d40_desc *)
  2756. * D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL);
  2757. if (!base->lcla_pool.alloc_map)
  2758. goto failure;
  2759. base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
  2760. 0, SLAB_HWCACHE_ALIGN,
  2761. NULL);
  2762. if (base->desc_slab == NULL)
  2763. goto failure;
  2764. return base;
  2765. failure:
  2766. if (!clk_ret)
  2767. clk_disable_unprepare(clk);
  2768. if (!IS_ERR(clk))
  2769. clk_put(clk);
  2770. if (virtbase)
  2771. iounmap(virtbase);
  2772. if (res)
  2773. release_mem_region(res->start,
  2774. resource_size(res));
  2775. if (virtbase)
  2776. iounmap(virtbase);
  2777. if (base) {
  2778. kfree(base->lcla_pool.alloc_map);
  2779. kfree(base->reg_val_backup_chan);
  2780. kfree(base->lookup_log_chans);
  2781. kfree(base->lookup_phy_chans);
  2782. kfree(base->phy_res);
  2783. kfree(base);
  2784. }
  2785. return NULL;
  2786. }
  2787. static void __init d40_hw_init(struct d40_base *base)
  2788. {
  2789. int i;
  2790. u32 prmseo[2] = {0, 0};
  2791. u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
  2792. u32 pcmis = 0;
  2793. u32 pcicr = 0;
  2794. struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
  2795. u32 reg_size = base->gen_dmac.init_reg_size;
  2796. for (i = 0; i < reg_size; i++)
  2797. writel(dma_init_reg[i].val,
  2798. base->virtbase + dma_init_reg[i].reg);
  2799. /* Configure all our dma channels to default settings */
  2800. for (i = 0; i < base->num_phy_chans; i++) {
  2801. activeo[i % 2] = activeo[i % 2] << 2;
  2802. if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
  2803. == D40_ALLOC_PHY) {
  2804. activeo[i % 2] |= 3;
  2805. continue;
  2806. }
  2807. /* Enable interrupt # */
  2808. pcmis = (pcmis << 1) | 1;
  2809. /* Clear interrupt # */
  2810. pcicr = (pcicr << 1) | 1;
  2811. /* Set channel to physical mode */
  2812. prmseo[i % 2] = prmseo[i % 2] << 2;
  2813. prmseo[i % 2] |= 1;
  2814. }
  2815. writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
  2816. writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
  2817. writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
  2818. writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
  2819. /* Write which interrupt to enable */
  2820. writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
  2821. /* Write which interrupt to clear */
  2822. writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
  2823. /* These are __initdata and cannot be accessed after init */
  2824. base->gen_dmac.init_reg = NULL;
  2825. base->gen_dmac.init_reg_size = 0;
  2826. }
  2827. static int __init d40_lcla_allocate(struct d40_base *base)
  2828. {
  2829. struct d40_lcla_pool *pool = &base->lcla_pool;
  2830. unsigned long *page_list;
  2831. int i, j;
  2832. int ret = 0;
  2833. /*
  2834. * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
  2835. * To full fill this hardware requirement without wasting 256 kb
  2836. * we allocate pages until we get an aligned one.
  2837. */
  2838. page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
  2839. GFP_KERNEL);
  2840. if (!page_list) {
  2841. ret = -ENOMEM;
  2842. goto failure;
  2843. }
  2844. /* Calculating how many pages that are required */
  2845. base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
  2846. for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
  2847. page_list[i] = __get_free_pages(GFP_KERNEL,
  2848. base->lcla_pool.pages);
  2849. if (!page_list[i]) {
  2850. d40_err(base->dev, "Failed to allocate %d pages.\n",
  2851. base->lcla_pool.pages);
  2852. for (j = 0; j < i; j++)
  2853. free_pages(page_list[j], base->lcla_pool.pages);
  2854. goto failure;
  2855. }
  2856. if ((virt_to_phys((void *)page_list[i]) &
  2857. (LCLA_ALIGNMENT - 1)) == 0)
  2858. break;
  2859. }
  2860. for (j = 0; j < i; j++)
  2861. free_pages(page_list[j], base->lcla_pool.pages);
  2862. if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
  2863. base->lcla_pool.base = (void *)page_list[i];
  2864. } else {
  2865. /*
  2866. * After many attempts and no succees with finding the correct
  2867. * alignment, try with allocating a big buffer.
  2868. */
  2869. dev_warn(base->dev,
  2870. "[%s] Failed to get %d pages @ 18 bit align.\n",
  2871. __func__, base->lcla_pool.pages);
  2872. base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
  2873. base->num_phy_chans +
  2874. LCLA_ALIGNMENT,
  2875. GFP_KERNEL);
  2876. if (!base->lcla_pool.base_unaligned) {
  2877. ret = -ENOMEM;
  2878. goto failure;
  2879. }
  2880. base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
  2881. LCLA_ALIGNMENT);
  2882. }
  2883. pool->dma_addr = dma_map_single(base->dev, pool->base,
  2884. SZ_1K * base->num_phy_chans,
  2885. DMA_TO_DEVICE);
  2886. if (dma_mapping_error(base->dev, pool->dma_addr)) {
  2887. pool->dma_addr = 0;
  2888. ret = -ENOMEM;
  2889. goto failure;
  2890. }
  2891. writel(virt_to_phys(base->lcla_pool.base),
  2892. base->virtbase + D40_DREG_LCLA);
  2893. failure:
  2894. kfree(page_list);
  2895. return ret;
  2896. }
  2897. static int __init d40_of_probe(struct platform_device *pdev,
  2898. struct device_node *np)
  2899. {
  2900. struct stedma40_platform_data *pdata;
  2901. int num_phy = 0, num_memcpy = 0, num_disabled = 0;
  2902. const __be32 *list;
  2903. pdata = devm_kzalloc(&pdev->dev,
  2904. sizeof(struct stedma40_platform_data),
  2905. GFP_KERNEL);
  2906. if (!pdata)
  2907. return -ENOMEM;
  2908. /* If absent this value will be obtained from h/w. */
  2909. of_property_read_u32(np, "dma-channels", &num_phy);
  2910. if (num_phy > 0)
  2911. pdata->num_of_phy_chans = num_phy;
  2912. list = of_get_property(np, "memcpy-channels", &num_memcpy);
  2913. num_memcpy /= sizeof(*list);
  2914. if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) {
  2915. d40_err(&pdev->dev,
  2916. "Invalid number of memcpy channels specified (%d)\n",
  2917. num_memcpy);
  2918. return -EINVAL;
  2919. }
  2920. pdata->num_of_memcpy_chans = num_memcpy;
  2921. of_property_read_u32_array(np, "memcpy-channels",
  2922. dma40_memcpy_channels,
  2923. num_memcpy);
  2924. list = of_get_property(np, "disabled-channels", &num_disabled);
  2925. num_disabled /= sizeof(*list);
  2926. if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) {
  2927. d40_err(&pdev->dev,
  2928. "Invalid number of disabled channels specified (%d)\n",
  2929. num_disabled);
  2930. return -EINVAL;
  2931. }
  2932. of_property_read_u32_array(np, "disabled-channels",
  2933. pdata->disabled_channels,
  2934. num_disabled);
  2935. pdata->disabled_channels[num_disabled] = -1;
  2936. pdev->dev.platform_data = pdata;
  2937. return 0;
  2938. }
  2939. static int __init d40_probe(struct platform_device *pdev)
  2940. {
  2941. struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
  2942. struct device_node *np = pdev->dev.of_node;
  2943. int ret = -ENOENT;
  2944. struct d40_base *base = NULL;
  2945. struct resource *res = NULL;
  2946. int num_reserved_chans;
  2947. u32 val;
  2948. if (!plat_data) {
  2949. if (np) {
  2950. if(d40_of_probe(pdev, np)) {
  2951. ret = -ENOMEM;
  2952. goto failure;
  2953. }
  2954. } else {
  2955. d40_err(&pdev->dev, "No pdata or Device Tree provided\n");
  2956. goto failure;
  2957. }
  2958. }
  2959. base = d40_hw_detect_init(pdev);
  2960. if (!base)
  2961. goto failure;
  2962. num_reserved_chans = d40_phy_res_init(base);
  2963. platform_set_drvdata(pdev, base);
  2964. spin_lock_init(&base->interrupt_lock);
  2965. spin_lock_init(&base->execmd_lock);
  2966. /* Get IO for logical channel parameter address */
  2967. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
  2968. if (!res) {
  2969. ret = -ENOENT;
  2970. d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
  2971. goto failure;
  2972. }
  2973. base->lcpa_size = resource_size(res);
  2974. base->phy_lcpa = res->start;
  2975. if (request_mem_region(res->start, resource_size(res),
  2976. D40_NAME " I/O lcpa") == NULL) {
  2977. ret = -EBUSY;
  2978. d40_err(&pdev->dev, "Failed to request LCPA region %pR\n", res);
  2979. goto failure;
  2980. }
  2981. /* We make use of ESRAM memory for this. */
  2982. val = readl(base->virtbase + D40_DREG_LCPA);
  2983. if (res->start != val && val != 0) {
  2984. dev_warn(&pdev->dev,
  2985. "[%s] Mismatch LCPA dma 0x%x, def %pa\n",
  2986. __func__, val, &res->start);
  2987. } else
  2988. writel(res->start, base->virtbase + D40_DREG_LCPA);
  2989. base->lcpa_base = ioremap(res->start, resource_size(res));
  2990. if (!base->lcpa_base) {
  2991. ret = -ENOMEM;
  2992. d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
  2993. goto failure;
  2994. }
  2995. /* If lcla has to be located in ESRAM we don't need to allocate */
  2996. if (base->plat_data->use_esram_lcla) {
  2997. res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  2998. "lcla_esram");
  2999. if (!res) {
  3000. ret = -ENOENT;
  3001. d40_err(&pdev->dev,
  3002. "No \"lcla_esram\" memory resource\n");
  3003. goto failure;
  3004. }
  3005. base->lcla_pool.base = ioremap(res->start,
  3006. resource_size(res));
  3007. if (!base->lcla_pool.base) {
  3008. ret = -ENOMEM;
  3009. d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
  3010. goto failure;
  3011. }
  3012. writel(res->start, base->virtbase + D40_DREG_LCLA);
  3013. } else {
  3014. ret = d40_lcla_allocate(base);
  3015. if (ret) {
  3016. d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
  3017. goto failure;
  3018. }
  3019. }
  3020. spin_lock_init(&base->lcla_pool.lock);
  3021. base->irq = platform_get_irq(pdev, 0);
  3022. ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
  3023. if (ret) {
  3024. d40_err(&pdev->dev, "No IRQ defined\n");
  3025. goto failure;
  3026. }
  3027. pm_runtime_irq_safe(base->dev);
  3028. pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
  3029. pm_runtime_use_autosuspend(base->dev);
  3030. pm_runtime_enable(base->dev);
  3031. pm_runtime_resume(base->dev);
  3032. if (base->plat_data->use_esram_lcla) {
  3033. base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
  3034. if (IS_ERR(base->lcpa_regulator)) {
  3035. d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
  3036. ret = PTR_ERR(base->lcpa_regulator);
  3037. base->lcpa_regulator = NULL;
  3038. goto failure;
  3039. }
  3040. ret = regulator_enable(base->lcpa_regulator);
  3041. if (ret) {
  3042. d40_err(&pdev->dev,
  3043. "Failed to enable lcpa_regulator\n");
  3044. regulator_put(base->lcpa_regulator);
  3045. base->lcpa_regulator = NULL;
  3046. goto failure;
  3047. }
  3048. }
  3049. base->initialized = true;
  3050. ret = d40_dmaengine_init(base, num_reserved_chans);
  3051. if (ret)
  3052. goto failure;
  3053. base->dev->dma_parms = &base->dma_parms;
  3054. ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
  3055. if (ret) {
  3056. d40_err(&pdev->dev, "Failed to set dma max seg size\n");
  3057. goto failure;
  3058. }
  3059. d40_hw_init(base);
  3060. if (np) {
  3061. ret = of_dma_controller_register(np, d40_xlate, NULL);
  3062. if (ret)
  3063. dev_err(&pdev->dev,
  3064. "could not register of_dma_controller\n");
  3065. }
  3066. dev_info(base->dev, "initialized\n");
  3067. return 0;
  3068. failure:
  3069. if (base) {
  3070. if (base->desc_slab)
  3071. kmem_cache_destroy(base->desc_slab);
  3072. if (base->virtbase)
  3073. iounmap(base->virtbase);
  3074. if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
  3075. iounmap(base->lcla_pool.base);
  3076. base->lcla_pool.base = NULL;
  3077. }
  3078. if (base->lcla_pool.dma_addr)
  3079. dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
  3080. SZ_1K * base->num_phy_chans,
  3081. DMA_TO_DEVICE);
  3082. if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
  3083. free_pages((unsigned long)base->lcla_pool.base,
  3084. base->lcla_pool.pages);
  3085. kfree(base->lcla_pool.base_unaligned);
  3086. if (base->phy_lcpa)
  3087. release_mem_region(base->phy_lcpa,
  3088. base->lcpa_size);
  3089. if (base->phy_start)
  3090. release_mem_region(base->phy_start,
  3091. base->phy_size);
  3092. if (base->clk) {
  3093. clk_disable_unprepare(base->clk);
  3094. clk_put(base->clk);
  3095. }
  3096. if (base->lcpa_regulator) {
  3097. regulator_disable(base->lcpa_regulator);
  3098. regulator_put(base->lcpa_regulator);
  3099. }
  3100. kfree(base->lcla_pool.alloc_map);
  3101. kfree(base->lookup_log_chans);
  3102. kfree(base->lookup_phy_chans);
  3103. kfree(base->phy_res);
  3104. kfree(base);
  3105. }
  3106. d40_err(&pdev->dev, "probe failed\n");
  3107. return ret;
  3108. }
  3109. static const struct of_device_id d40_match[] = {
  3110. { .compatible = "stericsson,dma40", },
  3111. {}
  3112. };
  3113. static struct platform_driver d40_driver = {
  3114. .driver = {
  3115. .owner = THIS_MODULE,
  3116. .name = D40_NAME,
  3117. .pm = DMA40_PM_OPS,
  3118. .of_match_table = d40_match,
  3119. },
  3120. };
  3121. static int __init stedma40_init(void)
  3122. {
  3123. return platform_driver_probe(&d40_driver, d40_probe);
  3124. }
  3125. subsys_initcall(stedma40_init);