aio.c 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518
  1. /*
  2. * An async IO implementation for Linux
  3. * Written by Benjamin LaHaise <bcrl@kvack.org>
  4. *
  5. * Implements an efficient asynchronous io interface.
  6. *
  7. * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
  8. *
  9. * See ../COPYING for licensing terms.
  10. */
  11. #define pr_fmt(fmt) "%s: " fmt, __func__
  12. #include <linux/kernel.h>
  13. #include <linux/init.h>
  14. #include <linux/errno.h>
  15. #include <linux/time.h>
  16. #include <linux/aio_abi.h>
  17. #include <linux/export.h>
  18. #include <linux/syscalls.h>
  19. #include <linux/backing-dev.h>
  20. #include <linux/uio.h>
  21. #include <linux/sched.h>
  22. #include <linux/fs.h>
  23. #include <linux/file.h>
  24. #include <linux/mm.h>
  25. #include <linux/mman.h>
  26. #include <linux/mmu_context.h>
  27. #include <linux/percpu.h>
  28. #include <linux/slab.h>
  29. #include <linux/timer.h>
  30. #include <linux/aio.h>
  31. #include <linux/highmem.h>
  32. #include <linux/workqueue.h>
  33. #include <linux/security.h>
  34. #include <linux/eventfd.h>
  35. #include <linux/blkdev.h>
  36. #include <linux/compat.h>
  37. #include <linux/anon_inodes.h>
  38. #include <linux/migrate.h>
  39. #include <linux/ramfs.h>
  40. #include <asm/kmap_types.h>
  41. #include <asm/uaccess.h>
  42. #include "internal.h"
  43. #define AIO_RING_MAGIC 0xa10a10a1
  44. #define AIO_RING_COMPAT_FEATURES 1
  45. #define AIO_RING_INCOMPAT_FEATURES 0
  46. struct aio_ring {
  47. unsigned id; /* kernel internal index number */
  48. unsigned nr; /* number of io_events */
  49. unsigned head;
  50. unsigned tail;
  51. unsigned magic;
  52. unsigned compat_features;
  53. unsigned incompat_features;
  54. unsigned header_length; /* size of aio_ring */
  55. struct io_event io_events[0];
  56. }; /* 128 bytes + ring size */
  57. #define AIO_RING_PAGES 8
  58. struct kioctx_cpu {
  59. unsigned reqs_available;
  60. };
  61. struct kioctx {
  62. atomic_t users;
  63. atomic_t dead;
  64. /* This needs improving */
  65. unsigned long user_id;
  66. struct hlist_node list;
  67. struct __percpu kioctx_cpu *cpu;
  68. /*
  69. * For percpu reqs_available, number of slots we move to/from global
  70. * counter at a time:
  71. */
  72. unsigned req_batch;
  73. /*
  74. * This is what userspace passed to io_setup(), it's not used for
  75. * anything but counting against the global max_reqs quota.
  76. *
  77. * The real limit is nr_events - 1, which will be larger (see
  78. * aio_setup_ring())
  79. */
  80. unsigned max_reqs;
  81. /* Size of ringbuffer, in units of struct io_event */
  82. unsigned nr_events;
  83. unsigned long mmap_base;
  84. unsigned long mmap_size;
  85. struct page **ring_pages;
  86. long nr_pages;
  87. struct rcu_head rcu_head;
  88. struct work_struct rcu_work;
  89. struct {
  90. /*
  91. * This counts the number of available slots in the ringbuffer,
  92. * so we avoid overflowing it: it's decremented (if positive)
  93. * when allocating a kiocb and incremented when the resulting
  94. * io_event is pulled off the ringbuffer.
  95. *
  96. * We batch accesses to it with a percpu version.
  97. */
  98. atomic_t reqs_available;
  99. } ____cacheline_aligned_in_smp;
  100. struct {
  101. spinlock_t ctx_lock;
  102. struct list_head active_reqs; /* used for cancellation */
  103. } ____cacheline_aligned_in_smp;
  104. struct {
  105. struct mutex ring_lock;
  106. wait_queue_head_t wait;
  107. } ____cacheline_aligned_in_smp;
  108. struct {
  109. unsigned tail;
  110. spinlock_t completion_lock;
  111. } ____cacheline_aligned_in_smp;
  112. struct page *internal_pages[AIO_RING_PAGES];
  113. struct file *aio_ring_file;
  114. };
  115. /*------ sysctl variables----*/
  116. static DEFINE_SPINLOCK(aio_nr_lock);
  117. unsigned long aio_nr; /* current system wide number of aio requests */
  118. unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
  119. /*----end sysctl variables---*/
  120. static struct kmem_cache *kiocb_cachep;
  121. static struct kmem_cache *kioctx_cachep;
  122. /* aio_setup
  123. * Creates the slab caches used by the aio routines, panic on
  124. * failure as this is done early during the boot sequence.
  125. */
  126. static int __init aio_setup(void)
  127. {
  128. kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
  129. kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
  130. pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
  131. return 0;
  132. }
  133. __initcall(aio_setup);
  134. static void aio_free_ring(struct kioctx *ctx)
  135. {
  136. int i;
  137. struct file *aio_ring_file = ctx->aio_ring_file;
  138. for (i = 0; i < ctx->nr_pages; i++) {
  139. pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
  140. page_count(ctx->ring_pages[i]));
  141. put_page(ctx->ring_pages[i]);
  142. }
  143. if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages)
  144. kfree(ctx->ring_pages);
  145. if (aio_ring_file) {
  146. truncate_setsize(aio_ring_file->f_inode, 0);
  147. pr_debug("pid(%d) i_nlink=%u d_count=%d d_unhashed=%d i_count=%d\n",
  148. current->pid, aio_ring_file->f_inode->i_nlink,
  149. aio_ring_file->f_path.dentry->d_count,
  150. d_unhashed(aio_ring_file->f_path.dentry),
  151. atomic_read(&aio_ring_file->f_inode->i_count));
  152. fput(aio_ring_file);
  153. ctx->aio_ring_file = NULL;
  154. }
  155. }
  156. static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
  157. {
  158. vma->vm_ops = &generic_file_vm_ops;
  159. return 0;
  160. }
  161. static const struct file_operations aio_ring_fops = {
  162. .mmap = aio_ring_mmap,
  163. };
  164. static int aio_set_page_dirty(struct page *page)
  165. {
  166. return 0;
  167. }
  168. #if IS_ENABLED(CONFIG_MIGRATION)
  169. static int aio_migratepage(struct address_space *mapping, struct page *new,
  170. struct page *old, enum migrate_mode mode)
  171. {
  172. struct kioctx *ctx = mapping->private_data;
  173. unsigned long flags;
  174. unsigned idx = old->index;
  175. int rc;
  176. /* Writeback must be complete */
  177. BUG_ON(PageWriteback(old));
  178. put_page(old);
  179. rc = migrate_page_move_mapping(mapping, new, old, NULL, mode);
  180. if (rc != MIGRATEPAGE_SUCCESS) {
  181. get_page(old);
  182. return rc;
  183. }
  184. get_page(new);
  185. spin_lock_irqsave(&ctx->completion_lock, flags);
  186. migrate_page_copy(new, old);
  187. ctx->ring_pages[idx] = new;
  188. spin_unlock_irqrestore(&ctx->completion_lock, flags);
  189. return rc;
  190. }
  191. #endif
  192. static const struct address_space_operations aio_ctx_aops = {
  193. .set_page_dirty = aio_set_page_dirty,
  194. #if IS_ENABLED(CONFIG_MIGRATION)
  195. .migratepage = aio_migratepage,
  196. #endif
  197. };
  198. static int aio_setup_ring(struct kioctx *ctx)
  199. {
  200. struct aio_ring *ring;
  201. unsigned nr_events = ctx->max_reqs;
  202. struct mm_struct *mm = current->mm;
  203. unsigned long size, populate;
  204. int nr_pages;
  205. int i;
  206. struct file *file;
  207. /* Compensate for the ring buffer's head/tail overlap entry */
  208. nr_events += 2; /* 1 is required, 2 for good luck */
  209. size = sizeof(struct aio_ring);
  210. size += sizeof(struct io_event) * nr_events;
  211. nr_pages = PFN_UP(size);
  212. if (nr_pages < 0)
  213. return -EINVAL;
  214. file = anon_inode_getfile_private("[aio]", &aio_ring_fops, ctx, O_RDWR);
  215. if (IS_ERR(file)) {
  216. ctx->aio_ring_file = NULL;
  217. return -EAGAIN;
  218. }
  219. file->f_inode->i_mapping->a_ops = &aio_ctx_aops;
  220. file->f_inode->i_mapping->private_data = ctx;
  221. file->f_inode->i_size = PAGE_SIZE * (loff_t)nr_pages;
  222. for (i = 0; i < nr_pages; i++) {
  223. struct page *page;
  224. page = find_or_create_page(file->f_inode->i_mapping,
  225. i, GFP_HIGHUSER | __GFP_ZERO);
  226. if (!page)
  227. break;
  228. pr_debug("pid(%d) page[%d]->count=%d\n",
  229. current->pid, i, page_count(page));
  230. SetPageUptodate(page);
  231. SetPageDirty(page);
  232. unlock_page(page);
  233. }
  234. ctx->aio_ring_file = file;
  235. nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
  236. / sizeof(struct io_event);
  237. ctx->ring_pages = ctx->internal_pages;
  238. if (nr_pages > AIO_RING_PAGES) {
  239. ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
  240. GFP_KERNEL);
  241. if (!ctx->ring_pages)
  242. return -ENOMEM;
  243. }
  244. ctx->mmap_size = nr_pages * PAGE_SIZE;
  245. pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
  246. down_write(&mm->mmap_sem);
  247. ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
  248. PROT_READ | PROT_WRITE,
  249. MAP_SHARED | MAP_POPULATE, 0, &populate);
  250. if (IS_ERR((void *)ctx->mmap_base)) {
  251. up_write(&mm->mmap_sem);
  252. ctx->mmap_size = 0;
  253. aio_free_ring(ctx);
  254. return -EAGAIN;
  255. }
  256. up_write(&mm->mmap_sem);
  257. mm_populate(ctx->mmap_base, populate);
  258. pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
  259. ctx->nr_pages = get_user_pages(current, mm, ctx->mmap_base, nr_pages,
  260. 1, 0, ctx->ring_pages, NULL);
  261. for (i = 0; i < ctx->nr_pages; i++)
  262. put_page(ctx->ring_pages[i]);
  263. if (unlikely(ctx->nr_pages != nr_pages)) {
  264. aio_free_ring(ctx);
  265. return -EAGAIN;
  266. }
  267. ctx->user_id = ctx->mmap_base;
  268. ctx->nr_events = nr_events; /* trusted copy */
  269. ring = kmap_atomic(ctx->ring_pages[0]);
  270. ring->nr = nr_events; /* user copy */
  271. ring->id = ctx->user_id;
  272. ring->head = ring->tail = 0;
  273. ring->magic = AIO_RING_MAGIC;
  274. ring->compat_features = AIO_RING_COMPAT_FEATURES;
  275. ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
  276. ring->header_length = sizeof(struct aio_ring);
  277. kunmap_atomic(ring);
  278. flush_dcache_page(ctx->ring_pages[0]);
  279. return 0;
  280. }
  281. #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
  282. #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
  283. #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
  284. void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel)
  285. {
  286. struct kioctx *ctx = req->ki_ctx;
  287. unsigned long flags;
  288. spin_lock_irqsave(&ctx->ctx_lock, flags);
  289. if (!req->ki_list.next)
  290. list_add(&req->ki_list, &ctx->active_reqs);
  291. req->ki_cancel = cancel;
  292. spin_unlock_irqrestore(&ctx->ctx_lock, flags);
  293. }
  294. EXPORT_SYMBOL(kiocb_set_cancel_fn);
  295. static int kiocb_cancel(struct kioctx *ctx, struct kiocb *kiocb,
  296. struct io_event *res)
  297. {
  298. kiocb_cancel_fn *old, *cancel;
  299. int ret = -EINVAL;
  300. /*
  301. * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
  302. * actually has a cancel function, hence the cmpxchg()
  303. */
  304. cancel = ACCESS_ONCE(kiocb->ki_cancel);
  305. do {
  306. if (!cancel || cancel == KIOCB_CANCELLED)
  307. return ret;
  308. old = cancel;
  309. cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
  310. } while (cancel != old);
  311. atomic_inc(&kiocb->ki_users);
  312. spin_unlock_irq(&ctx->ctx_lock);
  313. memset(res, 0, sizeof(*res));
  314. res->obj = (u64)(unsigned long)kiocb->ki_obj.user;
  315. res->data = kiocb->ki_user_data;
  316. ret = cancel(kiocb, res);
  317. spin_lock_irq(&ctx->ctx_lock);
  318. return ret;
  319. }
  320. static void free_ioctx_rcu(struct rcu_head *head)
  321. {
  322. struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
  323. free_percpu(ctx->cpu);
  324. kmem_cache_free(kioctx_cachep, ctx);
  325. }
  326. /*
  327. * When this function runs, the kioctx has been removed from the "hash table"
  328. * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
  329. * now it's safe to cancel any that need to be.
  330. */
  331. static void free_ioctx(struct kioctx *ctx)
  332. {
  333. struct aio_ring *ring;
  334. struct io_event res;
  335. struct kiocb *req;
  336. unsigned cpu, head, avail;
  337. spin_lock_irq(&ctx->ctx_lock);
  338. while (!list_empty(&ctx->active_reqs)) {
  339. req = list_first_entry(&ctx->active_reqs,
  340. struct kiocb, ki_list);
  341. list_del_init(&req->ki_list);
  342. kiocb_cancel(ctx, req, &res);
  343. }
  344. spin_unlock_irq(&ctx->ctx_lock);
  345. for_each_possible_cpu(cpu) {
  346. struct kioctx_cpu *kcpu = per_cpu_ptr(ctx->cpu, cpu);
  347. atomic_add(kcpu->reqs_available, &ctx->reqs_available);
  348. kcpu->reqs_available = 0;
  349. }
  350. ring = kmap_atomic(ctx->ring_pages[0]);
  351. head = ring->head;
  352. kunmap_atomic(ring);
  353. while (atomic_read(&ctx->reqs_available) < ctx->nr_events - 1) {
  354. wait_event(ctx->wait,
  355. (head != ctx->tail) ||
  356. (atomic_read(&ctx->reqs_available) >=
  357. ctx->nr_events - 1));
  358. avail = (head <= ctx->tail ? ctx->tail : ctx->nr_events) - head;
  359. atomic_add(avail, &ctx->reqs_available);
  360. head += avail;
  361. head %= ctx->nr_events;
  362. }
  363. WARN_ON(atomic_read(&ctx->reqs_available) > ctx->nr_events - 1);
  364. aio_free_ring(ctx);
  365. pr_debug("freeing %p\n", ctx);
  366. /*
  367. * Here the call_rcu() is between the wait_event() for reqs_active to
  368. * hit 0, and freeing the ioctx.
  369. *
  370. * aio_complete() decrements reqs_active, but it has to touch the ioctx
  371. * after to issue a wakeup so we use rcu.
  372. */
  373. call_rcu(&ctx->rcu_head, free_ioctx_rcu);
  374. }
  375. static void put_ioctx(struct kioctx *ctx)
  376. {
  377. if (unlikely(atomic_dec_and_test(&ctx->users)))
  378. free_ioctx(ctx);
  379. }
  380. /* ioctx_alloc
  381. * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
  382. */
  383. static struct kioctx *ioctx_alloc(unsigned nr_events)
  384. {
  385. struct mm_struct *mm = current->mm;
  386. struct kioctx *ctx;
  387. int err = -ENOMEM;
  388. /*
  389. * We keep track of the number of available ringbuffer slots, to prevent
  390. * overflow (reqs_available), and we also use percpu counters for this.
  391. *
  392. * So since up to half the slots might be on other cpu's percpu counters
  393. * and unavailable, double nr_events so userspace sees what they
  394. * expected: additionally, we move req_batch slots to/from percpu
  395. * counters at a time, so make sure that isn't 0:
  396. */
  397. nr_events = max(nr_events, num_possible_cpus() * 4);
  398. nr_events *= 2;
  399. /* Prevent overflows */
  400. if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
  401. (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
  402. pr_debug("ENOMEM: nr_events too high\n");
  403. return ERR_PTR(-EINVAL);
  404. }
  405. if (!nr_events || (unsigned long)nr_events > aio_max_nr)
  406. return ERR_PTR(-EAGAIN);
  407. ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
  408. if (!ctx)
  409. return ERR_PTR(-ENOMEM);
  410. ctx->max_reqs = nr_events;
  411. atomic_set(&ctx->users, 2);
  412. atomic_set(&ctx->dead, 0);
  413. spin_lock_init(&ctx->ctx_lock);
  414. spin_lock_init(&ctx->completion_lock);
  415. mutex_init(&ctx->ring_lock);
  416. init_waitqueue_head(&ctx->wait);
  417. INIT_LIST_HEAD(&ctx->active_reqs);
  418. ctx->cpu = alloc_percpu(struct kioctx_cpu);
  419. if (!ctx->cpu)
  420. goto out_freectx;
  421. if (aio_setup_ring(ctx) < 0)
  422. goto out_freepcpu;
  423. atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
  424. ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
  425. BUG_ON(!ctx->req_batch);
  426. /* limit the number of system wide aios */
  427. spin_lock(&aio_nr_lock);
  428. if (aio_nr + nr_events > aio_max_nr ||
  429. aio_nr + nr_events < aio_nr) {
  430. spin_unlock(&aio_nr_lock);
  431. goto out_cleanup;
  432. }
  433. aio_nr += ctx->max_reqs;
  434. spin_unlock(&aio_nr_lock);
  435. /* now link into global list. */
  436. spin_lock(&mm->ioctx_lock);
  437. hlist_add_head_rcu(&ctx->list, &mm->ioctx_list);
  438. spin_unlock(&mm->ioctx_lock);
  439. pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
  440. ctx, ctx->user_id, mm, ctx->nr_events);
  441. return ctx;
  442. out_cleanup:
  443. err = -EAGAIN;
  444. aio_free_ring(ctx);
  445. out_freepcpu:
  446. free_percpu(ctx->cpu);
  447. out_freectx:
  448. if (ctx->aio_ring_file)
  449. fput(ctx->aio_ring_file);
  450. kmem_cache_free(kioctx_cachep, ctx);
  451. pr_debug("error allocating ioctx %d\n", err);
  452. return ERR_PTR(err);
  453. }
  454. static void kill_ioctx_work(struct work_struct *work)
  455. {
  456. struct kioctx *ctx = container_of(work, struct kioctx, rcu_work);
  457. wake_up_all(&ctx->wait);
  458. put_ioctx(ctx);
  459. }
  460. static void kill_ioctx_rcu(struct rcu_head *head)
  461. {
  462. struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
  463. INIT_WORK(&ctx->rcu_work, kill_ioctx_work);
  464. schedule_work(&ctx->rcu_work);
  465. }
  466. /* kill_ioctx
  467. * Cancels all outstanding aio requests on an aio context. Used
  468. * when the processes owning a context have all exited to encourage
  469. * the rapid destruction of the kioctx.
  470. */
  471. static void kill_ioctx(struct kioctx *ctx)
  472. {
  473. if (!atomic_xchg(&ctx->dead, 1)) {
  474. hlist_del_rcu(&ctx->list);
  475. /*
  476. * It'd be more correct to do this in free_ioctx(), after all
  477. * the outstanding kiocbs have finished - but by then io_destroy
  478. * has already returned, so io_setup() could potentially return
  479. * -EAGAIN with no ioctxs actually in use (as far as userspace
  480. * could tell).
  481. */
  482. spin_lock(&aio_nr_lock);
  483. BUG_ON(aio_nr - ctx->max_reqs > aio_nr);
  484. aio_nr -= ctx->max_reqs;
  485. spin_unlock(&aio_nr_lock);
  486. if (ctx->mmap_size)
  487. vm_munmap(ctx->mmap_base, ctx->mmap_size);
  488. /* Between hlist_del_rcu() and dropping the initial ref */
  489. call_rcu(&ctx->rcu_head, kill_ioctx_rcu);
  490. }
  491. }
  492. /* wait_on_sync_kiocb:
  493. * Waits on the given sync kiocb to complete.
  494. */
  495. ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
  496. {
  497. while (atomic_read(&iocb->ki_users)) {
  498. set_current_state(TASK_UNINTERRUPTIBLE);
  499. if (!atomic_read(&iocb->ki_users))
  500. break;
  501. io_schedule();
  502. }
  503. __set_current_state(TASK_RUNNING);
  504. return iocb->ki_user_data;
  505. }
  506. EXPORT_SYMBOL(wait_on_sync_kiocb);
  507. /*
  508. * exit_aio: called when the last user of mm goes away. At this point, there is
  509. * no way for any new requests to be submited or any of the io_* syscalls to be
  510. * called on the context.
  511. *
  512. * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
  513. * them.
  514. */
  515. void exit_aio(struct mm_struct *mm)
  516. {
  517. struct kioctx *ctx;
  518. struct hlist_node *n;
  519. hlist_for_each_entry_safe(ctx, n, &mm->ioctx_list, list) {
  520. if (1 != atomic_read(&ctx->users))
  521. printk(KERN_DEBUG
  522. "exit_aio:ioctx still alive: %d %d %d\n",
  523. atomic_read(&ctx->users),
  524. atomic_read(&ctx->dead),
  525. atomic_read(&ctx->reqs_available));
  526. /*
  527. * We don't need to bother with munmap() here -
  528. * exit_mmap(mm) is coming and it'll unmap everything.
  529. * Since aio_free_ring() uses non-zero ->mmap_size
  530. * as indicator that it needs to unmap the area,
  531. * just set it to 0; aio_free_ring() is the only
  532. * place that uses ->mmap_size, so it's safe.
  533. */
  534. ctx->mmap_size = 0;
  535. kill_ioctx(ctx);
  536. }
  537. }
  538. static void put_reqs_available(struct kioctx *ctx, unsigned nr)
  539. {
  540. struct kioctx_cpu *kcpu;
  541. preempt_disable();
  542. kcpu = this_cpu_ptr(ctx->cpu);
  543. kcpu->reqs_available += nr;
  544. while (kcpu->reqs_available >= ctx->req_batch * 2) {
  545. kcpu->reqs_available -= ctx->req_batch;
  546. atomic_add(ctx->req_batch, &ctx->reqs_available);
  547. }
  548. preempt_enable();
  549. }
  550. static bool get_reqs_available(struct kioctx *ctx)
  551. {
  552. struct kioctx_cpu *kcpu;
  553. bool ret = false;
  554. preempt_disable();
  555. kcpu = this_cpu_ptr(ctx->cpu);
  556. if (!kcpu->reqs_available) {
  557. int old, avail = atomic_read(&ctx->reqs_available);
  558. do {
  559. if (avail < ctx->req_batch)
  560. goto out;
  561. old = avail;
  562. avail = atomic_cmpxchg(&ctx->reqs_available,
  563. avail, avail - ctx->req_batch);
  564. } while (avail != old);
  565. kcpu->reqs_available += ctx->req_batch;
  566. }
  567. ret = true;
  568. kcpu->reqs_available--;
  569. out:
  570. preempt_enable();
  571. return ret;
  572. }
  573. /* aio_get_req
  574. * Allocate a slot for an aio request. Increments the ki_users count
  575. * of the kioctx so that the kioctx stays around until all requests are
  576. * complete. Returns NULL if no requests are free.
  577. *
  578. * Returns with kiocb->ki_users set to 2. The io submit code path holds
  579. * an extra reference while submitting the i/o.
  580. * This prevents races between the aio code path referencing the
  581. * req (after submitting it) and aio_complete() freeing the req.
  582. */
  583. static inline struct kiocb *aio_get_req(struct kioctx *ctx)
  584. {
  585. struct kiocb *req;
  586. if (!get_reqs_available(ctx))
  587. return NULL;
  588. req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
  589. if (unlikely(!req))
  590. goto out_put;
  591. atomic_set(&req->ki_users, 2);
  592. req->ki_ctx = ctx;
  593. return req;
  594. out_put:
  595. put_reqs_available(ctx, 1);
  596. return NULL;
  597. }
  598. static void kiocb_free(struct kiocb *req)
  599. {
  600. if (req->ki_filp)
  601. fput(req->ki_filp);
  602. if (req->ki_eventfd != NULL)
  603. eventfd_ctx_put(req->ki_eventfd);
  604. if (req->ki_dtor)
  605. req->ki_dtor(req);
  606. if (req->ki_iovec != &req->ki_inline_vec)
  607. kfree(req->ki_iovec);
  608. kmem_cache_free(kiocb_cachep, req);
  609. }
  610. void aio_put_req(struct kiocb *req)
  611. {
  612. if (atomic_dec_and_test(&req->ki_users))
  613. kiocb_free(req);
  614. }
  615. EXPORT_SYMBOL(aio_put_req);
  616. static struct kioctx *lookup_ioctx(unsigned long ctx_id)
  617. {
  618. struct mm_struct *mm = current->mm;
  619. struct kioctx *ctx, *ret = NULL;
  620. rcu_read_lock();
  621. hlist_for_each_entry_rcu(ctx, &mm->ioctx_list, list) {
  622. if (ctx->user_id == ctx_id) {
  623. atomic_inc(&ctx->users);
  624. ret = ctx;
  625. break;
  626. }
  627. }
  628. rcu_read_unlock();
  629. return ret;
  630. }
  631. /* aio_complete
  632. * Called when the io request on the given iocb is complete.
  633. */
  634. void aio_complete(struct kiocb *iocb, long res, long res2)
  635. {
  636. struct kioctx *ctx = iocb->ki_ctx;
  637. struct aio_ring *ring;
  638. struct io_event *ev_page, *event;
  639. unsigned long flags;
  640. unsigned tail, pos;
  641. /*
  642. * Special case handling for sync iocbs:
  643. * - events go directly into the iocb for fast handling
  644. * - the sync task with the iocb in its stack holds the single iocb
  645. * ref, no other paths have a way to get another ref
  646. * - the sync task helpfully left a reference to itself in the iocb
  647. */
  648. if (is_sync_kiocb(iocb)) {
  649. BUG_ON(atomic_read(&iocb->ki_users) != 1);
  650. iocb->ki_user_data = res;
  651. atomic_set(&iocb->ki_users, 0);
  652. wake_up_process(iocb->ki_obj.tsk);
  653. return;
  654. }
  655. /*
  656. * Take rcu_read_lock() in case the kioctx is being destroyed, as we
  657. * need to issue a wakeup after incrementing reqs_available.
  658. */
  659. rcu_read_lock();
  660. if (iocb->ki_list.next) {
  661. unsigned long flags;
  662. spin_lock_irqsave(&ctx->ctx_lock, flags);
  663. list_del(&iocb->ki_list);
  664. spin_unlock_irqrestore(&ctx->ctx_lock, flags);
  665. }
  666. /*
  667. * cancelled requests don't get events, userland was given one
  668. * when the event got cancelled.
  669. */
  670. if (unlikely(xchg(&iocb->ki_cancel,
  671. KIOCB_CANCELLED) == KIOCB_CANCELLED)) {
  672. /*
  673. * Can't use the percpu reqs_available here - could race with
  674. * free_ioctx()
  675. */
  676. atomic_inc(&ctx->reqs_available);
  677. /* Still need the wake_up in case free_ioctx is waiting */
  678. goto put_rq;
  679. }
  680. /*
  681. * Add a completion event to the ring buffer. Must be done holding
  682. * ctx->completion_lock to prevent other code from messing with the tail
  683. * pointer since we might be called from irq context.
  684. */
  685. spin_lock_irqsave(&ctx->completion_lock, flags);
  686. tail = ctx->tail;
  687. pos = tail + AIO_EVENTS_OFFSET;
  688. if (++tail >= ctx->nr_events)
  689. tail = 0;
  690. ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
  691. event = ev_page + pos % AIO_EVENTS_PER_PAGE;
  692. event->obj = (u64)(unsigned long)iocb->ki_obj.user;
  693. event->data = iocb->ki_user_data;
  694. event->res = res;
  695. event->res2 = res2;
  696. kunmap_atomic(ev_page);
  697. flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
  698. pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
  699. ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
  700. res, res2);
  701. /* after flagging the request as done, we
  702. * must never even look at it again
  703. */
  704. smp_wmb(); /* make event visible before updating tail */
  705. ctx->tail = tail;
  706. ring = kmap_atomic(ctx->ring_pages[0]);
  707. ring->tail = tail;
  708. kunmap_atomic(ring);
  709. flush_dcache_page(ctx->ring_pages[0]);
  710. spin_unlock_irqrestore(&ctx->completion_lock, flags);
  711. pr_debug("added to ring %p at [%u]\n", iocb, tail);
  712. /*
  713. * Check if the user asked us to deliver the result through an
  714. * eventfd. The eventfd_signal() function is safe to be called
  715. * from IRQ context.
  716. */
  717. if (iocb->ki_eventfd != NULL)
  718. eventfd_signal(iocb->ki_eventfd, 1);
  719. put_rq:
  720. /* everything turned out well, dispose of the aiocb. */
  721. aio_put_req(iocb);
  722. /*
  723. * We have to order our ring_info tail store above and test
  724. * of the wait list below outside the wait lock. This is
  725. * like in wake_up_bit() where clearing a bit has to be
  726. * ordered with the unlocked test.
  727. */
  728. smp_mb();
  729. if (waitqueue_active(&ctx->wait))
  730. wake_up(&ctx->wait);
  731. rcu_read_unlock();
  732. }
  733. EXPORT_SYMBOL(aio_complete);
  734. /* aio_read_events
  735. * Pull an event off of the ioctx's event ring. Returns the number of
  736. * events fetched
  737. */
  738. static long aio_read_events_ring(struct kioctx *ctx,
  739. struct io_event __user *event, long nr)
  740. {
  741. struct aio_ring *ring;
  742. unsigned head, pos;
  743. long ret = 0;
  744. int copy_ret;
  745. mutex_lock(&ctx->ring_lock);
  746. ring = kmap_atomic(ctx->ring_pages[0]);
  747. head = ring->head;
  748. kunmap_atomic(ring);
  749. pr_debug("h%u t%u m%u\n", head, ctx->tail, ctx->nr_events);
  750. if (head == ctx->tail)
  751. goto out;
  752. while (ret < nr) {
  753. long avail;
  754. struct io_event *ev;
  755. struct page *page;
  756. avail = (head <= ctx->tail ? ctx->tail : ctx->nr_events) - head;
  757. if (head == ctx->tail)
  758. break;
  759. avail = min(avail, nr - ret);
  760. avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
  761. ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
  762. pos = head + AIO_EVENTS_OFFSET;
  763. page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
  764. pos %= AIO_EVENTS_PER_PAGE;
  765. ev = kmap(page);
  766. copy_ret = copy_to_user(event + ret, ev + pos,
  767. sizeof(*ev) * avail);
  768. kunmap(page);
  769. if (unlikely(copy_ret)) {
  770. ret = -EFAULT;
  771. goto out;
  772. }
  773. ret += avail;
  774. head += avail;
  775. head %= ctx->nr_events;
  776. }
  777. ring = kmap_atomic(ctx->ring_pages[0]);
  778. ring->head = head;
  779. kunmap_atomic(ring);
  780. flush_dcache_page(ctx->ring_pages[0]);
  781. pr_debug("%li h%u t%u\n", ret, head, ctx->tail);
  782. put_reqs_available(ctx, ret);
  783. out:
  784. mutex_unlock(&ctx->ring_lock);
  785. return ret;
  786. }
  787. static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
  788. struct io_event __user *event, long *i)
  789. {
  790. long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
  791. if (ret > 0)
  792. *i += ret;
  793. if (unlikely(atomic_read(&ctx->dead)))
  794. ret = -EINVAL;
  795. if (!*i)
  796. *i = ret;
  797. return ret < 0 || *i >= min_nr;
  798. }
  799. static long read_events(struct kioctx *ctx, long min_nr, long nr,
  800. struct io_event __user *event,
  801. struct timespec __user *timeout)
  802. {
  803. ktime_t until = { .tv64 = KTIME_MAX };
  804. long ret = 0;
  805. if (timeout) {
  806. struct timespec ts;
  807. if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
  808. return -EFAULT;
  809. until = timespec_to_ktime(ts);
  810. }
  811. /*
  812. * Note that aio_read_events() is being called as the conditional - i.e.
  813. * we're calling it after prepare_to_wait() has set task state to
  814. * TASK_INTERRUPTIBLE.
  815. *
  816. * But aio_read_events() can block, and if it blocks it's going to flip
  817. * the task state back to TASK_RUNNING.
  818. *
  819. * This should be ok, provided it doesn't flip the state back to
  820. * TASK_RUNNING and return 0 too much - that causes us to spin. That
  821. * will only happen if the mutex_lock() call blocks, and we then find
  822. * the ringbuffer empty. So in practice we should be ok, but it's
  823. * something to be aware of when touching this code.
  824. */
  825. wait_event_interruptible_hrtimeout(ctx->wait,
  826. aio_read_events(ctx, min_nr, nr, event, &ret), until);
  827. if (!ret && signal_pending(current))
  828. ret = -EINTR;
  829. return ret;
  830. }
  831. /* sys_io_setup:
  832. * Create an aio_context capable of receiving at least nr_events.
  833. * ctxp must not point to an aio_context that already exists, and
  834. * must be initialized to 0 prior to the call. On successful
  835. * creation of the aio_context, *ctxp is filled in with the resulting
  836. * handle. May fail with -EINVAL if *ctxp is not initialized,
  837. * if the specified nr_events exceeds internal limits. May fail
  838. * with -EAGAIN if the specified nr_events exceeds the user's limit
  839. * of available events. May fail with -ENOMEM if insufficient kernel
  840. * resources are available. May fail with -EFAULT if an invalid
  841. * pointer is passed for ctxp. Will fail with -ENOSYS if not
  842. * implemented.
  843. */
  844. SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
  845. {
  846. struct kioctx *ioctx = NULL;
  847. unsigned long ctx;
  848. long ret;
  849. ret = get_user(ctx, ctxp);
  850. if (unlikely(ret))
  851. goto out;
  852. ret = -EINVAL;
  853. if (unlikely(ctx || nr_events == 0)) {
  854. pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
  855. ctx, nr_events);
  856. goto out;
  857. }
  858. ioctx = ioctx_alloc(nr_events);
  859. ret = PTR_ERR(ioctx);
  860. if (!IS_ERR(ioctx)) {
  861. ret = put_user(ioctx->user_id, ctxp);
  862. if (ret)
  863. kill_ioctx(ioctx);
  864. put_ioctx(ioctx);
  865. }
  866. out:
  867. return ret;
  868. }
  869. /* sys_io_destroy:
  870. * Destroy the aio_context specified. May cancel any outstanding
  871. * AIOs and block on completion. Will fail with -ENOSYS if not
  872. * implemented. May fail with -EINVAL if the context pointed to
  873. * is invalid.
  874. */
  875. SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
  876. {
  877. struct kioctx *ioctx = lookup_ioctx(ctx);
  878. if (likely(NULL != ioctx)) {
  879. kill_ioctx(ioctx);
  880. put_ioctx(ioctx);
  881. return 0;
  882. }
  883. pr_debug("EINVAL: io_destroy: invalid context id\n");
  884. return -EINVAL;
  885. }
  886. static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
  887. {
  888. struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
  889. BUG_ON(ret <= 0);
  890. while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
  891. ssize_t this = min((ssize_t)iov->iov_len, ret);
  892. iov->iov_base += this;
  893. iov->iov_len -= this;
  894. iocb->ki_left -= this;
  895. ret -= this;
  896. if (iov->iov_len == 0) {
  897. iocb->ki_cur_seg++;
  898. iov++;
  899. }
  900. }
  901. /* the caller should not have done more io than what fit in
  902. * the remaining iovecs */
  903. BUG_ON(ret > 0 && iocb->ki_left == 0);
  904. }
  905. typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *,
  906. unsigned long, loff_t);
  907. static ssize_t aio_rw_vect_retry(struct kiocb *iocb, int rw, aio_rw_op *rw_op)
  908. {
  909. struct file *file = iocb->ki_filp;
  910. struct address_space *mapping = file->f_mapping;
  911. struct inode *inode = mapping->host;
  912. ssize_t ret = 0;
  913. /* This matches the pread()/pwrite() logic */
  914. if (iocb->ki_pos < 0)
  915. return -EINVAL;
  916. if (rw == WRITE)
  917. file_start_write(file);
  918. do {
  919. ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
  920. iocb->ki_nr_segs - iocb->ki_cur_seg,
  921. iocb->ki_pos);
  922. if (ret > 0)
  923. aio_advance_iovec(iocb, ret);
  924. /* retry all partial writes. retry partial reads as long as its a
  925. * regular file. */
  926. } while (ret > 0 && iocb->ki_left > 0 &&
  927. (rw == WRITE ||
  928. (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
  929. if (rw == WRITE)
  930. file_end_write(file);
  931. /* This means we must have transferred all that we could */
  932. /* No need to retry anymore */
  933. if ((ret == 0) || (iocb->ki_left == 0))
  934. ret = iocb->ki_nbytes - iocb->ki_left;
  935. /* If we managed to write some out we return that, rather than
  936. * the eventual error. */
  937. if (rw == WRITE
  938. && ret < 0 && ret != -EIOCBQUEUED
  939. && iocb->ki_nbytes - iocb->ki_left)
  940. ret = iocb->ki_nbytes - iocb->ki_left;
  941. return ret;
  942. }
  943. static ssize_t aio_setup_vectored_rw(int rw, struct kiocb *kiocb, bool compat)
  944. {
  945. ssize_t ret;
  946. kiocb->ki_nr_segs = kiocb->ki_nbytes;
  947. #ifdef CONFIG_COMPAT
  948. if (compat)
  949. ret = compat_rw_copy_check_uvector(rw,
  950. (struct compat_iovec __user *)kiocb->ki_buf,
  951. kiocb->ki_nr_segs, 1, &kiocb->ki_inline_vec,
  952. &kiocb->ki_iovec);
  953. else
  954. #endif
  955. ret = rw_copy_check_uvector(rw,
  956. (struct iovec __user *)kiocb->ki_buf,
  957. kiocb->ki_nr_segs, 1, &kiocb->ki_inline_vec,
  958. &kiocb->ki_iovec);
  959. if (ret < 0)
  960. return ret;
  961. /* ki_nbytes now reflect bytes instead of segs */
  962. kiocb->ki_nbytes = ret;
  963. return 0;
  964. }
  965. static ssize_t aio_setup_single_vector(int rw, struct kiocb *kiocb)
  966. {
  967. if (unlikely(!access_ok(!rw, kiocb->ki_buf, kiocb->ki_nbytes)))
  968. return -EFAULT;
  969. kiocb->ki_iovec = &kiocb->ki_inline_vec;
  970. kiocb->ki_iovec->iov_base = kiocb->ki_buf;
  971. kiocb->ki_iovec->iov_len = kiocb->ki_nbytes;
  972. kiocb->ki_nr_segs = 1;
  973. return 0;
  974. }
  975. /*
  976. * aio_setup_iocb:
  977. * Performs the initial checks and aio retry method
  978. * setup for the kiocb at the time of io submission.
  979. */
  980. static ssize_t aio_run_iocb(struct kiocb *req, bool compat)
  981. {
  982. struct file *file = req->ki_filp;
  983. ssize_t ret;
  984. int rw;
  985. fmode_t mode;
  986. aio_rw_op *rw_op;
  987. switch (req->ki_opcode) {
  988. case IOCB_CMD_PREAD:
  989. case IOCB_CMD_PREADV:
  990. mode = FMODE_READ;
  991. rw = READ;
  992. rw_op = file->f_op->aio_read;
  993. goto rw_common;
  994. case IOCB_CMD_PWRITE:
  995. case IOCB_CMD_PWRITEV:
  996. mode = FMODE_WRITE;
  997. rw = WRITE;
  998. rw_op = file->f_op->aio_write;
  999. goto rw_common;
  1000. rw_common:
  1001. if (unlikely(!(file->f_mode & mode)))
  1002. return -EBADF;
  1003. if (!rw_op)
  1004. return -EINVAL;
  1005. ret = (req->ki_opcode == IOCB_CMD_PREADV ||
  1006. req->ki_opcode == IOCB_CMD_PWRITEV)
  1007. ? aio_setup_vectored_rw(rw, req, compat)
  1008. : aio_setup_single_vector(rw, req);
  1009. if (ret)
  1010. return ret;
  1011. ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes);
  1012. if (ret < 0)
  1013. return ret;
  1014. req->ki_nbytes = ret;
  1015. req->ki_left = ret;
  1016. ret = aio_rw_vect_retry(req, rw, rw_op);
  1017. break;
  1018. case IOCB_CMD_FDSYNC:
  1019. if (!file->f_op->aio_fsync)
  1020. return -EINVAL;
  1021. ret = file->f_op->aio_fsync(req, 1);
  1022. break;
  1023. case IOCB_CMD_FSYNC:
  1024. if (!file->f_op->aio_fsync)
  1025. return -EINVAL;
  1026. ret = file->f_op->aio_fsync(req, 0);
  1027. break;
  1028. default:
  1029. pr_debug("EINVAL: no operation provided\n");
  1030. return -EINVAL;
  1031. }
  1032. if (ret != -EIOCBQUEUED) {
  1033. /*
  1034. * There's no easy way to restart the syscall since other AIO's
  1035. * may be already running. Just fail this IO with EINTR.
  1036. */
  1037. if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
  1038. ret == -ERESTARTNOHAND ||
  1039. ret == -ERESTART_RESTARTBLOCK))
  1040. ret = -EINTR;
  1041. aio_complete(req, ret, 0);
  1042. }
  1043. return 0;
  1044. }
  1045. static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
  1046. struct iocb *iocb, bool compat)
  1047. {
  1048. struct kiocb *req;
  1049. ssize_t ret;
  1050. /* enforce forwards compatibility on users */
  1051. if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
  1052. pr_debug("EINVAL: reserve field set\n");
  1053. return -EINVAL;
  1054. }
  1055. /* prevent overflows */
  1056. if (unlikely(
  1057. (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
  1058. (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
  1059. ((ssize_t)iocb->aio_nbytes < 0)
  1060. )) {
  1061. pr_debug("EINVAL: io_submit: overflow check\n");
  1062. return -EINVAL;
  1063. }
  1064. req = aio_get_req(ctx);
  1065. if (unlikely(!req))
  1066. return -EAGAIN;
  1067. req->ki_filp = fget(iocb->aio_fildes);
  1068. if (unlikely(!req->ki_filp)) {
  1069. ret = -EBADF;
  1070. goto out_put_req;
  1071. }
  1072. if (iocb->aio_flags & IOCB_FLAG_RESFD) {
  1073. /*
  1074. * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
  1075. * instance of the file* now. The file descriptor must be
  1076. * an eventfd() fd, and will be signaled for each completed
  1077. * event using the eventfd_signal() function.
  1078. */
  1079. req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
  1080. if (IS_ERR(req->ki_eventfd)) {
  1081. ret = PTR_ERR(req->ki_eventfd);
  1082. req->ki_eventfd = NULL;
  1083. goto out_put_req;
  1084. }
  1085. }
  1086. ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
  1087. if (unlikely(ret)) {
  1088. pr_debug("EFAULT: aio_key\n");
  1089. goto out_put_req;
  1090. }
  1091. req->ki_obj.user = user_iocb;
  1092. req->ki_user_data = iocb->aio_data;
  1093. req->ki_pos = iocb->aio_offset;
  1094. req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
  1095. req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
  1096. req->ki_opcode = iocb->aio_lio_opcode;
  1097. ret = aio_run_iocb(req, compat);
  1098. if (ret)
  1099. goto out_put_req;
  1100. aio_put_req(req); /* drop extra ref to req */
  1101. return 0;
  1102. out_put_req:
  1103. put_reqs_available(ctx, 1);
  1104. aio_put_req(req); /* drop extra ref to req */
  1105. aio_put_req(req); /* drop i/o ref to req */
  1106. return ret;
  1107. }
  1108. long do_io_submit(aio_context_t ctx_id, long nr,
  1109. struct iocb __user *__user *iocbpp, bool compat)
  1110. {
  1111. struct kioctx *ctx;
  1112. long ret = 0;
  1113. int i = 0;
  1114. struct blk_plug plug;
  1115. if (unlikely(nr < 0))
  1116. return -EINVAL;
  1117. if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
  1118. nr = LONG_MAX/sizeof(*iocbpp);
  1119. if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
  1120. return -EFAULT;
  1121. ctx = lookup_ioctx(ctx_id);
  1122. if (unlikely(!ctx)) {
  1123. pr_debug("EINVAL: invalid context id\n");
  1124. return -EINVAL;
  1125. }
  1126. blk_start_plug(&plug);
  1127. /*
  1128. * AKPM: should this return a partial result if some of the IOs were
  1129. * successfully submitted?
  1130. */
  1131. for (i=0; i<nr; i++) {
  1132. struct iocb __user *user_iocb;
  1133. struct iocb tmp;
  1134. if (unlikely(__get_user(user_iocb, iocbpp + i))) {
  1135. ret = -EFAULT;
  1136. break;
  1137. }
  1138. if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
  1139. ret = -EFAULT;
  1140. break;
  1141. }
  1142. ret = io_submit_one(ctx, user_iocb, &tmp, compat);
  1143. if (ret)
  1144. break;
  1145. }
  1146. blk_finish_plug(&plug);
  1147. put_ioctx(ctx);
  1148. return i ? i : ret;
  1149. }
  1150. /* sys_io_submit:
  1151. * Queue the nr iocbs pointed to by iocbpp for processing. Returns
  1152. * the number of iocbs queued. May return -EINVAL if the aio_context
  1153. * specified by ctx_id is invalid, if nr is < 0, if the iocb at
  1154. * *iocbpp[0] is not properly initialized, if the operation specified
  1155. * is invalid for the file descriptor in the iocb. May fail with
  1156. * -EFAULT if any of the data structures point to invalid data. May
  1157. * fail with -EBADF if the file descriptor specified in the first
  1158. * iocb is invalid. May fail with -EAGAIN if insufficient resources
  1159. * are available to queue any iocbs. Will return 0 if nr is 0. Will
  1160. * fail with -ENOSYS if not implemented.
  1161. */
  1162. SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
  1163. struct iocb __user * __user *, iocbpp)
  1164. {
  1165. return do_io_submit(ctx_id, nr, iocbpp, 0);
  1166. }
  1167. /* lookup_kiocb
  1168. * Finds a given iocb for cancellation.
  1169. */
  1170. static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
  1171. u32 key)
  1172. {
  1173. struct list_head *pos;
  1174. assert_spin_locked(&ctx->ctx_lock);
  1175. if (key != KIOCB_KEY)
  1176. return NULL;
  1177. /* TODO: use a hash or array, this sucks. */
  1178. list_for_each(pos, &ctx->active_reqs) {
  1179. struct kiocb *kiocb = list_kiocb(pos);
  1180. if (kiocb->ki_obj.user == iocb)
  1181. return kiocb;
  1182. }
  1183. return NULL;
  1184. }
  1185. /* sys_io_cancel:
  1186. * Attempts to cancel an iocb previously passed to io_submit. If
  1187. * the operation is successfully cancelled, the resulting event is
  1188. * copied into the memory pointed to by result without being placed
  1189. * into the completion queue and 0 is returned. May fail with
  1190. * -EFAULT if any of the data structures pointed to are invalid.
  1191. * May fail with -EINVAL if aio_context specified by ctx_id is
  1192. * invalid. May fail with -EAGAIN if the iocb specified was not
  1193. * cancelled. Will fail with -ENOSYS if not implemented.
  1194. */
  1195. SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
  1196. struct io_event __user *, result)
  1197. {
  1198. struct io_event res;
  1199. struct kioctx *ctx;
  1200. struct kiocb *kiocb;
  1201. u32 key;
  1202. int ret;
  1203. ret = get_user(key, &iocb->aio_key);
  1204. if (unlikely(ret))
  1205. return -EFAULT;
  1206. ctx = lookup_ioctx(ctx_id);
  1207. if (unlikely(!ctx))
  1208. return -EINVAL;
  1209. spin_lock_irq(&ctx->ctx_lock);
  1210. kiocb = lookup_kiocb(ctx, iocb, key);
  1211. if (kiocb)
  1212. ret = kiocb_cancel(ctx, kiocb, &res);
  1213. else
  1214. ret = -EINVAL;
  1215. spin_unlock_irq(&ctx->ctx_lock);
  1216. if (!ret) {
  1217. /* Cancellation succeeded -- copy the result
  1218. * into the user's buffer.
  1219. */
  1220. if (copy_to_user(result, &res, sizeof(res)))
  1221. ret = -EFAULT;
  1222. }
  1223. put_ioctx(ctx);
  1224. return ret;
  1225. }
  1226. /* io_getevents:
  1227. * Attempts to read at least min_nr events and up to nr events from
  1228. * the completion queue for the aio_context specified by ctx_id. If
  1229. * it succeeds, the number of read events is returned. May fail with
  1230. * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
  1231. * out of range, if timeout is out of range. May fail with -EFAULT
  1232. * if any of the memory specified is invalid. May return 0 or
  1233. * < min_nr if the timeout specified by timeout has elapsed
  1234. * before sufficient events are available, where timeout == NULL
  1235. * specifies an infinite timeout. Note that the timeout pointed to by
  1236. * timeout is relative. Will fail with -ENOSYS if not implemented.
  1237. */
  1238. SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
  1239. long, min_nr,
  1240. long, nr,
  1241. struct io_event __user *, events,
  1242. struct timespec __user *, timeout)
  1243. {
  1244. struct kioctx *ioctx = lookup_ioctx(ctx_id);
  1245. long ret = -EINVAL;
  1246. if (likely(ioctx)) {
  1247. if (likely(min_nr <= nr && min_nr >= 0))
  1248. ret = read_events(ioctx, min_nr, nr, events, timeout);
  1249. put_ioctx(ioctx);
  1250. }
  1251. return ret;
  1252. }