ds2490.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953
  1. /*
  2. * dscore.c
  3. *
  4. * Copyright (c) 2004 Evgeniy Polyakov <johnpol@2ka.mipt.ru>
  5. *
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. */
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/mod_devicetable.h>
  24. #include <linux/usb.h>
  25. #include "../w1_int.h"
  26. #include "../w1.h"
  27. /* COMMAND TYPE CODES */
  28. #define CONTROL_CMD 0x00
  29. #define COMM_CMD 0x01
  30. #define MODE_CMD 0x02
  31. /* CONTROL COMMAND CODES */
  32. #define CTL_RESET_DEVICE 0x0000
  33. #define CTL_START_EXE 0x0001
  34. #define CTL_RESUME_EXE 0x0002
  35. #define CTL_HALT_EXE_IDLE 0x0003
  36. #define CTL_HALT_EXE_DONE 0x0004
  37. #define CTL_FLUSH_COMM_CMDS 0x0007
  38. #define CTL_FLUSH_RCV_BUFFER 0x0008
  39. #define CTL_FLUSH_XMT_BUFFER 0x0009
  40. #define CTL_GET_COMM_CMDS 0x000A
  41. /* MODE COMMAND CODES */
  42. #define MOD_PULSE_EN 0x0000
  43. #define MOD_SPEED_CHANGE_EN 0x0001
  44. #define MOD_1WIRE_SPEED 0x0002
  45. #define MOD_STRONG_PU_DURATION 0x0003
  46. #define MOD_PULLDOWN_SLEWRATE 0x0004
  47. #define MOD_PROG_PULSE_DURATION 0x0005
  48. #define MOD_WRITE1_LOWTIME 0x0006
  49. #define MOD_DSOW0_TREC 0x0007
  50. /* COMMUNICATION COMMAND CODES */
  51. #define COMM_ERROR_ESCAPE 0x0601
  52. #define COMM_SET_DURATION 0x0012
  53. #define COMM_BIT_IO 0x0020
  54. #define COMM_PULSE 0x0030
  55. #define COMM_1_WIRE_RESET 0x0042
  56. #define COMM_BYTE_IO 0x0052
  57. #define COMM_MATCH_ACCESS 0x0064
  58. #define COMM_BLOCK_IO 0x0074
  59. #define COMM_READ_STRAIGHT 0x0080
  60. #define COMM_DO_RELEASE 0x6092
  61. #define COMM_SET_PATH 0x00A2
  62. #define COMM_WRITE_SRAM_PAGE 0x00B2
  63. #define COMM_WRITE_EPROM 0x00C4
  64. #define COMM_READ_CRC_PROT_PAGE 0x00D4
  65. #define COMM_READ_REDIRECT_PAGE_CRC 0x21E4
  66. #define COMM_SEARCH_ACCESS 0x00F4
  67. /* Communication command bits */
  68. #define COMM_TYPE 0x0008
  69. #define COMM_SE 0x0008
  70. #define COMM_D 0x0008
  71. #define COMM_Z 0x0008
  72. #define COMM_CH 0x0008
  73. #define COMM_SM 0x0008
  74. #define COMM_R 0x0008
  75. #define COMM_IM 0x0001
  76. #define COMM_PS 0x4000
  77. #define COMM_PST 0x4000
  78. #define COMM_CIB 0x4000
  79. #define COMM_RTS 0x4000
  80. #define COMM_DT 0x2000
  81. #define COMM_SPU 0x1000
  82. #define COMM_F 0x0800
  83. #define COMM_NTP 0x0400
  84. #define COMM_ICP 0x0200
  85. #define COMM_RST 0x0100
  86. #define PULSE_PROG 0x01
  87. #define PULSE_SPUE 0x02
  88. #define BRANCH_MAIN 0xCC
  89. #define BRANCH_AUX 0x33
  90. /* Status flags */
  91. #define ST_SPUA 0x01 /* Strong Pull-up is active */
  92. #define ST_PRGA 0x02 /* 12V programming pulse is being generated */
  93. #define ST_12VP 0x04 /* external 12V programming voltage is present */
  94. #define ST_PMOD 0x08 /* DS2490 powered from USB and external sources */
  95. #define ST_HALT 0x10 /* DS2490 is currently halted */
  96. #define ST_IDLE 0x20 /* DS2490 is currently idle */
  97. #define ST_EPOF 0x80
  98. #define SPEED_NORMAL 0x00
  99. #define SPEED_FLEXIBLE 0x01
  100. #define SPEED_OVERDRIVE 0x02
  101. #define NUM_EP 4
  102. #define EP_CONTROL 0
  103. #define EP_STATUS 1
  104. #define EP_DATA_OUT 2
  105. #define EP_DATA_IN 3
  106. struct ds_device
  107. {
  108. struct list_head ds_entry;
  109. struct usb_device *udev;
  110. struct usb_interface *intf;
  111. int ep[NUM_EP];
  112. /* Strong PullUp
  113. * 0: pullup not active, else duration in milliseconds
  114. */
  115. int spu_sleep;
  116. struct w1_bus_master master;
  117. };
  118. struct ds_status
  119. {
  120. u8 enable;
  121. u8 speed;
  122. u8 pullup_dur;
  123. u8 ppuls_dur;
  124. u8 pulldown_slew;
  125. u8 write1_time;
  126. u8 write0_time;
  127. u8 reserved0;
  128. u8 status;
  129. u8 command0;
  130. u8 command1;
  131. u8 command_buffer_status;
  132. u8 data_out_buffer_status;
  133. u8 data_in_buffer_status;
  134. u8 reserved1;
  135. u8 reserved2;
  136. };
  137. static struct usb_device_id ds_id_table [] = {
  138. { USB_DEVICE(0x04fa, 0x2490) },
  139. { },
  140. };
  141. MODULE_DEVICE_TABLE(usb, ds_id_table);
  142. static int ds_probe(struct usb_interface *, const struct usb_device_id *);
  143. static void ds_disconnect(struct usb_interface *);
  144. static inline void ds_dump_status(unsigned char *, unsigned char *, int);
  145. static int ds_send_control(struct ds_device *, u16, u16);
  146. static int ds_send_control_cmd(struct ds_device *, u16, u16);
  147. static LIST_HEAD(ds_devices);
  148. static DEFINE_MUTEX(ds_mutex);
  149. static struct usb_driver ds_driver = {
  150. .name = "DS9490R",
  151. .probe = ds_probe,
  152. .disconnect = ds_disconnect,
  153. .id_table = ds_id_table,
  154. };
  155. static int ds_send_control_cmd(struct ds_device *dev, u16 value, u16 index)
  156. {
  157. int err;
  158. err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
  159. CONTROL_CMD, 0x40, value, index, NULL, 0, 1000);
  160. if (err < 0) {
  161. printk(KERN_ERR "Failed to send command control message %x.%x: err=%d.\n",
  162. value, index, err);
  163. return err;
  164. }
  165. return err;
  166. }
  167. static int ds_send_control_mode(struct ds_device *dev, u16 value, u16 index)
  168. {
  169. int err;
  170. err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
  171. MODE_CMD, 0x40, value, index, NULL, 0, 1000);
  172. if (err < 0) {
  173. printk(KERN_ERR "Failed to send mode control message %x.%x: err=%d.\n",
  174. value, index, err);
  175. return err;
  176. }
  177. return err;
  178. }
  179. static int ds_send_control(struct ds_device *dev, u16 value, u16 index)
  180. {
  181. int err;
  182. err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
  183. COMM_CMD, 0x40, value, index, NULL, 0, 1000);
  184. if (err < 0) {
  185. printk(KERN_ERR "Failed to send control message %x.%x: err=%d.\n",
  186. value, index, err);
  187. return err;
  188. }
  189. return err;
  190. }
  191. static inline void ds_dump_status(unsigned char *buf, unsigned char *str, int off)
  192. {
  193. printk("%45s: %8x\n", str, buf[off]);
  194. }
  195. static int ds_recv_status_nodump(struct ds_device *dev, struct ds_status *st,
  196. unsigned char *buf, int size)
  197. {
  198. int count, err;
  199. memset(st, 0, sizeof(*st));
  200. count = 0;
  201. err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_STATUS]), buf, size, &count, 100);
  202. if (err < 0) {
  203. printk(KERN_ERR "Failed to read 1-wire data from 0x%x: err=%d.\n", dev->ep[EP_STATUS], err);
  204. return err;
  205. }
  206. if (count >= sizeof(*st))
  207. memcpy(st, buf, sizeof(*st));
  208. return count;
  209. }
  210. static int ds_recv_status(struct ds_device *dev, struct ds_status *st)
  211. {
  212. unsigned char buf[64];
  213. int count, err = 0, i;
  214. memcpy(st, buf, sizeof(*st));
  215. count = ds_recv_status_nodump(dev, st, buf, sizeof(buf));
  216. if (count < 0)
  217. return err;
  218. printk("0x%x: count=%d, status: ", dev->ep[EP_STATUS], count);
  219. for (i=0; i<count; ++i)
  220. printk("%02x ", buf[i]);
  221. printk("\n");
  222. if (count >= 16) {
  223. ds_dump_status(buf, "enable flag", 0);
  224. ds_dump_status(buf, "1-wire speed", 1);
  225. ds_dump_status(buf, "strong pullup duration", 2);
  226. ds_dump_status(buf, "programming pulse duration", 3);
  227. ds_dump_status(buf, "pulldown slew rate control", 4);
  228. ds_dump_status(buf, "write-1 low time", 5);
  229. ds_dump_status(buf, "data sample offset/write-0 recovery time", 6);
  230. ds_dump_status(buf, "reserved (test register)", 7);
  231. ds_dump_status(buf, "device status flags", 8);
  232. ds_dump_status(buf, "communication command byte 1", 9);
  233. ds_dump_status(buf, "communication command byte 2", 10);
  234. ds_dump_status(buf, "communication command buffer status", 11);
  235. ds_dump_status(buf, "1-wire data output buffer status", 12);
  236. ds_dump_status(buf, "1-wire data input buffer status", 13);
  237. ds_dump_status(buf, "reserved", 14);
  238. ds_dump_status(buf, "reserved", 15);
  239. }
  240. memcpy(st, buf, sizeof(*st));
  241. if (st->status & ST_EPOF) {
  242. printk(KERN_INFO "Resetting device after ST_EPOF.\n");
  243. err = ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
  244. if (err)
  245. return err;
  246. count = ds_recv_status_nodump(dev, st, buf, sizeof(buf));
  247. if (count < 0)
  248. return err;
  249. }
  250. return err;
  251. }
  252. static int ds_recv_data(struct ds_device *dev, unsigned char *buf, int size)
  253. {
  254. int count, err;
  255. struct ds_status st;
  256. count = 0;
  257. err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]),
  258. buf, size, &count, 1000);
  259. if (err < 0) {
  260. printk(KERN_INFO "Clearing ep0x%x.\n", dev->ep[EP_DATA_IN]);
  261. usb_clear_halt(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]));
  262. ds_recv_status(dev, &st);
  263. return err;
  264. }
  265. #if 0
  266. {
  267. int i;
  268. printk("%s: count=%d: ", __func__, count);
  269. for (i=0; i<count; ++i)
  270. printk("%02x ", buf[i]);
  271. printk("\n");
  272. }
  273. #endif
  274. return count;
  275. }
  276. static int ds_send_data(struct ds_device *dev, unsigned char *buf, int len)
  277. {
  278. int count, err;
  279. count = 0;
  280. err = usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, dev->ep[EP_DATA_OUT]), buf, len, &count, 1000);
  281. if (err < 0) {
  282. printk(KERN_ERR "Failed to write 1-wire data to ep0x%x: "
  283. "err=%d.\n", dev->ep[EP_DATA_OUT], err);
  284. return err;
  285. }
  286. return err;
  287. }
  288. #if 0
  289. int ds_stop_pulse(struct ds_device *dev, int limit)
  290. {
  291. struct ds_status st;
  292. int count = 0, err = 0;
  293. u8 buf[0x20];
  294. do {
  295. err = ds_send_control(dev, CTL_HALT_EXE_IDLE, 0);
  296. if (err)
  297. break;
  298. err = ds_send_control(dev, CTL_RESUME_EXE, 0);
  299. if (err)
  300. break;
  301. err = ds_recv_status_nodump(dev, &st, buf, sizeof(buf));
  302. if (err)
  303. break;
  304. if ((st.status & ST_SPUA) == 0) {
  305. err = ds_send_control_mode(dev, MOD_PULSE_EN, 0);
  306. if (err)
  307. break;
  308. }
  309. } while(++count < limit);
  310. return err;
  311. }
  312. int ds_detect(struct ds_device *dev, struct ds_status *st)
  313. {
  314. int err;
  315. err = ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
  316. if (err)
  317. return err;
  318. err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, 0);
  319. if (err)
  320. return err;
  321. err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM | COMM_TYPE, 0x40);
  322. if (err)
  323. return err;
  324. err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_PROG);
  325. if (err)
  326. return err;
  327. err = ds_recv_status(dev, st);
  328. return err;
  329. }
  330. #endif /* 0 */
  331. static int ds_wait_status(struct ds_device *dev, struct ds_status *st)
  332. {
  333. u8 buf[0x20];
  334. int err, count = 0;
  335. do {
  336. err = ds_recv_status_nodump(dev, st, buf, sizeof(buf));
  337. #if 0
  338. if (err >= 0) {
  339. int i;
  340. printk("0x%x: count=%d, status: ", dev->ep[EP_STATUS], err);
  341. for (i=0; i<err; ++i)
  342. printk("%02x ", buf[i]);
  343. printk("\n");
  344. }
  345. #endif
  346. } while(!(buf[0x08] & 0x20) && !(err < 0) && ++count < 100);
  347. if (((err > 16) && (buf[0x10] & 0x01)) || count >= 100 || err < 0) {
  348. ds_recv_status(dev, st);
  349. return -1;
  350. } else
  351. return 0;
  352. }
  353. static int ds_reset(struct ds_device *dev, struct ds_status *st)
  354. {
  355. int err;
  356. //err = ds_send_control(dev, COMM_1_WIRE_RESET | COMM_F | COMM_IM | COMM_SE, SPEED_FLEXIBLE);
  357. err = ds_send_control(dev, 0x43, SPEED_NORMAL);
  358. if (err)
  359. return err;
  360. ds_wait_status(dev, st);
  361. #if 0
  362. if (st->command_buffer_status) {
  363. printk(KERN_INFO "Short circuit.\n");
  364. return -EIO;
  365. }
  366. #endif
  367. return 0;
  368. }
  369. #if 0
  370. static int ds_set_speed(struct ds_device *dev, int speed)
  371. {
  372. int err;
  373. if (speed != SPEED_NORMAL && speed != SPEED_FLEXIBLE && speed != SPEED_OVERDRIVE)
  374. return -EINVAL;
  375. if (speed != SPEED_OVERDRIVE)
  376. speed = SPEED_FLEXIBLE;
  377. speed &= 0xff;
  378. err = ds_send_control_mode(dev, MOD_1WIRE_SPEED, speed);
  379. if (err)
  380. return err;
  381. return err;
  382. }
  383. #endif /* 0 */
  384. static int ds_set_pullup(struct ds_device *dev, int delay)
  385. {
  386. int err;
  387. u8 del = 1 + (u8)(delay >> 4);
  388. dev->spu_sleep = 0;
  389. err = ds_send_control_mode(dev, MOD_PULSE_EN, delay ? PULSE_SPUE : 0);
  390. if (err)
  391. return err;
  392. if (delay) {
  393. err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del);
  394. if (err)
  395. return err;
  396. /* Just storing delay would not get the trunication and
  397. * roundup.
  398. */
  399. dev->spu_sleep = del<<4;
  400. }
  401. return err;
  402. }
  403. static int ds_touch_bit(struct ds_device *dev, u8 bit, u8 *tbit)
  404. {
  405. int err, count;
  406. struct ds_status st;
  407. u16 value = (COMM_BIT_IO | COMM_IM) | ((bit) ? COMM_D : 0);
  408. u16 cmd;
  409. err = ds_send_control(dev, value, 0);
  410. if (err)
  411. return err;
  412. count = 0;
  413. do {
  414. err = ds_wait_status(dev, &st);
  415. if (err)
  416. return err;
  417. cmd = st.command0 | (st.command1 << 8);
  418. } while (cmd != value && ++count < 10);
  419. if (err < 0 || count >= 10) {
  420. printk(KERN_ERR "Failed to obtain status.\n");
  421. return -EINVAL;
  422. }
  423. err = ds_recv_data(dev, tbit, sizeof(*tbit));
  424. if (err < 0)
  425. return err;
  426. return 0;
  427. }
  428. static int ds_write_bit(struct ds_device *dev, u8 bit)
  429. {
  430. int err;
  431. struct ds_status st;
  432. /* Set COMM_ICP to write without a readback. Note, this will
  433. * produce one time slot, a down followed by an up with COMM_D
  434. * only determing the timing.
  435. */
  436. err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | COMM_ICP |
  437. (bit ? COMM_D : 0), 0);
  438. if (err)
  439. return err;
  440. ds_wait_status(dev, &st);
  441. return 0;
  442. }
  443. static int ds_write_byte(struct ds_device *dev, u8 byte)
  444. {
  445. int err;
  446. struct ds_status st;
  447. u8 rbyte;
  448. err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM | COMM_SPU, byte);
  449. if (err)
  450. return err;
  451. if (dev->spu_sleep)
  452. msleep(dev->spu_sleep);
  453. err = ds_wait_status(dev, &st);
  454. if (err)
  455. return err;
  456. err = ds_recv_data(dev, &rbyte, sizeof(rbyte));
  457. if (err < 0)
  458. return err;
  459. return !(byte == rbyte);
  460. }
  461. static int ds_read_byte(struct ds_device *dev, u8 *byte)
  462. {
  463. int err;
  464. struct ds_status st;
  465. err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM , 0xff);
  466. if (err)
  467. return err;
  468. ds_wait_status(dev, &st);
  469. err = ds_recv_data(dev, byte, sizeof(*byte));
  470. if (err < 0)
  471. return err;
  472. return 0;
  473. }
  474. static int ds_read_block(struct ds_device *dev, u8 *buf, int len)
  475. {
  476. struct ds_status st;
  477. int err;
  478. if (len > 64*1024)
  479. return -E2BIG;
  480. memset(buf, 0xFF, len);
  481. err = ds_send_data(dev, buf, len);
  482. if (err < 0)
  483. return err;
  484. err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM, len);
  485. if (err)
  486. return err;
  487. ds_wait_status(dev, &st);
  488. memset(buf, 0x00, len);
  489. err = ds_recv_data(dev, buf, len);
  490. return err;
  491. }
  492. static int ds_write_block(struct ds_device *dev, u8 *buf, int len)
  493. {
  494. int err;
  495. struct ds_status st;
  496. err = ds_send_data(dev, buf, len);
  497. if (err < 0)
  498. return err;
  499. ds_wait_status(dev, &st);
  500. err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM | COMM_SPU, len);
  501. if (err)
  502. return err;
  503. if (dev->spu_sleep)
  504. msleep(dev->spu_sleep);
  505. ds_wait_status(dev, &st);
  506. err = ds_recv_data(dev, buf, len);
  507. if (err < 0)
  508. return err;
  509. return !(err == len);
  510. }
  511. #if 0
  512. static int ds_search(struct ds_device *dev, u64 init, u64 *buf, u8 id_number, int conditional_search)
  513. {
  514. int err;
  515. u16 value, index;
  516. struct ds_status st;
  517. memset(buf, 0, sizeof(buf));
  518. err = ds_send_data(ds_dev, (unsigned char *)&init, 8);
  519. if (err)
  520. return err;
  521. ds_wait_status(ds_dev, &st);
  522. value = COMM_SEARCH_ACCESS | COMM_IM | COMM_SM | COMM_F | COMM_RTS;
  523. index = (conditional_search ? 0xEC : 0xF0) | (id_number << 8);
  524. err = ds_send_control(ds_dev, value, index);
  525. if (err)
  526. return err;
  527. ds_wait_status(ds_dev, &st);
  528. err = ds_recv_data(ds_dev, (unsigned char *)buf, 8*id_number);
  529. if (err < 0)
  530. return err;
  531. return err/8;
  532. }
  533. static int ds_match_access(struct ds_device *dev, u64 init)
  534. {
  535. int err;
  536. struct ds_status st;
  537. err = ds_send_data(dev, (unsigned char *)&init, sizeof(init));
  538. if (err)
  539. return err;
  540. ds_wait_status(dev, &st);
  541. err = ds_send_control(dev, COMM_MATCH_ACCESS | COMM_IM | COMM_RST, 0x0055);
  542. if (err)
  543. return err;
  544. ds_wait_status(dev, &st);
  545. return 0;
  546. }
  547. static int ds_set_path(struct ds_device *dev, u64 init)
  548. {
  549. int err;
  550. struct ds_status st;
  551. u8 buf[9];
  552. memcpy(buf, &init, 8);
  553. buf[8] = BRANCH_MAIN;
  554. err = ds_send_data(dev, buf, sizeof(buf));
  555. if (err)
  556. return err;
  557. ds_wait_status(dev, &st);
  558. err = ds_send_control(dev, COMM_SET_PATH | COMM_IM | COMM_RST, 0);
  559. if (err)
  560. return err;
  561. ds_wait_status(dev, &st);
  562. return 0;
  563. }
  564. #endif /* 0 */
  565. static u8 ds9490r_touch_bit(void *data, u8 bit)
  566. {
  567. u8 ret;
  568. struct ds_device *dev = data;
  569. if (ds_touch_bit(dev, bit, &ret))
  570. return 0;
  571. return ret;
  572. }
  573. static void ds9490r_write_bit(void *data, u8 bit)
  574. {
  575. struct ds_device *dev = data;
  576. ds_write_bit(dev, bit);
  577. }
  578. static void ds9490r_write_byte(void *data, u8 byte)
  579. {
  580. struct ds_device *dev = data;
  581. ds_write_byte(dev, byte);
  582. }
  583. static u8 ds9490r_read_bit(void *data)
  584. {
  585. struct ds_device *dev = data;
  586. int err;
  587. u8 bit = 0;
  588. err = ds_touch_bit(dev, 1, &bit);
  589. if (err)
  590. return 0;
  591. return bit & 1;
  592. }
  593. static u8 ds9490r_read_byte(void *data)
  594. {
  595. struct ds_device *dev = data;
  596. int err;
  597. u8 byte = 0;
  598. err = ds_read_byte(dev, &byte);
  599. if (err)
  600. return 0;
  601. return byte;
  602. }
  603. static void ds9490r_write_block(void *data, const u8 *buf, int len)
  604. {
  605. struct ds_device *dev = data;
  606. ds_write_block(dev, (u8 *)buf, len);
  607. }
  608. static u8 ds9490r_read_block(void *data, u8 *buf, int len)
  609. {
  610. struct ds_device *dev = data;
  611. int err;
  612. err = ds_read_block(dev, buf, len);
  613. if (err < 0)
  614. return 0;
  615. return len;
  616. }
  617. static u8 ds9490r_reset(void *data)
  618. {
  619. struct ds_device *dev = data;
  620. struct ds_status st;
  621. int err;
  622. memset(&st, 0, sizeof(st));
  623. err = ds_reset(dev, &st);
  624. if (err)
  625. return 1;
  626. return 0;
  627. }
  628. static u8 ds9490r_set_pullup(void *data, int delay)
  629. {
  630. struct ds_device *dev = data;
  631. if (ds_set_pullup(dev, delay))
  632. return 1;
  633. return 0;
  634. }
  635. static int ds_w1_init(struct ds_device *dev)
  636. {
  637. memset(&dev->master, 0, sizeof(struct w1_bus_master));
  638. dev->master.data = dev;
  639. dev->master.touch_bit = &ds9490r_touch_bit;
  640. dev->master.read_bit = &ds9490r_read_bit;
  641. dev->master.write_bit = &ds9490r_write_bit;
  642. dev->master.read_byte = &ds9490r_read_byte;
  643. dev->master.write_byte = &ds9490r_write_byte;
  644. dev->master.read_block = &ds9490r_read_block;
  645. dev->master.write_block = &ds9490r_write_block;
  646. dev->master.reset_bus = &ds9490r_reset;
  647. dev->master.set_pullup = &ds9490r_set_pullup;
  648. return w1_add_master_device(&dev->master);
  649. }
  650. static void ds_w1_fini(struct ds_device *dev)
  651. {
  652. w1_remove_master_device(&dev->master);
  653. }
  654. static int ds_probe(struct usb_interface *intf,
  655. const struct usb_device_id *udev_id)
  656. {
  657. struct usb_device *udev = interface_to_usbdev(intf);
  658. struct usb_endpoint_descriptor *endpoint;
  659. struct usb_host_interface *iface_desc;
  660. struct ds_device *dev;
  661. int i, err;
  662. dev = kmalloc(sizeof(struct ds_device), GFP_KERNEL);
  663. if (!dev) {
  664. printk(KERN_INFO "Failed to allocate new DS9490R structure.\n");
  665. return -ENOMEM;
  666. }
  667. dev->spu_sleep = 0;
  668. dev->udev = usb_get_dev(udev);
  669. if (!dev->udev) {
  670. err = -ENOMEM;
  671. goto err_out_free;
  672. }
  673. memset(dev->ep, 0, sizeof(dev->ep));
  674. usb_set_intfdata(intf, dev);
  675. err = usb_set_interface(dev->udev, intf->altsetting[0].desc.bInterfaceNumber, 3);
  676. if (err) {
  677. printk(KERN_ERR "Failed to set alternative setting 3 for %d interface: err=%d.\n",
  678. intf->altsetting[0].desc.bInterfaceNumber, err);
  679. goto err_out_clear;
  680. }
  681. err = usb_reset_configuration(dev->udev);
  682. if (err) {
  683. printk(KERN_ERR "Failed to reset configuration: err=%d.\n", err);
  684. goto err_out_clear;
  685. }
  686. iface_desc = &intf->altsetting[0];
  687. if (iface_desc->desc.bNumEndpoints != NUM_EP-1) {
  688. printk(KERN_INFO "Num endpoints=%d. It is not DS9490R.\n", iface_desc->desc.bNumEndpoints);
  689. err = -EINVAL;
  690. goto err_out_clear;
  691. }
  692. /*
  693. * This loop doesn'd show control 0 endpoint,
  694. * so we will fill only 1-3 endpoints entry.
  695. */
  696. for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
  697. endpoint = &iface_desc->endpoint[i].desc;
  698. dev->ep[i+1] = endpoint->bEndpointAddress;
  699. #if 0
  700. printk("%d: addr=%x, size=%d, dir=%s, type=%x\n",
  701. i, endpoint->bEndpointAddress, le16_to_cpu(endpoint->wMaxPacketSize),
  702. (endpoint->bEndpointAddress & USB_DIR_IN)?"IN":"OUT",
  703. endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK);
  704. #endif
  705. }
  706. err = ds_w1_init(dev);
  707. if (err)
  708. goto err_out_clear;
  709. mutex_lock(&ds_mutex);
  710. list_add_tail(&dev->ds_entry, &ds_devices);
  711. mutex_unlock(&ds_mutex);
  712. return 0;
  713. err_out_clear:
  714. usb_set_intfdata(intf, NULL);
  715. usb_put_dev(dev->udev);
  716. err_out_free:
  717. kfree(dev);
  718. return err;
  719. }
  720. static void ds_disconnect(struct usb_interface *intf)
  721. {
  722. struct ds_device *dev;
  723. dev = usb_get_intfdata(intf);
  724. if (!dev)
  725. return;
  726. mutex_lock(&ds_mutex);
  727. list_del(&dev->ds_entry);
  728. mutex_unlock(&ds_mutex);
  729. ds_w1_fini(dev);
  730. usb_set_intfdata(intf, NULL);
  731. usb_put_dev(dev->udev);
  732. kfree(dev);
  733. }
  734. static int ds_init(void)
  735. {
  736. int err;
  737. err = usb_register(&ds_driver);
  738. if (err) {
  739. printk(KERN_INFO "Failed to register DS9490R USB device: err=%d.\n", err);
  740. return err;
  741. }
  742. return 0;
  743. }
  744. static void ds_fini(void)
  745. {
  746. usb_deregister(&ds_driver);
  747. }
  748. module_init(ds_init);
  749. module_exit(ds_fini);
  750. MODULE_LICENSE("GPL");
  751. MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
  752. MODULE_DESCRIPTION("DS2490 USB <-> W1 bus master driver (DS9490*)");