sched.c 164 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. */
  26. #include <linux/mm.h>
  27. #include <linux/module.h>
  28. #include <linux/nmi.h>
  29. #include <linux/init.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/highmem.h>
  32. #include <linux/smp_lock.h>
  33. #include <asm/mmu_context.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/capability.h>
  36. #include <linux/completion.h>
  37. #include <linux/kernel_stat.h>
  38. #include <linux/debug_locks.h>
  39. #include <linux/security.h>
  40. #include <linux/notifier.h>
  41. #include <linux/profile.h>
  42. #include <linux/freezer.h>
  43. #include <linux/vmalloc.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/delay.h>
  46. #include <linux/smp.h>
  47. #include <linux/threads.h>
  48. #include <linux/timer.h>
  49. #include <linux/rcupdate.h>
  50. #include <linux/cpu.h>
  51. #include <linux/cpuset.h>
  52. #include <linux/percpu.h>
  53. #include <linux/kthread.h>
  54. #include <linux/seq_file.h>
  55. #include <linux/sysctl.h>
  56. #include <linux/syscalls.h>
  57. #include <linux/times.h>
  58. #include <linux/tsacct_kern.h>
  59. #include <linux/kprobes.h>
  60. #include <linux/delayacct.h>
  61. #include <linux/reciprocal_div.h>
  62. #include <linux/unistd.h>
  63. #include <linux/pagemap.h>
  64. #include <asm/tlb.h>
  65. /*
  66. * Scheduler clock - returns current time in nanosec units.
  67. * This is default implementation.
  68. * Architectures and sub-architectures can override this.
  69. */
  70. unsigned long long __attribute__((weak)) sched_clock(void)
  71. {
  72. return (unsigned long long)jiffies * (1000000000 / HZ);
  73. }
  74. /*
  75. * Convert user-nice values [ -20 ... 0 ... 19 ]
  76. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  77. * and back.
  78. */
  79. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  80. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  81. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  82. /*
  83. * 'User priority' is the nice value converted to something we
  84. * can work with better when scaling various scheduler parameters,
  85. * it's a [ 0 ... 39 ] range.
  86. */
  87. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  88. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  89. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  90. /*
  91. * Some helpers for converting nanosecond timing to jiffy resolution
  92. */
  93. #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
  94. #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
  95. #define NICE_0_LOAD SCHED_LOAD_SCALE
  96. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  97. /*
  98. * These are the 'tuning knobs' of the scheduler:
  99. *
  100. * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
  101. * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
  102. * Timeslices get refilled after they expire.
  103. */
  104. #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
  105. #define DEF_TIMESLICE (100 * HZ / 1000)
  106. #ifdef CONFIG_SMP
  107. /*
  108. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  109. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  110. */
  111. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  112. {
  113. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  114. }
  115. /*
  116. * Each time a sched group cpu_power is changed,
  117. * we must compute its reciprocal value
  118. */
  119. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  120. {
  121. sg->__cpu_power += val;
  122. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  123. }
  124. #endif
  125. #define SCALE_PRIO(x, prio) \
  126. max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
  127. /*
  128. * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
  129. * to time slice values: [800ms ... 100ms ... 5ms]
  130. */
  131. static unsigned int static_prio_timeslice(int static_prio)
  132. {
  133. if (static_prio == NICE_TO_PRIO(19))
  134. return 1;
  135. if (static_prio < NICE_TO_PRIO(0))
  136. return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
  137. else
  138. return SCALE_PRIO(DEF_TIMESLICE, static_prio);
  139. }
  140. static inline int rt_policy(int policy)
  141. {
  142. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  143. return 1;
  144. return 0;
  145. }
  146. static inline int task_has_rt_policy(struct task_struct *p)
  147. {
  148. return rt_policy(p->policy);
  149. }
  150. /*
  151. * This is the priority-queue data structure of the RT scheduling class:
  152. */
  153. struct rt_prio_array {
  154. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  155. struct list_head queue[MAX_RT_PRIO];
  156. };
  157. /* CFS-related fields in a runqueue */
  158. struct cfs_rq {
  159. struct load_weight load;
  160. unsigned long nr_running;
  161. s64 fair_clock;
  162. u64 exec_clock;
  163. u64 min_vruntime;
  164. s64 wait_runtime;
  165. unsigned long wait_runtime_overruns, wait_runtime_underruns;
  166. struct rb_root tasks_timeline;
  167. struct rb_node *rb_leftmost;
  168. struct rb_node *rb_load_balance_curr;
  169. /* 'curr' points to currently running entity on this cfs_rq.
  170. * It is set to NULL otherwise (i.e when none are currently running).
  171. */
  172. struct sched_entity *curr;
  173. #ifdef CONFIG_FAIR_GROUP_SCHED
  174. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  175. /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  176. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  177. * (like users, containers etc.)
  178. *
  179. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  180. * list is used during load balance.
  181. */
  182. struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
  183. #endif
  184. };
  185. /* Real-Time classes' related field in a runqueue: */
  186. struct rt_rq {
  187. struct rt_prio_array active;
  188. int rt_load_balance_idx;
  189. struct list_head *rt_load_balance_head, *rt_load_balance_curr;
  190. };
  191. /*
  192. * This is the main, per-CPU runqueue data structure.
  193. *
  194. * Locking rule: those places that want to lock multiple runqueues
  195. * (such as the load balancing or the thread migration code), lock
  196. * acquire operations must be ordered by ascending &runqueue.
  197. */
  198. struct rq {
  199. spinlock_t lock; /* runqueue lock */
  200. /*
  201. * nr_running and cpu_load should be in the same cacheline because
  202. * remote CPUs use both these fields when doing load calculation.
  203. */
  204. unsigned long nr_running;
  205. #define CPU_LOAD_IDX_MAX 5
  206. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  207. unsigned char idle_at_tick;
  208. #ifdef CONFIG_NO_HZ
  209. unsigned char in_nohz_recently;
  210. #endif
  211. struct load_weight load; /* capture load from *all* tasks on this cpu */
  212. unsigned long nr_load_updates;
  213. u64 nr_switches;
  214. struct cfs_rq cfs;
  215. #ifdef CONFIG_FAIR_GROUP_SCHED
  216. struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
  217. #endif
  218. struct rt_rq rt;
  219. /*
  220. * This is part of a global counter where only the total sum
  221. * over all CPUs matters. A task can increase this counter on
  222. * one CPU and if it got migrated afterwards it may decrease
  223. * it on another CPU. Always updated under the runqueue lock:
  224. */
  225. unsigned long nr_uninterruptible;
  226. struct task_struct *curr, *idle;
  227. unsigned long next_balance;
  228. struct mm_struct *prev_mm;
  229. u64 clock, prev_clock_raw;
  230. s64 clock_max_delta;
  231. unsigned int clock_warps, clock_overflows;
  232. u64 idle_clock;
  233. unsigned int clock_deep_idle_events;
  234. u64 tick_timestamp;
  235. atomic_t nr_iowait;
  236. #ifdef CONFIG_SMP
  237. struct sched_domain *sd;
  238. /* For active balancing */
  239. int active_balance;
  240. int push_cpu;
  241. int cpu; /* cpu of this runqueue */
  242. struct task_struct *migration_thread;
  243. struct list_head migration_queue;
  244. #endif
  245. #ifdef CONFIG_SCHEDSTATS
  246. /* latency stats */
  247. struct sched_info rq_sched_info;
  248. /* sys_sched_yield() stats */
  249. unsigned long yld_exp_empty;
  250. unsigned long yld_act_empty;
  251. unsigned long yld_both_empty;
  252. unsigned long yld_cnt;
  253. /* schedule() stats */
  254. unsigned long sched_switch;
  255. unsigned long sched_cnt;
  256. unsigned long sched_goidle;
  257. /* try_to_wake_up() stats */
  258. unsigned long ttwu_cnt;
  259. unsigned long ttwu_local;
  260. #endif
  261. struct lock_class_key rq_lock_key;
  262. };
  263. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  264. static DEFINE_MUTEX(sched_hotcpu_mutex);
  265. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  266. {
  267. rq->curr->sched_class->check_preempt_curr(rq, p);
  268. }
  269. static inline int cpu_of(struct rq *rq)
  270. {
  271. #ifdef CONFIG_SMP
  272. return rq->cpu;
  273. #else
  274. return 0;
  275. #endif
  276. }
  277. /*
  278. * Update the per-runqueue clock, as finegrained as the platform can give
  279. * us, but without assuming monotonicity, etc.:
  280. */
  281. static void __update_rq_clock(struct rq *rq)
  282. {
  283. u64 prev_raw = rq->prev_clock_raw;
  284. u64 now = sched_clock();
  285. s64 delta = now - prev_raw;
  286. u64 clock = rq->clock;
  287. #ifdef CONFIG_SCHED_DEBUG
  288. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  289. #endif
  290. /*
  291. * Protect against sched_clock() occasionally going backwards:
  292. */
  293. if (unlikely(delta < 0)) {
  294. clock++;
  295. rq->clock_warps++;
  296. } else {
  297. /*
  298. * Catch too large forward jumps too:
  299. */
  300. if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
  301. if (clock < rq->tick_timestamp + TICK_NSEC)
  302. clock = rq->tick_timestamp + TICK_NSEC;
  303. else
  304. clock++;
  305. rq->clock_overflows++;
  306. } else {
  307. if (unlikely(delta > rq->clock_max_delta))
  308. rq->clock_max_delta = delta;
  309. clock += delta;
  310. }
  311. }
  312. rq->prev_clock_raw = now;
  313. rq->clock = clock;
  314. }
  315. static void update_rq_clock(struct rq *rq)
  316. {
  317. if (likely(smp_processor_id() == cpu_of(rq)))
  318. __update_rq_clock(rq);
  319. }
  320. /*
  321. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  322. * See detach_destroy_domains: synchronize_sched for details.
  323. *
  324. * The domain tree of any CPU may only be accessed from within
  325. * preempt-disabled sections.
  326. */
  327. #define for_each_domain(cpu, __sd) \
  328. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  329. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  330. #define this_rq() (&__get_cpu_var(runqueues))
  331. #define task_rq(p) cpu_rq(task_cpu(p))
  332. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  333. /*
  334. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  335. */
  336. #ifdef CONFIG_SCHED_DEBUG
  337. # define const_debug __read_mostly
  338. #else
  339. # define const_debug static const
  340. #endif
  341. /*
  342. * Debugging: various feature bits
  343. */
  344. enum {
  345. SCHED_FEAT_FAIR_SLEEPERS = 1,
  346. SCHED_FEAT_NEW_FAIR_SLEEPERS = 2,
  347. SCHED_FEAT_SLEEPER_AVG = 4,
  348. SCHED_FEAT_SLEEPER_LOAD_AVG = 8,
  349. SCHED_FEAT_START_DEBIT = 16,
  350. SCHED_FEAT_USE_TREE_AVG = 32,
  351. SCHED_FEAT_APPROX_AVG = 64,
  352. };
  353. const_debug unsigned int sysctl_sched_features =
  354. SCHED_FEAT_FAIR_SLEEPERS *0 |
  355. SCHED_FEAT_NEW_FAIR_SLEEPERS *1 |
  356. SCHED_FEAT_SLEEPER_AVG *0 |
  357. SCHED_FEAT_SLEEPER_LOAD_AVG *1 |
  358. SCHED_FEAT_START_DEBIT *1 |
  359. SCHED_FEAT_USE_TREE_AVG *0 |
  360. SCHED_FEAT_APPROX_AVG *0;
  361. #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
  362. /*
  363. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  364. * clock constructed from sched_clock():
  365. */
  366. unsigned long long cpu_clock(int cpu)
  367. {
  368. unsigned long long now;
  369. unsigned long flags;
  370. struct rq *rq;
  371. local_irq_save(flags);
  372. rq = cpu_rq(cpu);
  373. update_rq_clock(rq);
  374. now = rq->clock;
  375. local_irq_restore(flags);
  376. return now;
  377. }
  378. #ifdef CONFIG_FAIR_GROUP_SCHED
  379. /* Change a task's ->cfs_rq if it moves across CPUs */
  380. static inline void set_task_cfs_rq(struct task_struct *p)
  381. {
  382. p->se.cfs_rq = &task_rq(p)->cfs;
  383. }
  384. #else
  385. static inline void set_task_cfs_rq(struct task_struct *p)
  386. {
  387. }
  388. #endif
  389. #ifndef prepare_arch_switch
  390. # define prepare_arch_switch(next) do { } while (0)
  391. #endif
  392. #ifndef finish_arch_switch
  393. # define finish_arch_switch(prev) do { } while (0)
  394. #endif
  395. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  396. static inline int task_running(struct rq *rq, struct task_struct *p)
  397. {
  398. return rq->curr == p;
  399. }
  400. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  401. {
  402. }
  403. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  404. {
  405. #ifdef CONFIG_DEBUG_SPINLOCK
  406. /* this is a valid case when another task releases the spinlock */
  407. rq->lock.owner = current;
  408. #endif
  409. /*
  410. * If we are tracking spinlock dependencies then we have to
  411. * fix up the runqueue lock - which gets 'carried over' from
  412. * prev into current:
  413. */
  414. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  415. spin_unlock_irq(&rq->lock);
  416. }
  417. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  418. static inline int task_running(struct rq *rq, struct task_struct *p)
  419. {
  420. #ifdef CONFIG_SMP
  421. return p->oncpu;
  422. #else
  423. return rq->curr == p;
  424. #endif
  425. }
  426. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  427. {
  428. #ifdef CONFIG_SMP
  429. /*
  430. * We can optimise this out completely for !SMP, because the
  431. * SMP rebalancing from interrupt is the only thing that cares
  432. * here.
  433. */
  434. next->oncpu = 1;
  435. #endif
  436. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  437. spin_unlock_irq(&rq->lock);
  438. #else
  439. spin_unlock(&rq->lock);
  440. #endif
  441. }
  442. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  443. {
  444. #ifdef CONFIG_SMP
  445. /*
  446. * After ->oncpu is cleared, the task can be moved to a different CPU.
  447. * We must ensure this doesn't happen until the switch is completely
  448. * finished.
  449. */
  450. smp_wmb();
  451. prev->oncpu = 0;
  452. #endif
  453. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  454. local_irq_enable();
  455. #endif
  456. }
  457. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  458. /*
  459. * __task_rq_lock - lock the runqueue a given task resides on.
  460. * Must be called interrupts disabled.
  461. */
  462. static inline struct rq *__task_rq_lock(struct task_struct *p)
  463. __acquires(rq->lock)
  464. {
  465. struct rq *rq;
  466. repeat_lock_task:
  467. rq = task_rq(p);
  468. spin_lock(&rq->lock);
  469. if (unlikely(rq != task_rq(p))) {
  470. spin_unlock(&rq->lock);
  471. goto repeat_lock_task;
  472. }
  473. return rq;
  474. }
  475. /*
  476. * task_rq_lock - lock the runqueue a given task resides on and disable
  477. * interrupts. Note the ordering: we can safely lookup the task_rq without
  478. * explicitly disabling preemption.
  479. */
  480. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  481. __acquires(rq->lock)
  482. {
  483. struct rq *rq;
  484. repeat_lock_task:
  485. local_irq_save(*flags);
  486. rq = task_rq(p);
  487. spin_lock(&rq->lock);
  488. if (unlikely(rq != task_rq(p))) {
  489. spin_unlock_irqrestore(&rq->lock, *flags);
  490. goto repeat_lock_task;
  491. }
  492. return rq;
  493. }
  494. static inline void __task_rq_unlock(struct rq *rq)
  495. __releases(rq->lock)
  496. {
  497. spin_unlock(&rq->lock);
  498. }
  499. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  500. __releases(rq->lock)
  501. {
  502. spin_unlock_irqrestore(&rq->lock, *flags);
  503. }
  504. /*
  505. * this_rq_lock - lock this runqueue and disable interrupts.
  506. */
  507. static inline struct rq *this_rq_lock(void)
  508. __acquires(rq->lock)
  509. {
  510. struct rq *rq;
  511. local_irq_disable();
  512. rq = this_rq();
  513. spin_lock(&rq->lock);
  514. return rq;
  515. }
  516. /*
  517. * We are going deep-idle (irqs are disabled):
  518. */
  519. void sched_clock_idle_sleep_event(void)
  520. {
  521. struct rq *rq = cpu_rq(smp_processor_id());
  522. spin_lock(&rq->lock);
  523. __update_rq_clock(rq);
  524. spin_unlock(&rq->lock);
  525. rq->clock_deep_idle_events++;
  526. }
  527. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  528. /*
  529. * We just idled delta nanoseconds (called with irqs disabled):
  530. */
  531. void sched_clock_idle_wakeup_event(u64 delta_ns)
  532. {
  533. struct rq *rq = cpu_rq(smp_processor_id());
  534. u64 now = sched_clock();
  535. rq->idle_clock += delta_ns;
  536. /*
  537. * Override the previous timestamp and ignore all
  538. * sched_clock() deltas that occured while we idled,
  539. * and use the PM-provided delta_ns to advance the
  540. * rq clock:
  541. */
  542. spin_lock(&rq->lock);
  543. rq->prev_clock_raw = now;
  544. rq->clock += delta_ns;
  545. spin_unlock(&rq->lock);
  546. }
  547. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  548. /*
  549. * resched_task - mark a task 'to be rescheduled now'.
  550. *
  551. * On UP this means the setting of the need_resched flag, on SMP it
  552. * might also involve a cross-CPU call to trigger the scheduler on
  553. * the target CPU.
  554. */
  555. #ifdef CONFIG_SMP
  556. #ifndef tsk_is_polling
  557. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  558. #endif
  559. static void resched_task(struct task_struct *p)
  560. {
  561. int cpu;
  562. assert_spin_locked(&task_rq(p)->lock);
  563. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  564. return;
  565. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  566. cpu = task_cpu(p);
  567. if (cpu == smp_processor_id())
  568. return;
  569. /* NEED_RESCHED must be visible before we test polling */
  570. smp_mb();
  571. if (!tsk_is_polling(p))
  572. smp_send_reschedule(cpu);
  573. }
  574. static void resched_cpu(int cpu)
  575. {
  576. struct rq *rq = cpu_rq(cpu);
  577. unsigned long flags;
  578. if (!spin_trylock_irqsave(&rq->lock, flags))
  579. return;
  580. resched_task(cpu_curr(cpu));
  581. spin_unlock_irqrestore(&rq->lock, flags);
  582. }
  583. #else
  584. static inline void resched_task(struct task_struct *p)
  585. {
  586. assert_spin_locked(&task_rq(p)->lock);
  587. set_tsk_need_resched(p);
  588. }
  589. #endif
  590. #if BITS_PER_LONG == 32
  591. # define WMULT_CONST (~0UL)
  592. #else
  593. # define WMULT_CONST (1UL << 32)
  594. #endif
  595. #define WMULT_SHIFT 32
  596. /*
  597. * Shift right and round:
  598. */
  599. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  600. static unsigned long
  601. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  602. struct load_weight *lw)
  603. {
  604. u64 tmp;
  605. if (unlikely(!lw->inv_weight))
  606. lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
  607. tmp = (u64)delta_exec * weight;
  608. /*
  609. * Check whether we'd overflow the 64-bit multiplication:
  610. */
  611. if (unlikely(tmp > WMULT_CONST))
  612. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  613. WMULT_SHIFT/2);
  614. else
  615. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  616. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  617. }
  618. static inline unsigned long
  619. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  620. {
  621. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  622. }
  623. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  624. {
  625. lw->weight += inc;
  626. if (sched_feat(FAIR_SLEEPERS))
  627. lw->inv_weight = WMULT_CONST / lw->weight;
  628. }
  629. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  630. {
  631. lw->weight -= dec;
  632. if (sched_feat(FAIR_SLEEPERS) && likely(lw->weight))
  633. lw->inv_weight = WMULT_CONST / lw->weight;
  634. }
  635. /*
  636. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  637. * of tasks with abnormal "nice" values across CPUs the contribution that
  638. * each task makes to its run queue's load is weighted according to its
  639. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  640. * scaled version of the new time slice allocation that they receive on time
  641. * slice expiry etc.
  642. */
  643. #define WEIGHT_IDLEPRIO 2
  644. #define WMULT_IDLEPRIO (1 << 31)
  645. /*
  646. * Nice levels are multiplicative, with a gentle 10% change for every
  647. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  648. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  649. * that remained on nice 0.
  650. *
  651. * The "10% effect" is relative and cumulative: from _any_ nice level,
  652. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  653. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  654. * If a task goes up by ~10% and another task goes down by ~10% then
  655. * the relative distance between them is ~25%.)
  656. */
  657. static const int prio_to_weight[40] = {
  658. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  659. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  660. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  661. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  662. /* 0 */ 1024, 820, 655, 526, 423,
  663. /* 5 */ 335, 272, 215, 172, 137,
  664. /* 10 */ 110, 87, 70, 56, 45,
  665. /* 15 */ 36, 29, 23, 18, 15,
  666. };
  667. /*
  668. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  669. *
  670. * In cases where the weight does not change often, we can use the
  671. * precalculated inverse to speed up arithmetics by turning divisions
  672. * into multiplications:
  673. */
  674. static const u32 prio_to_wmult[40] = {
  675. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  676. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  677. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  678. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  679. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  680. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  681. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  682. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  683. };
  684. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  685. /*
  686. * runqueue iterator, to support SMP load-balancing between different
  687. * scheduling classes, without having to expose their internal data
  688. * structures to the load-balancing proper:
  689. */
  690. struct rq_iterator {
  691. void *arg;
  692. struct task_struct *(*start)(void *);
  693. struct task_struct *(*next)(void *);
  694. };
  695. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  696. unsigned long max_nr_move, unsigned long max_load_move,
  697. struct sched_domain *sd, enum cpu_idle_type idle,
  698. int *all_pinned, unsigned long *load_moved,
  699. int *this_best_prio, struct rq_iterator *iterator);
  700. #include "sched_stats.h"
  701. #include "sched_rt.c"
  702. #include "sched_fair.c"
  703. #include "sched_idletask.c"
  704. #ifdef CONFIG_SCHED_DEBUG
  705. # include "sched_debug.c"
  706. #endif
  707. #define sched_class_highest (&rt_sched_class)
  708. /*
  709. * Update delta_exec, delta_fair fields for rq.
  710. *
  711. * delta_fair clock advances at a rate inversely proportional to
  712. * total load (rq->load.weight) on the runqueue, while
  713. * delta_exec advances at the same rate as wall-clock (provided
  714. * cpu is not idle).
  715. *
  716. * delta_exec / delta_fair is a measure of the (smoothened) load on this
  717. * runqueue over any given interval. This (smoothened) load is used
  718. * during load balance.
  719. *
  720. * This function is called /before/ updating rq->load
  721. * and when switching tasks.
  722. */
  723. static inline void inc_load(struct rq *rq, const struct task_struct *p)
  724. {
  725. update_load_add(&rq->load, p->se.load.weight);
  726. }
  727. static inline void dec_load(struct rq *rq, const struct task_struct *p)
  728. {
  729. update_load_sub(&rq->load, p->se.load.weight);
  730. }
  731. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  732. {
  733. rq->nr_running++;
  734. inc_load(rq, p);
  735. }
  736. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  737. {
  738. rq->nr_running--;
  739. dec_load(rq, p);
  740. }
  741. static void set_load_weight(struct task_struct *p)
  742. {
  743. p->se.wait_runtime = 0;
  744. if (task_has_rt_policy(p)) {
  745. p->se.load.weight = prio_to_weight[0] * 2;
  746. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  747. return;
  748. }
  749. /*
  750. * SCHED_IDLE tasks get minimal weight:
  751. */
  752. if (p->policy == SCHED_IDLE) {
  753. p->se.load.weight = WEIGHT_IDLEPRIO;
  754. p->se.load.inv_weight = WMULT_IDLEPRIO;
  755. return;
  756. }
  757. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  758. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  759. }
  760. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  761. {
  762. sched_info_queued(p);
  763. p->sched_class->enqueue_task(rq, p, wakeup);
  764. p->se.on_rq = 1;
  765. }
  766. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  767. {
  768. p->sched_class->dequeue_task(rq, p, sleep);
  769. p->se.on_rq = 0;
  770. }
  771. /*
  772. * __normal_prio - return the priority that is based on the static prio
  773. */
  774. static inline int __normal_prio(struct task_struct *p)
  775. {
  776. return p->static_prio;
  777. }
  778. /*
  779. * Calculate the expected normal priority: i.e. priority
  780. * without taking RT-inheritance into account. Might be
  781. * boosted by interactivity modifiers. Changes upon fork,
  782. * setprio syscalls, and whenever the interactivity
  783. * estimator recalculates.
  784. */
  785. static inline int normal_prio(struct task_struct *p)
  786. {
  787. int prio;
  788. if (task_has_rt_policy(p))
  789. prio = MAX_RT_PRIO-1 - p->rt_priority;
  790. else
  791. prio = __normal_prio(p);
  792. return prio;
  793. }
  794. /*
  795. * Calculate the current priority, i.e. the priority
  796. * taken into account by the scheduler. This value might
  797. * be boosted by RT tasks, or might be boosted by
  798. * interactivity modifiers. Will be RT if the task got
  799. * RT-boosted. If not then it returns p->normal_prio.
  800. */
  801. static int effective_prio(struct task_struct *p)
  802. {
  803. p->normal_prio = normal_prio(p);
  804. /*
  805. * If we are RT tasks or we were boosted to RT priority,
  806. * keep the priority unchanged. Otherwise, update priority
  807. * to the normal priority:
  808. */
  809. if (!rt_prio(p->prio))
  810. return p->normal_prio;
  811. return p->prio;
  812. }
  813. /*
  814. * activate_task - move a task to the runqueue.
  815. */
  816. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  817. {
  818. if (p->state == TASK_UNINTERRUPTIBLE)
  819. rq->nr_uninterruptible--;
  820. enqueue_task(rq, p, wakeup);
  821. inc_nr_running(p, rq);
  822. }
  823. /*
  824. * activate_idle_task - move idle task to the _front_ of runqueue.
  825. */
  826. static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
  827. {
  828. update_rq_clock(rq);
  829. if (p->state == TASK_UNINTERRUPTIBLE)
  830. rq->nr_uninterruptible--;
  831. enqueue_task(rq, p, 0);
  832. inc_nr_running(p, rq);
  833. }
  834. /*
  835. * deactivate_task - remove a task from the runqueue.
  836. */
  837. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  838. {
  839. if (p->state == TASK_UNINTERRUPTIBLE)
  840. rq->nr_uninterruptible++;
  841. dequeue_task(rq, p, sleep);
  842. dec_nr_running(p, rq);
  843. }
  844. /**
  845. * task_curr - is this task currently executing on a CPU?
  846. * @p: the task in question.
  847. */
  848. inline int task_curr(const struct task_struct *p)
  849. {
  850. return cpu_curr(task_cpu(p)) == p;
  851. }
  852. /* Used instead of source_load when we know the type == 0 */
  853. unsigned long weighted_cpuload(const int cpu)
  854. {
  855. return cpu_rq(cpu)->load.weight;
  856. }
  857. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  858. {
  859. #ifdef CONFIG_SMP
  860. task_thread_info(p)->cpu = cpu;
  861. set_task_cfs_rq(p);
  862. #endif
  863. }
  864. #ifdef CONFIG_SMP
  865. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  866. {
  867. int old_cpu = task_cpu(p);
  868. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  869. u64 clock_offset, fair_clock_offset;
  870. clock_offset = old_rq->clock - new_rq->clock;
  871. fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
  872. if (p->se.wait_start_fair)
  873. p->se.wait_start_fair -= fair_clock_offset;
  874. #ifdef CONFIG_SCHEDSTATS
  875. if (p->se.wait_start)
  876. p->se.wait_start -= clock_offset;
  877. if (p->se.sleep_start)
  878. p->se.sleep_start -= clock_offset;
  879. if (p->se.block_start)
  880. p->se.block_start -= clock_offset;
  881. #endif
  882. __set_task_cpu(p, new_cpu);
  883. }
  884. struct migration_req {
  885. struct list_head list;
  886. struct task_struct *task;
  887. int dest_cpu;
  888. struct completion done;
  889. };
  890. /*
  891. * The task's runqueue lock must be held.
  892. * Returns true if you have to wait for migration thread.
  893. */
  894. static int
  895. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  896. {
  897. struct rq *rq = task_rq(p);
  898. /*
  899. * If the task is not on a runqueue (and not running), then
  900. * it is sufficient to simply update the task's cpu field.
  901. */
  902. if (!p->se.on_rq && !task_running(rq, p)) {
  903. set_task_cpu(p, dest_cpu);
  904. return 0;
  905. }
  906. init_completion(&req->done);
  907. req->task = p;
  908. req->dest_cpu = dest_cpu;
  909. list_add(&req->list, &rq->migration_queue);
  910. return 1;
  911. }
  912. /*
  913. * wait_task_inactive - wait for a thread to unschedule.
  914. *
  915. * The caller must ensure that the task *will* unschedule sometime soon,
  916. * else this function might spin for a *long* time. This function can't
  917. * be called with interrupts off, or it may introduce deadlock with
  918. * smp_call_function() if an IPI is sent by the same process we are
  919. * waiting to become inactive.
  920. */
  921. void wait_task_inactive(struct task_struct *p)
  922. {
  923. unsigned long flags;
  924. int running, on_rq;
  925. struct rq *rq;
  926. repeat:
  927. /*
  928. * We do the initial early heuristics without holding
  929. * any task-queue locks at all. We'll only try to get
  930. * the runqueue lock when things look like they will
  931. * work out!
  932. */
  933. rq = task_rq(p);
  934. /*
  935. * If the task is actively running on another CPU
  936. * still, just relax and busy-wait without holding
  937. * any locks.
  938. *
  939. * NOTE! Since we don't hold any locks, it's not
  940. * even sure that "rq" stays as the right runqueue!
  941. * But we don't care, since "task_running()" will
  942. * return false if the runqueue has changed and p
  943. * is actually now running somewhere else!
  944. */
  945. while (task_running(rq, p))
  946. cpu_relax();
  947. /*
  948. * Ok, time to look more closely! We need the rq
  949. * lock now, to be *sure*. If we're wrong, we'll
  950. * just go back and repeat.
  951. */
  952. rq = task_rq_lock(p, &flags);
  953. running = task_running(rq, p);
  954. on_rq = p->se.on_rq;
  955. task_rq_unlock(rq, &flags);
  956. /*
  957. * Was it really running after all now that we
  958. * checked with the proper locks actually held?
  959. *
  960. * Oops. Go back and try again..
  961. */
  962. if (unlikely(running)) {
  963. cpu_relax();
  964. goto repeat;
  965. }
  966. /*
  967. * It's not enough that it's not actively running,
  968. * it must be off the runqueue _entirely_, and not
  969. * preempted!
  970. *
  971. * So if it wa still runnable (but just not actively
  972. * running right now), it's preempted, and we should
  973. * yield - it could be a while.
  974. */
  975. if (unlikely(on_rq)) {
  976. yield();
  977. goto repeat;
  978. }
  979. /*
  980. * Ahh, all good. It wasn't running, and it wasn't
  981. * runnable, which means that it will never become
  982. * running in the future either. We're all done!
  983. */
  984. }
  985. /***
  986. * kick_process - kick a running thread to enter/exit the kernel
  987. * @p: the to-be-kicked thread
  988. *
  989. * Cause a process which is running on another CPU to enter
  990. * kernel-mode, without any delay. (to get signals handled.)
  991. *
  992. * NOTE: this function doesnt have to take the runqueue lock,
  993. * because all it wants to ensure is that the remote task enters
  994. * the kernel. If the IPI races and the task has been migrated
  995. * to another CPU then no harm is done and the purpose has been
  996. * achieved as well.
  997. */
  998. void kick_process(struct task_struct *p)
  999. {
  1000. int cpu;
  1001. preempt_disable();
  1002. cpu = task_cpu(p);
  1003. if ((cpu != smp_processor_id()) && task_curr(p))
  1004. smp_send_reschedule(cpu);
  1005. preempt_enable();
  1006. }
  1007. /*
  1008. * Return a low guess at the load of a migration-source cpu weighted
  1009. * according to the scheduling class and "nice" value.
  1010. *
  1011. * We want to under-estimate the load of migration sources, to
  1012. * balance conservatively.
  1013. */
  1014. static inline unsigned long source_load(int cpu, int type)
  1015. {
  1016. struct rq *rq = cpu_rq(cpu);
  1017. unsigned long total = weighted_cpuload(cpu);
  1018. if (type == 0)
  1019. return total;
  1020. return min(rq->cpu_load[type-1], total);
  1021. }
  1022. /*
  1023. * Return a high guess at the load of a migration-target cpu weighted
  1024. * according to the scheduling class and "nice" value.
  1025. */
  1026. static inline unsigned long target_load(int cpu, int type)
  1027. {
  1028. struct rq *rq = cpu_rq(cpu);
  1029. unsigned long total = weighted_cpuload(cpu);
  1030. if (type == 0)
  1031. return total;
  1032. return max(rq->cpu_load[type-1], total);
  1033. }
  1034. /*
  1035. * Return the average load per task on the cpu's run queue
  1036. */
  1037. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1038. {
  1039. struct rq *rq = cpu_rq(cpu);
  1040. unsigned long total = weighted_cpuload(cpu);
  1041. unsigned long n = rq->nr_running;
  1042. return n ? total / n : SCHED_LOAD_SCALE;
  1043. }
  1044. /*
  1045. * find_idlest_group finds and returns the least busy CPU group within the
  1046. * domain.
  1047. */
  1048. static struct sched_group *
  1049. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1050. {
  1051. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1052. unsigned long min_load = ULONG_MAX, this_load = 0;
  1053. int load_idx = sd->forkexec_idx;
  1054. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1055. do {
  1056. unsigned long load, avg_load;
  1057. int local_group;
  1058. int i;
  1059. /* Skip over this group if it has no CPUs allowed */
  1060. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1061. goto nextgroup;
  1062. local_group = cpu_isset(this_cpu, group->cpumask);
  1063. /* Tally up the load of all CPUs in the group */
  1064. avg_load = 0;
  1065. for_each_cpu_mask(i, group->cpumask) {
  1066. /* Bias balancing toward cpus of our domain */
  1067. if (local_group)
  1068. load = source_load(i, load_idx);
  1069. else
  1070. load = target_load(i, load_idx);
  1071. avg_load += load;
  1072. }
  1073. /* Adjust by relative CPU power of the group */
  1074. avg_load = sg_div_cpu_power(group,
  1075. avg_load * SCHED_LOAD_SCALE);
  1076. if (local_group) {
  1077. this_load = avg_load;
  1078. this = group;
  1079. } else if (avg_load < min_load) {
  1080. min_load = avg_load;
  1081. idlest = group;
  1082. }
  1083. nextgroup:
  1084. group = group->next;
  1085. } while (group != sd->groups);
  1086. if (!idlest || 100*this_load < imbalance*min_load)
  1087. return NULL;
  1088. return idlest;
  1089. }
  1090. /*
  1091. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1092. */
  1093. static int
  1094. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1095. {
  1096. cpumask_t tmp;
  1097. unsigned long load, min_load = ULONG_MAX;
  1098. int idlest = -1;
  1099. int i;
  1100. /* Traverse only the allowed CPUs */
  1101. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1102. for_each_cpu_mask(i, tmp) {
  1103. load = weighted_cpuload(i);
  1104. if (load < min_load || (load == min_load && i == this_cpu)) {
  1105. min_load = load;
  1106. idlest = i;
  1107. }
  1108. }
  1109. return idlest;
  1110. }
  1111. /*
  1112. * sched_balance_self: balance the current task (running on cpu) in domains
  1113. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1114. * SD_BALANCE_EXEC.
  1115. *
  1116. * Balance, ie. select the least loaded group.
  1117. *
  1118. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1119. *
  1120. * preempt must be disabled.
  1121. */
  1122. static int sched_balance_self(int cpu, int flag)
  1123. {
  1124. struct task_struct *t = current;
  1125. struct sched_domain *tmp, *sd = NULL;
  1126. for_each_domain(cpu, tmp) {
  1127. /*
  1128. * If power savings logic is enabled for a domain, stop there.
  1129. */
  1130. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1131. break;
  1132. if (tmp->flags & flag)
  1133. sd = tmp;
  1134. }
  1135. while (sd) {
  1136. cpumask_t span;
  1137. struct sched_group *group;
  1138. int new_cpu, weight;
  1139. if (!(sd->flags & flag)) {
  1140. sd = sd->child;
  1141. continue;
  1142. }
  1143. span = sd->span;
  1144. group = find_idlest_group(sd, t, cpu);
  1145. if (!group) {
  1146. sd = sd->child;
  1147. continue;
  1148. }
  1149. new_cpu = find_idlest_cpu(group, t, cpu);
  1150. if (new_cpu == -1 || new_cpu == cpu) {
  1151. /* Now try balancing at a lower domain level of cpu */
  1152. sd = sd->child;
  1153. continue;
  1154. }
  1155. /* Now try balancing at a lower domain level of new_cpu */
  1156. cpu = new_cpu;
  1157. sd = NULL;
  1158. weight = cpus_weight(span);
  1159. for_each_domain(cpu, tmp) {
  1160. if (weight <= cpus_weight(tmp->span))
  1161. break;
  1162. if (tmp->flags & flag)
  1163. sd = tmp;
  1164. }
  1165. /* while loop will break here if sd == NULL */
  1166. }
  1167. return cpu;
  1168. }
  1169. #endif /* CONFIG_SMP */
  1170. /*
  1171. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1172. * not idle and an idle cpu is available. The span of cpus to
  1173. * search starts with cpus closest then further out as needed,
  1174. * so we always favor a closer, idle cpu.
  1175. *
  1176. * Returns the CPU we should wake onto.
  1177. */
  1178. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1179. static int wake_idle(int cpu, struct task_struct *p)
  1180. {
  1181. cpumask_t tmp;
  1182. struct sched_domain *sd;
  1183. int i;
  1184. /*
  1185. * If it is idle, then it is the best cpu to run this task.
  1186. *
  1187. * This cpu is also the best, if it has more than one task already.
  1188. * Siblings must be also busy(in most cases) as they didn't already
  1189. * pickup the extra load from this cpu and hence we need not check
  1190. * sibling runqueue info. This will avoid the checks and cache miss
  1191. * penalities associated with that.
  1192. */
  1193. if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
  1194. return cpu;
  1195. for_each_domain(cpu, sd) {
  1196. if (sd->flags & SD_WAKE_IDLE) {
  1197. cpus_and(tmp, sd->span, p->cpus_allowed);
  1198. for_each_cpu_mask(i, tmp) {
  1199. if (idle_cpu(i))
  1200. return i;
  1201. }
  1202. } else {
  1203. break;
  1204. }
  1205. }
  1206. return cpu;
  1207. }
  1208. #else
  1209. static inline int wake_idle(int cpu, struct task_struct *p)
  1210. {
  1211. return cpu;
  1212. }
  1213. #endif
  1214. /***
  1215. * try_to_wake_up - wake up a thread
  1216. * @p: the to-be-woken-up thread
  1217. * @state: the mask of task states that can be woken
  1218. * @sync: do a synchronous wakeup?
  1219. *
  1220. * Put it on the run-queue if it's not already there. The "current"
  1221. * thread is always on the run-queue (except when the actual
  1222. * re-schedule is in progress), and as such you're allowed to do
  1223. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1224. * runnable without the overhead of this.
  1225. *
  1226. * returns failure only if the task is already active.
  1227. */
  1228. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1229. {
  1230. int cpu, this_cpu, success = 0;
  1231. unsigned long flags;
  1232. long old_state;
  1233. struct rq *rq;
  1234. #ifdef CONFIG_SMP
  1235. struct sched_domain *sd, *this_sd = NULL;
  1236. unsigned long load, this_load;
  1237. int new_cpu;
  1238. #endif
  1239. rq = task_rq_lock(p, &flags);
  1240. old_state = p->state;
  1241. if (!(old_state & state))
  1242. goto out;
  1243. if (p->se.on_rq)
  1244. goto out_running;
  1245. cpu = task_cpu(p);
  1246. this_cpu = smp_processor_id();
  1247. #ifdef CONFIG_SMP
  1248. if (unlikely(task_running(rq, p)))
  1249. goto out_activate;
  1250. new_cpu = cpu;
  1251. schedstat_inc(rq, ttwu_cnt);
  1252. if (cpu == this_cpu) {
  1253. schedstat_inc(rq, ttwu_local);
  1254. goto out_set_cpu;
  1255. }
  1256. for_each_domain(this_cpu, sd) {
  1257. if (cpu_isset(cpu, sd->span)) {
  1258. schedstat_inc(sd, ttwu_wake_remote);
  1259. this_sd = sd;
  1260. break;
  1261. }
  1262. }
  1263. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1264. goto out_set_cpu;
  1265. /*
  1266. * Check for affine wakeup and passive balancing possibilities.
  1267. */
  1268. if (this_sd) {
  1269. int idx = this_sd->wake_idx;
  1270. unsigned int imbalance;
  1271. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1272. load = source_load(cpu, idx);
  1273. this_load = target_load(this_cpu, idx);
  1274. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1275. if (this_sd->flags & SD_WAKE_AFFINE) {
  1276. unsigned long tl = this_load;
  1277. unsigned long tl_per_task;
  1278. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1279. /*
  1280. * If sync wakeup then subtract the (maximum possible)
  1281. * effect of the currently running task from the load
  1282. * of the current CPU:
  1283. */
  1284. if (sync)
  1285. tl -= current->se.load.weight;
  1286. if ((tl <= load &&
  1287. tl + target_load(cpu, idx) <= tl_per_task) ||
  1288. 100*(tl + p->se.load.weight) <= imbalance*load) {
  1289. /*
  1290. * This domain has SD_WAKE_AFFINE and
  1291. * p is cache cold in this domain, and
  1292. * there is no bad imbalance.
  1293. */
  1294. schedstat_inc(this_sd, ttwu_move_affine);
  1295. goto out_set_cpu;
  1296. }
  1297. }
  1298. /*
  1299. * Start passive balancing when half the imbalance_pct
  1300. * limit is reached.
  1301. */
  1302. if (this_sd->flags & SD_WAKE_BALANCE) {
  1303. if (imbalance*this_load <= 100*load) {
  1304. schedstat_inc(this_sd, ttwu_move_balance);
  1305. goto out_set_cpu;
  1306. }
  1307. }
  1308. }
  1309. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1310. out_set_cpu:
  1311. new_cpu = wake_idle(new_cpu, p);
  1312. if (new_cpu != cpu) {
  1313. set_task_cpu(p, new_cpu);
  1314. task_rq_unlock(rq, &flags);
  1315. /* might preempt at this point */
  1316. rq = task_rq_lock(p, &flags);
  1317. old_state = p->state;
  1318. if (!(old_state & state))
  1319. goto out;
  1320. if (p->se.on_rq)
  1321. goto out_running;
  1322. this_cpu = smp_processor_id();
  1323. cpu = task_cpu(p);
  1324. }
  1325. out_activate:
  1326. #endif /* CONFIG_SMP */
  1327. update_rq_clock(rq);
  1328. activate_task(rq, p, 1);
  1329. /*
  1330. * Sync wakeups (i.e. those types of wakeups where the waker
  1331. * has indicated that it will leave the CPU in short order)
  1332. * don't trigger a preemption, if the woken up task will run on
  1333. * this cpu. (in this case the 'I will reschedule' promise of
  1334. * the waker guarantees that the freshly woken up task is going
  1335. * to be considered on this CPU.)
  1336. */
  1337. if (!sync || cpu != this_cpu)
  1338. check_preempt_curr(rq, p);
  1339. success = 1;
  1340. out_running:
  1341. p->state = TASK_RUNNING;
  1342. out:
  1343. task_rq_unlock(rq, &flags);
  1344. return success;
  1345. }
  1346. int fastcall wake_up_process(struct task_struct *p)
  1347. {
  1348. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1349. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1350. }
  1351. EXPORT_SYMBOL(wake_up_process);
  1352. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1353. {
  1354. return try_to_wake_up(p, state, 0);
  1355. }
  1356. /*
  1357. * Perform scheduler related setup for a newly forked process p.
  1358. * p is forked by current.
  1359. *
  1360. * __sched_fork() is basic setup used by init_idle() too:
  1361. */
  1362. static void __sched_fork(struct task_struct *p)
  1363. {
  1364. p->se.wait_start_fair = 0;
  1365. p->se.exec_start = 0;
  1366. p->se.sum_exec_runtime = 0;
  1367. p->se.prev_sum_exec_runtime = 0;
  1368. p->se.wait_runtime = 0;
  1369. #ifdef CONFIG_SCHEDSTATS
  1370. p->se.wait_start = 0;
  1371. p->se.sum_wait_runtime = 0;
  1372. p->se.sum_sleep_runtime = 0;
  1373. p->se.sleep_start = 0;
  1374. p->se.block_start = 0;
  1375. p->se.sleep_max = 0;
  1376. p->se.block_max = 0;
  1377. p->se.exec_max = 0;
  1378. p->se.slice_max = 0;
  1379. p->se.wait_max = 0;
  1380. p->se.wait_runtime_overruns = 0;
  1381. p->se.wait_runtime_underruns = 0;
  1382. #endif
  1383. INIT_LIST_HEAD(&p->run_list);
  1384. p->se.on_rq = 0;
  1385. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1386. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1387. #endif
  1388. /*
  1389. * We mark the process as running here, but have not actually
  1390. * inserted it onto the runqueue yet. This guarantees that
  1391. * nobody will actually run it, and a signal or other external
  1392. * event cannot wake it up and insert it on the runqueue either.
  1393. */
  1394. p->state = TASK_RUNNING;
  1395. }
  1396. /*
  1397. * fork()/clone()-time setup:
  1398. */
  1399. void sched_fork(struct task_struct *p, int clone_flags)
  1400. {
  1401. int cpu = get_cpu();
  1402. __sched_fork(p);
  1403. #ifdef CONFIG_SMP
  1404. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1405. #endif
  1406. __set_task_cpu(p, cpu);
  1407. /*
  1408. * Make sure we do not leak PI boosting priority to the child:
  1409. */
  1410. p->prio = current->normal_prio;
  1411. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1412. if (likely(sched_info_on()))
  1413. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1414. #endif
  1415. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1416. p->oncpu = 0;
  1417. #endif
  1418. #ifdef CONFIG_PREEMPT
  1419. /* Want to start with kernel preemption disabled. */
  1420. task_thread_info(p)->preempt_count = 1;
  1421. #endif
  1422. put_cpu();
  1423. }
  1424. /*
  1425. * wake_up_new_task - wake up a newly created task for the first time.
  1426. *
  1427. * This function will do some initial scheduler statistics housekeeping
  1428. * that must be done for every newly created context, then puts the task
  1429. * on the runqueue and wakes it.
  1430. */
  1431. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1432. {
  1433. unsigned long flags;
  1434. struct rq *rq;
  1435. int this_cpu;
  1436. rq = task_rq_lock(p, &flags);
  1437. BUG_ON(p->state != TASK_RUNNING);
  1438. this_cpu = smp_processor_id(); /* parent's CPU */
  1439. update_rq_clock(rq);
  1440. p->prio = effective_prio(p);
  1441. if (rt_prio(p->prio))
  1442. p->sched_class = &rt_sched_class;
  1443. else
  1444. p->sched_class = &fair_sched_class;
  1445. if (task_cpu(p) != this_cpu || !p->sched_class->task_new ||
  1446. !current->se.on_rq) {
  1447. activate_task(rq, p, 0);
  1448. } else {
  1449. /*
  1450. * Let the scheduling class do new task startup
  1451. * management (if any):
  1452. */
  1453. p->sched_class->task_new(rq, p);
  1454. inc_nr_running(p, rq);
  1455. }
  1456. check_preempt_curr(rq, p);
  1457. task_rq_unlock(rq, &flags);
  1458. }
  1459. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1460. /**
  1461. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1462. * @notifier: notifier struct to register
  1463. */
  1464. void preempt_notifier_register(struct preempt_notifier *notifier)
  1465. {
  1466. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1467. }
  1468. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1469. /**
  1470. * preempt_notifier_unregister - no longer interested in preemption notifications
  1471. * @notifier: notifier struct to unregister
  1472. *
  1473. * This is safe to call from within a preemption notifier.
  1474. */
  1475. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1476. {
  1477. hlist_del(&notifier->link);
  1478. }
  1479. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1480. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1481. {
  1482. struct preempt_notifier *notifier;
  1483. struct hlist_node *node;
  1484. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1485. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1486. }
  1487. static void
  1488. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1489. struct task_struct *next)
  1490. {
  1491. struct preempt_notifier *notifier;
  1492. struct hlist_node *node;
  1493. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1494. notifier->ops->sched_out(notifier, next);
  1495. }
  1496. #else
  1497. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1498. {
  1499. }
  1500. static void
  1501. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1502. struct task_struct *next)
  1503. {
  1504. }
  1505. #endif
  1506. /**
  1507. * prepare_task_switch - prepare to switch tasks
  1508. * @rq: the runqueue preparing to switch
  1509. * @prev: the current task that is being switched out
  1510. * @next: the task we are going to switch to.
  1511. *
  1512. * This is called with the rq lock held and interrupts off. It must
  1513. * be paired with a subsequent finish_task_switch after the context
  1514. * switch.
  1515. *
  1516. * prepare_task_switch sets up locking and calls architecture specific
  1517. * hooks.
  1518. */
  1519. static inline void
  1520. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1521. struct task_struct *next)
  1522. {
  1523. fire_sched_out_preempt_notifiers(prev, next);
  1524. prepare_lock_switch(rq, next);
  1525. prepare_arch_switch(next);
  1526. }
  1527. /**
  1528. * finish_task_switch - clean up after a task-switch
  1529. * @rq: runqueue associated with task-switch
  1530. * @prev: the thread we just switched away from.
  1531. *
  1532. * finish_task_switch must be called after the context switch, paired
  1533. * with a prepare_task_switch call before the context switch.
  1534. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1535. * and do any other architecture-specific cleanup actions.
  1536. *
  1537. * Note that we may have delayed dropping an mm in context_switch(). If
  1538. * so, we finish that here outside of the runqueue lock. (Doing it
  1539. * with the lock held can cause deadlocks; see schedule() for
  1540. * details.)
  1541. */
  1542. static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1543. __releases(rq->lock)
  1544. {
  1545. struct mm_struct *mm = rq->prev_mm;
  1546. long prev_state;
  1547. rq->prev_mm = NULL;
  1548. /*
  1549. * A task struct has one reference for the use as "current".
  1550. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1551. * schedule one last time. The schedule call will never return, and
  1552. * the scheduled task must drop that reference.
  1553. * The test for TASK_DEAD must occur while the runqueue locks are
  1554. * still held, otherwise prev could be scheduled on another cpu, die
  1555. * there before we look at prev->state, and then the reference would
  1556. * be dropped twice.
  1557. * Manfred Spraul <manfred@colorfullife.com>
  1558. */
  1559. prev_state = prev->state;
  1560. finish_arch_switch(prev);
  1561. finish_lock_switch(rq, prev);
  1562. fire_sched_in_preempt_notifiers(current);
  1563. if (mm)
  1564. mmdrop(mm);
  1565. if (unlikely(prev_state == TASK_DEAD)) {
  1566. /*
  1567. * Remove function-return probe instances associated with this
  1568. * task and put them back on the free list.
  1569. */
  1570. kprobe_flush_task(prev);
  1571. put_task_struct(prev);
  1572. }
  1573. }
  1574. /**
  1575. * schedule_tail - first thing a freshly forked thread must call.
  1576. * @prev: the thread we just switched away from.
  1577. */
  1578. asmlinkage void schedule_tail(struct task_struct *prev)
  1579. __releases(rq->lock)
  1580. {
  1581. struct rq *rq = this_rq();
  1582. finish_task_switch(rq, prev);
  1583. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1584. /* In this case, finish_task_switch does not reenable preemption */
  1585. preempt_enable();
  1586. #endif
  1587. if (current->set_child_tid)
  1588. put_user(current->pid, current->set_child_tid);
  1589. }
  1590. /*
  1591. * context_switch - switch to the new MM and the new
  1592. * thread's register state.
  1593. */
  1594. static inline void
  1595. context_switch(struct rq *rq, struct task_struct *prev,
  1596. struct task_struct *next)
  1597. {
  1598. struct mm_struct *mm, *oldmm;
  1599. prepare_task_switch(rq, prev, next);
  1600. mm = next->mm;
  1601. oldmm = prev->active_mm;
  1602. /*
  1603. * For paravirt, this is coupled with an exit in switch_to to
  1604. * combine the page table reload and the switch backend into
  1605. * one hypercall.
  1606. */
  1607. arch_enter_lazy_cpu_mode();
  1608. if (unlikely(!mm)) {
  1609. next->active_mm = oldmm;
  1610. atomic_inc(&oldmm->mm_count);
  1611. enter_lazy_tlb(oldmm, next);
  1612. } else
  1613. switch_mm(oldmm, mm, next);
  1614. if (unlikely(!prev->mm)) {
  1615. prev->active_mm = NULL;
  1616. rq->prev_mm = oldmm;
  1617. }
  1618. /*
  1619. * Since the runqueue lock will be released by the next
  1620. * task (which is an invalid locking op but in the case
  1621. * of the scheduler it's an obvious special-case), so we
  1622. * do an early lockdep release here:
  1623. */
  1624. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1625. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1626. #endif
  1627. /* Here we just switch the register state and the stack. */
  1628. switch_to(prev, next, prev);
  1629. barrier();
  1630. /*
  1631. * this_rq must be evaluated again because prev may have moved
  1632. * CPUs since it called schedule(), thus the 'rq' on its stack
  1633. * frame will be invalid.
  1634. */
  1635. finish_task_switch(this_rq(), prev);
  1636. }
  1637. /*
  1638. * nr_running, nr_uninterruptible and nr_context_switches:
  1639. *
  1640. * externally visible scheduler statistics: current number of runnable
  1641. * threads, current number of uninterruptible-sleeping threads, total
  1642. * number of context switches performed since bootup.
  1643. */
  1644. unsigned long nr_running(void)
  1645. {
  1646. unsigned long i, sum = 0;
  1647. for_each_online_cpu(i)
  1648. sum += cpu_rq(i)->nr_running;
  1649. return sum;
  1650. }
  1651. unsigned long nr_uninterruptible(void)
  1652. {
  1653. unsigned long i, sum = 0;
  1654. for_each_possible_cpu(i)
  1655. sum += cpu_rq(i)->nr_uninterruptible;
  1656. /*
  1657. * Since we read the counters lockless, it might be slightly
  1658. * inaccurate. Do not allow it to go below zero though:
  1659. */
  1660. if (unlikely((long)sum < 0))
  1661. sum = 0;
  1662. return sum;
  1663. }
  1664. unsigned long long nr_context_switches(void)
  1665. {
  1666. int i;
  1667. unsigned long long sum = 0;
  1668. for_each_possible_cpu(i)
  1669. sum += cpu_rq(i)->nr_switches;
  1670. return sum;
  1671. }
  1672. unsigned long nr_iowait(void)
  1673. {
  1674. unsigned long i, sum = 0;
  1675. for_each_possible_cpu(i)
  1676. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1677. return sum;
  1678. }
  1679. unsigned long nr_active(void)
  1680. {
  1681. unsigned long i, running = 0, uninterruptible = 0;
  1682. for_each_online_cpu(i) {
  1683. running += cpu_rq(i)->nr_running;
  1684. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1685. }
  1686. if (unlikely((long)uninterruptible < 0))
  1687. uninterruptible = 0;
  1688. return running + uninterruptible;
  1689. }
  1690. /*
  1691. * Update rq->cpu_load[] statistics. This function is usually called every
  1692. * scheduler tick (TICK_NSEC).
  1693. */
  1694. static void update_cpu_load(struct rq *this_rq)
  1695. {
  1696. unsigned long this_load = this_rq->load.weight;
  1697. int i, scale;
  1698. this_rq->nr_load_updates++;
  1699. /* Update our load: */
  1700. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1701. unsigned long old_load, new_load;
  1702. /* scale is effectively 1 << i now, and >> i divides by scale */
  1703. old_load = this_rq->cpu_load[i];
  1704. new_load = this_load;
  1705. /*
  1706. * Round up the averaging division if load is increasing. This
  1707. * prevents us from getting stuck on 9 if the load is 10, for
  1708. * example.
  1709. */
  1710. if (new_load > old_load)
  1711. new_load += scale-1;
  1712. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1713. }
  1714. }
  1715. #ifdef CONFIG_SMP
  1716. /*
  1717. * double_rq_lock - safely lock two runqueues
  1718. *
  1719. * Note this does not disable interrupts like task_rq_lock,
  1720. * you need to do so manually before calling.
  1721. */
  1722. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1723. __acquires(rq1->lock)
  1724. __acquires(rq2->lock)
  1725. {
  1726. BUG_ON(!irqs_disabled());
  1727. if (rq1 == rq2) {
  1728. spin_lock(&rq1->lock);
  1729. __acquire(rq2->lock); /* Fake it out ;) */
  1730. } else {
  1731. if (rq1 < rq2) {
  1732. spin_lock(&rq1->lock);
  1733. spin_lock(&rq2->lock);
  1734. } else {
  1735. spin_lock(&rq2->lock);
  1736. spin_lock(&rq1->lock);
  1737. }
  1738. }
  1739. update_rq_clock(rq1);
  1740. update_rq_clock(rq2);
  1741. }
  1742. /*
  1743. * double_rq_unlock - safely unlock two runqueues
  1744. *
  1745. * Note this does not restore interrupts like task_rq_unlock,
  1746. * you need to do so manually after calling.
  1747. */
  1748. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1749. __releases(rq1->lock)
  1750. __releases(rq2->lock)
  1751. {
  1752. spin_unlock(&rq1->lock);
  1753. if (rq1 != rq2)
  1754. spin_unlock(&rq2->lock);
  1755. else
  1756. __release(rq2->lock);
  1757. }
  1758. /*
  1759. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1760. */
  1761. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1762. __releases(this_rq->lock)
  1763. __acquires(busiest->lock)
  1764. __acquires(this_rq->lock)
  1765. {
  1766. if (unlikely(!irqs_disabled())) {
  1767. /* printk() doesn't work good under rq->lock */
  1768. spin_unlock(&this_rq->lock);
  1769. BUG_ON(1);
  1770. }
  1771. if (unlikely(!spin_trylock(&busiest->lock))) {
  1772. if (busiest < this_rq) {
  1773. spin_unlock(&this_rq->lock);
  1774. spin_lock(&busiest->lock);
  1775. spin_lock(&this_rq->lock);
  1776. } else
  1777. spin_lock(&busiest->lock);
  1778. }
  1779. }
  1780. /*
  1781. * If dest_cpu is allowed for this process, migrate the task to it.
  1782. * This is accomplished by forcing the cpu_allowed mask to only
  1783. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1784. * the cpu_allowed mask is restored.
  1785. */
  1786. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1787. {
  1788. struct migration_req req;
  1789. unsigned long flags;
  1790. struct rq *rq;
  1791. rq = task_rq_lock(p, &flags);
  1792. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1793. || unlikely(cpu_is_offline(dest_cpu)))
  1794. goto out;
  1795. /* force the process onto the specified CPU */
  1796. if (migrate_task(p, dest_cpu, &req)) {
  1797. /* Need to wait for migration thread (might exit: take ref). */
  1798. struct task_struct *mt = rq->migration_thread;
  1799. get_task_struct(mt);
  1800. task_rq_unlock(rq, &flags);
  1801. wake_up_process(mt);
  1802. put_task_struct(mt);
  1803. wait_for_completion(&req.done);
  1804. return;
  1805. }
  1806. out:
  1807. task_rq_unlock(rq, &flags);
  1808. }
  1809. /*
  1810. * sched_exec - execve() is a valuable balancing opportunity, because at
  1811. * this point the task has the smallest effective memory and cache footprint.
  1812. */
  1813. void sched_exec(void)
  1814. {
  1815. int new_cpu, this_cpu = get_cpu();
  1816. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1817. put_cpu();
  1818. if (new_cpu != this_cpu)
  1819. sched_migrate_task(current, new_cpu);
  1820. }
  1821. /*
  1822. * pull_task - move a task from a remote runqueue to the local runqueue.
  1823. * Both runqueues must be locked.
  1824. */
  1825. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1826. struct rq *this_rq, int this_cpu)
  1827. {
  1828. deactivate_task(src_rq, p, 0);
  1829. set_task_cpu(p, this_cpu);
  1830. activate_task(this_rq, p, 0);
  1831. /*
  1832. * Note that idle threads have a prio of MAX_PRIO, for this test
  1833. * to be always true for them.
  1834. */
  1835. check_preempt_curr(this_rq, p);
  1836. }
  1837. /*
  1838. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1839. */
  1840. static
  1841. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1842. struct sched_domain *sd, enum cpu_idle_type idle,
  1843. int *all_pinned)
  1844. {
  1845. /*
  1846. * We do not migrate tasks that are:
  1847. * 1) running (obviously), or
  1848. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1849. * 3) are cache-hot on their current CPU.
  1850. */
  1851. if (!cpu_isset(this_cpu, p->cpus_allowed))
  1852. return 0;
  1853. *all_pinned = 0;
  1854. if (task_running(rq, p))
  1855. return 0;
  1856. return 1;
  1857. }
  1858. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1859. unsigned long max_nr_move, unsigned long max_load_move,
  1860. struct sched_domain *sd, enum cpu_idle_type idle,
  1861. int *all_pinned, unsigned long *load_moved,
  1862. int *this_best_prio, struct rq_iterator *iterator)
  1863. {
  1864. int pulled = 0, pinned = 0, skip_for_load;
  1865. struct task_struct *p;
  1866. long rem_load_move = max_load_move;
  1867. if (max_nr_move == 0 || max_load_move == 0)
  1868. goto out;
  1869. pinned = 1;
  1870. /*
  1871. * Start the load-balancing iterator:
  1872. */
  1873. p = iterator->start(iterator->arg);
  1874. next:
  1875. if (!p)
  1876. goto out;
  1877. /*
  1878. * To help distribute high priority tasks accross CPUs we don't
  1879. * skip a task if it will be the highest priority task (i.e. smallest
  1880. * prio value) on its new queue regardless of its load weight
  1881. */
  1882. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  1883. SCHED_LOAD_SCALE_FUZZ;
  1884. if ((skip_for_load && p->prio >= *this_best_prio) ||
  1885. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  1886. p = iterator->next(iterator->arg);
  1887. goto next;
  1888. }
  1889. pull_task(busiest, p, this_rq, this_cpu);
  1890. pulled++;
  1891. rem_load_move -= p->se.load.weight;
  1892. /*
  1893. * We only want to steal up to the prescribed number of tasks
  1894. * and the prescribed amount of weighted load.
  1895. */
  1896. if (pulled < max_nr_move && rem_load_move > 0) {
  1897. if (p->prio < *this_best_prio)
  1898. *this_best_prio = p->prio;
  1899. p = iterator->next(iterator->arg);
  1900. goto next;
  1901. }
  1902. out:
  1903. /*
  1904. * Right now, this is the only place pull_task() is called,
  1905. * so we can safely collect pull_task() stats here rather than
  1906. * inside pull_task().
  1907. */
  1908. schedstat_add(sd, lb_gained[idle], pulled);
  1909. if (all_pinned)
  1910. *all_pinned = pinned;
  1911. *load_moved = max_load_move - rem_load_move;
  1912. return pulled;
  1913. }
  1914. /*
  1915. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1916. * this_rq, as part of a balancing operation within domain "sd".
  1917. * Returns 1 if successful and 0 otherwise.
  1918. *
  1919. * Called with both runqueues locked.
  1920. */
  1921. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1922. unsigned long max_load_move,
  1923. struct sched_domain *sd, enum cpu_idle_type idle,
  1924. int *all_pinned)
  1925. {
  1926. struct sched_class *class = sched_class_highest;
  1927. unsigned long total_load_moved = 0;
  1928. int this_best_prio = this_rq->curr->prio;
  1929. do {
  1930. total_load_moved +=
  1931. class->load_balance(this_rq, this_cpu, busiest,
  1932. ULONG_MAX, max_load_move - total_load_moved,
  1933. sd, idle, all_pinned, &this_best_prio);
  1934. class = class->next;
  1935. } while (class && max_load_move > total_load_moved);
  1936. return total_load_moved > 0;
  1937. }
  1938. /*
  1939. * move_one_task tries to move exactly one task from busiest to this_rq, as
  1940. * part of active balancing operations within "domain".
  1941. * Returns 1 if successful and 0 otherwise.
  1942. *
  1943. * Called with both runqueues locked.
  1944. */
  1945. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1946. struct sched_domain *sd, enum cpu_idle_type idle)
  1947. {
  1948. struct sched_class *class;
  1949. int this_best_prio = MAX_PRIO;
  1950. for (class = sched_class_highest; class; class = class->next)
  1951. if (class->load_balance(this_rq, this_cpu, busiest,
  1952. 1, ULONG_MAX, sd, idle, NULL,
  1953. &this_best_prio))
  1954. return 1;
  1955. return 0;
  1956. }
  1957. /*
  1958. * find_busiest_group finds and returns the busiest CPU group within the
  1959. * domain. It calculates and returns the amount of weighted load which
  1960. * should be moved to restore balance via the imbalance parameter.
  1961. */
  1962. static struct sched_group *
  1963. find_busiest_group(struct sched_domain *sd, int this_cpu,
  1964. unsigned long *imbalance, enum cpu_idle_type idle,
  1965. int *sd_idle, cpumask_t *cpus, int *balance)
  1966. {
  1967. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  1968. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  1969. unsigned long max_pull;
  1970. unsigned long busiest_load_per_task, busiest_nr_running;
  1971. unsigned long this_load_per_task, this_nr_running;
  1972. int load_idx;
  1973. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1974. int power_savings_balance = 1;
  1975. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  1976. unsigned long min_nr_running = ULONG_MAX;
  1977. struct sched_group *group_min = NULL, *group_leader = NULL;
  1978. #endif
  1979. max_load = this_load = total_load = total_pwr = 0;
  1980. busiest_load_per_task = busiest_nr_running = 0;
  1981. this_load_per_task = this_nr_running = 0;
  1982. if (idle == CPU_NOT_IDLE)
  1983. load_idx = sd->busy_idx;
  1984. else if (idle == CPU_NEWLY_IDLE)
  1985. load_idx = sd->newidle_idx;
  1986. else
  1987. load_idx = sd->idle_idx;
  1988. do {
  1989. unsigned long load, group_capacity;
  1990. int local_group;
  1991. int i;
  1992. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  1993. unsigned long sum_nr_running, sum_weighted_load;
  1994. local_group = cpu_isset(this_cpu, group->cpumask);
  1995. if (local_group)
  1996. balance_cpu = first_cpu(group->cpumask);
  1997. /* Tally up the load of all CPUs in the group */
  1998. sum_weighted_load = sum_nr_running = avg_load = 0;
  1999. for_each_cpu_mask(i, group->cpumask) {
  2000. struct rq *rq;
  2001. if (!cpu_isset(i, *cpus))
  2002. continue;
  2003. rq = cpu_rq(i);
  2004. if (*sd_idle && rq->nr_running)
  2005. *sd_idle = 0;
  2006. /* Bias balancing toward cpus of our domain */
  2007. if (local_group) {
  2008. if (idle_cpu(i) && !first_idle_cpu) {
  2009. first_idle_cpu = 1;
  2010. balance_cpu = i;
  2011. }
  2012. load = target_load(i, load_idx);
  2013. } else
  2014. load = source_load(i, load_idx);
  2015. avg_load += load;
  2016. sum_nr_running += rq->nr_running;
  2017. sum_weighted_load += weighted_cpuload(i);
  2018. }
  2019. /*
  2020. * First idle cpu or the first cpu(busiest) in this sched group
  2021. * is eligible for doing load balancing at this and above
  2022. * domains. In the newly idle case, we will allow all the cpu's
  2023. * to do the newly idle load balance.
  2024. */
  2025. if (idle != CPU_NEWLY_IDLE && local_group &&
  2026. balance_cpu != this_cpu && balance) {
  2027. *balance = 0;
  2028. goto ret;
  2029. }
  2030. total_load += avg_load;
  2031. total_pwr += group->__cpu_power;
  2032. /* Adjust by relative CPU power of the group */
  2033. avg_load = sg_div_cpu_power(group,
  2034. avg_load * SCHED_LOAD_SCALE);
  2035. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2036. if (local_group) {
  2037. this_load = avg_load;
  2038. this = group;
  2039. this_nr_running = sum_nr_running;
  2040. this_load_per_task = sum_weighted_load;
  2041. } else if (avg_load > max_load &&
  2042. sum_nr_running > group_capacity) {
  2043. max_load = avg_load;
  2044. busiest = group;
  2045. busiest_nr_running = sum_nr_running;
  2046. busiest_load_per_task = sum_weighted_load;
  2047. }
  2048. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2049. /*
  2050. * Busy processors will not participate in power savings
  2051. * balance.
  2052. */
  2053. if (idle == CPU_NOT_IDLE ||
  2054. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2055. goto group_next;
  2056. /*
  2057. * If the local group is idle or completely loaded
  2058. * no need to do power savings balance at this domain
  2059. */
  2060. if (local_group && (this_nr_running >= group_capacity ||
  2061. !this_nr_running))
  2062. power_savings_balance = 0;
  2063. /*
  2064. * If a group is already running at full capacity or idle,
  2065. * don't include that group in power savings calculations
  2066. */
  2067. if (!power_savings_balance || sum_nr_running >= group_capacity
  2068. || !sum_nr_running)
  2069. goto group_next;
  2070. /*
  2071. * Calculate the group which has the least non-idle load.
  2072. * This is the group from where we need to pick up the load
  2073. * for saving power
  2074. */
  2075. if ((sum_nr_running < min_nr_running) ||
  2076. (sum_nr_running == min_nr_running &&
  2077. first_cpu(group->cpumask) <
  2078. first_cpu(group_min->cpumask))) {
  2079. group_min = group;
  2080. min_nr_running = sum_nr_running;
  2081. min_load_per_task = sum_weighted_load /
  2082. sum_nr_running;
  2083. }
  2084. /*
  2085. * Calculate the group which is almost near its
  2086. * capacity but still has some space to pick up some load
  2087. * from other group and save more power
  2088. */
  2089. if (sum_nr_running <= group_capacity - 1) {
  2090. if (sum_nr_running > leader_nr_running ||
  2091. (sum_nr_running == leader_nr_running &&
  2092. first_cpu(group->cpumask) >
  2093. first_cpu(group_leader->cpumask))) {
  2094. group_leader = group;
  2095. leader_nr_running = sum_nr_running;
  2096. }
  2097. }
  2098. group_next:
  2099. #endif
  2100. group = group->next;
  2101. } while (group != sd->groups);
  2102. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2103. goto out_balanced;
  2104. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2105. if (this_load >= avg_load ||
  2106. 100*max_load <= sd->imbalance_pct*this_load)
  2107. goto out_balanced;
  2108. busiest_load_per_task /= busiest_nr_running;
  2109. /*
  2110. * We're trying to get all the cpus to the average_load, so we don't
  2111. * want to push ourselves above the average load, nor do we wish to
  2112. * reduce the max loaded cpu below the average load, as either of these
  2113. * actions would just result in more rebalancing later, and ping-pong
  2114. * tasks around. Thus we look for the minimum possible imbalance.
  2115. * Negative imbalances (*we* are more loaded than anyone else) will
  2116. * be counted as no imbalance for these purposes -- we can't fix that
  2117. * by pulling tasks to us. Be careful of negative numbers as they'll
  2118. * appear as very large values with unsigned longs.
  2119. */
  2120. if (max_load <= busiest_load_per_task)
  2121. goto out_balanced;
  2122. /*
  2123. * In the presence of smp nice balancing, certain scenarios can have
  2124. * max load less than avg load(as we skip the groups at or below
  2125. * its cpu_power, while calculating max_load..)
  2126. */
  2127. if (max_load < avg_load) {
  2128. *imbalance = 0;
  2129. goto small_imbalance;
  2130. }
  2131. /* Don't want to pull so many tasks that a group would go idle */
  2132. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2133. /* How much load to actually move to equalise the imbalance */
  2134. *imbalance = min(max_pull * busiest->__cpu_power,
  2135. (avg_load - this_load) * this->__cpu_power)
  2136. / SCHED_LOAD_SCALE;
  2137. /*
  2138. * if *imbalance is less than the average load per runnable task
  2139. * there is no gaurantee that any tasks will be moved so we'll have
  2140. * a think about bumping its value to force at least one task to be
  2141. * moved
  2142. */
  2143. if (*imbalance < busiest_load_per_task) {
  2144. unsigned long tmp, pwr_now, pwr_move;
  2145. unsigned int imbn;
  2146. small_imbalance:
  2147. pwr_move = pwr_now = 0;
  2148. imbn = 2;
  2149. if (this_nr_running) {
  2150. this_load_per_task /= this_nr_running;
  2151. if (busiest_load_per_task > this_load_per_task)
  2152. imbn = 1;
  2153. } else
  2154. this_load_per_task = SCHED_LOAD_SCALE;
  2155. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2156. busiest_load_per_task * imbn) {
  2157. *imbalance = busiest_load_per_task;
  2158. return busiest;
  2159. }
  2160. /*
  2161. * OK, we don't have enough imbalance to justify moving tasks,
  2162. * however we may be able to increase total CPU power used by
  2163. * moving them.
  2164. */
  2165. pwr_now += busiest->__cpu_power *
  2166. min(busiest_load_per_task, max_load);
  2167. pwr_now += this->__cpu_power *
  2168. min(this_load_per_task, this_load);
  2169. pwr_now /= SCHED_LOAD_SCALE;
  2170. /* Amount of load we'd subtract */
  2171. tmp = sg_div_cpu_power(busiest,
  2172. busiest_load_per_task * SCHED_LOAD_SCALE);
  2173. if (max_load > tmp)
  2174. pwr_move += busiest->__cpu_power *
  2175. min(busiest_load_per_task, max_load - tmp);
  2176. /* Amount of load we'd add */
  2177. if (max_load * busiest->__cpu_power <
  2178. busiest_load_per_task * SCHED_LOAD_SCALE)
  2179. tmp = sg_div_cpu_power(this,
  2180. max_load * busiest->__cpu_power);
  2181. else
  2182. tmp = sg_div_cpu_power(this,
  2183. busiest_load_per_task * SCHED_LOAD_SCALE);
  2184. pwr_move += this->__cpu_power *
  2185. min(this_load_per_task, this_load + tmp);
  2186. pwr_move /= SCHED_LOAD_SCALE;
  2187. /* Move if we gain throughput */
  2188. if (pwr_move > pwr_now)
  2189. *imbalance = busiest_load_per_task;
  2190. }
  2191. return busiest;
  2192. out_balanced:
  2193. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2194. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2195. goto ret;
  2196. if (this == group_leader && group_leader != group_min) {
  2197. *imbalance = min_load_per_task;
  2198. return group_min;
  2199. }
  2200. #endif
  2201. ret:
  2202. *imbalance = 0;
  2203. return NULL;
  2204. }
  2205. /*
  2206. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2207. */
  2208. static struct rq *
  2209. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2210. unsigned long imbalance, cpumask_t *cpus)
  2211. {
  2212. struct rq *busiest = NULL, *rq;
  2213. unsigned long max_load = 0;
  2214. int i;
  2215. for_each_cpu_mask(i, group->cpumask) {
  2216. unsigned long wl;
  2217. if (!cpu_isset(i, *cpus))
  2218. continue;
  2219. rq = cpu_rq(i);
  2220. wl = weighted_cpuload(i);
  2221. if (rq->nr_running == 1 && wl > imbalance)
  2222. continue;
  2223. if (wl > max_load) {
  2224. max_load = wl;
  2225. busiest = rq;
  2226. }
  2227. }
  2228. return busiest;
  2229. }
  2230. /*
  2231. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2232. * so long as it is large enough.
  2233. */
  2234. #define MAX_PINNED_INTERVAL 512
  2235. /*
  2236. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2237. * tasks if there is an imbalance.
  2238. */
  2239. static int load_balance(int this_cpu, struct rq *this_rq,
  2240. struct sched_domain *sd, enum cpu_idle_type idle,
  2241. int *balance)
  2242. {
  2243. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2244. struct sched_group *group;
  2245. unsigned long imbalance;
  2246. struct rq *busiest;
  2247. cpumask_t cpus = CPU_MASK_ALL;
  2248. unsigned long flags;
  2249. /*
  2250. * When power savings policy is enabled for the parent domain, idle
  2251. * sibling can pick up load irrespective of busy siblings. In this case,
  2252. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2253. * portraying it as CPU_NOT_IDLE.
  2254. */
  2255. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2256. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2257. sd_idle = 1;
  2258. schedstat_inc(sd, lb_cnt[idle]);
  2259. redo:
  2260. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2261. &cpus, balance);
  2262. if (*balance == 0)
  2263. goto out_balanced;
  2264. if (!group) {
  2265. schedstat_inc(sd, lb_nobusyg[idle]);
  2266. goto out_balanced;
  2267. }
  2268. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2269. if (!busiest) {
  2270. schedstat_inc(sd, lb_nobusyq[idle]);
  2271. goto out_balanced;
  2272. }
  2273. BUG_ON(busiest == this_rq);
  2274. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2275. ld_moved = 0;
  2276. if (busiest->nr_running > 1) {
  2277. /*
  2278. * Attempt to move tasks. If find_busiest_group has found
  2279. * an imbalance but busiest->nr_running <= 1, the group is
  2280. * still unbalanced. ld_moved simply stays zero, so it is
  2281. * correctly treated as an imbalance.
  2282. */
  2283. local_irq_save(flags);
  2284. double_rq_lock(this_rq, busiest);
  2285. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2286. imbalance, sd, idle, &all_pinned);
  2287. double_rq_unlock(this_rq, busiest);
  2288. local_irq_restore(flags);
  2289. /*
  2290. * some other cpu did the load balance for us.
  2291. */
  2292. if (ld_moved && this_cpu != smp_processor_id())
  2293. resched_cpu(this_cpu);
  2294. /* All tasks on this runqueue were pinned by CPU affinity */
  2295. if (unlikely(all_pinned)) {
  2296. cpu_clear(cpu_of(busiest), cpus);
  2297. if (!cpus_empty(cpus))
  2298. goto redo;
  2299. goto out_balanced;
  2300. }
  2301. }
  2302. if (!ld_moved) {
  2303. schedstat_inc(sd, lb_failed[idle]);
  2304. sd->nr_balance_failed++;
  2305. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2306. spin_lock_irqsave(&busiest->lock, flags);
  2307. /* don't kick the migration_thread, if the curr
  2308. * task on busiest cpu can't be moved to this_cpu
  2309. */
  2310. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2311. spin_unlock_irqrestore(&busiest->lock, flags);
  2312. all_pinned = 1;
  2313. goto out_one_pinned;
  2314. }
  2315. if (!busiest->active_balance) {
  2316. busiest->active_balance = 1;
  2317. busiest->push_cpu = this_cpu;
  2318. active_balance = 1;
  2319. }
  2320. spin_unlock_irqrestore(&busiest->lock, flags);
  2321. if (active_balance)
  2322. wake_up_process(busiest->migration_thread);
  2323. /*
  2324. * We've kicked active balancing, reset the failure
  2325. * counter.
  2326. */
  2327. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2328. }
  2329. } else
  2330. sd->nr_balance_failed = 0;
  2331. if (likely(!active_balance)) {
  2332. /* We were unbalanced, so reset the balancing interval */
  2333. sd->balance_interval = sd->min_interval;
  2334. } else {
  2335. /*
  2336. * If we've begun active balancing, start to back off. This
  2337. * case may not be covered by the all_pinned logic if there
  2338. * is only 1 task on the busy runqueue (because we don't call
  2339. * move_tasks).
  2340. */
  2341. if (sd->balance_interval < sd->max_interval)
  2342. sd->balance_interval *= 2;
  2343. }
  2344. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2345. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2346. return -1;
  2347. return ld_moved;
  2348. out_balanced:
  2349. schedstat_inc(sd, lb_balanced[idle]);
  2350. sd->nr_balance_failed = 0;
  2351. out_one_pinned:
  2352. /* tune up the balancing interval */
  2353. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2354. (sd->balance_interval < sd->max_interval))
  2355. sd->balance_interval *= 2;
  2356. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2357. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2358. return -1;
  2359. return 0;
  2360. }
  2361. /*
  2362. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2363. * tasks if there is an imbalance.
  2364. *
  2365. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2366. * this_rq is locked.
  2367. */
  2368. static int
  2369. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2370. {
  2371. struct sched_group *group;
  2372. struct rq *busiest = NULL;
  2373. unsigned long imbalance;
  2374. int ld_moved = 0;
  2375. int sd_idle = 0;
  2376. int all_pinned = 0;
  2377. cpumask_t cpus = CPU_MASK_ALL;
  2378. /*
  2379. * When power savings policy is enabled for the parent domain, idle
  2380. * sibling can pick up load irrespective of busy siblings. In this case,
  2381. * let the state of idle sibling percolate up as IDLE, instead of
  2382. * portraying it as CPU_NOT_IDLE.
  2383. */
  2384. if (sd->flags & SD_SHARE_CPUPOWER &&
  2385. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2386. sd_idle = 1;
  2387. schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
  2388. redo:
  2389. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2390. &sd_idle, &cpus, NULL);
  2391. if (!group) {
  2392. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2393. goto out_balanced;
  2394. }
  2395. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2396. &cpus);
  2397. if (!busiest) {
  2398. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2399. goto out_balanced;
  2400. }
  2401. BUG_ON(busiest == this_rq);
  2402. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2403. ld_moved = 0;
  2404. if (busiest->nr_running > 1) {
  2405. /* Attempt to move tasks */
  2406. double_lock_balance(this_rq, busiest);
  2407. /* this_rq->clock is already updated */
  2408. update_rq_clock(busiest);
  2409. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2410. imbalance, sd, CPU_NEWLY_IDLE,
  2411. &all_pinned);
  2412. spin_unlock(&busiest->lock);
  2413. if (unlikely(all_pinned)) {
  2414. cpu_clear(cpu_of(busiest), cpus);
  2415. if (!cpus_empty(cpus))
  2416. goto redo;
  2417. }
  2418. }
  2419. if (!ld_moved) {
  2420. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2421. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2422. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2423. return -1;
  2424. } else
  2425. sd->nr_balance_failed = 0;
  2426. return ld_moved;
  2427. out_balanced:
  2428. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2429. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2430. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2431. return -1;
  2432. sd->nr_balance_failed = 0;
  2433. return 0;
  2434. }
  2435. /*
  2436. * idle_balance is called by schedule() if this_cpu is about to become
  2437. * idle. Attempts to pull tasks from other CPUs.
  2438. */
  2439. static void idle_balance(int this_cpu, struct rq *this_rq)
  2440. {
  2441. struct sched_domain *sd;
  2442. int pulled_task = -1;
  2443. unsigned long next_balance = jiffies + HZ;
  2444. for_each_domain(this_cpu, sd) {
  2445. unsigned long interval;
  2446. if (!(sd->flags & SD_LOAD_BALANCE))
  2447. continue;
  2448. if (sd->flags & SD_BALANCE_NEWIDLE)
  2449. /* If we've pulled tasks over stop searching: */
  2450. pulled_task = load_balance_newidle(this_cpu,
  2451. this_rq, sd);
  2452. interval = msecs_to_jiffies(sd->balance_interval);
  2453. if (time_after(next_balance, sd->last_balance + interval))
  2454. next_balance = sd->last_balance + interval;
  2455. if (pulled_task)
  2456. break;
  2457. }
  2458. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2459. /*
  2460. * We are going idle. next_balance may be set based on
  2461. * a busy processor. So reset next_balance.
  2462. */
  2463. this_rq->next_balance = next_balance;
  2464. }
  2465. }
  2466. /*
  2467. * active_load_balance is run by migration threads. It pushes running tasks
  2468. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2469. * running on each physical CPU where possible, and avoids physical /
  2470. * logical imbalances.
  2471. *
  2472. * Called with busiest_rq locked.
  2473. */
  2474. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2475. {
  2476. int target_cpu = busiest_rq->push_cpu;
  2477. struct sched_domain *sd;
  2478. struct rq *target_rq;
  2479. /* Is there any task to move? */
  2480. if (busiest_rq->nr_running <= 1)
  2481. return;
  2482. target_rq = cpu_rq(target_cpu);
  2483. /*
  2484. * This condition is "impossible", if it occurs
  2485. * we need to fix it. Originally reported by
  2486. * Bjorn Helgaas on a 128-cpu setup.
  2487. */
  2488. BUG_ON(busiest_rq == target_rq);
  2489. /* move a task from busiest_rq to target_rq */
  2490. double_lock_balance(busiest_rq, target_rq);
  2491. update_rq_clock(busiest_rq);
  2492. update_rq_clock(target_rq);
  2493. /* Search for an sd spanning us and the target CPU. */
  2494. for_each_domain(target_cpu, sd) {
  2495. if ((sd->flags & SD_LOAD_BALANCE) &&
  2496. cpu_isset(busiest_cpu, sd->span))
  2497. break;
  2498. }
  2499. if (likely(sd)) {
  2500. schedstat_inc(sd, alb_cnt);
  2501. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2502. sd, CPU_IDLE))
  2503. schedstat_inc(sd, alb_pushed);
  2504. else
  2505. schedstat_inc(sd, alb_failed);
  2506. }
  2507. spin_unlock(&target_rq->lock);
  2508. }
  2509. #ifdef CONFIG_NO_HZ
  2510. static struct {
  2511. atomic_t load_balancer;
  2512. cpumask_t cpu_mask;
  2513. } nohz ____cacheline_aligned = {
  2514. .load_balancer = ATOMIC_INIT(-1),
  2515. .cpu_mask = CPU_MASK_NONE,
  2516. };
  2517. /*
  2518. * This routine will try to nominate the ilb (idle load balancing)
  2519. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2520. * load balancing on behalf of all those cpus. If all the cpus in the system
  2521. * go into this tickless mode, then there will be no ilb owner (as there is
  2522. * no need for one) and all the cpus will sleep till the next wakeup event
  2523. * arrives...
  2524. *
  2525. * For the ilb owner, tick is not stopped. And this tick will be used
  2526. * for idle load balancing. ilb owner will still be part of
  2527. * nohz.cpu_mask..
  2528. *
  2529. * While stopping the tick, this cpu will become the ilb owner if there
  2530. * is no other owner. And will be the owner till that cpu becomes busy
  2531. * or if all cpus in the system stop their ticks at which point
  2532. * there is no need for ilb owner.
  2533. *
  2534. * When the ilb owner becomes busy, it nominates another owner, during the
  2535. * next busy scheduler_tick()
  2536. */
  2537. int select_nohz_load_balancer(int stop_tick)
  2538. {
  2539. int cpu = smp_processor_id();
  2540. if (stop_tick) {
  2541. cpu_set(cpu, nohz.cpu_mask);
  2542. cpu_rq(cpu)->in_nohz_recently = 1;
  2543. /*
  2544. * If we are going offline and still the leader, give up!
  2545. */
  2546. if (cpu_is_offline(cpu) &&
  2547. atomic_read(&nohz.load_balancer) == cpu) {
  2548. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2549. BUG();
  2550. return 0;
  2551. }
  2552. /* time for ilb owner also to sleep */
  2553. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2554. if (atomic_read(&nohz.load_balancer) == cpu)
  2555. atomic_set(&nohz.load_balancer, -1);
  2556. return 0;
  2557. }
  2558. if (atomic_read(&nohz.load_balancer) == -1) {
  2559. /* make me the ilb owner */
  2560. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2561. return 1;
  2562. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2563. return 1;
  2564. } else {
  2565. if (!cpu_isset(cpu, nohz.cpu_mask))
  2566. return 0;
  2567. cpu_clear(cpu, nohz.cpu_mask);
  2568. if (atomic_read(&nohz.load_balancer) == cpu)
  2569. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2570. BUG();
  2571. }
  2572. return 0;
  2573. }
  2574. #endif
  2575. static DEFINE_SPINLOCK(balancing);
  2576. /*
  2577. * It checks each scheduling domain to see if it is due to be balanced,
  2578. * and initiates a balancing operation if so.
  2579. *
  2580. * Balancing parameters are set up in arch_init_sched_domains.
  2581. */
  2582. static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2583. {
  2584. int balance = 1;
  2585. struct rq *rq = cpu_rq(cpu);
  2586. unsigned long interval;
  2587. struct sched_domain *sd;
  2588. /* Earliest time when we have to do rebalance again */
  2589. unsigned long next_balance = jiffies + 60*HZ;
  2590. int update_next_balance = 0;
  2591. for_each_domain(cpu, sd) {
  2592. if (!(sd->flags & SD_LOAD_BALANCE))
  2593. continue;
  2594. interval = sd->balance_interval;
  2595. if (idle != CPU_IDLE)
  2596. interval *= sd->busy_factor;
  2597. /* scale ms to jiffies */
  2598. interval = msecs_to_jiffies(interval);
  2599. if (unlikely(!interval))
  2600. interval = 1;
  2601. if (interval > HZ*NR_CPUS/10)
  2602. interval = HZ*NR_CPUS/10;
  2603. if (sd->flags & SD_SERIALIZE) {
  2604. if (!spin_trylock(&balancing))
  2605. goto out;
  2606. }
  2607. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2608. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2609. /*
  2610. * We've pulled tasks over so either we're no
  2611. * longer idle, or one of our SMT siblings is
  2612. * not idle.
  2613. */
  2614. idle = CPU_NOT_IDLE;
  2615. }
  2616. sd->last_balance = jiffies;
  2617. }
  2618. if (sd->flags & SD_SERIALIZE)
  2619. spin_unlock(&balancing);
  2620. out:
  2621. if (time_after(next_balance, sd->last_balance + interval)) {
  2622. next_balance = sd->last_balance + interval;
  2623. update_next_balance = 1;
  2624. }
  2625. /*
  2626. * Stop the load balance at this level. There is another
  2627. * CPU in our sched group which is doing load balancing more
  2628. * actively.
  2629. */
  2630. if (!balance)
  2631. break;
  2632. }
  2633. /*
  2634. * next_balance will be updated only when there is a need.
  2635. * When the cpu is attached to null domain for ex, it will not be
  2636. * updated.
  2637. */
  2638. if (likely(update_next_balance))
  2639. rq->next_balance = next_balance;
  2640. }
  2641. /*
  2642. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2643. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2644. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2645. */
  2646. static void run_rebalance_domains(struct softirq_action *h)
  2647. {
  2648. int this_cpu = smp_processor_id();
  2649. struct rq *this_rq = cpu_rq(this_cpu);
  2650. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2651. CPU_IDLE : CPU_NOT_IDLE;
  2652. rebalance_domains(this_cpu, idle);
  2653. #ifdef CONFIG_NO_HZ
  2654. /*
  2655. * If this cpu is the owner for idle load balancing, then do the
  2656. * balancing on behalf of the other idle cpus whose ticks are
  2657. * stopped.
  2658. */
  2659. if (this_rq->idle_at_tick &&
  2660. atomic_read(&nohz.load_balancer) == this_cpu) {
  2661. cpumask_t cpus = nohz.cpu_mask;
  2662. struct rq *rq;
  2663. int balance_cpu;
  2664. cpu_clear(this_cpu, cpus);
  2665. for_each_cpu_mask(balance_cpu, cpus) {
  2666. /*
  2667. * If this cpu gets work to do, stop the load balancing
  2668. * work being done for other cpus. Next load
  2669. * balancing owner will pick it up.
  2670. */
  2671. if (need_resched())
  2672. break;
  2673. rebalance_domains(balance_cpu, CPU_IDLE);
  2674. rq = cpu_rq(balance_cpu);
  2675. if (time_after(this_rq->next_balance, rq->next_balance))
  2676. this_rq->next_balance = rq->next_balance;
  2677. }
  2678. }
  2679. #endif
  2680. }
  2681. /*
  2682. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2683. *
  2684. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2685. * idle load balancing owner or decide to stop the periodic load balancing,
  2686. * if the whole system is idle.
  2687. */
  2688. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2689. {
  2690. #ifdef CONFIG_NO_HZ
  2691. /*
  2692. * If we were in the nohz mode recently and busy at the current
  2693. * scheduler tick, then check if we need to nominate new idle
  2694. * load balancer.
  2695. */
  2696. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2697. rq->in_nohz_recently = 0;
  2698. if (atomic_read(&nohz.load_balancer) == cpu) {
  2699. cpu_clear(cpu, nohz.cpu_mask);
  2700. atomic_set(&nohz.load_balancer, -1);
  2701. }
  2702. if (atomic_read(&nohz.load_balancer) == -1) {
  2703. /*
  2704. * simple selection for now: Nominate the
  2705. * first cpu in the nohz list to be the next
  2706. * ilb owner.
  2707. *
  2708. * TBD: Traverse the sched domains and nominate
  2709. * the nearest cpu in the nohz.cpu_mask.
  2710. */
  2711. int ilb = first_cpu(nohz.cpu_mask);
  2712. if (ilb != NR_CPUS)
  2713. resched_cpu(ilb);
  2714. }
  2715. }
  2716. /*
  2717. * If this cpu is idle and doing idle load balancing for all the
  2718. * cpus with ticks stopped, is it time for that to stop?
  2719. */
  2720. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2721. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2722. resched_cpu(cpu);
  2723. return;
  2724. }
  2725. /*
  2726. * If this cpu is idle and the idle load balancing is done by
  2727. * someone else, then no need raise the SCHED_SOFTIRQ
  2728. */
  2729. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2730. cpu_isset(cpu, nohz.cpu_mask))
  2731. return;
  2732. #endif
  2733. if (time_after_eq(jiffies, rq->next_balance))
  2734. raise_softirq(SCHED_SOFTIRQ);
  2735. }
  2736. #else /* CONFIG_SMP */
  2737. /*
  2738. * on UP we do not need to balance between CPUs:
  2739. */
  2740. static inline void idle_balance(int cpu, struct rq *rq)
  2741. {
  2742. }
  2743. /* Avoid "used but not defined" warning on UP */
  2744. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2745. unsigned long max_nr_move, unsigned long max_load_move,
  2746. struct sched_domain *sd, enum cpu_idle_type idle,
  2747. int *all_pinned, unsigned long *load_moved,
  2748. int *this_best_prio, struct rq_iterator *iterator)
  2749. {
  2750. *load_moved = 0;
  2751. return 0;
  2752. }
  2753. #endif
  2754. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2755. EXPORT_PER_CPU_SYMBOL(kstat);
  2756. /*
  2757. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  2758. * that have not yet been banked in case the task is currently running.
  2759. */
  2760. unsigned long long task_sched_runtime(struct task_struct *p)
  2761. {
  2762. unsigned long flags;
  2763. u64 ns, delta_exec;
  2764. struct rq *rq;
  2765. rq = task_rq_lock(p, &flags);
  2766. ns = p->se.sum_exec_runtime;
  2767. if (rq->curr == p) {
  2768. update_rq_clock(rq);
  2769. delta_exec = rq->clock - p->se.exec_start;
  2770. if ((s64)delta_exec > 0)
  2771. ns += delta_exec;
  2772. }
  2773. task_rq_unlock(rq, &flags);
  2774. return ns;
  2775. }
  2776. /*
  2777. * Account user cpu time to a process.
  2778. * @p: the process that the cpu time gets accounted to
  2779. * @hardirq_offset: the offset to subtract from hardirq_count()
  2780. * @cputime: the cpu time spent in user space since the last update
  2781. */
  2782. void account_user_time(struct task_struct *p, cputime_t cputime)
  2783. {
  2784. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2785. cputime64_t tmp;
  2786. p->utime = cputime_add(p->utime, cputime);
  2787. /* Add user time to cpustat. */
  2788. tmp = cputime_to_cputime64(cputime);
  2789. if (TASK_NICE(p) > 0)
  2790. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2791. else
  2792. cpustat->user = cputime64_add(cpustat->user, tmp);
  2793. }
  2794. /*
  2795. * Account system cpu time to a process.
  2796. * @p: the process that the cpu time gets accounted to
  2797. * @hardirq_offset: the offset to subtract from hardirq_count()
  2798. * @cputime: the cpu time spent in kernel space since the last update
  2799. */
  2800. void account_system_time(struct task_struct *p, int hardirq_offset,
  2801. cputime_t cputime)
  2802. {
  2803. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2804. struct rq *rq = this_rq();
  2805. cputime64_t tmp;
  2806. p->stime = cputime_add(p->stime, cputime);
  2807. /* Add system time to cpustat. */
  2808. tmp = cputime_to_cputime64(cputime);
  2809. if (hardirq_count() - hardirq_offset)
  2810. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2811. else if (softirq_count())
  2812. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2813. else if (p != rq->idle)
  2814. cpustat->system = cputime64_add(cpustat->system, tmp);
  2815. else if (atomic_read(&rq->nr_iowait) > 0)
  2816. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2817. else
  2818. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2819. /* Account for system time used */
  2820. acct_update_integrals(p);
  2821. }
  2822. /*
  2823. * Account for involuntary wait time.
  2824. * @p: the process from which the cpu time has been stolen
  2825. * @steal: the cpu time spent in involuntary wait
  2826. */
  2827. void account_steal_time(struct task_struct *p, cputime_t steal)
  2828. {
  2829. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2830. cputime64_t tmp = cputime_to_cputime64(steal);
  2831. struct rq *rq = this_rq();
  2832. if (p == rq->idle) {
  2833. p->stime = cputime_add(p->stime, steal);
  2834. if (atomic_read(&rq->nr_iowait) > 0)
  2835. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2836. else
  2837. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2838. } else
  2839. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2840. }
  2841. /*
  2842. * This function gets called by the timer code, with HZ frequency.
  2843. * We call it with interrupts disabled.
  2844. *
  2845. * It also gets called by the fork code, when changing the parent's
  2846. * timeslices.
  2847. */
  2848. void scheduler_tick(void)
  2849. {
  2850. int cpu = smp_processor_id();
  2851. struct rq *rq = cpu_rq(cpu);
  2852. struct task_struct *curr = rq->curr;
  2853. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  2854. spin_lock(&rq->lock);
  2855. __update_rq_clock(rq);
  2856. /*
  2857. * Let rq->clock advance by at least TICK_NSEC:
  2858. */
  2859. if (unlikely(rq->clock < next_tick))
  2860. rq->clock = next_tick;
  2861. rq->tick_timestamp = rq->clock;
  2862. update_cpu_load(rq);
  2863. if (curr != rq->idle) /* FIXME: needed? */
  2864. curr->sched_class->task_tick(rq, curr);
  2865. spin_unlock(&rq->lock);
  2866. #ifdef CONFIG_SMP
  2867. rq->idle_at_tick = idle_cpu(cpu);
  2868. trigger_load_balance(rq, cpu);
  2869. #endif
  2870. }
  2871. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  2872. void fastcall add_preempt_count(int val)
  2873. {
  2874. /*
  2875. * Underflow?
  2876. */
  2877. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2878. return;
  2879. preempt_count() += val;
  2880. /*
  2881. * Spinlock count overflowing soon?
  2882. */
  2883. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2884. PREEMPT_MASK - 10);
  2885. }
  2886. EXPORT_SYMBOL(add_preempt_count);
  2887. void fastcall sub_preempt_count(int val)
  2888. {
  2889. /*
  2890. * Underflow?
  2891. */
  2892. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2893. return;
  2894. /*
  2895. * Is the spinlock portion underflowing?
  2896. */
  2897. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2898. !(preempt_count() & PREEMPT_MASK)))
  2899. return;
  2900. preempt_count() -= val;
  2901. }
  2902. EXPORT_SYMBOL(sub_preempt_count);
  2903. #endif
  2904. /*
  2905. * Print scheduling while atomic bug:
  2906. */
  2907. static noinline void __schedule_bug(struct task_struct *prev)
  2908. {
  2909. printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
  2910. prev->comm, preempt_count(), prev->pid);
  2911. debug_show_held_locks(prev);
  2912. if (irqs_disabled())
  2913. print_irqtrace_events(prev);
  2914. dump_stack();
  2915. }
  2916. /*
  2917. * Various schedule()-time debugging checks and statistics:
  2918. */
  2919. static inline void schedule_debug(struct task_struct *prev)
  2920. {
  2921. /*
  2922. * Test if we are atomic. Since do_exit() needs to call into
  2923. * schedule() atomically, we ignore that path for now.
  2924. * Otherwise, whine if we are scheduling when we should not be.
  2925. */
  2926. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  2927. __schedule_bug(prev);
  2928. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2929. schedstat_inc(this_rq(), sched_cnt);
  2930. }
  2931. /*
  2932. * Pick up the highest-prio task:
  2933. */
  2934. static inline struct task_struct *
  2935. pick_next_task(struct rq *rq, struct task_struct *prev)
  2936. {
  2937. struct sched_class *class;
  2938. struct task_struct *p;
  2939. /*
  2940. * Optimization: we know that if all tasks are in
  2941. * the fair class we can call that function directly:
  2942. */
  2943. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  2944. p = fair_sched_class.pick_next_task(rq);
  2945. if (likely(p))
  2946. return p;
  2947. }
  2948. class = sched_class_highest;
  2949. for ( ; ; ) {
  2950. p = class->pick_next_task(rq);
  2951. if (p)
  2952. return p;
  2953. /*
  2954. * Will never be NULL as the idle class always
  2955. * returns a non-NULL p:
  2956. */
  2957. class = class->next;
  2958. }
  2959. }
  2960. /*
  2961. * schedule() is the main scheduler function.
  2962. */
  2963. asmlinkage void __sched schedule(void)
  2964. {
  2965. struct task_struct *prev, *next;
  2966. long *switch_count;
  2967. struct rq *rq;
  2968. int cpu;
  2969. need_resched:
  2970. preempt_disable();
  2971. cpu = smp_processor_id();
  2972. rq = cpu_rq(cpu);
  2973. rcu_qsctr_inc(cpu);
  2974. prev = rq->curr;
  2975. switch_count = &prev->nivcsw;
  2976. release_kernel_lock(prev);
  2977. need_resched_nonpreemptible:
  2978. schedule_debug(prev);
  2979. spin_lock_irq(&rq->lock);
  2980. clear_tsk_need_resched(prev);
  2981. __update_rq_clock(rq);
  2982. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2983. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  2984. unlikely(signal_pending(prev)))) {
  2985. prev->state = TASK_RUNNING;
  2986. } else {
  2987. deactivate_task(rq, prev, 1);
  2988. }
  2989. switch_count = &prev->nvcsw;
  2990. }
  2991. if (unlikely(!rq->nr_running))
  2992. idle_balance(cpu, rq);
  2993. prev->sched_class->put_prev_task(rq, prev);
  2994. next = pick_next_task(rq, prev);
  2995. sched_info_switch(prev, next);
  2996. if (likely(prev != next)) {
  2997. rq->nr_switches++;
  2998. rq->curr = next;
  2999. ++*switch_count;
  3000. context_switch(rq, prev, next); /* unlocks the rq */
  3001. } else
  3002. spin_unlock_irq(&rq->lock);
  3003. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  3004. cpu = smp_processor_id();
  3005. rq = cpu_rq(cpu);
  3006. goto need_resched_nonpreemptible;
  3007. }
  3008. preempt_enable_no_resched();
  3009. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3010. goto need_resched;
  3011. }
  3012. EXPORT_SYMBOL(schedule);
  3013. #ifdef CONFIG_PREEMPT
  3014. /*
  3015. * this is the entry point to schedule() from in-kernel preemption
  3016. * off of preempt_enable. Kernel preemptions off return from interrupt
  3017. * occur there and call schedule directly.
  3018. */
  3019. asmlinkage void __sched preempt_schedule(void)
  3020. {
  3021. struct thread_info *ti = current_thread_info();
  3022. #ifdef CONFIG_PREEMPT_BKL
  3023. struct task_struct *task = current;
  3024. int saved_lock_depth;
  3025. #endif
  3026. /*
  3027. * If there is a non-zero preempt_count or interrupts are disabled,
  3028. * we do not want to preempt the current task. Just return..
  3029. */
  3030. if (likely(ti->preempt_count || irqs_disabled()))
  3031. return;
  3032. need_resched:
  3033. add_preempt_count(PREEMPT_ACTIVE);
  3034. /*
  3035. * We keep the big kernel semaphore locked, but we
  3036. * clear ->lock_depth so that schedule() doesnt
  3037. * auto-release the semaphore:
  3038. */
  3039. #ifdef CONFIG_PREEMPT_BKL
  3040. saved_lock_depth = task->lock_depth;
  3041. task->lock_depth = -1;
  3042. #endif
  3043. schedule();
  3044. #ifdef CONFIG_PREEMPT_BKL
  3045. task->lock_depth = saved_lock_depth;
  3046. #endif
  3047. sub_preempt_count(PREEMPT_ACTIVE);
  3048. /* we could miss a preemption opportunity between schedule and now */
  3049. barrier();
  3050. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3051. goto need_resched;
  3052. }
  3053. EXPORT_SYMBOL(preempt_schedule);
  3054. /*
  3055. * this is the entry point to schedule() from kernel preemption
  3056. * off of irq context.
  3057. * Note, that this is called and return with irqs disabled. This will
  3058. * protect us against recursive calling from irq.
  3059. */
  3060. asmlinkage void __sched preempt_schedule_irq(void)
  3061. {
  3062. struct thread_info *ti = current_thread_info();
  3063. #ifdef CONFIG_PREEMPT_BKL
  3064. struct task_struct *task = current;
  3065. int saved_lock_depth;
  3066. #endif
  3067. /* Catch callers which need to be fixed */
  3068. BUG_ON(ti->preempt_count || !irqs_disabled());
  3069. need_resched:
  3070. add_preempt_count(PREEMPT_ACTIVE);
  3071. /*
  3072. * We keep the big kernel semaphore locked, but we
  3073. * clear ->lock_depth so that schedule() doesnt
  3074. * auto-release the semaphore:
  3075. */
  3076. #ifdef CONFIG_PREEMPT_BKL
  3077. saved_lock_depth = task->lock_depth;
  3078. task->lock_depth = -1;
  3079. #endif
  3080. local_irq_enable();
  3081. schedule();
  3082. local_irq_disable();
  3083. #ifdef CONFIG_PREEMPT_BKL
  3084. task->lock_depth = saved_lock_depth;
  3085. #endif
  3086. sub_preempt_count(PREEMPT_ACTIVE);
  3087. /* we could miss a preemption opportunity between schedule and now */
  3088. barrier();
  3089. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3090. goto need_resched;
  3091. }
  3092. #endif /* CONFIG_PREEMPT */
  3093. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3094. void *key)
  3095. {
  3096. return try_to_wake_up(curr->private, mode, sync);
  3097. }
  3098. EXPORT_SYMBOL(default_wake_function);
  3099. /*
  3100. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3101. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3102. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3103. *
  3104. * There are circumstances in which we can try to wake a task which has already
  3105. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3106. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3107. */
  3108. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3109. int nr_exclusive, int sync, void *key)
  3110. {
  3111. wait_queue_t *curr, *next;
  3112. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3113. unsigned flags = curr->flags;
  3114. if (curr->func(curr, mode, sync, key) &&
  3115. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3116. break;
  3117. }
  3118. }
  3119. /**
  3120. * __wake_up - wake up threads blocked on a waitqueue.
  3121. * @q: the waitqueue
  3122. * @mode: which threads
  3123. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3124. * @key: is directly passed to the wakeup function
  3125. */
  3126. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3127. int nr_exclusive, void *key)
  3128. {
  3129. unsigned long flags;
  3130. spin_lock_irqsave(&q->lock, flags);
  3131. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3132. spin_unlock_irqrestore(&q->lock, flags);
  3133. }
  3134. EXPORT_SYMBOL(__wake_up);
  3135. /*
  3136. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3137. */
  3138. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3139. {
  3140. __wake_up_common(q, mode, 1, 0, NULL);
  3141. }
  3142. /**
  3143. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3144. * @q: the waitqueue
  3145. * @mode: which threads
  3146. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3147. *
  3148. * The sync wakeup differs that the waker knows that it will schedule
  3149. * away soon, so while the target thread will be woken up, it will not
  3150. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3151. * with each other. This can prevent needless bouncing between CPUs.
  3152. *
  3153. * On UP it can prevent extra preemption.
  3154. */
  3155. void fastcall
  3156. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3157. {
  3158. unsigned long flags;
  3159. int sync = 1;
  3160. if (unlikely(!q))
  3161. return;
  3162. if (unlikely(!nr_exclusive))
  3163. sync = 0;
  3164. spin_lock_irqsave(&q->lock, flags);
  3165. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3166. spin_unlock_irqrestore(&q->lock, flags);
  3167. }
  3168. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3169. void fastcall complete(struct completion *x)
  3170. {
  3171. unsigned long flags;
  3172. spin_lock_irqsave(&x->wait.lock, flags);
  3173. x->done++;
  3174. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3175. 1, 0, NULL);
  3176. spin_unlock_irqrestore(&x->wait.lock, flags);
  3177. }
  3178. EXPORT_SYMBOL(complete);
  3179. void fastcall complete_all(struct completion *x)
  3180. {
  3181. unsigned long flags;
  3182. spin_lock_irqsave(&x->wait.lock, flags);
  3183. x->done += UINT_MAX/2;
  3184. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3185. 0, 0, NULL);
  3186. spin_unlock_irqrestore(&x->wait.lock, flags);
  3187. }
  3188. EXPORT_SYMBOL(complete_all);
  3189. void fastcall __sched wait_for_completion(struct completion *x)
  3190. {
  3191. might_sleep();
  3192. spin_lock_irq(&x->wait.lock);
  3193. if (!x->done) {
  3194. DECLARE_WAITQUEUE(wait, current);
  3195. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3196. __add_wait_queue_tail(&x->wait, &wait);
  3197. do {
  3198. __set_current_state(TASK_UNINTERRUPTIBLE);
  3199. spin_unlock_irq(&x->wait.lock);
  3200. schedule();
  3201. spin_lock_irq(&x->wait.lock);
  3202. } while (!x->done);
  3203. __remove_wait_queue(&x->wait, &wait);
  3204. }
  3205. x->done--;
  3206. spin_unlock_irq(&x->wait.lock);
  3207. }
  3208. EXPORT_SYMBOL(wait_for_completion);
  3209. unsigned long fastcall __sched
  3210. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3211. {
  3212. might_sleep();
  3213. spin_lock_irq(&x->wait.lock);
  3214. if (!x->done) {
  3215. DECLARE_WAITQUEUE(wait, current);
  3216. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3217. __add_wait_queue_tail(&x->wait, &wait);
  3218. do {
  3219. __set_current_state(TASK_UNINTERRUPTIBLE);
  3220. spin_unlock_irq(&x->wait.lock);
  3221. timeout = schedule_timeout(timeout);
  3222. spin_lock_irq(&x->wait.lock);
  3223. if (!timeout) {
  3224. __remove_wait_queue(&x->wait, &wait);
  3225. goto out;
  3226. }
  3227. } while (!x->done);
  3228. __remove_wait_queue(&x->wait, &wait);
  3229. }
  3230. x->done--;
  3231. out:
  3232. spin_unlock_irq(&x->wait.lock);
  3233. return timeout;
  3234. }
  3235. EXPORT_SYMBOL(wait_for_completion_timeout);
  3236. int fastcall __sched wait_for_completion_interruptible(struct completion *x)
  3237. {
  3238. int ret = 0;
  3239. might_sleep();
  3240. spin_lock_irq(&x->wait.lock);
  3241. if (!x->done) {
  3242. DECLARE_WAITQUEUE(wait, current);
  3243. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3244. __add_wait_queue_tail(&x->wait, &wait);
  3245. do {
  3246. if (signal_pending(current)) {
  3247. ret = -ERESTARTSYS;
  3248. __remove_wait_queue(&x->wait, &wait);
  3249. goto out;
  3250. }
  3251. __set_current_state(TASK_INTERRUPTIBLE);
  3252. spin_unlock_irq(&x->wait.lock);
  3253. schedule();
  3254. spin_lock_irq(&x->wait.lock);
  3255. } while (!x->done);
  3256. __remove_wait_queue(&x->wait, &wait);
  3257. }
  3258. x->done--;
  3259. out:
  3260. spin_unlock_irq(&x->wait.lock);
  3261. return ret;
  3262. }
  3263. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3264. unsigned long fastcall __sched
  3265. wait_for_completion_interruptible_timeout(struct completion *x,
  3266. unsigned long timeout)
  3267. {
  3268. might_sleep();
  3269. spin_lock_irq(&x->wait.lock);
  3270. if (!x->done) {
  3271. DECLARE_WAITQUEUE(wait, current);
  3272. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3273. __add_wait_queue_tail(&x->wait, &wait);
  3274. do {
  3275. if (signal_pending(current)) {
  3276. timeout = -ERESTARTSYS;
  3277. __remove_wait_queue(&x->wait, &wait);
  3278. goto out;
  3279. }
  3280. __set_current_state(TASK_INTERRUPTIBLE);
  3281. spin_unlock_irq(&x->wait.lock);
  3282. timeout = schedule_timeout(timeout);
  3283. spin_lock_irq(&x->wait.lock);
  3284. if (!timeout) {
  3285. __remove_wait_queue(&x->wait, &wait);
  3286. goto out;
  3287. }
  3288. } while (!x->done);
  3289. __remove_wait_queue(&x->wait, &wait);
  3290. }
  3291. x->done--;
  3292. out:
  3293. spin_unlock_irq(&x->wait.lock);
  3294. return timeout;
  3295. }
  3296. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3297. static inline void
  3298. sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
  3299. {
  3300. spin_lock_irqsave(&q->lock, *flags);
  3301. __add_wait_queue(q, wait);
  3302. spin_unlock(&q->lock);
  3303. }
  3304. static inline void
  3305. sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
  3306. {
  3307. spin_lock_irq(&q->lock);
  3308. __remove_wait_queue(q, wait);
  3309. spin_unlock_irqrestore(&q->lock, *flags);
  3310. }
  3311. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3312. {
  3313. unsigned long flags;
  3314. wait_queue_t wait;
  3315. init_waitqueue_entry(&wait, current);
  3316. current->state = TASK_INTERRUPTIBLE;
  3317. sleep_on_head(q, &wait, &flags);
  3318. schedule();
  3319. sleep_on_tail(q, &wait, &flags);
  3320. }
  3321. EXPORT_SYMBOL(interruptible_sleep_on);
  3322. long __sched
  3323. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3324. {
  3325. unsigned long flags;
  3326. wait_queue_t wait;
  3327. init_waitqueue_entry(&wait, current);
  3328. current->state = TASK_INTERRUPTIBLE;
  3329. sleep_on_head(q, &wait, &flags);
  3330. timeout = schedule_timeout(timeout);
  3331. sleep_on_tail(q, &wait, &flags);
  3332. return timeout;
  3333. }
  3334. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3335. void __sched sleep_on(wait_queue_head_t *q)
  3336. {
  3337. unsigned long flags;
  3338. wait_queue_t wait;
  3339. init_waitqueue_entry(&wait, current);
  3340. current->state = TASK_UNINTERRUPTIBLE;
  3341. sleep_on_head(q, &wait, &flags);
  3342. schedule();
  3343. sleep_on_tail(q, &wait, &flags);
  3344. }
  3345. EXPORT_SYMBOL(sleep_on);
  3346. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3347. {
  3348. unsigned long flags;
  3349. wait_queue_t wait;
  3350. init_waitqueue_entry(&wait, current);
  3351. current->state = TASK_UNINTERRUPTIBLE;
  3352. sleep_on_head(q, &wait, &flags);
  3353. timeout = schedule_timeout(timeout);
  3354. sleep_on_tail(q, &wait, &flags);
  3355. return timeout;
  3356. }
  3357. EXPORT_SYMBOL(sleep_on_timeout);
  3358. #ifdef CONFIG_RT_MUTEXES
  3359. /*
  3360. * rt_mutex_setprio - set the current priority of a task
  3361. * @p: task
  3362. * @prio: prio value (kernel-internal form)
  3363. *
  3364. * This function changes the 'effective' priority of a task. It does
  3365. * not touch ->normal_prio like __setscheduler().
  3366. *
  3367. * Used by the rt_mutex code to implement priority inheritance logic.
  3368. */
  3369. void rt_mutex_setprio(struct task_struct *p, int prio)
  3370. {
  3371. unsigned long flags;
  3372. int oldprio, on_rq;
  3373. struct rq *rq;
  3374. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3375. rq = task_rq_lock(p, &flags);
  3376. update_rq_clock(rq);
  3377. oldprio = p->prio;
  3378. on_rq = p->se.on_rq;
  3379. if (on_rq)
  3380. dequeue_task(rq, p, 0);
  3381. if (rt_prio(prio))
  3382. p->sched_class = &rt_sched_class;
  3383. else
  3384. p->sched_class = &fair_sched_class;
  3385. p->prio = prio;
  3386. if (on_rq) {
  3387. enqueue_task(rq, p, 0);
  3388. /*
  3389. * Reschedule if we are currently running on this runqueue and
  3390. * our priority decreased, or if we are not currently running on
  3391. * this runqueue and our priority is higher than the current's
  3392. */
  3393. if (task_running(rq, p)) {
  3394. if (p->prio > oldprio)
  3395. resched_task(rq->curr);
  3396. } else {
  3397. check_preempt_curr(rq, p);
  3398. }
  3399. }
  3400. task_rq_unlock(rq, &flags);
  3401. }
  3402. #endif
  3403. void set_user_nice(struct task_struct *p, long nice)
  3404. {
  3405. int old_prio, delta, on_rq;
  3406. unsigned long flags;
  3407. struct rq *rq;
  3408. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3409. return;
  3410. /*
  3411. * We have to be careful, if called from sys_setpriority(),
  3412. * the task might be in the middle of scheduling on another CPU.
  3413. */
  3414. rq = task_rq_lock(p, &flags);
  3415. update_rq_clock(rq);
  3416. /*
  3417. * The RT priorities are set via sched_setscheduler(), but we still
  3418. * allow the 'normal' nice value to be set - but as expected
  3419. * it wont have any effect on scheduling until the task is
  3420. * SCHED_FIFO/SCHED_RR:
  3421. */
  3422. if (task_has_rt_policy(p)) {
  3423. p->static_prio = NICE_TO_PRIO(nice);
  3424. goto out_unlock;
  3425. }
  3426. on_rq = p->se.on_rq;
  3427. if (on_rq) {
  3428. dequeue_task(rq, p, 0);
  3429. dec_load(rq, p);
  3430. }
  3431. p->static_prio = NICE_TO_PRIO(nice);
  3432. set_load_weight(p);
  3433. old_prio = p->prio;
  3434. p->prio = effective_prio(p);
  3435. delta = p->prio - old_prio;
  3436. if (on_rq) {
  3437. enqueue_task(rq, p, 0);
  3438. inc_load(rq, p);
  3439. /*
  3440. * If the task increased its priority or is running and
  3441. * lowered its priority, then reschedule its CPU:
  3442. */
  3443. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3444. resched_task(rq->curr);
  3445. }
  3446. out_unlock:
  3447. task_rq_unlock(rq, &flags);
  3448. }
  3449. EXPORT_SYMBOL(set_user_nice);
  3450. /*
  3451. * can_nice - check if a task can reduce its nice value
  3452. * @p: task
  3453. * @nice: nice value
  3454. */
  3455. int can_nice(const struct task_struct *p, const int nice)
  3456. {
  3457. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3458. int nice_rlim = 20 - nice;
  3459. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3460. capable(CAP_SYS_NICE));
  3461. }
  3462. #ifdef __ARCH_WANT_SYS_NICE
  3463. /*
  3464. * sys_nice - change the priority of the current process.
  3465. * @increment: priority increment
  3466. *
  3467. * sys_setpriority is a more generic, but much slower function that
  3468. * does similar things.
  3469. */
  3470. asmlinkage long sys_nice(int increment)
  3471. {
  3472. long nice, retval;
  3473. /*
  3474. * Setpriority might change our priority at the same moment.
  3475. * We don't have to worry. Conceptually one call occurs first
  3476. * and we have a single winner.
  3477. */
  3478. if (increment < -40)
  3479. increment = -40;
  3480. if (increment > 40)
  3481. increment = 40;
  3482. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3483. if (nice < -20)
  3484. nice = -20;
  3485. if (nice > 19)
  3486. nice = 19;
  3487. if (increment < 0 && !can_nice(current, nice))
  3488. return -EPERM;
  3489. retval = security_task_setnice(current, nice);
  3490. if (retval)
  3491. return retval;
  3492. set_user_nice(current, nice);
  3493. return 0;
  3494. }
  3495. #endif
  3496. /**
  3497. * task_prio - return the priority value of a given task.
  3498. * @p: the task in question.
  3499. *
  3500. * This is the priority value as seen by users in /proc.
  3501. * RT tasks are offset by -200. Normal tasks are centered
  3502. * around 0, value goes from -16 to +15.
  3503. */
  3504. int task_prio(const struct task_struct *p)
  3505. {
  3506. return p->prio - MAX_RT_PRIO;
  3507. }
  3508. /**
  3509. * task_nice - return the nice value of a given task.
  3510. * @p: the task in question.
  3511. */
  3512. int task_nice(const struct task_struct *p)
  3513. {
  3514. return TASK_NICE(p);
  3515. }
  3516. EXPORT_SYMBOL_GPL(task_nice);
  3517. /**
  3518. * idle_cpu - is a given cpu idle currently?
  3519. * @cpu: the processor in question.
  3520. */
  3521. int idle_cpu(int cpu)
  3522. {
  3523. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3524. }
  3525. /**
  3526. * idle_task - return the idle task for a given cpu.
  3527. * @cpu: the processor in question.
  3528. */
  3529. struct task_struct *idle_task(int cpu)
  3530. {
  3531. return cpu_rq(cpu)->idle;
  3532. }
  3533. /**
  3534. * find_process_by_pid - find a process with a matching PID value.
  3535. * @pid: the pid in question.
  3536. */
  3537. static inline struct task_struct *find_process_by_pid(pid_t pid)
  3538. {
  3539. return pid ? find_task_by_pid(pid) : current;
  3540. }
  3541. /* Actually do priority change: must hold rq lock. */
  3542. static void
  3543. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3544. {
  3545. BUG_ON(p->se.on_rq);
  3546. p->policy = policy;
  3547. switch (p->policy) {
  3548. case SCHED_NORMAL:
  3549. case SCHED_BATCH:
  3550. case SCHED_IDLE:
  3551. p->sched_class = &fair_sched_class;
  3552. break;
  3553. case SCHED_FIFO:
  3554. case SCHED_RR:
  3555. p->sched_class = &rt_sched_class;
  3556. break;
  3557. }
  3558. p->rt_priority = prio;
  3559. p->normal_prio = normal_prio(p);
  3560. /* we are holding p->pi_lock already */
  3561. p->prio = rt_mutex_getprio(p);
  3562. set_load_weight(p);
  3563. }
  3564. /**
  3565. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3566. * @p: the task in question.
  3567. * @policy: new policy.
  3568. * @param: structure containing the new RT priority.
  3569. *
  3570. * NOTE that the task may be already dead.
  3571. */
  3572. int sched_setscheduler(struct task_struct *p, int policy,
  3573. struct sched_param *param)
  3574. {
  3575. int retval, oldprio, oldpolicy = -1, on_rq;
  3576. unsigned long flags;
  3577. struct rq *rq;
  3578. /* may grab non-irq protected spin_locks */
  3579. BUG_ON(in_interrupt());
  3580. recheck:
  3581. /* double check policy once rq lock held */
  3582. if (policy < 0)
  3583. policy = oldpolicy = p->policy;
  3584. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3585. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3586. policy != SCHED_IDLE)
  3587. return -EINVAL;
  3588. /*
  3589. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3590. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3591. * SCHED_BATCH and SCHED_IDLE is 0.
  3592. */
  3593. if (param->sched_priority < 0 ||
  3594. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3595. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3596. return -EINVAL;
  3597. if (rt_policy(policy) != (param->sched_priority != 0))
  3598. return -EINVAL;
  3599. /*
  3600. * Allow unprivileged RT tasks to decrease priority:
  3601. */
  3602. if (!capable(CAP_SYS_NICE)) {
  3603. if (rt_policy(policy)) {
  3604. unsigned long rlim_rtprio;
  3605. if (!lock_task_sighand(p, &flags))
  3606. return -ESRCH;
  3607. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3608. unlock_task_sighand(p, &flags);
  3609. /* can't set/change the rt policy */
  3610. if (policy != p->policy && !rlim_rtprio)
  3611. return -EPERM;
  3612. /* can't increase priority */
  3613. if (param->sched_priority > p->rt_priority &&
  3614. param->sched_priority > rlim_rtprio)
  3615. return -EPERM;
  3616. }
  3617. /*
  3618. * Like positive nice levels, dont allow tasks to
  3619. * move out of SCHED_IDLE either:
  3620. */
  3621. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3622. return -EPERM;
  3623. /* can't change other user's priorities */
  3624. if ((current->euid != p->euid) &&
  3625. (current->euid != p->uid))
  3626. return -EPERM;
  3627. }
  3628. retval = security_task_setscheduler(p, policy, param);
  3629. if (retval)
  3630. return retval;
  3631. /*
  3632. * make sure no PI-waiters arrive (or leave) while we are
  3633. * changing the priority of the task:
  3634. */
  3635. spin_lock_irqsave(&p->pi_lock, flags);
  3636. /*
  3637. * To be able to change p->policy safely, the apropriate
  3638. * runqueue lock must be held.
  3639. */
  3640. rq = __task_rq_lock(p);
  3641. /* recheck policy now with rq lock held */
  3642. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3643. policy = oldpolicy = -1;
  3644. __task_rq_unlock(rq);
  3645. spin_unlock_irqrestore(&p->pi_lock, flags);
  3646. goto recheck;
  3647. }
  3648. update_rq_clock(rq);
  3649. on_rq = p->se.on_rq;
  3650. if (on_rq)
  3651. deactivate_task(rq, p, 0);
  3652. oldprio = p->prio;
  3653. __setscheduler(rq, p, policy, param->sched_priority);
  3654. if (on_rq) {
  3655. activate_task(rq, p, 0);
  3656. /*
  3657. * Reschedule if we are currently running on this runqueue and
  3658. * our priority decreased, or if we are not currently running on
  3659. * this runqueue and our priority is higher than the current's
  3660. */
  3661. if (task_running(rq, p)) {
  3662. if (p->prio > oldprio)
  3663. resched_task(rq->curr);
  3664. } else {
  3665. check_preempt_curr(rq, p);
  3666. }
  3667. }
  3668. __task_rq_unlock(rq);
  3669. spin_unlock_irqrestore(&p->pi_lock, flags);
  3670. rt_mutex_adjust_pi(p);
  3671. return 0;
  3672. }
  3673. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3674. static int
  3675. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3676. {
  3677. struct sched_param lparam;
  3678. struct task_struct *p;
  3679. int retval;
  3680. if (!param || pid < 0)
  3681. return -EINVAL;
  3682. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3683. return -EFAULT;
  3684. rcu_read_lock();
  3685. retval = -ESRCH;
  3686. p = find_process_by_pid(pid);
  3687. if (p != NULL)
  3688. retval = sched_setscheduler(p, policy, &lparam);
  3689. rcu_read_unlock();
  3690. return retval;
  3691. }
  3692. /**
  3693. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3694. * @pid: the pid in question.
  3695. * @policy: new policy.
  3696. * @param: structure containing the new RT priority.
  3697. */
  3698. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3699. struct sched_param __user *param)
  3700. {
  3701. /* negative values for policy are not valid */
  3702. if (policy < 0)
  3703. return -EINVAL;
  3704. return do_sched_setscheduler(pid, policy, param);
  3705. }
  3706. /**
  3707. * sys_sched_setparam - set/change the RT priority of a thread
  3708. * @pid: the pid in question.
  3709. * @param: structure containing the new RT priority.
  3710. */
  3711. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3712. {
  3713. return do_sched_setscheduler(pid, -1, param);
  3714. }
  3715. /**
  3716. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3717. * @pid: the pid in question.
  3718. */
  3719. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3720. {
  3721. struct task_struct *p;
  3722. int retval = -EINVAL;
  3723. if (pid < 0)
  3724. goto out_nounlock;
  3725. retval = -ESRCH;
  3726. read_lock(&tasklist_lock);
  3727. p = find_process_by_pid(pid);
  3728. if (p) {
  3729. retval = security_task_getscheduler(p);
  3730. if (!retval)
  3731. retval = p->policy;
  3732. }
  3733. read_unlock(&tasklist_lock);
  3734. out_nounlock:
  3735. return retval;
  3736. }
  3737. /**
  3738. * sys_sched_getscheduler - get the RT priority of a thread
  3739. * @pid: the pid in question.
  3740. * @param: structure containing the RT priority.
  3741. */
  3742. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3743. {
  3744. struct sched_param lp;
  3745. struct task_struct *p;
  3746. int retval = -EINVAL;
  3747. if (!param || pid < 0)
  3748. goto out_nounlock;
  3749. read_lock(&tasklist_lock);
  3750. p = find_process_by_pid(pid);
  3751. retval = -ESRCH;
  3752. if (!p)
  3753. goto out_unlock;
  3754. retval = security_task_getscheduler(p);
  3755. if (retval)
  3756. goto out_unlock;
  3757. lp.sched_priority = p->rt_priority;
  3758. read_unlock(&tasklist_lock);
  3759. /*
  3760. * This one might sleep, we cannot do it with a spinlock held ...
  3761. */
  3762. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3763. out_nounlock:
  3764. return retval;
  3765. out_unlock:
  3766. read_unlock(&tasklist_lock);
  3767. return retval;
  3768. }
  3769. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3770. {
  3771. cpumask_t cpus_allowed;
  3772. struct task_struct *p;
  3773. int retval;
  3774. mutex_lock(&sched_hotcpu_mutex);
  3775. read_lock(&tasklist_lock);
  3776. p = find_process_by_pid(pid);
  3777. if (!p) {
  3778. read_unlock(&tasklist_lock);
  3779. mutex_unlock(&sched_hotcpu_mutex);
  3780. return -ESRCH;
  3781. }
  3782. /*
  3783. * It is not safe to call set_cpus_allowed with the
  3784. * tasklist_lock held. We will bump the task_struct's
  3785. * usage count and then drop tasklist_lock.
  3786. */
  3787. get_task_struct(p);
  3788. read_unlock(&tasklist_lock);
  3789. retval = -EPERM;
  3790. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3791. !capable(CAP_SYS_NICE))
  3792. goto out_unlock;
  3793. retval = security_task_setscheduler(p, 0, NULL);
  3794. if (retval)
  3795. goto out_unlock;
  3796. cpus_allowed = cpuset_cpus_allowed(p);
  3797. cpus_and(new_mask, new_mask, cpus_allowed);
  3798. retval = set_cpus_allowed(p, new_mask);
  3799. out_unlock:
  3800. put_task_struct(p);
  3801. mutex_unlock(&sched_hotcpu_mutex);
  3802. return retval;
  3803. }
  3804. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3805. cpumask_t *new_mask)
  3806. {
  3807. if (len < sizeof(cpumask_t)) {
  3808. memset(new_mask, 0, sizeof(cpumask_t));
  3809. } else if (len > sizeof(cpumask_t)) {
  3810. len = sizeof(cpumask_t);
  3811. }
  3812. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3813. }
  3814. /**
  3815. * sys_sched_setaffinity - set the cpu affinity of a process
  3816. * @pid: pid of the process
  3817. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3818. * @user_mask_ptr: user-space pointer to the new cpu mask
  3819. */
  3820. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3821. unsigned long __user *user_mask_ptr)
  3822. {
  3823. cpumask_t new_mask;
  3824. int retval;
  3825. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3826. if (retval)
  3827. return retval;
  3828. return sched_setaffinity(pid, new_mask);
  3829. }
  3830. /*
  3831. * Represents all cpu's present in the system
  3832. * In systems capable of hotplug, this map could dynamically grow
  3833. * as new cpu's are detected in the system via any platform specific
  3834. * method, such as ACPI for e.g.
  3835. */
  3836. cpumask_t cpu_present_map __read_mostly;
  3837. EXPORT_SYMBOL(cpu_present_map);
  3838. #ifndef CONFIG_SMP
  3839. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3840. EXPORT_SYMBOL(cpu_online_map);
  3841. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3842. EXPORT_SYMBOL(cpu_possible_map);
  3843. #endif
  3844. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3845. {
  3846. struct task_struct *p;
  3847. int retval;
  3848. mutex_lock(&sched_hotcpu_mutex);
  3849. read_lock(&tasklist_lock);
  3850. retval = -ESRCH;
  3851. p = find_process_by_pid(pid);
  3852. if (!p)
  3853. goto out_unlock;
  3854. retval = security_task_getscheduler(p);
  3855. if (retval)
  3856. goto out_unlock;
  3857. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3858. out_unlock:
  3859. read_unlock(&tasklist_lock);
  3860. mutex_unlock(&sched_hotcpu_mutex);
  3861. return retval;
  3862. }
  3863. /**
  3864. * sys_sched_getaffinity - get the cpu affinity of a process
  3865. * @pid: pid of the process
  3866. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3867. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3868. */
  3869. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3870. unsigned long __user *user_mask_ptr)
  3871. {
  3872. int ret;
  3873. cpumask_t mask;
  3874. if (len < sizeof(cpumask_t))
  3875. return -EINVAL;
  3876. ret = sched_getaffinity(pid, &mask);
  3877. if (ret < 0)
  3878. return ret;
  3879. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3880. return -EFAULT;
  3881. return sizeof(cpumask_t);
  3882. }
  3883. /**
  3884. * sys_sched_yield - yield the current processor to other threads.
  3885. *
  3886. * This function yields the current CPU to other tasks. If there are no
  3887. * other threads running on this CPU then this function will return.
  3888. */
  3889. asmlinkage long sys_sched_yield(void)
  3890. {
  3891. struct rq *rq = this_rq_lock();
  3892. schedstat_inc(rq, yld_cnt);
  3893. current->sched_class->yield_task(rq, current);
  3894. /*
  3895. * Since we are going to call schedule() anyway, there's
  3896. * no need to preempt or enable interrupts:
  3897. */
  3898. __release(rq->lock);
  3899. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3900. _raw_spin_unlock(&rq->lock);
  3901. preempt_enable_no_resched();
  3902. schedule();
  3903. return 0;
  3904. }
  3905. static void __cond_resched(void)
  3906. {
  3907. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  3908. __might_sleep(__FILE__, __LINE__);
  3909. #endif
  3910. /*
  3911. * The BKS might be reacquired before we have dropped
  3912. * PREEMPT_ACTIVE, which could trigger a second
  3913. * cond_resched() call.
  3914. */
  3915. do {
  3916. add_preempt_count(PREEMPT_ACTIVE);
  3917. schedule();
  3918. sub_preempt_count(PREEMPT_ACTIVE);
  3919. } while (need_resched());
  3920. }
  3921. int __sched cond_resched(void)
  3922. {
  3923. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  3924. system_state == SYSTEM_RUNNING) {
  3925. __cond_resched();
  3926. return 1;
  3927. }
  3928. return 0;
  3929. }
  3930. EXPORT_SYMBOL(cond_resched);
  3931. /*
  3932. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3933. * call schedule, and on return reacquire the lock.
  3934. *
  3935. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3936. * operations here to prevent schedule() from being called twice (once via
  3937. * spin_unlock(), once by hand).
  3938. */
  3939. int cond_resched_lock(spinlock_t *lock)
  3940. {
  3941. int ret = 0;
  3942. if (need_lockbreak(lock)) {
  3943. spin_unlock(lock);
  3944. cpu_relax();
  3945. ret = 1;
  3946. spin_lock(lock);
  3947. }
  3948. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3949. spin_release(&lock->dep_map, 1, _THIS_IP_);
  3950. _raw_spin_unlock(lock);
  3951. preempt_enable_no_resched();
  3952. __cond_resched();
  3953. ret = 1;
  3954. spin_lock(lock);
  3955. }
  3956. return ret;
  3957. }
  3958. EXPORT_SYMBOL(cond_resched_lock);
  3959. int __sched cond_resched_softirq(void)
  3960. {
  3961. BUG_ON(!in_softirq());
  3962. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3963. local_bh_enable();
  3964. __cond_resched();
  3965. local_bh_disable();
  3966. return 1;
  3967. }
  3968. return 0;
  3969. }
  3970. EXPORT_SYMBOL(cond_resched_softirq);
  3971. /**
  3972. * yield - yield the current processor to other threads.
  3973. *
  3974. * This is a shortcut for kernel-space yielding - it marks the
  3975. * thread runnable and calls sys_sched_yield().
  3976. */
  3977. void __sched yield(void)
  3978. {
  3979. set_current_state(TASK_RUNNING);
  3980. sys_sched_yield();
  3981. }
  3982. EXPORT_SYMBOL(yield);
  3983. /*
  3984. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3985. * that process accounting knows that this is a task in IO wait state.
  3986. *
  3987. * But don't do that if it is a deliberate, throttling IO wait (this task
  3988. * has set its backing_dev_info: the queue against which it should throttle)
  3989. */
  3990. void __sched io_schedule(void)
  3991. {
  3992. struct rq *rq = &__raw_get_cpu_var(runqueues);
  3993. delayacct_blkio_start();
  3994. atomic_inc(&rq->nr_iowait);
  3995. schedule();
  3996. atomic_dec(&rq->nr_iowait);
  3997. delayacct_blkio_end();
  3998. }
  3999. EXPORT_SYMBOL(io_schedule);
  4000. long __sched io_schedule_timeout(long timeout)
  4001. {
  4002. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4003. long ret;
  4004. delayacct_blkio_start();
  4005. atomic_inc(&rq->nr_iowait);
  4006. ret = schedule_timeout(timeout);
  4007. atomic_dec(&rq->nr_iowait);
  4008. delayacct_blkio_end();
  4009. return ret;
  4010. }
  4011. /**
  4012. * sys_sched_get_priority_max - return maximum RT priority.
  4013. * @policy: scheduling class.
  4014. *
  4015. * this syscall returns the maximum rt_priority that can be used
  4016. * by a given scheduling class.
  4017. */
  4018. asmlinkage long sys_sched_get_priority_max(int policy)
  4019. {
  4020. int ret = -EINVAL;
  4021. switch (policy) {
  4022. case SCHED_FIFO:
  4023. case SCHED_RR:
  4024. ret = MAX_USER_RT_PRIO-1;
  4025. break;
  4026. case SCHED_NORMAL:
  4027. case SCHED_BATCH:
  4028. case SCHED_IDLE:
  4029. ret = 0;
  4030. break;
  4031. }
  4032. return ret;
  4033. }
  4034. /**
  4035. * sys_sched_get_priority_min - return minimum RT priority.
  4036. * @policy: scheduling class.
  4037. *
  4038. * this syscall returns the minimum rt_priority that can be used
  4039. * by a given scheduling class.
  4040. */
  4041. asmlinkage long sys_sched_get_priority_min(int policy)
  4042. {
  4043. int ret = -EINVAL;
  4044. switch (policy) {
  4045. case SCHED_FIFO:
  4046. case SCHED_RR:
  4047. ret = 1;
  4048. break;
  4049. case SCHED_NORMAL:
  4050. case SCHED_BATCH:
  4051. case SCHED_IDLE:
  4052. ret = 0;
  4053. }
  4054. return ret;
  4055. }
  4056. /**
  4057. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4058. * @pid: pid of the process.
  4059. * @interval: userspace pointer to the timeslice value.
  4060. *
  4061. * this syscall writes the default timeslice value of a given process
  4062. * into the user-space timespec buffer. A value of '0' means infinity.
  4063. */
  4064. asmlinkage
  4065. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4066. {
  4067. struct task_struct *p;
  4068. int retval = -EINVAL;
  4069. struct timespec t;
  4070. if (pid < 0)
  4071. goto out_nounlock;
  4072. retval = -ESRCH;
  4073. read_lock(&tasklist_lock);
  4074. p = find_process_by_pid(pid);
  4075. if (!p)
  4076. goto out_unlock;
  4077. retval = security_task_getscheduler(p);
  4078. if (retval)
  4079. goto out_unlock;
  4080. jiffies_to_timespec(p->policy == SCHED_FIFO ?
  4081. 0 : static_prio_timeslice(p->static_prio), &t);
  4082. read_unlock(&tasklist_lock);
  4083. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4084. out_nounlock:
  4085. return retval;
  4086. out_unlock:
  4087. read_unlock(&tasklist_lock);
  4088. return retval;
  4089. }
  4090. static const char stat_nam[] = "RSDTtZX";
  4091. static void show_task(struct task_struct *p)
  4092. {
  4093. unsigned long free = 0;
  4094. unsigned state;
  4095. state = p->state ? __ffs(p->state) + 1 : 0;
  4096. printk("%-13.13s %c", p->comm,
  4097. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4098. #if BITS_PER_LONG == 32
  4099. if (state == TASK_RUNNING)
  4100. printk(" running ");
  4101. else
  4102. printk(" %08lx ", thread_saved_pc(p));
  4103. #else
  4104. if (state == TASK_RUNNING)
  4105. printk(" running task ");
  4106. else
  4107. printk(" %016lx ", thread_saved_pc(p));
  4108. #endif
  4109. #ifdef CONFIG_DEBUG_STACK_USAGE
  4110. {
  4111. unsigned long *n = end_of_stack(p);
  4112. while (!*n)
  4113. n++;
  4114. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4115. }
  4116. #endif
  4117. printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
  4118. if (state != TASK_RUNNING)
  4119. show_stack(p, NULL);
  4120. }
  4121. void show_state_filter(unsigned long state_filter)
  4122. {
  4123. struct task_struct *g, *p;
  4124. #if BITS_PER_LONG == 32
  4125. printk(KERN_INFO
  4126. " task PC stack pid father\n");
  4127. #else
  4128. printk(KERN_INFO
  4129. " task PC stack pid father\n");
  4130. #endif
  4131. read_lock(&tasklist_lock);
  4132. do_each_thread(g, p) {
  4133. /*
  4134. * reset the NMI-timeout, listing all files on a slow
  4135. * console might take alot of time:
  4136. */
  4137. touch_nmi_watchdog();
  4138. if (!state_filter || (p->state & state_filter))
  4139. show_task(p);
  4140. } while_each_thread(g, p);
  4141. touch_all_softlockup_watchdogs();
  4142. #ifdef CONFIG_SCHED_DEBUG
  4143. sysrq_sched_debug_show();
  4144. #endif
  4145. read_unlock(&tasklist_lock);
  4146. /*
  4147. * Only show locks if all tasks are dumped:
  4148. */
  4149. if (state_filter == -1)
  4150. debug_show_all_locks();
  4151. }
  4152. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4153. {
  4154. idle->sched_class = &idle_sched_class;
  4155. }
  4156. /**
  4157. * init_idle - set up an idle thread for a given CPU
  4158. * @idle: task in question
  4159. * @cpu: cpu the idle task belongs to
  4160. *
  4161. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4162. * flag, to make booting more robust.
  4163. */
  4164. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4165. {
  4166. struct rq *rq = cpu_rq(cpu);
  4167. unsigned long flags;
  4168. __sched_fork(idle);
  4169. idle->se.exec_start = sched_clock();
  4170. idle->prio = idle->normal_prio = MAX_PRIO;
  4171. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4172. __set_task_cpu(idle, cpu);
  4173. spin_lock_irqsave(&rq->lock, flags);
  4174. rq->curr = rq->idle = idle;
  4175. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4176. idle->oncpu = 1;
  4177. #endif
  4178. spin_unlock_irqrestore(&rq->lock, flags);
  4179. /* Set the preempt count _outside_ the spinlocks! */
  4180. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4181. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4182. #else
  4183. task_thread_info(idle)->preempt_count = 0;
  4184. #endif
  4185. /*
  4186. * The idle tasks have their own, simple scheduling class:
  4187. */
  4188. idle->sched_class = &idle_sched_class;
  4189. }
  4190. /*
  4191. * In a system that switches off the HZ timer nohz_cpu_mask
  4192. * indicates which cpus entered this state. This is used
  4193. * in the rcu update to wait only for active cpus. For system
  4194. * which do not switch off the HZ timer nohz_cpu_mask should
  4195. * always be CPU_MASK_NONE.
  4196. */
  4197. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4198. #ifdef CONFIG_SMP
  4199. /*
  4200. * This is how migration works:
  4201. *
  4202. * 1) we queue a struct migration_req structure in the source CPU's
  4203. * runqueue and wake up that CPU's migration thread.
  4204. * 2) we down() the locked semaphore => thread blocks.
  4205. * 3) migration thread wakes up (implicitly it forces the migrated
  4206. * thread off the CPU)
  4207. * 4) it gets the migration request and checks whether the migrated
  4208. * task is still in the wrong runqueue.
  4209. * 5) if it's in the wrong runqueue then the migration thread removes
  4210. * it and puts it into the right queue.
  4211. * 6) migration thread up()s the semaphore.
  4212. * 7) we wake up and the migration is done.
  4213. */
  4214. /*
  4215. * Change a given task's CPU affinity. Migrate the thread to a
  4216. * proper CPU and schedule it away if the CPU it's executing on
  4217. * is removed from the allowed bitmask.
  4218. *
  4219. * NOTE: the caller must have a valid reference to the task, the
  4220. * task must not exit() & deallocate itself prematurely. The
  4221. * call is not atomic; no spinlocks may be held.
  4222. */
  4223. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4224. {
  4225. struct migration_req req;
  4226. unsigned long flags;
  4227. struct rq *rq;
  4228. int ret = 0;
  4229. rq = task_rq_lock(p, &flags);
  4230. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4231. ret = -EINVAL;
  4232. goto out;
  4233. }
  4234. p->cpus_allowed = new_mask;
  4235. /* Can the task run on the task's current CPU? If so, we're done */
  4236. if (cpu_isset(task_cpu(p), new_mask))
  4237. goto out;
  4238. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4239. /* Need help from migration thread: drop lock and wait. */
  4240. task_rq_unlock(rq, &flags);
  4241. wake_up_process(rq->migration_thread);
  4242. wait_for_completion(&req.done);
  4243. tlb_migrate_finish(p->mm);
  4244. return 0;
  4245. }
  4246. out:
  4247. task_rq_unlock(rq, &flags);
  4248. return ret;
  4249. }
  4250. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4251. /*
  4252. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4253. * this because either it can't run here any more (set_cpus_allowed()
  4254. * away from this CPU, or CPU going down), or because we're
  4255. * attempting to rebalance this task on exec (sched_exec).
  4256. *
  4257. * So we race with normal scheduler movements, but that's OK, as long
  4258. * as the task is no longer on this CPU.
  4259. *
  4260. * Returns non-zero if task was successfully migrated.
  4261. */
  4262. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4263. {
  4264. struct rq *rq_dest, *rq_src;
  4265. int ret = 0, on_rq;
  4266. if (unlikely(cpu_is_offline(dest_cpu)))
  4267. return ret;
  4268. rq_src = cpu_rq(src_cpu);
  4269. rq_dest = cpu_rq(dest_cpu);
  4270. double_rq_lock(rq_src, rq_dest);
  4271. /* Already moved. */
  4272. if (task_cpu(p) != src_cpu)
  4273. goto out;
  4274. /* Affinity changed (again). */
  4275. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4276. goto out;
  4277. on_rq = p->se.on_rq;
  4278. if (on_rq)
  4279. deactivate_task(rq_src, p, 0);
  4280. set_task_cpu(p, dest_cpu);
  4281. if (on_rq) {
  4282. activate_task(rq_dest, p, 0);
  4283. check_preempt_curr(rq_dest, p);
  4284. }
  4285. ret = 1;
  4286. out:
  4287. double_rq_unlock(rq_src, rq_dest);
  4288. return ret;
  4289. }
  4290. /*
  4291. * migration_thread - this is a highprio system thread that performs
  4292. * thread migration by bumping thread off CPU then 'pushing' onto
  4293. * another runqueue.
  4294. */
  4295. static int migration_thread(void *data)
  4296. {
  4297. int cpu = (long)data;
  4298. struct rq *rq;
  4299. rq = cpu_rq(cpu);
  4300. BUG_ON(rq->migration_thread != current);
  4301. set_current_state(TASK_INTERRUPTIBLE);
  4302. while (!kthread_should_stop()) {
  4303. struct migration_req *req;
  4304. struct list_head *head;
  4305. spin_lock_irq(&rq->lock);
  4306. if (cpu_is_offline(cpu)) {
  4307. spin_unlock_irq(&rq->lock);
  4308. goto wait_to_die;
  4309. }
  4310. if (rq->active_balance) {
  4311. active_load_balance(rq, cpu);
  4312. rq->active_balance = 0;
  4313. }
  4314. head = &rq->migration_queue;
  4315. if (list_empty(head)) {
  4316. spin_unlock_irq(&rq->lock);
  4317. schedule();
  4318. set_current_state(TASK_INTERRUPTIBLE);
  4319. continue;
  4320. }
  4321. req = list_entry(head->next, struct migration_req, list);
  4322. list_del_init(head->next);
  4323. spin_unlock(&rq->lock);
  4324. __migrate_task(req->task, cpu, req->dest_cpu);
  4325. local_irq_enable();
  4326. complete(&req->done);
  4327. }
  4328. __set_current_state(TASK_RUNNING);
  4329. return 0;
  4330. wait_to_die:
  4331. /* Wait for kthread_stop */
  4332. set_current_state(TASK_INTERRUPTIBLE);
  4333. while (!kthread_should_stop()) {
  4334. schedule();
  4335. set_current_state(TASK_INTERRUPTIBLE);
  4336. }
  4337. __set_current_state(TASK_RUNNING);
  4338. return 0;
  4339. }
  4340. #ifdef CONFIG_HOTPLUG_CPU
  4341. /*
  4342. * Figure out where task on dead CPU should go, use force if neccessary.
  4343. * NOTE: interrupts should be disabled by the caller
  4344. */
  4345. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4346. {
  4347. unsigned long flags;
  4348. cpumask_t mask;
  4349. struct rq *rq;
  4350. int dest_cpu;
  4351. restart:
  4352. /* On same node? */
  4353. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4354. cpus_and(mask, mask, p->cpus_allowed);
  4355. dest_cpu = any_online_cpu(mask);
  4356. /* On any allowed CPU? */
  4357. if (dest_cpu == NR_CPUS)
  4358. dest_cpu = any_online_cpu(p->cpus_allowed);
  4359. /* No more Mr. Nice Guy. */
  4360. if (dest_cpu == NR_CPUS) {
  4361. rq = task_rq_lock(p, &flags);
  4362. cpus_setall(p->cpus_allowed);
  4363. dest_cpu = any_online_cpu(p->cpus_allowed);
  4364. task_rq_unlock(rq, &flags);
  4365. /*
  4366. * Don't tell them about moving exiting tasks or
  4367. * kernel threads (both mm NULL), since they never
  4368. * leave kernel.
  4369. */
  4370. if (p->mm && printk_ratelimit())
  4371. printk(KERN_INFO "process %d (%s) no "
  4372. "longer affine to cpu%d\n",
  4373. p->pid, p->comm, dead_cpu);
  4374. }
  4375. if (!__migrate_task(p, dead_cpu, dest_cpu))
  4376. goto restart;
  4377. }
  4378. /*
  4379. * While a dead CPU has no uninterruptible tasks queued at this point,
  4380. * it might still have a nonzero ->nr_uninterruptible counter, because
  4381. * for performance reasons the counter is not stricly tracking tasks to
  4382. * their home CPUs. So we just add the counter to another CPU's counter,
  4383. * to keep the global sum constant after CPU-down:
  4384. */
  4385. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4386. {
  4387. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4388. unsigned long flags;
  4389. local_irq_save(flags);
  4390. double_rq_lock(rq_src, rq_dest);
  4391. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4392. rq_src->nr_uninterruptible = 0;
  4393. double_rq_unlock(rq_src, rq_dest);
  4394. local_irq_restore(flags);
  4395. }
  4396. /* Run through task list and migrate tasks from the dead cpu. */
  4397. static void migrate_live_tasks(int src_cpu)
  4398. {
  4399. struct task_struct *p, *t;
  4400. write_lock_irq(&tasklist_lock);
  4401. do_each_thread(t, p) {
  4402. if (p == current)
  4403. continue;
  4404. if (task_cpu(p) == src_cpu)
  4405. move_task_off_dead_cpu(src_cpu, p);
  4406. } while_each_thread(t, p);
  4407. write_unlock_irq(&tasklist_lock);
  4408. }
  4409. /*
  4410. * Schedules idle task to be the next runnable task on current CPU.
  4411. * It does so by boosting its priority to highest possible and adding it to
  4412. * the _front_ of the runqueue. Used by CPU offline code.
  4413. */
  4414. void sched_idle_next(void)
  4415. {
  4416. int this_cpu = smp_processor_id();
  4417. struct rq *rq = cpu_rq(this_cpu);
  4418. struct task_struct *p = rq->idle;
  4419. unsigned long flags;
  4420. /* cpu has to be offline */
  4421. BUG_ON(cpu_online(this_cpu));
  4422. /*
  4423. * Strictly not necessary since rest of the CPUs are stopped by now
  4424. * and interrupts disabled on the current cpu.
  4425. */
  4426. spin_lock_irqsave(&rq->lock, flags);
  4427. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4428. /* Add idle task to the _front_ of its priority queue: */
  4429. activate_idle_task(p, rq);
  4430. spin_unlock_irqrestore(&rq->lock, flags);
  4431. }
  4432. /*
  4433. * Ensures that the idle task is using init_mm right before its cpu goes
  4434. * offline.
  4435. */
  4436. void idle_task_exit(void)
  4437. {
  4438. struct mm_struct *mm = current->active_mm;
  4439. BUG_ON(cpu_online(smp_processor_id()));
  4440. if (mm != &init_mm)
  4441. switch_mm(mm, &init_mm, current);
  4442. mmdrop(mm);
  4443. }
  4444. /* called under rq->lock with disabled interrupts */
  4445. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4446. {
  4447. struct rq *rq = cpu_rq(dead_cpu);
  4448. /* Must be exiting, otherwise would be on tasklist. */
  4449. BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
  4450. /* Cannot have done final schedule yet: would have vanished. */
  4451. BUG_ON(p->state == TASK_DEAD);
  4452. get_task_struct(p);
  4453. /*
  4454. * Drop lock around migration; if someone else moves it,
  4455. * that's OK. No task can be added to this CPU, so iteration is
  4456. * fine.
  4457. * NOTE: interrupts should be left disabled --dev@
  4458. */
  4459. spin_unlock(&rq->lock);
  4460. move_task_off_dead_cpu(dead_cpu, p);
  4461. spin_lock(&rq->lock);
  4462. put_task_struct(p);
  4463. }
  4464. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4465. static void migrate_dead_tasks(unsigned int dead_cpu)
  4466. {
  4467. struct rq *rq = cpu_rq(dead_cpu);
  4468. struct task_struct *next;
  4469. for ( ; ; ) {
  4470. if (!rq->nr_running)
  4471. break;
  4472. update_rq_clock(rq);
  4473. next = pick_next_task(rq, rq->curr);
  4474. if (!next)
  4475. break;
  4476. migrate_dead(dead_cpu, next);
  4477. }
  4478. }
  4479. #endif /* CONFIG_HOTPLUG_CPU */
  4480. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4481. static struct ctl_table sd_ctl_dir[] = {
  4482. {
  4483. .procname = "sched_domain",
  4484. .mode = 0555,
  4485. },
  4486. {0,},
  4487. };
  4488. static struct ctl_table sd_ctl_root[] = {
  4489. {
  4490. .ctl_name = CTL_KERN,
  4491. .procname = "kernel",
  4492. .mode = 0555,
  4493. .child = sd_ctl_dir,
  4494. },
  4495. {0,},
  4496. };
  4497. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4498. {
  4499. struct ctl_table *entry =
  4500. kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
  4501. BUG_ON(!entry);
  4502. memset(entry, 0, n * sizeof(struct ctl_table));
  4503. return entry;
  4504. }
  4505. static void
  4506. set_table_entry(struct ctl_table *entry,
  4507. const char *procname, void *data, int maxlen,
  4508. mode_t mode, proc_handler *proc_handler)
  4509. {
  4510. entry->procname = procname;
  4511. entry->data = data;
  4512. entry->maxlen = maxlen;
  4513. entry->mode = mode;
  4514. entry->proc_handler = proc_handler;
  4515. }
  4516. static struct ctl_table *
  4517. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4518. {
  4519. struct ctl_table *table = sd_alloc_ctl_entry(14);
  4520. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4521. sizeof(long), 0644, proc_doulongvec_minmax);
  4522. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4523. sizeof(long), 0644, proc_doulongvec_minmax);
  4524. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4525. sizeof(int), 0644, proc_dointvec_minmax);
  4526. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4527. sizeof(int), 0644, proc_dointvec_minmax);
  4528. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4529. sizeof(int), 0644, proc_dointvec_minmax);
  4530. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4531. sizeof(int), 0644, proc_dointvec_minmax);
  4532. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4533. sizeof(int), 0644, proc_dointvec_minmax);
  4534. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4535. sizeof(int), 0644, proc_dointvec_minmax);
  4536. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4537. sizeof(int), 0644, proc_dointvec_minmax);
  4538. set_table_entry(&table[10], "cache_nice_tries",
  4539. &sd->cache_nice_tries,
  4540. sizeof(int), 0644, proc_dointvec_minmax);
  4541. set_table_entry(&table[12], "flags", &sd->flags,
  4542. sizeof(int), 0644, proc_dointvec_minmax);
  4543. return table;
  4544. }
  4545. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4546. {
  4547. struct ctl_table *entry, *table;
  4548. struct sched_domain *sd;
  4549. int domain_num = 0, i;
  4550. char buf[32];
  4551. for_each_domain(cpu, sd)
  4552. domain_num++;
  4553. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4554. i = 0;
  4555. for_each_domain(cpu, sd) {
  4556. snprintf(buf, 32, "domain%d", i);
  4557. entry->procname = kstrdup(buf, GFP_KERNEL);
  4558. entry->mode = 0555;
  4559. entry->child = sd_alloc_ctl_domain_table(sd);
  4560. entry++;
  4561. i++;
  4562. }
  4563. return table;
  4564. }
  4565. static struct ctl_table_header *sd_sysctl_header;
  4566. static void init_sched_domain_sysctl(void)
  4567. {
  4568. int i, cpu_num = num_online_cpus();
  4569. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4570. char buf[32];
  4571. sd_ctl_dir[0].child = entry;
  4572. for (i = 0; i < cpu_num; i++, entry++) {
  4573. snprintf(buf, 32, "cpu%d", i);
  4574. entry->procname = kstrdup(buf, GFP_KERNEL);
  4575. entry->mode = 0555;
  4576. entry->child = sd_alloc_ctl_cpu_table(i);
  4577. }
  4578. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4579. }
  4580. #else
  4581. static void init_sched_domain_sysctl(void)
  4582. {
  4583. }
  4584. #endif
  4585. /*
  4586. * migration_call - callback that gets triggered when a CPU is added.
  4587. * Here we can start up the necessary migration thread for the new CPU.
  4588. */
  4589. static int __cpuinit
  4590. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4591. {
  4592. struct task_struct *p;
  4593. int cpu = (long)hcpu;
  4594. unsigned long flags;
  4595. struct rq *rq;
  4596. switch (action) {
  4597. case CPU_LOCK_ACQUIRE:
  4598. mutex_lock(&sched_hotcpu_mutex);
  4599. break;
  4600. case CPU_UP_PREPARE:
  4601. case CPU_UP_PREPARE_FROZEN:
  4602. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4603. if (IS_ERR(p))
  4604. return NOTIFY_BAD;
  4605. kthread_bind(p, cpu);
  4606. /* Must be high prio: stop_machine expects to yield to it. */
  4607. rq = task_rq_lock(p, &flags);
  4608. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4609. task_rq_unlock(rq, &flags);
  4610. cpu_rq(cpu)->migration_thread = p;
  4611. break;
  4612. case CPU_ONLINE:
  4613. case CPU_ONLINE_FROZEN:
  4614. /* Strictly unneccessary, as first user will wake it. */
  4615. wake_up_process(cpu_rq(cpu)->migration_thread);
  4616. break;
  4617. #ifdef CONFIG_HOTPLUG_CPU
  4618. case CPU_UP_CANCELED:
  4619. case CPU_UP_CANCELED_FROZEN:
  4620. if (!cpu_rq(cpu)->migration_thread)
  4621. break;
  4622. /* Unbind it from offline cpu so it can run. Fall thru. */
  4623. kthread_bind(cpu_rq(cpu)->migration_thread,
  4624. any_online_cpu(cpu_online_map));
  4625. kthread_stop(cpu_rq(cpu)->migration_thread);
  4626. cpu_rq(cpu)->migration_thread = NULL;
  4627. break;
  4628. case CPU_DEAD:
  4629. case CPU_DEAD_FROZEN:
  4630. migrate_live_tasks(cpu);
  4631. rq = cpu_rq(cpu);
  4632. kthread_stop(rq->migration_thread);
  4633. rq->migration_thread = NULL;
  4634. /* Idle task back to normal (off runqueue, low prio) */
  4635. rq = task_rq_lock(rq->idle, &flags);
  4636. update_rq_clock(rq);
  4637. deactivate_task(rq, rq->idle, 0);
  4638. rq->idle->static_prio = MAX_PRIO;
  4639. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4640. rq->idle->sched_class = &idle_sched_class;
  4641. migrate_dead_tasks(cpu);
  4642. task_rq_unlock(rq, &flags);
  4643. migrate_nr_uninterruptible(rq);
  4644. BUG_ON(rq->nr_running != 0);
  4645. /* No need to migrate the tasks: it was best-effort if
  4646. * they didn't take sched_hotcpu_mutex. Just wake up
  4647. * the requestors. */
  4648. spin_lock_irq(&rq->lock);
  4649. while (!list_empty(&rq->migration_queue)) {
  4650. struct migration_req *req;
  4651. req = list_entry(rq->migration_queue.next,
  4652. struct migration_req, list);
  4653. list_del_init(&req->list);
  4654. complete(&req->done);
  4655. }
  4656. spin_unlock_irq(&rq->lock);
  4657. break;
  4658. #endif
  4659. case CPU_LOCK_RELEASE:
  4660. mutex_unlock(&sched_hotcpu_mutex);
  4661. break;
  4662. }
  4663. return NOTIFY_OK;
  4664. }
  4665. /* Register at highest priority so that task migration (migrate_all_tasks)
  4666. * happens before everything else.
  4667. */
  4668. static struct notifier_block __cpuinitdata migration_notifier = {
  4669. .notifier_call = migration_call,
  4670. .priority = 10
  4671. };
  4672. int __init migration_init(void)
  4673. {
  4674. void *cpu = (void *)(long)smp_processor_id();
  4675. int err;
  4676. /* Start one for the boot CPU: */
  4677. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4678. BUG_ON(err == NOTIFY_BAD);
  4679. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4680. register_cpu_notifier(&migration_notifier);
  4681. return 0;
  4682. }
  4683. #endif
  4684. #ifdef CONFIG_SMP
  4685. /* Number of possible processor ids */
  4686. int nr_cpu_ids __read_mostly = NR_CPUS;
  4687. EXPORT_SYMBOL(nr_cpu_ids);
  4688. #undef SCHED_DOMAIN_DEBUG
  4689. #ifdef SCHED_DOMAIN_DEBUG
  4690. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4691. {
  4692. int level = 0;
  4693. if (!sd) {
  4694. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4695. return;
  4696. }
  4697. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4698. do {
  4699. int i;
  4700. char str[NR_CPUS];
  4701. struct sched_group *group = sd->groups;
  4702. cpumask_t groupmask;
  4703. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4704. cpus_clear(groupmask);
  4705. printk(KERN_DEBUG);
  4706. for (i = 0; i < level + 1; i++)
  4707. printk(" ");
  4708. printk("domain %d: ", level);
  4709. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4710. printk("does not load-balance\n");
  4711. if (sd->parent)
  4712. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4713. " has parent");
  4714. break;
  4715. }
  4716. printk("span %s\n", str);
  4717. if (!cpu_isset(cpu, sd->span))
  4718. printk(KERN_ERR "ERROR: domain->span does not contain "
  4719. "CPU%d\n", cpu);
  4720. if (!cpu_isset(cpu, group->cpumask))
  4721. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4722. " CPU%d\n", cpu);
  4723. printk(KERN_DEBUG);
  4724. for (i = 0; i < level + 2; i++)
  4725. printk(" ");
  4726. printk("groups:");
  4727. do {
  4728. if (!group) {
  4729. printk("\n");
  4730. printk(KERN_ERR "ERROR: group is NULL\n");
  4731. break;
  4732. }
  4733. if (!group->__cpu_power) {
  4734. printk("\n");
  4735. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4736. "set\n");
  4737. }
  4738. if (!cpus_weight(group->cpumask)) {
  4739. printk("\n");
  4740. printk(KERN_ERR "ERROR: empty group\n");
  4741. }
  4742. if (cpus_intersects(groupmask, group->cpumask)) {
  4743. printk("\n");
  4744. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4745. }
  4746. cpus_or(groupmask, groupmask, group->cpumask);
  4747. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4748. printk(" %s", str);
  4749. group = group->next;
  4750. } while (group != sd->groups);
  4751. printk("\n");
  4752. if (!cpus_equal(sd->span, groupmask))
  4753. printk(KERN_ERR "ERROR: groups don't span "
  4754. "domain->span\n");
  4755. level++;
  4756. sd = sd->parent;
  4757. if (!sd)
  4758. continue;
  4759. if (!cpus_subset(groupmask, sd->span))
  4760. printk(KERN_ERR "ERROR: parent span is not a superset "
  4761. "of domain->span\n");
  4762. } while (sd);
  4763. }
  4764. #else
  4765. # define sched_domain_debug(sd, cpu) do { } while (0)
  4766. #endif
  4767. static int sd_degenerate(struct sched_domain *sd)
  4768. {
  4769. if (cpus_weight(sd->span) == 1)
  4770. return 1;
  4771. /* Following flags need at least 2 groups */
  4772. if (sd->flags & (SD_LOAD_BALANCE |
  4773. SD_BALANCE_NEWIDLE |
  4774. SD_BALANCE_FORK |
  4775. SD_BALANCE_EXEC |
  4776. SD_SHARE_CPUPOWER |
  4777. SD_SHARE_PKG_RESOURCES)) {
  4778. if (sd->groups != sd->groups->next)
  4779. return 0;
  4780. }
  4781. /* Following flags don't use groups */
  4782. if (sd->flags & (SD_WAKE_IDLE |
  4783. SD_WAKE_AFFINE |
  4784. SD_WAKE_BALANCE))
  4785. return 0;
  4786. return 1;
  4787. }
  4788. static int
  4789. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4790. {
  4791. unsigned long cflags = sd->flags, pflags = parent->flags;
  4792. if (sd_degenerate(parent))
  4793. return 1;
  4794. if (!cpus_equal(sd->span, parent->span))
  4795. return 0;
  4796. /* Does parent contain flags not in child? */
  4797. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  4798. if (cflags & SD_WAKE_AFFINE)
  4799. pflags &= ~SD_WAKE_BALANCE;
  4800. /* Flags needing groups don't count if only 1 group in parent */
  4801. if (parent->groups == parent->groups->next) {
  4802. pflags &= ~(SD_LOAD_BALANCE |
  4803. SD_BALANCE_NEWIDLE |
  4804. SD_BALANCE_FORK |
  4805. SD_BALANCE_EXEC |
  4806. SD_SHARE_CPUPOWER |
  4807. SD_SHARE_PKG_RESOURCES);
  4808. }
  4809. if (~cflags & pflags)
  4810. return 0;
  4811. return 1;
  4812. }
  4813. /*
  4814. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4815. * hold the hotplug lock.
  4816. */
  4817. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  4818. {
  4819. struct rq *rq = cpu_rq(cpu);
  4820. struct sched_domain *tmp;
  4821. /* Remove the sched domains which do not contribute to scheduling. */
  4822. for (tmp = sd; tmp; tmp = tmp->parent) {
  4823. struct sched_domain *parent = tmp->parent;
  4824. if (!parent)
  4825. break;
  4826. if (sd_parent_degenerate(tmp, parent)) {
  4827. tmp->parent = parent->parent;
  4828. if (parent->parent)
  4829. parent->parent->child = tmp;
  4830. }
  4831. }
  4832. if (sd && sd_degenerate(sd)) {
  4833. sd = sd->parent;
  4834. if (sd)
  4835. sd->child = NULL;
  4836. }
  4837. sched_domain_debug(sd, cpu);
  4838. rcu_assign_pointer(rq->sd, sd);
  4839. }
  4840. /* cpus with isolated domains */
  4841. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  4842. /* Setup the mask of cpus configured for isolated domains */
  4843. static int __init isolated_cpu_setup(char *str)
  4844. {
  4845. int ints[NR_CPUS], i;
  4846. str = get_options(str, ARRAY_SIZE(ints), ints);
  4847. cpus_clear(cpu_isolated_map);
  4848. for (i = 1; i <= ints[0]; i++)
  4849. if (ints[i] < NR_CPUS)
  4850. cpu_set(ints[i], cpu_isolated_map);
  4851. return 1;
  4852. }
  4853. __setup ("isolcpus=", isolated_cpu_setup);
  4854. /*
  4855. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  4856. * to a function which identifies what group(along with sched group) a CPU
  4857. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  4858. * (due to the fact that we keep track of groups covered with a cpumask_t).
  4859. *
  4860. * init_sched_build_groups will build a circular linked list of the groups
  4861. * covered by the given span, and will set each group's ->cpumask correctly,
  4862. * and ->cpu_power to 0.
  4863. */
  4864. static void
  4865. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  4866. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  4867. struct sched_group **sg))
  4868. {
  4869. struct sched_group *first = NULL, *last = NULL;
  4870. cpumask_t covered = CPU_MASK_NONE;
  4871. int i;
  4872. for_each_cpu_mask(i, span) {
  4873. struct sched_group *sg;
  4874. int group = group_fn(i, cpu_map, &sg);
  4875. int j;
  4876. if (cpu_isset(i, covered))
  4877. continue;
  4878. sg->cpumask = CPU_MASK_NONE;
  4879. sg->__cpu_power = 0;
  4880. for_each_cpu_mask(j, span) {
  4881. if (group_fn(j, cpu_map, NULL) != group)
  4882. continue;
  4883. cpu_set(j, covered);
  4884. cpu_set(j, sg->cpumask);
  4885. }
  4886. if (!first)
  4887. first = sg;
  4888. if (last)
  4889. last->next = sg;
  4890. last = sg;
  4891. }
  4892. last->next = first;
  4893. }
  4894. #define SD_NODES_PER_DOMAIN 16
  4895. #ifdef CONFIG_NUMA
  4896. /**
  4897. * find_next_best_node - find the next node to include in a sched_domain
  4898. * @node: node whose sched_domain we're building
  4899. * @used_nodes: nodes already in the sched_domain
  4900. *
  4901. * Find the next node to include in a given scheduling domain. Simply
  4902. * finds the closest node not already in the @used_nodes map.
  4903. *
  4904. * Should use nodemask_t.
  4905. */
  4906. static int find_next_best_node(int node, unsigned long *used_nodes)
  4907. {
  4908. int i, n, val, min_val, best_node = 0;
  4909. min_val = INT_MAX;
  4910. for (i = 0; i < MAX_NUMNODES; i++) {
  4911. /* Start at @node */
  4912. n = (node + i) % MAX_NUMNODES;
  4913. if (!nr_cpus_node(n))
  4914. continue;
  4915. /* Skip already used nodes */
  4916. if (test_bit(n, used_nodes))
  4917. continue;
  4918. /* Simple min distance search */
  4919. val = node_distance(node, n);
  4920. if (val < min_val) {
  4921. min_val = val;
  4922. best_node = n;
  4923. }
  4924. }
  4925. set_bit(best_node, used_nodes);
  4926. return best_node;
  4927. }
  4928. /**
  4929. * sched_domain_node_span - get a cpumask for a node's sched_domain
  4930. * @node: node whose cpumask we're constructing
  4931. * @size: number of nodes to include in this span
  4932. *
  4933. * Given a node, construct a good cpumask for its sched_domain to span. It
  4934. * should be one that prevents unnecessary balancing, but also spreads tasks
  4935. * out optimally.
  4936. */
  4937. static cpumask_t sched_domain_node_span(int node)
  4938. {
  4939. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  4940. cpumask_t span, nodemask;
  4941. int i;
  4942. cpus_clear(span);
  4943. bitmap_zero(used_nodes, MAX_NUMNODES);
  4944. nodemask = node_to_cpumask(node);
  4945. cpus_or(span, span, nodemask);
  4946. set_bit(node, used_nodes);
  4947. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  4948. int next_node = find_next_best_node(node, used_nodes);
  4949. nodemask = node_to_cpumask(next_node);
  4950. cpus_or(span, span, nodemask);
  4951. }
  4952. return span;
  4953. }
  4954. #endif
  4955. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  4956. /*
  4957. * SMT sched-domains:
  4958. */
  4959. #ifdef CONFIG_SCHED_SMT
  4960. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  4961. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  4962. static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
  4963. struct sched_group **sg)
  4964. {
  4965. if (sg)
  4966. *sg = &per_cpu(sched_group_cpus, cpu);
  4967. return cpu;
  4968. }
  4969. #endif
  4970. /*
  4971. * multi-core sched-domains:
  4972. */
  4973. #ifdef CONFIG_SCHED_MC
  4974. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  4975. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  4976. #endif
  4977. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  4978. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  4979. struct sched_group **sg)
  4980. {
  4981. int group;
  4982. cpumask_t mask = cpu_sibling_map[cpu];
  4983. cpus_and(mask, mask, *cpu_map);
  4984. group = first_cpu(mask);
  4985. if (sg)
  4986. *sg = &per_cpu(sched_group_core, group);
  4987. return group;
  4988. }
  4989. #elif defined(CONFIG_SCHED_MC)
  4990. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  4991. struct sched_group **sg)
  4992. {
  4993. if (sg)
  4994. *sg = &per_cpu(sched_group_core, cpu);
  4995. return cpu;
  4996. }
  4997. #endif
  4998. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  4999. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5000. static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
  5001. struct sched_group **sg)
  5002. {
  5003. int group;
  5004. #ifdef CONFIG_SCHED_MC
  5005. cpumask_t mask = cpu_coregroup_map(cpu);
  5006. cpus_and(mask, mask, *cpu_map);
  5007. group = first_cpu(mask);
  5008. #elif defined(CONFIG_SCHED_SMT)
  5009. cpumask_t mask = cpu_sibling_map[cpu];
  5010. cpus_and(mask, mask, *cpu_map);
  5011. group = first_cpu(mask);
  5012. #else
  5013. group = cpu;
  5014. #endif
  5015. if (sg)
  5016. *sg = &per_cpu(sched_group_phys, group);
  5017. return group;
  5018. }
  5019. #ifdef CONFIG_NUMA
  5020. /*
  5021. * The init_sched_build_groups can't handle what we want to do with node
  5022. * groups, so roll our own. Now each node has its own list of groups which
  5023. * gets dynamically allocated.
  5024. */
  5025. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5026. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5027. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5028. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5029. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5030. struct sched_group **sg)
  5031. {
  5032. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5033. int group;
  5034. cpus_and(nodemask, nodemask, *cpu_map);
  5035. group = first_cpu(nodemask);
  5036. if (sg)
  5037. *sg = &per_cpu(sched_group_allnodes, group);
  5038. return group;
  5039. }
  5040. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5041. {
  5042. struct sched_group *sg = group_head;
  5043. int j;
  5044. if (!sg)
  5045. return;
  5046. next_sg:
  5047. for_each_cpu_mask(j, sg->cpumask) {
  5048. struct sched_domain *sd;
  5049. sd = &per_cpu(phys_domains, j);
  5050. if (j != first_cpu(sd->groups->cpumask)) {
  5051. /*
  5052. * Only add "power" once for each
  5053. * physical package.
  5054. */
  5055. continue;
  5056. }
  5057. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5058. }
  5059. sg = sg->next;
  5060. if (sg != group_head)
  5061. goto next_sg;
  5062. }
  5063. #endif
  5064. #ifdef CONFIG_NUMA
  5065. /* Free memory allocated for various sched_group structures */
  5066. static void free_sched_groups(const cpumask_t *cpu_map)
  5067. {
  5068. int cpu, i;
  5069. for_each_cpu_mask(cpu, *cpu_map) {
  5070. struct sched_group **sched_group_nodes
  5071. = sched_group_nodes_bycpu[cpu];
  5072. if (!sched_group_nodes)
  5073. continue;
  5074. for (i = 0; i < MAX_NUMNODES; i++) {
  5075. cpumask_t nodemask = node_to_cpumask(i);
  5076. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5077. cpus_and(nodemask, nodemask, *cpu_map);
  5078. if (cpus_empty(nodemask))
  5079. continue;
  5080. if (sg == NULL)
  5081. continue;
  5082. sg = sg->next;
  5083. next_sg:
  5084. oldsg = sg;
  5085. sg = sg->next;
  5086. kfree(oldsg);
  5087. if (oldsg != sched_group_nodes[i])
  5088. goto next_sg;
  5089. }
  5090. kfree(sched_group_nodes);
  5091. sched_group_nodes_bycpu[cpu] = NULL;
  5092. }
  5093. }
  5094. #else
  5095. static void free_sched_groups(const cpumask_t *cpu_map)
  5096. {
  5097. }
  5098. #endif
  5099. /*
  5100. * Initialize sched groups cpu_power.
  5101. *
  5102. * cpu_power indicates the capacity of sched group, which is used while
  5103. * distributing the load between different sched groups in a sched domain.
  5104. * Typically cpu_power for all the groups in a sched domain will be same unless
  5105. * there are asymmetries in the topology. If there are asymmetries, group
  5106. * having more cpu_power will pickup more load compared to the group having
  5107. * less cpu_power.
  5108. *
  5109. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5110. * the maximum number of tasks a group can handle in the presence of other idle
  5111. * or lightly loaded groups in the same sched domain.
  5112. */
  5113. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5114. {
  5115. struct sched_domain *child;
  5116. struct sched_group *group;
  5117. WARN_ON(!sd || !sd->groups);
  5118. if (cpu != first_cpu(sd->groups->cpumask))
  5119. return;
  5120. child = sd->child;
  5121. sd->groups->__cpu_power = 0;
  5122. /*
  5123. * For perf policy, if the groups in child domain share resources
  5124. * (for example cores sharing some portions of the cache hierarchy
  5125. * or SMT), then set this domain groups cpu_power such that each group
  5126. * can handle only one task, when there are other idle groups in the
  5127. * same sched domain.
  5128. */
  5129. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5130. (child->flags &
  5131. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5132. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5133. return;
  5134. }
  5135. /*
  5136. * add cpu_power of each child group to this groups cpu_power
  5137. */
  5138. group = child->groups;
  5139. do {
  5140. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5141. group = group->next;
  5142. } while (group != child->groups);
  5143. }
  5144. /*
  5145. * Build sched domains for a given set of cpus and attach the sched domains
  5146. * to the individual cpus
  5147. */
  5148. static int build_sched_domains(const cpumask_t *cpu_map)
  5149. {
  5150. int i;
  5151. #ifdef CONFIG_NUMA
  5152. struct sched_group **sched_group_nodes = NULL;
  5153. int sd_allnodes = 0;
  5154. /*
  5155. * Allocate the per-node list of sched groups
  5156. */
  5157. sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
  5158. GFP_KERNEL);
  5159. if (!sched_group_nodes) {
  5160. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5161. return -ENOMEM;
  5162. }
  5163. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5164. #endif
  5165. /*
  5166. * Set up domains for cpus specified by the cpu_map.
  5167. */
  5168. for_each_cpu_mask(i, *cpu_map) {
  5169. struct sched_domain *sd = NULL, *p;
  5170. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5171. cpus_and(nodemask, nodemask, *cpu_map);
  5172. #ifdef CONFIG_NUMA
  5173. if (cpus_weight(*cpu_map) >
  5174. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5175. sd = &per_cpu(allnodes_domains, i);
  5176. *sd = SD_ALLNODES_INIT;
  5177. sd->span = *cpu_map;
  5178. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5179. p = sd;
  5180. sd_allnodes = 1;
  5181. } else
  5182. p = NULL;
  5183. sd = &per_cpu(node_domains, i);
  5184. *sd = SD_NODE_INIT;
  5185. sd->span = sched_domain_node_span(cpu_to_node(i));
  5186. sd->parent = p;
  5187. if (p)
  5188. p->child = sd;
  5189. cpus_and(sd->span, sd->span, *cpu_map);
  5190. #endif
  5191. p = sd;
  5192. sd = &per_cpu(phys_domains, i);
  5193. *sd = SD_CPU_INIT;
  5194. sd->span = nodemask;
  5195. sd->parent = p;
  5196. if (p)
  5197. p->child = sd;
  5198. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5199. #ifdef CONFIG_SCHED_MC
  5200. p = sd;
  5201. sd = &per_cpu(core_domains, i);
  5202. *sd = SD_MC_INIT;
  5203. sd->span = cpu_coregroup_map(i);
  5204. cpus_and(sd->span, sd->span, *cpu_map);
  5205. sd->parent = p;
  5206. p->child = sd;
  5207. cpu_to_core_group(i, cpu_map, &sd->groups);
  5208. #endif
  5209. #ifdef CONFIG_SCHED_SMT
  5210. p = sd;
  5211. sd = &per_cpu(cpu_domains, i);
  5212. *sd = SD_SIBLING_INIT;
  5213. sd->span = cpu_sibling_map[i];
  5214. cpus_and(sd->span, sd->span, *cpu_map);
  5215. sd->parent = p;
  5216. p->child = sd;
  5217. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5218. #endif
  5219. }
  5220. #ifdef CONFIG_SCHED_SMT
  5221. /* Set up CPU (sibling) groups */
  5222. for_each_cpu_mask(i, *cpu_map) {
  5223. cpumask_t this_sibling_map = cpu_sibling_map[i];
  5224. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5225. if (i != first_cpu(this_sibling_map))
  5226. continue;
  5227. init_sched_build_groups(this_sibling_map, cpu_map,
  5228. &cpu_to_cpu_group);
  5229. }
  5230. #endif
  5231. #ifdef CONFIG_SCHED_MC
  5232. /* Set up multi-core groups */
  5233. for_each_cpu_mask(i, *cpu_map) {
  5234. cpumask_t this_core_map = cpu_coregroup_map(i);
  5235. cpus_and(this_core_map, this_core_map, *cpu_map);
  5236. if (i != first_cpu(this_core_map))
  5237. continue;
  5238. init_sched_build_groups(this_core_map, cpu_map,
  5239. &cpu_to_core_group);
  5240. }
  5241. #endif
  5242. /* Set up physical groups */
  5243. for (i = 0; i < MAX_NUMNODES; i++) {
  5244. cpumask_t nodemask = node_to_cpumask(i);
  5245. cpus_and(nodemask, nodemask, *cpu_map);
  5246. if (cpus_empty(nodemask))
  5247. continue;
  5248. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5249. }
  5250. #ifdef CONFIG_NUMA
  5251. /* Set up node groups */
  5252. if (sd_allnodes)
  5253. init_sched_build_groups(*cpu_map, cpu_map,
  5254. &cpu_to_allnodes_group);
  5255. for (i = 0; i < MAX_NUMNODES; i++) {
  5256. /* Set up node groups */
  5257. struct sched_group *sg, *prev;
  5258. cpumask_t nodemask = node_to_cpumask(i);
  5259. cpumask_t domainspan;
  5260. cpumask_t covered = CPU_MASK_NONE;
  5261. int j;
  5262. cpus_and(nodemask, nodemask, *cpu_map);
  5263. if (cpus_empty(nodemask)) {
  5264. sched_group_nodes[i] = NULL;
  5265. continue;
  5266. }
  5267. domainspan = sched_domain_node_span(i);
  5268. cpus_and(domainspan, domainspan, *cpu_map);
  5269. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5270. if (!sg) {
  5271. printk(KERN_WARNING "Can not alloc domain group for "
  5272. "node %d\n", i);
  5273. goto error;
  5274. }
  5275. sched_group_nodes[i] = sg;
  5276. for_each_cpu_mask(j, nodemask) {
  5277. struct sched_domain *sd;
  5278. sd = &per_cpu(node_domains, j);
  5279. sd->groups = sg;
  5280. }
  5281. sg->__cpu_power = 0;
  5282. sg->cpumask = nodemask;
  5283. sg->next = sg;
  5284. cpus_or(covered, covered, nodemask);
  5285. prev = sg;
  5286. for (j = 0; j < MAX_NUMNODES; j++) {
  5287. cpumask_t tmp, notcovered;
  5288. int n = (i + j) % MAX_NUMNODES;
  5289. cpus_complement(notcovered, covered);
  5290. cpus_and(tmp, notcovered, *cpu_map);
  5291. cpus_and(tmp, tmp, domainspan);
  5292. if (cpus_empty(tmp))
  5293. break;
  5294. nodemask = node_to_cpumask(n);
  5295. cpus_and(tmp, tmp, nodemask);
  5296. if (cpus_empty(tmp))
  5297. continue;
  5298. sg = kmalloc_node(sizeof(struct sched_group),
  5299. GFP_KERNEL, i);
  5300. if (!sg) {
  5301. printk(KERN_WARNING
  5302. "Can not alloc domain group for node %d\n", j);
  5303. goto error;
  5304. }
  5305. sg->__cpu_power = 0;
  5306. sg->cpumask = tmp;
  5307. sg->next = prev->next;
  5308. cpus_or(covered, covered, tmp);
  5309. prev->next = sg;
  5310. prev = sg;
  5311. }
  5312. }
  5313. #endif
  5314. /* Calculate CPU power for physical packages and nodes */
  5315. #ifdef CONFIG_SCHED_SMT
  5316. for_each_cpu_mask(i, *cpu_map) {
  5317. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5318. init_sched_groups_power(i, sd);
  5319. }
  5320. #endif
  5321. #ifdef CONFIG_SCHED_MC
  5322. for_each_cpu_mask(i, *cpu_map) {
  5323. struct sched_domain *sd = &per_cpu(core_domains, i);
  5324. init_sched_groups_power(i, sd);
  5325. }
  5326. #endif
  5327. for_each_cpu_mask(i, *cpu_map) {
  5328. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5329. init_sched_groups_power(i, sd);
  5330. }
  5331. #ifdef CONFIG_NUMA
  5332. for (i = 0; i < MAX_NUMNODES; i++)
  5333. init_numa_sched_groups_power(sched_group_nodes[i]);
  5334. if (sd_allnodes) {
  5335. struct sched_group *sg;
  5336. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5337. init_numa_sched_groups_power(sg);
  5338. }
  5339. #endif
  5340. /* Attach the domains */
  5341. for_each_cpu_mask(i, *cpu_map) {
  5342. struct sched_domain *sd;
  5343. #ifdef CONFIG_SCHED_SMT
  5344. sd = &per_cpu(cpu_domains, i);
  5345. #elif defined(CONFIG_SCHED_MC)
  5346. sd = &per_cpu(core_domains, i);
  5347. #else
  5348. sd = &per_cpu(phys_domains, i);
  5349. #endif
  5350. cpu_attach_domain(sd, i);
  5351. }
  5352. return 0;
  5353. #ifdef CONFIG_NUMA
  5354. error:
  5355. free_sched_groups(cpu_map);
  5356. return -ENOMEM;
  5357. #endif
  5358. }
  5359. /*
  5360. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5361. */
  5362. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5363. {
  5364. cpumask_t cpu_default_map;
  5365. int err;
  5366. /*
  5367. * Setup mask for cpus without special case scheduling requirements.
  5368. * For now this just excludes isolated cpus, but could be used to
  5369. * exclude other special cases in the future.
  5370. */
  5371. cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
  5372. err = build_sched_domains(&cpu_default_map);
  5373. return err;
  5374. }
  5375. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5376. {
  5377. free_sched_groups(cpu_map);
  5378. }
  5379. /*
  5380. * Detach sched domains from a group of cpus specified in cpu_map
  5381. * These cpus will now be attached to the NULL domain
  5382. */
  5383. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5384. {
  5385. int i;
  5386. for_each_cpu_mask(i, *cpu_map)
  5387. cpu_attach_domain(NULL, i);
  5388. synchronize_sched();
  5389. arch_destroy_sched_domains(cpu_map);
  5390. }
  5391. /*
  5392. * Partition sched domains as specified by the cpumasks below.
  5393. * This attaches all cpus from the cpumasks to the NULL domain,
  5394. * waits for a RCU quiescent period, recalculates sched
  5395. * domain information and then attaches them back to the
  5396. * correct sched domains
  5397. * Call with hotplug lock held
  5398. */
  5399. int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
  5400. {
  5401. cpumask_t change_map;
  5402. int err = 0;
  5403. cpus_and(*partition1, *partition1, cpu_online_map);
  5404. cpus_and(*partition2, *partition2, cpu_online_map);
  5405. cpus_or(change_map, *partition1, *partition2);
  5406. /* Detach sched domains from all of the affected cpus */
  5407. detach_destroy_domains(&change_map);
  5408. if (!cpus_empty(*partition1))
  5409. err = build_sched_domains(partition1);
  5410. if (!err && !cpus_empty(*partition2))
  5411. err = build_sched_domains(partition2);
  5412. return err;
  5413. }
  5414. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5415. static int arch_reinit_sched_domains(void)
  5416. {
  5417. int err;
  5418. mutex_lock(&sched_hotcpu_mutex);
  5419. detach_destroy_domains(&cpu_online_map);
  5420. err = arch_init_sched_domains(&cpu_online_map);
  5421. mutex_unlock(&sched_hotcpu_mutex);
  5422. return err;
  5423. }
  5424. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5425. {
  5426. int ret;
  5427. if (buf[0] != '0' && buf[0] != '1')
  5428. return -EINVAL;
  5429. if (smt)
  5430. sched_smt_power_savings = (buf[0] == '1');
  5431. else
  5432. sched_mc_power_savings = (buf[0] == '1');
  5433. ret = arch_reinit_sched_domains();
  5434. return ret ? ret : count;
  5435. }
  5436. #ifdef CONFIG_SCHED_MC
  5437. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5438. {
  5439. return sprintf(page, "%u\n", sched_mc_power_savings);
  5440. }
  5441. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5442. const char *buf, size_t count)
  5443. {
  5444. return sched_power_savings_store(buf, count, 0);
  5445. }
  5446. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5447. sched_mc_power_savings_store);
  5448. #endif
  5449. #ifdef CONFIG_SCHED_SMT
  5450. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5451. {
  5452. return sprintf(page, "%u\n", sched_smt_power_savings);
  5453. }
  5454. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5455. const char *buf, size_t count)
  5456. {
  5457. return sched_power_savings_store(buf, count, 1);
  5458. }
  5459. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5460. sched_smt_power_savings_store);
  5461. #endif
  5462. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5463. {
  5464. int err = 0;
  5465. #ifdef CONFIG_SCHED_SMT
  5466. if (smt_capable())
  5467. err = sysfs_create_file(&cls->kset.kobj,
  5468. &attr_sched_smt_power_savings.attr);
  5469. #endif
  5470. #ifdef CONFIG_SCHED_MC
  5471. if (!err && mc_capable())
  5472. err = sysfs_create_file(&cls->kset.kobj,
  5473. &attr_sched_mc_power_savings.attr);
  5474. #endif
  5475. return err;
  5476. }
  5477. #endif
  5478. /*
  5479. * Force a reinitialization of the sched domains hierarchy. The domains
  5480. * and groups cannot be updated in place without racing with the balancing
  5481. * code, so we temporarily attach all running cpus to the NULL domain
  5482. * which will prevent rebalancing while the sched domains are recalculated.
  5483. */
  5484. static int update_sched_domains(struct notifier_block *nfb,
  5485. unsigned long action, void *hcpu)
  5486. {
  5487. switch (action) {
  5488. case CPU_UP_PREPARE:
  5489. case CPU_UP_PREPARE_FROZEN:
  5490. case CPU_DOWN_PREPARE:
  5491. case CPU_DOWN_PREPARE_FROZEN:
  5492. detach_destroy_domains(&cpu_online_map);
  5493. return NOTIFY_OK;
  5494. case CPU_UP_CANCELED:
  5495. case CPU_UP_CANCELED_FROZEN:
  5496. case CPU_DOWN_FAILED:
  5497. case CPU_DOWN_FAILED_FROZEN:
  5498. case CPU_ONLINE:
  5499. case CPU_ONLINE_FROZEN:
  5500. case CPU_DEAD:
  5501. case CPU_DEAD_FROZEN:
  5502. /*
  5503. * Fall through and re-initialise the domains.
  5504. */
  5505. break;
  5506. default:
  5507. return NOTIFY_DONE;
  5508. }
  5509. /* The hotplug lock is already held by cpu_up/cpu_down */
  5510. arch_init_sched_domains(&cpu_online_map);
  5511. return NOTIFY_OK;
  5512. }
  5513. void __init sched_init_smp(void)
  5514. {
  5515. cpumask_t non_isolated_cpus;
  5516. mutex_lock(&sched_hotcpu_mutex);
  5517. arch_init_sched_domains(&cpu_online_map);
  5518. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5519. if (cpus_empty(non_isolated_cpus))
  5520. cpu_set(smp_processor_id(), non_isolated_cpus);
  5521. mutex_unlock(&sched_hotcpu_mutex);
  5522. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5523. hotcpu_notifier(update_sched_domains, 0);
  5524. init_sched_domain_sysctl();
  5525. /* Move init over to a non-isolated CPU */
  5526. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5527. BUG();
  5528. }
  5529. #else
  5530. void __init sched_init_smp(void)
  5531. {
  5532. }
  5533. #endif /* CONFIG_SMP */
  5534. int in_sched_functions(unsigned long addr)
  5535. {
  5536. /* Linker adds these: start and end of __sched functions */
  5537. extern char __sched_text_start[], __sched_text_end[];
  5538. return in_lock_functions(addr) ||
  5539. (addr >= (unsigned long)__sched_text_start
  5540. && addr < (unsigned long)__sched_text_end);
  5541. }
  5542. static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  5543. {
  5544. cfs_rq->tasks_timeline = RB_ROOT;
  5545. cfs_rq->fair_clock = 1;
  5546. #ifdef CONFIG_FAIR_GROUP_SCHED
  5547. cfs_rq->rq = rq;
  5548. #endif
  5549. }
  5550. void __init sched_init(void)
  5551. {
  5552. int highest_cpu = 0;
  5553. int i, j;
  5554. /*
  5555. * Link up the scheduling class hierarchy:
  5556. */
  5557. rt_sched_class.next = &fair_sched_class;
  5558. fair_sched_class.next = &idle_sched_class;
  5559. idle_sched_class.next = NULL;
  5560. for_each_possible_cpu(i) {
  5561. struct rt_prio_array *array;
  5562. struct rq *rq;
  5563. rq = cpu_rq(i);
  5564. spin_lock_init(&rq->lock);
  5565. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5566. rq->nr_running = 0;
  5567. rq->clock = 1;
  5568. init_cfs_rq(&rq->cfs, rq);
  5569. #ifdef CONFIG_FAIR_GROUP_SCHED
  5570. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5571. list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  5572. #endif
  5573. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5574. rq->cpu_load[j] = 0;
  5575. #ifdef CONFIG_SMP
  5576. rq->sd = NULL;
  5577. rq->active_balance = 0;
  5578. rq->next_balance = jiffies;
  5579. rq->push_cpu = 0;
  5580. rq->cpu = i;
  5581. rq->migration_thread = NULL;
  5582. INIT_LIST_HEAD(&rq->migration_queue);
  5583. #endif
  5584. atomic_set(&rq->nr_iowait, 0);
  5585. array = &rq->rt.active;
  5586. for (j = 0; j < MAX_RT_PRIO; j++) {
  5587. INIT_LIST_HEAD(array->queue + j);
  5588. __clear_bit(j, array->bitmap);
  5589. }
  5590. highest_cpu = i;
  5591. /* delimiter for bitsearch: */
  5592. __set_bit(MAX_RT_PRIO, array->bitmap);
  5593. }
  5594. set_load_weight(&init_task);
  5595. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5596. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5597. #endif
  5598. #ifdef CONFIG_SMP
  5599. nr_cpu_ids = highest_cpu + 1;
  5600. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5601. #endif
  5602. #ifdef CONFIG_RT_MUTEXES
  5603. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5604. #endif
  5605. /*
  5606. * The boot idle thread does lazy MMU switching as well:
  5607. */
  5608. atomic_inc(&init_mm.mm_count);
  5609. enter_lazy_tlb(&init_mm, current);
  5610. /*
  5611. * Make us the idle thread. Technically, schedule() should not be
  5612. * called from this thread, however somewhere below it might be,
  5613. * but because we are the idle thread, we just pick up running again
  5614. * when this runqueue becomes "idle".
  5615. */
  5616. init_idle(current, smp_processor_id());
  5617. /*
  5618. * During early bootup we pretend to be a normal task:
  5619. */
  5620. current->sched_class = &fair_sched_class;
  5621. }
  5622. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5623. void __might_sleep(char *file, int line)
  5624. {
  5625. #ifdef in_atomic
  5626. static unsigned long prev_jiffy; /* ratelimiting */
  5627. if ((in_atomic() || irqs_disabled()) &&
  5628. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5629. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5630. return;
  5631. prev_jiffy = jiffies;
  5632. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5633. " context at %s:%d\n", file, line);
  5634. printk("in_atomic():%d, irqs_disabled():%d\n",
  5635. in_atomic(), irqs_disabled());
  5636. debug_show_held_locks(current);
  5637. if (irqs_disabled())
  5638. print_irqtrace_events(current);
  5639. dump_stack();
  5640. }
  5641. #endif
  5642. }
  5643. EXPORT_SYMBOL(__might_sleep);
  5644. #endif
  5645. #ifdef CONFIG_MAGIC_SYSRQ
  5646. void normalize_rt_tasks(void)
  5647. {
  5648. struct task_struct *g, *p;
  5649. unsigned long flags;
  5650. struct rq *rq;
  5651. int on_rq;
  5652. read_lock_irq(&tasklist_lock);
  5653. do_each_thread(g, p) {
  5654. p->se.fair_key = 0;
  5655. p->se.wait_runtime = 0;
  5656. p->se.exec_start = 0;
  5657. p->se.wait_start_fair = 0;
  5658. #ifdef CONFIG_SCHEDSTATS
  5659. p->se.wait_start = 0;
  5660. p->se.sleep_start = 0;
  5661. p->se.block_start = 0;
  5662. #endif
  5663. task_rq(p)->cfs.fair_clock = 0;
  5664. task_rq(p)->clock = 0;
  5665. if (!rt_task(p)) {
  5666. /*
  5667. * Renice negative nice level userspace
  5668. * tasks back to 0:
  5669. */
  5670. if (TASK_NICE(p) < 0 && p->mm)
  5671. set_user_nice(p, 0);
  5672. continue;
  5673. }
  5674. spin_lock_irqsave(&p->pi_lock, flags);
  5675. rq = __task_rq_lock(p);
  5676. #ifdef CONFIG_SMP
  5677. /*
  5678. * Do not touch the migration thread:
  5679. */
  5680. if (p == rq->migration_thread)
  5681. goto out_unlock;
  5682. #endif
  5683. update_rq_clock(rq);
  5684. on_rq = p->se.on_rq;
  5685. if (on_rq)
  5686. deactivate_task(rq, p, 0);
  5687. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5688. if (on_rq) {
  5689. activate_task(rq, p, 0);
  5690. resched_task(rq->curr);
  5691. }
  5692. #ifdef CONFIG_SMP
  5693. out_unlock:
  5694. #endif
  5695. __task_rq_unlock(rq);
  5696. spin_unlock_irqrestore(&p->pi_lock, flags);
  5697. } while_each_thread(g, p);
  5698. read_unlock_irq(&tasklist_lock);
  5699. }
  5700. #endif /* CONFIG_MAGIC_SYSRQ */
  5701. #ifdef CONFIG_IA64
  5702. /*
  5703. * These functions are only useful for the IA64 MCA handling.
  5704. *
  5705. * They can only be called when the whole system has been
  5706. * stopped - every CPU needs to be quiescent, and no scheduling
  5707. * activity can take place. Using them for anything else would
  5708. * be a serious bug, and as a result, they aren't even visible
  5709. * under any other configuration.
  5710. */
  5711. /**
  5712. * curr_task - return the current task for a given cpu.
  5713. * @cpu: the processor in question.
  5714. *
  5715. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5716. */
  5717. struct task_struct *curr_task(int cpu)
  5718. {
  5719. return cpu_curr(cpu);
  5720. }
  5721. /**
  5722. * set_curr_task - set the current task for a given cpu.
  5723. * @cpu: the processor in question.
  5724. * @p: the task pointer to set.
  5725. *
  5726. * Description: This function must only be used when non-maskable interrupts
  5727. * are serviced on a separate stack. It allows the architecture to switch the
  5728. * notion of the current task on a cpu in a non-blocking manner. This function
  5729. * must be called with all CPU's synchronized, and interrupts disabled, the
  5730. * and caller must save the original value of the current task (see
  5731. * curr_task() above) and restore that value before reenabling interrupts and
  5732. * re-starting the system.
  5733. *
  5734. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5735. */
  5736. void set_curr_task(int cpu, struct task_struct *p)
  5737. {
  5738. cpu_curr(cpu) = p;
  5739. }
  5740. #endif