mulI.S 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474
  1. /* 32 and 64-bit millicode, original author Hewlett-Packard
  2. adapted for gcc by Paul Bame <bame@debian.org>
  3. and Alan Modra <alan@linuxcare.com.au>.
  4. Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
  5. This file is part of GCC and is released under the terms of
  6. of the GNU General Public License as published by the Free Software
  7. Foundation; either version 2, or (at your option) any later version.
  8. See the file COPYING in the top-level GCC source directory for a copy
  9. of the license. */
  10. #include "milli.h"
  11. #ifdef L_mulI
  12. /* VERSION "@(#)$$mulI $ Revision: 12.4 $ $ Date: 94/03/17 17:18:51 $" */
  13. /******************************************************************************
  14. This routine is used on PA2.0 processors when gcc -mno-fpregs is used
  15. ROUTINE: $$mulI
  16. DESCRIPTION:
  17. $$mulI multiplies two single word integers, giving a single
  18. word result.
  19. INPUT REGISTERS:
  20. arg0 = Operand 1
  21. arg1 = Operand 2
  22. r31 == return pc
  23. sr0 == return space when called externally
  24. OUTPUT REGISTERS:
  25. arg0 = undefined
  26. arg1 = undefined
  27. ret1 = result
  28. OTHER REGISTERS AFFECTED:
  29. r1 = undefined
  30. SIDE EFFECTS:
  31. Causes a trap under the following conditions: NONE
  32. Changes memory at the following places: NONE
  33. PERMISSIBLE CONTEXT:
  34. Unwindable
  35. Does not create a stack frame
  36. Is usable for internal or external microcode
  37. DISCUSSION:
  38. Calls other millicode routines via mrp: NONE
  39. Calls other millicode routines: NONE
  40. ***************************************************************************/
  41. #define a0 %arg0
  42. #define a1 %arg1
  43. #define t0 %r1
  44. #define r %ret1
  45. #define a0__128a0 zdep a0,24,25,a0
  46. #define a0__256a0 zdep a0,23,24,a0
  47. #define a1_ne_0_b_l0 comb,<> a1,0,LREF(l0)
  48. #define a1_ne_0_b_l1 comb,<> a1,0,LREF(l1)
  49. #define a1_ne_0_b_l2 comb,<> a1,0,LREF(l2)
  50. #define b_n_ret_t0 b,n LREF(ret_t0)
  51. #define b_e_shift b LREF(e_shift)
  52. #define b_e_t0ma0 b LREF(e_t0ma0)
  53. #define b_e_t0 b LREF(e_t0)
  54. #define b_e_t0a0 b LREF(e_t0a0)
  55. #define b_e_t02a0 b LREF(e_t02a0)
  56. #define b_e_t04a0 b LREF(e_t04a0)
  57. #define b_e_2t0 b LREF(e_2t0)
  58. #define b_e_2t0a0 b LREF(e_2t0a0)
  59. #define b_e_2t04a0 b LREF(e2t04a0)
  60. #define b_e_3t0 b LREF(e_3t0)
  61. #define b_e_4t0 b LREF(e_4t0)
  62. #define b_e_4t0a0 b LREF(e_4t0a0)
  63. #define b_e_4t08a0 b LREF(e4t08a0)
  64. #define b_e_5t0 b LREF(e_5t0)
  65. #define b_e_8t0 b LREF(e_8t0)
  66. #define b_e_8t0a0 b LREF(e_8t0a0)
  67. #define r__r_a0 add r,a0,r
  68. #define r__r_2a0 sh1add a0,r,r
  69. #define r__r_4a0 sh2add a0,r,r
  70. #define r__r_8a0 sh3add a0,r,r
  71. #define r__r_t0 add r,t0,r
  72. #define r__r_2t0 sh1add t0,r,r
  73. #define r__r_4t0 sh2add t0,r,r
  74. #define r__r_8t0 sh3add t0,r,r
  75. #define t0__3a0 sh1add a0,a0,t0
  76. #define t0__4a0 sh2add a0,0,t0
  77. #define t0__5a0 sh2add a0,a0,t0
  78. #define t0__8a0 sh3add a0,0,t0
  79. #define t0__9a0 sh3add a0,a0,t0
  80. #define t0__16a0 zdep a0,27,28,t0
  81. #define t0__32a0 zdep a0,26,27,t0
  82. #define t0__64a0 zdep a0,25,26,t0
  83. #define t0__128a0 zdep a0,24,25,t0
  84. #define t0__t0ma0 sub t0,a0,t0
  85. #define t0__t0_a0 add t0,a0,t0
  86. #define t0__t0_2a0 sh1add a0,t0,t0
  87. #define t0__t0_4a0 sh2add a0,t0,t0
  88. #define t0__t0_8a0 sh3add a0,t0,t0
  89. #define t0__2t0_a0 sh1add t0,a0,t0
  90. #define t0__3t0 sh1add t0,t0,t0
  91. #define t0__4t0 sh2add t0,0,t0
  92. #define t0__4t0_a0 sh2add t0,a0,t0
  93. #define t0__5t0 sh2add t0,t0,t0
  94. #define t0__8t0 sh3add t0,0,t0
  95. #define t0__8t0_a0 sh3add t0,a0,t0
  96. #define t0__9t0 sh3add t0,t0,t0
  97. #define t0__16t0 zdep t0,27,28,t0
  98. #define t0__32t0 zdep t0,26,27,t0
  99. #define t0__256a0 zdep a0,23,24,t0
  100. SUBSPA_MILLI
  101. ATTR_MILLI
  102. .align 16
  103. .proc
  104. .callinfo millicode
  105. .export $$mulI,millicode
  106. GSYM($$mulI)
  107. combt,<<= a1,a0,LREF(l4) /* swap args if unsigned a1>a0 */
  108. copy 0,r /* zero out the result */
  109. xor a0,a1,a0 /* swap a0 & a1 using the */
  110. xor a0,a1,a1 /* old xor trick */
  111. xor a0,a1,a0
  112. LSYM(l4)
  113. combt,<= 0,a0,LREF(l3) /* if a0>=0 then proceed like unsigned */
  114. zdep a1,30,8,t0 /* t0 = (a1&0xff)<<1 ********* */
  115. sub,> 0,a1,t0 /* otherwise negate both and */
  116. combt,<=,n a0,t0,LREF(l2) /* swap back if |a0|<|a1| */
  117. sub 0,a0,a1
  118. movb,tr,n t0,a0,LREF(l2) /* 10th inst. */
  119. LSYM(l0) r__r_t0 /* add in this partial product */
  120. LSYM(l1) a0__256a0 /* a0 <<= 8 ****************** */
  121. LSYM(l2) zdep a1,30,8,t0 /* t0 = (a1&0xff)<<1 ********* */
  122. LSYM(l3) blr t0,0 /* case on these 8 bits ****** */
  123. extru a1,23,24,a1 /* a1 >>= 8 ****************** */
  124. /*16 insts before this. */
  125. /* a0 <<= 8 ************************** */
  126. LSYM(x0) a1_ne_0_b_l2 ! a0__256a0 ! MILLIRETN ! nop
  127. LSYM(x1) a1_ne_0_b_l1 ! r__r_a0 ! MILLIRETN ! nop
  128. LSYM(x2) a1_ne_0_b_l1 ! r__r_2a0 ! MILLIRETN ! nop
  129. LSYM(x3) a1_ne_0_b_l0 ! t0__3a0 ! MILLIRET ! r__r_t0
  130. LSYM(x4) a1_ne_0_b_l1 ! r__r_4a0 ! MILLIRETN ! nop
  131. LSYM(x5) a1_ne_0_b_l0 ! t0__5a0 ! MILLIRET ! r__r_t0
  132. LSYM(x6) t0__3a0 ! a1_ne_0_b_l1 ! r__r_2t0 ! MILLIRETN
  133. LSYM(x7) t0__3a0 ! a1_ne_0_b_l0 ! r__r_4a0 ! b_n_ret_t0
  134. LSYM(x8) a1_ne_0_b_l1 ! r__r_8a0 ! MILLIRETN ! nop
  135. LSYM(x9) a1_ne_0_b_l0 ! t0__9a0 ! MILLIRET ! r__r_t0
  136. LSYM(x10) t0__5a0 ! a1_ne_0_b_l1 ! r__r_2t0 ! MILLIRETN
  137. LSYM(x11) t0__3a0 ! a1_ne_0_b_l0 ! r__r_8a0 ! b_n_ret_t0
  138. LSYM(x12) t0__3a0 ! a1_ne_0_b_l1 ! r__r_4t0 ! MILLIRETN
  139. LSYM(x13) t0__5a0 ! a1_ne_0_b_l0 ! r__r_8a0 ! b_n_ret_t0
  140. LSYM(x14) t0__3a0 ! t0__2t0_a0 ! b_e_shift ! r__r_2t0
  141. LSYM(x15) t0__5a0 ! a1_ne_0_b_l0 ! t0__3t0 ! b_n_ret_t0
  142. LSYM(x16) t0__16a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN
  143. LSYM(x17) t0__9a0 ! a1_ne_0_b_l0 ! t0__t0_8a0 ! b_n_ret_t0
  144. LSYM(x18) t0__9a0 ! a1_ne_0_b_l1 ! r__r_2t0 ! MILLIRETN
  145. LSYM(x19) t0__9a0 ! a1_ne_0_b_l0 ! t0__2t0_a0 ! b_n_ret_t0
  146. LSYM(x20) t0__5a0 ! a1_ne_0_b_l1 ! r__r_4t0 ! MILLIRETN
  147. LSYM(x21) t0__5a0 ! a1_ne_0_b_l0 ! t0__4t0_a0 ! b_n_ret_t0
  148. LSYM(x22) t0__5a0 ! t0__2t0_a0 ! b_e_shift ! r__r_2t0
  149. LSYM(x23) t0__5a0 ! t0__2t0_a0 ! b_e_t0 ! t0__2t0_a0
  150. LSYM(x24) t0__3a0 ! a1_ne_0_b_l1 ! r__r_8t0 ! MILLIRETN
  151. LSYM(x25) t0__5a0 ! a1_ne_0_b_l0 ! t0__5t0 ! b_n_ret_t0
  152. LSYM(x26) t0__3a0 ! t0__4t0_a0 ! b_e_shift ! r__r_2t0
  153. LSYM(x27) t0__3a0 ! a1_ne_0_b_l0 ! t0__9t0 ! b_n_ret_t0
  154. LSYM(x28) t0__3a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0
  155. LSYM(x29) t0__3a0 ! t0__2t0_a0 ! b_e_t0 ! t0__4t0_a0
  156. LSYM(x30) t0__5a0 ! t0__3t0 ! b_e_shift ! r__r_2t0
  157. LSYM(x31) t0__32a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0
  158. LSYM(x32) t0__32a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN
  159. LSYM(x33) t0__8a0 ! a1_ne_0_b_l0 ! t0__4t0_a0 ! b_n_ret_t0
  160. LSYM(x34) t0__16a0 ! t0__t0_a0 ! b_e_shift ! r__r_2t0
  161. LSYM(x35) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__t0_8a0
  162. LSYM(x36) t0__9a0 ! a1_ne_0_b_l1 ! r__r_4t0 ! MILLIRETN
  163. LSYM(x37) t0__9a0 ! a1_ne_0_b_l0 ! t0__4t0_a0 ! b_n_ret_t0
  164. LSYM(x38) t0__9a0 ! t0__2t0_a0 ! b_e_shift ! r__r_2t0
  165. LSYM(x39) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__2t0_a0
  166. LSYM(x40) t0__5a0 ! a1_ne_0_b_l1 ! r__r_8t0 ! MILLIRETN
  167. LSYM(x41) t0__5a0 ! a1_ne_0_b_l0 ! t0__8t0_a0 ! b_n_ret_t0
  168. LSYM(x42) t0__5a0 ! t0__4t0_a0 ! b_e_shift ! r__r_2t0
  169. LSYM(x43) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__2t0_a0
  170. LSYM(x44) t0__5a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0
  171. LSYM(x45) t0__9a0 ! a1_ne_0_b_l0 ! t0__5t0 ! b_n_ret_t0
  172. LSYM(x46) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__t0_a0
  173. LSYM(x47) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__t0_2a0
  174. LSYM(x48) t0__3a0 ! a1_ne_0_b_l0 ! t0__16t0 ! b_n_ret_t0
  175. LSYM(x49) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__t0_4a0
  176. LSYM(x50) t0__5a0 ! t0__5t0 ! b_e_shift ! r__r_2t0
  177. LSYM(x51) t0__9a0 ! t0__t0_8a0 ! b_e_t0 ! t0__3t0
  178. LSYM(x52) t0__3a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0
  179. LSYM(x53) t0__3a0 ! t0__4t0_a0 ! b_e_t0 ! t0__4t0_a0
  180. LSYM(x54) t0__9a0 ! t0__3t0 ! b_e_shift ! r__r_2t0
  181. LSYM(x55) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__2t0_a0
  182. LSYM(x56) t0__3a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0
  183. LSYM(x57) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__3t0
  184. LSYM(x58) t0__3a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__4t0_a0
  185. LSYM(x59) t0__9a0 ! t0__2t0_a0 ! b_e_t02a0 ! t0__3t0
  186. LSYM(x60) t0__5a0 ! t0__3t0 ! b_e_shift ! r__r_4t0
  187. LSYM(x61) t0__5a0 ! t0__3t0 ! b_e_t0 ! t0__4t0_a0
  188. LSYM(x62) t0__32a0 ! t0__t0ma0 ! b_e_shift ! r__r_2t0
  189. LSYM(x63) t0__64a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0
  190. LSYM(x64) t0__64a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN
  191. LSYM(x65) t0__8a0 ! a1_ne_0_b_l0 ! t0__8t0_a0 ! b_n_ret_t0
  192. LSYM(x66) t0__32a0 ! t0__t0_a0 ! b_e_shift ! r__r_2t0
  193. LSYM(x67) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__2t0_a0
  194. LSYM(x68) t0__8a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0
  195. LSYM(x69) t0__8a0 ! t0__2t0_a0 ! b_e_t0 ! t0__4t0_a0
  196. LSYM(x70) t0__64a0 ! t0__t0_4a0 ! b_e_t0 ! t0__t0_2a0
  197. LSYM(x71) t0__9a0 ! t0__8t0 ! b_e_t0 ! t0__t0ma0
  198. LSYM(x72) t0__9a0 ! a1_ne_0_b_l1 ! r__r_8t0 ! MILLIRETN
  199. LSYM(x73) t0__9a0 ! t0__8t0_a0 ! b_e_shift ! r__r_t0
  200. LSYM(x74) t0__9a0 ! t0__4t0_a0 ! b_e_shift ! r__r_2t0
  201. LSYM(x75) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__2t0_a0
  202. LSYM(x76) t0__9a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0
  203. LSYM(x77) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__4t0_a0
  204. LSYM(x78) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__2t0_a0
  205. LSYM(x79) t0__16a0 ! t0__5t0 ! b_e_t0 ! t0__t0ma0
  206. LSYM(x80) t0__16a0 ! t0__5t0 ! b_e_shift ! r__r_t0
  207. LSYM(x81) t0__9a0 ! t0__9t0 ! b_e_shift ! r__r_t0
  208. LSYM(x82) t0__5a0 ! t0__8t0_a0 ! b_e_shift ! r__r_2t0
  209. LSYM(x83) t0__5a0 ! t0__8t0_a0 ! b_e_t0 ! t0__2t0_a0
  210. LSYM(x84) t0__5a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0
  211. LSYM(x85) t0__8a0 ! t0__2t0_a0 ! b_e_t0 ! t0__5t0
  212. LSYM(x86) t0__5a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__2t0_a0
  213. LSYM(x87) t0__9a0 ! t0__9t0 ! b_e_t02a0 ! t0__t0_4a0
  214. LSYM(x88) t0__5a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0
  215. LSYM(x89) t0__5a0 ! t0__2t0_a0 ! b_e_t0 ! t0__8t0_a0
  216. LSYM(x90) t0__9a0 ! t0__5t0 ! b_e_shift ! r__r_2t0
  217. LSYM(x91) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__2t0_a0
  218. LSYM(x92) t0__5a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__2t0_a0
  219. LSYM(x93) t0__32a0 ! t0__t0ma0 ! b_e_t0 ! t0__3t0
  220. LSYM(x94) t0__9a0 ! t0__5t0 ! b_e_2t0 ! t0__t0_2a0
  221. LSYM(x95) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__5t0
  222. LSYM(x96) t0__8a0 ! t0__3t0 ! b_e_shift ! r__r_4t0
  223. LSYM(x97) t0__8a0 ! t0__3t0 ! b_e_t0 ! t0__4t0_a0
  224. LSYM(x98) t0__32a0 ! t0__3t0 ! b_e_t0 ! t0__t0_2a0
  225. LSYM(x99) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__3t0
  226. LSYM(x100) t0__5a0 ! t0__5t0 ! b_e_shift ! r__r_4t0
  227. LSYM(x101) t0__5a0 ! t0__5t0 ! b_e_t0 ! t0__4t0_a0
  228. LSYM(x102) t0__32a0 ! t0__t0_2a0 ! b_e_t0 ! t0__3t0
  229. LSYM(x103) t0__5a0 ! t0__5t0 ! b_e_t02a0 ! t0__4t0_a0
  230. LSYM(x104) t0__3a0 ! t0__4t0_a0 ! b_e_shift ! r__r_8t0
  231. LSYM(x105) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__5t0
  232. LSYM(x106) t0__3a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__4t0_a0
  233. LSYM(x107) t0__9a0 ! t0__t0_4a0 ! b_e_t02a0 ! t0__8t0_a0
  234. LSYM(x108) t0__9a0 ! t0__3t0 ! b_e_shift ! r__r_4t0
  235. LSYM(x109) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__4t0_a0
  236. LSYM(x110) t0__9a0 ! t0__3t0 ! b_e_2t0 ! t0__2t0_a0
  237. LSYM(x111) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__3t0
  238. LSYM(x112) t0__3a0 ! t0__2t0_a0 ! b_e_t0 ! t0__16t0
  239. LSYM(x113) t0__9a0 ! t0__4t0_a0 ! b_e_t02a0 ! t0__3t0
  240. LSYM(x114) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__3t0
  241. LSYM(x115) t0__9a0 ! t0__2t0_a0 ! b_e_2t0a0 ! t0__3t0
  242. LSYM(x116) t0__3a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__4t0_a0
  243. LSYM(x117) t0__3a0 ! t0__4t0_a0 ! b_e_t0 ! t0__9t0
  244. LSYM(x118) t0__3a0 ! t0__4t0_a0 ! b_e_t0a0 ! t0__9t0
  245. LSYM(x119) t0__3a0 ! t0__4t0_a0 ! b_e_t02a0 ! t0__9t0
  246. LSYM(x120) t0__5a0 ! t0__3t0 ! b_e_shift ! r__r_8t0
  247. LSYM(x121) t0__5a0 ! t0__3t0 ! b_e_t0 ! t0__8t0_a0
  248. LSYM(x122) t0__5a0 ! t0__3t0 ! b_e_2t0 ! t0__4t0_a0
  249. LSYM(x123) t0__5a0 ! t0__8t0_a0 ! b_e_t0 ! t0__3t0
  250. LSYM(x124) t0__32a0 ! t0__t0ma0 ! b_e_shift ! r__r_4t0
  251. LSYM(x125) t0__5a0 ! t0__5t0 ! b_e_t0 ! t0__5t0
  252. LSYM(x126) t0__64a0 ! t0__t0ma0 ! b_e_shift ! r__r_2t0
  253. LSYM(x127) t0__128a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0
  254. LSYM(x128) t0__128a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN
  255. LSYM(x129) t0__128a0 ! a1_ne_0_b_l0 ! t0__t0_a0 ! b_n_ret_t0
  256. LSYM(x130) t0__64a0 ! t0__t0_a0 ! b_e_shift ! r__r_2t0
  257. LSYM(x131) t0__8a0 ! t0__8t0_a0 ! b_e_t0 ! t0__2t0_a0
  258. LSYM(x132) t0__8a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0
  259. LSYM(x133) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__4t0_a0
  260. LSYM(x134) t0__8a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__2t0_a0
  261. LSYM(x135) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__3t0
  262. LSYM(x136) t0__8a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0
  263. LSYM(x137) t0__8a0 ! t0__2t0_a0 ! b_e_t0 ! t0__8t0_a0
  264. LSYM(x138) t0__8a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__4t0_a0
  265. LSYM(x139) t0__8a0 ! t0__2t0_a0 ! b_e_2t0a0 ! t0__4t0_a0
  266. LSYM(x140) t0__3a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__5t0
  267. LSYM(x141) t0__8a0 ! t0__2t0_a0 ! b_e_4t0a0 ! t0__2t0_a0
  268. LSYM(x142) t0__9a0 ! t0__8t0 ! b_e_2t0 ! t0__t0ma0
  269. LSYM(x143) t0__16a0 ! t0__9t0 ! b_e_t0 ! t0__t0ma0
  270. LSYM(x144) t0__9a0 ! t0__8t0 ! b_e_shift ! r__r_2t0
  271. LSYM(x145) t0__9a0 ! t0__8t0 ! b_e_t0 ! t0__2t0_a0
  272. LSYM(x146) t0__9a0 ! t0__8t0_a0 ! b_e_shift ! r__r_2t0
  273. LSYM(x147) t0__9a0 ! t0__8t0_a0 ! b_e_t0 ! t0__2t0_a0
  274. LSYM(x148) t0__9a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0
  275. LSYM(x149) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__4t0_a0
  276. LSYM(x150) t0__9a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__2t0_a0
  277. LSYM(x151) t0__9a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__2t0_a0
  278. LSYM(x152) t0__9a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0
  279. LSYM(x153) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__8t0_a0
  280. LSYM(x154) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__4t0_a0
  281. LSYM(x155) t0__32a0 ! t0__t0ma0 ! b_e_t0 ! t0__5t0
  282. LSYM(x156) t0__9a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__2t0_a0
  283. LSYM(x157) t0__32a0 ! t0__t0ma0 ! b_e_t02a0 ! t0__5t0
  284. LSYM(x158) t0__16a0 ! t0__5t0 ! b_e_2t0 ! t0__t0ma0
  285. LSYM(x159) t0__32a0 ! t0__5t0 ! b_e_t0 ! t0__t0ma0
  286. LSYM(x160) t0__5a0 ! t0__4t0 ! b_e_shift ! r__r_8t0
  287. LSYM(x161) t0__8a0 ! t0__5t0 ! b_e_t0 ! t0__4t0_a0
  288. LSYM(x162) t0__9a0 ! t0__9t0 ! b_e_shift ! r__r_2t0
  289. LSYM(x163) t0__9a0 ! t0__9t0 ! b_e_t0 ! t0__2t0_a0
  290. LSYM(x164) t0__5a0 ! t0__8t0_a0 ! b_e_shift ! r__r_4t0
  291. LSYM(x165) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__5t0
  292. LSYM(x166) t0__5a0 ! t0__8t0_a0 ! b_e_2t0 ! t0__2t0_a0
  293. LSYM(x167) t0__5a0 ! t0__8t0_a0 ! b_e_2t0a0 ! t0__2t0_a0
  294. LSYM(x168) t0__5a0 ! t0__4t0_a0 ! b_e_shift ! r__r_8t0
  295. LSYM(x169) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__8t0_a0
  296. LSYM(x170) t0__32a0 ! t0__t0_2a0 ! b_e_t0 ! t0__5t0
  297. LSYM(x171) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__9t0
  298. LSYM(x172) t0__5a0 ! t0__4t0_a0 ! b_e_4t0 ! t0__2t0_a0
  299. LSYM(x173) t0__9a0 ! t0__2t0_a0 ! b_e_t02a0 ! t0__9t0
  300. LSYM(x174) t0__32a0 ! t0__t0_2a0 ! b_e_t04a0 ! t0__5t0
  301. LSYM(x175) t0__8a0 ! t0__2t0_a0 ! b_e_5t0 ! t0__2t0_a0
  302. LSYM(x176) t0__5a0 ! t0__4t0_a0 ! b_e_8t0 ! t0__t0_a0
  303. LSYM(x177) t0__5a0 ! t0__4t0_a0 ! b_e_8t0a0 ! t0__t0_a0
  304. LSYM(x178) t0__5a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__8t0_a0
  305. LSYM(x179) t0__5a0 ! t0__2t0_a0 ! b_e_2t0a0 ! t0__8t0_a0
  306. LSYM(x180) t0__9a0 ! t0__5t0 ! b_e_shift ! r__r_4t0
  307. LSYM(x181) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__4t0_a0
  308. LSYM(x182) t0__9a0 ! t0__5t0 ! b_e_2t0 ! t0__2t0_a0
  309. LSYM(x183) t0__9a0 ! t0__5t0 ! b_e_2t0a0 ! t0__2t0_a0
  310. LSYM(x184) t0__5a0 ! t0__9t0 ! b_e_4t0 ! t0__t0_a0
  311. LSYM(x185) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__5t0
  312. LSYM(x186) t0__32a0 ! t0__t0ma0 ! b_e_2t0 ! t0__3t0
  313. LSYM(x187) t0__9a0 ! t0__4t0_a0 ! b_e_t02a0 ! t0__5t0
  314. LSYM(x188) t0__9a0 ! t0__5t0 ! b_e_4t0 ! t0__t0_2a0
  315. LSYM(x189) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__9t0
  316. LSYM(x190) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__5t0
  317. LSYM(x191) t0__64a0 ! t0__3t0 ! b_e_t0 ! t0__t0ma0
  318. LSYM(x192) t0__8a0 ! t0__3t0 ! b_e_shift ! r__r_8t0
  319. LSYM(x193) t0__8a0 ! t0__3t0 ! b_e_t0 ! t0__8t0_a0
  320. LSYM(x194) t0__8a0 ! t0__3t0 ! b_e_2t0 ! t0__4t0_a0
  321. LSYM(x195) t0__8a0 ! t0__8t0_a0 ! b_e_t0 ! t0__3t0
  322. LSYM(x196) t0__8a0 ! t0__3t0 ! b_e_4t0 ! t0__2t0_a0
  323. LSYM(x197) t0__8a0 ! t0__3t0 ! b_e_4t0a0 ! t0__2t0_a0
  324. LSYM(x198) t0__64a0 ! t0__t0_2a0 ! b_e_t0 ! t0__3t0
  325. LSYM(x199) t0__8a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__3t0
  326. LSYM(x200) t0__5a0 ! t0__5t0 ! b_e_shift ! r__r_8t0
  327. LSYM(x201) t0__5a0 ! t0__5t0 ! b_e_t0 ! t0__8t0_a0
  328. LSYM(x202) t0__5a0 ! t0__5t0 ! b_e_2t0 ! t0__4t0_a0
  329. LSYM(x203) t0__5a0 ! t0__5t0 ! b_e_2t0a0 ! t0__4t0_a0
  330. LSYM(x204) t0__8a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__3t0
  331. LSYM(x205) t0__5a0 ! t0__8t0_a0 ! b_e_t0 ! t0__5t0
  332. LSYM(x206) t0__64a0 ! t0__t0_4a0 ! b_e_t02a0 ! t0__3t0
  333. LSYM(x207) t0__8a0 ! t0__2t0_a0 ! b_e_3t0 ! t0__4t0_a0
  334. LSYM(x208) t0__5a0 ! t0__5t0 ! b_e_8t0 ! t0__t0_a0
  335. LSYM(x209) t0__5a0 ! t0__5t0 ! b_e_8t0a0 ! t0__t0_a0
  336. LSYM(x210) t0__5a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__5t0
  337. LSYM(x211) t0__5a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__5t0
  338. LSYM(x212) t0__3a0 ! t0__4t0_a0 ! b_e_4t0 ! t0__4t0_a0
  339. LSYM(x213) t0__3a0 ! t0__4t0_a0 ! b_e_4t0a0 ! t0__4t0_a0
  340. LSYM(x214) t0__9a0 ! t0__t0_4a0 ! b_e_2t04a0 ! t0__8t0_a0
  341. LSYM(x215) t0__5a0 ! t0__4t0_a0 ! b_e_5t0 ! t0__2t0_a0
  342. LSYM(x216) t0__9a0 ! t0__3t0 ! b_e_shift ! r__r_8t0
  343. LSYM(x217) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__8t0_a0
  344. LSYM(x218) t0__9a0 ! t0__3t0 ! b_e_2t0 ! t0__4t0_a0
  345. LSYM(x219) t0__9a0 ! t0__8t0_a0 ! b_e_t0 ! t0__3t0
  346. LSYM(x220) t0__3a0 ! t0__9t0 ! b_e_4t0 ! t0__2t0_a0
  347. LSYM(x221) t0__3a0 ! t0__9t0 ! b_e_4t0a0 ! t0__2t0_a0
  348. LSYM(x222) t0__9a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__3t0
  349. LSYM(x223) t0__9a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__3t0
  350. LSYM(x224) t0__9a0 ! t0__3t0 ! b_e_8t0 ! t0__t0_a0
  351. LSYM(x225) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__5t0
  352. LSYM(x226) t0__3a0 ! t0__2t0_a0 ! b_e_t02a0 ! t0__32t0
  353. LSYM(x227) t0__9a0 ! t0__5t0 ! b_e_t02a0 ! t0__5t0
  354. LSYM(x228) t0__9a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__3t0
  355. LSYM(x229) t0__9a0 ! t0__2t0_a0 ! b_e_4t0a0 ! t0__3t0
  356. LSYM(x230) t0__9a0 ! t0__5t0 ! b_e_5t0 ! t0__t0_a0
  357. LSYM(x231) t0__9a0 ! t0__2t0_a0 ! b_e_3t0 ! t0__4t0_a0
  358. LSYM(x232) t0__3a0 ! t0__2t0_a0 ! b_e_8t0 ! t0__4t0_a0
  359. LSYM(x233) t0__3a0 ! t0__2t0_a0 ! b_e_8t0a0 ! t0__4t0_a0
  360. LSYM(x234) t0__3a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__9t0
  361. LSYM(x235) t0__3a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__9t0
  362. LSYM(x236) t0__9a0 ! t0__2t0_a0 ! b_e_4t08a0 ! t0__3t0
  363. LSYM(x237) t0__16a0 ! t0__5t0 ! b_e_3t0 ! t0__t0ma0
  364. LSYM(x238) t0__3a0 ! t0__4t0_a0 ! b_e_2t04a0 ! t0__9t0
  365. LSYM(x239) t0__16a0 ! t0__5t0 ! b_e_t0ma0 ! t0__3t0
  366. LSYM(x240) t0__9a0 ! t0__t0_a0 ! b_e_8t0 ! t0__3t0
  367. LSYM(x241) t0__9a0 ! t0__t0_a0 ! b_e_8t0a0 ! t0__3t0
  368. LSYM(x242) t0__5a0 ! t0__3t0 ! b_e_2t0 ! t0__8t0_a0
  369. LSYM(x243) t0__9a0 ! t0__9t0 ! b_e_t0 ! t0__3t0
  370. LSYM(x244) t0__5a0 ! t0__3t0 ! b_e_4t0 ! t0__4t0_a0
  371. LSYM(x245) t0__8a0 ! t0__3t0 ! b_e_5t0 ! t0__2t0_a0
  372. LSYM(x246) t0__5a0 ! t0__8t0_a0 ! b_e_2t0 ! t0__3t0
  373. LSYM(x247) t0__5a0 ! t0__8t0_a0 ! b_e_2t0a0 ! t0__3t0
  374. LSYM(x248) t0__32a0 ! t0__t0ma0 ! b_e_shift ! r__r_8t0
  375. LSYM(x249) t0__32a0 ! t0__t0ma0 ! b_e_t0 ! t0__8t0_a0
  376. LSYM(x250) t0__5a0 ! t0__5t0 ! b_e_2t0 ! t0__5t0
  377. LSYM(x251) t0__5a0 ! t0__5t0 ! b_e_2t0a0 ! t0__5t0
  378. LSYM(x252) t0__64a0 ! t0__t0ma0 ! b_e_shift ! r__r_4t0
  379. LSYM(x253) t0__64a0 ! t0__t0ma0 ! b_e_t0 ! t0__4t0_a0
  380. LSYM(x254) t0__128a0 ! t0__t0ma0 ! b_e_shift ! r__r_2t0
  381. LSYM(x255) t0__256a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0
  382. /*1040 insts before this. */
  383. LSYM(ret_t0) MILLIRET
  384. LSYM(e_t0) r__r_t0
  385. LSYM(e_shift) a1_ne_0_b_l2
  386. a0__256a0 /* a0 <<= 8 *********** */
  387. MILLIRETN
  388. LSYM(e_t0ma0) a1_ne_0_b_l0
  389. t0__t0ma0
  390. MILLIRET
  391. r__r_t0
  392. LSYM(e_t0a0) a1_ne_0_b_l0
  393. t0__t0_a0
  394. MILLIRET
  395. r__r_t0
  396. LSYM(e_t02a0) a1_ne_0_b_l0
  397. t0__t0_2a0
  398. MILLIRET
  399. r__r_t0
  400. LSYM(e_t04a0) a1_ne_0_b_l0
  401. t0__t0_4a0
  402. MILLIRET
  403. r__r_t0
  404. LSYM(e_2t0) a1_ne_0_b_l1
  405. r__r_2t0
  406. MILLIRETN
  407. LSYM(e_2t0a0) a1_ne_0_b_l0
  408. t0__2t0_a0
  409. MILLIRET
  410. r__r_t0
  411. LSYM(e2t04a0) t0__t0_2a0
  412. a1_ne_0_b_l1
  413. r__r_2t0
  414. MILLIRETN
  415. LSYM(e_3t0) a1_ne_0_b_l0
  416. t0__3t0
  417. MILLIRET
  418. r__r_t0
  419. LSYM(e_4t0) a1_ne_0_b_l1
  420. r__r_4t0
  421. MILLIRETN
  422. LSYM(e_4t0a0) a1_ne_0_b_l0
  423. t0__4t0_a0
  424. MILLIRET
  425. r__r_t0
  426. LSYM(e4t08a0) t0__t0_2a0
  427. a1_ne_0_b_l1
  428. r__r_4t0
  429. MILLIRETN
  430. LSYM(e_5t0) a1_ne_0_b_l0
  431. t0__5t0
  432. MILLIRET
  433. r__r_t0
  434. LSYM(e_8t0) a1_ne_0_b_l1
  435. r__r_8t0
  436. MILLIRETN
  437. LSYM(e_8t0a0) a1_ne_0_b_l0
  438. t0__8t0_a0
  439. MILLIRET
  440. r__r_t0
  441. .procend
  442. .end
  443. #endif