pktcdvd.c 66 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704
  1. /*
  2. * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
  3. * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
  4. *
  5. * May be copied or modified under the terms of the GNU General Public
  6. * License. See linux/COPYING for more information.
  7. *
  8. * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
  9. * DVD-RAM devices.
  10. *
  11. * Theory of operation:
  12. *
  13. * At the lowest level, there is the standard driver for the CD/DVD device,
  14. * typically ide-cd.c or sr.c. This driver can handle read and write requests,
  15. * but it doesn't know anything about the special restrictions that apply to
  16. * packet writing. One restriction is that write requests must be aligned to
  17. * packet boundaries on the physical media, and the size of a write request
  18. * must be equal to the packet size. Another restriction is that a
  19. * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
  20. * command, if the previous command was a write.
  21. *
  22. * The purpose of the packet writing driver is to hide these restrictions from
  23. * higher layers, such as file systems, and present a block device that can be
  24. * randomly read and written using 2kB-sized blocks.
  25. *
  26. * The lowest layer in the packet writing driver is the packet I/O scheduler.
  27. * Its data is defined by the struct packet_iosched and includes two bio
  28. * queues with pending read and write requests. These queues are processed
  29. * by the pkt_iosched_process_queue() function. The write requests in this
  30. * queue are already properly aligned and sized. This layer is responsible for
  31. * issuing the flush cache commands and scheduling the I/O in a good order.
  32. *
  33. * The next layer transforms unaligned write requests to aligned writes. This
  34. * transformation requires reading missing pieces of data from the underlying
  35. * block device, assembling the pieces to full packets and queuing them to the
  36. * packet I/O scheduler.
  37. *
  38. * At the top layer there is a custom make_request_fn function that forwards
  39. * read requests directly to the iosched queue and puts write requests in the
  40. * unaligned write queue. A kernel thread performs the necessary read
  41. * gathering to convert the unaligned writes to aligned writes and then feeds
  42. * them to the packet I/O scheduler.
  43. *
  44. *************************************************************************/
  45. #include <linux/pktcdvd.h>
  46. #include <linux/config.h>
  47. #include <linux/module.h>
  48. #include <linux/types.h>
  49. #include <linux/kernel.h>
  50. #include <linux/kthread.h>
  51. #include <linux/errno.h>
  52. #include <linux/spinlock.h>
  53. #include <linux/file.h>
  54. #include <linux/proc_fs.h>
  55. #include <linux/seq_file.h>
  56. #include <linux/miscdevice.h>
  57. #include <linux/suspend.h>
  58. #include <scsi/scsi_cmnd.h>
  59. #include <scsi/scsi_ioctl.h>
  60. #include <asm/uaccess.h>
  61. #if PACKET_DEBUG
  62. #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
  63. #else
  64. #define DPRINTK(fmt, args...)
  65. #endif
  66. #if PACKET_DEBUG > 1
  67. #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
  68. #else
  69. #define VPRINTK(fmt, args...)
  70. #endif
  71. #define MAX_SPEED 0xffff
  72. #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
  73. static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
  74. static struct proc_dir_entry *pkt_proc;
  75. static int pkt_major;
  76. static struct semaphore ctl_mutex; /* Serialize open/close/setup/teardown */
  77. static mempool_t *psd_pool;
  78. static void pkt_bio_finished(struct pktcdvd_device *pd)
  79. {
  80. BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
  81. if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
  82. VPRINTK("pktcdvd: queue empty\n");
  83. atomic_set(&pd->iosched.attention, 1);
  84. wake_up(&pd->wqueue);
  85. }
  86. }
  87. static void pkt_bio_destructor(struct bio *bio)
  88. {
  89. kfree(bio->bi_io_vec);
  90. kfree(bio);
  91. }
  92. static struct bio *pkt_bio_alloc(int nr_iovecs)
  93. {
  94. struct bio_vec *bvl = NULL;
  95. struct bio *bio;
  96. bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
  97. if (!bio)
  98. goto no_bio;
  99. bio_init(bio);
  100. bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL);
  101. if (!bvl)
  102. goto no_bvl;
  103. bio->bi_max_vecs = nr_iovecs;
  104. bio->bi_io_vec = bvl;
  105. bio->bi_destructor = pkt_bio_destructor;
  106. return bio;
  107. no_bvl:
  108. kfree(bio);
  109. no_bio:
  110. return NULL;
  111. }
  112. /*
  113. * Allocate a packet_data struct
  114. */
  115. static struct packet_data *pkt_alloc_packet_data(int frames)
  116. {
  117. int i;
  118. struct packet_data *pkt;
  119. pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
  120. if (!pkt)
  121. goto no_pkt;
  122. pkt->frames = frames;
  123. pkt->w_bio = pkt_bio_alloc(frames);
  124. if (!pkt->w_bio)
  125. goto no_bio;
  126. for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
  127. pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
  128. if (!pkt->pages[i])
  129. goto no_page;
  130. }
  131. spin_lock_init(&pkt->lock);
  132. for (i = 0; i < frames; i++) {
  133. struct bio *bio = pkt_bio_alloc(1);
  134. if (!bio)
  135. goto no_rd_bio;
  136. pkt->r_bios[i] = bio;
  137. }
  138. return pkt;
  139. no_rd_bio:
  140. for (i = 0; i < frames; i++) {
  141. struct bio *bio = pkt->r_bios[i];
  142. if (bio)
  143. bio_put(bio);
  144. }
  145. no_page:
  146. for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
  147. if (pkt->pages[i])
  148. __free_page(pkt->pages[i]);
  149. bio_put(pkt->w_bio);
  150. no_bio:
  151. kfree(pkt);
  152. no_pkt:
  153. return NULL;
  154. }
  155. /*
  156. * Free a packet_data struct
  157. */
  158. static void pkt_free_packet_data(struct packet_data *pkt)
  159. {
  160. int i;
  161. for (i = 0; i < pkt->frames; i++) {
  162. struct bio *bio = pkt->r_bios[i];
  163. if (bio)
  164. bio_put(bio);
  165. }
  166. for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
  167. __free_page(pkt->pages[i]);
  168. bio_put(pkt->w_bio);
  169. kfree(pkt);
  170. }
  171. static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
  172. {
  173. struct packet_data *pkt, *next;
  174. BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
  175. list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
  176. pkt_free_packet_data(pkt);
  177. }
  178. INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
  179. }
  180. static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
  181. {
  182. struct packet_data *pkt;
  183. BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
  184. while (nr_packets > 0) {
  185. pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
  186. if (!pkt) {
  187. pkt_shrink_pktlist(pd);
  188. return 0;
  189. }
  190. pkt->id = nr_packets;
  191. pkt->pd = pd;
  192. list_add(&pkt->list, &pd->cdrw.pkt_free_list);
  193. nr_packets--;
  194. }
  195. return 1;
  196. }
  197. static void *pkt_rb_alloc(gfp_t gfp_mask, void *data)
  198. {
  199. return kmalloc(sizeof(struct pkt_rb_node), gfp_mask);
  200. }
  201. static void pkt_rb_free(void *ptr, void *data)
  202. {
  203. kfree(ptr);
  204. }
  205. static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
  206. {
  207. struct rb_node *n = rb_next(&node->rb_node);
  208. if (!n)
  209. return NULL;
  210. return rb_entry(n, struct pkt_rb_node, rb_node);
  211. }
  212. static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
  213. {
  214. rb_erase(&node->rb_node, &pd->bio_queue);
  215. mempool_free(node, pd->rb_pool);
  216. pd->bio_queue_size--;
  217. BUG_ON(pd->bio_queue_size < 0);
  218. }
  219. /*
  220. * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
  221. */
  222. static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
  223. {
  224. struct rb_node *n = pd->bio_queue.rb_node;
  225. struct rb_node *next;
  226. struct pkt_rb_node *tmp;
  227. if (!n) {
  228. BUG_ON(pd->bio_queue_size > 0);
  229. return NULL;
  230. }
  231. for (;;) {
  232. tmp = rb_entry(n, struct pkt_rb_node, rb_node);
  233. if (s <= tmp->bio->bi_sector)
  234. next = n->rb_left;
  235. else
  236. next = n->rb_right;
  237. if (!next)
  238. break;
  239. n = next;
  240. }
  241. if (s > tmp->bio->bi_sector) {
  242. tmp = pkt_rbtree_next(tmp);
  243. if (!tmp)
  244. return NULL;
  245. }
  246. BUG_ON(s > tmp->bio->bi_sector);
  247. return tmp;
  248. }
  249. /*
  250. * Insert a node into the pd->bio_queue rb tree.
  251. */
  252. static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
  253. {
  254. struct rb_node **p = &pd->bio_queue.rb_node;
  255. struct rb_node *parent = NULL;
  256. sector_t s = node->bio->bi_sector;
  257. struct pkt_rb_node *tmp;
  258. while (*p) {
  259. parent = *p;
  260. tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
  261. if (s < tmp->bio->bi_sector)
  262. p = &(*p)->rb_left;
  263. else
  264. p = &(*p)->rb_right;
  265. }
  266. rb_link_node(&node->rb_node, parent, p);
  267. rb_insert_color(&node->rb_node, &pd->bio_queue);
  268. pd->bio_queue_size++;
  269. }
  270. /*
  271. * Add a bio to a single linked list defined by its head and tail pointers.
  272. */
  273. static void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail)
  274. {
  275. bio->bi_next = NULL;
  276. if (*list_tail) {
  277. BUG_ON((*list_head) == NULL);
  278. (*list_tail)->bi_next = bio;
  279. (*list_tail) = bio;
  280. } else {
  281. BUG_ON((*list_head) != NULL);
  282. (*list_head) = bio;
  283. (*list_tail) = bio;
  284. }
  285. }
  286. /*
  287. * Remove and return the first bio from a single linked list defined by its
  288. * head and tail pointers.
  289. */
  290. static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail)
  291. {
  292. struct bio *bio;
  293. if (*list_head == NULL)
  294. return NULL;
  295. bio = *list_head;
  296. *list_head = bio->bi_next;
  297. if (*list_head == NULL)
  298. *list_tail = NULL;
  299. bio->bi_next = NULL;
  300. return bio;
  301. }
  302. /*
  303. * Send a packet_command to the underlying block device and
  304. * wait for completion.
  305. */
  306. static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
  307. {
  308. char sense[SCSI_SENSE_BUFFERSIZE];
  309. request_queue_t *q;
  310. struct request *rq;
  311. DECLARE_COMPLETION(wait);
  312. int err = 0;
  313. q = bdev_get_queue(pd->bdev);
  314. rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ? WRITE : READ,
  315. __GFP_WAIT);
  316. rq->errors = 0;
  317. rq->rq_disk = pd->bdev->bd_disk;
  318. rq->bio = NULL;
  319. rq->buffer = NULL;
  320. rq->timeout = 60*HZ;
  321. rq->data = cgc->buffer;
  322. rq->data_len = cgc->buflen;
  323. rq->sense = sense;
  324. memset(sense, 0, sizeof(sense));
  325. rq->sense_len = 0;
  326. rq->flags |= REQ_BLOCK_PC | REQ_HARDBARRIER;
  327. if (cgc->quiet)
  328. rq->flags |= REQ_QUIET;
  329. memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
  330. if (sizeof(rq->cmd) > CDROM_PACKET_SIZE)
  331. memset(rq->cmd + CDROM_PACKET_SIZE, 0, sizeof(rq->cmd) - CDROM_PACKET_SIZE);
  332. rq->ref_count++;
  333. rq->flags |= REQ_NOMERGE;
  334. rq->waiting = &wait;
  335. rq->end_io = blk_end_sync_rq;
  336. elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
  337. generic_unplug_device(q);
  338. wait_for_completion(&wait);
  339. if (rq->errors)
  340. err = -EIO;
  341. blk_put_request(rq);
  342. return err;
  343. }
  344. /*
  345. * A generic sense dump / resolve mechanism should be implemented across
  346. * all ATAPI + SCSI devices.
  347. */
  348. static void pkt_dump_sense(struct packet_command *cgc)
  349. {
  350. static char *info[9] = { "No sense", "Recovered error", "Not ready",
  351. "Medium error", "Hardware error", "Illegal request",
  352. "Unit attention", "Data protect", "Blank check" };
  353. int i;
  354. struct request_sense *sense = cgc->sense;
  355. printk("pktcdvd:");
  356. for (i = 0; i < CDROM_PACKET_SIZE; i++)
  357. printk(" %02x", cgc->cmd[i]);
  358. printk(" - ");
  359. if (sense == NULL) {
  360. printk("no sense\n");
  361. return;
  362. }
  363. printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
  364. if (sense->sense_key > 8) {
  365. printk(" (INVALID)\n");
  366. return;
  367. }
  368. printk(" (%s)\n", info[sense->sense_key]);
  369. }
  370. /*
  371. * flush the drive cache to media
  372. */
  373. static int pkt_flush_cache(struct pktcdvd_device *pd)
  374. {
  375. struct packet_command cgc;
  376. init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
  377. cgc.cmd[0] = GPCMD_FLUSH_CACHE;
  378. cgc.quiet = 1;
  379. /*
  380. * the IMMED bit -- we default to not setting it, although that
  381. * would allow a much faster close, this is safer
  382. */
  383. #if 0
  384. cgc.cmd[1] = 1 << 1;
  385. #endif
  386. return pkt_generic_packet(pd, &cgc);
  387. }
  388. /*
  389. * speed is given as the normal factor, e.g. 4 for 4x
  390. */
  391. static int pkt_set_speed(struct pktcdvd_device *pd, unsigned write_speed, unsigned read_speed)
  392. {
  393. struct packet_command cgc;
  394. struct request_sense sense;
  395. int ret;
  396. init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
  397. cgc.sense = &sense;
  398. cgc.cmd[0] = GPCMD_SET_SPEED;
  399. cgc.cmd[2] = (read_speed >> 8) & 0xff;
  400. cgc.cmd[3] = read_speed & 0xff;
  401. cgc.cmd[4] = (write_speed >> 8) & 0xff;
  402. cgc.cmd[5] = write_speed & 0xff;
  403. if ((ret = pkt_generic_packet(pd, &cgc)))
  404. pkt_dump_sense(&cgc);
  405. return ret;
  406. }
  407. /*
  408. * Queue a bio for processing by the low-level CD device. Must be called
  409. * from process context.
  410. */
  411. static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
  412. {
  413. spin_lock(&pd->iosched.lock);
  414. if (bio_data_dir(bio) == READ) {
  415. pkt_add_list_last(bio, &pd->iosched.read_queue,
  416. &pd->iosched.read_queue_tail);
  417. } else {
  418. pkt_add_list_last(bio, &pd->iosched.write_queue,
  419. &pd->iosched.write_queue_tail);
  420. }
  421. spin_unlock(&pd->iosched.lock);
  422. atomic_set(&pd->iosched.attention, 1);
  423. wake_up(&pd->wqueue);
  424. }
  425. /*
  426. * Process the queued read/write requests. This function handles special
  427. * requirements for CDRW drives:
  428. * - A cache flush command must be inserted before a read request if the
  429. * previous request was a write.
  430. * - Switching between reading and writing is slow, so don't do it more often
  431. * than necessary.
  432. * - Optimize for throughput at the expense of latency. This means that streaming
  433. * writes will never be interrupted by a read, but if the drive has to seek
  434. * before the next write, switch to reading instead if there are any pending
  435. * read requests.
  436. * - Set the read speed according to current usage pattern. When only reading
  437. * from the device, it's best to use the highest possible read speed, but
  438. * when switching often between reading and writing, it's better to have the
  439. * same read and write speeds.
  440. */
  441. static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
  442. {
  443. if (atomic_read(&pd->iosched.attention) == 0)
  444. return;
  445. atomic_set(&pd->iosched.attention, 0);
  446. for (;;) {
  447. struct bio *bio;
  448. int reads_queued, writes_queued;
  449. spin_lock(&pd->iosched.lock);
  450. reads_queued = (pd->iosched.read_queue != NULL);
  451. writes_queued = (pd->iosched.write_queue != NULL);
  452. spin_unlock(&pd->iosched.lock);
  453. if (!reads_queued && !writes_queued)
  454. break;
  455. if (pd->iosched.writing) {
  456. int need_write_seek = 1;
  457. spin_lock(&pd->iosched.lock);
  458. bio = pd->iosched.write_queue;
  459. spin_unlock(&pd->iosched.lock);
  460. if (bio && (bio->bi_sector == pd->iosched.last_write))
  461. need_write_seek = 0;
  462. if (need_write_seek && reads_queued) {
  463. if (atomic_read(&pd->cdrw.pending_bios) > 0) {
  464. VPRINTK("pktcdvd: write, waiting\n");
  465. break;
  466. }
  467. pkt_flush_cache(pd);
  468. pd->iosched.writing = 0;
  469. }
  470. } else {
  471. if (!reads_queued && writes_queued) {
  472. if (atomic_read(&pd->cdrw.pending_bios) > 0) {
  473. VPRINTK("pktcdvd: read, waiting\n");
  474. break;
  475. }
  476. pd->iosched.writing = 1;
  477. }
  478. }
  479. spin_lock(&pd->iosched.lock);
  480. if (pd->iosched.writing) {
  481. bio = pkt_get_list_first(&pd->iosched.write_queue,
  482. &pd->iosched.write_queue_tail);
  483. } else {
  484. bio = pkt_get_list_first(&pd->iosched.read_queue,
  485. &pd->iosched.read_queue_tail);
  486. }
  487. spin_unlock(&pd->iosched.lock);
  488. if (!bio)
  489. continue;
  490. if (bio_data_dir(bio) == READ)
  491. pd->iosched.successive_reads += bio->bi_size >> 10;
  492. else {
  493. pd->iosched.successive_reads = 0;
  494. pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
  495. }
  496. if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
  497. if (pd->read_speed == pd->write_speed) {
  498. pd->read_speed = MAX_SPEED;
  499. pkt_set_speed(pd, pd->write_speed, pd->read_speed);
  500. }
  501. } else {
  502. if (pd->read_speed != pd->write_speed) {
  503. pd->read_speed = pd->write_speed;
  504. pkt_set_speed(pd, pd->write_speed, pd->read_speed);
  505. }
  506. }
  507. atomic_inc(&pd->cdrw.pending_bios);
  508. generic_make_request(bio);
  509. }
  510. }
  511. /*
  512. * Special care is needed if the underlying block device has a small
  513. * max_phys_segments value.
  514. */
  515. static int pkt_set_segment_merging(struct pktcdvd_device *pd, request_queue_t *q)
  516. {
  517. if ((pd->settings.size << 9) / CD_FRAMESIZE <= q->max_phys_segments) {
  518. /*
  519. * The cdrom device can handle one segment/frame
  520. */
  521. clear_bit(PACKET_MERGE_SEGS, &pd->flags);
  522. return 0;
  523. } else if ((pd->settings.size << 9) / PAGE_SIZE <= q->max_phys_segments) {
  524. /*
  525. * We can handle this case at the expense of some extra memory
  526. * copies during write operations
  527. */
  528. set_bit(PACKET_MERGE_SEGS, &pd->flags);
  529. return 0;
  530. } else {
  531. printk("pktcdvd: cdrom max_phys_segments too small\n");
  532. return -EIO;
  533. }
  534. }
  535. /*
  536. * Copy CD_FRAMESIZE bytes from src_bio into a destination page
  537. */
  538. static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
  539. {
  540. unsigned int copy_size = CD_FRAMESIZE;
  541. while (copy_size > 0) {
  542. struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
  543. void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
  544. src_bvl->bv_offset + offs;
  545. void *vto = page_address(dst_page) + dst_offs;
  546. int len = min_t(int, copy_size, src_bvl->bv_len - offs);
  547. BUG_ON(len < 0);
  548. memcpy(vto, vfrom, len);
  549. kunmap_atomic(vfrom, KM_USER0);
  550. seg++;
  551. offs = 0;
  552. dst_offs += len;
  553. copy_size -= len;
  554. }
  555. }
  556. /*
  557. * Copy all data for this packet to pkt->pages[], so that
  558. * a) The number of required segments for the write bio is minimized, which
  559. * is necessary for some scsi controllers.
  560. * b) The data can be used as cache to avoid read requests if we receive a
  561. * new write request for the same zone.
  562. */
  563. static void pkt_make_local_copy(struct packet_data *pkt, struct page **pages, int *offsets)
  564. {
  565. int f, p, offs;
  566. /* Copy all data to pkt->pages[] */
  567. p = 0;
  568. offs = 0;
  569. for (f = 0; f < pkt->frames; f++) {
  570. if (pages[f] != pkt->pages[p]) {
  571. void *vfrom = kmap_atomic(pages[f], KM_USER0) + offsets[f];
  572. void *vto = page_address(pkt->pages[p]) + offs;
  573. memcpy(vto, vfrom, CD_FRAMESIZE);
  574. kunmap_atomic(vfrom, KM_USER0);
  575. pages[f] = pkt->pages[p];
  576. offsets[f] = offs;
  577. } else {
  578. BUG_ON(offsets[f] != offs);
  579. }
  580. offs += CD_FRAMESIZE;
  581. if (offs >= PAGE_SIZE) {
  582. offs = 0;
  583. p++;
  584. }
  585. }
  586. }
  587. static int pkt_end_io_read(struct bio *bio, unsigned int bytes_done, int err)
  588. {
  589. struct packet_data *pkt = bio->bi_private;
  590. struct pktcdvd_device *pd = pkt->pd;
  591. BUG_ON(!pd);
  592. if (bio->bi_size)
  593. return 1;
  594. VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
  595. (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
  596. if (err)
  597. atomic_inc(&pkt->io_errors);
  598. if (atomic_dec_and_test(&pkt->io_wait)) {
  599. atomic_inc(&pkt->run_sm);
  600. wake_up(&pd->wqueue);
  601. }
  602. pkt_bio_finished(pd);
  603. return 0;
  604. }
  605. static int pkt_end_io_packet_write(struct bio *bio, unsigned int bytes_done, int err)
  606. {
  607. struct packet_data *pkt = bio->bi_private;
  608. struct pktcdvd_device *pd = pkt->pd;
  609. BUG_ON(!pd);
  610. if (bio->bi_size)
  611. return 1;
  612. VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
  613. pd->stats.pkt_ended++;
  614. pkt_bio_finished(pd);
  615. atomic_dec(&pkt->io_wait);
  616. atomic_inc(&pkt->run_sm);
  617. wake_up(&pd->wqueue);
  618. return 0;
  619. }
  620. /*
  621. * Schedule reads for the holes in a packet
  622. */
  623. static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
  624. {
  625. int frames_read = 0;
  626. struct bio *bio;
  627. int f;
  628. char written[PACKET_MAX_SIZE];
  629. BUG_ON(!pkt->orig_bios);
  630. atomic_set(&pkt->io_wait, 0);
  631. atomic_set(&pkt->io_errors, 0);
  632. /*
  633. * Figure out which frames we need to read before we can write.
  634. */
  635. memset(written, 0, sizeof(written));
  636. spin_lock(&pkt->lock);
  637. for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
  638. int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
  639. int num_frames = bio->bi_size / CD_FRAMESIZE;
  640. pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
  641. BUG_ON(first_frame < 0);
  642. BUG_ON(first_frame + num_frames > pkt->frames);
  643. for (f = first_frame; f < first_frame + num_frames; f++)
  644. written[f] = 1;
  645. }
  646. spin_unlock(&pkt->lock);
  647. if (pkt->cache_valid) {
  648. VPRINTK("pkt_gather_data: zone %llx cached\n",
  649. (unsigned long long)pkt->sector);
  650. goto out_account;
  651. }
  652. /*
  653. * Schedule reads for missing parts of the packet.
  654. */
  655. for (f = 0; f < pkt->frames; f++) {
  656. int p, offset;
  657. if (written[f])
  658. continue;
  659. bio = pkt->r_bios[f];
  660. bio_init(bio);
  661. bio->bi_max_vecs = 1;
  662. bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
  663. bio->bi_bdev = pd->bdev;
  664. bio->bi_end_io = pkt_end_io_read;
  665. bio->bi_private = pkt;
  666. p = (f * CD_FRAMESIZE) / PAGE_SIZE;
  667. offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
  668. VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
  669. f, pkt->pages[p], offset);
  670. if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
  671. BUG();
  672. atomic_inc(&pkt->io_wait);
  673. bio->bi_rw = READ;
  674. pkt_queue_bio(pd, bio);
  675. frames_read++;
  676. }
  677. out_account:
  678. VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
  679. frames_read, (unsigned long long)pkt->sector);
  680. pd->stats.pkt_started++;
  681. pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
  682. }
  683. /*
  684. * Find a packet matching zone, or the least recently used packet if
  685. * there is no match.
  686. */
  687. static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
  688. {
  689. struct packet_data *pkt;
  690. list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
  691. if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
  692. list_del_init(&pkt->list);
  693. if (pkt->sector != zone)
  694. pkt->cache_valid = 0;
  695. return pkt;
  696. }
  697. }
  698. BUG();
  699. return NULL;
  700. }
  701. static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
  702. {
  703. if (pkt->cache_valid) {
  704. list_add(&pkt->list, &pd->cdrw.pkt_free_list);
  705. } else {
  706. list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
  707. }
  708. }
  709. /*
  710. * recover a failed write, query for relocation if possible
  711. *
  712. * returns 1 if recovery is possible, or 0 if not
  713. *
  714. */
  715. static int pkt_start_recovery(struct packet_data *pkt)
  716. {
  717. /*
  718. * FIXME. We need help from the file system to implement
  719. * recovery handling.
  720. */
  721. return 0;
  722. #if 0
  723. struct request *rq = pkt->rq;
  724. struct pktcdvd_device *pd = rq->rq_disk->private_data;
  725. struct block_device *pkt_bdev;
  726. struct super_block *sb = NULL;
  727. unsigned long old_block, new_block;
  728. sector_t new_sector;
  729. pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
  730. if (pkt_bdev) {
  731. sb = get_super(pkt_bdev);
  732. bdput(pkt_bdev);
  733. }
  734. if (!sb)
  735. return 0;
  736. if (!sb->s_op || !sb->s_op->relocate_blocks)
  737. goto out;
  738. old_block = pkt->sector / (CD_FRAMESIZE >> 9);
  739. if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
  740. goto out;
  741. new_sector = new_block * (CD_FRAMESIZE >> 9);
  742. pkt->sector = new_sector;
  743. pkt->bio->bi_sector = new_sector;
  744. pkt->bio->bi_next = NULL;
  745. pkt->bio->bi_flags = 1 << BIO_UPTODATE;
  746. pkt->bio->bi_idx = 0;
  747. BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW));
  748. BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
  749. BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
  750. BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
  751. BUG_ON(pkt->bio->bi_private != pkt);
  752. drop_super(sb);
  753. return 1;
  754. out:
  755. drop_super(sb);
  756. return 0;
  757. #endif
  758. }
  759. static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
  760. {
  761. #if PACKET_DEBUG > 1
  762. static const char *state_name[] = {
  763. "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
  764. };
  765. enum packet_data_state old_state = pkt->state;
  766. VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
  767. state_name[old_state], state_name[state]);
  768. #endif
  769. pkt->state = state;
  770. }
  771. /*
  772. * Scan the work queue to see if we can start a new packet.
  773. * returns non-zero if any work was done.
  774. */
  775. static int pkt_handle_queue(struct pktcdvd_device *pd)
  776. {
  777. struct packet_data *pkt, *p;
  778. struct bio *bio = NULL;
  779. sector_t zone = 0; /* Suppress gcc warning */
  780. struct pkt_rb_node *node, *first_node;
  781. struct rb_node *n;
  782. VPRINTK("handle_queue\n");
  783. atomic_set(&pd->scan_queue, 0);
  784. if (list_empty(&pd->cdrw.pkt_free_list)) {
  785. VPRINTK("handle_queue: no pkt\n");
  786. return 0;
  787. }
  788. /*
  789. * Try to find a zone we are not already working on.
  790. */
  791. spin_lock(&pd->lock);
  792. first_node = pkt_rbtree_find(pd, pd->current_sector);
  793. if (!first_node) {
  794. n = rb_first(&pd->bio_queue);
  795. if (n)
  796. first_node = rb_entry(n, struct pkt_rb_node, rb_node);
  797. }
  798. node = first_node;
  799. while (node) {
  800. bio = node->bio;
  801. zone = ZONE(bio->bi_sector, pd);
  802. list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
  803. if (p->sector == zone) {
  804. bio = NULL;
  805. goto try_next_bio;
  806. }
  807. }
  808. break;
  809. try_next_bio:
  810. node = pkt_rbtree_next(node);
  811. if (!node) {
  812. n = rb_first(&pd->bio_queue);
  813. if (n)
  814. node = rb_entry(n, struct pkt_rb_node, rb_node);
  815. }
  816. if (node == first_node)
  817. node = NULL;
  818. }
  819. spin_unlock(&pd->lock);
  820. if (!bio) {
  821. VPRINTK("handle_queue: no bio\n");
  822. return 0;
  823. }
  824. pkt = pkt_get_packet_data(pd, zone);
  825. pd->current_sector = zone + pd->settings.size;
  826. pkt->sector = zone;
  827. BUG_ON(pkt->frames != pd->settings.size >> 2);
  828. pkt->write_size = 0;
  829. /*
  830. * Scan work queue for bios in the same zone and link them
  831. * to this packet.
  832. */
  833. spin_lock(&pd->lock);
  834. VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
  835. while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
  836. bio = node->bio;
  837. VPRINTK("pkt_handle_queue: found zone=%llx\n",
  838. (unsigned long long)ZONE(bio->bi_sector, pd));
  839. if (ZONE(bio->bi_sector, pd) != zone)
  840. break;
  841. pkt_rbtree_erase(pd, node);
  842. spin_lock(&pkt->lock);
  843. pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail);
  844. pkt->write_size += bio->bi_size / CD_FRAMESIZE;
  845. spin_unlock(&pkt->lock);
  846. }
  847. spin_unlock(&pd->lock);
  848. pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
  849. pkt_set_state(pkt, PACKET_WAITING_STATE);
  850. atomic_set(&pkt->run_sm, 1);
  851. spin_lock(&pd->cdrw.active_list_lock);
  852. list_add(&pkt->list, &pd->cdrw.pkt_active_list);
  853. spin_unlock(&pd->cdrw.active_list_lock);
  854. return 1;
  855. }
  856. /*
  857. * Assemble a bio to write one packet and queue the bio for processing
  858. * by the underlying block device.
  859. */
  860. static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
  861. {
  862. struct bio *bio;
  863. struct page *pages[PACKET_MAX_SIZE];
  864. int offsets[PACKET_MAX_SIZE];
  865. int f;
  866. int frames_write;
  867. for (f = 0; f < pkt->frames; f++) {
  868. pages[f] = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
  869. offsets[f] = (f * CD_FRAMESIZE) % PAGE_SIZE;
  870. }
  871. /*
  872. * Fill-in pages[] and offsets[] with data from orig_bios.
  873. */
  874. frames_write = 0;
  875. spin_lock(&pkt->lock);
  876. for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
  877. int segment = bio->bi_idx;
  878. int src_offs = 0;
  879. int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
  880. int num_frames = bio->bi_size / CD_FRAMESIZE;
  881. BUG_ON(first_frame < 0);
  882. BUG_ON(first_frame + num_frames > pkt->frames);
  883. for (f = first_frame; f < first_frame + num_frames; f++) {
  884. struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
  885. while (src_offs >= src_bvl->bv_len) {
  886. src_offs -= src_bvl->bv_len;
  887. segment++;
  888. BUG_ON(segment >= bio->bi_vcnt);
  889. src_bvl = bio_iovec_idx(bio, segment);
  890. }
  891. if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
  892. pages[f] = src_bvl->bv_page;
  893. offsets[f] = src_bvl->bv_offset + src_offs;
  894. } else {
  895. pkt_copy_bio_data(bio, segment, src_offs,
  896. pages[f], offsets[f]);
  897. }
  898. src_offs += CD_FRAMESIZE;
  899. frames_write++;
  900. }
  901. }
  902. pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
  903. spin_unlock(&pkt->lock);
  904. VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
  905. frames_write, (unsigned long long)pkt->sector);
  906. BUG_ON(frames_write != pkt->write_size);
  907. if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
  908. pkt_make_local_copy(pkt, pages, offsets);
  909. pkt->cache_valid = 1;
  910. } else {
  911. pkt->cache_valid = 0;
  912. }
  913. /* Start the write request */
  914. bio_init(pkt->w_bio);
  915. pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
  916. pkt->w_bio->bi_sector = pkt->sector;
  917. pkt->w_bio->bi_bdev = pd->bdev;
  918. pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
  919. pkt->w_bio->bi_private = pkt;
  920. for (f = 0; f < pkt->frames; f++) {
  921. if ((f + 1 < pkt->frames) && (pages[f + 1] == pages[f]) &&
  922. (offsets[f + 1] = offsets[f] + CD_FRAMESIZE)) {
  923. if (!bio_add_page(pkt->w_bio, pages[f], CD_FRAMESIZE * 2, offsets[f]))
  924. BUG();
  925. f++;
  926. } else {
  927. if (!bio_add_page(pkt->w_bio, pages[f], CD_FRAMESIZE, offsets[f]))
  928. BUG();
  929. }
  930. }
  931. VPRINTK("pktcdvd: vcnt=%d\n", pkt->w_bio->bi_vcnt);
  932. atomic_set(&pkt->io_wait, 1);
  933. pkt->w_bio->bi_rw = WRITE;
  934. pkt_queue_bio(pd, pkt->w_bio);
  935. }
  936. static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
  937. {
  938. struct bio *bio, *next;
  939. if (!uptodate)
  940. pkt->cache_valid = 0;
  941. /* Finish all bios corresponding to this packet */
  942. bio = pkt->orig_bios;
  943. while (bio) {
  944. next = bio->bi_next;
  945. bio->bi_next = NULL;
  946. bio_endio(bio, bio->bi_size, uptodate ? 0 : -EIO);
  947. bio = next;
  948. }
  949. pkt->orig_bios = pkt->orig_bios_tail = NULL;
  950. }
  951. static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
  952. {
  953. int uptodate;
  954. VPRINTK("run_state_machine: pkt %d\n", pkt->id);
  955. for (;;) {
  956. switch (pkt->state) {
  957. case PACKET_WAITING_STATE:
  958. if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
  959. return;
  960. pkt->sleep_time = 0;
  961. pkt_gather_data(pd, pkt);
  962. pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
  963. break;
  964. case PACKET_READ_WAIT_STATE:
  965. if (atomic_read(&pkt->io_wait) > 0)
  966. return;
  967. if (atomic_read(&pkt->io_errors) > 0) {
  968. pkt_set_state(pkt, PACKET_RECOVERY_STATE);
  969. } else {
  970. pkt_start_write(pd, pkt);
  971. }
  972. break;
  973. case PACKET_WRITE_WAIT_STATE:
  974. if (atomic_read(&pkt->io_wait) > 0)
  975. return;
  976. if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
  977. pkt_set_state(pkt, PACKET_FINISHED_STATE);
  978. } else {
  979. pkt_set_state(pkt, PACKET_RECOVERY_STATE);
  980. }
  981. break;
  982. case PACKET_RECOVERY_STATE:
  983. if (pkt_start_recovery(pkt)) {
  984. pkt_start_write(pd, pkt);
  985. } else {
  986. VPRINTK("No recovery possible\n");
  987. pkt_set_state(pkt, PACKET_FINISHED_STATE);
  988. }
  989. break;
  990. case PACKET_FINISHED_STATE:
  991. uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
  992. pkt_finish_packet(pkt, uptodate);
  993. return;
  994. default:
  995. BUG();
  996. break;
  997. }
  998. }
  999. }
  1000. static void pkt_handle_packets(struct pktcdvd_device *pd)
  1001. {
  1002. struct packet_data *pkt, *next;
  1003. VPRINTK("pkt_handle_packets\n");
  1004. /*
  1005. * Run state machine for active packets
  1006. */
  1007. list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
  1008. if (atomic_read(&pkt->run_sm) > 0) {
  1009. atomic_set(&pkt->run_sm, 0);
  1010. pkt_run_state_machine(pd, pkt);
  1011. }
  1012. }
  1013. /*
  1014. * Move no longer active packets to the free list
  1015. */
  1016. spin_lock(&pd->cdrw.active_list_lock);
  1017. list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
  1018. if (pkt->state == PACKET_FINISHED_STATE) {
  1019. list_del(&pkt->list);
  1020. pkt_put_packet_data(pd, pkt);
  1021. pkt_set_state(pkt, PACKET_IDLE_STATE);
  1022. atomic_set(&pd->scan_queue, 1);
  1023. }
  1024. }
  1025. spin_unlock(&pd->cdrw.active_list_lock);
  1026. }
  1027. static void pkt_count_states(struct pktcdvd_device *pd, int *states)
  1028. {
  1029. struct packet_data *pkt;
  1030. int i;
  1031. for (i = 0; i < PACKET_NUM_STATES; i++)
  1032. states[i] = 0;
  1033. spin_lock(&pd->cdrw.active_list_lock);
  1034. list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
  1035. states[pkt->state]++;
  1036. }
  1037. spin_unlock(&pd->cdrw.active_list_lock);
  1038. }
  1039. /*
  1040. * kcdrwd is woken up when writes have been queued for one of our
  1041. * registered devices
  1042. */
  1043. static int kcdrwd(void *foobar)
  1044. {
  1045. struct pktcdvd_device *pd = foobar;
  1046. struct packet_data *pkt;
  1047. long min_sleep_time, residue;
  1048. set_user_nice(current, -20);
  1049. for (;;) {
  1050. DECLARE_WAITQUEUE(wait, current);
  1051. /*
  1052. * Wait until there is something to do
  1053. */
  1054. add_wait_queue(&pd->wqueue, &wait);
  1055. for (;;) {
  1056. set_current_state(TASK_INTERRUPTIBLE);
  1057. /* Check if we need to run pkt_handle_queue */
  1058. if (atomic_read(&pd->scan_queue) > 0)
  1059. goto work_to_do;
  1060. /* Check if we need to run the state machine for some packet */
  1061. list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
  1062. if (atomic_read(&pkt->run_sm) > 0)
  1063. goto work_to_do;
  1064. }
  1065. /* Check if we need to process the iosched queues */
  1066. if (atomic_read(&pd->iosched.attention) != 0)
  1067. goto work_to_do;
  1068. /* Otherwise, go to sleep */
  1069. if (PACKET_DEBUG > 1) {
  1070. int states[PACKET_NUM_STATES];
  1071. pkt_count_states(pd, states);
  1072. VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
  1073. states[0], states[1], states[2], states[3],
  1074. states[4], states[5]);
  1075. }
  1076. min_sleep_time = MAX_SCHEDULE_TIMEOUT;
  1077. list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
  1078. if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
  1079. min_sleep_time = pkt->sleep_time;
  1080. }
  1081. generic_unplug_device(bdev_get_queue(pd->bdev));
  1082. VPRINTK("kcdrwd: sleeping\n");
  1083. residue = schedule_timeout(min_sleep_time);
  1084. VPRINTK("kcdrwd: wake up\n");
  1085. /* make swsusp happy with our thread */
  1086. try_to_freeze();
  1087. list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
  1088. if (!pkt->sleep_time)
  1089. continue;
  1090. pkt->sleep_time -= min_sleep_time - residue;
  1091. if (pkt->sleep_time <= 0) {
  1092. pkt->sleep_time = 0;
  1093. atomic_inc(&pkt->run_sm);
  1094. }
  1095. }
  1096. if (signal_pending(current)) {
  1097. flush_signals(current);
  1098. }
  1099. if (kthread_should_stop())
  1100. break;
  1101. }
  1102. work_to_do:
  1103. set_current_state(TASK_RUNNING);
  1104. remove_wait_queue(&pd->wqueue, &wait);
  1105. if (kthread_should_stop())
  1106. break;
  1107. /*
  1108. * if pkt_handle_queue returns true, we can queue
  1109. * another request.
  1110. */
  1111. while (pkt_handle_queue(pd))
  1112. ;
  1113. /*
  1114. * Handle packet state machine
  1115. */
  1116. pkt_handle_packets(pd);
  1117. /*
  1118. * Handle iosched queues
  1119. */
  1120. pkt_iosched_process_queue(pd);
  1121. }
  1122. return 0;
  1123. }
  1124. static void pkt_print_settings(struct pktcdvd_device *pd)
  1125. {
  1126. printk("pktcdvd: %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
  1127. printk("%u blocks, ", pd->settings.size >> 2);
  1128. printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
  1129. }
  1130. static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
  1131. {
  1132. memset(cgc->cmd, 0, sizeof(cgc->cmd));
  1133. cgc->cmd[0] = GPCMD_MODE_SENSE_10;
  1134. cgc->cmd[2] = page_code | (page_control << 6);
  1135. cgc->cmd[7] = cgc->buflen >> 8;
  1136. cgc->cmd[8] = cgc->buflen & 0xff;
  1137. cgc->data_direction = CGC_DATA_READ;
  1138. return pkt_generic_packet(pd, cgc);
  1139. }
  1140. static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
  1141. {
  1142. memset(cgc->cmd, 0, sizeof(cgc->cmd));
  1143. memset(cgc->buffer, 0, 2);
  1144. cgc->cmd[0] = GPCMD_MODE_SELECT_10;
  1145. cgc->cmd[1] = 0x10; /* PF */
  1146. cgc->cmd[7] = cgc->buflen >> 8;
  1147. cgc->cmd[8] = cgc->buflen & 0xff;
  1148. cgc->data_direction = CGC_DATA_WRITE;
  1149. return pkt_generic_packet(pd, cgc);
  1150. }
  1151. static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
  1152. {
  1153. struct packet_command cgc;
  1154. int ret;
  1155. /* set up command and get the disc info */
  1156. init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
  1157. cgc.cmd[0] = GPCMD_READ_DISC_INFO;
  1158. cgc.cmd[8] = cgc.buflen = 2;
  1159. cgc.quiet = 1;
  1160. if ((ret = pkt_generic_packet(pd, &cgc)))
  1161. return ret;
  1162. /* not all drives have the same disc_info length, so requeue
  1163. * packet with the length the drive tells us it can supply
  1164. */
  1165. cgc.buflen = be16_to_cpu(di->disc_information_length) +
  1166. sizeof(di->disc_information_length);
  1167. if (cgc.buflen > sizeof(disc_information))
  1168. cgc.buflen = sizeof(disc_information);
  1169. cgc.cmd[8] = cgc.buflen;
  1170. return pkt_generic_packet(pd, &cgc);
  1171. }
  1172. static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
  1173. {
  1174. struct packet_command cgc;
  1175. int ret;
  1176. init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
  1177. cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
  1178. cgc.cmd[1] = type & 3;
  1179. cgc.cmd[4] = (track & 0xff00) >> 8;
  1180. cgc.cmd[5] = track & 0xff;
  1181. cgc.cmd[8] = 8;
  1182. cgc.quiet = 1;
  1183. if ((ret = pkt_generic_packet(pd, &cgc)))
  1184. return ret;
  1185. cgc.buflen = be16_to_cpu(ti->track_information_length) +
  1186. sizeof(ti->track_information_length);
  1187. if (cgc.buflen > sizeof(track_information))
  1188. cgc.buflen = sizeof(track_information);
  1189. cgc.cmd[8] = cgc.buflen;
  1190. return pkt_generic_packet(pd, &cgc);
  1191. }
  1192. static int pkt_get_last_written(struct pktcdvd_device *pd, long *last_written)
  1193. {
  1194. disc_information di;
  1195. track_information ti;
  1196. __u32 last_track;
  1197. int ret = -1;
  1198. if ((ret = pkt_get_disc_info(pd, &di)))
  1199. return ret;
  1200. last_track = (di.last_track_msb << 8) | di.last_track_lsb;
  1201. if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
  1202. return ret;
  1203. /* if this track is blank, try the previous. */
  1204. if (ti.blank) {
  1205. last_track--;
  1206. if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
  1207. return ret;
  1208. }
  1209. /* if last recorded field is valid, return it. */
  1210. if (ti.lra_v) {
  1211. *last_written = be32_to_cpu(ti.last_rec_address);
  1212. } else {
  1213. /* make it up instead */
  1214. *last_written = be32_to_cpu(ti.track_start) +
  1215. be32_to_cpu(ti.track_size);
  1216. if (ti.free_blocks)
  1217. *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
  1218. }
  1219. return 0;
  1220. }
  1221. /*
  1222. * write mode select package based on pd->settings
  1223. */
  1224. static int pkt_set_write_settings(struct pktcdvd_device *pd)
  1225. {
  1226. struct packet_command cgc;
  1227. struct request_sense sense;
  1228. write_param_page *wp;
  1229. char buffer[128];
  1230. int ret, size;
  1231. /* doesn't apply to DVD+RW or DVD-RAM */
  1232. if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
  1233. return 0;
  1234. memset(buffer, 0, sizeof(buffer));
  1235. init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
  1236. cgc.sense = &sense;
  1237. if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
  1238. pkt_dump_sense(&cgc);
  1239. return ret;
  1240. }
  1241. size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
  1242. pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
  1243. if (size > sizeof(buffer))
  1244. size = sizeof(buffer);
  1245. /*
  1246. * now get it all
  1247. */
  1248. init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
  1249. cgc.sense = &sense;
  1250. if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
  1251. pkt_dump_sense(&cgc);
  1252. return ret;
  1253. }
  1254. /*
  1255. * write page is offset header + block descriptor length
  1256. */
  1257. wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
  1258. wp->fp = pd->settings.fp;
  1259. wp->track_mode = pd->settings.track_mode;
  1260. wp->write_type = pd->settings.write_type;
  1261. wp->data_block_type = pd->settings.block_mode;
  1262. wp->multi_session = 0;
  1263. #ifdef PACKET_USE_LS
  1264. wp->link_size = 7;
  1265. wp->ls_v = 1;
  1266. #endif
  1267. if (wp->data_block_type == PACKET_BLOCK_MODE1) {
  1268. wp->session_format = 0;
  1269. wp->subhdr2 = 0x20;
  1270. } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
  1271. wp->session_format = 0x20;
  1272. wp->subhdr2 = 8;
  1273. #if 0
  1274. wp->mcn[0] = 0x80;
  1275. memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
  1276. #endif
  1277. } else {
  1278. /*
  1279. * paranoia
  1280. */
  1281. printk("pktcdvd: write mode wrong %d\n", wp->data_block_type);
  1282. return 1;
  1283. }
  1284. wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
  1285. cgc.buflen = cgc.cmd[8] = size;
  1286. if ((ret = pkt_mode_select(pd, &cgc))) {
  1287. pkt_dump_sense(&cgc);
  1288. return ret;
  1289. }
  1290. pkt_print_settings(pd);
  1291. return 0;
  1292. }
  1293. /*
  1294. * 0 -- we can write to this track, 1 -- we can't
  1295. */
  1296. static int pkt_good_track(track_information *ti)
  1297. {
  1298. /*
  1299. * only good for CD-RW at the moment, not DVD-RW
  1300. */
  1301. /*
  1302. * FIXME: only for FP
  1303. */
  1304. if (ti->fp == 0)
  1305. return 0;
  1306. /*
  1307. * "good" settings as per Mt Fuji.
  1308. */
  1309. if (ti->rt == 0 && ti->blank == 0 && ti->packet == 1)
  1310. return 0;
  1311. if (ti->rt == 0 && ti->blank == 1 && ti->packet == 1)
  1312. return 0;
  1313. if (ti->rt == 1 && ti->blank == 0 && ti->packet == 1)
  1314. return 0;
  1315. printk("pktcdvd: bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
  1316. return 1;
  1317. }
  1318. /*
  1319. * 0 -- we can write to this disc, 1 -- we can't
  1320. */
  1321. static int pkt_good_disc(struct pktcdvd_device *pd, disc_information *di)
  1322. {
  1323. switch (pd->mmc3_profile) {
  1324. case 0x0a: /* CD-RW */
  1325. case 0xffff: /* MMC3 not supported */
  1326. break;
  1327. case 0x1a: /* DVD+RW */
  1328. case 0x13: /* DVD-RW */
  1329. case 0x12: /* DVD-RAM */
  1330. return 0;
  1331. default:
  1332. printk("pktcdvd: Wrong disc profile (%x)\n", pd->mmc3_profile);
  1333. return 1;
  1334. }
  1335. /*
  1336. * for disc type 0xff we should probably reserve a new track.
  1337. * but i'm not sure, should we leave this to user apps? probably.
  1338. */
  1339. if (di->disc_type == 0xff) {
  1340. printk("pktcdvd: Unknown disc. No track?\n");
  1341. return 1;
  1342. }
  1343. if (di->disc_type != 0x20 && di->disc_type != 0) {
  1344. printk("pktcdvd: Wrong disc type (%x)\n", di->disc_type);
  1345. return 1;
  1346. }
  1347. if (di->erasable == 0) {
  1348. printk("pktcdvd: Disc not erasable\n");
  1349. return 1;
  1350. }
  1351. if (di->border_status == PACKET_SESSION_RESERVED) {
  1352. printk("pktcdvd: Can't write to last track (reserved)\n");
  1353. return 1;
  1354. }
  1355. return 0;
  1356. }
  1357. static int pkt_probe_settings(struct pktcdvd_device *pd)
  1358. {
  1359. struct packet_command cgc;
  1360. unsigned char buf[12];
  1361. disc_information di;
  1362. track_information ti;
  1363. int ret, track;
  1364. init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
  1365. cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
  1366. cgc.cmd[8] = 8;
  1367. ret = pkt_generic_packet(pd, &cgc);
  1368. pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
  1369. memset(&di, 0, sizeof(disc_information));
  1370. memset(&ti, 0, sizeof(track_information));
  1371. if ((ret = pkt_get_disc_info(pd, &di))) {
  1372. printk("failed get_disc\n");
  1373. return ret;
  1374. }
  1375. if (pkt_good_disc(pd, &di))
  1376. return -ENXIO;
  1377. switch (pd->mmc3_profile) {
  1378. case 0x1a: /* DVD+RW */
  1379. printk("pktcdvd: inserted media is DVD+RW\n");
  1380. break;
  1381. case 0x13: /* DVD-RW */
  1382. printk("pktcdvd: inserted media is DVD-RW\n");
  1383. break;
  1384. case 0x12: /* DVD-RAM */
  1385. printk("pktcdvd: inserted media is DVD-RAM\n");
  1386. break;
  1387. default:
  1388. printk("pktcdvd: inserted media is CD-R%s\n", di.erasable ? "W" : "");
  1389. break;
  1390. }
  1391. pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
  1392. track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
  1393. if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
  1394. printk("pktcdvd: failed get_track\n");
  1395. return ret;
  1396. }
  1397. if (pkt_good_track(&ti)) {
  1398. printk("pktcdvd: can't write to this track\n");
  1399. return -ENXIO;
  1400. }
  1401. /*
  1402. * we keep packet size in 512 byte units, makes it easier to
  1403. * deal with request calculations.
  1404. */
  1405. pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
  1406. if (pd->settings.size == 0) {
  1407. printk("pktcdvd: detected zero packet size!\n");
  1408. return -ENXIO;
  1409. }
  1410. if (pd->settings.size > PACKET_MAX_SECTORS) {
  1411. printk("pktcdvd: packet size is too big\n");
  1412. return -ENXIO;
  1413. }
  1414. pd->settings.fp = ti.fp;
  1415. pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
  1416. if (ti.nwa_v) {
  1417. pd->nwa = be32_to_cpu(ti.next_writable);
  1418. set_bit(PACKET_NWA_VALID, &pd->flags);
  1419. }
  1420. /*
  1421. * in theory we could use lra on -RW media as well and just zero
  1422. * blocks that haven't been written yet, but in practice that
  1423. * is just a no-go. we'll use that for -R, naturally.
  1424. */
  1425. if (ti.lra_v) {
  1426. pd->lra = be32_to_cpu(ti.last_rec_address);
  1427. set_bit(PACKET_LRA_VALID, &pd->flags);
  1428. } else {
  1429. pd->lra = 0xffffffff;
  1430. set_bit(PACKET_LRA_VALID, &pd->flags);
  1431. }
  1432. /*
  1433. * fine for now
  1434. */
  1435. pd->settings.link_loss = 7;
  1436. pd->settings.write_type = 0; /* packet */
  1437. pd->settings.track_mode = ti.track_mode;
  1438. /*
  1439. * mode1 or mode2 disc
  1440. */
  1441. switch (ti.data_mode) {
  1442. case PACKET_MODE1:
  1443. pd->settings.block_mode = PACKET_BLOCK_MODE1;
  1444. break;
  1445. case PACKET_MODE2:
  1446. pd->settings.block_mode = PACKET_BLOCK_MODE2;
  1447. break;
  1448. default:
  1449. printk("pktcdvd: unknown data mode\n");
  1450. return 1;
  1451. }
  1452. return 0;
  1453. }
  1454. /*
  1455. * enable/disable write caching on drive
  1456. */
  1457. static int pkt_write_caching(struct pktcdvd_device *pd, int set)
  1458. {
  1459. struct packet_command cgc;
  1460. struct request_sense sense;
  1461. unsigned char buf[64];
  1462. int ret;
  1463. memset(buf, 0, sizeof(buf));
  1464. init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
  1465. cgc.sense = &sense;
  1466. cgc.buflen = pd->mode_offset + 12;
  1467. /*
  1468. * caching mode page might not be there, so quiet this command
  1469. */
  1470. cgc.quiet = 1;
  1471. if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
  1472. return ret;
  1473. buf[pd->mode_offset + 10] |= (!!set << 2);
  1474. cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
  1475. ret = pkt_mode_select(pd, &cgc);
  1476. if (ret) {
  1477. printk("pktcdvd: write caching control failed\n");
  1478. pkt_dump_sense(&cgc);
  1479. } else if (!ret && set)
  1480. printk("pktcdvd: enabled write caching on %s\n", pd->name);
  1481. return ret;
  1482. }
  1483. static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
  1484. {
  1485. struct packet_command cgc;
  1486. init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
  1487. cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
  1488. cgc.cmd[4] = lockflag ? 1 : 0;
  1489. return pkt_generic_packet(pd, &cgc);
  1490. }
  1491. /*
  1492. * Returns drive maximum write speed
  1493. */
  1494. static int pkt_get_max_speed(struct pktcdvd_device *pd, unsigned *write_speed)
  1495. {
  1496. struct packet_command cgc;
  1497. struct request_sense sense;
  1498. unsigned char buf[256+18];
  1499. unsigned char *cap_buf;
  1500. int ret, offset;
  1501. memset(buf, 0, sizeof(buf));
  1502. cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
  1503. init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
  1504. cgc.sense = &sense;
  1505. ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
  1506. if (ret) {
  1507. cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
  1508. sizeof(struct mode_page_header);
  1509. ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
  1510. if (ret) {
  1511. pkt_dump_sense(&cgc);
  1512. return ret;
  1513. }
  1514. }
  1515. offset = 20; /* Obsoleted field, used by older drives */
  1516. if (cap_buf[1] >= 28)
  1517. offset = 28; /* Current write speed selected */
  1518. if (cap_buf[1] >= 30) {
  1519. /* If the drive reports at least one "Logical Unit Write
  1520. * Speed Performance Descriptor Block", use the information
  1521. * in the first block. (contains the highest speed)
  1522. */
  1523. int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
  1524. if (num_spdb > 0)
  1525. offset = 34;
  1526. }
  1527. *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
  1528. return 0;
  1529. }
  1530. /* These tables from cdrecord - I don't have orange book */
  1531. /* standard speed CD-RW (1-4x) */
  1532. static char clv_to_speed[16] = {
  1533. /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
  1534. 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
  1535. };
  1536. /* high speed CD-RW (-10x) */
  1537. static char hs_clv_to_speed[16] = {
  1538. /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
  1539. 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
  1540. };
  1541. /* ultra high speed CD-RW */
  1542. static char us_clv_to_speed[16] = {
  1543. /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
  1544. 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
  1545. };
  1546. /*
  1547. * reads the maximum media speed from ATIP
  1548. */
  1549. static int pkt_media_speed(struct pktcdvd_device *pd, unsigned *speed)
  1550. {
  1551. struct packet_command cgc;
  1552. struct request_sense sense;
  1553. unsigned char buf[64];
  1554. unsigned int size, st, sp;
  1555. int ret;
  1556. init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
  1557. cgc.sense = &sense;
  1558. cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
  1559. cgc.cmd[1] = 2;
  1560. cgc.cmd[2] = 4; /* READ ATIP */
  1561. cgc.cmd[8] = 2;
  1562. ret = pkt_generic_packet(pd, &cgc);
  1563. if (ret) {
  1564. pkt_dump_sense(&cgc);
  1565. return ret;
  1566. }
  1567. size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
  1568. if (size > sizeof(buf))
  1569. size = sizeof(buf);
  1570. init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
  1571. cgc.sense = &sense;
  1572. cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
  1573. cgc.cmd[1] = 2;
  1574. cgc.cmd[2] = 4;
  1575. cgc.cmd[8] = size;
  1576. ret = pkt_generic_packet(pd, &cgc);
  1577. if (ret) {
  1578. pkt_dump_sense(&cgc);
  1579. return ret;
  1580. }
  1581. if (!buf[6] & 0x40) {
  1582. printk("pktcdvd: Disc type is not CD-RW\n");
  1583. return 1;
  1584. }
  1585. if (!buf[6] & 0x4) {
  1586. printk("pktcdvd: A1 values on media are not valid, maybe not CDRW?\n");
  1587. return 1;
  1588. }
  1589. st = (buf[6] >> 3) & 0x7; /* disc sub-type */
  1590. sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
  1591. /* Info from cdrecord */
  1592. switch (st) {
  1593. case 0: /* standard speed */
  1594. *speed = clv_to_speed[sp];
  1595. break;
  1596. case 1: /* high speed */
  1597. *speed = hs_clv_to_speed[sp];
  1598. break;
  1599. case 2: /* ultra high speed */
  1600. *speed = us_clv_to_speed[sp];
  1601. break;
  1602. default:
  1603. printk("pktcdvd: Unknown disc sub-type %d\n",st);
  1604. return 1;
  1605. }
  1606. if (*speed) {
  1607. printk("pktcdvd: Max. media speed: %d\n",*speed);
  1608. return 0;
  1609. } else {
  1610. printk("pktcdvd: Unknown speed %d for sub-type %d\n",sp,st);
  1611. return 1;
  1612. }
  1613. }
  1614. static int pkt_perform_opc(struct pktcdvd_device *pd)
  1615. {
  1616. struct packet_command cgc;
  1617. struct request_sense sense;
  1618. int ret;
  1619. VPRINTK("pktcdvd: Performing OPC\n");
  1620. init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
  1621. cgc.sense = &sense;
  1622. cgc.timeout = 60*HZ;
  1623. cgc.cmd[0] = GPCMD_SEND_OPC;
  1624. cgc.cmd[1] = 1;
  1625. if ((ret = pkt_generic_packet(pd, &cgc)))
  1626. pkt_dump_sense(&cgc);
  1627. return ret;
  1628. }
  1629. static int pkt_open_write(struct pktcdvd_device *pd)
  1630. {
  1631. int ret;
  1632. unsigned int write_speed, media_write_speed, read_speed;
  1633. if ((ret = pkt_probe_settings(pd))) {
  1634. DPRINTK("pktcdvd: %s failed probe\n", pd->name);
  1635. return -EIO;
  1636. }
  1637. if ((ret = pkt_set_write_settings(pd))) {
  1638. DPRINTK("pktcdvd: %s failed saving write settings\n", pd->name);
  1639. return -EIO;
  1640. }
  1641. pkt_write_caching(pd, USE_WCACHING);
  1642. if ((ret = pkt_get_max_speed(pd, &write_speed)))
  1643. write_speed = 16 * 177;
  1644. switch (pd->mmc3_profile) {
  1645. case 0x13: /* DVD-RW */
  1646. case 0x1a: /* DVD+RW */
  1647. case 0x12: /* DVD-RAM */
  1648. DPRINTK("pktcdvd: write speed %ukB/s\n", write_speed);
  1649. break;
  1650. default:
  1651. if ((ret = pkt_media_speed(pd, &media_write_speed)))
  1652. media_write_speed = 16;
  1653. write_speed = min(write_speed, media_write_speed * 177);
  1654. DPRINTK("pktcdvd: write speed %ux\n", write_speed / 176);
  1655. break;
  1656. }
  1657. read_speed = write_speed;
  1658. if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
  1659. DPRINTK("pktcdvd: %s couldn't set write speed\n", pd->name);
  1660. return -EIO;
  1661. }
  1662. pd->write_speed = write_speed;
  1663. pd->read_speed = read_speed;
  1664. if ((ret = pkt_perform_opc(pd))) {
  1665. DPRINTK("pktcdvd: %s Optimum Power Calibration failed\n", pd->name);
  1666. }
  1667. return 0;
  1668. }
  1669. /*
  1670. * called at open time.
  1671. */
  1672. static int pkt_open_dev(struct pktcdvd_device *pd, int write)
  1673. {
  1674. int ret;
  1675. long lba;
  1676. request_queue_t *q;
  1677. /*
  1678. * We need to re-open the cdrom device without O_NONBLOCK to be able
  1679. * to read/write from/to it. It is already opened in O_NONBLOCK mode
  1680. * so bdget() can't fail.
  1681. */
  1682. bdget(pd->bdev->bd_dev);
  1683. if ((ret = blkdev_get(pd->bdev, FMODE_READ, O_RDONLY)))
  1684. goto out;
  1685. if ((ret = bd_claim(pd->bdev, pd)))
  1686. goto out_putdev;
  1687. if ((ret = pkt_get_last_written(pd, &lba))) {
  1688. printk("pktcdvd: pkt_get_last_written failed\n");
  1689. goto out_unclaim;
  1690. }
  1691. set_capacity(pd->disk, lba << 2);
  1692. set_capacity(pd->bdev->bd_disk, lba << 2);
  1693. bd_set_size(pd->bdev, (loff_t)lba << 11);
  1694. q = bdev_get_queue(pd->bdev);
  1695. if (write) {
  1696. if ((ret = pkt_open_write(pd)))
  1697. goto out_unclaim;
  1698. /*
  1699. * Some CDRW drives can not handle writes larger than one packet,
  1700. * even if the size is a multiple of the packet size.
  1701. */
  1702. spin_lock_irq(q->queue_lock);
  1703. blk_queue_max_sectors(q, pd->settings.size);
  1704. spin_unlock_irq(q->queue_lock);
  1705. set_bit(PACKET_WRITABLE, &pd->flags);
  1706. } else {
  1707. pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
  1708. clear_bit(PACKET_WRITABLE, &pd->flags);
  1709. }
  1710. if ((ret = pkt_set_segment_merging(pd, q)))
  1711. goto out_unclaim;
  1712. if (write) {
  1713. if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
  1714. printk("pktcdvd: not enough memory for buffers\n");
  1715. ret = -ENOMEM;
  1716. goto out_unclaim;
  1717. }
  1718. printk("pktcdvd: %lukB available on disc\n", lba << 1);
  1719. }
  1720. return 0;
  1721. out_unclaim:
  1722. bd_release(pd->bdev);
  1723. out_putdev:
  1724. blkdev_put(pd->bdev);
  1725. out:
  1726. return ret;
  1727. }
  1728. /*
  1729. * called when the device is closed. makes sure that the device flushes
  1730. * the internal cache before we close.
  1731. */
  1732. static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
  1733. {
  1734. if (flush && pkt_flush_cache(pd))
  1735. DPRINTK("pktcdvd: %s not flushing cache\n", pd->name);
  1736. pkt_lock_door(pd, 0);
  1737. pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
  1738. bd_release(pd->bdev);
  1739. blkdev_put(pd->bdev);
  1740. pkt_shrink_pktlist(pd);
  1741. }
  1742. static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor)
  1743. {
  1744. if (dev_minor >= MAX_WRITERS)
  1745. return NULL;
  1746. return pkt_devs[dev_minor];
  1747. }
  1748. static int pkt_open(struct inode *inode, struct file *file)
  1749. {
  1750. struct pktcdvd_device *pd = NULL;
  1751. int ret;
  1752. VPRINTK("pktcdvd: entering open\n");
  1753. down(&ctl_mutex);
  1754. pd = pkt_find_dev_from_minor(iminor(inode));
  1755. if (!pd) {
  1756. ret = -ENODEV;
  1757. goto out;
  1758. }
  1759. BUG_ON(pd->refcnt < 0);
  1760. pd->refcnt++;
  1761. if (pd->refcnt > 1) {
  1762. if ((file->f_mode & FMODE_WRITE) &&
  1763. !test_bit(PACKET_WRITABLE, &pd->flags)) {
  1764. ret = -EBUSY;
  1765. goto out_dec;
  1766. }
  1767. } else {
  1768. if (pkt_open_dev(pd, file->f_mode & FMODE_WRITE)) {
  1769. ret = -EIO;
  1770. goto out_dec;
  1771. }
  1772. /*
  1773. * needed here as well, since ext2 (among others) may change
  1774. * the blocksize at mount time
  1775. */
  1776. set_blocksize(inode->i_bdev, CD_FRAMESIZE);
  1777. }
  1778. up(&ctl_mutex);
  1779. return 0;
  1780. out_dec:
  1781. pd->refcnt--;
  1782. out:
  1783. VPRINTK("pktcdvd: failed open (%d)\n", ret);
  1784. up(&ctl_mutex);
  1785. return ret;
  1786. }
  1787. static int pkt_close(struct inode *inode, struct file *file)
  1788. {
  1789. struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
  1790. int ret = 0;
  1791. down(&ctl_mutex);
  1792. pd->refcnt--;
  1793. BUG_ON(pd->refcnt < 0);
  1794. if (pd->refcnt == 0) {
  1795. int flush = test_bit(PACKET_WRITABLE, &pd->flags);
  1796. pkt_release_dev(pd, flush);
  1797. }
  1798. up(&ctl_mutex);
  1799. return ret;
  1800. }
  1801. static void *psd_pool_alloc(gfp_t gfp_mask, void *data)
  1802. {
  1803. return kmalloc(sizeof(struct packet_stacked_data), gfp_mask);
  1804. }
  1805. static void psd_pool_free(void *ptr, void *data)
  1806. {
  1807. kfree(ptr);
  1808. }
  1809. static int pkt_end_io_read_cloned(struct bio *bio, unsigned int bytes_done, int err)
  1810. {
  1811. struct packet_stacked_data *psd = bio->bi_private;
  1812. struct pktcdvd_device *pd = psd->pd;
  1813. if (bio->bi_size)
  1814. return 1;
  1815. bio_put(bio);
  1816. bio_endio(psd->bio, psd->bio->bi_size, err);
  1817. mempool_free(psd, psd_pool);
  1818. pkt_bio_finished(pd);
  1819. return 0;
  1820. }
  1821. static int pkt_make_request(request_queue_t *q, struct bio *bio)
  1822. {
  1823. struct pktcdvd_device *pd;
  1824. char b[BDEVNAME_SIZE];
  1825. sector_t zone;
  1826. struct packet_data *pkt;
  1827. int was_empty, blocked_bio;
  1828. struct pkt_rb_node *node;
  1829. pd = q->queuedata;
  1830. if (!pd) {
  1831. printk("pktcdvd: %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
  1832. goto end_io;
  1833. }
  1834. /*
  1835. * Clone READ bios so we can have our own bi_end_io callback.
  1836. */
  1837. if (bio_data_dir(bio) == READ) {
  1838. struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
  1839. struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
  1840. psd->pd = pd;
  1841. psd->bio = bio;
  1842. cloned_bio->bi_bdev = pd->bdev;
  1843. cloned_bio->bi_private = psd;
  1844. cloned_bio->bi_end_io = pkt_end_io_read_cloned;
  1845. pd->stats.secs_r += bio->bi_size >> 9;
  1846. pkt_queue_bio(pd, cloned_bio);
  1847. return 0;
  1848. }
  1849. if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
  1850. printk("pktcdvd: WRITE for ro device %s (%llu)\n",
  1851. pd->name, (unsigned long long)bio->bi_sector);
  1852. goto end_io;
  1853. }
  1854. if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
  1855. printk("pktcdvd: wrong bio size\n");
  1856. goto end_io;
  1857. }
  1858. blk_queue_bounce(q, &bio);
  1859. zone = ZONE(bio->bi_sector, pd);
  1860. VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
  1861. (unsigned long long)bio->bi_sector,
  1862. (unsigned long long)(bio->bi_sector + bio_sectors(bio)));
  1863. /* Check if we have to split the bio */
  1864. {
  1865. struct bio_pair *bp;
  1866. sector_t last_zone;
  1867. int first_sectors;
  1868. last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
  1869. if (last_zone != zone) {
  1870. BUG_ON(last_zone != zone + pd->settings.size);
  1871. first_sectors = last_zone - bio->bi_sector;
  1872. bp = bio_split(bio, bio_split_pool, first_sectors);
  1873. BUG_ON(!bp);
  1874. pkt_make_request(q, &bp->bio1);
  1875. pkt_make_request(q, &bp->bio2);
  1876. bio_pair_release(bp);
  1877. return 0;
  1878. }
  1879. }
  1880. /*
  1881. * If we find a matching packet in state WAITING or READ_WAIT, we can
  1882. * just append this bio to that packet.
  1883. */
  1884. spin_lock(&pd->cdrw.active_list_lock);
  1885. blocked_bio = 0;
  1886. list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
  1887. if (pkt->sector == zone) {
  1888. spin_lock(&pkt->lock);
  1889. if ((pkt->state == PACKET_WAITING_STATE) ||
  1890. (pkt->state == PACKET_READ_WAIT_STATE)) {
  1891. pkt_add_list_last(bio, &pkt->orig_bios,
  1892. &pkt->orig_bios_tail);
  1893. pkt->write_size += bio->bi_size / CD_FRAMESIZE;
  1894. if ((pkt->write_size >= pkt->frames) &&
  1895. (pkt->state == PACKET_WAITING_STATE)) {
  1896. atomic_inc(&pkt->run_sm);
  1897. wake_up(&pd->wqueue);
  1898. }
  1899. spin_unlock(&pkt->lock);
  1900. spin_unlock(&pd->cdrw.active_list_lock);
  1901. return 0;
  1902. } else {
  1903. blocked_bio = 1;
  1904. }
  1905. spin_unlock(&pkt->lock);
  1906. }
  1907. }
  1908. spin_unlock(&pd->cdrw.active_list_lock);
  1909. /*
  1910. * No matching packet found. Store the bio in the work queue.
  1911. */
  1912. node = mempool_alloc(pd->rb_pool, GFP_NOIO);
  1913. node->bio = bio;
  1914. spin_lock(&pd->lock);
  1915. BUG_ON(pd->bio_queue_size < 0);
  1916. was_empty = (pd->bio_queue_size == 0);
  1917. pkt_rbtree_insert(pd, node);
  1918. spin_unlock(&pd->lock);
  1919. /*
  1920. * Wake up the worker thread.
  1921. */
  1922. atomic_set(&pd->scan_queue, 1);
  1923. if (was_empty) {
  1924. /* This wake_up is required for correct operation */
  1925. wake_up(&pd->wqueue);
  1926. } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
  1927. /*
  1928. * This wake up is not required for correct operation,
  1929. * but improves performance in some cases.
  1930. */
  1931. wake_up(&pd->wqueue);
  1932. }
  1933. return 0;
  1934. end_io:
  1935. bio_io_error(bio, bio->bi_size);
  1936. return 0;
  1937. }
  1938. static int pkt_merge_bvec(request_queue_t *q, struct bio *bio, struct bio_vec *bvec)
  1939. {
  1940. struct pktcdvd_device *pd = q->queuedata;
  1941. sector_t zone = ZONE(bio->bi_sector, pd);
  1942. int used = ((bio->bi_sector - zone) << 9) + bio->bi_size;
  1943. int remaining = (pd->settings.size << 9) - used;
  1944. int remaining2;
  1945. /*
  1946. * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
  1947. * boundary, pkt_make_request() will split the bio.
  1948. */
  1949. remaining2 = PAGE_SIZE - bio->bi_size;
  1950. remaining = max(remaining, remaining2);
  1951. BUG_ON(remaining < 0);
  1952. return remaining;
  1953. }
  1954. static void pkt_init_queue(struct pktcdvd_device *pd)
  1955. {
  1956. request_queue_t *q = pd->disk->queue;
  1957. blk_queue_make_request(q, pkt_make_request);
  1958. blk_queue_hardsect_size(q, CD_FRAMESIZE);
  1959. blk_queue_max_sectors(q, PACKET_MAX_SECTORS);
  1960. blk_queue_merge_bvec(q, pkt_merge_bvec);
  1961. q->queuedata = pd;
  1962. }
  1963. static int pkt_seq_show(struct seq_file *m, void *p)
  1964. {
  1965. struct pktcdvd_device *pd = m->private;
  1966. char *msg;
  1967. char bdev_buf[BDEVNAME_SIZE];
  1968. int states[PACKET_NUM_STATES];
  1969. seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
  1970. bdevname(pd->bdev, bdev_buf));
  1971. seq_printf(m, "\nSettings:\n");
  1972. seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
  1973. if (pd->settings.write_type == 0)
  1974. msg = "Packet";
  1975. else
  1976. msg = "Unknown";
  1977. seq_printf(m, "\twrite type:\t\t%s\n", msg);
  1978. seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
  1979. seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
  1980. seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
  1981. if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
  1982. msg = "Mode 1";
  1983. else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
  1984. msg = "Mode 2";
  1985. else
  1986. msg = "Unknown";
  1987. seq_printf(m, "\tblock mode:\t\t%s\n", msg);
  1988. seq_printf(m, "\nStatistics:\n");
  1989. seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
  1990. seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
  1991. seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
  1992. seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
  1993. seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
  1994. seq_printf(m, "\nMisc:\n");
  1995. seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
  1996. seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
  1997. seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
  1998. seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
  1999. seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
  2000. seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
  2001. seq_printf(m, "\nQueue state:\n");
  2002. seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
  2003. seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
  2004. seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
  2005. pkt_count_states(pd, states);
  2006. seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
  2007. states[0], states[1], states[2], states[3], states[4], states[5]);
  2008. return 0;
  2009. }
  2010. static int pkt_seq_open(struct inode *inode, struct file *file)
  2011. {
  2012. return single_open(file, pkt_seq_show, PDE(inode)->data);
  2013. }
  2014. static struct file_operations pkt_proc_fops = {
  2015. .open = pkt_seq_open,
  2016. .read = seq_read,
  2017. .llseek = seq_lseek,
  2018. .release = single_release
  2019. };
  2020. static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
  2021. {
  2022. int i;
  2023. int ret = 0;
  2024. char b[BDEVNAME_SIZE];
  2025. struct proc_dir_entry *proc;
  2026. struct block_device *bdev;
  2027. if (pd->pkt_dev == dev) {
  2028. printk("pktcdvd: Recursive setup not allowed\n");
  2029. return -EBUSY;
  2030. }
  2031. for (i = 0; i < MAX_WRITERS; i++) {
  2032. struct pktcdvd_device *pd2 = pkt_devs[i];
  2033. if (!pd2)
  2034. continue;
  2035. if (pd2->bdev->bd_dev == dev) {
  2036. printk("pktcdvd: %s already setup\n", bdevname(pd2->bdev, b));
  2037. return -EBUSY;
  2038. }
  2039. if (pd2->pkt_dev == dev) {
  2040. printk("pktcdvd: Can't chain pktcdvd devices\n");
  2041. return -EBUSY;
  2042. }
  2043. }
  2044. bdev = bdget(dev);
  2045. if (!bdev)
  2046. return -ENOMEM;
  2047. ret = blkdev_get(bdev, FMODE_READ, O_RDONLY | O_NONBLOCK);
  2048. if (ret)
  2049. return ret;
  2050. /* This is safe, since we have a reference from open(). */
  2051. __module_get(THIS_MODULE);
  2052. pd->bdev = bdev;
  2053. set_blocksize(bdev, CD_FRAMESIZE);
  2054. pkt_init_queue(pd);
  2055. atomic_set(&pd->cdrw.pending_bios, 0);
  2056. pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
  2057. if (IS_ERR(pd->cdrw.thread)) {
  2058. printk("pktcdvd: can't start kernel thread\n");
  2059. ret = -ENOMEM;
  2060. goto out_mem;
  2061. }
  2062. proc = create_proc_entry(pd->name, 0, pkt_proc);
  2063. if (proc) {
  2064. proc->data = pd;
  2065. proc->proc_fops = &pkt_proc_fops;
  2066. }
  2067. DPRINTK("pktcdvd: writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
  2068. return 0;
  2069. out_mem:
  2070. blkdev_put(bdev);
  2071. /* This is safe: open() is still holding a reference. */
  2072. module_put(THIS_MODULE);
  2073. return ret;
  2074. }
  2075. static int pkt_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
  2076. {
  2077. struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
  2078. VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd, imajor(inode), iminor(inode));
  2079. switch (cmd) {
  2080. /*
  2081. * forward selected CDROM ioctls to CD-ROM, for UDF
  2082. */
  2083. case CDROMMULTISESSION:
  2084. case CDROMREADTOCENTRY:
  2085. case CDROM_LAST_WRITTEN:
  2086. case CDROM_SEND_PACKET:
  2087. case SCSI_IOCTL_SEND_COMMAND:
  2088. return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
  2089. case CDROMEJECT:
  2090. /*
  2091. * The door gets locked when the device is opened, so we
  2092. * have to unlock it or else the eject command fails.
  2093. */
  2094. pkt_lock_door(pd, 0);
  2095. return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
  2096. default:
  2097. printk("pktcdvd: Unknown ioctl for %s (%x)\n", pd->name, cmd);
  2098. return -ENOTTY;
  2099. }
  2100. return 0;
  2101. }
  2102. static int pkt_media_changed(struct gendisk *disk)
  2103. {
  2104. struct pktcdvd_device *pd = disk->private_data;
  2105. struct gendisk *attached_disk;
  2106. if (!pd)
  2107. return 0;
  2108. if (!pd->bdev)
  2109. return 0;
  2110. attached_disk = pd->bdev->bd_disk;
  2111. if (!attached_disk)
  2112. return 0;
  2113. return attached_disk->fops->media_changed(attached_disk);
  2114. }
  2115. static struct block_device_operations pktcdvd_ops = {
  2116. .owner = THIS_MODULE,
  2117. .open = pkt_open,
  2118. .release = pkt_close,
  2119. .ioctl = pkt_ioctl,
  2120. .media_changed = pkt_media_changed,
  2121. };
  2122. /*
  2123. * Set up mapping from pktcdvd device to CD-ROM device.
  2124. */
  2125. static int pkt_setup_dev(struct pkt_ctrl_command *ctrl_cmd)
  2126. {
  2127. int idx;
  2128. int ret = -ENOMEM;
  2129. struct pktcdvd_device *pd;
  2130. struct gendisk *disk;
  2131. dev_t dev = new_decode_dev(ctrl_cmd->dev);
  2132. for (idx = 0; idx < MAX_WRITERS; idx++)
  2133. if (!pkt_devs[idx])
  2134. break;
  2135. if (idx == MAX_WRITERS) {
  2136. printk("pktcdvd: max %d writers supported\n", MAX_WRITERS);
  2137. return -EBUSY;
  2138. }
  2139. pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
  2140. if (!pd)
  2141. return ret;
  2142. pd->rb_pool = mempool_create(PKT_RB_POOL_SIZE, pkt_rb_alloc, pkt_rb_free, NULL);
  2143. if (!pd->rb_pool)
  2144. goto out_mem;
  2145. disk = alloc_disk(1);
  2146. if (!disk)
  2147. goto out_mem;
  2148. pd->disk = disk;
  2149. INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
  2150. INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
  2151. spin_lock_init(&pd->cdrw.active_list_lock);
  2152. spin_lock_init(&pd->lock);
  2153. spin_lock_init(&pd->iosched.lock);
  2154. sprintf(pd->name, "pktcdvd%d", idx);
  2155. init_waitqueue_head(&pd->wqueue);
  2156. pd->bio_queue = RB_ROOT;
  2157. disk->major = pkt_major;
  2158. disk->first_minor = idx;
  2159. disk->fops = &pktcdvd_ops;
  2160. disk->flags = GENHD_FL_REMOVABLE;
  2161. sprintf(disk->disk_name, "pktcdvd%d", idx);
  2162. disk->private_data = pd;
  2163. disk->queue = blk_alloc_queue(GFP_KERNEL);
  2164. if (!disk->queue)
  2165. goto out_mem2;
  2166. pd->pkt_dev = MKDEV(disk->major, disk->first_minor);
  2167. ret = pkt_new_dev(pd, dev);
  2168. if (ret)
  2169. goto out_new_dev;
  2170. add_disk(disk);
  2171. pkt_devs[idx] = pd;
  2172. ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
  2173. return 0;
  2174. out_new_dev:
  2175. blk_put_queue(disk->queue);
  2176. out_mem2:
  2177. put_disk(disk);
  2178. out_mem:
  2179. if (pd->rb_pool)
  2180. mempool_destroy(pd->rb_pool);
  2181. kfree(pd);
  2182. return ret;
  2183. }
  2184. /*
  2185. * Tear down mapping from pktcdvd device to CD-ROM device.
  2186. */
  2187. static int pkt_remove_dev(struct pkt_ctrl_command *ctrl_cmd)
  2188. {
  2189. struct pktcdvd_device *pd;
  2190. int idx;
  2191. dev_t pkt_dev = new_decode_dev(ctrl_cmd->pkt_dev);
  2192. for (idx = 0; idx < MAX_WRITERS; idx++) {
  2193. pd = pkt_devs[idx];
  2194. if (pd && (pd->pkt_dev == pkt_dev))
  2195. break;
  2196. }
  2197. if (idx == MAX_WRITERS) {
  2198. DPRINTK("pktcdvd: dev not setup\n");
  2199. return -ENXIO;
  2200. }
  2201. if (pd->refcnt > 0)
  2202. return -EBUSY;
  2203. if (!IS_ERR(pd->cdrw.thread))
  2204. kthread_stop(pd->cdrw.thread);
  2205. blkdev_put(pd->bdev);
  2206. remove_proc_entry(pd->name, pkt_proc);
  2207. DPRINTK("pktcdvd: writer %s unmapped\n", pd->name);
  2208. del_gendisk(pd->disk);
  2209. blk_put_queue(pd->disk->queue);
  2210. put_disk(pd->disk);
  2211. pkt_devs[idx] = NULL;
  2212. mempool_destroy(pd->rb_pool);
  2213. kfree(pd);
  2214. /* This is safe: open() is still holding a reference. */
  2215. module_put(THIS_MODULE);
  2216. return 0;
  2217. }
  2218. static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
  2219. {
  2220. struct pktcdvd_device *pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
  2221. if (pd) {
  2222. ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
  2223. ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
  2224. } else {
  2225. ctrl_cmd->dev = 0;
  2226. ctrl_cmd->pkt_dev = 0;
  2227. }
  2228. ctrl_cmd->num_devices = MAX_WRITERS;
  2229. }
  2230. static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
  2231. {
  2232. void __user *argp = (void __user *)arg;
  2233. struct pkt_ctrl_command ctrl_cmd;
  2234. int ret = 0;
  2235. if (cmd != PACKET_CTRL_CMD)
  2236. return -ENOTTY;
  2237. if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
  2238. return -EFAULT;
  2239. switch (ctrl_cmd.command) {
  2240. case PKT_CTRL_CMD_SETUP:
  2241. if (!capable(CAP_SYS_ADMIN))
  2242. return -EPERM;
  2243. down(&ctl_mutex);
  2244. ret = pkt_setup_dev(&ctrl_cmd);
  2245. up(&ctl_mutex);
  2246. break;
  2247. case PKT_CTRL_CMD_TEARDOWN:
  2248. if (!capable(CAP_SYS_ADMIN))
  2249. return -EPERM;
  2250. down(&ctl_mutex);
  2251. ret = pkt_remove_dev(&ctrl_cmd);
  2252. up(&ctl_mutex);
  2253. break;
  2254. case PKT_CTRL_CMD_STATUS:
  2255. down(&ctl_mutex);
  2256. pkt_get_status(&ctrl_cmd);
  2257. up(&ctl_mutex);
  2258. break;
  2259. default:
  2260. return -ENOTTY;
  2261. }
  2262. if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
  2263. return -EFAULT;
  2264. return ret;
  2265. }
  2266. static struct file_operations pkt_ctl_fops = {
  2267. .ioctl = pkt_ctl_ioctl,
  2268. .owner = THIS_MODULE,
  2269. };
  2270. static struct miscdevice pkt_misc = {
  2271. .minor = MISC_DYNAMIC_MINOR,
  2272. .name = "pktcdvd",
  2273. .devfs_name = "pktcdvd/control",
  2274. .fops = &pkt_ctl_fops
  2275. };
  2276. static int __init pkt_init(void)
  2277. {
  2278. int ret;
  2279. psd_pool = mempool_create(PSD_POOL_SIZE, psd_pool_alloc, psd_pool_free, NULL);
  2280. if (!psd_pool)
  2281. return -ENOMEM;
  2282. ret = register_blkdev(pkt_major, "pktcdvd");
  2283. if (ret < 0) {
  2284. printk("pktcdvd: Unable to register block device\n");
  2285. goto out2;
  2286. }
  2287. if (!pkt_major)
  2288. pkt_major = ret;
  2289. ret = misc_register(&pkt_misc);
  2290. if (ret) {
  2291. printk("pktcdvd: Unable to register misc device\n");
  2292. goto out;
  2293. }
  2294. init_MUTEX(&ctl_mutex);
  2295. pkt_proc = proc_mkdir("pktcdvd", proc_root_driver);
  2296. return 0;
  2297. out:
  2298. unregister_blkdev(pkt_major, "pktcdvd");
  2299. out2:
  2300. mempool_destroy(psd_pool);
  2301. return ret;
  2302. }
  2303. static void __exit pkt_exit(void)
  2304. {
  2305. remove_proc_entry("pktcdvd", proc_root_driver);
  2306. misc_deregister(&pkt_misc);
  2307. unregister_blkdev(pkt_major, "pktcdvd");
  2308. mempool_destroy(psd_pool);
  2309. }
  2310. MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
  2311. MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
  2312. MODULE_LICENSE("GPL");
  2313. module_init(pkt_init);
  2314. module_exit(pkt_exit);