intel_display.c 169 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/module.h>
  27. #include <linux/input.h>
  28. #include <linux/i2c.h>
  29. #include <linux/kernel.h>
  30. #include <linux/slab.h>
  31. #include "drmP.h"
  32. #include "intel_drv.h"
  33. #include "i915_drm.h"
  34. #include "i915_drv.h"
  35. #include "i915_trace.h"
  36. #include "drm_dp_helper.h"
  37. #include "drm_crtc_helper.h"
  38. #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  39. bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
  40. static void intel_update_watermarks(struct drm_device *dev);
  41. static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
  42. typedef struct {
  43. /* given values */
  44. int n;
  45. int m1, m2;
  46. int p1, p2;
  47. /* derived values */
  48. int dot;
  49. int vco;
  50. int m;
  51. int p;
  52. } intel_clock_t;
  53. typedef struct {
  54. int min, max;
  55. } intel_range_t;
  56. typedef struct {
  57. int dot_limit;
  58. int p2_slow, p2_fast;
  59. } intel_p2_t;
  60. #define INTEL_P2_NUM 2
  61. typedef struct intel_limit intel_limit_t;
  62. struct intel_limit {
  63. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  64. intel_p2_t p2;
  65. bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
  66. int, int, intel_clock_t *);
  67. };
  68. #define I8XX_DOT_MIN 25000
  69. #define I8XX_DOT_MAX 350000
  70. #define I8XX_VCO_MIN 930000
  71. #define I8XX_VCO_MAX 1400000
  72. #define I8XX_N_MIN 3
  73. #define I8XX_N_MAX 16
  74. #define I8XX_M_MIN 96
  75. #define I8XX_M_MAX 140
  76. #define I8XX_M1_MIN 18
  77. #define I8XX_M1_MAX 26
  78. #define I8XX_M2_MIN 6
  79. #define I8XX_M2_MAX 16
  80. #define I8XX_P_MIN 4
  81. #define I8XX_P_MAX 128
  82. #define I8XX_P1_MIN 2
  83. #define I8XX_P1_MAX 33
  84. #define I8XX_P1_LVDS_MIN 1
  85. #define I8XX_P1_LVDS_MAX 6
  86. #define I8XX_P2_SLOW 4
  87. #define I8XX_P2_FAST 2
  88. #define I8XX_P2_LVDS_SLOW 14
  89. #define I8XX_P2_LVDS_FAST 7
  90. #define I8XX_P2_SLOW_LIMIT 165000
  91. #define I9XX_DOT_MIN 20000
  92. #define I9XX_DOT_MAX 400000
  93. #define I9XX_VCO_MIN 1400000
  94. #define I9XX_VCO_MAX 2800000
  95. #define PINEVIEW_VCO_MIN 1700000
  96. #define PINEVIEW_VCO_MAX 3500000
  97. #define I9XX_N_MIN 1
  98. #define I9XX_N_MAX 6
  99. /* Pineview's Ncounter is a ring counter */
  100. #define PINEVIEW_N_MIN 3
  101. #define PINEVIEW_N_MAX 6
  102. #define I9XX_M_MIN 70
  103. #define I9XX_M_MAX 120
  104. #define PINEVIEW_M_MIN 2
  105. #define PINEVIEW_M_MAX 256
  106. #define I9XX_M1_MIN 10
  107. #define I9XX_M1_MAX 22
  108. #define I9XX_M2_MIN 5
  109. #define I9XX_M2_MAX 9
  110. /* Pineview M1 is reserved, and must be 0 */
  111. #define PINEVIEW_M1_MIN 0
  112. #define PINEVIEW_M1_MAX 0
  113. #define PINEVIEW_M2_MIN 0
  114. #define PINEVIEW_M2_MAX 254
  115. #define I9XX_P_SDVO_DAC_MIN 5
  116. #define I9XX_P_SDVO_DAC_MAX 80
  117. #define I9XX_P_LVDS_MIN 7
  118. #define I9XX_P_LVDS_MAX 98
  119. #define PINEVIEW_P_LVDS_MIN 7
  120. #define PINEVIEW_P_LVDS_MAX 112
  121. #define I9XX_P1_MIN 1
  122. #define I9XX_P1_MAX 8
  123. #define I9XX_P2_SDVO_DAC_SLOW 10
  124. #define I9XX_P2_SDVO_DAC_FAST 5
  125. #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
  126. #define I9XX_P2_LVDS_SLOW 14
  127. #define I9XX_P2_LVDS_FAST 7
  128. #define I9XX_P2_LVDS_SLOW_LIMIT 112000
  129. /*The parameter is for SDVO on G4x platform*/
  130. #define G4X_DOT_SDVO_MIN 25000
  131. #define G4X_DOT_SDVO_MAX 270000
  132. #define G4X_VCO_MIN 1750000
  133. #define G4X_VCO_MAX 3500000
  134. #define G4X_N_SDVO_MIN 1
  135. #define G4X_N_SDVO_MAX 4
  136. #define G4X_M_SDVO_MIN 104
  137. #define G4X_M_SDVO_MAX 138
  138. #define G4X_M1_SDVO_MIN 17
  139. #define G4X_M1_SDVO_MAX 23
  140. #define G4X_M2_SDVO_MIN 5
  141. #define G4X_M2_SDVO_MAX 11
  142. #define G4X_P_SDVO_MIN 10
  143. #define G4X_P_SDVO_MAX 30
  144. #define G4X_P1_SDVO_MIN 1
  145. #define G4X_P1_SDVO_MAX 3
  146. #define G4X_P2_SDVO_SLOW 10
  147. #define G4X_P2_SDVO_FAST 10
  148. #define G4X_P2_SDVO_LIMIT 270000
  149. /*The parameter is for HDMI_DAC on G4x platform*/
  150. #define G4X_DOT_HDMI_DAC_MIN 22000
  151. #define G4X_DOT_HDMI_DAC_MAX 400000
  152. #define G4X_N_HDMI_DAC_MIN 1
  153. #define G4X_N_HDMI_DAC_MAX 4
  154. #define G4X_M_HDMI_DAC_MIN 104
  155. #define G4X_M_HDMI_DAC_MAX 138
  156. #define G4X_M1_HDMI_DAC_MIN 16
  157. #define G4X_M1_HDMI_DAC_MAX 23
  158. #define G4X_M2_HDMI_DAC_MIN 5
  159. #define G4X_M2_HDMI_DAC_MAX 11
  160. #define G4X_P_HDMI_DAC_MIN 5
  161. #define G4X_P_HDMI_DAC_MAX 80
  162. #define G4X_P1_HDMI_DAC_MIN 1
  163. #define G4X_P1_HDMI_DAC_MAX 8
  164. #define G4X_P2_HDMI_DAC_SLOW 10
  165. #define G4X_P2_HDMI_DAC_FAST 5
  166. #define G4X_P2_HDMI_DAC_LIMIT 165000
  167. /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
  168. #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
  169. #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
  170. #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
  171. #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
  172. #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
  173. #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
  174. #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
  175. #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
  176. #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
  177. #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
  178. #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
  179. #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
  180. #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
  181. #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
  182. #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
  183. #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
  184. #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
  185. /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
  186. #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
  187. #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
  188. #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
  189. #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
  190. #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
  191. #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
  192. #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
  193. #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
  194. #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
  195. #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
  196. #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
  197. #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
  198. #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
  199. #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
  200. #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
  201. #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
  202. #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
  203. /*The parameter is for DISPLAY PORT on G4x platform*/
  204. #define G4X_DOT_DISPLAY_PORT_MIN 161670
  205. #define G4X_DOT_DISPLAY_PORT_MAX 227000
  206. #define G4X_N_DISPLAY_PORT_MIN 1
  207. #define G4X_N_DISPLAY_PORT_MAX 2
  208. #define G4X_M_DISPLAY_PORT_MIN 97
  209. #define G4X_M_DISPLAY_PORT_MAX 108
  210. #define G4X_M1_DISPLAY_PORT_MIN 0x10
  211. #define G4X_M1_DISPLAY_PORT_MAX 0x12
  212. #define G4X_M2_DISPLAY_PORT_MIN 0x05
  213. #define G4X_M2_DISPLAY_PORT_MAX 0x06
  214. #define G4X_P_DISPLAY_PORT_MIN 10
  215. #define G4X_P_DISPLAY_PORT_MAX 20
  216. #define G4X_P1_DISPLAY_PORT_MIN 1
  217. #define G4X_P1_DISPLAY_PORT_MAX 2
  218. #define G4X_P2_DISPLAY_PORT_SLOW 10
  219. #define G4X_P2_DISPLAY_PORT_FAST 10
  220. #define G4X_P2_DISPLAY_PORT_LIMIT 0
  221. /* Ironlake / Sandybridge */
  222. /* as we calculate clock using (register_value + 2) for
  223. N/M1/M2, so here the range value for them is (actual_value-2).
  224. */
  225. #define IRONLAKE_DOT_MIN 25000
  226. #define IRONLAKE_DOT_MAX 350000
  227. #define IRONLAKE_VCO_MIN 1760000
  228. #define IRONLAKE_VCO_MAX 3510000
  229. #define IRONLAKE_M1_MIN 12
  230. #define IRONLAKE_M1_MAX 22
  231. #define IRONLAKE_M2_MIN 5
  232. #define IRONLAKE_M2_MAX 9
  233. #define IRONLAKE_P2_DOT_LIMIT 225000 /* 225Mhz */
  234. /* We have parameter ranges for different type of outputs. */
  235. /* DAC & HDMI Refclk 120Mhz */
  236. #define IRONLAKE_DAC_N_MIN 1
  237. #define IRONLAKE_DAC_N_MAX 5
  238. #define IRONLAKE_DAC_M_MIN 79
  239. #define IRONLAKE_DAC_M_MAX 127
  240. #define IRONLAKE_DAC_P_MIN 5
  241. #define IRONLAKE_DAC_P_MAX 80
  242. #define IRONLAKE_DAC_P1_MIN 1
  243. #define IRONLAKE_DAC_P1_MAX 8
  244. #define IRONLAKE_DAC_P2_SLOW 10
  245. #define IRONLAKE_DAC_P2_FAST 5
  246. /* LVDS single-channel 120Mhz refclk */
  247. #define IRONLAKE_LVDS_S_N_MIN 1
  248. #define IRONLAKE_LVDS_S_N_MAX 3
  249. #define IRONLAKE_LVDS_S_M_MIN 79
  250. #define IRONLAKE_LVDS_S_M_MAX 118
  251. #define IRONLAKE_LVDS_S_P_MIN 28
  252. #define IRONLAKE_LVDS_S_P_MAX 112
  253. #define IRONLAKE_LVDS_S_P1_MIN 2
  254. #define IRONLAKE_LVDS_S_P1_MAX 8
  255. #define IRONLAKE_LVDS_S_P2_SLOW 14
  256. #define IRONLAKE_LVDS_S_P2_FAST 14
  257. /* LVDS dual-channel 120Mhz refclk */
  258. #define IRONLAKE_LVDS_D_N_MIN 1
  259. #define IRONLAKE_LVDS_D_N_MAX 3
  260. #define IRONLAKE_LVDS_D_M_MIN 79
  261. #define IRONLAKE_LVDS_D_M_MAX 127
  262. #define IRONLAKE_LVDS_D_P_MIN 14
  263. #define IRONLAKE_LVDS_D_P_MAX 56
  264. #define IRONLAKE_LVDS_D_P1_MIN 2
  265. #define IRONLAKE_LVDS_D_P1_MAX 8
  266. #define IRONLAKE_LVDS_D_P2_SLOW 7
  267. #define IRONLAKE_LVDS_D_P2_FAST 7
  268. /* LVDS single-channel 100Mhz refclk */
  269. #define IRONLAKE_LVDS_S_SSC_N_MIN 1
  270. #define IRONLAKE_LVDS_S_SSC_N_MAX 2
  271. #define IRONLAKE_LVDS_S_SSC_M_MIN 79
  272. #define IRONLAKE_LVDS_S_SSC_M_MAX 126
  273. #define IRONLAKE_LVDS_S_SSC_P_MIN 28
  274. #define IRONLAKE_LVDS_S_SSC_P_MAX 112
  275. #define IRONLAKE_LVDS_S_SSC_P1_MIN 2
  276. #define IRONLAKE_LVDS_S_SSC_P1_MAX 8
  277. #define IRONLAKE_LVDS_S_SSC_P2_SLOW 14
  278. #define IRONLAKE_LVDS_S_SSC_P2_FAST 14
  279. /* LVDS dual-channel 100Mhz refclk */
  280. #define IRONLAKE_LVDS_D_SSC_N_MIN 1
  281. #define IRONLAKE_LVDS_D_SSC_N_MAX 3
  282. #define IRONLAKE_LVDS_D_SSC_M_MIN 79
  283. #define IRONLAKE_LVDS_D_SSC_M_MAX 126
  284. #define IRONLAKE_LVDS_D_SSC_P_MIN 14
  285. #define IRONLAKE_LVDS_D_SSC_P_MAX 42
  286. #define IRONLAKE_LVDS_D_SSC_P1_MIN 2
  287. #define IRONLAKE_LVDS_D_SSC_P1_MAX 6
  288. #define IRONLAKE_LVDS_D_SSC_P2_SLOW 7
  289. #define IRONLAKE_LVDS_D_SSC_P2_FAST 7
  290. /* DisplayPort */
  291. #define IRONLAKE_DP_N_MIN 1
  292. #define IRONLAKE_DP_N_MAX 2
  293. #define IRONLAKE_DP_M_MIN 81
  294. #define IRONLAKE_DP_M_MAX 90
  295. #define IRONLAKE_DP_P_MIN 10
  296. #define IRONLAKE_DP_P_MAX 20
  297. #define IRONLAKE_DP_P2_FAST 10
  298. #define IRONLAKE_DP_P2_SLOW 10
  299. #define IRONLAKE_DP_P2_LIMIT 0
  300. #define IRONLAKE_DP_P1_MIN 1
  301. #define IRONLAKE_DP_P1_MAX 2
  302. /* FDI */
  303. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  304. static bool
  305. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  306. int target, int refclk, intel_clock_t *best_clock);
  307. static bool
  308. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  309. int target, int refclk, intel_clock_t *best_clock);
  310. static bool
  311. intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
  312. int target, int refclk, intel_clock_t *best_clock);
  313. static bool
  314. intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
  315. int target, int refclk, intel_clock_t *best_clock);
  316. static const intel_limit_t intel_limits_i8xx_dvo = {
  317. .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
  318. .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
  319. .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
  320. .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
  321. .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
  322. .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
  323. .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
  324. .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
  325. .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
  326. .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
  327. .find_pll = intel_find_best_PLL,
  328. };
  329. static const intel_limit_t intel_limits_i8xx_lvds = {
  330. .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
  331. .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
  332. .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
  333. .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
  334. .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
  335. .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
  336. .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
  337. .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
  338. .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
  339. .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
  340. .find_pll = intel_find_best_PLL,
  341. };
  342. static const intel_limit_t intel_limits_i9xx_sdvo = {
  343. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
  344. .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
  345. .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
  346. .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
  347. .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
  348. .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
  349. .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
  350. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  351. .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
  352. .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
  353. .find_pll = intel_find_best_PLL,
  354. };
  355. static const intel_limit_t intel_limits_i9xx_lvds = {
  356. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
  357. .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
  358. .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
  359. .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
  360. .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
  361. .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
  362. .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
  363. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  364. /* The single-channel range is 25-112Mhz, and dual-channel
  365. * is 80-224Mhz. Prefer single channel as much as possible.
  366. */
  367. .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
  368. .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
  369. .find_pll = intel_find_best_PLL,
  370. };
  371. /* below parameter and function is for G4X Chipset Family*/
  372. static const intel_limit_t intel_limits_g4x_sdvo = {
  373. .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
  374. .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
  375. .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
  376. .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
  377. .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
  378. .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
  379. .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
  380. .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
  381. .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
  382. .p2_slow = G4X_P2_SDVO_SLOW,
  383. .p2_fast = G4X_P2_SDVO_FAST
  384. },
  385. .find_pll = intel_g4x_find_best_PLL,
  386. };
  387. static const intel_limit_t intel_limits_g4x_hdmi = {
  388. .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
  389. .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
  390. .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
  391. .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
  392. .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
  393. .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
  394. .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
  395. .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
  396. .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
  397. .p2_slow = G4X_P2_HDMI_DAC_SLOW,
  398. .p2_fast = G4X_P2_HDMI_DAC_FAST
  399. },
  400. .find_pll = intel_g4x_find_best_PLL,
  401. };
  402. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  403. .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
  404. .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
  405. .vco = { .min = G4X_VCO_MIN,
  406. .max = G4X_VCO_MAX },
  407. .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
  408. .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
  409. .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
  410. .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
  411. .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
  412. .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
  413. .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
  414. .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
  415. .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
  416. .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
  417. .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
  418. .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
  419. .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
  420. .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
  421. .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
  422. },
  423. .find_pll = intel_g4x_find_best_PLL,
  424. };
  425. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  426. .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
  427. .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
  428. .vco = { .min = G4X_VCO_MIN,
  429. .max = G4X_VCO_MAX },
  430. .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
  431. .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
  432. .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
  433. .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
  434. .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
  435. .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
  436. .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
  437. .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
  438. .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
  439. .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
  440. .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
  441. .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
  442. .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
  443. .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
  444. .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
  445. },
  446. .find_pll = intel_g4x_find_best_PLL,
  447. };
  448. static const intel_limit_t intel_limits_g4x_display_port = {
  449. .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
  450. .max = G4X_DOT_DISPLAY_PORT_MAX },
  451. .vco = { .min = G4X_VCO_MIN,
  452. .max = G4X_VCO_MAX},
  453. .n = { .min = G4X_N_DISPLAY_PORT_MIN,
  454. .max = G4X_N_DISPLAY_PORT_MAX },
  455. .m = { .min = G4X_M_DISPLAY_PORT_MIN,
  456. .max = G4X_M_DISPLAY_PORT_MAX },
  457. .m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
  458. .max = G4X_M1_DISPLAY_PORT_MAX },
  459. .m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
  460. .max = G4X_M2_DISPLAY_PORT_MAX },
  461. .p = { .min = G4X_P_DISPLAY_PORT_MIN,
  462. .max = G4X_P_DISPLAY_PORT_MAX },
  463. .p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
  464. .max = G4X_P1_DISPLAY_PORT_MAX},
  465. .p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
  466. .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
  467. .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
  468. .find_pll = intel_find_pll_g4x_dp,
  469. };
  470. static const intel_limit_t intel_limits_pineview_sdvo = {
  471. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
  472. .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
  473. .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
  474. .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
  475. .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
  476. .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
  477. .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
  478. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  479. .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
  480. .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
  481. .find_pll = intel_find_best_PLL,
  482. };
  483. static const intel_limit_t intel_limits_pineview_lvds = {
  484. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
  485. .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
  486. .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
  487. .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
  488. .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
  489. .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
  490. .p = { .min = PINEVIEW_P_LVDS_MIN, .max = PINEVIEW_P_LVDS_MAX },
  491. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  492. /* Pineview only supports single-channel mode. */
  493. .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
  494. .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
  495. .find_pll = intel_find_best_PLL,
  496. };
  497. static const intel_limit_t intel_limits_ironlake_dac = {
  498. .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
  499. .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
  500. .n = { .min = IRONLAKE_DAC_N_MIN, .max = IRONLAKE_DAC_N_MAX },
  501. .m = { .min = IRONLAKE_DAC_M_MIN, .max = IRONLAKE_DAC_M_MAX },
  502. .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
  503. .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
  504. .p = { .min = IRONLAKE_DAC_P_MIN, .max = IRONLAKE_DAC_P_MAX },
  505. .p1 = { .min = IRONLAKE_DAC_P1_MIN, .max = IRONLAKE_DAC_P1_MAX },
  506. .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
  507. .p2_slow = IRONLAKE_DAC_P2_SLOW,
  508. .p2_fast = IRONLAKE_DAC_P2_FAST },
  509. .find_pll = intel_g4x_find_best_PLL,
  510. };
  511. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  512. .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
  513. .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
  514. .n = { .min = IRONLAKE_LVDS_S_N_MIN, .max = IRONLAKE_LVDS_S_N_MAX },
  515. .m = { .min = IRONLAKE_LVDS_S_M_MIN, .max = IRONLAKE_LVDS_S_M_MAX },
  516. .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
  517. .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
  518. .p = { .min = IRONLAKE_LVDS_S_P_MIN, .max = IRONLAKE_LVDS_S_P_MAX },
  519. .p1 = { .min = IRONLAKE_LVDS_S_P1_MIN, .max = IRONLAKE_LVDS_S_P1_MAX },
  520. .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
  521. .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
  522. .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
  523. .find_pll = intel_g4x_find_best_PLL,
  524. };
  525. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  526. .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
  527. .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
  528. .n = { .min = IRONLAKE_LVDS_D_N_MIN, .max = IRONLAKE_LVDS_D_N_MAX },
  529. .m = { .min = IRONLAKE_LVDS_D_M_MIN, .max = IRONLAKE_LVDS_D_M_MAX },
  530. .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
  531. .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
  532. .p = { .min = IRONLAKE_LVDS_D_P_MIN, .max = IRONLAKE_LVDS_D_P_MAX },
  533. .p1 = { .min = IRONLAKE_LVDS_D_P1_MIN, .max = IRONLAKE_LVDS_D_P1_MAX },
  534. .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
  535. .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
  536. .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
  537. .find_pll = intel_g4x_find_best_PLL,
  538. };
  539. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  540. .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
  541. .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
  542. .n = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
  543. .m = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
  544. .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
  545. .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
  546. .p = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
  547. .p1 = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
  548. .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
  549. .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
  550. .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
  551. .find_pll = intel_g4x_find_best_PLL,
  552. };
  553. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  554. .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
  555. .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
  556. .n = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
  557. .m = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
  558. .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
  559. .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
  560. .p = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
  561. .p1 = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
  562. .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
  563. .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
  564. .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
  565. .find_pll = intel_g4x_find_best_PLL,
  566. };
  567. static const intel_limit_t intel_limits_ironlake_display_port = {
  568. .dot = { .min = IRONLAKE_DOT_MIN,
  569. .max = IRONLAKE_DOT_MAX },
  570. .vco = { .min = IRONLAKE_VCO_MIN,
  571. .max = IRONLAKE_VCO_MAX},
  572. .n = { .min = IRONLAKE_DP_N_MIN,
  573. .max = IRONLAKE_DP_N_MAX },
  574. .m = { .min = IRONLAKE_DP_M_MIN,
  575. .max = IRONLAKE_DP_M_MAX },
  576. .m1 = { .min = IRONLAKE_M1_MIN,
  577. .max = IRONLAKE_M1_MAX },
  578. .m2 = { .min = IRONLAKE_M2_MIN,
  579. .max = IRONLAKE_M2_MAX },
  580. .p = { .min = IRONLAKE_DP_P_MIN,
  581. .max = IRONLAKE_DP_P_MAX },
  582. .p1 = { .min = IRONLAKE_DP_P1_MIN,
  583. .max = IRONLAKE_DP_P1_MAX},
  584. .p2 = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
  585. .p2_slow = IRONLAKE_DP_P2_SLOW,
  586. .p2_fast = IRONLAKE_DP_P2_FAST },
  587. .find_pll = intel_find_pll_ironlake_dp,
  588. };
  589. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
  590. {
  591. struct drm_device *dev = crtc->dev;
  592. struct drm_i915_private *dev_priv = dev->dev_private;
  593. const intel_limit_t *limit;
  594. int refclk = 120;
  595. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  596. if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
  597. refclk = 100;
  598. if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
  599. LVDS_CLKB_POWER_UP) {
  600. /* LVDS dual channel */
  601. if (refclk == 100)
  602. limit = &intel_limits_ironlake_dual_lvds_100m;
  603. else
  604. limit = &intel_limits_ironlake_dual_lvds;
  605. } else {
  606. if (refclk == 100)
  607. limit = &intel_limits_ironlake_single_lvds_100m;
  608. else
  609. limit = &intel_limits_ironlake_single_lvds;
  610. }
  611. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  612. HAS_eDP)
  613. limit = &intel_limits_ironlake_display_port;
  614. else
  615. limit = &intel_limits_ironlake_dac;
  616. return limit;
  617. }
  618. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  619. {
  620. struct drm_device *dev = crtc->dev;
  621. struct drm_i915_private *dev_priv = dev->dev_private;
  622. const intel_limit_t *limit;
  623. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  624. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  625. LVDS_CLKB_POWER_UP)
  626. /* LVDS with dual channel */
  627. limit = &intel_limits_g4x_dual_channel_lvds;
  628. else
  629. /* LVDS with dual channel */
  630. limit = &intel_limits_g4x_single_channel_lvds;
  631. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  632. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  633. limit = &intel_limits_g4x_hdmi;
  634. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  635. limit = &intel_limits_g4x_sdvo;
  636. } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  637. limit = &intel_limits_g4x_display_port;
  638. } else /* The option is for other outputs */
  639. limit = &intel_limits_i9xx_sdvo;
  640. return limit;
  641. }
  642. static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
  643. {
  644. struct drm_device *dev = crtc->dev;
  645. const intel_limit_t *limit;
  646. if (HAS_PCH_SPLIT(dev))
  647. limit = intel_ironlake_limit(crtc);
  648. else if (IS_G4X(dev)) {
  649. limit = intel_g4x_limit(crtc);
  650. } else if (IS_I9XX(dev) && !IS_PINEVIEW(dev)) {
  651. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  652. limit = &intel_limits_i9xx_lvds;
  653. else
  654. limit = &intel_limits_i9xx_sdvo;
  655. } else if (IS_PINEVIEW(dev)) {
  656. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  657. limit = &intel_limits_pineview_lvds;
  658. else
  659. limit = &intel_limits_pineview_sdvo;
  660. } else {
  661. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  662. limit = &intel_limits_i8xx_lvds;
  663. else
  664. limit = &intel_limits_i8xx_dvo;
  665. }
  666. return limit;
  667. }
  668. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  669. static void pineview_clock(int refclk, intel_clock_t *clock)
  670. {
  671. clock->m = clock->m2 + 2;
  672. clock->p = clock->p1 * clock->p2;
  673. clock->vco = refclk * clock->m / clock->n;
  674. clock->dot = clock->vco / clock->p;
  675. }
  676. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  677. {
  678. if (IS_PINEVIEW(dev)) {
  679. pineview_clock(refclk, clock);
  680. return;
  681. }
  682. clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
  683. clock->p = clock->p1 * clock->p2;
  684. clock->vco = refclk * clock->m / (clock->n + 2);
  685. clock->dot = clock->vco / clock->p;
  686. }
  687. /**
  688. * Returns whether any output on the specified pipe is of the specified type
  689. */
  690. bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
  691. {
  692. struct drm_device *dev = crtc->dev;
  693. struct drm_mode_config *mode_config = &dev->mode_config;
  694. struct drm_encoder *l_entry;
  695. list_for_each_entry(l_entry, &mode_config->encoder_list, head) {
  696. if (l_entry && l_entry->crtc == crtc) {
  697. struct intel_encoder *intel_encoder = enc_to_intel_encoder(l_entry);
  698. if (intel_encoder->type == type)
  699. return true;
  700. }
  701. }
  702. return false;
  703. }
  704. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  705. /**
  706. * Returns whether the given set of divisors are valid for a given refclk with
  707. * the given connectors.
  708. */
  709. static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
  710. {
  711. const intel_limit_t *limit = intel_limit (crtc);
  712. struct drm_device *dev = crtc->dev;
  713. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  714. INTELPllInvalid ("p1 out of range\n");
  715. if (clock->p < limit->p.min || limit->p.max < clock->p)
  716. INTELPllInvalid ("p out of range\n");
  717. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  718. INTELPllInvalid ("m2 out of range\n");
  719. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  720. INTELPllInvalid ("m1 out of range\n");
  721. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  722. INTELPllInvalid ("m1 <= m2\n");
  723. if (clock->m < limit->m.min || limit->m.max < clock->m)
  724. INTELPllInvalid ("m out of range\n");
  725. if (clock->n < limit->n.min || limit->n.max < clock->n)
  726. INTELPllInvalid ("n out of range\n");
  727. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  728. INTELPllInvalid ("vco out of range\n");
  729. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  730. * connector, etc., rather than just a single range.
  731. */
  732. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  733. INTELPllInvalid ("dot out of range\n");
  734. return true;
  735. }
  736. static bool
  737. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  738. int target, int refclk, intel_clock_t *best_clock)
  739. {
  740. struct drm_device *dev = crtc->dev;
  741. struct drm_i915_private *dev_priv = dev->dev_private;
  742. intel_clock_t clock;
  743. int err = target;
  744. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  745. (I915_READ(LVDS)) != 0) {
  746. /*
  747. * For LVDS, if the panel is on, just rely on its current
  748. * settings for dual-channel. We haven't figured out how to
  749. * reliably set up different single/dual channel state, if we
  750. * even can.
  751. */
  752. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  753. LVDS_CLKB_POWER_UP)
  754. clock.p2 = limit->p2.p2_fast;
  755. else
  756. clock.p2 = limit->p2.p2_slow;
  757. } else {
  758. if (target < limit->p2.dot_limit)
  759. clock.p2 = limit->p2.p2_slow;
  760. else
  761. clock.p2 = limit->p2.p2_fast;
  762. }
  763. memset (best_clock, 0, sizeof (*best_clock));
  764. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  765. clock.m1++) {
  766. for (clock.m2 = limit->m2.min;
  767. clock.m2 <= limit->m2.max; clock.m2++) {
  768. /* m1 is always 0 in Pineview */
  769. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  770. break;
  771. for (clock.n = limit->n.min;
  772. clock.n <= limit->n.max; clock.n++) {
  773. for (clock.p1 = limit->p1.min;
  774. clock.p1 <= limit->p1.max; clock.p1++) {
  775. int this_err;
  776. intel_clock(dev, refclk, &clock);
  777. if (!intel_PLL_is_valid(crtc, &clock))
  778. continue;
  779. this_err = abs(clock.dot - target);
  780. if (this_err < err) {
  781. *best_clock = clock;
  782. err = this_err;
  783. }
  784. }
  785. }
  786. }
  787. }
  788. return (err != target);
  789. }
  790. static bool
  791. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  792. int target, int refclk, intel_clock_t *best_clock)
  793. {
  794. struct drm_device *dev = crtc->dev;
  795. struct drm_i915_private *dev_priv = dev->dev_private;
  796. intel_clock_t clock;
  797. int max_n;
  798. bool found;
  799. /* approximately equals target * 0.00488 */
  800. int err_most = (target >> 8) + (target >> 10);
  801. found = false;
  802. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  803. int lvds_reg;
  804. if (HAS_PCH_SPLIT(dev))
  805. lvds_reg = PCH_LVDS;
  806. else
  807. lvds_reg = LVDS;
  808. if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
  809. LVDS_CLKB_POWER_UP)
  810. clock.p2 = limit->p2.p2_fast;
  811. else
  812. clock.p2 = limit->p2.p2_slow;
  813. } else {
  814. if (target < limit->p2.dot_limit)
  815. clock.p2 = limit->p2.p2_slow;
  816. else
  817. clock.p2 = limit->p2.p2_fast;
  818. }
  819. memset(best_clock, 0, sizeof(*best_clock));
  820. max_n = limit->n.max;
  821. /* based on hardware requirement, prefer smaller n to precision */
  822. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  823. /* based on hardware requirement, prefere larger m1,m2 */
  824. for (clock.m1 = limit->m1.max;
  825. clock.m1 >= limit->m1.min; clock.m1--) {
  826. for (clock.m2 = limit->m2.max;
  827. clock.m2 >= limit->m2.min; clock.m2--) {
  828. for (clock.p1 = limit->p1.max;
  829. clock.p1 >= limit->p1.min; clock.p1--) {
  830. int this_err;
  831. intel_clock(dev, refclk, &clock);
  832. if (!intel_PLL_is_valid(crtc, &clock))
  833. continue;
  834. this_err = abs(clock.dot - target) ;
  835. if (this_err < err_most) {
  836. *best_clock = clock;
  837. err_most = this_err;
  838. max_n = clock.n;
  839. found = true;
  840. }
  841. }
  842. }
  843. }
  844. }
  845. return found;
  846. }
  847. static bool
  848. intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  849. int target, int refclk, intel_clock_t *best_clock)
  850. {
  851. struct drm_device *dev = crtc->dev;
  852. intel_clock_t clock;
  853. /* return directly when it is eDP */
  854. if (HAS_eDP)
  855. return true;
  856. if (target < 200000) {
  857. clock.n = 1;
  858. clock.p1 = 2;
  859. clock.p2 = 10;
  860. clock.m1 = 12;
  861. clock.m2 = 9;
  862. } else {
  863. clock.n = 2;
  864. clock.p1 = 1;
  865. clock.p2 = 10;
  866. clock.m1 = 14;
  867. clock.m2 = 8;
  868. }
  869. intel_clock(dev, refclk, &clock);
  870. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  871. return true;
  872. }
  873. /* DisplayPort has only two frequencies, 162MHz and 270MHz */
  874. static bool
  875. intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  876. int target, int refclk, intel_clock_t *best_clock)
  877. {
  878. intel_clock_t clock;
  879. if (target < 200000) {
  880. clock.p1 = 2;
  881. clock.p2 = 10;
  882. clock.n = 2;
  883. clock.m1 = 23;
  884. clock.m2 = 8;
  885. } else {
  886. clock.p1 = 1;
  887. clock.p2 = 10;
  888. clock.n = 1;
  889. clock.m1 = 14;
  890. clock.m2 = 2;
  891. }
  892. clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
  893. clock.p = (clock.p1 * clock.p2);
  894. clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
  895. clock.vco = 0;
  896. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  897. return true;
  898. }
  899. void
  900. intel_wait_for_vblank(struct drm_device *dev)
  901. {
  902. /* Wait for 20ms, i.e. one cycle at 50hz. */
  903. msleep(20);
  904. }
  905. /* Parameters have changed, update FBC info */
  906. static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  907. {
  908. struct drm_device *dev = crtc->dev;
  909. struct drm_i915_private *dev_priv = dev->dev_private;
  910. struct drm_framebuffer *fb = crtc->fb;
  911. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  912. struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
  913. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  914. int plane, i;
  915. u32 fbc_ctl, fbc_ctl2;
  916. dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
  917. if (fb->pitch < dev_priv->cfb_pitch)
  918. dev_priv->cfb_pitch = fb->pitch;
  919. /* FBC_CTL wants 64B units */
  920. dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
  921. dev_priv->cfb_fence = obj_priv->fence_reg;
  922. dev_priv->cfb_plane = intel_crtc->plane;
  923. plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
  924. /* Clear old tags */
  925. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  926. I915_WRITE(FBC_TAG + (i * 4), 0);
  927. /* Set it up... */
  928. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
  929. if (obj_priv->tiling_mode != I915_TILING_NONE)
  930. fbc_ctl2 |= FBC_CTL_CPU_FENCE;
  931. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  932. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  933. /* enable it... */
  934. fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
  935. if (IS_I945GM(dev))
  936. fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
  937. fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  938. fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
  939. if (obj_priv->tiling_mode != I915_TILING_NONE)
  940. fbc_ctl |= dev_priv->cfb_fence;
  941. I915_WRITE(FBC_CONTROL, fbc_ctl);
  942. DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
  943. dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
  944. }
  945. void i8xx_disable_fbc(struct drm_device *dev)
  946. {
  947. struct drm_i915_private *dev_priv = dev->dev_private;
  948. unsigned long timeout = jiffies + msecs_to_jiffies(1);
  949. u32 fbc_ctl;
  950. if (!I915_HAS_FBC(dev))
  951. return;
  952. if (!(I915_READ(FBC_CONTROL) & FBC_CTL_EN))
  953. return; /* Already off, just return */
  954. /* Disable compression */
  955. fbc_ctl = I915_READ(FBC_CONTROL);
  956. fbc_ctl &= ~FBC_CTL_EN;
  957. I915_WRITE(FBC_CONTROL, fbc_ctl);
  958. /* Wait for compressing bit to clear */
  959. while (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) {
  960. if (time_after(jiffies, timeout)) {
  961. DRM_DEBUG_DRIVER("FBC idle timed out\n");
  962. break;
  963. }
  964. ; /* do nothing */
  965. }
  966. intel_wait_for_vblank(dev);
  967. DRM_DEBUG_KMS("disabled FBC\n");
  968. }
  969. static bool i8xx_fbc_enabled(struct drm_device *dev)
  970. {
  971. struct drm_i915_private *dev_priv = dev->dev_private;
  972. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  973. }
  974. static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  975. {
  976. struct drm_device *dev = crtc->dev;
  977. struct drm_i915_private *dev_priv = dev->dev_private;
  978. struct drm_framebuffer *fb = crtc->fb;
  979. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  980. struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
  981. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  982. int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA :
  983. DPFC_CTL_PLANEB);
  984. unsigned long stall_watermark = 200;
  985. u32 dpfc_ctl;
  986. dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
  987. dev_priv->cfb_fence = obj_priv->fence_reg;
  988. dev_priv->cfb_plane = intel_crtc->plane;
  989. dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
  990. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  991. dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
  992. I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
  993. } else {
  994. I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
  995. }
  996. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  997. I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  998. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  999. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  1000. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  1001. /* enable it... */
  1002. I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
  1003. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  1004. }
  1005. void g4x_disable_fbc(struct drm_device *dev)
  1006. {
  1007. struct drm_i915_private *dev_priv = dev->dev_private;
  1008. u32 dpfc_ctl;
  1009. /* Disable compression */
  1010. dpfc_ctl = I915_READ(DPFC_CONTROL);
  1011. dpfc_ctl &= ~DPFC_CTL_EN;
  1012. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  1013. intel_wait_for_vblank(dev);
  1014. DRM_DEBUG_KMS("disabled FBC\n");
  1015. }
  1016. static bool g4x_fbc_enabled(struct drm_device *dev)
  1017. {
  1018. struct drm_i915_private *dev_priv = dev->dev_private;
  1019. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  1020. }
  1021. static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1022. {
  1023. struct drm_device *dev = crtc->dev;
  1024. struct drm_i915_private *dev_priv = dev->dev_private;
  1025. struct drm_framebuffer *fb = crtc->fb;
  1026. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1027. struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
  1028. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1029. int plane = (intel_crtc->plane == 0) ? DPFC_CTL_PLANEA :
  1030. DPFC_CTL_PLANEB;
  1031. unsigned long stall_watermark = 200;
  1032. u32 dpfc_ctl;
  1033. dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
  1034. dev_priv->cfb_fence = obj_priv->fence_reg;
  1035. dev_priv->cfb_plane = intel_crtc->plane;
  1036. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  1037. dpfc_ctl &= DPFC_RESERVED;
  1038. dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
  1039. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  1040. dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence);
  1041. I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
  1042. } else {
  1043. I915_WRITE(ILK_DPFC_CHICKEN, ~DPFC_HT_MODIFY);
  1044. }
  1045. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
  1046. I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  1047. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  1048. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  1049. I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
  1050. I915_WRITE(ILK_FBC_RT_BASE, obj_priv->gtt_offset | ILK_FBC_RT_VALID);
  1051. /* enable it... */
  1052. I915_WRITE(ILK_DPFC_CONTROL, I915_READ(ILK_DPFC_CONTROL) |
  1053. DPFC_CTL_EN);
  1054. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  1055. }
  1056. void ironlake_disable_fbc(struct drm_device *dev)
  1057. {
  1058. struct drm_i915_private *dev_priv = dev->dev_private;
  1059. u32 dpfc_ctl;
  1060. /* Disable compression */
  1061. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  1062. dpfc_ctl &= ~DPFC_CTL_EN;
  1063. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
  1064. intel_wait_for_vblank(dev);
  1065. DRM_DEBUG_KMS("disabled FBC\n");
  1066. }
  1067. static bool ironlake_fbc_enabled(struct drm_device *dev)
  1068. {
  1069. struct drm_i915_private *dev_priv = dev->dev_private;
  1070. return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
  1071. }
  1072. bool intel_fbc_enabled(struct drm_device *dev)
  1073. {
  1074. struct drm_i915_private *dev_priv = dev->dev_private;
  1075. if (!dev_priv->display.fbc_enabled)
  1076. return false;
  1077. return dev_priv->display.fbc_enabled(dev);
  1078. }
  1079. void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1080. {
  1081. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  1082. if (!dev_priv->display.enable_fbc)
  1083. return;
  1084. dev_priv->display.enable_fbc(crtc, interval);
  1085. }
  1086. void intel_disable_fbc(struct drm_device *dev)
  1087. {
  1088. struct drm_i915_private *dev_priv = dev->dev_private;
  1089. if (!dev_priv->display.disable_fbc)
  1090. return;
  1091. dev_priv->display.disable_fbc(dev);
  1092. }
  1093. /**
  1094. * intel_update_fbc - enable/disable FBC as needed
  1095. * @crtc: CRTC to point the compressor at
  1096. * @mode: mode in use
  1097. *
  1098. * Set up the framebuffer compression hardware at mode set time. We
  1099. * enable it if possible:
  1100. * - plane A only (on pre-965)
  1101. * - no pixel mulitply/line duplication
  1102. * - no alpha buffer discard
  1103. * - no dual wide
  1104. * - framebuffer <= 2048 in width, 1536 in height
  1105. *
  1106. * We can't assume that any compression will take place (worst case),
  1107. * so the compressed buffer has to be the same size as the uncompressed
  1108. * one. It also must reside (along with the line length buffer) in
  1109. * stolen memory.
  1110. *
  1111. * We need to enable/disable FBC on a global basis.
  1112. */
  1113. static void intel_update_fbc(struct drm_crtc *crtc,
  1114. struct drm_display_mode *mode)
  1115. {
  1116. struct drm_device *dev = crtc->dev;
  1117. struct drm_i915_private *dev_priv = dev->dev_private;
  1118. struct drm_framebuffer *fb = crtc->fb;
  1119. struct intel_framebuffer *intel_fb;
  1120. struct drm_i915_gem_object *obj_priv;
  1121. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1122. int plane = intel_crtc->plane;
  1123. if (!i915_powersave)
  1124. return;
  1125. if (!I915_HAS_FBC(dev))
  1126. return;
  1127. if (!crtc->fb)
  1128. return;
  1129. intel_fb = to_intel_framebuffer(fb);
  1130. obj_priv = to_intel_bo(intel_fb->obj);
  1131. /*
  1132. * If FBC is already on, we just have to verify that we can
  1133. * keep it that way...
  1134. * Need to disable if:
  1135. * - changing FBC params (stride, fence, mode)
  1136. * - new fb is too large to fit in compressed buffer
  1137. * - going to an unsupported config (interlace, pixel multiply, etc.)
  1138. */
  1139. if (intel_fb->obj->size > dev_priv->cfb_size) {
  1140. DRM_DEBUG_KMS("framebuffer too large, disabling "
  1141. "compression\n");
  1142. dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
  1143. goto out_disable;
  1144. }
  1145. if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
  1146. (mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
  1147. DRM_DEBUG_KMS("mode incompatible with compression, "
  1148. "disabling\n");
  1149. dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
  1150. goto out_disable;
  1151. }
  1152. if ((mode->hdisplay > 2048) ||
  1153. (mode->vdisplay > 1536)) {
  1154. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  1155. dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
  1156. goto out_disable;
  1157. }
  1158. if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) {
  1159. DRM_DEBUG_KMS("plane not 0, disabling compression\n");
  1160. dev_priv->no_fbc_reason = FBC_BAD_PLANE;
  1161. goto out_disable;
  1162. }
  1163. if (obj_priv->tiling_mode != I915_TILING_X) {
  1164. DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
  1165. dev_priv->no_fbc_reason = FBC_NOT_TILED;
  1166. goto out_disable;
  1167. }
  1168. if (intel_fbc_enabled(dev)) {
  1169. /* We can re-enable it in this case, but need to update pitch */
  1170. if ((fb->pitch > dev_priv->cfb_pitch) ||
  1171. (obj_priv->fence_reg != dev_priv->cfb_fence) ||
  1172. (plane != dev_priv->cfb_plane))
  1173. intel_disable_fbc(dev);
  1174. }
  1175. /* Now try to turn it back on if possible */
  1176. if (!intel_fbc_enabled(dev))
  1177. intel_enable_fbc(crtc, 500);
  1178. return;
  1179. out_disable:
  1180. /* Multiple disables should be harmless */
  1181. if (intel_fbc_enabled(dev)) {
  1182. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  1183. intel_disable_fbc(dev);
  1184. }
  1185. }
  1186. static int
  1187. intel_pin_and_fence_fb_obj(struct drm_device *dev, struct drm_gem_object *obj)
  1188. {
  1189. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1190. u32 alignment;
  1191. int ret;
  1192. switch (obj_priv->tiling_mode) {
  1193. case I915_TILING_NONE:
  1194. alignment = 64 * 1024;
  1195. break;
  1196. case I915_TILING_X:
  1197. /* pin() will align the object as required by fence */
  1198. alignment = 0;
  1199. break;
  1200. case I915_TILING_Y:
  1201. /* FIXME: Is this true? */
  1202. DRM_ERROR("Y tiled not allowed for scan out buffers\n");
  1203. return -EINVAL;
  1204. default:
  1205. BUG();
  1206. }
  1207. ret = i915_gem_object_pin(obj, alignment);
  1208. if (ret != 0)
  1209. return ret;
  1210. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1211. * fence, whereas 965+ only requires a fence if using
  1212. * framebuffer compression. For simplicity, we always install
  1213. * a fence as the cost is not that onerous.
  1214. */
  1215. if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
  1216. obj_priv->tiling_mode != I915_TILING_NONE) {
  1217. ret = i915_gem_object_get_fence_reg(obj);
  1218. if (ret != 0) {
  1219. i915_gem_object_unpin(obj);
  1220. return ret;
  1221. }
  1222. }
  1223. return 0;
  1224. }
  1225. static int
  1226. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1227. struct drm_framebuffer *old_fb)
  1228. {
  1229. struct drm_device *dev = crtc->dev;
  1230. struct drm_i915_private *dev_priv = dev->dev_private;
  1231. struct drm_i915_master_private *master_priv;
  1232. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1233. struct intel_framebuffer *intel_fb;
  1234. struct drm_i915_gem_object *obj_priv;
  1235. struct drm_gem_object *obj;
  1236. int pipe = intel_crtc->pipe;
  1237. int plane = intel_crtc->plane;
  1238. unsigned long Start, Offset;
  1239. int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
  1240. int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
  1241. int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
  1242. int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
  1243. int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
  1244. u32 dspcntr;
  1245. int ret;
  1246. /* no fb bound */
  1247. if (!crtc->fb) {
  1248. DRM_DEBUG_KMS("No FB bound\n");
  1249. return 0;
  1250. }
  1251. switch (plane) {
  1252. case 0:
  1253. case 1:
  1254. break;
  1255. default:
  1256. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1257. return -EINVAL;
  1258. }
  1259. intel_fb = to_intel_framebuffer(crtc->fb);
  1260. obj = intel_fb->obj;
  1261. obj_priv = to_intel_bo(obj);
  1262. mutex_lock(&dev->struct_mutex);
  1263. ret = intel_pin_and_fence_fb_obj(dev, obj);
  1264. if (ret != 0) {
  1265. mutex_unlock(&dev->struct_mutex);
  1266. return ret;
  1267. }
  1268. ret = i915_gem_object_set_to_display_plane(obj);
  1269. if (ret != 0) {
  1270. i915_gem_object_unpin(obj);
  1271. mutex_unlock(&dev->struct_mutex);
  1272. return ret;
  1273. }
  1274. dspcntr = I915_READ(dspcntr_reg);
  1275. /* Mask out pixel format bits in case we change it */
  1276. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1277. switch (crtc->fb->bits_per_pixel) {
  1278. case 8:
  1279. dspcntr |= DISPPLANE_8BPP;
  1280. break;
  1281. case 16:
  1282. if (crtc->fb->depth == 15)
  1283. dspcntr |= DISPPLANE_15_16BPP;
  1284. else
  1285. dspcntr |= DISPPLANE_16BPP;
  1286. break;
  1287. case 24:
  1288. case 32:
  1289. if (crtc->fb->depth == 30)
  1290. dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
  1291. else
  1292. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  1293. break;
  1294. default:
  1295. DRM_ERROR("Unknown color depth\n");
  1296. i915_gem_object_unpin(obj);
  1297. mutex_unlock(&dev->struct_mutex);
  1298. return -EINVAL;
  1299. }
  1300. if (IS_I965G(dev)) {
  1301. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1302. dspcntr |= DISPPLANE_TILED;
  1303. else
  1304. dspcntr &= ~DISPPLANE_TILED;
  1305. }
  1306. if (HAS_PCH_SPLIT(dev))
  1307. /* must disable */
  1308. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1309. I915_WRITE(dspcntr_reg, dspcntr);
  1310. Start = obj_priv->gtt_offset;
  1311. Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
  1312. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1313. Start, Offset, x, y, crtc->fb->pitch);
  1314. I915_WRITE(dspstride, crtc->fb->pitch);
  1315. if (IS_I965G(dev)) {
  1316. I915_WRITE(dspbase, Offset);
  1317. I915_READ(dspbase);
  1318. I915_WRITE(dspsurf, Start);
  1319. I915_READ(dspsurf);
  1320. I915_WRITE(dsptileoff, (y << 16) | x);
  1321. } else {
  1322. I915_WRITE(dspbase, Start + Offset);
  1323. I915_READ(dspbase);
  1324. }
  1325. if ((IS_I965G(dev) || plane == 0))
  1326. intel_update_fbc(crtc, &crtc->mode);
  1327. intel_wait_for_vblank(dev);
  1328. if (old_fb) {
  1329. intel_fb = to_intel_framebuffer(old_fb);
  1330. obj_priv = to_intel_bo(intel_fb->obj);
  1331. i915_gem_object_unpin(intel_fb->obj);
  1332. }
  1333. intel_increase_pllclock(crtc, true);
  1334. mutex_unlock(&dev->struct_mutex);
  1335. if (!dev->primary->master)
  1336. return 0;
  1337. master_priv = dev->primary->master->driver_priv;
  1338. if (!master_priv->sarea_priv)
  1339. return 0;
  1340. if (pipe) {
  1341. master_priv->sarea_priv->pipeB_x = x;
  1342. master_priv->sarea_priv->pipeB_y = y;
  1343. } else {
  1344. master_priv->sarea_priv->pipeA_x = x;
  1345. master_priv->sarea_priv->pipeA_y = y;
  1346. }
  1347. return 0;
  1348. }
  1349. /* Disable the VGA plane that we never use */
  1350. static void i915_disable_vga (struct drm_device *dev)
  1351. {
  1352. struct drm_i915_private *dev_priv = dev->dev_private;
  1353. u8 sr1;
  1354. u32 vga_reg;
  1355. if (HAS_PCH_SPLIT(dev))
  1356. vga_reg = CPU_VGACNTRL;
  1357. else
  1358. vga_reg = VGACNTRL;
  1359. if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
  1360. return;
  1361. I915_WRITE8(VGA_SR_INDEX, 1);
  1362. sr1 = I915_READ8(VGA_SR_DATA);
  1363. I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
  1364. udelay(100);
  1365. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  1366. }
  1367. static void ironlake_disable_pll_edp (struct drm_crtc *crtc)
  1368. {
  1369. struct drm_device *dev = crtc->dev;
  1370. struct drm_i915_private *dev_priv = dev->dev_private;
  1371. u32 dpa_ctl;
  1372. DRM_DEBUG_KMS("\n");
  1373. dpa_ctl = I915_READ(DP_A);
  1374. dpa_ctl &= ~DP_PLL_ENABLE;
  1375. I915_WRITE(DP_A, dpa_ctl);
  1376. }
  1377. static void ironlake_enable_pll_edp (struct drm_crtc *crtc)
  1378. {
  1379. struct drm_device *dev = crtc->dev;
  1380. struct drm_i915_private *dev_priv = dev->dev_private;
  1381. u32 dpa_ctl;
  1382. dpa_ctl = I915_READ(DP_A);
  1383. dpa_ctl |= DP_PLL_ENABLE;
  1384. I915_WRITE(DP_A, dpa_ctl);
  1385. udelay(200);
  1386. }
  1387. static void ironlake_set_pll_edp (struct drm_crtc *crtc, int clock)
  1388. {
  1389. struct drm_device *dev = crtc->dev;
  1390. struct drm_i915_private *dev_priv = dev->dev_private;
  1391. u32 dpa_ctl;
  1392. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
  1393. dpa_ctl = I915_READ(DP_A);
  1394. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  1395. if (clock < 200000) {
  1396. u32 temp;
  1397. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  1398. /* workaround for 160Mhz:
  1399. 1) program 0x4600c bits 15:0 = 0x8124
  1400. 2) program 0x46010 bit 0 = 1
  1401. 3) program 0x46034 bit 24 = 1
  1402. 4) program 0x64000 bit 14 = 1
  1403. */
  1404. temp = I915_READ(0x4600c);
  1405. temp &= 0xffff0000;
  1406. I915_WRITE(0x4600c, temp | 0x8124);
  1407. temp = I915_READ(0x46010);
  1408. I915_WRITE(0x46010, temp | 1);
  1409. temp = I915_READ(0x46034);
  1410. I915_WRITE(0x46034, temp | (1 << 24));
  1411. } else {
  1412. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  1413. }
  1414. I915_WRITE(DP_A, dpa_ctl);
  1415. udelay(500);
  1416. }
  1417. /* The FDI link training functions for ILK/Ibexpeak. */
  1418. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  1419. {
  1420. struct drm_device *dev = crtc->dev;
  1421. struct drm_i915_private *dev_priv = dev->dev_private;
  1422. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1423. int pipe = intel_crtc->pipe;
  1424. int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
  1425. int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
  1426. int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
  1427. int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
  1428. u32 temp, tries = 0;
  1429. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  1430. for train result */
  1431. temp = I915_READ(fdi_rx_imr_reg);
  1432. temp &= ~FDI_RX_SYMBOL_LOCK;
  1433. temp &= ~FDI_RX_BIT_LOCK;
  1434. I915_WRITE(fdi_rx_imr_reg, temp);
  1435. I915_READ(fdi_rx_imr_reg);
  1436. udelay(150);
  1437. /* enable CPU FDI TX and PCH FDI RX */
  1438. temp = I915_READ(fdi_tx_reg);
  1439. temp |= FDI_TX_ENABLE;
  1440. temp &= ~(7 << 19);
  1441. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  1442. temp &= ~FDI_LINK_TRAIN_NONE;
  1443. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1444. I915_WRITE(fdi_tx_reg, temp);
  1445. I915_READ(fdi_tx_reg);
  1446. temp = I915_READ(fdi_rx_reg);
  1447. temp &= ~FDI_LINK_TRAIN_NONE;
  1448. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1449. I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
  1450. I915_READ(fdi_rx_reg);
  1451. udelay(150);
  1452. for (tries = 0; tries < 5; tries++) {
  1453. temp = I915_READ(fdi_rx_iir_reg);
  1454. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  1455. if ((temp & FDI_RX_BIT_LOCK)) {
  1456. DRM_DEBUG_KMS("FDI train 1 done.\n");
  1457. I915_WRITE(fdi_rx_iir_reg,
  1458. temp | FDI_RX_BIT_LOCK);
  1459. break;
  1460. }
  1461. }
  1462. if (tries == 5)
  1463. DRM_DEBUG_KMS("FDI train 1 fail!\n");
  1464. /* Train 2 */
  1465. temp = I915_READ(fdi_tx_reg);
  1466. temp &= ~FDI_LINK_TRAIN_NONE;
  1467. temp |= FDI_LINK_TRAIN_PATTERN_2;
  1468. I915_WRITE(fdi_tx_reg, temp);
  1469. temp = I915_READ(fdi_rx_reg);
  1470. temp &= ~FDI_LINK_TRAIN_NONE;
  1471. temp |= FDI_LINK_TRAIN_PATTERN_2;
  1472. I915_WRITE(fdi_rx_reg, temp);
  1473. udelay(150);
  1474. tries = 0;
  1475. for (tries = 0; tries < 5; tries++) {
  1476. temp = I915_READ(fdi_rx_iir_reg);
  1477. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  1478. if (temp & FDI_RX_SYMBOL_LOCK) {
  1479. I915_WRITE(fdi_rx_iir_reg,
  1480. temp | FDI_RX_SYMBOL_LOCK);
  1481. DRM_DEBUG_KMS("FDI train 2 done.\n");
  1482. break;
  1483. }
  1484. }
  1485. if (tries == 5)
  1486. DRM_DEBUG_KMS("FDI train 2 fail!\n");
  1487. DRM_DEBUG_KMS("FDI train done\n");
  1488. }
  1489. static int snb_b_fdi_train_param [] = {
  1490. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  1491. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  1492. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  1493. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  1494. };
  1495. /* The FDI link training functions for SNB/Cougarpoint. */
  1496. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  1497. {
  1498. struct drm_device *dev = crtc->dev;
  1499. struct drm_i915_private *dev_priv = dev->dev_private;
  1500. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1501. int pipe = intel_crtc->pipe;
  1502. int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
  1503. int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
  1504. int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
  1505. int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
  1506. u32 temp, i;
  1507. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  1508. for train result */
  1509. temp = I915_READ(fdi_rx_imr_reg);
  1510. temp &= ~FDI_RX_SYMBOL_LOCK;
  1511. temp &= ~FDI_RX_BIT_LOCK;
  1512. I915_WRITE(fdi_rx_imr_reg, temp);
  1513. I915_READ(fdi_rx_imr_reg);
  1514. udelay(150);
  1515. /* enable CPU FDI TX and PCH FDI RX */
  1516. temp = I915_READ(fdi_tx_reg);
  1517. temp |= FDI_TX_ENABLE;
  1518. temp &= ~(7 << 19);
  1519. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  1520. temp &= ~FDI_LINK_TRAIN_NONE;
  1521. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1522. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  1523. /* SNB-B */
  1524. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  1525. I915_WRITE(fdi_tx_reg, temp);
  1526. I915_READ(fdi_tx_reg);
  1527. temp = I915_READ(fdi_rx_reg);
  1528. if (HAS_PCH_CPT(dev)) {
  1529. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1530. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  1531. } else {
  1532. temp &= ~FDI_LINK_TRAIN_NONE;
  1533. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1534. }
  1535. I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
  1536. I915_READ(fdi_rx_reg);
  1537. udelay(150);
  1538. for (i = 0; i < 4; i++ ) {
  1539. temp = I915_READ(fdi_tx_reg);
  1540. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  1541. temp |= snb_b_fdi_train_param[i];
  1542. I915_WRITE(fdi_tx_reg, temp);
  1543. udelay(500);
  1544. temp = I915_READ(fdi_rx_iir_reg);
  1545. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  1546. if (temp & FDI_RX_BIT_LOCK) {
  1547. I915_WRITE(fdi_rx_iir_reg,
  1548. temp | FDI_RX_BIT_LOCK);
  1549. DRM_DEBUG_KMS("FDI train 1 done.\n");
  1550. break;
  1551. }
  1552. }
  1553. if (i == 4)
  1554. DRM_DEBUG_KMS("FDI train 1 fail!\n");
  1555. /* Train 2 */
  1556. temp = I915_READ(fdi_tx_reg);
  1557. temp &= ~FDI_LINK_TRAIN_NONE;
  1558. temp |= FDI_LINK_TRAIN_PATTERN_2;
  1559. if (IS_GEN6(dev)) {
  1560. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  1561. /* SNB-B */
  1562. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  1563. }
  1564. I915_WRITE(fdi_tx_reg, temp);
  1565. temp = I915_READ(fdi_rx_reg);
  1566. if (HAS_PCH_CPT(dev)) {
  1567. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1568. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  1569. } else {
  1570. temp &= ~FDI_LINK_TRAIN_NONE;
  1571. temp |= FDI_LINK_TRAIN_PATTERN_2;
  1572. }
  1573. I915_WRITE(fdi_rx_reg, temp);
  1574. udelay(150);
  1575. for (i = 0; i < 4; i++ ) {
  1576. temp = I915_READ(fdi_tx_reg);
  1577. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  1578. temp |= snb_b_fdi_train_param[i];
  1579. I915_WRITE(fdi_tx_reg, temp);
  1580. udelay(500);
  1581. temp = I915_READ(fdi_rx_iir_reg);
  1582. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  1583. if (temp & FDI_RX_SYMBOL_LOCK) {
  1584. I915_WRITE(fdi_rx_iir_reg,
  1585. temp | FDI_RX_SYMBOL_LOCK);
  1586. DRM_DEBUG_KMS("FDI train 2 done.\n");
  1587. break;
  1588. }
  1589. }
  1590. if (i == 4)
  1591. DRM_DEBUG_KMS("FDI train 2 fail!\n");
  1592. DRM_DEBUG_KMS("FDI train done.\n");
  1593. }
  1594. static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
  1595. {
  1596. struct drm_device *dev = crtc->dev;
  1597. struct drm_i915_private *dev_priv = dev->dev_private;
  1598. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1599. int pipe = intel_crtc->pipe;
  1600. int plane = intel_crtc->plane;
  1601. int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
  1602. int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
  1603. int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
  1604. int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
  1605. int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
  1606. int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
  1607. int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
  1608. int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
  1609. int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
  1610. int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS;
  1611. int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
  1612. int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
  1613. int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
  1614. int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
  1615. int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
  1616. int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
  1617. int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
  1618. int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
  1619. int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
  1620. int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
  1621. int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
  1622. int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
  1623. int trans_dpll_sel = (pipe == 0) ? 0 : 1;
  1624. u32 temp;
  1625. int n;
  1626. u32 pipe_bpc;
  1627. temp = I915_READ(pipeconf_reg);
  1628. pipe_bpc = temp & PIPE_BPC_MASK;
  1629. /* XXX: When our outputs are all unaware of DPMS modes other than off
  1630. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  1631. */
  1632. switch (mode) {
  1633. case DRM_MODE_DPMS_ON:
  1634. case DRM_MODE_DPMS_STANDBY:
  1635. case DRM_MODE_DPMS_SUSPEND:
  1636. DRM_DEBUG_KMS("crtc %d dpms on\n", pipe);
  1637. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  1638. temp = I915_READ(PCH_LVDS);
  1639. if ((temp & LVDS_PORT_EN) == 0) {
  1640. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  1641. POSTING_READ(PCH_LVDS);
  1642. }
  1643. }
  1644. if (HAS_eDP) {
  1645. /* enable eDP PLL */
  1646. ironlake_enable_pll_edp(crtc);
  1647. } else {
  1648. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  1649. temp = I915_READ(fdi_rx_reg);
  1650. /*
  1651. * make the BPC in FDI Rx be consistent with that in
  1652. * pipeconf reg.
  1653. */
  1654. temp &= ~(0x7 << 16);
  1655. temp |= (pipe_bpc << 11);
  1656. temp &= ~(7 << 19);
  1657. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  1658. I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
  1659. I915_READ(fdi_rx_reg);
  1660. udelay(200);
  1661. /* Switch from Rawclk to PCDclk */
  1662. temp = I915_READ(fdi_rx_reg);
  1663. I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
  1664. I915_READ(fdi_rx_reg);
  1665. udelay(200);
  1666. /* Enable CPU FDI TX PLL, always on for Ironlake */
  1667. temp = I915_READ(fdi_tx_reg);
  1668. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  1669. I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
  1670. I915_READ(fdi_tx_reg);
  1671. udelay(100);
  1672. }
  1673. }
  1674. /* Enable panel fitting for LVDS */
  1675. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  1676. temp = I915_READ(pf_ctl_reg);
  1677. I915_WRITE(pf_ctl_reg, temp | PF_ENABLE | PF_FILTER_MED_3x3);
  1678. /* currently full aspect */
  1679. I915_WRITE(pf_win_pos, 0);
  1680. I915_WRITE(pf_win_size,
  1681. (dev_priv->panel_fixed_mode->hdisplay << 16) |
  1682. (dev_priv->panel_fixed_mode->vdisplay));
  1683. }
  1684. /* Enable CPU pipe */
  1685. temp = I915_READ(pipeconf_reg);
  1686. if ((temp & PIPEACONF_ENABLE) == 0) {
  1687. I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
  1688. I915_READ(pipeconf_reg);
  1689. udelay(100);
  1690. }
  1691. /* configure and enable CPU plane */
  1692. temp = I915_READ(dspcntr_reg);
  1693. if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
  1694. I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
  1695. /* Flush the plane changes */
  1696. I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
  1697. }
  1698. if (!HAS_eDP) {
  1699. /* For PCH output, training FDI link */
  1700. if (IS_GEN6(dev))
  1701. gen6_fdi_link_train(crtc);
  1702. else
  1703. ironlake_fdi_link_train(crtc);
  1704. /* enable PCH DPLL */
  1705. temp = I915_READ(pch_dpll_reg);
  1706. if ((temp & DPLL_VCO_ENABLE) == 0) {
  1707. I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
  1708. I915_READ(pch_dpll_reg);
  1709. }
  1710. udelay(200);
  1711. if (HAS_PCH_CPT(dev)) {
  1712. /* Be sure PCH DPLL SEL is set */
  1713. temp = I915_READ(PCH_DPLL_SEL);
  1714. if (trans_dpll_sel == 0 &&
  1715. (temp & TRANSA_DPLL_ENABLE) == 0)
  1716. temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
  1717. else if (trans_dpll_sel == 1 &&
  1718. (temp & TRANSB_DPLL_ENABLE) == 0)
  1719. temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  1720. I915_WRITE(PCH_DPLL_SEL, temp);
  1721. I915_READ(PCH_DPLL_SEL);
  1722. }
  1723. /* set transcoder timing */
  1724. I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
  1725. I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
  1726. I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
  1727. I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
  1728. I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
  1729. I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
  1730. /* enable normal train */
  1731. temp = I915_READ(fdi_tx_reg);
  1732. temp &= ~FDI_LINK_TRAIN_NONE;
  1733. I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
  1734. FDI_TX_ENHANCE_FRAME_ENABLE);
  1735. I915_READ(fdi_tx_reg);
  1736. temp = I915_READ(fdi_rx_reg);
  1737. if (HAS_PCH_CPT(dev)) {
  1738. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1739. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  1740. } else {
  1741. temp &= ~FDI_LINK_TRAIN_NONE;
  1742. temp |= FDI_LINK_TRAIN_NONE;
  1743. }
  1744. I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  1745. I915_READ(fdi_rx_reg);
  1746. /* wait one idle pattern time */
  1747. udelay(100);
  1748. /* For PCH DP, enable TRANS_DP_CTL */
  1749. if (HAS_PCH_CPT(dev) &&
  1750. intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  1751. int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
  1752. int reg;
  1753. reg = I915_READ(trans_dp_ctl);
  1754. reg &= ~TRANS_DP_PORT_SEL_MASK;
  1755. reg = TRANS_DP_OUTPUT_ENABLE |
  1756. TRANS_DP_ENH_FRAMING |
  1757. TRANS_DP_VSYNC_ACTIVE_HIGH |
  1758. TRANS_DP_HSYNC_ACTIVE_HIGH;
  1759. switch (intel_trans_dp_port_sel(crtc)) {
  1760. case PCH_DP_B:
  1761. reg |= TRANS_DP_PORT_SEL_B;
  1762. break;
  1763. case PCH_DP_C:
  1764. reg |= TRANS_DP_PORT_SEL_C;
  1765. break;
  1766. case PCH_DP_D:
  1767. reg |= TRANS_DP_PORT_SEL_D;
  1768. break;
  1769. default:
  1770. DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
  1771. reg |= TRANS_DP_PORT_SEL_B;
  1772. break;
  1773. }
  1774. I915_WRITE(trans_dp_ctl, reg);
  1775. POSTING_READ(trans_dp_ctl);
  1776. }
  1777. /* enable PCH transcoder */
  1778. temp = I915_READ(transconf_reg);
  1779. /*
  1780. * make the BPC in transcoder be consistent with
  1781. * that in pipeconf reg.
  1782. */
  1783. temp &= ~PIPE_BPC_MASK;
  1784. temp |= pipe_bpc;
  1785. I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
  1786. I915_READ(transconf_reg);
  1787. while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
  1788. ;
  1789. }
  1790. intel_crtc_load_lut(crtc);
  1791. intel_update_fbc(crtc, &crtc->mode);
  1792. break;
  1793. case DRM_MODE_DPMS_OFF:
  1794. DRM_DEBUG_KMS("crtc %d dpms off\n", pipe);
  1795. drm_vblank_off(dev, pipe);
  1796. /* Disable display plane */
  1797. temp = I915_READ(dspcntr_reg);
  1798. if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
  1799. I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
  1800. /* Flush the plane changes */
  1801. I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
  1802. I915_READ(dspbase_reg);
  1803. }
  1804. if (dev_priv->cfb_plane == plane &&
  1805. dev_priv->display.disable_fbc)
  1806. dev_priv->display.disable_fbc(dev);
  1807. i915_disable_vga(dev);
  1808. /* disable cpu pipe, disable after all planes disabled */
  1809. temp = I915_READ(pipeconf_reg);
  1810. if ((temp & PIPEACONF_ENABLE) != 0) {
  1811. I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
  1812. I915_READ(pipeconf_reg);
  1813. n = 0;
  1814. /* wait for cpu pipe off, pipe state */
  1815. while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
  1816. n++;
  1817. if (n < 60) {
  1818. udelay(500);
  1819. continue;
  1820. } else {
  1821. DRM_DEBUG_KMS("pipe %d off delay\n",
  1822. pipe);
  1823. break;
  1824. }
  1825. }
  1826. } else
  1827. DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
  1828. udelay(100);
  1829. /* Disable PF */
  1830. temp = I915_READ(pf_ctl_reg);
  1831. if ((temp & PF_ENABLE) != 0) {
  1832. I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
  1833. I915_READ(pf_ctl_reg);
  1834. }
  1835. I915_WRITE(pf_win_size, 0);
  1836. POSTING_READ(pf_win_size);
  1837. /* disable CPU FDI tx and PCH FDI rx */
  1838. temp = I915_READ(fdi_tx_reg);
  1839. I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
  1840. I915_READ(fdi_tx_reg);
  1841. temp = I915_READ(fdi_rx_reg);
  1842. /* BPC in FDI rx is consistent with that in pipeconf */
  1843. temp &= ~(0x07 << 16);
  1844. temp |= (pipe_bpc << 11);
  1845. I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
  1846. I915_READ(fdi_rx_reg);
  1847. udelay(100);
  1848. /* still set train pattern 1 */
  1849. temp = I915_READ(fdi_tx_reg);
  1850. temp &= ~FDI_LINK_TRAIN_NONE;
  1851. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1852. I915_WRITE(fdi_tx_reg, temp);
  1853. POSTING_READ(fdi_tx_reg);
  1854. temp = I915_READ(fdi_rx_reg);
  1855. if (HAS_PCH_CPT(dev)) {
  1856. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1857. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  1858. } else {
  1859. temp &= ~FDI_LINK_TRAIN_NONE;
  1860. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1861. }
  1862. I915_WRITE(fdi_rx_reg, temp);
  1863. POSTING_READ(fdi_rx_reg);
  1864. udelay(100);
  1865. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  1866. temp = I915_READ(PCH_LVDS);
  1867. I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
  1868. I915_READ(PCH_LVDS);
  1869. udelay(100);
  1870. }
  1871. /* disable PCH transcoder */
  1872. temp = I915_READ(transconf_reg);
  1873. if ((temp & TRANS_ENABLE) != 0) {
  1874. I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
  1875. I915_READ(transconf_reg);
  1876. n = 0;
  1877. /* wait for PCH transcoder off, transcoder state */
  1878. while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
  1879. n++;
  1880. if (n < 60) {
  1881. udelay(500);
  1882. continue;
  1883. } else {
  1884. DRM_DEBUG_KMS("transcoder %d off "
  1885. "delay\n", pipe);
  1886. break;
  1887. }
  1888. }
  1889. }
  1890. temp = I915_READ(transconf_reg);
  1891. /* BPC in transcoder is consistent with that in pipeconf */
  1892. temp &= ~PIPE_BPC_MASK;
  1893. temp |= pipe_bpc;
  1894. I915_WRITE(transconf_reg, temp);
  1895. I915_READ(transconf_reg);
  1896. udelay(100);
  1897. if (HAS_PCH_CPT(dev)) {
  1898. /* disable TRANS_DP_CTL */
  1899. int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
  1900. int reg;
  1901. reg = I915_READ(trans_dp_ctl);
  1902. reg &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  1903. I915_WRITE(trans_dp_ctl, reg);
  1904. POSTING_READ(trans_dp_ctl);
  1905. /* disable DPLL_SEL */
  1906. temp = I915_READ(PCH_DPLL_SEL);
  1907. if (trans_dpll_sel == 0)
  1908. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
  1909. else
  1910. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  1911. I915_WRITE(PCH_DPLL_SEL, temp);
  1912. I915_READ(PCH_DPLL_SEL);
  1913. }
  1914. /* disable PCH DPLL */
  1915. temp = I915_READ(pch_dpll_reg);
  1916. I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
  1917. I915_READ(pch_dpll_reg);
  1918. if (HAS_eDP) {
  1919. ironlake_disable_pll_edp(crtc);
  1920. }
  1921. /* Switch from PCDclk to Rawclk */
  1922. temp = I915_READ(fdi_rx_reg);
  1923. temp &= ~FDI_SEL_PCDCLK;
  1924. I915_WRITE(fdi_rx_reg, temp);
  1925. I915_READ(fdi_rx_reg);
  1926. /* Disable CPU FDI TX PLL */
  1927. temp = I915_READ(fdi_tx_reg);
  1928. I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
  1929. I915_READ(fdi_tx_reg);
  1930. udelay(100);
  1931. temp = I915_READ(fdi_rx_reg);
  1932. temp &= ~FDI_RX_PLL_ENABLE;
  1933. I915_WRITE(fdi_rx_reg, temp);
  1934. I915_READ(fdi_rx_reg);
  1935. /* Wait for the clocks to turn off. */
  1936. udelay(100);
  1937. break;
  1938. }
  1939. }
  1940. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  1941. {
  1942. struct intel_overlay *overlay;
  1943. int ret;
  1944. if (!enable && intel_crtc->overlay) {
  1945. overlay = intel_crtc->overlay;
  1946. mutex_lock(&overlay->dev->struct_mutex);
  1947. for (;;) {
  1948. ret = intel_overlay_switch_off(overlay);
  1949. if (ret == 0)
  1950. break;
  1951. ret = intel_overlay_recover_from_interrupt(overlay, 0);
  1952. if (ret != 0) {
  1953. /* overlay doesn't react anymore. Usually
  1954. * results in a black screen and an unkillable
  1955. * X server. */
  1956. BUG();
  1957. overlay->hw_wedged = HW_WEDGED;
  1958. break;
  1959. }
  1960. }
  1961. mutex_unlock(&overlay->dev->struct_mutex);
  1962. }
  1963. /* Let userspace switch the overlay on again. In most cases userspace
  1964. * has to recompute where to put it anyway. */
  1965. return;
  1966. }
  1967. static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
  1968. {
  1969. struct drm_device *dev = crtc->dev;
  1970. struct drm_i915_private *dev_priv = dev->dev_private;
  1971. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1972. int pipe = intel_crtc->pipe;
  1973. int plane = intel_crtc->plane;
  1974. int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
  1975. int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
  1976. int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
  1977. int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
  1978. u32 temp;
  1979. /* XXX: When our outputs are all unaware of DPMS modes other than off
  1980. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  1981. */
  1982. switch (mode) {
  1983. case DRM_MODE_DPMS_ON:
  1984. case DRM_MODE_DPMS_STANDBY:
  1985. case DRM_MODE_DPMS_SUSPEND:
  1986. intel_update_watermarks(dev);
  1987. /* Enable the DPLL */
  1988. temp = I915_READ(dpll_reg);
  1989. if ((temp & DPLL_VCO_ENABLE) == 0) {
  1990. I915_WRITE(dpll_reg, temp);
  1991. I915_READ(dpll_reg);
  1992. /* Wait for the clocks to stabilize. */
  1993. udelay(150);
  1994. I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
  1995. I915_READ(dpll_reg);
  1996. /* Wait for the clocks to stabilize. */
  1997. udelay(150);
  1998. I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
  1999. I915_READ(dpll_reg);
  2000. /* Wait for the clocks to stabilize. */
  2001. udelay(150);
  2002. }
  2003. /* Enable the pipe */
  2004. temp = I915_READ(pipeconf_reg);
  2005. if ((temp & PIPEACONF_ENABLE) == 0)
  2006. I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
  2007. /* Enable the plane */
  2008. temp = I915_READ(dspcntr_reg);
  2009. if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
  2010. I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
  2011. /* Flush the plane changes */
  2012. I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
  2013. }
  2014. intel_crtc_load_lut(crtc);
  2015. if ((IS_I965G(dev) || plane == 0))
  2016. intel_update_fbc(crtc, &crtc->mode);
  2017. /* Give the overlay scaler a chance to enable if it's on this pipe */
  2018. intel_crtc_dpms_overlay(intel_crtc, true);
  2019. break;
  2020. case DRM_MODE_DPMS_OFF:
  2021. intel_update_watermarks(dev);
  2022. /* Give the overlay scaler a chance to disable if it's on this pipe */
  2023. intel_crtc_dpms_overlay(intel_crtc, false);
  2024. drm_vblank_off(dev, pipe);
  2025. if (dev_priv->cfb_plane == plane &&
  2026. dev_priv->display.disable_fbc)
  2027. dev_priv->display.disable_fbc(dev);
  2028. /* Disable the VGA plane that we never use */
  2029. i915_disable_vga(dev);
  2030. /* Disable display plane */
  2031. temp = I915_READ(dspcntr_reg);
  2032. if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
  2033. I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
  2034. /* Flush the plane changes */
  2035. I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
  2036. I915_READ(dspbase_reg);
  2037. }
  2038. if (!IS_I9XX(dev)) {
  2039. /* Wait for vblank for the disable to take effect */
  2040. intel_wait_for_vblank(dev);
  2041. }
  2042. /* Next, disable display pipes */
  2043. temp = I915_READ(pipeconf_reg);
  2044. if ((temp & PIPEACONF_ENABLE) != 0) {
  2045. I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
  2046. I915_READ(pipeconf_reg);
  2047. }
  2048. /* Wait for vblank for the disable to take effect. */
  2049. intel_wait_for_vblank(dev);
  2050. temp = I915_READ(dpll_reg);
  2051. if ((temp & DPLL_VCO_ENABLE) != 0) {
  2052. I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
  2053. I915_READ(dpll_reg);
  2054. }
  2055. /* Wait for the clocks to turn off. */
  2056. udelay(150);
  2057. break;
  2058. }
  2059. }
  2060. /**
  2061. * Sets the power management mode of the pipe and plane.
  2062. *
  2063. * This code should probably grow support for turning the cursor off and back
  2064. * on appropriately at the same time as we're turning the pipe off/on.
  2065. */
  2066. static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
  2067. {
  2068. struct drm_device *dev = crtc->dev;
  2069. struct drm_i915_private *dev_priv = dev->dev_private;
  2070. struct drm_i915_master_private *master_priv;
  2071. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2072. int pipe = intel_crtc->pipe;
  2073. bool enabled;
  2074. dev_priv->display.dpms(crtc, mode);
  2075. intel_crtc->dpms_mode = mode;
  2076. if (!dev->primary->master)
  2077. return;
  2078. master_priv = dev->primary->master->driver_priv;
  2079. if (!master_priv->sarea_priv)
  2080. return;
  2081. enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
  2082. switch (pipe) {
  2083. case 0:
  2084. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  2085. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  2086. break;
  2087. case 1:
  2088. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  2089. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  2090. break;
  2091. default:
  2092. DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
  2093. break;
  2094. }
  2095. }
  2096. static void intel_crtc_prepare (struct drm_crtc *crtc)
  2097. {
  2098. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  2099. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
  2100. }
  2101. static void intel_crtc_commit (struct drm_crtc *crtc)
  2102. {
  2103. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  2104. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  2105. }
  2106. void intel_encoder_prepare (struct drm_encoder *encoder)
  2107. {
  2108. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  2109. /* lvds has its own version of prepare see intel_lvds_prepare */
  2110. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
  2111. }
  2112. void intel_encoder_commit (struct drm_encoder *encoder)
  2113. {
  2114. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  2115. /* lvds has its own version of commit see intel_lvds_commit */
  2116. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  2117. }
  2118. static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
  2119. struct drm_display_mode *mode,
  2120. struct drm_display_mode *adjusted_mode)
  2121. {
  2122. struct drm_device *dev = crtc->dev;
  2123. if (HAS_PCH_SPLIT(dev)) {
  2124. /* FDI link clock is fixed at 2.7G */
  2125. if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
  2126. return false;
  2127. }
  2128. drm_mode_set_crtcinfo(adjusted_mode, 0);
  2129. return true;
  2130. }
  2131. static int i945_get_display_clock_speed(struct drm_device *dev)
  2132. {
  2133. return 400000;
  2134. }
  2135. static int i915_get_display_clock_speed(struct drm_device *dev)
  2136. {
  2137. return 333000;
  2138. }
  2139. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  2140. {
  2141. return 200000;
  2142. }
  2143. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  2144. {
  2145. u16 gcfgc = 0;
  2146. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  2147. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  2148. return 133000;
  2149. else {
  2150. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  2151. case GC_DISPLAY_CLOCK_333_MHZ:
  2152. return 333000;
  2153. default:
  2154. case GC_DISPLAY_CLOCK_190_200_MHZ:
  2155. return 190000;
  2156. }
  2157. }
  2158. }
  2159. static int i865_get_display_clock_speed(struct drm_device *dev)
  2160. {
  2161. return 266000;
  2162. }
  2163. static int i855_get_display_clock_speed(struct drm_device *dev)
  2164. {
  2165. u16 hpllcc = 0;
  2166. /* Assume that the hardware is in the high speed state. This
  2167. * should be the default.
  2168. */
  2169. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  2170. case GC_CLOCK_133_200:
  2171. case GC_CLOCK_100_200:
  2172. return 200000;
  2173. case GC_CLOCK_166_250:
  2174. return 250000;
  2175. case GC_CLOCK_100_133:
  2176. return 133000;
  2177. }
  2178. /* Shouldn't happen */
  2179. return 0;
  2180. }
  2181. static int i830_get_display_clock_speed(struct drm_device *dev)
  2182. {
  2183. return 133000;
  2184. }
  2185. /**
  2186. * Return the pipe currently connected to the panel fitter,
  2187. * or -1 if the panel fitter is not present or not in use
  2188. */
  2189. int intel_panel_fitter_pipe (struct drm_device *dev)
  2190. {
  2191. struct drm_i915_private *dev_priv = dev->dev_private;
  2192. u32 pfit_control;
  2193. /* i830 doesn't have a panel fitter */
  2194. if (IS_I830(dev))
  2195. return -1;
  2196. pfit_control = I915_READ(PFIT_CONTROL);
  2197. /* See if the panel fitter is in use */
  2198. if ((pfit_control & PFIT_ENABLE) == 0)
  2199. return -1;
  2200. /* 965 can place panel fitter on either pipe */
  2201. if (IS_I965G(dev))
  2202. return (pfit_control >> 29) & 0x3;
  2203. /* older chips can only use pipe 1 */
  2204. return 1;
  2205. }
  2206. struct fdi_m_n {
  2207. u32 tu;
  2208. u32 gmch_m;
  2209. u32 gmch_n;
  2210. u32 link_m;
  2211. u32 link_n;
  2212. };
  2213. static void
  2214. fdi_reduce_ratio(u32 *num, u32 *den)
  2215. {
  2216. while (*num > 0xffffff || *den > 0xffffff) {
  2217. *num >>= 1;
  2218. *den >>= 1;
  2219. }
  2220. }
  2221. #define DATA_N 0x800000
  2222. #define LINK_N 0x80000
  2223. static void
  2224. ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
  2225. int link_clock, struct fdi_m_n *m_n)
  2226. {
  2227. u64 temp;
  2228. m_n->tu = 64; /* default size */
  2229. temp = (u64) DATA_N * pixel_clock;
  2230. temp = div_u64(temp, link_clock);
  2231. m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
  2232. m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
  2233. m_n->gmch_n = DATA_N;
  2234. fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  2235. temp = (u64) LINK_N * pixel_clock;
  2236. m_n->link_m = div_u64(temp, link_clock);
  2237. m_n->link_n = LINK_N;
  2238. fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
  2239. }
  2240. struct intel_watermark_params {
  2241. unsigned long fifo_size;
  2242. unsigned long max_wm;
  2243. unsigned long default_wm;
  2244. unsigned long guard_size;
  2245. unsigned long cacheline_size;
  2246. };
  2247. /* Pineview has different values for various configs */
  2248. static struct intel_watermark_params pineview_display_wm = {
  2249. PINEVIEW_DISPLAY_FIFO,
  2250. PINEVIEW_MAX_WM,
  2251. PINEVIEW_DFT_WM,
  2252. PINEVIEW_GUARD_WM,
  2253. PINEVIEW_FIFO_LINE_SIZE
  2254. };
  2255. static struct intel_watermark_params pineview_display_hplloff_wm = {
  2256. PINEVIEW_DISPLAY_FIFO,
  2257. PINEVIEW_MAX_WM,
  2258. PINEVIEW_DFT_HPLLOFF_WM,
  2259. PINEVIEW_GUARD_WM,
  2260. PINEVIEW_FIFO_LINE_SIZE
  2261. };
  2262. static struct intel_watermark_params pineview_cursor_wm = {
  2263. PINEVIEW_CURSOR_FIFO,
  2264. PINEVIEW_CURSOR_MAX_WM,
  2265. PINEVIEW_CURSOR_DFT_WM,
  2266. PINEVIEW_CURSOR_GUARD_WM,
  2267. PINEVIEW_FIFO_LINE_SIZE,
  2268. };
  2269. static struct intel_watermark_params pineview_cursor_hplloff_wm = {
  2270. PINEVIEW_CURSOR_FIFO,
  2271. PINEVIEW_CURSOR_MAX_WM,
  2272. PINEVIEW_CURSOR_DFT_WM,
  2273. PINEVIEW_CURSOR_GUARD_WM,
  2274. PINEVIEW_FIFO_LINE_SIZE
  2275. };
  2276. static struct intel_watermark_params g4x_wm_info = {
  2277. G4X_FIFO_SIZE,
  2278. G4X_MAX_WM,
  2279. G4X_MAX_WM,
  2280. 2,
  2281. G4X_FIFO_LINE_SIZE,
  2282. };
  2283. static struct intel_watermark_params g4x_cursor_wm_info = {
  2284. I965_CURSOR_FIFO,
  2285. I965_CURSOR_MAX_WM,
  2286. I965_CURSOR_DFT_WM,
  2287. 2,
  2288. G4X_FIFO_LINE_SIZE,
  2289. };
  2290. static struct intel_watermark_params i965_cursor_wm_info = {
  2291. I965_CURSOR_FIFO,
  2292. I965_CURSOR_MAX_WM,
  2293. I965_CURSOR_DFT_WM,
  2294. 2,
  2295. I915_FIFO_LINE_SIZE,
  2296. };
  2297. static struct intel_watermark_params i945_wm_info = {
  2298. I945_FIFO_SIZE,
  2299. I915_MAX_WM,
  2300. 1,
  2301. 2,
  2302. I915_FIFO_LINE_SIZE
  2303. };
  2304. static struct intel_watermark_params i915_wm_info = {
  2305. I915_FIFO_SIZE,
  2306. I915_MAX_WM,
  2307. 1,
  2308. 2,
  2309. I915_FIFO_LINE_SIZE
  2310. };
  2311. static struct intel_watermark_params i855_wm_info = {
  2312. I855GM_FIFO_SIZE,
  2313. I915_MAX_WM,
  2314. 1,
  2315. 2,
  2316. I830_FIFO_LINE_SIZE
  2317. };
  2318. static struct intel_watermark_params i830_wm_info = {
  2319. I830_FIFO_SIZE,
  2320. I915_MAX_WM,
  2321. 1,
  2322. 2,
  2323. I830_FIFO_LINE_SIZE
  2324. };
  2325. static struct intel_watermark_params ironlake_display_wm_info = {
  2326. ILK_DISPLAY_FIFO,
  2327. ILK_DISPLAY_MAXWM,
  2328. ILK_DISPLAY_DFTWM,
  2329. 2,
  2330. ILK_FIFO_LINE_SIZE
  2331. };
  2332. static struct intel_watermark_params ironlake_cursor_wm_info = {
  2333. ILK_CURSOR_FIFO,
  2334. ILK_CURSOR_MAXWM,
  2335. ILK_CURSOR_DFTWM,
  2336. 2,
  2337. ILK_FIFO_LINE_SIZE
  2338. };
  2339. static struct intel_watermark_params ironlake_display_srwm_info = {
  2340. ILK_DISPLAY_SR_FIFO,
  2341. ILK_DISPLAY_MAX_SRWM,
  2342. ILK_DISPLAY_DFT_SRWM,
  2343. 2,
  2344. ILK_FIFO_LINE_SIZE
  2345. };
  2346. static struct intel_watermark_params ironlake_cursor_srwm_info = {
  2347. ILK_CURSOR_SR_FIFO,
  2348. ILK_CURSOR_MAX_SRWM,
  2349. ILK_CURSOR_DFT_SRWM,
  2350. 2,
  2351. ILK_FIFO_LINE_SIZE
  2352. };
  2353. /**
  2354. * intel_calculate_wm - calculate watermark level
  2355. * @clock_in_khz: pixel clock
  2356. * @wm: chip FIFO params
  2357. * @pixel_size: display pixel size
  2358. * @latency_ns: memory latency for the platform
  2359. *
  2360. * Calculate the watermark level (the level at which the display plane will
  2361. * start fetching from memory again). Each chip has a different display
  2362. * FIFO size and allocation, so the caller needs to figure that out and pass
  2363. * in the correct intel_watermark_params structure.
  2364. *
  2365. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  2366. * on the pixel size. When it reaches the watermark level, it'll start
  2367. * fetching FIFO line sized based chunks from memory until the FIFO fills
  2368. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  2369. * will occur, and a display engine hang could result.
  2370. */
  2371. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  2372. struct intel_watermark_params *wm,
  2373. int pixel_size,
  2374. unsigned long latency_ns)
  2375. {
  2376. long entries_required, wm_size;
  2377. /*
  2378. * Note: we need to make sure we don't overflow for various clock &
  2379. * latency values.
  2380. * clocks go from a few thousand to several hundred thousand.
  2381. * latency is usually a few thousand
  2382. */
  2383. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  2384. 1000;
  2385. entries_required /= wm->cacheline_size;
  2386. DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
  2387. wm_size = wm->fifo_size - (entries_required + wm->guard_size);
  2388. DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
  2389. /* Don't promote wm_size to unsigned... */
  2390. if (wm_size > (long)wm->max_wm)
  2391. wm_size = wm->max_wm;
  2392. if (wm_size <= 0)
  2393. wm_size = wm->default_wm;
  2394. return wm_size;
  2395. }
  2396. struct cxsr_latency {
  2397. int is_desktop;
  2398. int is_ddr3;
  2399. unsigned long fsb_freq;
  2400. unsigned long mem_freq;
  2401. unsigned long display_sr;
  2402. unsigned long display_hpll_disable;
  2403. unsigned long cursor_sr;
  2404. unsigned long cursor_hpll_disable;
  2405. };
  2406. static struct cxsr_latency cxsr_latency_table[] = {
  2407. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  2408. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  2409. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  2410. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  2411. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  2412. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  2413. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  2414. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  2415. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  2416. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  2417. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  2418. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  2419. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  2420. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  2421. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  2422. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  2423. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  2424. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  2425. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  2426. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  2427. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  2428. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  2429. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  2430. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  2431. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  2432. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  2433. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  2434. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  2435. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  2436. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  2437. };
  2438. static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int is_ddr3,
  2439. int fsb, int mem)
  2440. {
  2441. int i;
  2442. struct cxsr_latency *latency;
  2443. if (fsb == 0 || mem == 0)
  2444. return NULL;
  2445. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  2446. latency = &cxsr_latency_table[i];
  2447. if (is_desktop == latency->is_desktop &&
  2448. is_ddr3 == latency->is_ddr3 &&
  2449. fsb == latency->fsb_freq && mem == latency->mem_freq)
  2450. return latency;
  2451. }
  2452. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  2453. return NULL;
  2454. }
  2455. static void pineview_disable_cxsr(struct drm_device *dev)
  2456. {
  2457. struct drm_i915_private *dev_priv = dev->dev_private;
  2458. u32 reg;
  2459. /* deactivate cxsr */
  2460. reg = I915_READ(DSPFW3);
  2461. reg &= ~(PINEVIEW_SELF_REFRESH_EN);
  2462. I915_WRITE(DSPFW3, reg);
  2463. DRM_INFO("Big FIFO is disabled\n");
  2464. }
  2465. /*
  2466. * Latency for FIFO fetches is dependent on several factors:
  2467. * - memory configuration (speed, channels)
  2468. * - chipset
  2469. * - current MCH state
  2470. * It can be fairly high in some situations, so here we assume a fairly
  2471. * pessimal value. It's a tradeoff between extra memory fetches (if we
  2472. * set this value too high, the FIFO will fetch frequently to stay full)
  2473. * and power consumption (set it too low to save power and we might see
  2474. * FIFO underruns and display "flicker").
  2475. *
  2476. * A value of 5us seems to be a good balance; safe for very low end
  2477. * platforms but not overly aggressive on lower latency configs.
  2478. */
  2479. static const int latency_ns = 5000;
  2480. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  2481. {
  2482. struct drm_i915_private *dev_priv = dev->dev_private;
  2483. uint32_t dsparb = I915_READ(DSPARB);
  2484. int size;
  2485. if (plane == 0)
  2486. size = dsparb & 0x7f;
  2487. else
  2488. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
  2489. (dsparb & 0x7f);
  2490. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  2491. plane ? "B" : "A", size);
  2492. return size;
  2493. }
  2494. static int i85x_get_fifo_size(struct drm_device *dev, int plane)
  2495. {
  2496. struct drm_i915_private *dev_priv = dev->dev_private;
  2497. uint32_t dsparb = I915_READ(DSPARB);
  2498. int size;
  2499. if (plane == 0)
  2500. size = dsparb & 0x1ff;
  2501. else
  2502. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
  2503. (dsparb & 0x1ff);
  2504. size >>= 1; /* Convert to cachelines */
  2505. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  2506. plane ? "B" : "A", size);
  2507. return size;
  2508. }
  2509. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  2510. {
  2511. struct drm_i915_private *dev_priv = dev->dev_private;
  2512. uint32_t dsparb = I915_READ(DSPARB);
  2513. int size;
  2514. size = dsparb & 0x7f;
  2515. size >>= 2; /* Convert to cachelines */
  2516. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  2517. plane ? "B" : "A",
  2518. size);
  2519. return size;
  2520. }
  2521. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  2522. {
  2523. struct drm_i915_private *dev_priv = dev->dev_private;
  2524. uint32_t dsparb = I915_READ(DSPARB);
  2525. int size;
  2526. size = dsparb & 0x7f;
  2527. size >>= 1; /* Convert to cachelines */
  2528. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  2529. plane ? "B" : "A", size);
  2530. return size;
  2531. }
  2532. static void pineview_update_wm(struct drm_device *dev, int planea_clock,
  2533. int planeb_clock, int sr_hdisplay, int unused,
  2534. int pixel_size)
  2535. {
  2536. struct drm_i915_private *dev_priv = dev->dev_private;
  2537. u32 reg;
  2538. unsigned long wm;
  2539. struct cxsr_latency *latency;
  2540. int sr_clock;
  2541. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  2542. dev_priv->fsb_freq, dev_priv->mem_freq);
  2543. if (!latency) {
  2544. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  2545. pineview_disable_cxsr(dev);
  2546. return;
  2547. }
  2548. if (!planea_clock || !planeb_clock) {
  2549. sr_clock = planea_clock ? planea_clock : planeb_clock;
  2550. /* Display SR */
  2551. wm = intel_calculate_wm(sr_clock, &pineview_display_wm,
  2552. pixel_size, latency->display_sr);
  2553. reg = I915_READ(DSPFW1);
  2554. reg &= ~DSPFW_SR_MASK;
  2555. reg |= wm << DSPFW_SR_SHIFT;
  2556. I915_WRITE(DSPFW1, reg);
  2557. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  2558. /* cursor SR */
  2559. wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm,
  2560. pixel_size, latency->cursor_sr);
  2561. reg = I915_READ(DSPFW3);
  2562. reg &= ~DSPFW_CURSOR_SR_MASK;
  2563. reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
  2564. I915_WRITE(DSPFW3, reg);
  2565. /* Display HPLL off SR */
  2566. wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm,
  2567. pixel_size, latency->display_hpll_disable);
  2568. reg = I915_READ(DSPFW3);
  2569. reg &= ~DSPFW_HPLL_SR_MASK;
  2570. reg |= wm & DSPFW_HPLL_SR_MASK;
  2571. I915_WRITE(DSPFW3, reg);
  2572. /* cursor HPLL off SR */
  2573. wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm,
  2574. pixel_size, latency->cursor_hpll_disable);
  2575. reg = I915_READ(DSPFW3);
  2576. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  2577. reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
  2578. I915_WRITE(DSPFW3, reg);
  2579. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  2580. /* activate cxsr */
  2581. reg = I915_READ(DSPFW3);
  2582. reg |= PINEVIEW_SELF_REFRESH_EN;
  2583. I915_WRITE(DSPFW3, reg);
  2584. DRM_DEBUG_KMS("Self-refresh is enabled\n");
  2585. } else {
  2586. pineview_disable_cxsr(dev);
  2587. DRM_DEBUG_KMS("Self-refresh is disabled\n");
  2588. }
  2589. }
  2590. static void g4x_update_wm(struct drm_device *dev, int planea_clock,
  2591. int planeb_clock, int sr_hdisplay, int sr_htotal,
  2592. int pixel_size)
  2593. {
  2594. struct drm_i915_private *dev_priv = dev->dev_private;
  2595. int total_size, cacheline_size;
  2596. int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
  2597. struct intel_watermark_params planea_params, planeb_params;
  2598. unsigned long line_time_us;
  2599. int sr_clock, sr_entries = 0, entries_required;
  2600. /* Create copies of the base settings for each pipe */
  2601. planea_params = planeb_params = g4x_wm_info;
  2602. /* Grab a couple of global values before we overwrite them */
  2603. total_size = planea_params.fifo_size;
  2604. cacheline_size = planea_params.cacheline_size;
  2605. /*
  2606. * Note: we need to make sure we don't overflow for various clock &
  2607. * latency values.
  2608. * clocks go from a few thousand to several hundred thousand.
  2609. * latency is usually a few thousand
  2610. */
  2611. entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
  2612. 1000;
  2613. entries_required /= G4X_FIFO_LINE_SIZE;
  2614. planea_wm = entries_required + planea_params.guard_size;
  2615. entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
  2616. 1000;
  2617. entries_required /= G4X_FIFO_LINE_SIZE;
  2618. planeb_wm = entries_required + planeb_params.guard_size;
  2619. cursora_wm = cursorb_wm = 16;
  2620. cursor_sr = 32;
  2621. DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  2622. /* Calc sr entries for one plane configs */
  2623. if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
  2624. /* self-refresh has much higher latency */
  2625. static const int sr_latency_ns = 12000;
  2626. sr_clock = planea_clock ? planea_clock : planeb_clock;
  2627. line_time_us = ((sr_htotal * 1000) / sr_clock);
  2628. /* Use ns/us then divide to preserve precision */
  2629. sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  2630. pixel_size * sr_hdisplay;
  2631. sr_entries = roundup(sr_entries / cacheline_size, 1);
  2632. entries_required = (((sr_latency_ns / line_time_us) +
  2633. 1000) / 1000) * pixel_size * 64;
  2634. entries_required = roundup(entries_required /
  2635. g4x_cursor_wm_info.cacheline_size, 1);
  2636. cursor_sr = entries_required + g4x_cursor_wm_info.guard_size;
  2637. if (cursor_sr > g4x_cursor_wm_info.max_wm)
  2638. cursor_sr = g4x_cursor_wm_info.max_wm;
  2639. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  2640. "cursor %d\n", sr_entries, cursor_sr);
  2641. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  2642. } else {
  2643. /* Turn off self refresh if both pipes are enabled */
  2644. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  2645. & ~FW_BLC_SELF_EN);
  2646. }
  2647. DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
  2648. planea_wm, planeb_wm, sr_entries);
  2649. planea_wm &= 0x3f;
  2650. planeb_wm &= 0x3f;
  2651. I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
  2652. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  2653. (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
  2654. I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
  2655. (cursora_wm << DSPFW_CURSORA_SHIFT));
  2656. /* HPLL off in SR has some issues on G4x... disable it */
  2657. I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
  2658. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  2659. }
  2660. static void i965_update_wm(struct drm_device *dev, int planea_clock,
  2661. int planeb_clock, int sr_hdisplay, int sr_htotal,
  2662. int pixel_size)
  2663. {
  2664. struct drm_i915_private *dev_priv = dev->dev_private;
  2665. unsigned long line_time_us;
  2666. int sr_clock, sr_entries, srwm = 1;
  2667. int cursor_sr = 16;
  2668. /* Calc sr entries for one plane configs */
  2669. if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
  2670. /* self-refresh has much higher latency */
  2671. static const int sr_latency_ns = 12000;
  2672. sr_clock = planea_clock ? planea_clock : planeb_clock;
  2673. line_time_us = ((sr_htotal * 1000) / sr_clock);
  2674. /* Use ns/us then divide to preserve precision */
  2675. sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  2676. pixel_size * sr_hdisplay;
  2677. sr_entries = roundup(sr_entries / I915_FIFO_LINE_SIZE, 1);
  2678. DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
  2679. srwm = I965_FIFO_SIZE - sr_entries;
  2680. if (srwm < 0)
  2681. srwm = 1;
  2682. srwm &= 0x1ff;
  2683. sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  2684. pixel_size * 64;
  2685. sr_entries = roundup(sr_entries /
  2686. i965_cursor_wm_info.cacheline_size, 1);
  2687. cursor_sr = i965_cursor_wm_info.fifo_size -
  2688. (sr_entries + i965_cursor_wm_info.guard_size);
  2689. if (cursor_sr > i965_cursor_wm_info.max_wm)
  2690. cursor_sr = i965_cursor_wm_info.max_wm;
  2691. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  2692. "cursor %d\n", srwm, cursor_sr);
  2693. if (IS_I965GM(dev))
  2694. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  2695. } else {
  2696. /* Turn off self refresh if both pipes are enabled */
  2697. if (IS_I965GM(dev))
  2698. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  2699. & ~FW_BLC_SELF_EN);
  2700. }
  2701. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  2702. srwm);
  2703. /* 965 has limitations... */
  2704. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
  2705. (8 << 0));
  2706. I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
  2707. /* update cursor SR watermark */
  2708. I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  2709. }
  2710. static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
  2711. int planeb_clock, int sr_hdisplay, int sr_htotal,
  2712. int pixel_size)
  2713. {
  2714. struct drm_i915_private *dev_priv = dev->dev_private;
  2715. uint32_t fwater_lo;
  2716. uint32_t fwater_hi;
  2717. int total_size, cacheline_size, cwm, srwm = 1;
  2718. int planea_wm, planeb_wm;
  2719. struct intel_watermark_params planea_params, planeb_params;
  2720. unsigned long line_time_us;
  2721. int sr_clock, sr_entries = 0;
  2722. /* Create copies of the base settings for each pipe */
  2723. if (IS_I965GM(dev) || IS_I945GM(dev))
  2724. planea_params = planeb_params = i945_wm_info;
  2725. else if (IS_I9XX(dev))
  2726. planea_params = planeb_params = i915_wm_info;
  2727. else
  2728. planea_params = planeb_params = i855_wm_info;
  2729. /* Grab a couple of global values before we overwrite them */
  2730. total_size = planea_params.fifo_size;
  2731. cacheline_size = planea_params.cacheline_size;
  2732. /* Update per-plane FIFO sizes */
  2733. planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  2734. planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  2735. planea_wm = intel_calculate_wm(planea_clock, &planea_params,
  2736. pixel_size, latency_ns);
  2737. planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
  2738. pixel_size, latency_ns);
  2739. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  2740. /*
  2741. * Overlay gets an aggressive default since video jitter is bad.
  2742. */
  2743. cwm = 2;
  2744. /* Calc sr entries for one plane configs */
  2745. if (HAS_FW_BLC(dev) && sr_hdisplay &&
  2746. (!planea_clock || !planeb_clock)) {
  2747. /* self-refresh has much higher latency */
  2748. static const int sr_latency_ns = 6000;
  2749. sr_clock = planea_clock ? planea_clock : planeb_clock;
  2750. line_time_us = ((sr_htotal * 1000) / sr_clock);
  2751. /* Use ns/us then divide to preserve precision */
  2752. sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  2753. pixel_size * sr_hdisplay;
  2754. sr_entries = roundup(sr_entries / cacheline_size, 1);
  2755. DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
  2756. srwm = total_size - sr_entries;
  2757. if (srwm < 0)
  2758. srwm = 1;
  2759. if (IS_I945G(dev) || IS_I945GM(dev))
  2760. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  2761. else if (IS_I915GM(dev)) {
  2762. /* 915M has a smaller SRWM field */
  2763. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  2764. I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
  2765. }
  2766. } else {
  2767. /* Turn off self refresh if both pipes are enabled */
  2768. if (IS_I945G(dev) || IS_I945GM(dev)) {
  2769. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  2770. & ~FW_BLC_SELF_EN);
  2771. } else if (IS_I915GM(dev)) {
  2772. I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
  2773. }
  2774. }
  2775. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  2776. planea_wm, planeb_wm, cwm, srwm);
  2777. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  2778. fwater_hi = (cwm & 0x1f);
  2779. /* Set request length to 8 cachelines per fetch */
  2780. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  2781. fwater_hi = fwater_hi | (1 << 8);
  2782. I915_WRITE(FW_BLC, fwater_lo);
  2783. I915_WRITE(FW_BLC2, fwater_hi);
  2784. }
  2785. static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
  2786. int unused2, int unused3, int pixel_size)
  2787. {
  2788. struct drm_i915_private *dev_priv = dev->dev_private;
  2789. uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  2790. int planea_wm;
  2791. i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  2792. planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
  2793. pixel_size, latency_ns);
  2794. fwater_lo |= (3<<8) | planea_wm;
  2795. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  2796. I915_WRITE(FW_BLC, fwater_lo);
  2797. }
  2798. #define ILK_LP0_PLANE_LATENCY 700
  2799. #define ILK_LP0_CURSOR_LATENCY 1300
  2800. static void ironlake_update_wm(struct drm_device *dev, int planea_clock,
  2801. int planeb_clock, int sr_hdisplay, int sr_htotal,
  2802. int pixel_size)
  2803. {
  2804. struct drm_i915_private *dev_priv = dev->dev_private;
  2805. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  2806. int sr_wm, cursor_wm;
  2807. unsigned long line_time_us;
  2808. int sr_clock, entries_required;
  2809. u32 reg_value;
  2810. int line_count;
  2811. int planea_htotal = 0, planeb_htotal = 0;
  2812. struct drm_crtc *crtc;
  2813. struct intel_crtc *intel_crtc;
  2814. /* Need htotal for all active display plane */
  2815. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  2816. intel_crtc = to_intel_crtc(crtc);
  2817. if (crtc->enabled) {
  2818. if (intel_crtc->plane == 0)
  2819. planea_htotal = crtc->mode.htotal;
  2820. else
  2821. planeb_htotal = crtc->mode.htotal;
  2822. }
  2823. }
  2824. /* Calculate and update the watermark for plane A */
  2825. if (planea_clock) {
  2826. entries_required = ((planea_clock / 1000) * pixel_size *
  2827. ILK_LP0_PLANE_LATENCY) / 1000;
  2828. entries_required = DIV_ROUND_UP(entries_required,
  2829. ironlake_display_wm_info.cacheline_size);
  2830. planea_wm = entries_required +
  2831. ironlake_display_wm_info.guard_size;
  2832. if (planea_wm > (int)ironlake_display_wm_info.max_wm)
  2833. planea_wm = ironlake_display_wm_info.max_wm;
  2834. /* Use the large buffer method to calculate cursor watermark */
  2835. line_time_us = (planea_htotal * 1000) / planea_clock;
  2836. /* Use ns/us then divide to preserve precision */
  2837. line_count = (ILK_LP0_CURSOR_LATENCY / line_time_us + 1000) / 1000;
  2838. /* calculate the cursor watermark for cursor A */
  2839. entries_required = line_count * 64 * pixel_size;
  2840. entries_required = DIV_ROUND_UP(entries_required,
  2841. ironlake_cursor_wm_info.cacheline_size);
  2842. cursora_wm = entries_required + ironlake_cursor_wm_info.guard_size;
  2843. if (cursora_wm > ironlake_cursor_wm_info.max_wm)
  2844. cursora_wm = ironlake_cursor_wm_info.max_wm;
  2845. reg_value = I915_READ(WM0_PIPEA_ILK);
  2846. reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  2847. reg_value |= (planea_wm << WM0_PIPE_PLANE_SHIFT) |
  2848. (cursora_wm & WM0_PIPE_CURSOR_MASK);
  2849. I915_WRITE(WM0_PIPEA_ILK, reg_value);
  2850. DRM_DEBUG_KMS("FIFO watermarks For pipe A - plane %d, "
  2851. "cursor: %d\n", planea_wm, cursora_wm);
  2852. }
  2853. /* Calculate and update the watermark for plane B */
  2854. if (planeb_clock) {
  2855. entries_required = ((planeb_clock / 1000) * pixel_size *
  2856. ILK_LP0_PLANE_LATENCY) / 1000;
  2857. entries_required = DIV_ROUND_UP(entries_required,
  2858. ironlake_display_wm_info.cacheline_size);
  2859. planeb_wm = entries_required +
  2860. ironlake_display_wm_info.guard_size;
  2861. if (planeb_wm > (int)ironlake_display_wm_info.max_wm)
  2862. planeb_wm = ironlake_display_wm_info.max_wm;
  2863. /* Use the large buffer method to calculate cursor watermark */
  2864. line_time_us = (planeb_htotal * 1000) / planeb_clock;
  2865. /* Use ns/us then divide to preserve precision */
  2866. line_count = (ILK_LP0_CURSOR_LATENCY / line_time_us + 1000) / 1000;
  2867. /* calculate the cursor watermark for cursor B */
  2868. entries_required = line_count * 64 * pixel_size;
  2869. entries_required = DIV_ROUND_UP(entries_required,
  2870. ironlake_cursor_wm_info.cacheline_size);
  2871. cursorb_wm = entries_required + ironlake_cursor_wm_info.guard_size;
  2872. if (cursorb_wm > ironlake_cursor_wm_info.max_wm)
  2873. cursorb_wm = ironlake_cursor_wm_info.max_wm;
  2874. reg_value = I915_READ(WM0_PIPEB_ILK);
  2875. reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  2876. reg_value |= (planeb_wm << WM0_PIPE_PLANE_SHIFT) |
  2877. (cursorb_wm & WM0_PIPE_CURSOR_MASK);
  2878. I915_WRITE(WM0_PIPEB_ILK, reg_value);
  2879. DRM_DEBUG_KMS("FIFO watermarks For pipe B - plane %d, "
  2880. "cursor: %d\n", planeb_wm, cursorb_wm);
  2881. }
  2882. /*
  2883. * Calculate and update the self-refresh watermark only when one
  2884. * display plane is used.
  2885. */
  2886. if (!planea_clock || !planeb_clock) {
  2887. /* Read the self-refresh latency. The unit is 0.5us */
  2888. int ilk_sr_latency = I915_READ(MLTR_ILK) & ILK_SRLT_MASK;
  2889. sr_clock = planea_clock ? planea_clock : planeb_clock;
  2890. line_time_us = ((sr_htotal * 1000) / sr_clock);
  2891. /* Use ns/us then divide to preserve precision */
  2892. line_count = ((ilk_sr_latency * 500) / line_time_us + 1000)
  2893. / 1000;
  2894. /* calculate the self-refresh watermark for display plane */
  2895. entries_required = line_count * sr_hdisplay * pixel_size;
  2896. entries_required = DIV_ROUND_UP(entries_required,
  2897. ironlake_display_srwm_info.cacheline_size);
  2898. sr_wm = entries_required +
  2899. ironlake_display_srwm_info.guard_size;
  2900. /* calculate the self-refresh watermark for display cursor */
  2901. entries_required = line_count * pixel_size * 64;
  2902. entries_required = DIV_ROUND_UP(entries_required,
  2903. ironlake_cursor_srwm_info.cacheline_size);
  2904. cursor_wm = entries_required +
  2905. ironlake_cursor_srwm_info.guard_size;
  2906. /* configure watermark and enable self-refresh */
  2907. reg_value = I915_READ(WM1_LP_ILK);
  2908. reg_value &= ~(WM1_LP_LATENCY_MASK | WM1_LP_SR_MASK |
  2909. WM1_LP_CURSOR_MASK);
  2910. reg_value |= WM1_LP_SR_EN |
  2911. (ilk_sr_latency << WM1_LP_LATENCY_SHIFT) |
  2912. (sr_wm << WM1_LP_SR_SHIFT) | cursor_wm;
  2913. I915_WRITE(WM1_LP_ILK, reg_value);
  2914. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  2915. "cursor %d\n", sr_wm, cursor_wm);
  2916. } else {
  2917. /* Turn off self refresh if both pipes are enabled */
  2918. I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
  2919. }
  2920. }
  2921. /**
  2922. * intel_update_watermarks - update FIFO watermark values based on current modes
  2923. *
  2924. * Calculate watermark values for the various WM regs based on current mode
  2925. * and plane configuration.
  2926. *
  2927. * There are several cases to deal with here:
  2928. * - normal (i.e. non-self-refresh)
  2929. * - self-refresh (SR) mode
  2930. * - lines are large relative to FIFO size (buffer can hold up to 2)
  2931. * - lines are small relative to FIFO size (buffer can hold more than 2
  2932. * lines), so need to account for TLB latency
  2933. *
  2934. * The normal calculation is:
  2935. * watermark = dotclock * bytes per pixel * latency
  2936. * where latency is platform & configuration dependent (we assume pessimal
  2937. * values here).
  2938. *
  2939. * The SR calculation is:
  2940. * watermark = (trunc(latency/line time)+1) * surface width *
  2941. * bytes per pixel
  2942. * where
  2943. * line time = htotal / dotclock
  2944. * surface width = hdisplay for normal plane and 64 for cursor
  2945. * and latency is assumed to be high, as above.
  2946. *
  2947. * The final value programmed to the register should always be rounded up,
  2948. * and include an extra 2 entries to account for clock crossings.
  2949. *
  2950. * We don't use the sprite, so we can ignore that. And on Crestline we have
  2951. * to set the non-SR watermarks to 8.
  2952. */
  2953. static void intel_update_watermarks(struct drm_device *dev)
  2954. {
  2955. struct drm_i915_private *dev_priv = dev->dev_private;
  2956. struct drm_crtc *crtc;
  2957. struct intel_crtc *intel_crtc;
  2958. int sr_hdisplay = 0;
  2959. unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
  2960. int enabled = 0, pixel_size = 0;
  2961. int sr_htotal = 0;
  2962. if (!dev_priv->display.update_wm)
  2963. return;
  2964. /* Get the clock config from both planes */
  2965. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  2966. intel_crtc = to_intel_crtc(crtc);
  2967. if (crtc->enabled) {
  2968. enabled++;
  2969. if (intel_crtc->plane == 0) {
  2970. DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
  2971. intel_crtc->pipe, crtc->mode.clock);
  2972. planea_clock = crtc->mode.clock;
  2973. } else {
  2974. DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
  2975. intel_crtc->pipe, crtc->mode.clock);
  2976. planeb_clock = crtc->mode.clock;
  2977. }
  2978. sr_hdisplay = crtc->mode.hdisplay;
  2979. sr_clock = crtc->mode.clock;
  2980. sr_htotal = crtc->mode.htotal;
  2981. if (crtc->fb)
  2982. pixel_size = crtc->fb->bits_per_pixel / 8;
  2983. else
  2984. pixel_size = 4; /* by default */
  2985. }
  2986. }
  2987. if (enabled <= 0)
  2988. return;
  2989. dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
  2990. sr_hdisplay, sr_htotal, pixel_size);
  2991. }
  2992. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  2993. struct drm_display_mode *mode,
  2994. struct drm_display_mode *adjusted_mode,
  2995. int x, int y,
  2996. struct drm_framebuffer *old_fb)
  2997. {
  2998. struct drm_device *dev = crtc->dev;
  2999. struct drm_i915_private *dev_priv = dev->dev_private;
  3000. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3001. int pipe = intel_crtc->pipe;
  3002. int plane = intel_crtc->plane;
  3003. int fp_reg = (pipe == 0) ? FPA0 : FPB0;
  3004. int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
  3005. int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
  3006. int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
  3007. int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
  3008. int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
  3009. int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
  3010. int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
  3011. int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
  3012. int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
  3013. int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
  3014. int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE;
  3015. int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS;
  3016. int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
  3017. int refclk, num_connectors = 0;
  3018. intel_clock_t clock, reduced_clock;
  3019. u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
  3020. bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
  3021. bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
  3022. bool is_edp = false;
  3023. struct drm_mode_config *mode_config = &dev->mode_config;
  3024. struct drm_encoder *encoder;
  3025. struct intel_encoder *intel_encoder = NULL;
  3026. const intel_limit_t *limit;
  3027. int ret;
  3028. struct fdi_m_n m_n = {0};
  3029. int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
  3030. int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
  3031. int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
  3032. int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
  3033. int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
  3034. int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
  3035. int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
  3036. int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
  3037. int trans_dpll_sel = (pipe == 0) ? 0 : 1;
  3038. int lvds_reg = LVDS;
  3039. u32 temp;
  3040. int sdvo_pixel_multiply;
  3041. int target_clock;
  3042. drm_vblank_pre_modeset(dev, pipe);
  3043. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  3044. if (!encoder || encoder->crtc != crtc)
  3045. continue;
  3046. intel_encoder = enc_to_intel_encoder(encoder);
  3047. switch (intel_encoder->type) {
  3048. case INTEL_OUTPUT_LVDS:
  3049. is_lvds = true;
  3050. break;
  3051. case INTEL_OUTPUT_SDVO:
  3052. case INTEL_OUTPUT_HDMI:
  3053. is_sdvo = true;
  3054. if (intel_encoder->needs_tv_clock)
  3055. is_tv = true;
  3056. break;
  3057. case INTEL_OUTPUT_DVO:
  3058. is_dvo = true;
  3059. break;
  3060. case INTEL_OUTPUT_TVOUT:
  3061. is_tv = true;
  3062. break;
  3063. case INTEL_OUTPUT_ANALOG:
  3064. is_crt = true;
  3065. break;
  3066. case INTEL_OUTPUT_DISPLAYPORT:
  3067. is_dp = true;
  3068. break;
  3069. case INTEL_OUTPUT_EDP:
  3070. is_edp = true;
  3071. break;
  3072. }
  3073. num_connectors++;
  3074. }
  3075. if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) {
  3076. refclk = dev_priv->lvds_ssc_freq * 1000;
  3077. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3078. refclk / 1000);
  3079. } else if (IS_I9XX(dev)) {
  3080. refclk = 96000;
  3081. if (HAS_PCH_SPLIT(dev))
  3082. refclk = 120000; /* 120Mhz refclk */
  3083. } else {
  3084. refclk = 48000;
  3085. }
  3086. /*
  3087. * Returns a set of divisors for the desired target clock with the given
  3088. * refclk, or FALSE. The returned values represent the clock equation:
  3089. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  3090. */
  3091. limit = intel_limit(crtc);
  3092. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
  3093. if (!ok) {
  3094. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  3095. drm_vblank_post_modeset(dev, pipe);
  3096. return -EINVAL;
  3097. }
  3098. if (is_lvds && dev_priv->lvds_downclock_avail) {
  3099. has_reduced_clock = limit->find_pll(limit, crtc,
  3100. dev_priv->lvds_downclock,
  3101. refclk,
  3102. &reduced_clock);
  3103. if (has_reduced_clock && (clock.p != reduced_clock.p)) {
  3104. /*
  3105. * If the different P is found, it means that we can't
  3106. * switch the display clock by using the FP0/FP1.
  3107. * In such case we will disable the LVDS downclock
  3108. * feature.
  3109. */
  3110. DRM_DEBUG_KMS("Different P is found for "
  3111. "LVDS clock/downclock\n");
  3112. has_reduced_clock = 0;
  3113. }
  3114. }
  3115. /* SDVO TV has fixed PLL values depend on its clock range,
  3116. this mirrors vbios setting. */
  3117. if (is_sdvo && is_tv) {
  3118. if (adjusted_mode->clock >= 100000
  3119. && adjusted_mode->clock < 140500) {
  3120. clock.p1 = 2;
  3121. clock.p2 = 10;
  3122. clock.n = 3;
  3123. clock.m1 = 16;
  3124. clock.m2 = 8;
  3125. } else if (adjusted_mode->clock >= 140500
  3126. && adjusted_mode->clock <= 200000) {
  3127. clock.p1 = 1;
  3128. clock.p2 = 10;
  3129. clock.n = 6;
  3130. clock.m1 = 12;
  3131. clock.m2 = 8;
  3132. }
  3133. }
  3134. /* FDI link */
  3135. if (HAS_PCH_SPLIT(dev)) {
  3136. int lane = 0, link_bw, bpp;
  3137. /* eDP doesn't require FDI link, so just set DP M/N
  3138. according to current link config */
  3139. if (is_edp) {
  3140. target_clock = mode->clock;
  3141. intel_edp_link_config(intel_encoder,
  3142. &lane, &link_bw);
  3143. } else {
  3144. /* DP over FDI requires target mode clock
  3145. instead of link clock */
  3146. if (is_dp)
  3147. target_clock = mode->clock;
  3148. else
  3149. target_clock = adjusted_mode->clock;
  3150. link_bw = 270000;
  3151. }
  3152. /* determine panel color depth */
  3153. temp = I915_READ(pipeconf_reg);
  3154. temp &= ~PIPE_BPC_MASK;
  3155. if (is_lvds) {
  3156. int lvds_reg = I915_READ(PCH_LVDS);
  3157. /* the BPC will be 6 if it is 18-bit LVDS panel */
  3158. if ((lvds_reg & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
  3159. temp |= PIPE_8BPC;
  3160. else
  3161. temp |= PIPE_6BPC;
  3162. } else if (is_edp || (is_dp && intel_pch_has_edp(crtc))) {
  3163. switch (dev_priv->edp_bpp/3) {
  3164. case 8:
  3165. temp |= PIPE_8BPC;
  3166. break;
  3167. case 10:
  3168. temp |= PIPE_10BPC;
  3169. break;
  3170. case 6:
  3171. temp |= PIPE_6BPC;
  3172. break;
  3173. case 12:
  3174. temp |= PIPE_12BPC;
  3175. break;
  3176. }
  3177. } else
  3178. temp |= PIPE_8BPC;
  3179. I915_WRITE(pipeconf_reg, temp);
  3180. I915_READ(pipeconf_reg);
  3181. switch (temp & PIPE_BPC_MASK) {
  3182. case PIPE_8BPC:
  3183. bpp = 24;
  3184. break;
  3185. case PIPE_10BPC:
  3186. bpp = 30;
  3187. break;
  3188. case PIPE_6BPC:
  3189. bpp = 18;
  3190. break;
  3191. case PIPE_12BPC:
  3192. bpp = 36;
  3193. break;
  3194. default:
  3195. DRM_ERROR("unknown pipe bpc value\n");
  3196. bpp = 24;
  3197. }
  3198. if (!lane) {
  3199. /*
  3200. * Account for spread spectrum to avoid
  3201. * oversubscribing the link. Max center spread
  3202. * is 2.5%; use 5% for safety's sake.
  3203. */
  3204. u32 bps = target_clock * bpp * 21 / 20;
  3205. lane = bps / (link_bw * 8) + 1;
  3206. }
  3207. intel_crtc->fdi_lanes = lane;
  3208. ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
  3209. }
  3210. /* Ironlake: try to setup display ref clock before DPLL
  3211. * enabling. This is only under driver's control after
  3212. * PCH B stepping, previous chipset stepping should be
  3213. * ignoring this setting.
  3214. */
  3215. if (HAS_PCH_SPLIT(dev)) {
  3216. temp = I915_READ(PCH_DREF_CONTROL);
  3217. /* Always enable nonspread source */
  3218. temp &= ~DREF_NONSPREAD_SOURCE_MASK;
  3219. temp |= DREF_NONSPREAD_SOURCE_ENABLE;
  3220. I915_WRITE(PCH_DREF_CONTROL, temp);
  3221. POSTING_READ(PCH_DREF_CONTROL);
  3222. temp &= ~DREF_SSC_SOURCE_MASK;
  3223. temp |= DREF_SSC_SOURCE_ENABLE;
  3224. I915_WRITE(PCH_DREF_CONTROL, temp);
  3225. POSTING_READ(PCH_DREF_CONTROL);
  3226. udelay(200);
  3227. if (is_edp) {
  3228. if (dev_priv->lvds_use_ssc) {
  3229. temp |= DREF_SSC1_ENABLE;
  3230. I915_WRITE(PCH_DREF_CONTROL, temp);
  3231. POSTING_READ(PCH_DREF_CONTROL);
  3232. udelay(200);
  3233. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  3234. temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  3235. I915_WRITE(PCH_DREF_CONTROL, temp);
  3236. POSTING_READ(PCH_DREF_CONTROL);
  3237. } else {
  3238. temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  3239. I915_WRITE(PCH_DREF_CONTROL, temp);
  3240. POSTING_READ(PCH_DREF_CONTROL);
  3241. }
  3242. }
  3243. }
  3244. if (IS_PINEVIEW(dev)) {
  3245. fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
  3246. if (has_reduced_clock)
  3247. fp2 = (1 << reduced_clock.n) << 16 |
  3248. reduced_clock.m1 << 8 | reduced_clock.m2;
  3249. } else {
  3250. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  3251. if (has_reduced_clock)
  3252. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  3253. reduced_clock.m2;
  3254. }
  3255. if (!HAS_PCH_SPLIT(dev))
  3256. dpll = DPLL_VGA_MODE_DIS;
  3257. if (IS_I9XX(dev)) {
  3258. if (is_lvds)
  3259. dpll |= DPLLB_MODE_LVDS;
  3260. else
  3261. dpll |= DPLLB_MODE_DAC_SERIAL;
  3262. if (is_sdvo) {
  3263. dpll |= DPLL_DVO_HIGH_SPEED;
  3264. sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
  3265. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3266. dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
  3267. else if (HAS_PCH_SPLIT(dev))
  3268. dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  3269. }
  3270. if (is_dp)
  3271. dpll |= DPLL_DVO_HIGH_SPEED;
  3272. /* compute bitmask from p1 value */
  3273. if (IS_PINEVIEW(dev))
  3274. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3275. else {
  3276. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3277. /* also FPA1 */
  3278. if (HAS_PCH_SPLIT(dev))
  3279. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3280. if (IS_G4X(dev) && has_reduced_clock)
  3281. dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3282. }
  3283. switch (clock.p2) {
  3284. case 5:
  3285. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3286. break;
  3287. case 7:
  3288. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3289. break;
  3290. case 10:
  3291. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3292. break;
  3293. case 14:
  3294. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3295. break;
  3296. }
  3297. if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev))
  3298. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3299. } else {
  3300. if (is_lvds) {
  3301. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3302. } else {
  3303. if (clock.p1 == 2)
  3304. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3305. else
  3306. dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3307. if (clock.p2 == 4)
  3308. dpll |= PLL_P2_DIVIDE_BY_4;
  3309. }
  3310. }
  3311. if (is_sdvo && is_tv)
  3312. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3313. else if (is_tv)
  3314. /* XXX: just matching BIOS for now */
  3315. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  3316. dpll |= 3;
  3317. else if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2)
  3318. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3319. else
  3320. dpll |= PLL_REF_INPUT_DREFCLK;
  3321. /* setup pipeconf */
  3322. pipeconf = I915_READ(pipeconf_reg);
  3323. /* Set up the display plane register */
  3324. dspcntr = DISPPLANE_GAMMA_ENABLE;
  3325. /* Ironlake's plane is forced to pipe, bit 24 is to
  3326. enable color space conversion */
  3327. if (!HAS_PCH_SPLIT(dev)) {
  3328. if (pipe == 0)
  3329. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  3330. else
  3331. dspcntr |= DISPPLANE_SEL_PIPE_B;
  3332. }
  3333. if (pipe == 0 && !IS_I965G(dev)) {
  3334. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  3335. * core speed.
  3336. *
  3337. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  3338. * pipe == 0 check?
  3339. */
  3340. if (mode->clock >
  3341. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  3342. pipeconf |= PIPEACONF_DOUBLE_WIDE;
  3343. else
  3344. pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
  3345. }
  3346. dspcntr |= DISPLAY_PLANE_ENABLE;
  3347. pipeconf |= PIPEACONF_ENABLE;
  3348. dpll |= DPLL_VCO_ENABLE;
  3349. /* Disable the panel fitter if it was on our pipe */
  3350. if (!HAS_PCH_SPLIT(dev) && intel_panel_fitter_pipe(dev) == pipe)
  3351. I915_WRITE(PFIT_CONTROL, 0);
  3352. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
  3353. drm_mode_debug_printmodeline(mode);
  3354. /* assign to Ironlake registers */
  3355. if (HAS_PCH_SPLIT(dev)) {
  3356. fp_reg = pch_fp_reg;
  3357. dpll_reg = pch_dpll_reg;
  3358. }
  3359. if (is_edp) {
  3360. ironlake_disable_pll_edp(crtc);
  3361. } else if ((dpll & DPLL_VCO_ENABLE)) {
  3362. I915_WRITE(fp_reg, fp);
  3363. I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
  3364. I915_READ(dpll_reg);
  3365. udelay(150);
  3366. }
  3367. /* enable transcoder DPLL */
  3368. if (HAS_PCH_CPT(dev)) {
  3369. temp = I915_READ(PCH_DPLL_SEL);
  3370. if (trans_dpll_sel == 0)
  3371. temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
  3372. else
  3373. temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  3374. I915_WRITE(PCH_DPLL_SEL, temp);
  3375. I915_READ(PCH_DPLL_SEL);
  3376. udelay(150);
  3377. }
  3378. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  3379. * This is an exception to the general rule that mode_set doesn't turn
  3380. * things on.
  3381. */
  3382. if (is_lvds) {
  3383. u32 lvds;
  3384. if (HAS_PCH_SPLIT(dev))
  3385. lvds_reg = PCH_LVDS;
  3386. lvds = I915_READ(lvds_reg);
  3387. lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  3388. if (pipe == 1) {
  3389. if (HAS_PCH_CPT(dev))
  3390. lvds |= PORT_TRANS_B_SEL_CPT;
  3391. else
  3392. lvds |= LVDS_PIPEB_SELECT;
  3393. } else {
  3394. if (HAS_PCH_CPT(dev))
  3395. lvds &= ~PORT_TRANS_SEL_MASK;
  3396. else
  3397. lvds &= ~LVDS_PIPEB_SELECT;
  3398. }
  3399. /* set the corresponsding LVDS_BORDER bit */
  3400. lvds |= dev_priv->lvds_border_bits;
  3401. /* Set the B0-B3 data pairs corresponding to whether we're going to
  3402. * set the DPLLs for dual-channel mode or not.
  3403. */
  3404. if (clock.p2 == 7)
  3405. lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  3406. else
  3407. lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  3408. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  3409. * appropriately here, but we need to look more thoroughly into how
  3410. * panels behave in the two modes.
  3411. */
  3412. /* set the dithering flag */
  3413. if (IS_I965G(dev)) {
  3414. if (dev_priv->lvds_dither) {
  3415. if (HAS_PCH_SPLIT(dev)) {
  3416. pipeconf |= PIPE_ENABLE_DITHER;
  3417. pipeconf |= PIPE_DITHER_TYPE_ST01;
  3418. } else
  3419. lvds |= LVDS_ENABLE_DITHER;
  3420. } else {
  3421. if (HAS_PCH_SPLIT(dev)) {
  3422. pipeconf &= ~PIPE_ENABLE_DITHER;
  3423. pipeconf &= ~PIPE_DITHER_TYPE_MASK;
  3424. } else
  3425. lvds &= ~LVDS_ENABLE_DITHER;
  3426. }
  3427. }
  3428. I915_WRITE(lvds_reg, lvds);
  3429. I915_READ(lvds_reg);
  3430. }
  3431. if (is_dp)
  3432. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  3433. else if (HAS_PCH_SPLIT(dev)) {
  3434. /* For non-DP output, clear any trans DP clock recovery setting.*/
  3435. if (pipe == 0) {
  3436. I915_WRITE(TRANSA_DATA_M1, 0);
  3437. I915_WRITE(TRANSA_DATA_N1, 0);
  3438. I915_WRITE(TRANSA_DP_LINK_M1, 0);
  3439. I915_WRITE(TRANSA_DP_LINK_N1, 0);
  3440. } else {
  3441. I915_WRITE(TRANSB_DATA_M1, 0);
  3442. I915_WRITE(TRANSB_DATA_N1, 0);
  3443. I915_WRITE(TRANSB_DP_LINK_M1, 0);
  3444. I915_WRITE(TRANSB_DP_LINK_N1, 0);
  3445. }
  3446. }
  3447. if (!is_edp) {
  3448. I915_WRITE(fp_reg, fp);
  3449. I915_WRITE(dpll_reg, dpll);
  3450. I915_READ(dpll_reg);
  3451. /* Wait for the clocks to stabilize. */
  3452. udelay(150);
  3453. if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev)) {
  3454. if (is_sdvo) {
  3455. sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
  3456. I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
  3457. ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
  3458. } else
  3459. I915_WRITE(dpll_md_reg, 0);
  3460. } else {
  3461. /* write it again -- the BIOS does, after all */
  3462. I915_WRITE(dpll_reg, dpll);
  3463. }
  3464. I915_READ(dpll_reg);
  3465. /* Wait for the clocks to stabilize. */
  3466. udelay(150);
  3467. }
  3468. if (is_lvds && has_reduced_clock && i915_powersave) {
  3469. I915_WRITE(fp_reg + 4, fp2);
  3470. intel_crtc->lowfreq_avail = true;
  3471. if (HAS_PIPE_CXSR(dev)) {
  3472. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  3473. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  3474. }
  3475. } else {
  3476. I915_WRITE(fp_reg + 4, fp);
  3477. intel_crtc->lowfreq_avail = false;
  3478. if (HAS_PIPE_CXSR(dev)) {
  3479. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  3480. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  3481. }
  3482. }
  3483. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3484. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  3485. /* the chip adds 2 halflines automatically */
  3486. adjusted_mode->crtc_vdisplay -= 1;
  3487. adjusted_mode->crtc_vtotal -= 1;
  3488. adjusted_mode->crtc_vblank_start -= 1;
  3489. adjusted_mode->crtc_vblank_end -= 1;
  3490. adjusted_mode->crtc_vsync_end -= 1;
  3491. adjusted_mode->crtc_vsync_start -= 1;
  3492. } else
  3493. pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
  3494. I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
  3495. ((adjusted_mode->crtc_htotal - 1) << 16));
  3496. I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
  3497. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3498. I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
  3499. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3500. I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
  3501. ((adjusted_mode->crtc_vtotal - 1) << 16));
  3502. I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
  3503. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  3504. I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
  3505. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3506. /* pipesrc and dspsize control the size that is scaled from, which should
  3507. * always be the user's requested size.
  3508. */
  3509. if (!HAS_PCH_SPLIT(dev)) {
  3510. I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
  3511. (mode->hdisplay - 1));
  3512. I915_WRITE(dsppos_reg, 0);
  3513. }
  3514. I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  3515. if (HAS_PCH_SPLIT(dev)) {
  3516. I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
  3517. I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
  3518. I915_WRITE(link_m1_reg, m_n.link_m);
  3519. I915_WRITE(link_n1_reg, m_n.link_n);
  3520. if (is_edp) {
  3521. ironlake_set_pll_edp(crtc, adjusted_mode->clock);
  3522. } else {
  3523. /* enable FDI RX PLL too */
  3524. temp = I915_READ(fdi_rx_reg);
  3525. I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
  3526. I915_READ(fdi_rx_reg);
  3527. udelay(200);
  3528. /* enable FDI TX PLL too */
  3529. temp = I915_READ(fdi_tx_reg);
  3530. I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
  3531. I915_READ(fdi_tx_reg);
  3532. /* enable FDI RX PCDCLK */
  3533. temp = I915_READ(fdi_rx_reg);
  3534. I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
  3535. I915_READ(fdi_rx_reg);
  3536. udelay(200);
  3537. }
  3538. }
  3539. I915_WRITE(pipeconf_reg, pipeconf);
  3540. I915_READ(pipeconf_reg);
  3541. intel_wait_for_vblank(dev);
  3542. if (IS_IRONLAKE(dev)) {
  3543. /* enable address swizzle for tiling buffer */
  3544. temp = I915_READ(DISP_ARB_CTL);
  3545. I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
  3546. }
  3547. I915_WRITE(dspcntr_reg, dspcntr);
  3548. /* Flush the plane changes */
  3549. ret = intel_pipe_set_base(crtc, x, y, old_fb);
  3550. if ((IS_I965G(dev) || plane == 0))
  3551. intel_update_fbc(crtc, &crtc->mode);
  3552. intel_update_watermarks(dev);
  3553. drm_vblank_post_modeset(dev, pipe);
  3554. return ret;
  3555. }
  3556. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  3557. void intel_crtc_load_lut(struct drm_crtc *crtc)
  3558. {
  3559. struct drm_device *dev = crtc->dev;
  3560. struct drm_i915_private *dev_priv = dev->dev_private;
  3561. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3562. int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
  3563. int i;
  3564. /* The clocks have to be on to load the palette. */
  3565. if (!crtc->enabled)
  3566. return;
  3567. /* use legacy palette for Ironlake */
  3568. if (HAS_PCH_SPLIT(dev))
  3569. palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
  3570. LGC_PALETTE_B;
  3571. for (i = 0; i < 256; i++) {
  3572. I915_WRITE(palreg + 4 * i,
  3573. (intel_crtc->lut_r[i] << 16) |
  3574. (intel_crtc->lut_g[i] << 8) |
  3575. intel_crtc->lut_b[i]);
  3576. }
  3577. }
  3578. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  3579. struct drm_file *file_priv,
  3580. uint32_t handle,
  3581. uint32_t width, uint32_t height)
  3582. {
  3583. struct drm_device *dev = crtc->dev;
  3584. struct drm_i915_private *dev_priv = dev->dev_private;
  3585. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3586. struct drm_gem_object *bo;
  3587. struct drm_i915_gem_object *obj_priv;
  3588. int pipe = intel_crtc->pipe;
  3589. uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
  3590. uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
  3591. uint32_t temp = I915_READ(control);
  3592. size_t addr;
  3593. int ret;
  3594. DRM_DEBUG_KMS("\n");
  3595. /* if we want to turn off the cursor ignore width and height */
  3596. if (!handle) {
  3597. DRM_DEBUG_KMS("cursor off\n");
  3598. if (IS_MOBILE(dev) || IS_I9XX(dev)) {
  3599. temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  3600. temp |= CURSOR_MODE_DISABLE;
  3601. } else {
  3602. temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  3603. }
  3604. addr = 0;
  3605. bo = NULL;
  3606. mutex_lock(&dev->struct_mutex);
  3607. goto finish;
  3608. }
  3609. /* Currently we only support 64x64 cursors */
  3610. if (width != 64 || height != 64) {
  3611. DRM_ERROR("we currently only support 64x64 cursors\n");
  3612. return -EINVAL;
  3613. }
  3614. bo = drm_gem_object_lookup(dev, file_priv, handle);
  3615. if (!bo)
  3616. return -ENOENT;
  3617. obj_priv = to_intel_bo(bo);
  3618. if (bo->size < width * height * 4) {
  3619. DRM_ERROR("buffer is to small\n");
  3620. ret = -ENOMEM;
  3621. goto fail;
  3622. }
  3623. /* we only need to pin inside GTT if cursor is non-phy */
  3624. mutex_lock(&dev->struct_mutex);
  3625. if (!dev_priv->info->cursor_needs_physical) {
  3626. ret = i915_gem_object_pin(bo, PAGE_SIZE);
  3627. if (ret) {
  3628. DRM_ERROR("failed to pin cursor bo\n");
  3629. goto fail_locked;
  3630. }
  3631. ret = i915_gem_object_set_to_gtt_domain(bo, 0);
  3632. if (ret) {
  3633. DRM_ERROR("failed to move cursor bo into the GTT\n");
  3634. goto fail_unpin;
  3635. }
  3636. addr = obj_priv->gtt_offset;
  3637. } else {
  3638. ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
  3639. if (ret) {
  3640. DRM_ERROR("failed to attach phys object\n");
  3641. goto fail_locked;
  3642. }
  3643. addr = obj_priv->phys_obj->handle->busaddr;
  3644. }
  3645. if (!IS_I9XX(dev))
  3646. I915_WRITE(CURSIZE, (height << 12) | width);
  3647. /* Hooray for CUR*CNTR differences */
  3648. if (IS_MOBILE(dev) || IS_I9XX(dev)) {
  3649. temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  3650. temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  3651. temp |= (pipe << 28); /* Connect to correct pipe */
  3652. } else {
  3653. temp &= ~(CURSOR_FORMAT_MASK);
  3654. temp |= CURSOR_ENABLE;
  3655. temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
  3656. }
  3657. finish:
  3658. I915_WRITE(control, temp);
  3659. I915_WRITE(base, addr);
  3660. if (intel_crtc->cursor_bo) {
  3661. if (dev_priv->info->cursor_needs_physical) {
  3662. if (intel_crtc->cursor_bo != bo)
  3663. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  3664. } else
  3665. i915_gem_object_unpin(intel_crtc->cursor_bo);
  3666. drm_gem_object_unreference(intel_crtc->cursor_bo);
  3667. }
  3668. mutex_unlock(&dev->struct_mutex);
  3669. intel_crtc->cursor_addr = addr;
  3670. intel_crtc->cursor_bo = bo;
  3671. return 0;
  3672. fail_unpin:
  3673. i915_gem_object_unpin(bo);
  3674. fail_locked:
  3675. mutex_unlock(&dev->struct_mutex);
  3676. fail:
  3677. drm_gem_object_unreference_unlocked(bo);
  3678. return ret;
  3679. }
  3680. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  3681. {
  3682. struct drm_device *dev = crtc->dev;
  3683. struct drm_i915_private *dev_priv = dev->dev_private;
  3684. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3685. struct intel_framebuffer *intel_fb;
  3686. int pipe = intel_crtc->pipe;
  3687. uint32_t temp = 0;
  3688. uint32_t adder;
  3689. if (crtc->fb) {
  3690. intel_fb = to_intel_framebuffer(crtc->fb);
  3691. intel_mark_busy(dev, intel_fb->obj);
  3692. }
  3693. if (x < 0) {
  3694. temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  3695. x = -x;
  3696. }
  3697. if (y < 0) {
  3698. temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  3699. y = -y;
  3700. }
  3701. temp |= x << CURSOR_X_SHIFT;
  3702. temp |= y << CURSOR_Y_SHIFT;
  3703. adder = intel_crtc->cursor_addr;
  3704. I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
  3705. I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
  3706. return 0;
  3707. }
  3708. /** Sets the color ramps on behalf of RandR */
  3709. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  3710. u16 blue, int regno)
  3711. {
  3712. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3713. intel_crtc->lut_r[regno] = red >> 8;
  3714. intel_crtc->lut_g[regno] = green >> 8;
  3715. intel_crtc->lut_b[regno] = blue >> 8;
  3716. }
  3717. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  3718. u16 *blue, int regno)
  3719. {
  3720. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3721. *red = intel_crtc->lut_r[regno] << 8;
  3722. *green = intel_crtc->lut_g[regno] << 8;
  3723. *blue = intel_crtc->lut_b[regno] << 8;
  3724. }
  3725. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  3726. u16 *blue, uint32_t size)
  3727. {
  3728. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3729. int i;
  3730. if (size != 256)
  3731. return;
  3732. for (i = 0; i < 256; i++) {
  3733. intel_crtc->lut_r[i] = red[i] >> 8;
  3734. intel_crtc->lut_g[i] = green[i] >> 8;
  3735. intel_crtc->lut_b[i] = blue[i] >> 8;
  3736. }
  3737. intel_crtc_load_lut(crtc);
  3738. }
  3739. /**
  3740. * Get a pipe with a simple mode set on it for doing load-based monitor
  3741. * detection.
  3742. *
  3743. * It will be up to the load-detect code to adjust the pipe as appropriate for
  3744. * its requirements. The pipe will be connected to no other encoders.
  3745. *
  3746. * Currently this code will only succeed if there is a pipe with no encoders
  3747. * configured for it. In the future, it could choose to temporarily disable
  3748. * some outputs to free up a pipe for its use.
  3749. *
  3750. * \return crtc, or NULL if no pipes are available.
  3751. */
  3752. /* VESA 640x480x72Hz mode to set on the pipe */
  3753. static struct drm_display_mode load_detect_mode = {
  3754. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  3755. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  3756. };
  3757. struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
  3758. struct drm_connector *connector,
  3759. struct drm_display_mode *mode,
  3760. int *dpms_mode)
  3761. {
  3762. struct intel_crtc *intel_crtc;
  3763. struct drm_crtc *possible_crtc;
  3764. struct drm_crtc *supported_crtc =NULL;
  3765. struct drm_encoder *encoder = &intel_encoder->enc;
  3766. struct drm_crtc *crtc = NULL;
  3767. struct drm_device *dev = encoder->dev;
  3768. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  3769. struct drm_crtc_helper_funcs *crtc_funcs;
  3770. int i = -1;
  3771. /*
  3772. * Algorithm gets a little messy:
  3773. * - if the connector already has an assigned crtc, use it (but make
  3774. * sure it's on first)
  3775. * - try to find the first unused crtc that can drive this connector,
  3776. * and use that if we find one
  3777. * - if there are no unused crtcs available, try to use the first
  3778. * one we found that supports the connector
  3779. */
  3780. /* See if we already have a CRTC for this connector */
  3781. if (encoder->crtc) {
  3782. crtc = encoder->crtc;
  3783. /* Make sure the crtc and connector are running */
  3784. intel_crtc = to_intel_crtc(crtc);
  3785. *dpms_mode = intel_crtc->dpms_mode;
  3786. if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
  3787. crtc_funcs = crtc->helper_private;
  3788. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  3789. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  3790. }
  3791. return crtc;
  3792. }
  3793. /* Find an unused one (if possible) */
  3794. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  3795. i++;
  3796. if (!(encoder->possible_crtcs & (1 << i)))
  3797. continue;
  3798. if (!possible_crtc->enabled) {
  3799. crtc = possible_crtc;
  3800. break;
  3801. }
  3802. if (!supported_crtc)
  3803. supported_crtc = possible_crtc;
  3804. }
  3805. /*
  3806. * If we didn't find an unused CRTC, don't use any.
  3807. */
  3808. if (!crtc) {
  3809. return NULL;
  3810. }
  3811. encoder->crtc = crtc;
  3812. connector->encoder = encoder;
  3813. intel_encoder->load_detect_temp = true;
  3814. intel_crtc = to_intel_crtc(crtc);
  3815. *dpms_mode = intel_crtc->dpms_mode;
  3816. if (!crtc->enabled) {
  3817. if (!mode)
  3818. mode = &load_detect_mode;
  3819. drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
  3820. } else {
  3821. if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
  3822. crtc_funcs = crtc->helper_private;
  3823. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  3824. }
  3825. /* Add this connector to the crtc */
  3826. encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
  3827. encoder_funcs->commit(encoder);
  3828. }
  3829. /* let the connector get through one full cycle before testing */
  3830. intel_wait_for_vblank(dev);
  3831. return crtc;
  3832. }
  3833. void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
  3834. struct drm_connector *connector, int dpms_mode)
  3835. {
  3836. struct drm_encoder *encoder = &intel_encoder->enc;
  3837. struct drm_device *dev = encoder->dev;
  3838. struct drm_crtc *crtc = encoder->crtc;
  3839. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  3840. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  3841. if (intel_encoder->load_detect_temp) {
  3842. encoder->crtc = NULL;
  3843. connector->encoder = NULL;
  3844. intel_encoder->load_detect_temp = false;
  3845. crtc->enabled = drm_helper_crtc_in_use(crtc);
  3846. drm_helper_disable_unused_functions(dev);
  3847. }
  3848. /* Switch crtc and encoder back off if necessary */
  3849. if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
  3850. if (encoder->crtc == crtc)
  3851. encoder_funcs->dpms(encoder, dpms_mode);
  3852. crtc_funcs->dpms(crtc, dpms_mode);
  3853. }
  3854. }
  3855. /* Returns the clock of the currently programmed mode of the given pipe. */
  3856. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  3857. {
  3858. struct drm_i915_private *dev_priv = dev->dev_private;
  3859. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3860. int pipe = intel_crtc->pipe;
  3861. u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
  3862. u32 fp;
  3863. intel_clock_t clock;
  3864. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  3865. fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
  3866. else
  3867. fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
  3868. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  3869. if (IS_PINEVIEW(dev)) {
  3870. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  3871. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  3872. } else {
  3873. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  3874. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  3875. }
  3876. if (IS_I9XX(dev)) {
  3877. if (IS_PINEVIEW(dev))
  3878. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  3879. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  3880. else
  3881. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  3882. DPLL_FPA01_P1_POST_DIV_SHIFT);
  3883. switch (dpll & DPLL_MODE_MASK) {
  3884. case DPLLB_MODE_DAC_SERIAL:
  3885. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  3886. 5 : 10;
  3887. break;
  3888. case DPLLB_MODE_LVDS:
  3889. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  3890. 7 : 14;
  3891. break;
  3892. default:
  3893. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  3894. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  3895. return 0;
  3896. }
  3897. /* XXX: Handle the 100Mhz refclk */
  3898. intel_clock(dev, 96000, &clock);
  3899. } else {
  3900. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  3901. if (is_lvds) {
  3902. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  3903. DPLL_FPA01_P1_POST_DIV_SHIFT);
  3904. clock.p2 = 14;
  3905. if ((dpll & PLL_REF_INPUT_MASK) ==
  3906. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  3907. /* XXX: might not be 66MHz */
  3908. intel_clock(dev, 66000, &clock);
  3909. } else
  3910. intel_clock(dev, 48000, &clock);
  3911. } else {
  3912. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  3913. clock.p1 = 2;
  3914. else {
  3915. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  3916. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  3917. }
  3918. if (dpll & PLL_P2_DIVIDE_BY_4)
  3919. clock.p2 = 4;
  3920. else
  3921. clock.p2 = 2;
  3922. intel_clock(dev, 48000, &clock);
  3923. }
  3924. }
  3925. /* XXX: It would be nice to validate the clocks, but we can't reuse
  3926. * i830PllIsValid() because it relies on the xf86_config connector
  3927. * configuration being accurate, which it isn't necessarily.
  3928. */
  3929. return clock.dot;
  3930. }
  3931. /** Returns the currently programmed mode of the given pipe. */
  3932. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  3933. struct drm_crtc *crtc)
  3934. {
  3935. struct drm_i915_private *dev_priv = dev->dev_private;
  3936. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3937. int pipe = intel_crtc->pipe;
  3938. struct drm_display_mode *mode;
  3939. int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
  3940. int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
  3941. int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
  3942. int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
  3943. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  3944. if (!mode)
  3945. return NULL;
  3946. mode->clock = intel_crtc_clock_get(dev, crtc);
  3947. mode->hdisplay = (htot & 0xffff) + 1;
  3948. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  3949. mode->hsync_start = (hsync & 0xffff) + 1;
  3950. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  3951. mode->vdisplay = (vtot & 0xffff) + 1;
  3952. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  3953. mode->vsync_start = (vsync & 0xffff) + 1;
  3954. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  3955. drm_mode_set_name(mode);
  3956. drm_mode_set_crtcinfo(mode, 0);
  3957. return mode;
  3958. }
  3959. #define GPU_IDLE_TIMEOUT 500 /* ms */
  3960. /* When this timer fires, we've been idle for awhile */
  3961. static void intel_gpu_idle_timer(unsigned long arg)
  3962. {
  3963. struct drm_device *dev = (struct drm_device *)arg;
  3964. drm_i915_private_t *dev_priv = dev->dev_private;
  3965. DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
  3966. dev_priv->busy = false;
  3967. queue_work(dev_priv->wq, &dev_priv->idle_work);
  3968. }
  3969. #define CRTC_IDLE_TIMEOUT 1000 /* ms */
  3970. static void intel_crtc_idle_timer(unsigned long arg)
  3971. {
  3972. struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
  3973. struct drm_crtc *crtc = &intel_crtc->base;
  3974. drm_i915_private_t *dev_priv = crtc->dev->dev_private;
  3975. DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
  3976. intel_crtc->busy = false;
  3977. queue_work(dev_priv->wq, &dev_priv->idle_work);
  3978. }
  3979. static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule)
  3980. {
  3981. struct drm_device *dev = crtc->dev;
  3982. drm_i915_private_t *dev_priv = dev->dev_private;
  3983. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3984. int pipe = intel_crtc->pipe;
  3985. int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
  3986. int dpll = I915_READ(dpll_reg);
  3987. if (HAS_PCH_SPLIT(dev))
  3988. return;
  3989. if (!dev_priv->lvds_downclock_avail)
  3990. return;
  3991. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  3992. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  3993. /* Unlock panel regs */
  3994. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
  3995. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  3996. I915_WRITE(dpll_reg, dpll);
  3997. dpll = I915_READ(dpll_reg);
  3998. intel_wait_for_vblank(dev);
  3999. dpll = I915_READ(dpll_reg);
  4000. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  4001. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  4002. /* ...and lock them again */
  4003. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
  4004. }
  4005. /* Schedule downclock */
  4006. if (schedule)
  4007. mod_timer(&intel_crtc->idle_timer, jiffies +
  4008. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  4009. }
  4010. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  4011. {
  4012. struct drm_device *dev = crtc->dev;
  4013. drm_i915_private_t *dev_priv = dev->dev_private;
  4014. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4015. int pipe = intel_crtc->pipe;
  4016. int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
  4017. int dpll = I915_READ(dpll_reg);
  4018. if (HAS_PCH_SPLIT(dev))
  4019. return;
  4020. if (!dev_priv->lvds_downclock_avail)
  4021. return;
  4022. /*
  4023. * Since this is called by a timer, we should never get here in
  4024. * the manual case.
  4025. */
  4026. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  4027. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  4028. /* Unlock panel regs */
  4029. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
  4030. dpll |= DISPLAY_RATE_SELECT_FPA1;
  4031. I915_WRITE(dpll_reg, dpll);
  4032. dpll = I915_READ(dpll_reg);
  4033. intel_wait_for_vblank(dev);
  4034. dpll = I915_READ(dpll_reg);
  4035. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  4036. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  4037. /* ...and lock them again */
  4038. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
  4039. }
  4040. }
  4041. /**
  4042. * intel_idle_update - adjust clocks for idleness
  4043. * @work: work struct
  4044. *
  4045. * Either the GPU or display (or both) went idle. Check the busy status
  4046. * here and adjust the CRTC and GPU clocks as necessary.
  4047. */
  4048. static void intel_idle_update(struct work_struct *work)
  4049. {
  4050. drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
  4051. idle_work);
  4052. struct drm_device *dev = dev_priv->dev;
  4053. struct drm_crtc *crtc;
  4054. struct intel_crtc *intel_crtc;
  4055. int enabled = 0;
  4056. if (!i915_powersave)
  4057. return;
  4058. mutex_lock(&dev->struct_mutex);
  4059. i915_update_gfx_val(dev_priv);
  4060. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  4061. /* Skip inactive CRTCs */
  4062. if (!crtc->fb)
  4063. continue;
  4064. enabled++;
  4065. intel_crtc = to_intel_crtc(crtc);
  4066. if (!intel_crtc->busy)
  4067. intel_decrease_pllclock(crtc);
  4068. }
  4069. if ((enabled == 1) && (IS_I945G(dev) || IS_I945GM(dev))) {
  4070. DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
  4071. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
  4072. }
  4073. mutex_unlock(&dev->struct_mutex);
  4074. }
  4075. /**
  4076. * intel_mark_busy - mark the GPU and possibly the display busy
  4077. * @dev: drm device
  4078. * @obj: object we're operating on
  4079. *
  4080. * Callers can use this function to indicate that the GPU is busy processing
  4081. * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
  4082. * buffer), we'll also mark the display as busy, so we know to increase its
  4083. * clock frequency.
  4084. */
  4085. void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
  4086. {
  4087. drm_i915_private_t *dev_priv = dev->dev_private;
  4088. struct drm_crtc *crtc = NULL;
  4089. struct intel_framebuffer *intel_fb;
  4090. struct intel_crtc *intel_crtc;
  4091. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  4092. return;
  4093. if (!dev_priv->busy) {
  4094. if (IS_I945G(dev) || IS_I945GM(dev)) {
  4095. u32 fw_blc_self;
  4096. DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
  4097. fw_blc_self = I915_READ(FW_BLC_SELF);
  4098. fw_blc_self &= ~FW_BLC_SELF_EN;
  4099. I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
  4100. }
  4101. dev_priv->busy = true;
  4102. } else
  4103. mod_timer(&dev_priv->idle_timer, jiffies +
  4104. msecs_to_jiffies(GPU_IDLE_TIMEOUT));
  4105. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  4106. if (!crtc->fb)
  4107. continue;
  4108. intel_crtc = to_intel_crtc(crtc);
  4109. intel_fb = to_intel_framebuffer(crtc->fb);
  4110. if (intel_fb->obj == obj) {
  4111. if (!intel_crtc->busy) {
  4112. if (IS_I945G(dev) || IS_I945GM(dev)) {
  4113. u32 fw_blc_self;
  4114. DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
  4115. fw_blc_self = I915_READ(FW_BLC_SELF);
  4116. fw_blc_self &= ~FW_BLC_SELF_EN;
  4117. I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
  4118. }
  4119. /* Non-busy -> busy, upclock */
  4120. intel_increase_pllclock(crtc, true);
  4121. intel_crtc->busy = true;
  4122. } else {
  4123. /* Busy -> busy, put off timer */
  4124. mod_timer(&intel_crtc->idle_timer, jiffies +
  4125. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  4126. }
  4127. }
  4128. }
  4129. }
  4130. static void intel_crtc_destroy(struct drm_crtc *crtc)
  4131. {
  4132. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4133. drm_crtc_cleanup(crtc);
  4134. kfree(intel_crtc);
  4135. }
  4136. struct intel_unpin_work {
  4137. struct work_struct work;
  4138. struct drm_device *dev;
  4139. struct drm_gem_object *old_fb_obj;
  4140. struct drm_gem_object *pending_flip_obj;
  4141. struct drm_pending_vblank_event *event;
  4142. int pending;
  4143. };
  4144. static void intel_unpin_work_fn(struct work_struct *__work)
  4145. {
  4146. struct intel_unpin_work *work =
  4147. container_of(__work, struct intel_unpin_work, work);
  4148. mutex_lock(&work->dev->struct_mutex);
  4149. i915_gem_object_unpin(work->old_fb_obj);
  4150. drm_gem_object_unreference(work->pending_flip_obj);
  4151. drm_gem_object_unreference(work->old_fb_obj);
  4152. mutex_unlock(&work->dev->struct_mutex);
  4153. kfree(work);
  4154. }
  4155. static void do_intel_finish_page_flip(struct drm_device *dev,
  4156. struct drm_crtc *crtc)
  4157. {
  4158. drm_i915_private_t *dev_priv = dev->dev_private;
  4159. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4160. struct intel_unpin_work *work;
  4161. struct drm_i915_gem_object *obj_priv;
  4162. struct drm_pending_vblank_event *e;
  4163. struct timeval now;
  4164. unsigned long flags;
  4165. /* Ignore early vblank irqs */
  4166. if (intel_crtc == NULL)
  4167. return;
  4168. spin_lock_irqsave(&dev->event_lock, flags);
  4169. work = intel_crtc->unpin_work;
  4170. if (work == NULL || !work->pending) {
  4171. spin_unlock_irqrestore(&dev->event_lock, flags);
  4172. return;
  4173. }
  4174. intel_crtc->unpin_work = NULL;
  4175. drm_vblank_put(dev, intel_crtc->pipe);
  4176. if (work->event) {
  4177. e = work->event;
  4178. do_gettimeofday(&now);
  4179. e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
  4180. e->event.tv_sec = now.tv_sec;
  4181. e->event.tv_usec = now.tv_usec;
  4182. list_add_tail(&e->base.link,
  4183. &e->base.file_priv->event_list);
  4184. wake_up_interruptible(&e->base.file_priv->event_wait);
  4185. }
  4186. spin_unlock_irqrestore(&dev->event_lock, flags);
  4187. obj_priv = to_intel_bo(work->pending_flip_obj);
  4188. /* Initial scanout buffer will have a 0 pending flip count */
  4189. if ((atomic_read(&obj_priv->pending_flip) == 0) ||
  4190. atomic_dec_and_test(&obj_priv->pending_flip))
  4191. DRM_WAKEUP(&dev_priv->pending_flip_queue);
  4192. schedule_work(&work->work);
  4193. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  4194. }
  4195. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  4196. {
  4197. drm_i915_private_t *dev_priv = dev->dev_private;
  4198. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  4199. do_intel_finish_page_flip(dev, crtc);
  4200. }
  4201. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  4202. {
  4203. drm_i915_private_t *dev_priv = dev->dev_private;
  4204. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  4205. do_intel_finish_page_flip(dev, crtc);
  4206. }
  4207. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  4208. {
  4209. drm_i915_private_t *dev_priv = dev->dev_private;
  4210. struct intel_crtc *intel_crtc =
  4211. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  4212. unsigned long flags;
  4213. spin_lock_irqsave(&dev->event_lock, flags);
  4214. if (intel_crtc->unpin_work) {
  4215. intel_crtc->unpin_work->pending = 1;
  4216. } else {
  4217. DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
  4218. }
  4219. spin_unlock_irqrestore(&dev->event_lock, flags);
  4220. }
  4221. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  4222. struct drm_framebuffer *fb,
  4223. struct drm_pending_vblank_event *event)
  4224. {
  4225. struct drm_device *dev = crtc->dev;
  4226. struct drm_i915_private *dev_priv = dev->dev_private;
  4227. struct intel_framebuffer *intel_fb;
  4228. struct drm_i915_gem_object *obj_priv;
  4229. struct drm_gem_object *obj;
  4230. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4231. struct intel_unpin_work *work;
  4232. unsigned long flags;
  4233. int pipesrc_reg = (intel_crtc->pipe == 0) ? PIPEASRC : PIPEBSRC;
  4234. int ret, pipesrc;
  4235. u32 flip_mask;
  4236. work = kzalloc(sizeof *work, GFP_KERNEL);
  4237. if (work == NULL)
  4238. return -ENOMEM;
  4239. work->event = event;
  4240. work->dev = crtc->dev;
  4241. intel_fb = to_intel_framebuffer(crtc->fb);
  4242. work->old_fb_obj = intel_fb->obj;
  4243. INIT_WORK(&work->work, intel_unpin_work_fn);
  4244. /* We borrow the event spin lock for protecting unpin_work */
  4245. spin_lock_irqsave(&dev->event_lock, flags);
  4246. if (intel_crtc->unpin_work) {
  4247. spin_unlock_irqrestore(&dev->event_lock, flags);
  4248. kfree(work);
  4249. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  4250. return -EBUSY;
  4251. }
  4252. intel_crtc->unpin_work = work;
  4253. spin_unlock_irqrestore(&dev->event_lock, flags);
  4254. intel_fb = to_intel_framebuffer(fb);
  4255. obj = intel_fb->obj;
  4256. mutex_lock(&dev->struct_mutex);
  4257. ret = intel_pin_and_fence_fb_obj(dev, obj);
  4258. if (ret)
  4259. goto cleanup_work;
  4260. /* Reference the objects for the scheduled work. */
  4261. drm_gem_object_reference(work->old_fb_obj);
  4262. drm_gem_object_reference(obj);
  4263. crtc->fb = fb;
  4264. ret = i915_gem_object_flush_write_domain(obj);
  4265. if (ret)
  4266. goto cleanup_objs;
  4267. ret = drm_vblank_get(dev, intel_crtc->pipe);
  4268. if (ret)
  4269. goto cleanup_objs;
  4270. obj_priv = to_intel_bo(obj);
  4271. atomic_inc(&obj_priv->pending_flip);
  4272. work->pending_flip_obj = obj;
  4273. if (intel_crtc->plane)
  4274. flip_mask = I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
  4275. else
  4276. flip_mask = I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT;
  4277. /* Wait for any previous flip to finish */
  4278. if (IS_GEN3(dev))
  4279. while (I915_READ(ISR) & flip_mask)
  4280. ;
  4281. BEGIN_LP_RING(4);
  4282. if (IS_I965G(dev)) {
  4283. OUT_RING(MI_DISPLAY_FLIP |
  4284. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  4285. OUT_RING(fb->pitch);
  4286. OUT_RING(obj_priv->gtt_offset | obj_priv->tiling_mode);
  4287. pipesrc = I915_READ(pipesrc_reg);
  4288. OUT_RING(pipesrc & 0x0fff0fff);
  4289. } else {
  4290. OUT_RING(MI_DISPLAY_FLIP_I915 |
  4291. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  4292. OUT_RING(fb->pitch);
  4293. OUT_RING(obj_priv->gtt_offset);
  4294. OUT_RING(MI_NOOP);
  4295. }
  4296. ADVANCE_LP_RING();
  4297. mutex_unlock(&dev->struct_mutex);
  4298. trace_i915_flip_request(intel_crtc->plane, obj);
  4299. return 0;
  4300. cleanup_objs:
  4301. drm_gem_object_unreference(work->old_fb_obj);
  4302. drm_gem_object_unreference(obj);
  4303. cleanup_work:
  4304. mutex_unlock(&dev->struct_mutex);
  4305. spin_lock_irqsave(&dev->event_lock, flags);
  4306. intel_crtc->unpin_work = NULL;
  4307. spin_unlock_irqrestore(&dev->event_lock, flags);
  4308. kfree(work);
  4309. return ret;
  4310. }
  4311. static const struct drm_crtc_helper_funcs intel_helper_funcs = {
  4312. .dpms = intel_crtc_dpms,
  4313. .mode_fixup = intel_crtc_mode_fixup,
  4314. .mode_set = intel_crtc_mode_set,
  4315. .mode_set_base = intel_pipe_set_base,
  4316. .prepare = intel_crtc_prepare,
  4317. .commit = intel_crtc_commit,
  4318. .load_lut = intel_crtc_load_lut,
  4319. };
  4320. static const struct drm_crtc_funcs intel_crtc_funcs = {
  4321. .cursor_set = intel_crtc_cursor_set,
  4322. .cursor_move = intel_crtc_cursor_move,
  4323. .gamma_set = intel_crtc_gamma_set,
  4324. .set_config = drm_crtc_helper_set_config,
  4325. .destroy = intel_crtc_destroy,
  4326. .page_flip = intel_crtc_page_flip,
  4327. };
  4328. static void intel_crtc_init(struct drm_device *dev, int pipe)
  4329. {
  4330. drm_i915_private_t *dev_priv = dev->dev_private;
  4331. struct intel_crtc *intel_crtc;
  4332. int i;
  4333. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  4334. if (intel_crtc == NULL)
  4335. return;
  4336. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  4337. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  4338. intel_crtc->pipe = pipe;
  4339. intel_crtc->plane = pipe;
  4340. for (i = 0; i < 256; i++) {
  4341. intel_crtc->lut_r[i] = i;
  4342. intel_crtc->lut_g[i] = i;
  4343. intel_crtc->lut_b[i] = i;
  4344. }
  4345. /* Swap pipes & planes for FBC on pre-965 */
  4346. intel_crtc->pipe = pipe;
  4347. intel_crtc->plane = pipe;
  4348. if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) {
  4349. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  4350. intel_crtc->plane = ((pipe == 0) ? 1 : 0);
  4351. }
  4352. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  4353. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  4354. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  4355. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  4356. intel_crtc->cursor_addr = 0;
  4357. intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
  4358. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  4359. intel_crtc->busy = false;
  4360. setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
  4361. (unsigned long)intel_crtc);
  4362. }
  4363. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  4364. struct drm_file *file_priv)
  4365. {
  4366. drm_i915_private_t *dev_priv = dev->dev_private;
  4367. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  4368. struct drm_mode_object *drmmode_obj;
  4369. struct intel_crtc *crtc;
  4370. if (!dev_priv) {
  4371. DRM_ERROR("called with no initialization\n");
  4372. return -EINVAL;
  4373. }
  4374. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  4375. DRM_MODE_OBJECT_CRTC);
  4376. if (!drmmode_obj) {
  4377. DRM_ERROR("no such CRTC id\n");
  4378. return -EINVAL;
  4379. }
  4380. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  4381. pipe_from_crtc_id->pipe = crtc->pipe;
  4382. return 0;
  4383. }
  4384. struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
  4385. {
  4386. struct drm_crtc *crtc = NULL;
  4387. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  4388. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4389. if (intel_crtc->pipe == pipe)
  4390. break;
  4391. }
  4392. return crtc;
  4393. }
  4394. static int intel_encoder_clones(struct drm_device *dev, int type_mask)
  4395. {
  4396. int index_mask = 0;
  4397. struct drm_encoder *encoder;
  4398. int entry = 0;
  4399. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  4400. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  4401. if (type_mask & intel_encoder->clone_mask)
  4402. index_mask |= (1 << entry);
  4403. entry++;
  4404. }
  4405. return index_mask;
  4406. }
  4407. static void intel_setup_outputs(struct drm_device *dev)
  4408. {
  4409. struct drm_i915_private *dev_priv = dev->dev_private;
  4410. struct drm_encoder *encoder;
  4411. intel_crt_init(dev);
  4412. /* Set up integrated LVDS */
  4413. if (IS_MOBILE(dev) && !IS_I830(dev))
  4414. intel_lvds_init(dev);
  4415. if (HAS_PCH_SPLIT(dev)) {
  4416. int found;
  4417. if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
  4418. intel_dp_init(dev, DP_A);
  4419. if (I915_READ(HDMIB) & PORT_DETECTED) {
  4420. /* PCH SDVOB multiplex with HDMIB */
  4421. found = intel_sdvo_init(dev, PCH_SDVOB);
  4422. if (!found)
  4423. intel_hdmi_init(dev, HDMIB);
  4424. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  4425. intel_dp_init(dev, PCH_DP_B);
  4426. }
  4427. if (I915_READ(HDMIC) & PORT_DETECTED)
  4428. intel_hdmi_init(dev, HDMIC);
  4429. if (I915_READ(HDMID) & PORT_DETECTED)
  4430. intel_hdmi_init(dev, HDMID);
  4431. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  4432. intel_dp_init(dev, PCH_DP_C);
  4433. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  4434. intel_dp_init(dev, PCH_DP_D);
  4435. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  4436. bool found = false;
  4437. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  4438. DRM_DEBUG_KMS("probing SDVOB\n");
  4439. found = intel_sdvo_init(dev, SDVOB);
  4440. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  4441. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  4442. intel_hdmi_init(dev, SDVOB);
  4443. }
  4444. if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
  4445. DRM_DEBUG_KMS("probing DP_B\n");
  4446. intel_dp_init(dev, DP_B);
  4447. }
  4448. }
  4449. /* Before G4X SDVOC doesn't have its own detect register */
  4450. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  4451. DRM_DEBUG_KMS("probing SDVOC\n");
  4452. found = intel_sdvo_init(dev, SDVOC);
  4453. }
  4454. if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
  4455. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  4456. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  4457. intel_hdmi_init(dev, SDVOC);
  4458. }
  4459. if (SUPPORTS_INTEGRATED_DP(dev)) {
  4460. DRM_DEBUG_KMS("probing DP_C\n");
  4461. intel_dp_init(dev, DP_C);
  4462. }
  4463. }
  4464. if (SUPPORTS_INTEGRATED_DP(dev) &&
  4465. (I915_READ(DP_D) & DP_DETECTED)) {
  4466. DRM_DEBUG_KMS("probing DP_D\n");
  4467. intel_dp_init(dev, DP_D);
  4468. }
  4469. } else if (IS_GEN2(dev))
  4470. intel_dvo_init(dev);
  4471. if (SUPPORTS_TV(dev))
  4472. intel_tv_init(dev);
  4473. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  4474. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  4475. encoder->possible_crtcs = intel_encoder->crtc_mask;
  4476. encoder->possible_clones = intel_encoder_clones(dev,
  4477. intel_encoder->clone_mask);
  4478. }
  4479. }
  4480. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  4481. {
  4482. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  4483. drm_framebuffer_cleanup(fb);
  4484. drm_gem_object_unreference_unlocked(intel_fb->obj);
  4485. kfree(intel_fb);
  4486. }
  4487. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  4488. struct drm_file *file_priv,
  4489. unsigned int *handle)
  4490. {
  4491. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  4492. struct drm_gem_object *object = intel_fb->obj;
  4493. return drm_gem_handle_create(file_priv, object, handle);
  4494. }
  4495. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  4496. .destroy = intel_user_framebuffer_destroy,
  4497. .create_handle = intel_user_framebuffer_create_handle,
  4498. };
  4499. int intel_framebuffer_init(struct drm_device *dev,
  4500. struct intel_framebuffer *intel_fb,
  4501. struct drm_mode_fb_cmd *mode_cmd,
  4502. struct drm_gem_object *obj)
  4503. {
  4504. int ret;
  4505. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  4506. if (ret) {
  4507. DRM_ERROR("framebuffer init failed %d\n", ret);
  4508. return ret;
  4509. }
  4510. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  4511. intel_fb->obj = obj;
  4512. return 0;
  4513. }
  4514. static struct drm_framebuffer *
  4515. intel_user_framebuffer_create(struct drm_device *dev,
  4516. struct drm_file *filp,
  4517. struct drm_mode_fb_cmd *mode_cmd)
  4518. {
  4519. struct drm_gem_object *obj;
  4520. struct intel_framebuffer *intel_fb;
  4521. int ret;
  4522. obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
  4523. if (!obj)
  4524. return NULL;
  4525. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  4526. if (!intel_fb)
  4527. return NULL;
  4528. ret = intel_framebuffer_init(dev, intel_fb,
  4529. mode_cmd, obj);
  4530. if (ret) {
  4531. drm_gem_object_unreference_unlocked(obj);
  4532. kfree(intel_fb);
  4533. return NULL;
  4534. }
  4535. return &intel_fb->base;
  4536. }
  4537. static const struct drm_mode_config_funcs intel_mode_funcs = {
  4538. .fb_create = intel_user_framebuffer_create,
  4539. .output_poll_changed = intel_fb_output_poll_changed,
  4540. };
  4541. static struct drm_gem_object *
  4542. intel_alloc_power_context(struct drm_device *dev)
  4543. {
  4544. struct drm_gem_object *pwrctx;
  4545. int ret;
  4546. pwrctx = i915_gem_alloc_object(dev, 4096);
  4547. if (!pwrctx) {
  4548. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  4549. return NULL;
  4550. }
  4551. mutex_lock(&dev->struct_mutex);
  4552. ret = i915_gem_object_pin(pwrctx, 4096);
  4553. if (ret) {
  4554. DRM_ERROR("failed to pin power context: %d\n", ret);
  4555. goto err_unref;
  4556. }
  4557. ret = i915_gem_object_set_to_gtt_domain(pwrctx, 1);
  4558. if (ret) {
  4559. DRM_ERROR("failed to set-domain on power context: %d\n", ret);
  4560. goto err_unpin;
  4561. }
  4562. mutex_unlock(&dev->struct_mutex);
  4563. return pwrctx;
  4564. err_unpin:
  4565. i915_gem_object_unpin(pwrctx);
  4566. err_unref:
  4567. drm_gem_object_unreference(pwrctx);
  4568. mutex_unlock(&dev->struct_mutex);
  4569. return NULL;
  4570. }
  4571. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  4572. {
  4573. struct drm_i915_private *dev_priv = dev->dev_private;
  4574. u16 rgvswctl;
  4575. rgvswctl = I915_READ16(MEMSWCTL);
  4576. if (rgvswctl & MEMCTL_CMD_STS) {
  4577. DRM_DEBUG("gpu busy, RCS change rejected\n");
  4578. return false; /* still busy with another command */
  4579. }
  4580. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  4581. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  4582. I915_WRITE16(MEMSWCTL, rgvswctl);
  4583. POSTING_READ16(MEMSWCTL);
  4584. rgvswctl |= MEMCTL_CMD_STS;
  4585. I915_WRITE16(MEMSWCTL, rgvswctl);
  4586. return true;
  4587. }
  4588. void ironlake_enable_drps(struct drm_device *dev)
  4589. {
  4590. struct drm_i915_private *dev_priv = dev->dev_private;
  4591. u32 rgvmodectl = I915_READ(MEMMODECTL);
  4592. u8 fmax, fmin, fstart, vstart;
  4593. int i = 0;
  4594. /* 100ms RC evaluation intervals */
  4595. I915_WRITE(RCUPEI, 100000);
  4596. I915_WRITE(RCDNEI, 100000);
  4597. /* Set max/min thresholds to 90ms and 80ms respectively */
  4598. I915_WRITE(RCBMAXAVG, 90000);
  4599. I915_WRITE(RCBMINAVG, 80000);
  4600. I915_WRITE(MEMIHYST, 1);
  4601. /* Set up min, max, and cur for interrupt handling */
  4602. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  4603. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  4604. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  4605. MEMMODE_FSTART_SHIFT;
  4606. fstart = fmax;
  4607. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  4608. PXVFREQ_PX_SHIFT;
  4609. dev_priv->fmax = fstart; /* IPS callback will increase this */
  4610. dev_priv->fstart = fstart;
  4611. dev_priv->max_delay = fmax;
  4612. dev_priv->min_delay = fmin;
  4613. dev_priv->cur_delay = fstart;
  4614. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n", fmax, fmin,
  4615. fstart);
  4616. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  4617. /*
  4618. * Interrupts will be enabled in ironlake_irq_postinstall
  4619. */
  4620. I915_WRITE(VIDSTART, vstart);
  4621. POSTING_READ(VIDSTART);
  4622. rgvmodectl |= MEMMODE_SWMODE_EN;
  4623. I915_WRITE(MEMMODECTL, rgvmodectl);
  4624. while (I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) {
  4625. if (i++ > 100) {
  4626. DRM_ERROR("stuck trying to change perf mode\n");
  4627. break;
  4628. }
  4629. msleep(1);
  4630. }
  4631. msleep(1);
  4632. ironlake_set_drps(dev, fstart);
  4633. dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  4634. I915_READ(0x112e0);
  4635. dev_priv->last_time1 = jiffies_to_msecs(jiffies);
  4636. dev_priv->last_count2 = I915_READ(0x112f4);
  4637. getrawmonotonic(&dev_priv->last_time2);
  4638. }
  4639. void ironlake_disable_drps(struct drm_device *dev)
  4640. {
  4641. struct drm_i915_private *dev_priv = dev->dev_private;
  4642. u16 rgvswctl = I915_READ16(MEMSWCTL);
  4643. /* Ack interrupts, disable EFC interrupt */
  4644. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  4645. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  4646. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  4647. I915_WRITE(DEIIR, DE_PCU_EVENT);
  4648. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  4649. /* Go back to the starting frequency */
  4650. ironlake_set_drps(dev, dev_priv->fstart);
  4651. msleep(1);
  4652. rgvswctl |= MEMCTL_CMD_STS;
  4653. I915_WRITE(MEMSWCTL, rgvswctl);
  4654. msleep(1);
  4655. }
  4656. static unsigned long intel_pxfreq(u32 vidfreq)
  4657. {
  4658. unsigned long freq;
  4659. int div = (vidfreq & 0x3f0000) >> 16;
  4660. int post = (vidfreq & 0x3000) >> 12;
  4661. int pre = (vidfreq & 0x7);
  4662. if (!pre)
  4663. return 0;
  4664. freq = ((div * 133333) / ((1<<post) * pre));
  4665. return freq;
  4666. }
  4667. void intel_init_emon(struct drm_device *dev)
  4668. {
  4669. struct drm_i915_private *dev_priv = dev->dev_private;
  4670. u32 lcfuse;
  4671. u8 pxw[16];
  4672. int i;
  4673. /* Disable to program */
  4674. I915_WRITE(ECR, 0);
  4675. POSTING_READ(ECR);
  4676. /* Program energy weights for various events */
  4677. I915_WRITE(SDEW, 0x15040d00);
  4678. I915_WRITE(CSIEW0, 0x007f0000);
  4679. I915_WRITE(CSIEW1, 0x1e220004);
  4680. I915_WRITE(CSIEW2, 0x04000004);
  4681. for (i = 0; i < 5; i++)
  4682. I915_WRITE(PEW + (i * 4), 0);
  4683. for (i = 0; i < 3; i++)
  4684. I915_WRITE(DEW + (i * 4), 0);
  4685. /* Program P-state weights to account for frequency power adjustment */
  4686. for (i = 0; i < 16; i++) {
  4687. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  4688. unsigned long freq = intel_pxfreq(pxvidfreq);
  4689. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  4690. PXVFREQ_PX_SHIFT;
  4691. unsigned long val;
  4692. val = vid * vid;
  4693. val *= (freq / 1000);
  4694. val *= 255;
  4695. val /= (127*127*900);
  4696. if (val > 0xff)
  4697. DRM_ERROR("bad pxval: %ld\n", val);
  4698. pxw[i] = val;
  4699. }
  4700. /* Render standby states get 0 weight */
  4701. pxw[14] = 0;
  4702. pxw[15] = 0;
  4703. for (i = 0; i < 4; i++) {
  4704. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  4705. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  4706. I915_WRITE(PXW + (i * 4), val);
  4707. }
  4708. /* Adjust magic regs to magic values (more experimental results) */
  4709. I915_WRITE(OGW0, 0);
  4710. I915_WRITE(OGW1, 0);
  4711. I915_WRITE(EG0, 0x00007f00);
  4712. I915_WRITE(EG1, 0x0000000e);
  4713. I915_WRITE(EG2, 0x000e0000);
  4714. I915_WRITE(EG3, 0x68000300);
  4715. I915_WRITE(EG4, 0x42000000);
  4716. I915_WRITE(EG5, 0x00140031);
  4717. I915_WRITE(EG6, 0);
  4718. I915_WRITE(EG7, 0);
  4719. for (i = 0; i < 8; i++)
  4720. I915_WRITE(PXWL + (i * 4), 0);
  4721. /* Enable PMON + select events */
  4722. I915_WRITE(ECR, 0x80000019);
  4723. lcfuse = I915_READ(LCFUSE02);
  4724. dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
  4725. }
  4726. void intel_init_clock_gating(struct drm_device *dev)
  4727. {
  4728. struct drm_i915_private *dev_priv = dev->dev_private;
  4729. /*
  4730. * Disable clock gating reported to work incorrectly according to the
  4731. * specs, but enable as much else as we can.
  4732. */
  4733. if (HAS_PCH_SPLIT(dev)) {
  4734. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  4735. if (IS_IRONLAKE(dev)) {
  4736. /* Required for FBC */
  4737. dspclk_gate |= DPFDUNIT_CLOCK_GATE_DISABLE;
  4738. /* Required for CxSR */
  4739. dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
  4740. I915_WRITE(PCH_3DCGDIS0,
  4741. MARIUNIT_CLOCK_GATE_DISABLE |
  4742. SVSMUNIT_CLOCK_GATE_DISABLE);
  4743. }
  4744. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  4745. /*
  4746. * According to the spec the following bits should be set in
  4747. * order to enable memory self-refresh
  4748. * The bit 22/21 of 0x42004
  4749. * The bit 5 of 0x42020
  4750. * The bit 15 of 0x45000
  4751. */
  4752. if (IS_IRONLAKE(dev)) {
  4753. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4754. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  4755. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  4756. I915_WRITE(ILK_DSPCLK_GATE,
  4757. (I915_READ(ILK_DSPCLK_GATE) |
  4758. ILK_DPARB_CLK_GATE));
  4759. I915_WRITE(DISP_ARB_CTL,
  4760. (I915_READ(DISP_ARB_CTL) |
  4761. DISP_FBC_WM_DIS));
  4762. }
  4763. /*
  4764. * Based on the document from hardware guys the following bits
  4765. * should be set unconditionally in order to enable FBC.
  4766. * The bit 22 of 0x42000
  4767. * The bit 22 of 0x42004
  4768. * The bit 7,8,9 of 0x42020.
  4769. */
  4770. if (IS_IRONLAKE_M(dev)) {
  4771. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4772. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4773. ILK_FBCQ_DIS);
  4774. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4775. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4776. ILK_DPARB_GATE);
  4777. I915_WRITE(ILK_DSPCLK_GATE,
  4778. I915_READ(ILK_DSPCLK_GATE) |
  4779. ILK_DPFC_DIS1 |
  4780. ILK_DPFC_DIS2 |
  4781. ILK_CLK_FBC);
  4782. }
  4783. return;
  4784. } else if (IS_G4X(dev)) {
  4785. uint32_t dspclk_gate;
  4786. I915_WRITE(RENCLK_GATE_D1, 0);
  4787. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  4788. GS_UNIT_CLOCK_GATE_DISABLE |
  4789. CL_UNIT_CLOCK_GATE_DISABLE);
  4790. I915_WRITE(RAMCLK_GATE_D, 0);
  4791. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  4792. OVRUNIT_CLOCK_GATE_DISABLE |
  4793. OVCUNIT_CLOCK_GATE_DISABLE;
  4794. if (IS_GM45(dev))
  4795. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  4796. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  4797. } else if (IS_I965GM(dev)) {
  4798. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  4799. I915_WRITE(RENCLK_GATE_D2, 0);
  4800. I915_WRITE(DSPCLK_GATE_D, 0);
  4801. I915_WRITE(RAMCLK_GATE_D, 0);
  4802. I915_WRITE16(DEUC, 0);
  4803. } else if (IS_I965G(dev)) {
  4804. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  4805. I965_RCC_CLOCK_GATE_DISABLE |
  4806. I965_RCPB_CLOCK_GATE_DISABLE |
  4807. I965_ISC_CLOCK_GATE_DISABLE |
  4808. I965_FBC_CLOCK_GATE_DISABLE);
  4809. I915_WRITE(RENCLK_GATE_D2, 0);
  4810. } else if (IS_I9XX(dev)) {
  4811. u32 dstate = I915_READ(D_STATE);
  4812. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  4813. DSTATE_DOT_CLOCK_GATING;
  4814. I915_WRITE(D_STATE, dstate);
  4815. } else if (IS_I85X(dev) || IS_I865G(dev)) {
  4816. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  4817. } else if (IS_I830(dev)) {
  4818. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  4819. }
  4820. /*
  4821. * GPU can automatically power down the render unit if given a page
  4822. * to save state.
  4823. */
  4824. if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) {
  4825. struct drm_i915_gem_object *obj_priv = NULL;
  4826. if (dev_priv->pwrctx) {
  4827. obj_priv = to_intel_bo(dev_priv->pwrctx);
  4828. } else {
  4829. struct drm_gem_object *pwrctx;
  4830. pwrctx = intel_alloc_power_context(dev);
  4831. if (pwrctx) {
  4832. dev_priv->pwrctx = pwrctx;
  4833. obj_priv = to_intel_bo(pwrctx);
  4834. }
  4835. }
  4836. if (obj_priv) {
  4837. I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
  4838. I915_WRITE(MCHBAR_RENDER_STANDBY,
  4839. I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
  4840. }
  4841. }
  4842. }
  4843. /* Set up chip specific display functions */
  4844. static void intel_init_display(struct drm_device *dev)
  4845. {
  4846. struct drm_i915_private *dev_priv = dev->dev_private;
  4847. /* We always want a DPMS function */
  4848. if (HAS_PCH_SPLIT(dev))
  4849. dev_priv->display.dpms = ironlake_crtc_dpms;
  4850. else
  4851. dev_priv->display.dpms = i9xx_crtc_dpms;
  4852. if (I915_HAS_FBC(dev)) {
  4853. if (IS_IRONLAKE_M(dev)) {
  4854. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  4855. dev_priv->display.enable_fbc = ironlake_enable_fbc;
  4856. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  4857. } else if (IS_GM45(dev)) {
  4858. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  4859. dev_priv->display.enable_fbc = g4x_enable_fbc;
  4860. dev_priv->display.disable_fbc = g4x_disable_fbc;
  4861. } else if (IS_I965GM(dev)) {
  4862. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  4863. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  4864. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  4865. }
  4866. /* 855GM needs testing */
  4867. }
  4868. /* Returns the core display clock speed */
  4869. if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
  4870. dev_priv->display.get_display_clock_speed =
  4871. i945_get_display_clock_speed;
  4872. else if (IS_I915G(dev))
  4873. dev_priv->display.get_display_clock_speed =
  4874. i915_get_display_clock_speed;
  4875. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  4876. dev_priv->display.get_display_clock_speed =
  4877. i9xx_misc_get_display_clock_speed;
  4878. else if (IS_I915GM(dev))
  4879. dev_priv->display.get_display_clock_speed =
  4880. i915gm_get_display_clock_speed;
  4881. else if (IS_I865G(dev))
  4882. dev_priv->display.get_display_clock_speed =
  4883. i865_get_display_clock_speed;
  4884. else if (IS_I85X(dev))
  4885. dev_priv->display.get_display_clock_speed =
  4886. i855_get_display_clock_speed;
  4887. else /* 852, 830 */
  4888. dev_priv->display.get_display_clock_speed =
  4889. i830_get_display_clock_speed;
  4890. /* For FIFO watermark updates */
  4891. if (HAS_PCH_SPLIT(dev)) {
  4892. if (IS_IRONLAKE(dev)) {
  4893. if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
  4894. dev_priv->display.update_wm = ironlake_update_wm;
  4895. else {
  4896. DRM_DEBUG_KMS("Failed to get proper latency. "
  4897. "Disable CxSR\n");
  4898. dev_priv->display.update_wm = NULL;
  4899. }
  4900. } else
  4901. dev_priv->display.update_wm = NULL;
  4902. } else if (IS_PINEVIEW(dev)) {
  4903. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  4904. dev_priv->is_ddr3,
  4905. dev_priv->fsb_freq,
  4906. dev_priv->mem_freq)) {
  4907. DRM_INFO("failed to find known CxSR latency "
  4908. "(found ddr%s fsb freq %d, mem freq %d), "
  4909. "disabling CxSR\n",
  4910. (dev_priv->is_ddr3 == 1) ? "3": "2",
  4911. dev_priv->fsb_freq, dev_priv->mem_freq);
  4912. /* Disable CxSR and never update its watermark again */
  4913. pineview_disable_cxsr(dev);
  4914. dev_priv->display.update_wm = NULL;
  4915. } else
  4916. dev_priv->display.update_wm = pineview_update_wm;
  4917. } else if (IS_G4X(dev))
  4918. dev_priv->display.update_wm = g4x_update_wm;
  4919. else if (IS_I965G(dev))
  4920. dev_priv->display.update_wm = i965_update_wm;
  4921. else if (IS_I9XX(dev)) {
  4922. dev_priv->display.update_wm = i9xx_update_wm;
  4923. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  4924. } else if (IS_I85X(dev)) {
  4925. dev_priv->display.update_wm = i9xx_update_wm;
  4926. dev_priv->display.get_fifo_size = i85x_get_fifo_size;
  4927. } else {
  4928. dev_priv->display.update_wm = i830_update_wm;
  4929. if (IS_845G(dev))
  4930. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  4931. else
  4932. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  4933. }
  4934. }
  4935. void intel_modeset_init(struct drm_device *dev)
  4936. {
  4937. struct drm_i915_private *dev_priv = dev->dev_private;
  4938. int i;
  4939. drm_mode_config_init(dev);
  4940. dev->mode_config.min_width = 0;
  4941. dev->mode_config.min_height = 0;
  4942. dev->mode_config.funcs = (void *)&intel_mode_funcs;
  4943. intel_init_display(dev);
  4944. if (IS_I965G(dev)) {
  4945. dev->mode_config.max_width = 8192;
  4946. dev->mode_config.max_height = 8192;
  4947. } else if (IS_I9XX(dev)) {
  4948. dev->mode_config.max_width = 4096;
  4949. dev->mode_config.max_height = 4096;
  4950. } else {
  4951. dev->mode_config.max_width = 2048;
  4952. dev->mode_config.max_height = 2048;
  4953. }
  4954. /* set memory base */
  4955. if (IS_I9XX(dev))
  4956. dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
  4957. else
  4958. dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
  4959. if (IS_MOBILE(dev) || IS_I9XX(dev))
  4960. dev_priv->num_pipe = 2;
  4961. else
  4962. dev_priv->num_pipe = 1;
  4963. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  4964. dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
  4965. for (i = 0; i < dev_priv->num_pipe; i++) {
  4966. intel_crtc_init(dev, i);
  4967. }
  4968. intel_setup_outputs(dev);
  4969. intel_init_clock_gating(dev);
  4970. if (IS_IRONLAKE_M(dev)) {
  4971. ironlake_enable_drps(dev);
  4972. intel_init_emon(dev);
  4973. }
  4974. INIT_WORK(&dev_priv->idle_work, intel_idle_update);
  4975. setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
  4976. (unsigned long)dev);
  4977. intel_setup_overlay(dev);
  4978. }
  4979. void intel_modeset_cleanup(struct drm_device *dev)
  4980. {
  4981. struct drm_i915_private *dev_priv = dev->dev_private;
  4982. struct drm_crtc *crtc;
  4983. struct intel_crtc *intel_crtc;
  4984. mutex_lock(&dev->struct_mutex);
  4985. drm_kms_helper_poll_fini(dev);
  4986. intel_fbdev_fini(dev);
  4987. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  4988. /* Skip inactive CRTCs */
  4989. if (!crtc->fb)
  4990. continue;
  4991. intel_crtc = to_intel_crtc(crtc);
  4992. intel_increase_pllclock(crtc, false);
  4993. del_timer_sync(&intel_crtc->idle_timer);
  4994. }
  4995. del_timer_sync(&dev_priv->idle_timer);
  4996. if (dev_priv->display.disable_fbc)
  4997. dev_priv->display.disable_fbc(dev);
  4998. if (dev_priv->pwrctx) {
  4999. struct drm_i915_gem_object *obj_priv;
  5000. obj_priv = to_intel_bo(dev_priv->pwrctx);
  5001. I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
  5002. I915_READ(PWRCTXA);
  5003. i915_gem_object_unpin(dev_priv->pwrctx);
  5004. drm_gem_object_unreference(dev_priv->pwrctx);
  5005. }
  5006. if (IS_IRONLAKE_M(dev))
  5007. ironlake_disable_drps(dev);
  5008. mutex_unlock(&dev->struct_mutex);
  5009. drm_mode_config_cleanup(dev);
  5010. }
  5011. /*
  5012. * Return which encoder is currently attached for connector.
  5013. */
  5014. struct drm_encoder *intel_attached_encoder (struct drm_connector *connector)
  5015. {
  5016. struct drm_mode_object *obj;
  5017. struct drm_encoder *encoder;
  5018. int i;
  5019. for (i = 0; i < DRM_CONNECTOR_MAX_ENCODER; i++) {
  5020. if (connector->encoder_ids[i] == 0)
  5021. break;
  5022. obj = drm_mode_object_find(connector->dev,
  5023. connector->encoder_ids[i],
  5024. DRM_MODE_OBJECT_ENCODER);
  5025. if (!obj)
  5026. continue;
  5027. encoder = obj_to_encoder(obj);
  5028. return encoder;
  5029. }
  5030. return NULL;
  5031. }
  5032. /*
  5033. * set vga decode state - true == enable VGA decode
  5034. */
  5035. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  5036. {
  5037. struct drm_i915_private *dev_priv = dev->dev_private;
  5038. u16 gmch_ctrl;
  5039. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  5040. if (state)
  5041. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  5042. else
  5043. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  5044. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  5045. return 0;
  5046. }