mmu.c 74 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "mmu.h"
  20. #include <linux/kvm_host.h>
  21. #include <linux/types.h>
  22. #include <linux/string.h>
  23. #include <linux/mm.h>
  24. #include <linux/highmem.h>
  25. #include <linux/module.h>
  26. #include <linux/swap.h>
  27. #include <linux/hugetlb.h>
  28. #include <linux/compiler.h>
  29. #include <asm/page.h>
  30. #include <asm/cmpxchg.h>
  31. #include <asm/io.h>
  32. #include <asm/vmx.h>
  33. /*
  34. * When setting this variable to true it enables Two-Dimensional-Paging
  35. * where the hardware walks 2 page tables:
  36. * 1. the guest-virtual to guest-physical
  37. * 2. while doing 1. it walks guest-physical to host-physical
  38. * If the hardware supports that we don't need to do shadow paging.
  39. */
  40. bool tdp_enabled = false;
  41. #undef MMU_DEBUG
  42. #undef AUDIT
  43. #ifdef AUDIT
  44. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  45. #else
  46. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  47. #endif
  48. #ifdef MMU_DEBUG
  49. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  50. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  51. #else
  52. #define pgprintk(x...) do { } while (0)
  53. #define rmap_printk(x...) do { } while (0)
  54. #endif
  55. #if defined(MMU_DEBUG) || defined(AUDIT)
  56. static int dbg = 0;
  57. module_param(dbg, bool, 0644);
  58. #endif
  59. static int oos_shadow = 1;
  60. module_param(oos_shadow, bool, 0644);
  61. #ifndef MMU_DEBUG
  62. #define ASSERT(x) do { } while (0)
  63. #else
  64. #define ASSERT(x) \
  65. if (!(x)) { \
  66. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  67. __FILE__, __LINE__, #x); \
  68. }
  69. #endif
  70. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  71. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  72. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  73. #define PT64_LEVEL_BITS 9
  74. #define PT64_LEVEL_SHIFT(level) \
  75. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  76. #define PT64_LEVEL_MASK(level) \
  77. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  78. #define PT64_INDEX(address, level)\
  79. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  80. #define PT32_LEVEL_BITS 10
  81. #define PT32_LEVEL_SHIFT(level) \
  82. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  83. #define PT32_LEVEL_MASK(level) \
  84. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  85. #define PT32_INDEX(address, level)\
  86. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  87. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  88. #define PT64_DIR_BASE_ADDR_MASK \
  89. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  90. #define PT32_BASE_ADDR_MASK PAGE_MASK
  91. #define PT32_DIR_BASE_ADDR_MASK \
  92. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  93. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  94. | PT64_NX_MASK)
  95. #define PFERR_PRESENT_MASK (1U << 0)
  96. #define PFERR_WRITE_MASK (1U << 1)
  97. #define PFERR_USER_MASK (1U << 2)
  98. #define PFERR_FETCH_MASK (1U << 4)
  99. #define PT_DIRECTORY_LEVEL 2
  100. #define PT_PAGE_TABLE_LEVEL 1
  101. #define RMAP_EXT 4
  102. #define ACC_EXEC_MASK 1
  103. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  104. #define ACC_USER_MASK PT_USER_MASK
  105. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  106. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  107. struct kvm_rmap_desc {
  108. u64 *shadow_ptes[RMAP_EXT];
  109. struct kvm_rmap_desc *more;
  110. };
  111. struct kvm_shadow_walk {
  112. int (*entry)(struct kvm_shadow_walk *walk, struct kvm_vcpu *vcpu,
  113. u64 addr, u64 *spte, int level);
  114. };
  115. struct kvm_unsync_walk {
  116. int (*entry) (struct kvm_mmu_page *sp, struct kvm_unsync_walk *walk);
  117. };
  118. typedef int (*mmu_parent_walk_fn) (struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp);
  119. static struct kmem_cache *pte_chain_cache;
  120. static struct kmem_cache *rmap_desc_cache;
  121. static struct kmem_cache *mmu_page_header_cache;
  122. static u64 __read_mostly shadow_trap_nonpresent_pte;
  123. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  124. static u64 __read_mostly shadow_base_present_pte;
  125. static u64 __read_mostly shadow_nx_mask;
  126. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  127. static u64 __read_mostly shadow_user_mask;
  128. static u64 __read_mostly shadow_accessed_mask;
  129. static u64 __read_mostly shadow_dirty_mask;
  130. static u64 __read_mostly shadow_mt_mask;
  131. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  132. {
  133. shadow_trap_nonpresent_pte = trap_pte;
  134. shadow_notrap_nonpresent_pte = notrap_pte;
  135. }
  136. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  137. void kvm_mmu_set_base_ptes(u64 base_pte)
  138. {
  139. shadow_base_present_pte = base_pte;
  140. }
  141. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  142. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  143. u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 mt_mask)
  144. {
  145. shadow_user_mask = user_mask;
  146. shadow_accessed_mask = accessed_mask;
  147. shadow_dirty_mask = dirty_mask;
  148. shadow_nx_mask = nx_mask;
  149. shadow_x_mask = x_mask;
  150. shadow_mt_mask = mt_mask;
  151. }
  152. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  153. static int is_write_protection(struct kvm_vcpu *vcpu)
  154. {
  155. return vcpu->arch.cr0 & X86_CR0_WP;
  156. }
  157. static int is_cpuid_PSE36(void)
  158. {
  159. return 1;
  160. }
  161. static int is_nx(struct kvm_vcpu *vcpu)
  162. {
  163. return vcpu->arch.shadow_efer & EFER_NX;
  164. }
  165. static int is_present_pte(unsigned long pte)
  166. {
  167. return pte & PT_PRESENT_MASK;
  168. }
  169. static int is_shadow_present_pte(u64 pte)
  170. {
  171. return pte != shadow_trap_nonpresent_pte
  172. && pte != shadow_notrap_nonpresent_pte;
  173. }
  174. static int is_large_pte(u64 pte)
  175. {
  176. return pte & PT_PAGE_SIZE_MASK;
  177. }
  178. static int is_writeble_pte(unsigned long pte)
  179. {
  180. return pte & PT_WRITABLE_MASK;
  181. }
  182. static int is_dirty_pte(unsigned long pte)
  183. {
  184. return pte & shadow_dirty_mask;
  185. }
  186. static int is_rmap_pte(u64 pte)
  187. {
  188. return is_shadow_present_pte(pte);
  189. }
  190. static pfn_t spte_to_pfn(u64 pte)
  191. {
  192. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  193. }
  194. static gfn_t pse36_gfn_delta(u32 gpte)
  195. {
  196. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  197. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  198. }
  199. static void set_shadow_pte(u64 *sptep, u64 spte)
  200. {
  201. #ifdef CONFIG_X86_64
  202. set_64bit((unsigned long *)sptep, spte);
  203. #else
  204. set_64bit((unsigned long long *)sptep, spte);
  205. #endif
  206. }
  207. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  208. struct kmem_cache *base_cache, int min)
  209. {
  210. void *obj;
  211. if (cache->nobjs >= min)
  212. return 0;
  213. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  214. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  215. if (!obj)
  216. return -ENOMEM;
  217. cache->objects[cache->nobjs++] = obj;
  218. }
  219. return 0;
  220. }
  221. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  222. {
  223. while (mc->nobjs)
  224. kfree(mc->objects[--mc->nobjs]);
  225. }
  226. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  227. int min)
  228. {
  229. struct page *page;
  230. if (cache->nobjs >= min)
  231. return 0;
  232. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  233. page = alloc_page(GFP_KERNEL);
  234. if (!page)
  235. return -ENOMEM;
  236. set_page_private(page, 0);
  237. cache->objects[cache->nobjs++] = page_address(page);
  238. }
  239. return 0;
  240. }
  241. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  242. {
  243. while (mc->nobjs)
  244. free_page((unsigned long)mc->objects[--mc->nobjs]);
  245. }
  246. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  247. {
  248. int r;
  249. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  250. pte_chain_cache, 4);
  251. if (r)
  252. goto out;
  253. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  254. rmap_desc_cache, 4);
  255. if (r)
  256. goto out;
  257. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  258. if (r)
  259. goto out;
  260. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  261. mmu_page_header_cache, 4);
  262. out:
  263. return r;
  264. }
  265. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  266. {
  267. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
  268. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
  269. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  270. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
  271. }
  272. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  273. size_t size)
  274. {
  275. void *p;
  276. BUG_ON(!mc->nobjs);
  277. p = mc->objects[--mc->nobjs];
  278. memset(p, 0, size);
  279. return p;
  280. }
  281. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  282. {
  283. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  284. sizeof(struct kvm_pte_chain));
  285. }
  286. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  287. {
  288. kfree(pc);
  289. }
  290. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  291. {
  292. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  293. sizeof(struct kvm_rmap_desc));
  294. }
  295. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  296. {
  297. kfree(rd);
  298. }
  299. /*
  300. * Return the pointer to the largepage write count for a given
  301. * gfn, handling slots that are not large page aligned.
  302. */
  303. static int *slot_largepage_idx(gfn_t gfn, struct kvm_memory_slot *slot)
  304. {
  305. unsigned long idx;
  306. idx = (gfn / KVM_PAGES_PER_HPAGE) -
  307. (slot->base_gfn / KVM_PAGES_PER_HPAGE);
  308. return &slot->lpage_info[idx].write_count;
  309. }
  310. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  311. {
  312. int *write_count;
  313. gfn = unalias_gfn(kvm, gfn);
  314. write_count = slot_largepage_idx(gfn,
  315. gfn_to_memslot_unaliased(kvm, gfn));
  316. *write_count += 1;
  317. }
  318. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  319. {
  320. int *write_count;
  321. gfn = unalias_gfn(kvm, gfn);
  322. write_count = slot_largepage_idx(gfn,
  323. gfn_to_memslot_unaliased(kvm, gfn));
  324. *write_count -= 1;
  325. WARN_ON(*write_count < 0);
  326. }
  327. static int has_wrprotected_page(struct kvm *kvm, gfn_t gfn)
  328. {
  329. struct kvm_memory_slot *slot;
  330. int *largepage_idx;
  331. gfn = unalias_gfn(kvm, gfn);
  332. slot = gfn_to_memslot_unaliased(kvm, gfn);
  333. if (slot) {
  334. largepage_idx = slot_largepage_idx(gfn, slot);
  335. return *largepage_idx;
  336. }
  337. return 1;
  338. }
  339. static int host_largepage_backed(struct kvm *kvm, gfn_t gfn)
  340. {
  341. struct vm_area_struct *vma;
  342. unsigned long addr;
  343. int ret = 0;
  344. addr = gfn_to_hva(kvm, gfn);
  345. if (kvm_is_error_hva(addr))
  346. return ret;
  347. down_read(&current->mm->mmap_sem);
  348. vma = find_vma(current->mm, addr);
  349. if (vma && is_vm_hugetlb_page(vma))
  350. ret = 1;
  351. up_read(&current->mm->mmap_sem);
  352. return ret;
  353. }
  354. static int is_largepage_backed(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  355. {
  356. struct kvm_memory_slot *slot;
  357. if (has_wrprotected_page(vcpu->kvm, large_gfn))
  358. return 0;
  359. if (!host_largepage_backed(vcpu->kvm, large_gfn))
  360. return 0;
  361. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  362. if (slot && slot->dirty_bitmap)
  363. return 0;
  364. return 1;
  365. }
  366. /*
  367. * Take gfn and return the reverse mapping to it.
  368. * Note: gfn must be unaliased before this function get called
  369. */
  370. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int lpage)
  371. {
  372. struct kvm_memory_slot *slot;
  373. unsigned long idx;
  374. slot = gfn_to_memslot(kvm, gfn);
  375. if (!lpage)
  376. return &slot->rmap[gfn - slot->base_gfn];
  377. idx = (gfn / KVM_PAGES_PER_HPAGE) -
  378. (slot->base_gfn / KVM_PAGES_PER_HPAGE);
  379. return &slot->lpage_info[idx].rmap_pde;
  380. }
  381. /*
  382. * Reverse mapping data structures:
  383. *
  384. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  385. * that points to page_address(page).
  386. *
  387. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  388. * containing more mappings.
  389. */
  390. static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn, int lpage)
  391. {
  392. struct kvm_mmu_page *sp;
  393. struct kvm_rmap_desc *desc;
  394. unsigned long *rmapp;
  395. int i;
  396. if (!is_rmap_pte(*spte))
  397. return;
  398. gfn = unalias_gfn(vcpu->kvm, gfn);
  399. sp = page_header(__pa(spte));
  400. sp->gfns[spte - sp->spt] = gfn;
  401. rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage);
  402. if (!*rmapp) {
  403. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  404. *rmapp = (unsigned long)spte;
  405. } else if (!(*rmapp & 1)) {
  406. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  407. desc = mmu_alloc_rmap_desc(vcpu);
  408. desc->shadow_ptes[0] = (u64 *)*rmapp;
  409. desc->shadow_ptes[1] = spte;
  410. *rmapp = (unsigned long)desc | 1;
  411. } else {
  412. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  413. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  414. while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
  415. desc = desc->more;
  416. if (desc->shadow_ptes[RMAP_EXT-1]) {
  417. desc->more = mmu_alloc_rmap_desc(vcpu);
  418. desc = desc->more;
  419. }
  420. for (i = 0; desc->shadow_ptes[i]; ++i)
  421. ;
  422. desc->shadow_ptes[i] = spte;
  423. }
  424. }
  425. static void rmap_desc_remove_entry(unsigned long *rmapp,
  426. struct kvm_rmap_desc *desc,
  427. int i,
  428. struct kvm_rmap_desc *prev_desc)
  429. {
  430. int j;
  431. for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
  432. ;
  433. desc->shadow_ptes[i] = desc->shadow_ptes[j];
  434. desc->shadow_ptes[j] = NULL;
  435. if (j != 0)
  436. return;
  437. if (!prev_desc && !desc->more)
  438. *rmapp = (unsigned long)desc->shadow_ptes[0];
  439. else
  440. if (prev_desc)
  441. prev_desc->more = desc->more;
  442. else
  443. *rmapp = (unsigned long)desc->more | 1;
  444. mmu_free_rmap_desc(desc);
  445. }
  446. static void rmap_remove(struct kvm *kvm, u64 *spte)
  447. {
  448. struct kvm_rmap_desc *desc;
  449. struct kvm_rmap_desc *prev_desc;
  450. struct kvm_mmu_page *sp;
  451. pfn_t pfn;
  452. unsigned long *rmapp;
  453. int i;
  454. if (!is_rmap_pte(*spte))
  455. return;
  456. sp = page_header(__pa(spte));
  457. pfn = spte_to_pfn(*spte);
  458. if (*spte & shadow_accessed_mask)
  459. kvm_set_pfn_accessed(pfn);
  460. if (is_writeble_pte(*spte))
  461. kvm_release_pfn_dirty(pfn);
  462. else
  463. kvm_release_pfn_clean(pfn);
  464. rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], is_large_pte(*spte));
  465. if (!*rmapp) {
  466. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  467. BUG();
  468. } else if (!(*rmapp & 1)) {
  469. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  470. if ((u64 *)*rmapp != spte) {
  471. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  472. spte, *spte);
  473. BUG();
  474. }
  475. *rmapp = 0;
  476. } else {
  477. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  478. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  479. prev_desc = NULL;
  480. while (desc) {
  481. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
  482. if (desc->shadow_ptes[i] == spte) {
  483. rmap_desc_remove_entry(rmapp,
  484. desc, i,
  485. prev_desc);
  486. return;
  487. }
  488. prev_desc = desc;
  489. desc = desc->more;
  490. }
  491. BUG();
  492. }
  493. }
  494. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  495. {
  496. struct kvm_rmap_desc *desc;
  497. struct kvm_rmap_desc *prev_desc;
  498. u64 *prev_spte;
  499. int i;
  500. if (!*rmapp)
  501. return NULL;
  502. else if (!(*rmapp & 1)) {
  503. if (!spte)
  504. return (u64 *)*rmapp;
  505. return NULL;
  506. }
  507. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  508. prev_desc = NULL;
  509. prev_spte = NULL;
  510. while (desc) {
  511. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
  512. if (prev_spte == spte)
  513. return desc->shadow_ptes[i];
  514. prev_spte = desc->shadow_ptes[i];
  515. }
  516. desc = desc->more;
  517. }
  518. return NULL;
  519. }
  520. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  521. {
  522. unsigned long *rmapp;
  523. u64 *spte;
  524. int write_protected = 0;
  525. gfn = unalias_gfn(kvm, gfn);
  526. rmapp = gfn_to_rmap(kvm, gfn, 0);
  527. spte = rmap_next(kvm, rmapp, NULL);
  528. while (spte) {
  529. BUG_ON(!spte);
  530. BUG_ON(!(*spte & PT_PRESENT_MASK));
  531. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  532. if (is_writeble_pte(*spte)) {
  533. set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
  534. write_protected = 1;
  535. }
  536. spte = rmap_next(kvm, rmapp, spte);
  537. }
  538. if (write_protected) {
  539. pfn_t pfn;
  540. spte = rmap_next(kvm, rmapp, NULL);
  541. pfn = spte_to_pfn(*spte);
  542. kvm_set_pfn_dirty(pfn);
  543. }
  544. /* check for huge page mappings */
  545. rmapp = gfn_to_rmap(kvm, gfn, 1);
  546. spte = rmap_next(kvm, rmapp, NULL);
  547. while (spte) {
  548. BUG_ON(!spte);
  549. BUG_ON(!(*spte & PT_PRESENT_MASK));
  550. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  551. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  552. if (is_writeble_pte(*spte)) {
  553. rmap_remove(kvm, spte);
  554. --kvm->stat.lpages;
  555. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  556. spte = NULL;
  557. write_protected = 1;
  558. }
  559. spte = rmap_next(kvm, rmapp, spte);
  560. }
  561. return write_protected;
  562. }
  563. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp)
  564. {
  565. u64 *spte;
  566. int need_tlb_flush = 0;
  567. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  568. BUG_ON(!(*spte & PT_PRESENT_MASK));
  569. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  570. rmap_remove(kvm, spte);
  571. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  572. need_tlb_flush = 1;
  573. }
  574. return need_tlb_flush;
  575. }
  576. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  577. int (*handler)(struct kvm *kvm, unsigned long *rmapp))
  578. {
  579. int i;
  580. int retval = 0;
  581. /*
  582. * If mmap_sem isn't taken, we can look the memslots with only
  583. * the mmu_lock by skipping over the slots with userspace_addr == 0.
  584. */
  585. for (i = 0; i < kvm->nmemslots; i++) {
  586. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  587. unsigned long start = memslot->userspace_addr;
  588. unsigned long end;
  589. /* mmu_lock protects userspace_addr */
  590. if (!start)
  591. continue;
  592. end = start + (memslot->npages << PAGE_SHIFT);
  593. if (hva >= start && hva < end) {
  594. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  595. retval |= handler(kvm, &memslot->rmap[gfn_offset]);
  596. retval |= handler(kvm,
  597. &memslot->lpage_info[
  598. gfn_offset /
  599. KVM_PAGES_PER_HPAGE].rmap_pde);
  600. }
  601. }
  602. return retval;
  603. }
  604. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  605. {
  606. return kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
  607. }
  608. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp)
  609. {
  610. u64 *spte;
  611. int young = 0;
  612. /* always return old for EPT */
  613. if (!shadow_accessed_mask)
  614. return 0;
  615. spte = rmap_next(kvm, rmapp, NULL);
  616. while (spte) {
  617. int _young;
  618. u64 _spte = *spte;
  619. BUG_ON(!(_spte & PT_PRESENT_MASK));
  620. _young = _spte & PT_ACCESSED_MASK;
  621. if (_young) {
  622. young = 1;
  623. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  624. }
  625. spte = rmap_next(kvm, rmapp, spte);
  626. }
  627. return young;
  628. }
  629. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  630. {
  631. return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
  632. }
  633. #ifdef MMU_DEBUG
  634. static int is_empty_shadow_page(u64 *spt)
  635. {
  636. u64 *pos;
  637. u64 *end;
  638. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  639. if (is_shadow_present_pte(*pos)) {
  640. printk(KERN_ERR "%s: %p %llx\n", __func__,
  641. pos, *pos);
  642. return 0;
  643. }
  644. return 1;
  645. }
  646. #endif
  647. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  648. {
  649. ASSERT(is_empty_shadow_page(sp->spt));
  650. list_del(&sp->link);
  651. __free_page(virt_to_page(sp->spt));
  652. __free_page(virt_to_page(sp->gfns));
  653. kfree(sp);
  654. ++kvm->arch.n_free_mmu_pages;
  655. }
  656. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  657. {
  658. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  659. }
  660. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  661. u64 *parent_pte)
  662. {
  663. struct kvm_mmu_page *sp;
  664. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  665. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  666. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  667. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  668. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  669. INIT_LIST_HEAD(&sp->oos_link);
  670. ASSERT(is_empty_shadow_page(sp->spt));
  671. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  672. sp->multimapped = 0;
  673. sp->parent_pte = parent_pte;
  674. --vcpu->kvm->arch.n_free_mmu_pages;
  675. return sp;
  676. }
  677. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  678. struct kvm_mmu_page *sp, u64 *parent_pte)
  679. {
  680. struct kvm_pte_chain *pte_chain;
  681. struct hlist_node *node;
  682. int i;
  683. if (!parent_pte)
  684. return;
  685. if (!sp->multimapped) {
  686. u64 *old = sp->parent_pte;
  687. if (!old) {
  688. sp->parent_pte = parent_pte;
  689. return;
  690. }
  691. sp->multimapped = 1;
  692. pte_chain = mmu_alloc_pte_chain(vcpu);
  693. INIT_HLIST_HEAD(&sp->parent_ptes);
  694. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  695. pte_chain->parent_ptes[0] = old;
  696. }
  697. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  698. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  699. continue;
  700. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  701. if (!pte_chain->parent_ptes[i]) {
  702. pte_chain->parent_ptes[i] = parent_pte;
  703. return;
  704. }
  705. }
  706. pte_chain = mmu_alloc_pte_chain(vcpu);
  707. BUG_ON(!pte_chain);
  708. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  709. pte_chain->parent_ptes[0] = parent_pte;
  710. }
  711. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  712. u64 *parent_pte)
  713. {
  714. struct kvm_pte_chain *pte_chain;
  715. struct hlist_node *node;
  716. int i;
  717. if (!sp->multimapped) {
  718. BUG_ON(sp->parent_pte != parent_pte);
  719. sp->parent_pte = NULL;
  720. return;
  721. }
  722. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  723. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  724. if (!pte_chain->parent_ptes[i])
  725. break;
  726. if (pte_chain->parent_ptes[i] != parent_pte)
  727. continue;
  728. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  729. && pte_chain->parent_ptes[i + 1]) {
  730. pte_chain->parent_ptes[i]
  731. = pte_chain->parent_ptes[i + 1];
  732. ++i;
  733. }
  734. pte_chain->parent_ptes[i] = NULL;
  735. if (i == 0) {
  736. hlist_del(&pte_chain->link);
  737. mmu_free_pte_chain(pte_chain);
  738. if (hlist_empty(&sp->parent_ptes)) {
  739. sp->multimapped = 0;
  740. sp->parent_pte = NULL;
  741. }
  742. }
  743. return;
  744. }
  745. BUG();
  746. }
  747. static void mmu_parent_walk(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  748. mmu_parent_walk_fn fn)
  749. {
  750. struct kvm_pte_chain *pte_chain;
  751. struct hlist_node *node;
  752. struct kvm_mmu_page *parent_sp;
  753. int i;
  754. if (!sp->multimapped && sp->parent_pte) {
  755. parent_sp = page_header(__pa(sp->parent_pte));
  756. fn(vcpu, parent_sp);
  757. mmu_parent_walk(vcpu, parent_sp, fn);
  758. return;
  759. }
  760. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  761. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  762. if (!pte_chain->parent_ptes[i])
  763. break;
  764. parent_sp = page_header(__pa(pte_chain->parent_ptes[i]));
  765. fn(vcpu, parent_sp);
  766. mmu_parent_walk(vcpu, parent_sp, fn);
  767. }
  768. }
  769. static void kvm_mmu_update_unsync_bitmap(u64 *spte)
  770. {
  771. unsigned int index;
  772. struct kvm_mmu_page *sp = page_header(__pa(spte));
  773. index = spte - sp->spt;
  774. if (!__test_and_set_bit(index, sp->unsync_child_bitmap))
  775. sp->unsync_children++;
  776. WARN_ON(!sp->unsync_children);
  777. }
  778. static void kvm_mmu_update_parents_unsync(struct kvm_mmu_page *sp)
  779. {
  780. struct kvm_pte_chain *pte_chain;
  781. struct hlist_node *node;
  782. int i;
  783. if (!sp->parent_pte)
  784. return;
  785. if (!sp->multimapped) {
  786. kvm_mmu_update_unsync_bitmap(sp->parent_pte);
  787. return;
  788. }
  789. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  790. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  791. if (!pte_chain->parent_ptes[i])
  792. break;
  793. kvm_mmu_update_unsync_bitmap(pte_chain->parent_ptes[i]);
  794. }
  795. }
  796. static int unsync_walk_fn(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  797. {
  798. kvm_mmu_update_parents_unsync(sp);
  799. return 1;
  800. }
  801. static void kvm_mmu_mark_parents_unsync(struct kvm_vcpu *vcpu,
  802. struct kvm_mmu_page *sp)
  803. {
  804. mmu_parent_walk(vcpu, sp, unsync_walk_fn);
  805. kvm_mmu_update_parents_unsync(sp);
  806. }
  807. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  808. struct kvm_mmu_page *sp)
  809. {
  810. int i;
  811. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  812. sp->spt[i] = shadow_trap_nonpresent_pte;
  813. }
  814. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  815. struct kvm_mmu_page *sp)
  816. {
  817. return 1;
  818. }
  819. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  820. {
  821. }
  822. #define KVM_PAGE_ARRAY_NR 16
  823. struct kvm_mmu_pages {
  824. struct mmu_page_and_offset {
  825. struct kvm_mmu_page *sp;
  826. unsigned int idx;
  827. } page[KVM_PAGE_ARRAY_NR];
  828. unsigned int nr;
  829. };
  830. #define for_each_unsync_children(bitmap, idx) \
  831. for (idx = find_first_bit(bitmap, 512); \
  832. idx < 512; \
  833. idx = find_next_bit(bitmap, 512, idx+1))
  834. int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  835. int idx)
  836. {
  837. int i;
  838. if (sp->unsync)
  839. for (i=0; i < pvec->nr; i++)
  840. if (pvec->page[i].sp == sp)
  841. return 0;
  842. pvec->page[pvec->nr].sp = sp;
  843. pvec->page[pvec->nr].idx = idx;
  844. pvec->nr++;
  845. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  846. }
  847. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  848. struct kvm_mmu_pages *pvec)
  849. {
  850. int i, ret, nr_unsync_leaf = 0;
  851. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  852. u64 ent = sp->spt[i];
  853. if (is_shadow_present_pte(ent) && !is_large_pte(ent)) {
  854. struct kvm_mmu_page *child;
  855. child = page_header(ent & PT64_BASE_ADDR_MASK);
  856. if (child->unsync_children) {
  857. if (mmu_pages_add(pvec, child, i))
  858. return -ENOSPC;
  859. ret = __mmu_unsync_walk(child, pvec);
  860. if (!ret)
  861. __clear_bit(i, sp->unsync_child_bitmap);
  862. else if (ret > 0)
  863. nr_unsync_leaf += ret;
  864. else
  865. return ret;
  866. }
  867. if (child->unsync) {
  868. nr_unsync_leaf++;
  869. if (mmu_pages_add(pvec, child, i))
  870. return -ENOSPC;
  871. }
  872. }
  873. }
  874. if (find_first_bit(sp->unsync_child_bitmap, 512) == 512)
  875. sp->unsync_children = 0;
  876. return nr_unsync_leaf;
  877. }
  878. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  879. struct kvm_mmu_pages *pvec)
  880. {
  881. if (!sp->unsync_children)
  882. return 0;
  883. mmu_pages_add(pvec, sp, 0);
  884. return __mmu_unsync_walk(sp, pvec);
  885. }
  886. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
  887. {
  888. unsigned index;
  889. struct hlist_head *bucket;
  890. struct kvm_mmu_page *sp;
  891. struct hlist_node *node;
  892. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  893. index = kvm_page_table_hashfn(gfn);
  894. bucket = &kvm->arch.mmu_page_hash[index];
  895. hlist_for_each_entry(sp, node, bucket, hash_link)
  896. if (sp->gfn == gfn && !sp->role.metaphysical
  897. && !sp->role.invalid) {
  898. pgprintk("%s: found role %x\n",
  899. __func__, sp->role.word);
  900. return sp;
  901. }
  902. return NULL;
  903. }
  904. static void kvm_unlink_unsync_global(struct kvm *kvm, struct kvm_mmu_page *sp)
  905. {
  906. list_del(&sp->oos_link);
  907. --kvm->stat.mmu_unsync_global;
  908. }
  909. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  910. {
  911. WARN_ON(!sp->unsync);
  912. sp->unsync = 0;
  913. if (sp->global)
  914. kvm_unlink_unsync_global(kvm, sp);
  915. --kvm->stat.mmu_unsync;
  916. }
  917. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp);
  918. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  919. {
  920. if (sp->role.glevels != vcpu->arch.mmu.root_level) {
  921. kvm_mmu_zap_page(vcpu->kvm, sp);
  922. return 1;
  923. }
  924. if (rmap_write_protect(vcpu->kvm, sp->gfn))
  925. kvm_flush_remote_tlbs(vcpu->kvm);
  926. kvm_unlink_unsync_page(vcpu->kvm, sp);
  927. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  928. kvm_mmu_zap_page(vcpu->kvm, sp);
  929. return 1;
  930. }
  931. kvm_mmu_flush_tlb(vcpu);
  932. return 0;
  933. }
  934. struct mmu_page_path {
  935. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  936. unsigned int idx[PT64_ROOT_LEVEL-1];
  937. };
  938. #define for_each_sp(pvec, sp, parents, i) \
  939. for (i = mmu_pages_next(&pvec, &parents, -1), \
  940. sp = pvec.page[i].sp; \
  941. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  942. i = mmu_pages_next(&pvec, &parents, i))
  943. int mmu_pages_next(struct kvm_mmu_pages *pvec, struct mmu_page_path *parents,
  944. int i)
  945. {
  946. int n;
  947. for (n = i+1; n < pvec->nr; n++) {
  948. struct kvm_mmu_page *sp = pvec->page[n].sp;
  949. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  950. parents->idx[0] = pvec->page[n].idx;
  951. return n;
  952. }
  953. parents->parent[sp->role.level-2] = sp;
  954. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  955. }
  956. return n;
  957. }
  958. void mmu_pages_clear_parents(struct mmu_page_path *parents)
  959. {
  960. struct kvm_mmu_page *sp;
  961. unsigned int level = 0;
  962. do {
  963. unsigned int idx = parents->idx[level];
  964. sp = parents->parent[level];
  965. if (!sp)
  966. return;
  967. --sp->unsync_children;
  968. WARN_ON((int)sp->unsync_children < 0);
  969. __clear_bit(idx, sp->unsync_child_bitmap);
  970. level++;
  971. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  972. }
  973. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  974. struct mmu_page_path *parents,
  975. struct kvm_mmu_pages *pvec)
  976. {
  977. parents->parent[parent->role.level-1] = NULL;
  978. pvec->nr = 0;
  979. }
  980. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  981. struct kvm_mmu_page *parent)
  982. {
  983. int i;
  984. struct kvm_mmu_page *sp;
  985. struct mmu_page_path parents;
  986. struct kvm_mmu_pages pages;
  987. kvm_mmu_pages_init(parent, &parents, &pages);
  988. while (mmu_unsync_walk(parent, &pages)) {
  989. int protected = 0;
  990. for_each_sp(pages, sp, parents, i)
  991. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  992. if (protected)
  993. kvm_flush_remote_tlbs(vcpu->kvm);
  994. for_each_sp(pages, sp, parents, i) {
  995. kvm_sync_page(vcpu, sp);
  996. mmu_pages_clear_parents(&parents);
  997. }
  998. cond_resched_lock(&vcpu->kvm->mmu_lock);
  999. kvm_mmu_pages_init(parent, &parents, &pages);
  1000. }
  1001. }
  1002. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1003. gfn_t gfn,
  1004. gva_t gaddr,
  1005. unsigned level,
  1006. int metaphysical,
  1007. unsigned access,
  1008. u64 *parent_pte)
  1009. {
  1010. union kvm_mmu_page_role role;
  1011. unsigned index;
  1012. unsigned quadrant;
  1013. struct hlist_head *bucket;
  1014. struct kvm_mmu_page *sp;
  1015. struct hlist_node *node, *tmp;
  1016. role = vcpu->arch.mmu.base_role;
  1017. role.level = level;
  1018. role.metaphysical = metaphysical;
  1019. role.access = access;
  1020. if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1021. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1022. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1023. role.quadrant = quadrant;
  1024. }
  1025. pgprintk("%s: looking gfn %lx role %x\n", __func__,
  1026. gfn, role.word);
  1027. index = kvm_page_table_hashfn(gfn);
  1028. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1029. hlist_for_each_entry_safe(sp, node, tmp, bucket, hash_link)
  1030. if (sp->gfn == gfn) {
  1031. if (sp->unsync)
  1032. if (kvm_sync_page(vcpu, sp))
  1033. continue;
  1034. if (sp->role.word != role.word)
  1035. continue;
  1036. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1037. if (sp->unsync_children) {
  1038. set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
  1039. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1040. }
  1041. pgprintk("%s: found\n", __func__);
  1042. return sp;
  1043. }
  1044. ++vcpu->kvm->stat.mmu_cache_miss;
  1045. sp = kvm_mmu_alloc_page(vcpu, parent_pte);
  1046. if (!sp)
  1047. return sp;
  1048. pgprintk("%s: adding gfn %lx role %x\n", __func__, gfn, role.word);
  1049. sp->gfn = gfn;
  1050. sp->role = role;
  1051. sp->global = role.cr4_pge;
  1052. hlist_add_head(&sp->hash_link, bucket);
  1053. if (!metaphysical) {
  1054. if (rmap_write_protect(vcpu->kvm, gfn))
  1055. kvm_flush_remote_tlbs(vcpu->kvm);
  1056. account_shadowed(vcpu->kvm, gfn);
  1057. }
  1058. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  1059. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  1060. else
  1061. nonpaging_prefetch_page(vcpu, sp);
  1062. return sp;
  1063. }
  1064. static int walk_shadow(struct kvm_shadow_walk *walker,
  1065. struct kvm_vcpu *vcpu, u64 addr)
  1066. {
  1067. hpa_t shadow_addr;
  1068. int level;
  1069. int r;
  1070. u64 *sptep;
  1071. unsigned index;
  1072. shadow_addr = vcpu->arch.mmu.root_hpa;
  1073. level = vcpu->arch.mmu.shadow_root_level;
  1074. if (level == PT32E_ROOT_LEVEL) {
  1075. shadow_addr = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1076. shadow_addr &= PT64_BASE_ADDR_MASK;
  1077. if (!shadow_addr)
  1078. return 1;
  1079. --level;
  1080. }
  1081. while (level >= PT_PAGE_TABLE_LEVEL) {
  1082. index = SHADOW_PT_INDEX(addr, level);
  1083. sptep = ((u64 *)__va(shadow_addr)) + index;
  1084. r = walker->entry(walker, vcpu, addr, sptep, level);
  1085. if (r)
  1086. return r;
  1087. shadow_addr = *sptep & PT64_BASE_ADDR_MASK;
  1088. --level;
  1089. }
  1090. return 0;
  1091. }
  1092. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1093. struct kvm_mmu_page *sp)
  1094. {
  1095. unsigned i;
  1096. u64 *pt;
  1097. u64 ent;
  1098. pt = sp->spt;
  1099. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1100. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1101. if (is_shadow_present_pte(pt[i]))
  1102. rmap_remove(kvm, &pt[i]);
  1103. pt[i] = shadow_trap_nonpresent_pte;
  1104. }
  1105. return;
  1106. }
  1107. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1108. ent = pt[i];
  1109. if (is_shadow_present_pte(ent)) {
  1110. if (!is_large_pte(ent)) {
  1111. ent &= PT64_BASE_ADDR_MASK;
  1112. mmu_page_remove_parent_pte(page_header(ent),
  1113. &pt[i]);
  1114. } else {
  1115. --kvm->stat.lpages;
  1116. rmap_remove(kvm, &pt[i]);
  1117. }
  1118. }
  1119. pt[i] = shadow_trap_nonpresent_pte;
  1120. }
  1121. }
  1122. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1123. {
  1124. mmu_page_remove_parent_pte(sp, parent_pte);
  1125. }
  1126. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1127. {
  1128. int i;
  1129. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  1130. if (kvm->vcpus[i])
  1131. kvm->vcpus[i]->arch.last_pte_updated = NULL;
  1132. }
  1133. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1134. {
  1135. u64 *parent_pte;
  1136. while (sp->multimapped || sp->parent_pte) {
  1137. if (!sp->multimapped)
  1138. parent_pte = sp->parent_pte;
  1139. else {
  1140. struct kvm_pte_chain *chain;
  1141. chain = container_of(sp->parent_ptes.first,
  1142. struct kvm_pte_chain, link);
  1143. parent_pte = chain->parent_ptes[0];
  1144. }
  1145. BUG_ON(!parent_pte);
  1146. kvm_mmu_put_page(sp, parent_pte);
  1147. set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
  1148. }
  1149. }
  1150. static int mmu_zap_unsync_children(struct kvm *kvm,
  1151. struct kvm_mmu_page *parent)
  1152. {
  1153. int i, zapped = 0;
  1154. struct mmu_page_path parents;
  1155. struct kvm_mmu_pages pages;
  1156. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1157. return 0;
  1158. kvm_mmu_pages_init(parent, &parents, &pages);
  1159. while (mmu_unsync_walk(parent, &pages)) {
  1160. struct kvm_mmu_page *sp;
  1161. for_each_sp(pages, sp, parents, i) {
  1162. kvm_mmu_zap_page(kvm, sp);
  1163. mmu_pages_clear_parents(&parents);
  1164. }
  1165. zapped += pages.nr;
  1166. kvm_mmu_pages_init(parent, &parents, &pages);
  1167. }
  1168. return zapped;
  1169. }
  1170. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1171. {
  1172. int ret;
  1173. ++kvm->stat.mmu_shadow_zapped;
  1174. ret = mmu_zap_unsync_children(kvm, sp);
  1175. kvm_mmu_page_unlink_children(kvm, sp);
  1176. kvm_mmu_unlink_parents(kvm, sp);
  1177. kvm_flush_remote_tlbs(kvm);
  1178. if (!sp->role.invalid && !sp->role.metaphysical)
  1179. unaccount_shadowed(kvm, sp->gfn);
  1180. if (sp->unsync)
  1181. kvm_unlink_unsync_page(kvm, sp);
  1182. if (!sp->root_count) {
  1183. hlist_del(&sp->hash_link);
  1184. kvm_mmu_free_page(kvm, sp);
  1185. } else {
  1186. sp->role.invalid = 1;
  1187. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1188. kvm_reload_remote_mmus(kvm);
  1189. }
  1190. kvm_mmu_reset_last_pte_updated(kvm);
  1191. return ret;
  1192. }
  1193. /*
  1194. * Changing the number of mmu pages allocated to the vm
  1195. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  1196. */
  1197. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  1198. {
  1199. /*
  1200. * If we set the number of mmu pages to be smaller be than the
  1201. * number of actived pages , we must to free some mmu pages before we
  1202. * change the value
  1203. */
  1204. if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
  1205. kvm_nr_mmu_pages) {
  1206. int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
  1207. - kvm->arch.n_free_mmu_pages;
  1208. while (n_used_mmu_pages > kvm_nr_mmu_pages) {
  1209. struct kvm_mmu_page *page;
  1210. page = container_of(kvm->arch.active_mmu_pages.prev,
  1211. struct kvm_mmu_page, link);
  1212. kvm_mmu_zap_page(kvm, page);
  1213. n_used_mmu_pages--;
  1214. }
  1215. kvm->arch.n_free_mmu_pages = 0;
  1216. }
  1217. else
  1218. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  1219. - kvm->arch.n_alloc_mmu_pages;
  1220. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  1221. }
  1222. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1223. {
  1224. unsigned index;
  1225. struct hlist_head *bucket;
  1226. struct kvm_mmu_page *sp;
  1227. struct hlist_node *node, *n;
  1228. int r;
  1229. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1230. r = 0;
  1231. index = kvm_page_table_hashfn(gfn);
  1232. bucket = &kvm->arch.mmu_page_hash[index];
  1233. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
  1234. if (sp->gfn == gfn && !sp->role.metaphysical) {
  1235. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  1236. sp->role.word);
  1237. r = 1;
  1238. if (kvm_mmu_zap_page(kvm, sp))
  1239. n = bucket->first;
  1240. }
  1241. return r;
  1242. }
  1243. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1244. {
  1245. struct kvm_mmu_page *sp;
  1246. while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
  1247. pgprintk("%s: zap %lx %x\n", __func__, gfn, sp->role.word);
  1248. kvm_mmu_zap_page(kvm, sp);
  1249. }
  1250. }
  1251. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1252. {
  1253. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
  1254. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1255. __set_bit(slot, sp->slot_bitmap);
  1256. }
  1257. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1258. {
  1259. int i;
  1260. u64 *pt = sp->spt;
  1261. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1262. return;
  1263. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1264. if (pt[i] == shadow_notrap_nonpresent_pte)
  1265. set_shadow_pte(&pt[i], shadow_trap_nonpresent_pte);
  1266. }
  1267. }
  1268. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  1269. {
  1270. struct page *page;
  1271. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  1272. if (gpa == UNMAPPED_GVA)
  1273. return NULL;
  1274. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1275. return page;
  1276. }
  1277. /*
  1278. * The function is based on mtrr_type_lookup() in
  1279. * arch/x86/kernel/cpu/mtrr/generic.c
  1280. */
  1281. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1282. u64 start, u64 end)
  1283. {
  1284. int i;
  1285. u64 base, mask;
  1286. u8 prev_match, curr_match;
  1287. int num_var_ranges = KVM_NR_VAR_MTRR;
  1288. if (!mtrr_state->enabled)
  1289. return 0xFF;
  1290. /* Make end inclusive end, instead of exclusive */
  1291. end--;
  1292. /* Look in fixed ranges. Just return the type as per start */
  1293. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1294. int idx;
  1295. if (start < 0x80000) {
  1296. idx = 0;
  1297. idx += (start >> 16);
  1298. return mtrr_state->fixed_ranges[idx];
  1299. } else if (start < 0xC0000) {
  1300. idx = 1 * 8;
  1301. idx += ((start - 0x80000) >> 14);
  1302. return mtrr_state->fixed_ranges[idx];
  1303. } else if (start < 0x1000000) {
  1304. idx = 3 * 8;
  1305. idx += ((start - 0xC0000) >> 12);
  1306. return mtrr_state->fixed_ranges[idx];
  1307. }
  1308. }
  1309. /*
  1310. * Look in variable ranges
  1311. * Look of multiple ranges matching this address and pick type
  1312. * as per MTRR precedence
  1313. */
  1314. if (!(mtrr_state->enabled & 2))
  1315. return mtrr_state->def_type;
  1316. prev_match = 0xFF;
  1317. for (i = 0; i < num_var_ranges; ++i) {
  1318. unsigned short start_state, end_state;
  1319. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1320. continue;
  1321. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1322. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1323. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1324. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1325. start_state = ((start & mask) == (base & mask));
  1326. end_state = ((end & mask) == (base & mask));
  1327. if (start_state != end_state)
  1328. return 0xFE;
  1329. if ((start & mask) != (base & mask))
  1330. continue;
  1331. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1332. if (prev_match == 0xFF) {
  1333. prev_match = curr_match;
  1334. continue;
  1335. }
  1336. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1337. curr_match == MTRR_TYPE_UNCACHABLE)
  1338. return MTRR_TYPE_UNCACHABLE;
  1339. if ((prev_match == MTRR_TYPE_WRBACK &&
  1340. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1341. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1342. curr_match == MTRR_TYPE_WRBACK)) {
  1343. prev_match = MTRR_TYPE_WRTHROUGH;
  1344. curr_match = MTRR_TYPE_WRTHROUGH;
  1345. }
  1346. if (prev_match != curr_match)
  1347. return MTRR_TYPE_UNCACHABLE;
  1348. }
  1349. if (prev_match != 0xFF)
  1350. return prev_match;
  1351. return mtrr_state->def_type;
  1352. }
  1353. static u8 get_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1354. {
  1355. u8 mtrr;
  1356. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1357. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1358. if (mtrr == 0xfe || mtrr == 0xff)
  1359. mtrr = MTRR_TYPE_WRBACK;
  1360. return mtrr;
  1361. }
  1362. static int kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1363. {
  1364. unsigned index;
  1365. struct hlist_head *bucket;
  1366. struct kvm_mmu_page *s;
  1367. struct hlist_node *node, *n;
  1368. index = kvm_page_table_hashfn(sp->gfn);
  1369. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1370. /* don't unsync if pagetable is shadowed with multiple roles */
  1371. hlist_for_each_entry_safe(s, node, n, bucket, hash_link) {
  1372. if (s->gfn != sp->gfn || s->role.metaphysical)
  1373. continue;
  1374. if (s->role.word != sp->role.word)
  1375. return 1;
  1376. }
  1377. ++vcpu->kvm->stat.mmu_unsync;
  1378. sp->unsync = 1;
  1379. if (sp->global) {
  1380. list_add(&sp->oos_link, &vcpu->kvm->arch.oos_global_pages);
  1381. ++vcpu->kvm->stat.mmu_unsync_global;
  1382. } else
  1383. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1384. mmu_convert_notrap(sp);
  1385. return 0;
  1386. }
  1387. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1388. bool can_unsync)
  1389. {
  1390. struct kvm_mmu_page *shadow;
  1391. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  1392. if (shadow) {
  1393. if (shadow->role.level != PT_PAGE_TABLE_LEVEL)
  1394. return 1;
  1395. if (shadow->unsync)
  1396. return 0;
  1397. if (can_unsync && oos_shadow)
  1398. return kvm_unsync_page(vcpu, shadow);
  1399. return 1;
  1400. }
  1401. return 0;
  1402. }
  1403. static int set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
  1404. unsigned pte_access, int user_fault,
  1405. int write_fault, int dirty, int largepage,
  1406. int global, gfn_t gfn, pfn_t pfn, bool speculative,
  1407. bool can_unsync)
  1408. {
  1409. u64 spte;
  1410. int ret = 0;
  1411. u64 mt_mask = shadow_mt_mask;
  1412. struct kvm_mmu_page *sp = page_header(__pa(shadow_pte));
  1413. if (!global && sp->global) {
  1414. sp->global = 0;
  1415. if (sp->unsync) {
  1416. kvm_unlink_unsync_global(vcpu->kvm, sp);
  1417. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1418. }
  1419. }
  1420. /*
  1421. * We don't set the accessed bit, since we sometimes want to see
  1422. * whether the guest actually used the pte (in order to detect
  1423. * demand paging).
  1424. */
  1425. spte = shadow_base_present_pte | shadow_dirty_mask;
  1426. if (!speculative)
  1427. spte |= shadow_accessed_mask;
  1428. if (!dirty)
  1429. pte_access &= ~ACC_WRITE_MASK;
  1430. if (pte_access & ACC_EXEC_MASK)
  1431. spte |= shadow_x_mask;
  1432. else
  1433. spte |= shadow_nx_mask;
  1434. if (pte_access & ACC_USER_MASK)
  1435. spte |= shadow_user_mask;
  1436. if (largepage)
  1437. spte |= PT_PAGE_SIZE_MASK;
  1438. if (mt_mask) {
  1439. if (!kvm_is_mmio_pfn(pfn)) {
  1440. mt_mask = get_memory_type(vcpu, gfn) <<
  1441. kvm_x86_ops->get_mt_mask_shift();
  1442. mt_mask |= VMX_EPT_IGMT_BIT;
  1443. } else
  1444. mt_mask = MTRR_TYPE_UNCACHABLE <<
  1445. kvm_x86_ops->get_mt_mask_shift();
  1446. spte |= mt_mask;
  1447. }
  1448. spte |= (u64)pfn << PAGE_SHIFT;
  1449. if ((pte_access & ACC_WRITE_MASK)
  1450. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  1451. if (largepage && has_wrprotected_page(vcpu->kvm, gfn)) {
  1452. ret = 1;
  1453. spte = shadow_trap_nonpresent_pte;
  1454. goto set_pte;
  1455. }
  1456. spte |= PT_WRITABLE_MASK;
  1457. /*
  1458. * Optimization: for pte sync, if spte was writable the hash
  1459. * lookup is unnecessary (and expensive). Write protection
  1460. * is responsibility of mmu_get_page / kvm_sync_page.
  1461. * Same reasoning can be applied to dirty page accounting.
  1462. */
  1463. if (!can_unsync && is_writeble_pte(*shadow_pte))
  1464. goto set_pte;
  1465. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1466. pgprintk("%s: found shadow page for %lx, marking ro\n",
  1467. __func__, gfn);
  1468. ret = 1;
  1469. pte_access &= ~ACC_WRITE_MASK;
  1470. if (is_writeble_pte(spte))
  1471. spte &= ~PT_WRITABLE_MASK;
  1472. }
  1473. }
  1474. if (pte_access & ACC_WRITE_MASK)
  1475. mark_page_dirty(vcpu->kvm, gfn);
  1476. set_pte:
  1477. set_shadow_pte(shadow_pte, spte);
  1478. return ret;
  1479. }
  1480. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
  1481. unsigned pt_access, unsigned pte_access,
  1482. int user_fault, int write_fault, int dirty,
  1483. int *ptwrite, int largepage, int global,
  1484. gfn_t gfn, pfn_t pfn, bool speculative)
  1485. {
  1486. int was_rmapped = 0;
  1487. int was_writeble = is_writeble_pte(*shadow_pte);
  1488. pgprintk("%s: spte %llx access %x write_fault %d"
  1489. " user_fault %d gfn %lx\n",
  1490. __func__, *shadow_pte, pt_access,
  1491. write_fault, user_fault, gfn);
  1492. if (is_rmap_pte(*shadow_pte)) {
  1493. /*
  1494. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1495. * the parent of the now unreachable PTE.
  1496. */
  1497. if (largepage && !is_large_pte(*shadow_pte)) {
  1498. struct kvm_mmu_page *child;
  1499. u64 pte = *shadow_pte;
  1500. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1501. mmu_page_remove_parent_pte(child, shadow_pte);
  1502. } else if (pfn != spte_to_pfn(*shadow_pte)) {
  1503. pgprintk("hfn old %lx new %lx\n",
  1504. spte_to_pfn(*shadow_pte), pfn);
  1505. rmap_remove(vcpu->kvm, shadow_pte);
  1506. } else {
  1507. if (largepage)
  1508. was_rmapped = is_large_pte(*shadow_pte);
  1509. else
  1510. was_rmapped = 1;
  1511. }
  1512. }
  1513. if (set_spte(vcpu, shadow_pte, pte_access, user_fault, write_fault,
  1514. dirty, largepage, global, gfn, pfn, speculative, true)) {
  1515. if (write_fault)
  1516. *ptwrite = 1;
  1517. kvm_x86_ops->tlb_flush(vcpu);
  1518. }
  1519. pgprintk("%s: setting spte %llx\n", __func__, *shadow_pte);
  1520. pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
  1521. is_large_pte(*shadow_pte)? "2MB" : "4kB",
  1522. is_present_pte(*shadow_pte)?"RW":"R", gfn,
  1523. *shadow_pte, shadow_pte);
  1524. if (!was_rmapped && is_large_pte(*shadow_pte))
  1525. ++vcpu->kvm->stat.lpages;
  1526. page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
  1527. if (!was_rmapped) {
  1528. rmap_add(vcpu, shadow_pte, gfn, largepage);
  1529. if (!is_rmap_pte(*shadow_pte))
  1530. kvm_release_pfn_clean(pfn);
  1531. } else {
  1532. if (was_writeble)
  1533. kvm_release_pfn_dirty(pfn);
  1534. else
  1535. kvm_release_pfn_clean(pfn);
  1536. }
  1537. if (speculative) {
  1538. vcpu->arch.last_pte_updated = shadow_pte;
  1539. vcpu->arch.last_pte_gfn = gfn;
  1540. }
  1541. }
  1542. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1543. {
  1544. }
  1545. struct direct_shadow_walk {
  1546. struct kvm_shadow_walk walker;
  1547. pfn_t pfn;
  1548. int write;
  1549. int largepage;
  1550. int pt_write;
  1551. };
  1552. static int direct_map_entry(struct kvm_shadow_walk *_walk,
  1553. struct kvm_vcpu *vcpu,
  1554. u64 addr, u64 *sptep, int level)
  1555. {
  1556. struct direct_shadow_walk *walk =
  1557. container_of(_walk, struct direct_shadow_walk, walker);
  1558. struct kvm_mmu_page *sp;
  1559. gfn_t pseudo_gfn;
  1560. gfn_t gfn = addr >> PAGE_SHIFT;
  1561. if (level == PT_PAGE_TABLE_LEVEL
  1562. || (walk->largepage && level == PT_DIRECTORY_LEVEL)) {
  1563. mmu_set_spte(vcpu, sptep, ACC_ALL, ACC_ALL,
  1564. 0, walk->write, 1, &walk->pt_write,
  1565. walk->largepage, 0, gfn, walk->pfn, false);
  1566. ++vcpu->stat.pf_fixed;
  1567. return 1;
  1568. }
  1569. if (*sptep == shadow_trap_nonpresent_pte) {
  1570. pseudo_gfn = (addr & PT64_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1571. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, (gva_t)addr, level - 1,
  1572. 1, ACC_ALL, sptep);
  1573. if (!sp) {
  1574. pgprintk("nonpaging_map: ENOMEM\n");
  1575. kvm_release_pfn_clean(walk->pfn);
  1576. return -ENOMEM;
  1577. }
  1578. set_shadow_pte(sptep,
  1579. __pa(sp->spt)
  1580. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1581. | shadow_user_mask | shadow_x_mask);
  1582. }
  1583. return 0;
  1584. }
  1585. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1586. int largepage, gfn_t gfn, pfn_t pfn)
  1587. {
  1588. int r;
  1589. struct direct_shadow_walk walker = {
  1590. .walker = { .entry = direct_map_entry, },
  1591. .pfn = pfn,
  1592. .largepage = largepage,
  1593. .write = write,
  1594. .pt_write = 0,
  1595. };
  1596. r = walk_shadow(&walker.walker, vcpu, gfn << PAGE_SHIFT);
  1597. if (r < 0)
  1598. return r;
  1599. return walker.pt_write;
  1600. }
  1601. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1602. {
  1603. int r;
  1604. int largepage = 0;
  1605. pfn_t pfn;
  1606. unsigned long mmu_seq;
  1607. if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
  1608. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1609. largepage = 1;
  1610. }
  1611. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1612. smp_rmb();
  1613. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1614. /* mmio */
  1615. if (is_error_pfn(pfn)) {
  1616. kvm_release_pfn_clean(pfn);
  1617. return 1;
  1618. }
  1619. spin_lock(&vcpu->kvm->mmu_lock);
  1620. if (mmu_notifier_retry(vcpu, mmu_seq))
  1621. goto out_unlock;
  1622. kvm_mmu_free_some_pages(vcpu);
  1623. r = __direct_map(vcpu, v, write, largepage, gfn, pfn);
  1624. spin_unlock(&vcpu->kvm->mmu_lock);
  1625. return r;
  1626. out_unlock:
  1627. spin_unlock(&vcpu->kvm->mmu_lock);
  1628. kvm_release_pfn_clean(pfn);
  1629. return 0;
  1630. }
  1631. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1632. {
  1633. int i;
  1634. struct kvm_mmu_page *sp;
  1635. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1636. return;
  1637. spin_lock(&vcpu->kvm->mmu_lock);
  1638. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1639. hpa_t root = vcpu->arch.mmu.root_hpa;
  1640. sp = page_header(root);
  1641. --sp->root_count;
  1642. if (!sp->root_count && sp->role.invalid)
  1643. kvm_mmu_zap_page(vcpu->kvm, sp);
  1644. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1645. spin_unlock(&vcpu->kvm->mmu_lock);
  1646. return;
  1647. }
  1648. for (i = 0; i < 4; ++i) {
  1649. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1650. if (root) {
  1651. root &= PT64_BASE_ADDR_MASK;
  1652. sp = page_header(root);
  1653. --sp->root_count;
  1654. if (!sp->root_count && sp->role.invalid)
  1655. kvm_mmu_zap_page(vcpu->kvm, sp);
  1656. }
  1657. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1658. }
  1659. spin_unlock(&vcpu->kvm->mmu_lock);
  1660. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1661. }
  1662. static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1663. {
  1664. int i;
  1665. gfn_t root_gfn;
  1666. struct kvm_mmu_page *sp;
  1667. int metaphysical = 0;
  1668. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1669. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1670. hpa_t root = vcpu->arch.mmu.root_hpa;
  1671. ASSERT(!VALID_PAGE(root));
  1672. if (tdp_enabled)
  1673. metaphysical = 1;
  1674. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1675. PT64_ROOT_LEVEL, metaphysical,
  1676. ACC_ALL, NULL);
  1677. root = __pa(sp->spt);
  1678. ++sp->root_count;
  1679. vcpu->arch.mmu.root_hpa = root;
  1680. return;
  1681. }
  1682. metaphysical = !is_paging(vcpu);
  1683. if (tdp_enabled)
  1684. metaphysical = 1;
  1685. for (i = 0; i < 4; ++i) {
  1686. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1687. ASSERT(!VALID_PAGE(root));
  1688. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1689. if (!is_present_pte(vcpu->arch.pdptrs[i])) {
  1690. vcpu->arch.mmu.pae_root[i] = 0;
  1691. continue;
  1692. }
  1693. root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
  1694. } else if (vcpu->arch.mmu.root_level == 0)
  1695. root_gfn = 0;
  1696. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1697. PT32_ROOT_LEVEL, metaphysical,
  1698. ACC_ALL, NULL);
  1699. root = __pa(sp->spt);
  1700. ++sp->root_count;
  1701. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1702. }
  1703. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1704. }
  1705. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  1706. {
  1707. int i;
  1708. struct kvm_mmu_page *sp;
  1709. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1710. return;
  1711. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1712. hpa_t root = vcpu->arch.mmu.root_hpa;
  1713. sp = page_header(root);
  1714. mmu_sync_children(vcpu, sp);
  1715. return;
  1716. }
  1717. for (i = 0; i < 4; ++i) {
  1718. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1719. if (root) {
  1720. root &= PT64_BASE_ADDR_MASK;
  1721. sp = page_header(root);
  1722. mmu_sync_children(vcpu, sp);
  1723. }
  1724. }
  1725. }
  1726. static void mmu_sync_global(struct kvm_vcpu *vcpu)
  1727. {
  1728. struct kvm *kvm = vcpu->kvm;
  1729. struct kvm_mmu_page *sp, *n;
  1730. list_for_each_entry_safe(sp, n, &kvm->arch.oos_global_pages, oos_link)
  1731. kvm_sync_page(vcpu, sp);
  1732. }
  1733. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  1734. {
  1735. spin_lock(&vcpu->kvm->mmu_lock);
  1736. mmu_sync_roots(vcpu);
  1737. spin_unlock(&vcpu->kvm->mmu_lock);
  1738. }
  1739. void kvm_mmu_sync_global(struct kvm_vcpu *vcpu)
  1740. {
  1741. spin_lock(&vcpu->kvm->mmu_lock);
  1742. mmu_sync_global(vcpu);
  1743. spin_unlock(&vcpu->kvm->mmu_lock);
  1744. }
  1745. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  1746. {
  1747. return vaddr;
  1748. }
  1749. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1750. u32 error_code)
  1751. {
  1752. gfn_t gfn;
  1753. int r;
  1754. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1755. r = mmu_topup_memory_caches(vcpu);
  1756. if (r)
  1757. return r;
  1758. ASSERT(vcpu);
  1759. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1760. gfn = gva >> PAGE_SHIFT;
  1761. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1762. error_code & PFERR_WRITE_MASK, gfn);
  1763. }
  1764. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1765. u32 error_code)
  1766. {
  1767. pfn_t pfn;
  1768. int r;
  1769. int largepage = 0;
  1770. gfn_t gfn = gpa >> PAGE_SHIFT;
  1771. unsigned long mmu_seq;
  1772. ASSERT(vcpu);
  1773. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1774. r = mmu_topup_memory_caches(vcpu);
  1775. if (r)
  1776. return r;
  1777. if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
  1778. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1779. largepage = 1;
  1780. }
  1781. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1782. smp_rmb();
  1783. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1784. if (is_error_pfn(pfn)) {
  1785. kvm_release_pfn_clean(pfn);
  1786. return 1;
  1787. }
  1788. spin_lock(&vcpu->kvm->mmu_lock);
  1789. if (mmu_notifier_retry(vcpu, mmu_seq))
  1790. goto out_unlock;
  1791. kvm_mmu_free_some_pages(vcpu);
  1792. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  1793. largepage, gfn, pfn);
  1794. spin_unlock(&vcpu->kvm->mmu_lock);
  1795. return r;
  1796. out_unlock:
  1797. spin_unlock(&vcpu->kvm->mmu_lock);
  1798. kvm_release_pfn_clean(pfn);
  1799. return 0;
  1800. }
  1801. static void nonpaging_free(struct kvm_vcpu *vcpu)
  1802. {
  1803. mmu_free_roots(vcpu);
  1804. }
  1805. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  1806. {
  1807. struct kvm_mmu *context = &vcpu->arch.mmu;
  1808. context->new_cr3 = nonpaging_new_cr3;
  1809. context->page_fault = nonpaging_page_fault;
  1810. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1811. context->free = nonpaging_free;
  1812. context->prefetch_page = nonpaging_prefetch_page;
  1813. context->sync_page = nonpaging_sync_page;
  1814. context->invlpg = nonpaging_invlpg;
  1815. context->root_level = 0;
  1816. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1817. context->root_hpa = INVALID_PAGE;
  1818. return 0;
  1819. }
  1820. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1821. {
  1822. ++vcpu->stat.tlb_flush;
  1823. kvm_x86_ops->tlb_flush(vcpu);
  1824. }
  1825. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  1826. {
  1827. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  1828. mmu_free_roots(vcpu);
  1829. }
  1830. static void inject_page_fault(struct kvm_vcpu *vcpu,
  1831. u64 addr,
  1832. u32 err_code)
  1833. {
  1834. kvm_inject_page_fault(vcpu, addr, err_code);
  1835. }
  1836. static void paging_free(struct kvm_vcpu *vcpu)
  1837. {
  1838. nonpaging_free(vcpu);
  1839. }
  1840. #define PTTYPE 64
  1841. #include "paging_tmpl.h"
  1842. #undef PTTYPE
  1843. #define PTTYPE 32
  1844. #include "paging_tmpl.h"
  1845. #undef PTTYPE
  1846. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  1847. {
  1848. struct kvm_mmu *context = &vcpu->arch.mmu;
  1849. ASSERT(is_pae(vcpu));
  1850. context->new_cr3 = paging_new_cr3;
  1851. context->page_fault = paging64_page_fault;
  1852. context->gva_to_gpa = paging64_gva_to_gpa;
  1853. context->prefetch_page = paging64_prefetch_page;
  1854. context->sync_page = paging64_sync_page;
  1855. context->invlpg = paging64_invlpg;
  1856. context->free = paging_free;
  1857. context->root_level = level;
  1858. context->shadow_root_level = level;
  1859. context->root_hpa = INVALID_PAGE;
  1860. return 0;
  1861. }
  1862. static int paging64_init_context(struct kvm_vcpu *vcpu)
  1863. {
  1864. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  1865. }
  1866. static int paging32_init_context(struct kvm_vcpu *vcpu)
  1867. {
  1868. struct kvm_mmu *context = &vcpu->arch.mmu;
  1869. context->new_cr3 = paging_new_cr3;
  1870. context->page_fault = paging32_page_fault;
  1871. context->gva_to_gpa = paging32_gva_to_gpa;
  1872. context->free = paging_free;
  1873. context->prefetch_page = paging32_prefetch_page;
  1874. context->sync_page = paging32_sync_page;
  1875. context->invlpg = paging32_invlpg;
  1876. context->root_level = PT32_ROOT_LEVEL;
  1877. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1878. context->root_hpa = INVALID_PAGE;
  1879. return 0;
  1880. }
  1881. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  1882. {
  1883. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  1884. }
  1885. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  1886. {
  1887. struct kvm_mmu *context = &vcpu->arch.mmu;
  1888. context->new_cr3 = nonpaging_new_cr3;
  1889. context->page_fault = tdp_page_fault;
  1890. context->free = nonpaging_free;
  1891. context->prefetch_page = nonpaging_prefetch_page;
  1892. context->sync_page = nonpaging_sync_page;
  1893. context->invlpg = nonpaging_invlpg;
  1894. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  1895. context->root_hpa = INVALID_PAGE;
  1896. if (!is_paging(vcpu)) {
  1897. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1898. context->root_level = 0;
  1899. } else if (is_long_mode(vcpu)) {
  1900. context->gva_to_gpa = paging64_gva_to_gpa;
  1901. context->root_level = PT64_ROOT_LEVEL;
  1902. } else if (is_pae(vcpu)) {
  1903. context->gva_to_gpa = paging64_gva_to_gpa;
  1904. context->root_level = PT32E_ROOT_LEVEL;
  1905. } else {
  1906. context->gva_to_gpa = paging32_gva_to_gpa;
  1907. context->root_level = PT32_ROOT_LEVEL;
  1908. }
  1909. return 0;
  1910. }
  1911. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  1912. {
  1913. int r;
  1914. ASSERT(vcpu);
  1915. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1916. if (!is_paging(vcpu))
  1917. r = nonpaging_init_context(vcpu);
  1918. else if (is_long_mode(vcpu))
  1919. r = paging64_init_context(vcpu);
  1920. else if (is_pae(vcpu))
  1921. r = paging32E_init_context(vcpu);
  1922. else
  1923. r = paging32_init_context(vcpu);
  1924. vcpu->arch.mmu.base_role.glevels = vcpu->arch.mmu.root_level;
  1925. return r;
  1926. }
  1927. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  1928. {
  1929. vcpu->arch.update_pte.pfn = bad_pfn;
  1930. if (tdp_enabled)
  1931. return init_kvm_tdp_mmu(vcpu);
  1932. else
  1933. return init_kvm_softmmu(vcpu);
  1934. }
  1935. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  1936. {
  1937. ASSERT(vcpu);
  1938. if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
  1939. vcpu->arch.mmu.free(vcpu);
  1940. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1941. }
  1942. }
  1943. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  1944. {
  1945. destroy_kvm_mmu(vcpu);
  1946. return init_kvm_mmu(vcpu);
  1947. }
  1948. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  1949. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  1950. {
  1951. int r;
  1952. r = mmu_topup_memory_caches(vcpu);
  1953. if (r)
  1954. goto out;
  1955. spin_lock(&vcpu->kvm->mmu_lock);
  1956. kvm_mmu_free_some_pages(vcpu);
  1957. mmu_alloc_roots(vcpu);
  1958. mmu_sync_roots(vcpu);
  1959. spin_unlock(&vcpu->kvm->mmu_lock);
  1960. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  1961. kvm_mmu_flush_tlb(vcpu);
  1962. out:
  1963. return r;
  1964. }
  1965. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  1966. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  1967. {
  1968. mmu_free_roots(vcpu);
  1969. }
  1970. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  1971. struct kvm_mmu_page *sp,
  1972. u64 *spte)
  1973. {
  1974. u64 pte;
  1975. struct kvm_mmu_page *child;
  1976. pte = *spte;
  1977. if (is_shadow_present_pte(pte)) {
  1978. if (sp->role.level == PT_PAGE_TABLE_LEVEL ||
  1979. is_large_pte(pte))
  1980. rmap_remove(vcpu->kvm, spte);
  1981. else {
  1982. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1983. mmu_page_remove_parent_pte(child, spte);
  1984. }
  1985. }
  1986. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  1987. if (is_large_pte(pte))
  1988. --vcpu->kvm->stat.lpages;
  1989. }
  1990. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  1991. struct kvm_mmu_page *sp,
  1992. u64 *spte,
  1993. const void *new)
  1994. {
  1995. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  1996. if (!vcpu->arch.update_pte.largepage ||
  1997. sp->role.glevels == PT32_ROOT_LEVEL) {
  1998. ++vcpu->kvm->stat.mmu_pde_zapped;
  1999. return;
  2000. }
  2001. }
  2002. ++vcpu->kvm->stat.mmu_pte_updated;
  2003. if (sp->role.glevels == PT32_ROOT_LEVEL)
  2004. paging32_update_pte(vcpu, sp, spte, new);
  2005. else
  2006. paging64_update_pte(vcpu, sp, spte, new);
  2007. }
  2008. static bool need_remote_flush(u64 old, u64 new)
  2009. {
  2010. if (!is_shadow_present_pte(old))
  2011. return false;
  2012. if (!is_shadow_present_pte(new))
  2013. return true;
  2014. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2015. return true;
  2016. old ^= PT64_NX_MASK;
  2017. new ^= PT64_NX_MASK;
  2018. return (old & ~new & PT64_PERM_MASK) != 0;
  2019. }
  2020. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
  2021. {
  2022. if (need_remote_flush(old, new))
  2023. kvm_flush_remote_tlbs(vcpu->kvm);
  2024. else
  2025. kvm_mmu_flush_tlb(vcpu);
  2026. }
  2027. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2028. {
  2029. u64 *spte = vcpu->arch.last_pte_updated;
  2030. return !!(spte && (*spte & shadow_accessed_mask));
  2031. }
  2032. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2033. const u8 *new, int bytes)
  2034. {
  2035. gfn_t gfn;
  2036. int r;
  2037. u64 gpte = 0;
  2038. pfn_t pfn;
  2039. vcpu->arch.update_pte.largepage = 0;
  2040. if (bytes != 4 && bytes != 8)
  2041. return;
  2042. /*
  2043. * Assume that the pte write on a page table of the same type
  2044. * as the current vcpu paging mode. This is nearly always true
  2045. * (might be false while changing modes). Note it is verified later
  2046. * by update_pte().
  2047. */
  2048. if (is_pae(vcpu)) {
  2049. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2050. if ((bytes == 4) && (gpa % 4 == 0)) {
  2051. r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
  2052. if (r)
  2053. return;
  2054. memcpy((void *)&gpte + (gpa % 8), new, 4);
  2055. } else if ((bytes == 8) && (gpa % 8 == 0)) {
  2056. memcpy((void *)&gpte, new, 8);
  2057. }
  2058. } else {
  2059. if ((bytes == 4) && (gpa % 4 == 0))
  2060. memcpy((void *)&gpte, new, 4);
  2061. }
  2062. if (!is_present_pte(gpte))
  2063. return;
  2064. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  2065. if (is_large_pte(gpte) && is_largepage_backed(vcpu, gfn)) {
  2066. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  2067. vcpu->arch.update_pte.largepage = 1;
  2068. }
  2069. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2070. smp_rmb();
  2071. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2072. if (is_error_pfn(pfn)) {
  2073. kvm_release_pfn_clean(pfn);
  2074. return;
  2075. }
  2076. vcpu->arch.update_pte.gfn = gfn;
  2077. vcpu->arch.update_pte.pfn = pfn;
  2078. }
  2079. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  2080. {
  2081. u64 *spte = vcpu->arch.last_pte_updated;
  2082. if (spte
  2083. && vcpu->arch.last_pte_gfn == gfn
  2084. && shadow_accessed_mask
  2085. && !(*spte & shadow_accessed_mask)
  2086. && is_shadow_present_pte(*spte))
  2087. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  2088. }
  2089. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2090. const u8 *new, int bytes,
  2091. bool guest_initiated)
  2092. {
  2093. gfn_t gfn = gpa >> PAGE_SHIFT;
  2094. struct kvm_mmu_page *sp;
  2095. struct hlist_node *node, *n;
  2096. struct hlist_head *bucket;
  2097. unsigned index;
  2098. u64 entry, gentry;
  2099. u64 *spte;
  2100. unsigned offset = offset_in_page(gpa);
  2101. unsigned pte_size;
  2102. unsigned page_offset;
  2103. unsigned misaligned;
  2104. unsigned quadrant;
  2105. int level;
  2106. int flooded = 0;
  2107. int npte;
  2108. int r;
  2109. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2110. mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
  2111. spin_lock(&vcpu->kvm->mmu_lock);
  2112. kvm_mmu_access_page(vcpu, gfn);
  2113. kvm_mmu_free_some_pages(vcpu);
  2114. ++vcpu->kvm->stat.mmu_pte_write;
  2115. kvm_mmu_audit(vcpu, "pre pte write");
  2116. if (guest_initiated) {
  2117. if (gfn == vcpu->arch.last_pt_write_gfn
  2118. && !last_updated_pte_accessed(vcpu)) {
  2119. ++vcpu->arch.last_pt_write_count;
  2120. if (vcpu->arch.last_pt_write_count >= 3)
  2121. flooded = 1;
  2122. } else {
  2123. vcpu->arch.last_pt_write_gfn = gfn;
  2124. vcpu->arch.last_pt_write_count = 1;
  2125. vcpu->arch.last_pte_updated = NULL;
  2126. }
  2127. }
  2128. index = kvm_page_table_hashfn(gfn);
  2129. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  2130. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
  2131. if (sp->gfn != gfn || sp->role.metaphysical || sp->role.invalid)
  2132. continue;
  2133. pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  2134. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2135. misaligned |= bytes < 4;
  2136. if (misaligned || flooded) {
  2137. /*
  2138. * Misaligned accesses are too much trouble to fix
  2139. * up; also, they usually indicate a page is not used
  2140. * as a page table.
  2141. *
  2142. * If we're seeing too many writes to a page,
  2143. * it may no longer be a page table, or we may be
  2144. * forking, in which case it is better to unmap the
  2145. * page.
  2146. */
  2147. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2148. gpa, bytes, sp->role.word);
  2149. if (kvm_mmu_zap_page(vcpu->kvm, sp))
  2150. n = bucket->first;
  2151. ++vcpu->kvm->stat.mmu_flooded;
  2152. continue;
  2153. }
  2154. page_offset = offset;
  2155. level = sp->role.level;
  2156. npte = 1;
  2157. if (sp->role.glevels == PT32_ROOT_LEVEL) {
  2158. page_offset <<= 1; /* 32->64 */
  2159. /*
  2160. * A 32-bit pde maps 4MB while the shadow pdes map
  2161. * only 2MB. So we need to double the offset again
  2162. * and zap two pdes instead of one.
  2163. */
  2164. if (level == PT32_ROOT_LEVEL) {
  2165. page_offset &= ~7; /* kill rounding error */
  2166. page_offset <<= 1;
  2167. npte = 2;
  2168. }
  2169. quadrant = page_offset >> PAGE_SHIFT;
  2170. page_offset &= ~PAGE_MASK;
  2171. if (quadrant != sp->role.quadrant)
  2172. continue;
  2173. }
  2174. spte = &sp->spt[page_offset / sizeof(*spte)];
  2175. if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
  2176. gentry = 0;
  2177. r = kvm_read_guest_atomic(vcpu->kvm,
  2178. gpa & ~(u64)(pte_size - 1),
  2179. &gentry, pte_size);
  2180. new = (const void *)&gentry;
  2181. if (r < 0)
  2182. new = NULL;
  2183. }
  2184. while (npte--) {
  2185. entry = *spte;
  2186. mmu_pte_write_zap_pte(vcpu, sp, spte);
  2187. if (new)
  2188. mmu_pte_write_new_pte(vcpu, sp, spte, new);
  2189. mmu_pte_write_flush_tlb(vcpu, entry, *spte);
  2190. ++spte;
  2191. }
  2192. }
  2193. kvm_mmu_audit(vcpu, "post pte write");
  2194. spin_unlock(&vcpu->kvm->mmu_lock);
  2195. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  2196. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  2197. vcpu->arch.update_pte.pfn = bad_pfn;
  2198. }
  2199. }
  2200. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2201. {
  2202. gpa_t gpa;
  2203. int r;
  2204. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  2205. spin_lock(&vcpu->kvm->mmu_lock);
  2206. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2207. spin_unlock(&vcpu->kvm->mmu_lock);
  2208. return r;
  2209. }
  2210. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2211. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2212. {
  2213. while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
  2214. struct kvm_mmu_page *sp;
  2215. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2216. struct kvm_mmu_page, link);
  2217. kvm_mmu_zap_page(vcpu->kvm, sp);
  2218. ++vcpu->kvm->stat.mmu_recycled;
  2219. }
  2220. }
  2221. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  2222. {
  2223. int r;
  2224. enum emulation_result er;
  2225. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  2226. if (r < 0)
  2227. goto out;
  2228. if (!r) {
  2229. r = 1;
  2230. goto out;
  2231. }
  2232. r = mmu_topup_memory_caches(vcpu);
  2233. if (r)
  2234. goto out;
  2235. er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
  2236. switch (er) {
  2237. case EMULATE_DONE:
  2238. return 1;
  2239. case EMULATE_DO_MMIO:
  2240. ++vcpu->stat.mmio_exits;
  2241. return 0;
  2242. case EMULATE_FAIL:
  2243. kvm_report_emulation_failure(vcpu, "pagetable");
  2244. return 1;
  2245. default:
  2246. BUG();
  2247. }
  2248. out:
  2249. return r;
  2250. }
  2251. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2252. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2253. {
  2254. vcpu->arch.mmu.invlpg(vcpu, gva);
  2255. kvm_mmu_flush_tlb(vcpu);
  2256. ++vcpu->stat.invlpg;
  2257. }
  2258. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2259. void kvm_enable_tdp(void)
  2260. {
  2261. tdp_enabled = true;
  2262. }
  2263. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2264. void kvm_disable_tdp(void)
  2265. {
  2266. tdp_enabled = false;
  2267. }
  2268. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2269. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2270. {
  2271. struct kvm_mmu_page *sp;
  2272. while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  2273. sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
  2274. struct kvm_mmu_page, link);
  2275. kvm_mmu_zap_page(vcpu->kvm, sp);
  2276. cond_resched();
  2277. }
  2278. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2279. }
  2280. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2281. {
  2282. struct page *page;
  2283. int i;
  2284. ASSERT(vcpu);
  2285. if (vcpu->kvm->arch.n_requested_mmu_pages)
  2286. vcpu->kvm->arch.n_free_mmu_pages =
  2287. vcpu->kvm->arch.n_requested_mmu_pages;
  2288. else
  2289. vcpu->kvm->arch.n_free_mmu_pages =
  2290. vcpu->kvm->arch.n_alloc_mmu_pages;
  2291. /*
  2292. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2293. * Therefore we need to allocate shadow page tables in the first
  2294. * 4GB of memory, which happens to fit the DMA32 zone.
  2295. */
  2296. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2297. if (!page)
  2298. goto error_1;
  2299. vcpu->arch.mmu.pae_root = page_address(page);
  2300. for (i = 0; i < 4; ++i)
  2301. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2302. return 0;
  2303. error_1:
  2304. free_mmu_pages(vcpu);
  2305. return -ENOMEM;
  2306. }
  2307. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2308. {
  2309. ASSERT(vcpu);
  2310. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2311. return alloc_mmu_pages(vcpu);
  2312. }
  2313. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2314. {
  2315. ASSERT(vcpu);
  2316. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2317. return init_kvm_mmu(vcpu);
  2318. }
  2319. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  2320. {
  2321. ASSERT(vcpu);
  2322. destroy_kvm_mmu(vcpu);
  2323. free_mmu_pages(vcpu);
  2324. mmu_free_memory_caches(vcpu);
  2325. }
  2326. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2327. {
  2328. struct kvm_mmu_page *sp;
  2329. spin_lock(&kvm->mmu_lock);
  2330. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2331. int i;
  2332. u64 *pt;
  2333. if (!test_bit(slot, sp->slot_bitmap))
  2334. continue;
  2335. pt = sp->spt;
  2336. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  2337. /* avoid RMW */
  2338. if (pt[i] & PT_WRITABLE_MASK)
  2339. pt[i] &= ~PT_WRITABLE_MASK;
  2340. }
  2341. kvm_flush_remote_tlbs(kvm);
  2342. spin_unlock(&kvm->mmu_lock);
  2343. }
  2344. void kvm_mmu_zap_all(struct kvm *kvm)
  2345. {
  2346. struct kvm_mmu_page *sp, *node;
  2347. spin_lock(&kvm->mmu_lock);
  2348. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  2349. if (kvm_mmu_zap_page(kvm, sp))
  2350. node = container_of(kvm->arch.active_mmu_pages.next,
  2351. struct kvm_mmu_page, link);
  2352. spin_unlock(&kvm->mmu_lock);
  2353. kvm_flush_remote_tlbs(kvm);
  2354. }
  2355. static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
  2356. {
  2357. struct kvm_mmu_page *page;
  2358. page = container_of(kvm->arch.active_mmu_pages.prev,
  2359. struct kvm_mmu_page, link);
  2360. kvm_mmu_zap_page(kvm, page);
  2361. }
  2362. static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
  2363. {
  2364. struct kvm *kvm;
  2365. struct kvm *kvm_freed = NULL;
  2366. int cache_count = 0;
  2367. spin_lock(&kvm_lock);
  2368. list_for_each_entry(kvm, &vm_list, vm_list) {
  2369. int npages;
  2370. if (!down_read_trylock(&kvm->slots_lock))
  2371. continue;
  2372. spin_lock(&kvm->mmu_lock);
  2373. npages = kvm->arch.n_alloc_mmu_pages -
  2374. kvm->arch.n_free_mmu_pages;
  2375. cache_count += npages;
  2376. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  2377. kvm_mmu_remove_one_alloc_mmu_page(kvm);
  2378. cache_count--;
  2379. kvm_freed = kvm;
  2380. }
  2381. nr_to_scan--;
  2382. spin_unlock(&kvm->mmu_lock);
  2383. up_read(&kvm->slots_lock);
  2384. }
  2385. if (kvm_freed)
  2386. list_move_tail(&kvm_freed->vm_list, &vm_list);
  2387. spin_unlock(&kvm_lock);
  2388. return cache_count;
  2389. }
  2390. static struct shrinker mmu_shrinker = {
  2391. .shrink = mmu_shrink,
  2392. .seeks = DEFAULT_SEEKS * 10,
  2393. };
  2394. static void mmu_destroy_caches(void)
  2395. {
  2396. if (pte_chain_cache)
  2397. kmem_cache_destroy(pte_chain_cache);
  2398. if (rmap_desc_cache)
  2399. kmem_cache_destroy(rmap_desc_cache);
  2400. if (mmu_page_header_cache)
  2401. kmem_cache_destroy(mmu_page_header_cache);
  2402. }
  2403. void kvm_mmu_module_exit(void)
  2404. {
  2405. mmu_destroy_caches();
  2406. unregister_shrinker(&mmu_shrinker);
  2407. }
  2408. int kvm_mmu_module_init(void)
  2409. {
  2410. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  2411. sizeof(struct kvm_pte_chain),
  2412. 0, 0, NULL);
  2413. if (!pte_chain_cache)
  2414. goto nomem;
  2415. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  2416. sizeof(struct kvm_rmap_desc),
  2417. 0, 0, NULL);
  2418. if (!rmap_desc_cache)
  2419. goto nomem;
  2420. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  2421. sizeof(struct kvm_mmu_page),
  2422. 0, 0, NULL);
  2423. if (!mmu_page_header_cache)
  2424. goto nomem;
  2425. register_shrinker(&mmu_shrinker);
  2426. return 0;
  2427. nomem:
  2428. mmu_destroy_caches();
  2429. return -ENOMEM;
  2430. }
  2431. /*
  2432. * Caculate mmu pages needed for kvm.
  2433. */
  2434. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2435. {
  2436. int i;
  2437. unsigned int nr_mmu_pages;
  2438. unsigned int nr_pages = 0;
  2439. for (i = 0; i < kvm->nmemslots; i++)
  2440. nr_pages += kvm->memslots[i].npages;
  2441. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  2442. nr_mmu_pages = max(nr_mmu_pages,
  2443. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  2444. return nr_mmu_pages;
  2445. }
  2446. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2447. unsigned len)
  2448. {
  2449. if (len > buffer->len)
  2450. return NULL;
  2451. return buffer->ptr;
  2452. }
  2453. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2454. unsigned len)
  2455. {
  2456. void *ret;
  2457. ret = pv_mmu_peek_buffer(buffer, len);
  2458. if (!ret)
  2459. return ret;
  2460. buffer->ptr += len;
  2461. buffer->len -= len;
  2462. buffer->processed += len;
  2463. return ret;
  2464. }
  2465. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  2466. gpa_t addr, gpa_t value)
  2467. {
  2468. int bytes = 8;
  2469. int r;
  2470. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  2471. bytes = 4;
  2472. r = mmu_topup_memory_caches(vcpu);
  2473. if (r)
  2474. return r;
  2475. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  2476. return -EFAULT;
  2477. return 1;
  2478. }
  2479. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2480. {
  2481. kvm_x86_ops->tlb_flush(vcpu);
  2482. set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
  2483. return 1;
  2484. }
  2485. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  2486. {
  2487. spin_lock(&vcpu->kvm->mmu_lock);
  2488. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  2489. spin_unlock(&vcpu->kvm->mmu_lock);
  2490. return 1;
  2491. }
  2492. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  2493. struct kvm_pv_mmu_op_buffer *buffer)
  2494. {
  2495. struct kvm_mmu_op_header *header;
  2496. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  2497. if (!header)
  2498. return 0;
  2499. switch (header->op) {
  2500. case KVM_MMU_OP_WRITE_PTE: {
  2501. struct kvm_mmu_op_write_pte *wpte;
  2502. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  2503. if (!wpte)
  2504. return 0;
  2505. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  2506. wpte->pte_val);
  2507. }
  2508. case KVM_MMU_OP_FLUSH_TLB: {
  2509. struct kvm_mmu_op_flush_tlb *ftlb;
  2510. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  2511. if (!ftlb)
  2512. return 0;
  2513. return kvm_pv_mmu_flush_tlb(vcpu);
  2514. }
  2515. case KVM_MMU_OP_RELEASE_PT: {
  2516. struct kvm_mmu_op_release_pt *rpt;
  2517. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  2518. if (!rpt)
  2519. return 0;
  2520. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  2521. }
  2522. default: return 0;
  2523. }
  2524. }
  2525. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  2526. gpa_t addr, unsigned long *ret)
  2527. {
  2528. int r;
  2529. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  2530. buffer->ptr = buffer->buf;
  2531. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  2532. buffer->processed = 0;
  2533. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  2534. if (r)
  2535. goto out;
  2536. while (buffer->len) {
  2537. r = kvm_pv_mmu_op_one(vcpu, buffer);
  2538. if (r < 0)
  2539. goto out;
  2540. if (r == 0)
  2541. break;
  2542. }
  2543. r = 1;
  2544. out:
  2545. *ret = buffer->processed;
  2546. return r;
  2547. }
  2548. #ifdef AUDIT
  2549. static const char *audit_msg;
  2550. static gva_t canonicalize(gva_t gva)
  2551. {
  2552. #ifdef CONFIG_X86_64
  2553. gva = (long long)(gva << 16) >> 16;
  2554. #endif
  2555. return gva;
  2556. }
  2557. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  2558. gva_t va, int level)
  2559. {
  2560. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  2561. int i;
  2562. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  2563. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  2564. u64 ent = pt[i];
  2565. if (ent == shadow_trap_nonpresent_pte)
  2566. continue;
  2567. va = canonicalize(va);
  2568. if (level > 1) {
  2569. if (ent == shadow_notrap_nonpresent_pte)
  2570. printk(KERN_ERR "audit: (%s) nontrapping pte"
  2571. " in nonleaf level: levels %d gva %lx"
  2572. " level %d pte %llx\n", audit_msg,
  2573. vcpu->arch.mmu.root_level, va, level, ent);
  2574. audit_mappings_page(vcpu, ent, va, level - 1);
  2575. } else {
  2576. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
  2577. hpa_t hpa = (hpa_t)gpa_to_pfn(vcpu, gpa) << PAGE_SHIFT;
  2578. if (is_shadow_present_pte(ent)
  2579. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  2580. printk(KERN_ERR "xx audit error: (%s) levels %d"
  2581. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  2582. audit_msg, vcpu->arch.mmu.root_level,
  2583. va, gpa, hpa, ent,
  2584. is_shadow_present_pte(ent));
  2585. else if (ent == shadow_notrap_nonpresent_pte
  2586. && !is_error_hpa(hpa))
  2587. printk(KERN_ERR "audit: (%s) notrap shadow,"
  2588. " valid guest gva %lx\n", audit_msg, va);
  2589. kvm_release_pfn_clean(pfn);
  2590. }
  2591. }
  2592. }
  2593. static void audit_mappings(struct kvm_vcpu *vcpu)
  2594. {
  2595. unsigned i;
  2596. if (vcpu->arch.mmu.root_level == 4)
  2597. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  2598. else
  2599. for (i = 0; i < 4; ++i)
  2600. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  2601. audit_mappings_page(vcpu,
  2602. vcpu->arch.mmu.pae_root[i],
  2603. i << 30,
  2604. 2);
  2605. }
  2606. static int count_rmaps(struct kvm_vcpu *vcpu)
  2607. {
  2608. int nmaps = 0;
  2609. int i, j, k;
  2610. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  2611. struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
  2612. struct kvm_rmap_desc *d;
  2613. for (j = 0; j < m->npages; ++j) {
  2614. unsigned long *rmapp = &m->rmap[j];
  2615. if (!*rmapp)
  2616. continue;
  2617. if (!(*rmapp & 1)) {
  2618. ++nmaps;
  2619. continue;
  2620. }
  2621. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  2622. while (d) {
  2623. for (k = 0; k < RMAP_EXT; ++k)
  2624. if (d->shadow_ptes[k])
  2625. ++nmaps;
  2626. else
  2627. break;
  2628. d = d->more;
  2629. }
  2630. }
  2631. }
  2632. return nmaps;
  2633. }
  2634. static int count_writable_mappings(struct kvm_vcpu *vcpu)
  2635. {
  2636. int nmaps = 0;
  2637. struct kvm_mmu_page *sp;
  2638. int i;
  2639. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2640. u64 *pt = sp->spt;
  2641. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  2642. continue;
  2643. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2644. u64 ent = pt[i];
  2645. if (!(ent & PT_PRESENT_MASK))
  2646. continue;
  2647. if (!(ent & PT_WRITABLE_MASK))
  2648. continue;
  2649. ++nmaps;
  2650. }
  2651. }
  2652. return nmaps;
  2653. }
  2654. static void audit_rmap(struct kvm_vcpu *vcpu)
  2655. {
  2656. int n_rmap = count_rmaps(vcpu);
  2657. int n_actual = count_writable_mappings(vcpu);
  2658. if (n_rmap != n_actual)
  2659. printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
  2660. __func__, audit_msg, n_rmap, n_actual);
  2661. }
  2662. static void audit_write_protection(struct kvm_vcpu *vcpu)
  2663. {
  2664. struct kvm_mmu_page *sp;
  2665. struct kvm_memory_slot *slot;
  2666. unsigned long *rmapp;
  2667. gfn_t gfn;
  2668. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2669. if (sp->role.metaphysical)
  2670. continue;
  2671. gfn = unalias_gfn(vcpu->kvm, sp->gfn);
  2672. slot = gfn_to_memslot_unaliased(vcpu->kvm, sp->gfn);
  2673. rmapp = &slot->rmap[gfn - slot->base_gfn];
  2674. if (*rmapp)
  2675. printk(KERN_ERR "%s: (%s) shadow page has writable"
  2676. " mappings: gfn %lx role %x\n",
  2677. __func__, audit_msg, sp->gfn,
  2678. sp->role.word);
  2679. }
  2680. }
  2681. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  2682. {
  2683. int olddbg = dbg;
  2684. dbg = 0;
  2685. audit_msg = msg;
  2686. audit_rmap(vcpu);
  2687. audit_write_protection(vcpu);
  2688. audit_mappings(vcpu);
  2689. dbg = olddbg;
  2690. }
  2691. #endif