sh_mmcif.c 38 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447
  1. /*
  2. * MMCIF eMMC driver.
  3. *
  4. * Copyright (C) 2010 Renesas Solutions Corp.
  5. * Yusuke Goda <yusuke.goda.sx@renesas.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License.
  10. *
  11. *
  12. * TODO
  13. * 1. DMA
  14. * 2. Power management
  15. * 3. Handle MMC errors better
  16. *
  17. */
  18. /*
  19. * The MMCIF driver is now processing MMC requests asynchronously, according
  20. * to the Linux MMC API requirement.
  21. *
  22. * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
  23. * data, and optional stop. To achieve asynchronous processing each of these
  24. * stages is split into two halves: a top and a bottom half. The top half
  25. * initialises the hardware, installs a timeout handler to handle completion
  26. * timeouts, and returns. In case of the command stage this immediately returns
  27. * control to the caller, leaving all further processing to run asynchronously.
  28. * All further request processing is performed by the bottom halves.
  29. *
  30. * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
  31. * thread, a DMA completion callback, if DMA is used, a timeout work, and
  32. * request- and stage-specific handler methods.
  33. *
  34. * Each bottom half run begins with either a hardware interrupt, a DMA callback
  35. * invocation, or a timeout work run. In case of an error or a successful
  36. * processing completion, the MMC core is informed and the request processing is
  37. * finished. In case processing has to continue, i.e., if data has to be read
  38. * from or written to the card, or if a stop command has to be sent, the next
  39. * top half is called, which performs the necessary hardware handling and
  40. * reschedules the timeout work. This returns the driver state machine into the
  41. * bottom half waiting state.
  42. */
  43. #include <linux/bitops.h>
  44. #include <linux/clk.h>
  45. #include <linux/completion.h>
  46. #include <linux/delay.h>
  47. #include <linux/dma-mapping.h>
  48. #include <linux/dmaengine.h>
  49. #include <linux/mmc/card.h>
  50. #include <linux/mmc/core.h>
  51. #include <linux/mmc/host.h>
  52. #include <linux/mmc/mmc.h>
  53. #include <linux/mmc/sdio.h>
  54. #include <linux/mmc/sh_mmcif.h>
  55. #include <linux/pagemap.h>
  56. #include <linux/platform_device.h>
  57. #include <linux/pm_qos.h>
  58. #include <linux/pm_runtime.h>
  59. #include <linux/spinlock.h>
  60. #include <linux/module.h>
  61. #define DRIVER_NAME "sh_mmcif"
  62. #define DRIVER_VERSION "2010-04-28"
  63. /* CE_CMD_SET */
  64. #define CMD_MASK 0x3f000000
  65. #define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
  66. #define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
  67. #define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */
  68. #define CMD_SET_RBSY (1 << 21) /* R1b */
  69. #define CMD_SET_CCSEN (1 << 20)
  70. #define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */
  71. #define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */
  72. #define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */
  73. #define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */
  74. #define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */
  75. #define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */
  76. #define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */
  77. #define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/
  78. #define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/
  79. #define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
  80. #define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/
  81. #define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */
  82. #define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */
  83. #define CMD_SET_OPDM (1 << 6) /* 1: open/drain */
  84. #define CMD_SET_CCSH (1 << 5)
  85. #define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */
  86. #define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */
  87. #define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */
  88. /* CE_CMD_CTRL */
  89. #define CMD_CTRL_BREAK (1 << 0)
  90. /* CE_BLOCK_SET */
  91. #define BLOCK_SIZE_MASK 0x0000ffff
  92. /* CE_INT */
  93. #define INT_CCSDE (1 << 29)
  94. #define INT_CMD12DRE (1 << 26)
  95. #define INT_CMD12RBE (1 << 25)
  96. #define INT_CMD12CRE (1 << 24)
  97. #define INT_DTRANE (1 << 23)
  98. #define INT_BUFRE (1 << 22)
  99. #define INT_BUFWEN (1 << 21)
  100. #define INT_BUFREN (1 << 20)
  101. #define INT_CCSRCV (1 << 19)
  102. #define INT_RBSYE (1 << 17)
  103. #define INT_CRSPE (1 << 16)
  104. #define INT_CMDVIO (1 << 15)
  105. #define INT_BUFVIO (1 << 14)
  106. #define INT_WDATERR (1 << 11)
  107. #define INT_RDATERR (1 << 10)
  108. #define INT_RIDXERR (1 << 9)
  109. #define INT_RSPERR (1 << 8)
  110. #define INT_CCSTO (1 << 5)
  111. #define INT_CRCSTO (1 << 4)
  112. #define INT_WDATTO (1 << 3)
  113. #define INT_RDATTO (1 << 2)
  114. #define INT_RBSYTO (1 << 1)
  115. #define INT_RSPTO (1 << 0)
  116. #define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
  117. INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
  118. INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
  119. INT_RDATTO | INT_RBSYTO | INT_RSPTO)
  120. /* CE_INT_MASK */
  121. #define MASK_ALL 0x00000000
  122. #define MASK_MCCSDE (1 << 29)
  123. #define MASK_MCMD12DRE (1 << 26)
  124. #define MASK_MCMD12RBE (1 << 25)
  125. #define MASK_MCMD12CRE (1 << 24)
  126. #define MASK_MDTRANE (1 << 23)
  127. #define MASK_MBUFRE (1 << 22)
  128. #define MASK_MBUFWEN (1 << 21)
  129. #define MASK_MBUFREN (1 << 20)
  130. #define MASK_MCCSRCV (1 << 19)
  131. #define MASK_MRBSYE (1 << 17)
  132. #define MASK_MCRSPE (1 << 16)
  133. #define MASK_MCMDVIO (1 << 15)
  134. #define MASK_MBUFVIO (1 << 14)
  135. #define MASK_MWDATERR (1 << 11)
  136. #define MASK_MRDATERR (1 << 10)
  137. #define MASK_MRIDXERR (1 << 9)
  138. #define MASK_MRSPERR (1 << 8)
  139. #define MASK_MCCSTO (1 << 5)
  140. #define MASK_MCRCSTO (1 << 4)
  141. #define MASK_MWDATTO (1 << 3)
  142. #define MASK_MRDATTO (1 << 2)
  143. #define MASK_MRBSYTO (1 << 1)
  144. #define MASK_MRSPTO (1 << 0)
  145. #define MASK_START_CMD (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
  146. MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
  147. MASK_MCCSTO | MASK_MCRCSTO | MASK_MWDATTO | \
  148. MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
  149. /* CE_HOST_STS1 */
  150. #define STS1_CMDSEQ (1 << 31)
  151. /* CE_HOST_STS2 */
  152. #define STS2_CRCSTE (1 << 31)
  153. #define STS2_CRC16E (1 << 30)
  154. #define STS2_AC12CRCE (1 << 29)
  155. #define STS2_RSPCRC7E (1 << 28)
  156. #define STS2_CRCSTEBE (1 << 27)
  157. #define STS2_RDATEBE (1 << 26)
  158. #define STS2_AC12REBE (1 << 25)
  159. #define STS2_RSPEBE (1 << 24)
  160. #define STS2_AC12IDXE (1 << 23)
  161. #define STS2_RSPIDXE (1 << 22)
  162. #define STS2_CCSTO (1 << 15)
  163. #define STS2_RDATTO (1 << 14)
  164. #define STS2_DATBSYTO (1 << 13)
  165. #define STS2_CRCSTTO (1 << 12)
  166. #define STS2_AC12BSYTO (1 << 11)
  167. #define STS2_RSPBSYTO (1 << 10)
  168. #define STS2_AC12RSPTO (1 << 9)
  169. #define STS2_RSPTO (1 << 8)
  170. #define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
  171. STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
  172. #define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
  173. STS2_DATBSYTO | STS2_CRCSTTO | \
  174. STS2_AC12BSYTO | STS2_RSPBSYTO | \
  175. STS2_AC12RSPTO | STS2_RSPTO)
  176. #define CLKDEV_EMMC_DATA 52000000 /* 52MHz */
  177. #define CLKDEV_MMC_DATA 20000000 /* 20MHz */
  178. #define CLKDEV_INIT 400000 /* 400 KHz */
  179. enum mmcif_state {
  180. STATE_IDLE,
  181. STATE_REQUEST,
  182. STATE_IOS,
  183. };
  184. enum mmcif_wait_for {
  185. MMCIF_WAIT_FOR_REQUEST,
  186. MMCIF_WAIT_FOR_CMD,
  187. MMCIF_WAIT_FOR_MREAD,
  188. MMCIF_WAIT_FOR_MWRITE,
  189. MMCIF_WAIT_FOR_READ,
  190. MMCIF_WAIT_FOR_WRITE,
  191. MMCIF_WAIT_FOR_READ_END,
  192. MMCIF_WAIT_FOR_WRITE_END,
  193. MMCIF_WAIT_FOR_STOP,
  194. };
  195. struct sh_mmcif_host {
  196. struct mmc_host *mmc;
  197. struct mmc_request *mrq;
  198. struct platform_device *pd;
  199. struct sh_dmae_slave dma_slave_tx;
  200. struct sh_dmae_slave dma_slave_rx;
  201. struct clk *hclk;
  202. unsigned int clk;
  203. int bus_width;
  204. bool sd_error;
  205. bool dying;
  206. long timeout;
  207. void __iomem *addr;
  208. u32 *pio_ptr;
  209. spinlock_t lock; /* protect sh_mmcif_host::state */
  210. enum mmcif_state state;
  211. enum mmcif_wait_for wait_for;
  212. struct delayed_work timeout_work;
  213. size_t blocksize;
  214. int sg_idx;
  215. int sg_blkidx;
  216. bool power;
  217. bool card_present;
  218. /* DMA support */
  219. struct dma_chan *chan_rx;
  220. struct dma_chan *chan_tx;
  221. struct completion dma_complete;
  222. bool dma_active;
  223. };
  224. static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
  225. unsigned int reg, u32 val)
  226. {
  227. writel(val | readl(host->addr + reg), host->addr + reg);
  228. }
  229. static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
  230. unsigned int reg, u32 val)
  231. {
  232. writel(~val & readl(host->addr + reg), host->addr + reg);
  233. }
  234. static void mmcif_dma_complete(void *arg)
  235. {
  236. struct sh_mmcif_host *host = arg;
  237. struct mmc_data *data = host->mrq->data;
  238. dev_dbg(&host->pd->dev, "Command completed\n");
  239. if (WARN(!data, "%s: NULL data in DMA completion!\n",
  240. dev_name(&host->pd->dev)))
  241. return;
  242. if (data->flags & MMC_DATA_READ)
  243. dma_unmap_sg(host->chan_rx->device->dev,
  244. data->sg, data->sg_len,
  245. DMA_FROM_DEVICE);
  246. else
  247. dma_unmap_sg(host->chan_tx->device->dev,
  248. data->sg, data->sg_len,
  249. DMA_TO_DEVICE);
  250. complete(&host->dma_complete);
  251. }
  252. static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
  253. {
  254. struct mmc_data *data = host->mrq->data;
  255. struct scatterlist *sg = data->sg;
  256. struct dma_async_tx_descriptor *desc = NULL;
  257. struct dma_chan *chan = host->chan_rx;
  258. dma_cookie_t cookie = -EINVAL;
  259. int ret;
  260. ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
  261. DMA_FROM_DEVICE);
  262. if (ret > 0) {
  263. host->dma_active = true;
  264. desc = dmaengine_prep_slave_sg(chan, sg, ret,
  265. DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  266. }
  267. if (desc) {
  268. desc->callback = mmcif_dma_complete;
  269. desc->callback_param = host;
  270. cookie = dmaengine_submit(desc);
  271. sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
  272. dma_async_issue_pending(chan);
  273. }
  274. dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
  275. __func__, data->sg_len, ret, cookie);
  276. if (!desc) {
  277. /* DMA failed, fall back to PIO */
  278. if (ret >= 0)
  279. ret = -EIO;
  280. host->chan_rx = NULL;
  281. host->dma_active = false;
  282. dma_release_channel(chan);
  283. /* Free the Tx channel too */
  284. chan = host->chan_tx;
  285. if (chan) {
  286. host->chan_tx = NULL;
  287. dma_release_channel(chan);
  288. }
  289. dev_warn(&host->pd->dev,
  290. "DMA failed: %d, falling back to PIO\n", ret);
  291. sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
  292. }
  293. dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
  294. desc, cookie, data->sg_len);
  295. }
  296. static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
  297. {
  298. struct mmc_data *data = host->mrq->data;
  299. struct scatterlist *sg = data->sg;
  300. struct dma_async_tx_descriptor *desc = NULL;
  301. struct dma_chan *chan = host->chan_tx;
  302. dma_cookie_t cookie = -EINVAL;
  303. int ret;
  304. ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
  305. DMA_TO_DEVICE);
  306. if (ret > 0) {
  307. host->dma_active = true;
  308. desc = dmaengine_prep_slave_sg(chan, sg, ret,
  309. DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  310. }
  311. if (desc) {
  312. desc->callback = mmcif_dma_complete;
  313. desc->callback_param = host;
  314. cookie = dmaengine_submit(desc);
  315. sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
  316. dma_async_issue_pending(chan);
  317. }
  318. dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
  319. __func__, data->sg_len, ret, cookie);
  320. if (!desc) {
  321. /* DMA failed, fall back to PIO */
  322. if (ret >= 0)
  323. ret = -EIO;
  324. host->chan_tx = NULL;
  325. host->dma_active = false;
  326. dma_release_channel(chan);
  327. /* Free the Rx channel too */
  328. chan = host->chan_rx;
  329. if (chan) {
  330. host->chan_rx = NULL;
  331. dma_release_channel(chan);
  332. }
  333. dev_warn(&host->pd->dev,
  334. "DMA failed: %d, falling back to PIO\n", ret);
  335. sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
  336. }
  337. dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
  338. desc, cookie);
  339. }
  340. static bool sh_mmcif_filter(struct dma_chan *chan, void *arg)
  341. {
  342. dev_dbg(chan->device->dev, "%s: slave data %p\n", __func__, arg);
  343. chan->private = arg;
  344. return true;
  345. }
  346. static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
  347. struct sh_mmcif_plat_data *pdata)
  348. {
  349. struct sh_dmae_slave *tx, *rx;
  350. host->dma_active = false;
  351. /* We can only either use DMA for both Tx and Rx or not use it at all */
  352. if (pdata->dma) {
  353. dev_warn(&host->pd->dev,
  354. "Update your platform to use embedded DMA slave IDs\n");
  355. tx = &pdata->dma->chan_priv_tx;
  356. rx = &pdata->dma->chan_priv_rx;
  357. } else {
  358. tx = &host->dma_slave_tx;
  359. tx->slave_id = pdata->slave_id_tx;
  360. rx = &host->dma_slave_rx;
  361. rx->slave_id = pdata->slave_id_rx;
  362. }
  363. if (tx->slave_id > 0 && rx->slave_id > 0) {
  364. dma_cap_mask_t mask;
  365. dma_cap_zero(mask);
  366. dma_cap_set(DMA_SLAVE, mask);
  367. host->chan_tx = dma_request_channel(mask, sh_mmcif_filter, tx);
  368. dev_dbg(&host->pd->dev, "%s: TX: got channel %p\n", __func__,
  369. host->chan_tx);
  370. if (!host->chan_tx)
  371. return;
  372. host->chan_rx = dma_request_channel(mask, sh_mmcif_filter, rx);
  373. dev_dbg(&host->pd->dev, "%s: RX: got channel %p\n", __func__,
  374. host->chan_rx);
  375. if (!host->chan_rx) {
  376. dma_release_channel(host->chan_tx);
  377. host->chan_tx = NULL;
  378. return;
  379. }
  380. init_completion(&host->dma_complete);
  381. }
  382. }
  383. static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
  384. {
  385. sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
  386. /* Descriptors are freed automatically */
  387. if (host->chan_tx) {
  388. struct dma_chan *chan = host->chan_tx;
  389. host->chan_tx = NULL;
  390. dma_release_channel(chan);
  391. }
  392. if (host->chan_rx) {
  393. struct dma_chan *chan = host->chan_rx;
  394. host->chan_rx = NULL;
  395. dma_release_channel(chan);
  396. }
  397. host->dma_active = false;
  398. }
  399. static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
  400. {
  401. struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
  402. sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
  403. sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
  404. if (!clk)
  405. return;
  406. if (p->sup_pclk && clk == host->clk)
  407. sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
  408. else
  409. sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
  410. ((fls(DIV_ROUND_UP(host->clk,
  411. clk) - 1) - 1) << 16));
  412. sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
  413. }
  414. static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
  415. {
  416. u32 tmp;
  417. tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
  418. sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
  419. sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
  420. sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
  421. SRSPTO_256 | SRBSYTO_29 | SRWDTO_29 | SCCSTO_29);
  422. /* byte swap on */
  423. sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
  424. }
  425. static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
  426. {
  427. u32 state1, state2;
  428. int ret, timeout;
  429. host->sd_error = false;
  430. state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
  431. state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
  432. dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
  433. dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
  434. if (state1 & STS1_CMDSEQ) {
  435. sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
  436. sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
  437. for (timeout = 10000000; timeout; timeout--) {
  438. if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
  439. & STS1_CMDSEQ))
  440. break;
  441. mdelay(1);
  442. }
  443. if (!timeout) {
  444. dev_err(&host->pd->dev,
  445. "Forced end of command sequence timeout err\n");
  446. return -EIO;
  447. }
  448. sh_mmcif_sync_reset(host);
  449. dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
  450. return -EIO;
  451. }
  452. if (state2 & STS2_CRC_ERR) {
  453. dev_dbg(&host->pd->dev, ": CRC error\n");
  454. ret = -EIO;
  455. } else if (state2 & STS2_TIMEOUT_ERR) {
  456. dev_dbg(&host->pd->dev, ": Timeout\n");
  457. ret = -ETIMEDOUT;
  458. } else {
  459. dev_dbg(&host->pd->dev, ": End/Index error\n");
  460. ret = -EIO;
  461. }
  462. return ret;
  463. }
  464. static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
  465. {
  466. struct mmc_data *data = host->mrq->data;
  467. host->sg_blkidx += host->blocksize;
  468. /* data->sg->length must be a multiple of host->blocksize? */
  469. BUG_ON(host->sg_blkidx > data->sg->length);
  470. if (host->sg_blkidx == data->sg->length) {
  471. host->sg_blkidx = 0;
  472. if (++host->sg_idx < data->sg_len)
  473. host->pio_ptr = sg_virt(++data->sg);
  474. } else {
  475. host->pio_ptr = p;
  476. }
  477. if (host->sg_idx == data->sg_len)
  478. return false;
  479. return true;
  480. }
  481. static void sh_mmcif_single_read(struct sh_mmcif_host *host,
  482. struct mmc_request *mrq)
  483. {
  484. host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
  485. BLOCK_SIZE_MASK) + 3;
  486. host->wait_for = MMCIF_WAIT_FOR_READ;
  487. schedule_delayed_work(&host->timeout_work, host->timeout);
  488. /* buf read enable */
  489. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
  490. }
  491. static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
  492. {
  493. struct mmc_data *data = host->mrq->data;
  494. u32 *p = sg_virt(data->sg);
  495. int i;
  496. if (host->sd_error) {
  497. data->error = sh_mmcif_error_manage(host);
  498. return false;
  499. }
  500. for (i = 0; i < host->blocksize / 4; i++)
  501. *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
  502. /* buffer read end */
  503. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
  504. host->wait_for = MMCIF_WAIT_FOR_READ_END;
  505. return true;
  506. }
  507. static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
  508. struct mmc_request *mrq)
  509. {
  510. struct mmc_data *data = mrq->data;
  511. if (!data->sg_len || !data->sg->length)
  512. return;
  513. host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
  514. BLOCK_SIZE_MASK;
  515. host->wait_for = MMCIF_WAIT_FOR_MREAD;
  516. host->sg_idx = 0;
  517. host->sg_blkidx = 0;
  518. host->pio_ptr = sg_virt(data->sg);
  519. schedule_delayed_work(&host->timeout_work, host->timeout);
  520. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
  521. }
  522. static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
  523. {
  524. struct mmc_data *data = host->mrq->data;
  525. u32 *p = host->pio_ptr;
  526. int i;
  527. if (host->sd_error) {
  528. data->error = sh_mmcif_error_manage(host);
  529. return false;
  530. }
  531. BUG_ON(!data->sg->length);
  532. for (i = 0; i < host->blocksize / 4; i++)
  533. *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
  534. if (!sh_mmcif_next_block(host, p))
  535. return false;
  536. schedule_delayed_work(&host->timeout_work, host->timeout);
  537. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
  538. return true;
  539. }
  540. static void sh_mmcif_single_write(struct sh_mmcif_host *host,
  541. struct mmc_request *mrq)
  542. {
  543. host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
  544. BLOCK_SIZE_MASK) + 3;
  545. host->wait_for = MMCIF_WAIT_FOR_WRITE;
  546. schedule_delayed_work(&host->timeout_work, host->timeout);
  547. /* buf write enable */
  548. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
  549. }
  550. static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
  551. {
  552. struct mmc_data *data = host->mrq->data;
  553. u32 *p = sg_virt(data->sg);
  554. int i;
  555. if (host->sd_error) {
  556. data->error = sh_mmcif_error_manage(host);
  557. return false;
  558. }
  559. for (i = 0; i < host->blocksize / 4; i++)
  560. sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
  561. /* buffer write end */
  562. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
  563. host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
  564. return true;
  565. }
  566. static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
  567. struct mmc_request *mrq)
  568. {
  569. struct mmc_data *data = mrq->data;
  570. if (!data->sg_len || !data->sg->length)
  571. return;
  572. host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
  573. BLOCK_SIZE_MASK;
  574. host->wait_for = MMCIF_WAIT_FOR_MWRITE;
  575. host->sg_idx = 0;
  576. host->sg_blkidx = 0;
  577. host->pio_ptr = sg_virt(data->sg);
  578. schedule_delayed_work(&host->timeout_work, host->timeout);
  579. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
  580. }
  581. static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
  582. {
  583. struct mmc_data *data = host->mrq->data;
  584. u32 *p = host->pio_ptr;
  585. int i;
  586. if (host->sd_error) {
  587. data->error = sh_mmcif_error_manage(host);
  588. return false;
  589. }
  590. BUG_ON(!data->sg->length);
  591. for (i = 0; i < host->blocksize / 4; i++)
  592. sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
  593. if (!sh_mmcif_next_block(host, p))
  594. return false;
  595. schedule_delayed_work(&host->timeout_work, host->timeout);
  596. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
  597. return true;
  598. }
  599. static void sh_mmcif_get_response(struct sh_mmcif_host *host,
  600. struct mmc_command *cmd)
  601. {
  602. if (cmd->flags & MMC_RSP_136) {
  603. cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
  604. cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
  605. cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
  606. cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
  607. } else
  608. cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
  609. }
  610. static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
  611. struct mmc_command *cmd)
  612. {
  613. cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
  614. }
  615. static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
  616. struct mmc_request *mrq)
  617. {
  618. struct mmc_data *data = mrq->data;
  619. struct mmc_command *cmd = mrq->cmd;
  620. u32 opc = cmd->opcode;
  621. u32 tmp = 0;
  622. /* Response Type check */
  623. switch (mmc_resp_type(cmd)) {
  624. case MMC_RSP_NONE:
  625. tmp |= CMD_SET_RTYP_NO;
  626. break;
  627. case MMC_RSP_R1:
  628. case MMC_RSP_R1B:
  629. case MMC_RSP_R3:
  630. tmp |= CMD_SET_RTYP_6B;
  631. break;
  632. case MMC_RSP_R2:
  633. tmp |= CMD_SET_RTYP_17B;
  634. break;
  635. default:
  636. dev_err(&host->pd->dev, "Unsupported response type.\n");
  637. break;
  638. }
  639. switch (opc) {
  640. /* RBSY */
  641. case MMC_SWITCH:
  642. case MMC_STOP_TRANSMISSION:
  643. case MMC_SET_WRITE_PROT:
  644. case MMC_CLR_WRITE_PROT:
  645. case MMC_ERASE:
  646. tmp |= CMD_SET_RBSY;
  647. break;
  648. }
  649. /* WDAT / DATW */
  650. if (data) {
  651. tmp |= CMD_SET_WDAT;
  652. switch (host->bus_width) {
  653. case MMC_BUS_WIDTH_1:
  654. tmp |= CMD_SET_DATW_1;
  655. break;
  656. case MMC_BUS_WIDTH_4:
  657. tmp |= CMD_SET_DATW_4;
  658. break;
  659. case MMC_BUS_WIDTH_8:
  660. tmp |= CMD_SET_DATW_8;
  661. break;
  662. default:
  663. dev_err(&host->pd->dev, "Unsupported bus width.\n");
  664. break;
  665. }
  666. }
  667. /* DWEN */
  668. if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
  669. tmp |= CMD_SET_DWEN;
  670. /* CMLTE/CMD12EN */
  671. if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
  672. tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
  673. sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
  674. data->blocks << 16);
  675. }
  676. /* RIDXC[1:0] check bits */
  677. if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
  678. opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
  679. tmp |= CMD_SET_RIDXC_BITS;
  680. /* RCRC7C[1:0] check bits */
  681. if (opc == MMC_SEND_OP_COND)
  682. tmp |= CMD_SET_CRC7C_BITS;
  683. /* RCRC7C[1:0] internal CRC7 */
  684. if (opc == MMC_ALL_SEND_CID ||
  685. opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
  686. tmp |= CMD_SET_CRC7C_INTERNAL;
  687. return (opc << 24) | tmp;
  688. }
  689. static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
  690. struct mmc_request *mrq, u32 opc)
  691. {
  692. switch (opc) {
  693. case MMC_READ_MULTIPLE_BLOCK:
  694. sh_mmcif_multi_read(host, mrq);
  695. return 0;
  696. case MMC_WRITE_MULTIPLE_BLOCK:
  697. sh_mmcif_multi_write(host, mrq);
  698. return 0;
  699. case MMC_WRITE_BLOCK:
  700. sh_mmcif_single_write(host, mrq);
  701. return 0;
  702. case MMC_READ_SINGLE_BLOCK:
  703. case MMC_SEND_EXT_CSD:
  704. sh_mmcif_single_read(host, mrq);
  705. return 0;
  706. default:
  707. dev_err(&host->pd->dev, "UNSUPPORTED CMD = d'%08d\n", opc);
  708. return -EINVAL;
  709. }
  710. }
  711. static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
  712. struct mmc_request *mrq)
  713. {
  714. struct mmc_command *cmd = mrq->cmd;
  715. u32 opc = cmd->opcode;
  716. u32 mask;
  717. switch (opc) {
  718. /* response busy check */
  719. case MMC_SWITCH:
  720. case MMC_STOP_TRANSMISSION:
  721. case MMC_SET_WRITE_PROT:
  722. case MMC_CLR_WRITE_PROT:
  723. case MMC_ERASE:
  724. mask = MASK_START_CMD | MASK_MRBSYE;
  725. break;
  726. default:
  727. mask = MASK_START_CMD | MASK_MCRSPE;
  728. break;
  729. }
  730. if (mrq->data) {
  731. sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
  732. sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
  733. mrq->data->blksz);
  734. }
  735. opc = sh_mmcif_set_cmd(host, mrq);
  736. sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
  737. sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
  738. /* set arg */
  739. sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
  740. /* set cmd */
  741. sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
  742. host->wait_for = MMCIF_WAIT_FOR_CMD;
  743. schedule_delayed_work(&host->timeout_work, host->timeout);
  744. }
  745. static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
  746. struct mmc_request *mrq)
  747. {
  748. switch (mrq->cmd->opcode) {
  749. case MMC_READ_MULTIPLE_BLOCK:
  750. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
  751. break;
  752. case MMC_WRITE_MULTIPLE_BLOCK:
  753. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
  754. break;
  755. default:
  756. dev_err(&host->pd->dev, "unsupported stop cmd\n");
  757. mrq->stop->error = sh_mmcif_error_manage(host);
  758. return;
  759. }
  760. host->wait_for = MMCIF_WAIT_FOR_STOP;
  761. schedule_delayed_work(&host->timeout_work, host->timeout);
  762. }
  763. static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
  764. {
  765. struct sh_mmcif_host *host = mmc_priv(mmc);
  766. unsigned long flags;
  767. spin_lock_irqsave(&host->lock, flags);
  768. if (host->state != STATE_IDLE) {
  769. spin_unlock_irqrestore(&host->lock, flags);
  770. mrq->cmd->error = -EAGAIN;
  771. mmc_request_done(mmc, mrq);
  772. return;
  773. }
  774. host->state = STATE_REQUEST;
  775. spin_unlock_irqrestore(&host->lock, flags);
  776. switch (mrq->cmd->opcode) {
  777. /* MMCIF does not support SD/SDIO command */
  778. case MMC_SLEEP_AWAKE: /* = SD_IO_SEND_OP_COND (5) */
  779. case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
  780. if ((mrq->cmd->flags & MMC_CMD_MASK) != MMC_CMD_BCR)
  781. break;
  782. case MMC_APP_CMD:
  783. host->state = STATE_IDLE;
  784. mrq->cmd->error = -ETIMEDOUT;
  785. mmc_request_done(mmc, mrq);
  786. return;
  787. default:
  788. break;
  789. }
  790. host->mrq = mrq;
  791. sh_mmcif_start_cmd(host, mrq);
  792. }
  793. static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
  794. {
  795. struct sh_mmcif_host *host = mmc_priv(mmc);
  796. struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
  797. unsigned long flags;
  798. spin_lock_irqsave(&host->lock, flags);
  799. if (host->state != STATE_IDLE) {
  800. spin_unlock_irqrestore(&host->lock, flags);
  801. return;
  802. }
  803. host->state = STATE_IOS;
  804. spin_unlock_irqrestore(&host->lock, flags);
  805. if (ios->power_mode == MMC_POWER_UP) {
  806. if (!host->card_present) {
  807. /* See if we also get DMA */
  808. sh_mmcif_request_dma(host, host->pd->dev.platform_data);
  809. host->card_present = true;
  810. }
  811. } else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
  812. /* clock stop */
  813. sh_mmcif_clock_control(host, 0);
  814. if (ios->power_mode == MMC_POWER_OFF) {
  815. if (host->card_present) {
  816. sh_mmcif_release_dma(host);
  817. host->card_present = false;
  818. }
  819. }
  820. if (host->power) {
  821. pm_runtime_put(&host->pd->dev);
  822. host->power = false;
  823. if (p->down_pwr && ios->power_mode == MMC_POWER_OFF)
  824. p->down_pwr(host->pd);
  825. }
  826. host->state = STATE_IDLE;
  827. return;
  828. }
  829. if (ios->clock) {
  830. if (!host->power) {
  831. if (p->set_pwr)
  832. p->set_pwr(host->pd, ios->power_mode);
  833. pm_runtime_get_sync(&host->pd->dev);
  834. host->power = true;
  835. sh_mmcif_sync_reset(host);
  836. }
  837. sh_mmcif_clock_control(host, ios->clock);
  838. }
  839. host->bus_width = ios->bus_width;
  840. host->state = STATE_IDLE;
  841. }
  842. static int sh_mmcif_get_cd(struct mmc_host *mmc)
  843. {
  844. struct sh_mmcif_host *host = mmc_priv(mmc);
  845. struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
  846. if (!p->get_cd)
  847. return -ENOSYS;
  848. else
  849. return p->get_cd(host->pd);
  850. }
  851. static struct mmc_host_ops sh_mmcif_ops = {
  852. .request = sh_mmcif_request,
  853. .set_ios = sh_mmcif_set_ios,
  854. .get_cd = sh_mmcif_get_cd,
  855. };
  856. static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
  857. {
  858. struct mmc_command *cmd = host->mrq->cmd;
  859. struct mmc_data *data = host->mrq->data;
  860. long time;
  861. if (host->sd_error) {
  862. switch (cmd->opcode) {
  863. case MMC_ALL_SEND_CID:
  864. case MMC_SELECT_CARD:
  865. case MMC_APP_CMD:
  866. cmd->error = -ETIMEDOUT;
  867. host->sd_error = false;
  868. break;
  869. default:
  870. cmd->error = sh_mmcif_error_manage(host);
  871. dev_dbg(&host->pd->dev, "Cmd(d'%d) error %d\n",
  872. cmd->opcode, cmd->error);
  873. break;
  874. }
  875. return false;
  876. }
  877. if (!(cmd->flags & MMC_RSP_PRESENT)) {
  878. cmd->error = 0;
  879. return false;
  880. }
  881. sh_mmcif_get_response(host, cmd);
  882. if (!data)
  883. return false;
  884. if (data->flags & MMC_DATA_READ) {
  885. if (host->chan_rx)
  886. sh_mmcif_start_dma_rx(host);
  887. } else {
  888. if (host->chan_tx)
  889. sh_mmcif_start_dma_tx(host);
  890. }
  891. if (!host->dma_active) {
  892. data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
  893. if (!data->error)
  894. return true;
  895. return false;
  896. }
  897. /* Running in the IRQ thread, can sleep */
  898. time = wait_for_completion_interruptible_timeout(&host->dma_complete,
  899. host->timeout);
  900. if (host->sd_error) {
  901. dev_err(host->mmc->parent,
  902. "Error IRQ while waiting for DMA completion!\n");
  903. /* Woken up by an error IRQ: abort DMA */
  904. if (data->flags & MMC_DATA_READ)
  905. dmaengine_terminate_all(host->chan_rx);
  906. else
  907. dmaengine_terminate_all(host->chan_tx);
  908. data->error = sh_mmcif_error_manage(host);
  909. } else if (!time) {
  910. data->error = -ETIMEDOUT;
  911. } else if (time < 0) {
  912. data->error = time;
  913. }
  914. sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
  915. BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
  916. host->dma_active = false;
  917. if (data->error)
  918. data->bytes_xfered = 0;
  919. return false;
  920. }
  921. static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
  922. {
  923. struct sh_mmcif_host *host = dev_id;
  924. struct mmc_request *mrq = host->mrq;
  925. struct mmc_data *data = mrq->data;
  926. cancel_delayed_work_sync(&host->timeout_work);
  927. /*
  928. * All handlers return true, if processing continues, and false, if the
  929. * request has to be completed - successfully or not
  930. */
  931. switch (host->wait_for) {
  932. case MMCIF_WAIT_FOR_REQUEST:
  933. /* We're too late, the timeout has already kicked in */
  934. return IRQ_HANDLED;
  935. case MMCIF_WAIT_FOR_CMD:
  936. if (sh_mmcif_end_cmd(host))
  937. /* Wait for data */
  938. return IRQ_HANDLED;
  939. break;
  940. case MMCIF_WAIT_FOR_MREAD:
  941. if (sh_mmcif_mread_block(host))
  942. /* Wait for more data */
  943. return IRQ_HANDLED;
  944. break;
  945. case MMCIF_WAIT_FOR_READ:
  946. if (sh_mmcif_read_block(host))
  947. /* Wait for data end */
  948. return IRQ_HANDLED;
  949. break;
  950. case MMCIF_WAIT_FOR_MWRITE:
  951. if (sh_mmcif_mwrite_block(host))
  952. /* Wait data to write */
  953. return IRQ_HANDLED;
  954. break;
  955. case MMCIF_WAIT_FOR_WRITE:
  956. if (sh_mmcif_write_block(host))
  957. /* Wait for data end */
  958. return IRQ_HANDLED;
  959. break;
  960. case MMCIF_WAIT_FOR_STOP:
  961. if (host->sd_error) {
  962. mrq->stop->error = sh_mmcif_error_manage(host);
  963. break;
  964. }
  965. sh_mmcif_get_cmd12response(host, mrq->stop);
  966. mrq->stop->error = 0;
  967. break;
  968. case MMCIF_WAIT_FOR_READ_END:
  969. case MMCIF_WAIT_FOR_WRITE_END:
  970. if (host->sd_error)
  971. data->error = sh_mmcif_error_manage(host);
  972. break;
  973. default:
  974. BUG();
  975. }
  976. if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
  977. if (!mrq->cmd->error && data && !data->error)
  978. data->bytes_xfered =
  979. data->blocks * data->blksz;
  980. if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
  981. sh_mmcif_stop_cmd(host, mrq);
  982. if (!mrq->stop->error)
  983. return IRQ_HANDLED;
  984. }
  985. }
  986. host->wait_for = MMCIF_WAIT_FOR_REQUEST;
  987. host->state = STATE_IDLE;
  988. host->mrq = NULL;
  989. mmc_request_done(host->mmc, mrq);
  990. return IRQ_HANDLED;
  991. }
  992. static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
  993. {
  994. struct sh_mmcif_host *host = dev_id;
  995. u32 state;
  996. int err = 0;
  997. state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
  998. if (state & INT_ERR_STS) {
  999. /* error interrupts - process first */
  1000. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
  1001. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
  1002. err = 1;
  1003. } else if (state & INT_RBSYE) {
  1004. sh_mmcif_writel(host->addr, MMCIF_CE_INT,
  1005. ~(INT_RBSYE | INT_CRSPE));
  1006. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MRBSYE);
  1007. } else if (state & INT_CRSPE) {
  1008. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_CRSPE);
  1009. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCRSPE);
  1010. } else if (state & INT_BUFREN) {
  1011. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFREN);
  1012. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
  1013. } else if (state & INT_BUFWEN) {
  1014. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFWEN);
  1015. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
  1016. } else if (state & INT_CMD12DRE) {
  1017. sh_mmcif_writel(host->addr, MMCIF_CE_INT,
  1018. ~(INT_CMD12DRE | INT_CMD12RBE |
  1019. INT_CMD12CRE | INT_BUFRE));
  1020. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
  1021. } else if (state & INT_BUFRE) {
  1022. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFRE);
  1023. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
  1024. } else if (state & INT_DTRANE) {
  1025. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_DTRANE);
  1026. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
  1027. } else if (state & INT_CMD12RBE) {
  1028. sh_mmcif_writel(host->addr, MMCIF_CE_INT,
  1029. ~(INT_CMD12RBE | INT_CMD12CRE));
  1030. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
  1031. } else {
  1032. dev_dbg(&host->pd->dev, "Unsupported interrupt: 0x%x\n", state);
  1033. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
  1034. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
  1035. err = 1;
  1036. }
  1037. if (err) {
  1038. host->sd_error = true;
  1039. dev_dbg(&host->pd->dev, "int err state = %08x\n", state);
  1040. }
  1041. if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
  1042. if (!host->dma_active)
  1043. return IRQ_WAKE_THREAD;
  1044. else if (host->sd_error)
  1045. mmcif_dma_complete(host);
  1046. } else {
  1047. dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
  1048. }
  1049. return IRQ_HANDLED;
  1050. }
  1051. static void mmcif_timeout_work(struct work_struct *work)
  1052. {
  1053. struct delayed_work *d = container_of(work, struct delayed_work, work);
  1054. struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
  1055. struct mmc_request *mrq = host->mrq;
  1056. if (host->dying)
  1057. /* Don't run after mmc_remove_host() */
  1058. return;
  1059. /*
  1060. * Handle races with cancel_delayed_work(), unless
  1061. * cancel_delayed_work_sync() is used
  1062. */
  1063. switch (host->wait_for) {
  1064. case MMCIF_WAIT_FOR_CMD:
  1065. mrq->cmd->error = sh_mmcif_error_manage(host);
  1066. break;
  1067. case MMCIF_WAIT_FOR_STOP:
  1068. mrq->stop->error = sh_mmcif_error_manage(host);
  1069. break;
  1070. case MMCIF_WAIT_FOR_MREAD:
  1071. case MMCIF_WAIT_FOR_MWRITE:
  1072. case MMCIF_WAIT_FOR_READ:
  1073. case MMCIF_WAIT_FOR_WRITE:
  1074. case MMCIF_WAIT_FOR_READ_END:
  1075. case MMCIF_WAIT_FOR_WRITE_END:
  1076. mrq->data->error = sh_mmcif_error_manage(host);
  1077. break;
  1078. default:
  1079. BUG();
  1080. }
  1081. host->state = STATE_IDLE;
  1082. host->wait_for = MMCIF_WAIT_FOR_REQUEST;
  1083. host->mrq = NULL;
  1084. mmc_request_done(host->mmc, mrq);
  1085. }
  1086. static int __devinit sh_mmcif_probe(struct platform_device *pdev)
  1087. {
  1088. int ret = 0, irq[2];
  1089. struct mmc_host *mmc;
  1090. struct sh_mmcif_host *host;
  1091. struct sh_mmcif_plat_data *pd = pdev->dev.platform_data;
  1092. struct resource *res;
  1093. void __iomem *reg;
  1094. char clk_name[8];
  1095. if (!pd) {
  1096. dev_err(&pdev->dev, "sh_mmcif plat data error.\n");
  1097. return -ENXIO;
  1098. }
  1099. irq[0] = platform_get_irq(pdev, 0);
  1100. irq[1] = platform_get_irq(pdev, 1);
  1101. if (irq[0] < 0 || irq[1] < 0) {
  1102. dev_err(&pdev->dev, "Get irq error\n");
  1103. return -ENXIO;
  1104. }
  1105. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1106. if (!res) {
  1107. dev_err(&pdev->dev, "platform_get_resource error.\n");
  1108. return -ENXIO;
  1109. }
  1110. reg = ioremap(res->start, resource_size(res));
  1111. if (!reg) {
  1112. dev_err(&pdev->dev, "ioremap error.\n");
  1113. return -ENOMEM;
  1114. }
  1115. mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
  1116. if (!mmc) {
  1117. ret = -ENOMEM;
  1118. goto ealloch;
  1119. }
  1120. host = mmc_priv(mmc);
  1121. host->mmc = mmc;
  1122. host->addr = reg;
  1123. host->timeout = 1000;
  1124. snprintf(clk_name, sizeof(clk_name), "mmc%d", pdev->id);
  1125. host->hclk = clk_get(&pdev->dev, clk_name);
  1126. if (IS_ERR(host->hclk)) {
  1127. dev_err(&pdev->dev, "cannot get clock \"%s\"\n", clk_name);
  1128. ret = PTR_ERR(host->hclk);
  1129. goto eclkget;
  1130. }
  1131. clk_enable(host->hclk);
  1132. host->clk = clk_get_rate(host->hclk);
  1133. host->pd = pdev;
  1134. spin_lock_init(&host->lock);
  1135. mmc->ops = &sh_mmcif_ops;
  1136. mmc->f_max = host->clk / 2;
  1137. mmc->f_min = host->clk / 512;
  1138. if (pd->ocr)
  1139. mmc->ocr_avail = pd->ocr;
  1140. mmc->caps = MMC_CAP_MMC_HIGHSPEED;
  1141. if (pd->caps)
  1142. mmc->caps |= pd->caps;
  1143. mmc->max_segs = 32;
  1144. mmc->max_blk_size = 512;
  1145. mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
  1146. mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
  1147. mmc->max_seg_size = mmc->max_req_size;
  1148. sh_mmcif_sync_reset(host);
  1149. platform_set_drvdata(pdev, host);
  1150. pm_runtime_enable(&pdev->dev);
  1151. host->power = false;
  1152. ret = pm_runtime_resume(&pdev->dev);
  1153. if (ret < 0)
  1154. goto eresume;
  1155. INIT_DELAYED_WORK(&host->timeout_work, mmcif_timeout_work);
  1156. sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
  1157. ret = request_threaded_irq(irq[0], sh_mmcif_intr, sh_mmcif_irqt, 0, "sh_mmc:error", host);
  1158. if (ret) {
  1159. dev_err(&pdev->dev, "request_irq error (sh_mmc:error)\n");
  1160. goto ereqirq0;
  1161. }
  1162. ret = request_threaded_irq(irq[1], sh_mmcif_intr, sh_mmcif_irqt, 0, "sh_mmc:int", host);
  1163. if (ret) {
  1164. dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
  1165. goto ereqirq1;
  1166. }
  1167. ret = mmc_add_host(mmc);
  1168. if (ret < 0)
  1169. goto emmcaddh;
  1170. dev_pm_qos_expose_latency_limit(&pdev->dev, 100);
  1171. dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION);
  1172. dev_dbg(&pdev->dev, "chip ver H'%04x\n",
  1173. sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
  1174. return ret;
  1175. emmcaddh:
  1176. free_irq(irq[1], host);
  1177. ereqirq1:
  1178. free_irq(irq[0], host);
  1179. ereqirq0:
  1180. pm_runtime_suspend(&pdev->dev);
  1181. eresume:
  1182. pm_runtime_disable(&pdev->dev);
  1183. clk_disable(host->hclk);
  1184. eclkget:
  1185. mmc_free_host(mmc);
  1186. ealloch:
  1187. iounmap(reg);
  1188. return ret;
  1189. }
  1190. static int __devexit sh_mmcif_remove(struct platform_device *pdev)
  1191. {
  1192. struct sh_mmcif_host *host = platform_get_drvdata(pdev);
  1193. int irq[2];
  1194. host->dying = true;
  1195. pm_runtime_get_sync(&pdev->dev);
  1196. dev_pm_qos_hide_latency_limit(&pdev->dev);
  1197. mmc_remove_host(host->mmc);
  1198. sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
  1199. /*
  1200. * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
  1201. * mmc_remove_host() call above. But swapping order doesn't help either
  1202. * (a query on the linux-mmc mailing list didn't bring any replies).
  1203. */
  1204. cancel_delayed_work_sync(&host->timeout_work);
  1205. if (host->addr)
  1206. iounmap(host->addr);
  1207. irq[0] = platform_get_irq(pdev, 0);
  1208. irq[1] = platform_get_irq(pdev, 1);
  1209. free_irq(irq[0], host);
  1210. free_irq(irq[1], host);
  1211. platform_set_drvdata(pdev, NULL);
  1212. clk_disable(host->hclk);
  1213. mmc_free_host(host->mmc);
  1214. pm_runtime_put_sync(&pdev->dev);
  1215. pm_runtime_disable(&pdev->dev);
  1216. return 0;
  1217. }
  1218. #ifdef CONFIG_PM
  1219. static int sh_mmcif_suspend(struct device *dev)
  1220. {
  1221. struct platform_device *pdev = to_platform_device(dev);
  1222. struct sh_mmcif_host *host = platform_get_drvdata(pdev);
  1223. int ret = mmc_suspend_host(host->mmc);
  1224. if (!ret) {
  1225. sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
  1226. clk_disable(host->hclk);
  1227. }
  1228. return ret;
  1229. }
  1230. static int sh_mmcif_resume(struct device *dev)
  1231. {
  1232. struct platform_device *pdev = to_platform_device(dev);
  1233. struct sh_mmcif_host *host = platform_get_drvdata(pdev);
  1234. clk_enable(host->hclk);
  1235. return mmc_resume_host(host->mmc);
  1236. }
  1237. #else
  1238. #define sh_mmcif_suspend NULL
  1239. #define sh_mmcif_resume NULL
  1240. #endif /* CONFIG_PM */
  1241. static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
  1242. .suspend = sh_mmcif_suspend,
  1243. .resume = sh_mmcif_resume,
  1244. };
  1245. static struct platform_driver sh_mmcif_driver = {
  1246. .probe = sh_mmcif_probe,
  1247. .remove = sh_mmcif_remove,
  1248. .driver = {
  1249. .name = DRIVER_NAME,
  1250. .pm = &sh_mmcif_dev_pm_ops,
  1251. },
  1252. };
  1253. module_platform_driver(sh_mmcif_driver);
  1254. MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
  1255. MODULE_LICENSE("GPL");
  1256. MODULE_ALIAS("platform:" DRIVER_NAME);
  1257. MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");