kvm_main.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86.h"
  19. #include "irq.h"
  20. #include "iodev.h"
  21. #include <linux/kvm.h>
  22. #include <linux/module.h>
  23. #include <linux/errno.h>
  24. #include <linux/percpu.h>
  25. #include <linux/gfp.h>
  26. #include <linux/mm.h>
  27. #include <linux/miscdevice.h>
  28. #include <linux/vmalloc.h>
  29. #include <linux/reboot.h>
  30. #include <linux/debugfs.h>
  31. #include <linux/highmem.h>
  32. #include <linux/file.h>
  33. #include <linux/sysdev.h>
  34. #include <linux/cpu.h>
  35. #include <linux/sched.h>
  36. #include <linux/cpumask.h>
  37. #include <linux/smp.h>
  38. #include <linux/anon_inodes.h>
  39. #include <linux/profile.h>
  40. #include <linux/kvm_para.h>
  41. #include <linux/pagemap.h>
  42. #include <linux/mman.h>
  43. #include <asm/processor.h>
  44. #include <asm/io.h>
  45. #include <asm/uaccess.h>
  46. #include <asm/desc.h>
  47. #include <asm/pgtable.h>
  48. MODULE_AUTHOR("Qumranet");
  49. MODULE_LICENSE("GPL");
  50. DEFINE_SPINLOCK(kvm_lock);
  51. LIST_HEAD(vm_list);
  52. static cpumask_t cpus_hardware_enabled;
  53. struct kmem_cache *kvm_vcpu_cache;
  54. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  55. static __read_mostly struct preempt_ops kvm_preempt_ops;
  56. static struct dentry *debugfs_dir;
  57. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  58. unsigned long arg);
  59. static inline int valid_vcpu(int n)
  60. {
  61. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  62. }
  63. /*
  64. * Switches to specified vcpu, until a matching vcpu_put()
  65. */
  66. void vcpu_load(struct kvm_vcpu *vcpu)
  67. {
  68. int cpu;
  69. mutex_lock(&vcpu->mutex);
  70. cpu = get_cpu();
  71. preempt_notifier_register(&vcpu->preempt_notifier);
  72. kvm_arch_vcpu_load(vcpu, cpu);
  73. put_cpu();
  74. }
  75. void vcpu_put(struct kvm_vcpu *vcpu)
  76. {
  77. preempt_disable();
  78. kvm_arch_vcpu_put(vcpu);
  79. preempt_notifier_unregister(&vcpu->preempt_notifier);
  80. preempt_enable();
  81. mutex_unlock(&vcpu->mutex);
  82. }
  83. static void ack_flush(void *_completed)
  84. {
  85. }
  86. void kvm_flush_remote_tlbs(struct kvm *kvm)
  87. {
  88. int i, cpu;
  89. cpumask_t cpus;
  90. struct kvm_vcpu *vcpu;
  91. cpus_clear(cpus);
  92. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  93. vcpu = kvm->vcpus[i];
  94. if (!vcpu)
  95. continue;
  96. if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  97. continue;
  98. cpu = vcpu->cpu;
  99. if (cpu != -1 && cpu != raw_smp_processor_id())
  100. cpu_set(cpu, cpus);
  101. }
  102. if (cpus_empty(cpus))
  103. return;
  104. ++kvm->stat.remote_tlb_flush;
  105. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  106. }
  107. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  108. {
  109. struct page *page;
  110. int r;
  111. mutex_init(&vcpu->mutex);
  112. vcpu->cpu = -1;
  113. vcpu->kvm = kvm;
  114. vcpu->vcpu_id = id;
  115. init_waitqueue_head(&vcpu->wq);
  116. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  117. if (!page) {
  118. r = -ENOMEM;
  119. goto fail;
  120. }
  121. vcpu->run = page_address(page);
  122. r = kvm_arch_vcpu_init(vcpu);
  123. if (r < 0)
  124. goto fail_free_run;
  125. return 0;
  126. fail_free_run:
  127. free_page((unsigned long)vcpu->run);
  128. fail:
  129. return r;
  130. }
  131. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  132. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  133. {
  134. kvm_arch_vcpu_uninit(vcpu);
  135. free_page((unsigned long)vcpu->run);
  136. }
  137. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  138. static struct kvm *kvm_create_vm(void)
  139. {
  140. struct kvm *kvm = kvm_arch_create_vm();
  141. if (IS_ERR(kvm))
  142. goto out;
  143. kvm->mm = current->mm;
  144. atomic_inc(&kvm->mm->mm_count);
  145. kvm_io_bus_init(&kvm->pio_bus);
  146. mutex_init(&kvm->lock);
  147. kvm_io_bus_init(&kvm->mmio_bus);
  148. spin_lock(&kvm_lock);
  149. list_add(&kvm->vm_list, &vm_list);
  150. spin_unlock(&kvm_lock);
  151. out:
  152. return kvm;
  153. }
  154. /*
  155. * Free any memory in @free but not in @dont.
  156. */
  157. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  158. struct kvm_memory_slot *dont)
  159. {
  160. if (!dont || free->rmap != dont->rmap)
  161. vfree(free->rmap);
  162. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  163. vfree(free->dirty_bitmap);
  164. free->npages = 0;
  165. free->dirty_bitmap = NULL;
  166. free->rmap = NULL;
  167. }
  168. void kvm_free_physmem(struct kvm *kvm)
  169. {
  170. int i;
  171. for (i = 0; i < kvm->nmemslots; ++i)
  172. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  173. }
  174. static void kvm_destroy_vm(struct kvm *kvm)
  175. {
  176. struct mm_struct *mm = kvm->mm;
  177. spin_lock(&kvm_lock);
  178. list_del(&kvm->vm_list);
  179. spin_unlock(&kvm_lock);
  180. kvm_io_bus_destroy(&kvm->pio_bus);
  181. kvm_io_bus_destroy(&kvm->mmio_bus);
  182. kvm_arch_destroy_vm(kvm);
  183. mmdrop(mm);
  184. }
  185. static int kvm_vm_release(struct inode *inode, struct file *filp)
  186. {
  187. struct kvm *kvm = filp->private_data;
  188. kvm_destroy_vm(kvm);
  189. return 0;
  190. }
  191. /*
  192. * Allocate some memory and give it an address in the guest physical address
  193. * space.
  194. *
  195. * Discontiguous memory is allowed, mostly for framebuffers.
  196. *
  197. * Must be called holding kvm->lock.
  198. */
  199. int __kvm_set_memory_region(struct kvm *kvm,
  200. struct kvm_userspace_memory_region *mem,
  201. int user_alloc)
  202. {
  203. int r;
  204. gfn_t base_gfn;
  205. unsigned long npages;
  206. unsigned long i;
  207. struct kvm_memory_slot *memslot;
  208. struct kvm_memory_slot old, new;
  209. r = -EINVAL;
  210. /* General sanity checks */
  211. if (mem->memory_size & (PAGE_SIZE - 1))
  212. goto out;
  213. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  214. goto out;
  215. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  216. goto out;
  217. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  218. goto out;
  219. memslot = &kvm->memslots[mem->slot];
  220. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  221. npages = mem->memory_size >> PAGE_SHIFT;
  222. if (!npages)
  223. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  224. new = old = *memslot;
  225. new.base_gfn = base_gfn;
  226. new.npages = npages;
  227. new.flags = mem->flags;
  228. /* Disallow changing a memory slot's size. */
  229. r = -EINVAL;
  230. if (npages && old.npages && npages != old.npages)
  231. goto out_free;
  232. /* Check for overlaps */
  233. r = -EEXIST;
  234. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  235. struct kvm_memory_slot *s = &kvm->memslots[i];
  236. if (s == memslot)
  237. continue;
  238. if (!((base_gfn + npages <= s->base_gfn) ||
  239. (base_gfn >= s->base_gfn + s->npages)))
  240. goto out_free;
  241. }
  242. /* Free page dirty bitmap if unneeded */
  243. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  244. new.dirty_bitmap = NULL;
  245. r = -ENOMEM;
  246. /* Allocate if a slot is being created */
  247. if (npages && !new.rmap) {
  248. new.rmap = vmalloc(npages * sizeof(struct page *));
  249. if (!new.rmap)
  250. goto out_free;
  251. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  252. new.user_alloc = user_alloc;
  253. new.userspace_addr = mem->userspace_addr;
  254. }
  255. /* Allocate page dirty bitmap if needed */
  256. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  257. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  258. new.dirty_bitmap = vmalloc(dirty_bytes);
  259. if (!new.dirty_bitmap)
  260. goto out_free;
  261. memset(new.dirty_bitmap, 0, dirty_bytes);
  262. }
  263. if (mem->slot >= kvm->nmemslots)
  264. kvm->nmemslots = mem->slot + 1;
  265. *memslot = new;
  266. r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
  267. if (r) {
  268. *memslot = old;
  269. goto out_free;
  270. }
  271. kvm_free_physmem_slot(&old, &new);
  272. return 0;
  273. out_free:
  274. kvm_free_physmem_slot(&new, &old);
  275. out:
  276. return r;
  277. }
  278. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  279. int kvm_set_memory_region(struct kvm *kvm,
  280. struct kvm_userspace_memory_region *mem,
  281. int user_alloc)
  282. {
  283. int r;
  284. mutex_lock(&kvm->lock);
  285. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  286. mutex_unlock(&kvm->lock);
  287. return r;
  288. }
  289. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  290. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  291. struct
  292. kvm_userspace_memory_region *mem,
  293. int user_alloc)
  294. {
  295. if (mem->slot >= KVM_MEMORY_SLOTS)
  296. return -EINVAL;
  297. return kvm_set_memory_region(kvm, mem, user_alloc);
  298. }
  299. int kvm_get_dirty_log(struct kvm *kvm,
  300. struct kvm_dirty_log *log, int *is_dirty)
  301. {
  302. struct kvm_memory_slot *memslot;
  303. int r, i;
  304. int n;
  305. unsigned long any = 0;
  306. r = -EINVAL;
  307. if (log->slot >= KVM_MEMORY_SLOTS)
  308. goto out;
  309. memslot = &kvm->memslots[log->slot];
  310. r = -ENOENT;
  311. if (!memslot->dirty_bitmap)
  312. goto out;
  313. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  314. for (i = 0; !any && i < n/sizeof(long); ++i)
  315. any = memslot->dirty_bitmap[i];
  316. r = -EFAULT;
  317. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  318. goto out;
  319. if (any)
  320. *is_dirty = 1;
  321. r = 0;
  322. out:
  323. return r;
  324. }
  325. int is_error_page(struct page *page)
  326. {
  327. return page == bad_page;
  328. }
  329. EXPORT_SYMBOL_GPL(is_error_page);
  330. static inline unsigned long bad_hva(void)
  331. {
  332. return PAGE_OFFSET;
  333. }
  334. int kvm_is_error_hva(unsigned long addr)
  335. {
  336. return addr == bad_hva();
  337. }
  338. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  339. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  340. {
  341. int i;
  342. for (i = 0; i < kvm->nmemslots; ++i) {
  343. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  344. if (gfn >= memslot->base_gfn
  345. && gfn < memslot->base_gfn + memslot->npages)
  346. return memslot;
  347. }
  348. return NULL;
  349. }
  350. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  351. {
  352. gfn = unalias_gfn(kvm, gfn);
  353. return __gfn_to_memslot(kvm, gfn);
  354. }
  355. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  356. {
  357. int i;
  358. gfn = unalias_gfn(kvm, gfn);
  359. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  360. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  361. if (gfn >= memslot->base_gfn
  362. && gfn < memslot->base_gfn + memslot->npages)
  363. return 1;
  364. }
  365. return 0;
  366. }
  367. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  368. static unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  369. {
  370. struct kvm_memory_slot *slot;
  371. gfn = unalias_gfn(kvm, gfn);
  372. slot = __gfn_to_memslot(kvm, gfn);
  373. if (!slot)
  374. return bad_hva();
  375. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  376. }
  377. /*
  378. * Requires current->mm->mmap_sem to be held
  379. */
  380. static struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn)
  381. {
  382. struct page *page[1];
  383. unsigned long addr;
  384. int npages;
  385. might_sleep();
  386. addr = gfn_to_hva(kvm, gfn);
  387. if (kvm_is_error_hva(addr)) {
  388. get_page(bad_page);
  389. return bad_page;
  390. }
  391. npages = get_user_pages(current, current->mm, addr, 1, 1, 1, page,
  392. NULL);
  393. if (npages != 1) {
  394. get_page(bad_page);
  395. return bad_page;
  396. }
  397. return page[0];
  398. }
  399. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  400. {
  401. struct page *page;
  402. down_read(&current->mm->mmap_sem);
  403. page = __gfn_to_page(kvm, gfn);
  404. up_read(&current->mm->mmap_sem);
  405. return page;
  406. }
  407. EXPORT_SYMBOL_GPL(gfn_to_page);
  408. void kvm_release_page_clean(struct page *page)
  409. {
  410. put_page(page);
  411. }
  412. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  413. void kvm_release_page_dirty(struct page *page)
  414. {
  415. if (!PageReserved(page))
  416. SetPageDirty(page);
  417. put_page(page);
  418. }
  419. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  420. static int next_segment(unsigned long len, int offset)
  421. {
  422. if (len > PAGE_SIZE - offset)
  423. return PAGE_SIZE - offset;
  424. else
  425. return len;
  426. }
  427. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  428. int len)
  429. {
  430. int r;
  431. unsigned long addr;
  432. addr = gfn_to_hva(kvm, gfn);
  433. if (kvm_is_error_hva(addr))
  434. return -EFAULT;
  435. r = copy_from_user(data, (void __user *)addr + offset, len);
  436. if (r)
  437. return -EFAULT;
  438. return 0;
  439. }
  440. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  441. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  442. {
  443. gfn_t gfn = gpa >> PAGE_SHIFT;
  444. int seg;
  445. int offset = offset_in_page(gpa);
  446. int ret;
  447. while ((seg = next_segment(len, offset)) != 0) {
  448. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  449. if (ret < 0)
  450. return ret;
  451. offset = 0;
  452. len -= seg;
  453. data += seg;
  454. ++gfn;
  455. }
  456. return 0;
  457. }
  458. EXPORT_SYMBOL_GPL(kvm_read_guest);
  459. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  460. int offset, int len)
  461. {
  462. int r;
  463. unsigned long addr;
  464. addr = gfn_to_hva(kvm, gfn);
  465. if (kvm_is_error_hva(addr))
  466. return -EFAULT;
  467. r = copy_to_user((void __user *)addr + offset, data, len);
  468. if (r)
  469. return -EFAULT;
  470. mark_page_dirty(kvm, gfn);
  471. return 0;
  472. }
  473. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  474. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  475. unsigned long len)
  476. {
  477. gfn_t gfn = gpa >> PAGE_SHIFT;
  478. int seg;
  479. int offset = offset_in_page(gpa);
  480. int ret;
  481. while ((seg = next_segment(len, offset)) != 0) {
  482. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  483. if (ret < 0)
  484. return ret;
  485. offset = 0;
  486. len -= seg;
  487. data += seg;
  488. ++gfn;
  489. }
  490. return 0;
  491. }
  492. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  493. {
  494. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  495. }
  496. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  497. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  498. {
  499. gfn_t gfn = gpa >> PAGE_SHIFT;
  500. int seg;
  501. int offset = offset_in_page(gpa);
  502. int ret;
  503. while ((seg = next_segment(len, offset)) != 0) {
  504. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  505. if (ret < 0)
  506. return ret;
  507. offset = 0;
  508. len -= seg;
  509. ++gfn;
  510. }
  511. return 0;
  512. }
  513. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  514. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  515. {
  516. struct kvm_memory_slot *memslot;
  517. gfn = unalias_gfn(kvm, gfn);
  518. memslot = __gfn_to_memslot(kvm, gfn);
  519. if (memslot && memslot->dirty_bitmap) {
  520. unsigned long rel_gfn = gfn - memslot->base_gfn;
  521. /* avoid RMW */
  522. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  523. set_bit(rel_gfn, memslot->dirty_bitmap);
  524. }
  525. }
  526. /*
  527. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  528. */
  529. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  530. {
  531. DECLARE_WAITQUEUE(wait, current);
  532. add_wait_queue(&vcpu->wq, &wait);
  533. /*
  534. * We will block until either an interrupt or a signal wakes us up
  535. */
  536. while (!kvm_cpu_has_interrupt(vcpu)
  537. && !signal_pending(current)
  538. && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
  539. && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
  540. set_current_state(TASK_INTERRUPTIBLE);
  541. vcpu_put(vcpu);
  542. schedule();
  543. vcpu_load(vcpu);
  544. }
  545. __set_current_state(TASK_RUNNING);
  546. remove_wait_queue(&vcpu->wq, &wait);
  547. }
  548. void kvm_resched(struct kvm_vcpu *vcpu)
  549. {
  550. if (!need_resched())
  551. return;
  552. cond_resched();
  553. }
  554. EXPORT_SYMBOL_GPL(kvm_resched);
  555. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  556. unsigned long address,
  557. int *type)
  558. {
  559. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  560. unsigned long pgoff;
  561. struct page *page;
  562. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  563. if (pgoff == 0)
  564. page = virt_to_page(vcpu->run);
  565. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  566. page = virt_to_page(vcpu->pio_data);
  567. else
  568. return NOPAGE_SIGBUS;
  569. get_page(page);
  570. if (type != NULL)
  571. *type = VM_FAULT_MINOR;
  572. return page;
  573. }
  574. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  575. .nopage = kvm_vcpu_nopage,
  576. };
  577. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  578. {
  579. vma->vm_ops = &kvm_vcpu_vm_ops;
  580. return 0;
  581. }
  582. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  583. {
  584. struct kvm_vcpu *vcpu = filp->private_data;
  585. fput(vcpu->kvm->filp);
  586. return 0;
  587. }
  588. static struct file_operations kvm_vcpu_fops = {
  589. .release = kvm_vcpu_release,
  590. .unlocked_ioctl = kvm_vcpu_ioctl,
  591. .compat_ioctl = kvm_vcpu_ioctl,
  592. .mmap = kvm_vcpu_mmap,
  593. };
  594. /*
  595. * Allocates an inode for the vcpu.
  596. */
  597. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  598. {
  599. int fd, r;
  600. struct inode *inode;
  601. struct file *file;
  602. r = anon_inode_getfd(&fd, &inode, &file,
  603. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  604. if (r)
  605. return r;
  606. atomic_inc(&vcpu->kvm->filp->f_count);
  607. return fd;
  608. }
  609. /*
  610. * Creates some virtual cpus. Good luck creating more than one.
  611. */
  612. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  613. {
  614. int r;
  615. struct kvm_vcpu *vcpu;
  616. if (!valid_vcpu(n))
  617. return -EINVAL;
  618. vcpu = kvm_arch_vcpu_create(kvm, n);
  619. if (IS_ERR(vcpu))
  620. return PTR_ERR(vcpu);
  621. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  622. r = kvm_arch_vcpu_setup(vcpu);
  623. if (r)
  624. goto vcpu_destroy;
  625. mutex_lock(&kvm->lock);
  626. if (kvm->vcpus[n]) {
  627. r = -EEXIST;
  628. mutex_unlock(&kvm->lock);
  629. goto vcpu_destroy;
  630. }
  631. kvm->vcpus[n] = vcpu;
  632. mutex_unlock(&kvm->lock);
  633. /* Now it's all set up, let userspace reach it */
  634. r = create_vcpu_fd(vcpu);
  635. if (r < 0)
  636. goto unlink;
  637. return r;
  638. unlink:
  639. mutex_lock(&kvm->lock);
  640. kvm->vcpus[n] = NULL;
  641. mutex_unlock(&kvm->lock);
  642. vcpu_destroy:
  643. kvm_arch_vcpu_destroy(vcpu);
  644. return r;
  645. }
  646. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  647. {
  648. if (sigset) {
  649. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  650. vcpu->sigset_active = 1;
  651. vcpu->sigset = *sigset;
  652. } else
  653. vcpu->sigset_active = 0;
  654. return 0;
  655. }
  656. static long kvm_vcpu_ioctl(struct file *filp,
  657. unsigned int ioctl, unsigned long arg)
  658. {
  659. struct kvm_vcpu *vcpu = filp->private_data;
  660. void __user *argp = (void __user *)arg;
  661. int r;
  662. if (vcpu->kvm->mm != current->mm)
  663. return -EIO;
  664. switch (ioctl) {
  665. case KVM_RUN:
  666. r = -EINVAL;
  667. if (arg)
  668. goto out;
  669. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  670. break;
  671. case KVM_GET_REGS: {
  672. struct kvm_regs kvm_regs;
  673. memset(&kvm_regs, 0, sizeof kvm_regs);
  674. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  675. if (r)
  676. goto out;
  677. r = -EFAULT;
  678. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  679. goto out;
  680. r = 0;
  681. break;
  682. }
  683. case KVM_SET_REGS: {
  684. struct kvm_regs kvm_regs;
  685. r = -EFAULT;
  686. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  687. goto out;
  688. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  689. if (r)
  690. goto out;
  691. r = 0;
  692. break;
  693. }
  694. case KVM_GET_SREGS: {
  695. struct kvm_sregs kvm_sregs;
  696. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  697. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  698. if (r)
  699. goto out;
  700. r = -EFAULT;
  701. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  702. goto out;
  703. r = 0;
  704. break;
  705. }
  706. case KVM_SET_SREGS: {
  707. struct kvm_sregs kvm_sregs;
  708. r = -EFAULT;
  709. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  710. goto out;
  711. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  712. if (r)
  713. goto out;
  714. r = 0;
  715. break;
  716. }
  717. case KVM_TRANSLATE: {
  718. struct kvm_translation tr;
  719. r = -EFAULT;
  720. if (copy_from_user(&tr, argp, sizeof tr))
  721. goto out;
  722. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  723. if (r)
  724. goto out;
  725. r = -EFAULT;
  726. if (copy_to_user(argp, &tr, sizeof tr))
  727. goto out;
  728. r = 0;
  729. break;
  730. }
  731. case KVM_DEBUG_GUEST: {
  732. struct kvm_debug_guest dbg;
  733. r = -EFAULT;
  734. if (copy_from_user(&dbg, argp, sizeof dbg))
  735. goto out;
  736. r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
  737. if (r)
  738. goto out;
  739. r = 0;
  740. break;
  741. }
  742. case KVM_SET_SIGNAL_MASK: {
  743. struct kvm_signal_mask __user *sigmask_arg = argp;
  744. struct kvm_signal_mask kvm_sigmask;
  745. sigset_t sigset, *p;
  746. p = NULL;
  747. if (argp) {
  748. r = -EFAULT;
  749. if (copy_from_user(&kvm_sigmask, argp,
  750. sizeof kvm_sigmask))
  751. goto out;
  752. r = -EINVAL;
  753. if (kvm_sigmask.len != sizeof sigset)
  754. goto out;
  755. r = -EFAULT;
  756. if (copy_from_user(&sigset, sigmask_arg->sigset,
  757. sizeof sigset))
  758. goto out;
  759. p = &sigset;
  760. }
  761. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  762. break;
  763. }
  764. case KVM_GET_FPU: {
  765. struct kvm_fpu fpu;
  766. memset(&fpu, 0, sizeof fpu);
  767. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, &fpu);
  768. if (r)
  769. goto out;
  770. r = -EFAULT;
  771. if (copy_to_user(argp, &fpu, sizeof fpu))
  772. goto out;
  773. r = 0;
  774. break;
  775. }
  776. case KVM_SET_FPU: {
  777. struct kvm_fpu fpu;
  778. r = -EFAULT;
  779. if (copy_from_user(&fpu, argp, sizeof fpu))
  780. goto out;
  781. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, &fpu);
  782. if (r)
  783. goto out;
  784. r = 0;
  785. break;
  786. }
  787. default:
  788. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  789. }
  790. out:
  791. return r;
  792. }
  793. static long kvm_vm_ioctl(struct file *filp,
  794. unsigned int ioctl, unsigned long arg)
  795. {
  796. struct kvm *kvm = filp->private_data;
  797. void __user *argp = (void __user *)arg;
  798. int r;
  799. if (kvm->mm != current->mm)
  800. return -EIO;
  801. switch (ioctl) {
  802. case KVM_CREATE_VCPU:
  803. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  804. if (r < 0)
  805. goto out;
  806. break;
  807. case KVM_SET_USER_MEMORY_REGION: {
  808. struct kvm_userspace_memory_region kvm_userspace_mem;
  809. r = -EFAULT;
  810. if (copy_from_user(&kvm_userspace_mem, argp,
  811. sizeof kvm_userspace_mem))
  812. goto out;
  813. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  814. if (r)
  815. goto out;
  816. break;
  817. }
  818. case KVM_GET_DIRTY_LOG: {
  819. struct kvm_dirty_log log;
  820. r = -EFAULT;
  821. if (copy_from_user(&log, argp, sizeof log))
  822. goto out;
  823. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  824. if (r)
  825. goto out;
  826. break;
  827. }
  828. default:
  829. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  830. }
  831. out:
  832. return r;
  833. }
  834. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  835. unsigned long address,
  836. int *type)
  837. {
  838. struct kvm *kvm = vma->vm_file->private_data;
  839. unsigned long pgoff;
  840. struct page *page;
  841. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  842. if (!kvm_is_visible_gfn(kvm, pgoff))
  843. return NOPAGE_SIGBUS;
  844. /* current->mm->mmap_sem is already held so call lockless version */
  845. page = __gfn_to_page(kvm, pgoff);
  846. if (is_error_page(page)) {
  847. kvm_release_page_clean(page);
  848. return NOPAGE_SIGBUS;
  849. }
  850. if (type != NULL)
  851. *type = VM_FAULT_MINOR;
  852. return page;
  853. }
  854. static struct vm_operations_struct kvm_vm_vm_ops = {
  855. .nopage = kvm_vm_nopage,
  856. };
  857. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  858. {
  859. vma->vm_ops = &kvm_vm_vm_ops;
  860. return 0;
  861. }
  862. static struct file_operations kvm_vm_fops = {
  863. .release = kvm_vm_release,
  864. .unlocked_ioctl = kvm_vm_ioctl,
  865. .compat_ioctl = kvm_vm_ioctl,
  866. .mmap = kvm_vm_mmap,
  867. };
  868. static int kvm_dev_ioctl_create_vm(void)
  869. {
  870. int fd, r;
  871. struct inode *inode;
  872. struct file *file;
  873. struct kvm *kvm;
  874. kvm = kvm_create_vm();
  875. if (IS_ERR(kvm))
  876. return PTR_ERR(kvm);
  877. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  878. if (r) {
  879. kvm_destroy_vm(kvm);
  880. return r;
  881. }
  882. kvm->filp = file;
  883. return fd;
  884. }
  885. static long kvm_dev_ioctl(struct file *filp,
  886. unsigned int ioctl, unsigned long arg)
  887. {
  888. void __user *argp = (void __user *)arg;
  889. long r = -EINVAL;
  890. switch (ioctl) {
  891. case KVM_GET_API_VERSION:
  892. r = -EINVAL;
  893. if (arg)
  894. goto out;
  895. r = KVM_API_VERSION;
  896. break;
  897. case KVM_CREATE_VM:
  898. r = -EINVAL;
  899. if (arg)
  900. goto out;
  901. r = kvm_dev_ioctl_create_vm();
  902. break;
  903. case KVM_CHECK_EXTENSION:
  904. r = kvm_dev_ioctl_check_extension((long)argp);
  905. break;
  906. case KVM_GET_VCPU_MMAP_SIZE:
  907. r = -EINVAL;
  908. if (arg)
  909. goto out;
  910. r = 2 * PAGE_SIZE;
  911. break;
  912. default:
  913. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  914. }
  915. out:
  916. return r;
  917. }
  918. static struct file_operations kvm_chardev_ops = {
  919. .unlocked_ioctl = kvm_dev_ioctl,
  920. .compat_ioctl = kvm_dev_ioctl,
  921. };
  922. static struct miscdevice kvm_dev = {
  923. KVM_MINOR,
  924. "kvm",
  925. &kvm_chardev_ops,
  926. };
  927. static void hardware_enable(void *junk)
  928. {
  929. int cpu = raw_smp_processor_id();
  930. if (cpu_isset(cpu, cpus_hardware_enabled))
  931. return;
  932. cpu_set(cpu, cpus_hardware_enabled);
  933. kvm_arch_hardware_enable(NULL);
  934. }
  935. static void hardware_disable(void *junk)
  936. {
  937. int cpu = raw_smp_processor_id();
  938. if (!cpu_isset(cpu, cpus_hardware_enabled))
  939. return;
  940. cpu_clear(cpu, cpus_hardware_enabled);
  941. decache_vcpus_on_cpu(cpu);
  942. kvm_arch_hardware_disable(NULL);
  943. }
  944. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  945. void *v)
  946. {
  947. int cpu = (long)v;
  948. val &= ~CPU_TASKS_FROZEN;
  949. switch (val) {
  950. case CPU_DYING:
  951. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  952. cpu);
  953. hardware_disable(NULL);
  954. break;
  955. case CPU_UP_CANCELED:
  956. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  957. cpu);
  958. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  959. break;
  960. case CPU_ONLINE:
  961. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  962. cpu);
  963. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  964. break;
  965. }
  966. return NOTIFY_OK;
  967. }
  968. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  969. void *v)
  970. {
  971. if (val == SYS_RESTART) {
  972. /*
  973. * Some (well, at least mine) BIOSes hang on reboot if
  974. * in vmx root mode.
  975. */
  976. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  977. on_each_cpu(hardware_disable, NULL, 0, 1);
  978. }
  979. return NOTIFY_OK;
  980. }
  981. static struct notifier_block kvm_reboot_notifier = {
  982. .notifier_call = kvm_reboot,
  983. .priority = 0,
  984. };
  985. void kvm_io_bus_init(struct kvm_io_bus *bus)
  986. {
  987. memset(bus, 0, sizeof(*bus));
  988. }
  989. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  990. {
  991. int i;
  992. for (i = 0; i < bus->dev_count; i++) {
  993. struct kvm_io_device *pos = bus->devs[i];
  994. kvm_iodevice_destructor(pos);
  995. }
  996. }
  997. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  998. {
  999. int i;
  1000. for (i = 0; i < bus->dev_count; i++) {
  1001. struct kvm_io_device *pos = bus->devs[i];
  1002. if (pos->in_range(pos, addr))
  1003. return pos;
  1004. }
  1005. return NULL;
  1006. }
  1007. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  1008. {
  1009. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  1010. bus->devs[bus->dev_count++] = dev;
  1011. }
  1012. static struct notifier_block kvm_cpu_notifier = {
  1013. .notifier_call = kvm_cpu_hotplug,
  1014. .priority = 20, /* must be > scheduler priority */
  1015. };
  1016. static u64 vm_stat_get(void *_offset)
  1017. {
  1018. unsigned offset = (long)_offset;
  1019. u64 total = 0;
  1020. struct kvm *kvm;
  1021. spin_lock(&kvm_lock);
  1022. list_for_each_entry(kvm, &vm_list, vm_list)
  1023. total += *(u32 *)((void *)kvm + offset);
  1024. spin_unlock(&kvm_lock);
  1025. return total;
  1026. }
  1027. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  1028. static u64 vcpu_stat_get(void *_offset)
  1029. {
  1030. unsigned offset = (long)_offset;
  1031. u64 total = 0;
  1032. struct kvm *kvm;
  1033. struct kvm_vcpu *vcpu;
  1034. int i;
  1035. spin_lock(&kvm_lock);
  1036. list_for_each_entry(kvm, &vm_list, vm_list)
  1037. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1038. vcpu = kvm->vcpus[i];
  1039. if (vcpu)
  1040. total += *(u32 *)((void *)vcpu + offset);
  1041. }
  1042. spin_unlock(&kvm_lock);
  1043. return total;
  1044. }
  1045. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  1046. static struct file_operations *stat_fops[] = {
  1047. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  1048. [KVM_STAT_VM] = &vm_stat_fops,
  1049. };
  1050. static void kvm_init_debug(void)
  1051. {
  1052. struct kvm_stats_debugfs_item *p;
  1053. debugfs_dir = debugfs_create_dir("kvm", NULL);
  1054. for (p = debugfs_entries; p->name; ++p)
  1055. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  1056. (void *)(long)p->offset,
  1057. stat_fops[p->kind]);
  1058. }
  1059. static void kvm_exit_debug(void)
  1060. {
  1061. struct kvm_stats_debugfs_item *p;
  1062. for (p = debugfs_entries; p->name; ++p)
  1063. debugfs_remove(p->dentry);
  1064. debugfs_remove(debugfs_dir);
  1065. }
  1066. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1067. {
  1068. hardware_disable(NULL);
  1069. return 0;
  1070. }
  1071. static int kvm_resume(struct sys_device *dev)
  1072. {
  1073. hardware_enable(NULL);
  1074. return 0;
  1075. }
  1076. static struct sysdev_class kvm_sysdev_class = {
  1077. .name = "kvm",
  1078. .suspend = kvm_suspend,
  1079. .resume = kvm_resume,
  1080. };
  1081. static struct sys_device kvm_sysdev = {
  1082. .id = 0,
  1083. .cls = &kvm_sysdev_class,
  1084. };
  1085. struct page *bad_page;
  1086. static inline
  1087. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  1088. {
  1089. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  1090. }
  1091. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  1092. {
  1093. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1094. kvm_arch_vcpu_load(vcpu, cpu);
  1095. }
  1096. static void kvm_sched_out(struct preempt_notifier *pn,
  1097. struct task_struct *next)
  1098. {
  1099. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1100. kvm_arch_vcpu_put(vcpu);
  1101. }
  1102. int kvm_init(void *opaque, unsigned int vcpu_size,
  1103. struct module *module)
  1104. {
  1105. int r;
  1106. int cpu;
  1107. kvm_init_debug();
  1108. r = kvm_arch_init(opaque);
  1109. if (r)
  1110. goto out_fail;
  1111. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1112. if (bad_page == NULL) {
  1113. r = -ENOMEM;
  1114. goto out;
  1115. }
  1116. r = kvm_arch_hardware_setup();
  1117. if (r < 0)
  1118. goto out_free_0;
  1119. for_each_online_cpu(cpu) {
  1120. smp_call_function_single(cpu,
  1121. kvm_arch_check_processor_compat,
  1122. &r, 0, 1);
  1123. if (r < 0)
  1124. goto out_free_1;
  1125. }
  1126. on_each_cpu(hardware_enable, NULL, 0, 1);
  1127. r = register_cpu_notifier(&kvm_cpu_notifier);
  1128. if (r)
  1129. goto out_free_2;
  1130. register_reboot_notifier(&kvm_reboot_notifier);
  1131. r = sysdev_class_register(&kvm_sysdev_class);
  1132. if (r)
  1133. goto out_free_3;
  1134. r = sysdev_register(&kvm_sysdev);
  1135. if (r)
  1136. goto out_free_4;
  1137. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  1138. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  1139. __alignof__(struct kvm_vcpu),
  1140. 0, NULL);
  1141. if (!kvm_vcpu_cache) {
  1142. r = -ENOMEM;
  1143. goto out_free_5;
  1144. }
  1145. kvm_chardev_ops.owner = module;
  1146. r = misc_register(&kvm_dev);
  1147. if (r) {
  1148. printk(KERN_ERR "kvm: misc device register failed\n");
  1149. goto out_free;
  1150. }
  1151. kvm_preempt_ops.sched_in = kvm_sched_in;
  1152. kvm_preempt_ops.sched_out = kvm_sched_out;
  1153. return 0;
  1154. out_free:
  1155. kmem_cache_destroy(kvm_vcpu_cache);
  1156. out_free_5:
  1157. sysdev_unregister(&kvm_sysdev);
  1158. out_free_4:
  1159. sysdev_class_unregister(&kvm_sysdev_class);
  1160. out_free_3:
  1161. unregister_reboot_notifier(&kvm_reboot_notifier);
  1162. unregister_cpu_notifier(&kvm_cpu_notifier);
  1163. out_free_2:
  1164. on_each_cpu(hardware_disable, NULL, 0, 1);
  1165. out_free_1:
  1166. kvm_arch_hardware_unsetup();
  1167. out_free_0:
  1168. __free_page(bad_page);
  1169. out:
  1170. kvm_arch_exit();
  1171. kvm_exit_debug();
  1172. out_fail:
  1173. return r;
  1174. }
  1175. EXPORT_SYMBOL_GPL(kvm_init);
  1176. void kvm_exit(void)
  1177. {
  1178. misc_deregister(&kvm_dev);
  1179. kmem_cache_destroy(kvm_vcpu_cache);
  1180. sysdev_unregister(&kvm_sysdev);
  1181. sysdev_class_unregister(&kvm_sysdev_class);
  1182. unregister_reboot_notifier(&kvm_reboot_notifier);
  1183. unregister_cpu_notifier(&kvm_cpu_notifier);
  1184. on_each_cpu(hardware_disable, NULL, 0, 1);
  1185. kvm_arch_hardware_unsetup();
  1186. kvm_arch_exit();
  1187. kvm_exit_debug();
  1188. __free_page(bad_page);
  1189. }
  1190. EXPORT_SYMBOL_GPL(kvm_exit);